WO2012020657A1 - Transparent conductive film, manufacturing method therefor, organic electronic device, and organic thin film solar cell - Google Patents

Transparent conductive film, manufacturing method therefor, organic electronic device, and organic thin film solar cell Download PDF

Info

Publication number
WO2012020657A1
WO2012020657A1 PCT/JP2011/067542 JP2011067542W WO2012020657A1 WO 2012020657 A1 WO2012020657 A1 WO 2012020657A1 JP 2011067542 W JP2011067542 W JP 2011067542W WO 2012020657 A1 WO2012020657 A1 WO 2012020657A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
polymer layer
layer
conductive polymer
mesh
Prior art date
Application number
PCT/JP2011/067542
Other languages
French (fr)
Japanese (ja)
Inventor
東 耕平
塚原 次郎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012020657A1 publication Critical patent/WO2012020657A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a transparent conductive film, a manufacturing method thereof, an organic electronic device, and an organic thin film solar cell.
  • a bulk hetero type photoelectric change layer (referred to as “bulk hetero layer” as appropriate) formed by mixing an electron transport material and a hole transport material between two different electrodes. What is arranged is common.
  • Bulk hetero-type organic thin-film solar cells are easier to manufacture than flexible solar cells using amorphous silicon or the like, and have the advantage of being able to manufacture solar cells of any area at a low cost. Yes.
  • the electrode on the light receiving side has high transparency.
  • a metal oxide thin film is usually used.
  • ITO indium tin oxide
  • the ITO film is formed by a vapor phase method, is expensive, and requires a manufacturing facility for vapor phase film formation.
  • an alternative electrode material is currently required.
  • a transparent conductive film that satisfies the required performance without using ITO is required.
  • a transparent conductive film in which a conductive metal mesh and a conductive polymer are combined has been disclosed (see, for example, JP 2009-76668 A and JP 2009-231194 A).
  • An object of the present invention is to provide a transparent conductive film having high conductivity and good device physical properties when used as an electrode of an organic electronic device, and a method for producing the same. Moreover, the further objective of this invention is to provide organic electronic devices, such as an organic thin-film solar cell with high electric power generation efficiency using the transparent conductive film of the said this invention.
  • a support a conductive mesh disposed on the support, and a first conductive polymer layer disposed in contact with the conductive mesh in an opening of the conductive mesh and on the conductive mesh And a second conductive polymer layer having a volume resistivity higher than that of the first conductive polymer layer and disposed on the first conductive polymer layer.
  • Conductive film
  • ⁇ 2> a support, a conductive mesh disposed on the support, a first conductive polymer layer disposed in contact with the conductive mesh in an opening of the conductive mesh, and the first A second conductive polymer layer having a volume resistivity higher than that of the conductive polymer layer, and disposed on the conductive mesh and the first conductive polymer layer.
  • Transparent conductive film ⁇ 3> The transparent conductive film according to ⁇ 1> or ⁇ 2>, wherein the conductive mesh contains silver.
  • ⁇ 4> The transparent conductive film according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive mesh includes silver and a hydrophilic polymer.
  • ⁇ 5> The transparent conductive film according to any one of ⁇ 1> to ⁇ 4>, wherein a line width of the conductive mesh in plan view is 1 ⁇ m or more and 20 ⁇ m or less.
  • ⁇ 6> The transparent conductive film according to any one of ⁇ 1> to ⁇ 5>, wherein a pitch of the conductive mesh in plan view is 50 ⁇ m or more and 500 ⁇ m or less.
  • ⁇ 7> The transparent conductive film according to any one of ⁇ 1> to ⁇ 6>, wherein an area of an opening serving as a repeating unit in the conductive mesh is 1 ⁇ 10 ⁇ 8 m 2 or more and 1 ⁇ 10 ⁇ 7 m 2 or less. .
  • ⁇ 8> The transparent conductive film according to any one of ⁇ 1> to ⁇ 7>, wherein the first conductive polymer layer and the second conductive polymer layer contain a polythiophene derivative.
  • the polythiophene derivative is polyethylenedioxythiophene.
  • the volume resistivity of the first conductive polymer layer is 5 ⁇ 10 ⁇ 1 ⁇ cm or less, and the volume resistivity of the second conductive polymer layer is 10 ⁇ cm or more.
  • ⁇ 1> to ⁇ 8> The transparent conductive film according to any one of the above.
  • the first conductive polymer layer contains a polythiophene derivative with a volume resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less
  • the second conductive polymer layer contains a polythiophene derivative with a volume resistivity of 10 ⁇ cm or more.
  • ⁇ 13> The transparent conductive film according to any one of ⁇ 1> to ⁇ 11>, the photoelectric conversion layer disposed on the second conductive polymer layer of the transparent electrode film, and the transparent conductive film
  • a step of forming a conductive mesh on a support a step of forming a first conductive polymer layer in the opening of the conductive mesh and on the conductive mesh, and on the first conductive polymer layer Forming a second conductive polymer layer having a volume resistivity higher than the volume resistivity of the first conductive polymer layer.
  • a step of forming a conductive mesh on the support a step of forming a first conductive polymer layer in contact with the conductive mesh in the opening of the conductive mesh, the conductive mesh and the first conductive Forming a second conductive polymer layer having a volume resistivity higher than the volume resistivity of the first conductive polymer layer on the conductive polymer layer.
  • the step of forming a conductive mesh on the support includes a step of performing pattern exposure on the coating film for forming the conductive mesh, a step of developing the pattern-exposed coating,
  • an organic electronic device such as a transparent conductive film having high conductivity and good device physical properties when used as an electrode of an organic electronic device, a method for producing the transparent conductive film, and an organic thin film solar cell having high power generation efficiency.
  • a bulk hetero type organic thin film solar cell is an organic thin film solar cell in which a photoelectric conversion layer is a bulk hetero layer, and the bulk hetero layer is a mixed layer of a hole transport material and an electron transport material.
  • the mixed layer may be a layer in which a plurality of materials are uniformly mixed, or may be a layer that is microscopically phase-separated.
  • a transparent conductive film having a conductive mesh and a conductive polymer as a conductive layer has a lower surface resistance than ITO and is essentially preferable for electronic devices.
  • a bulk hetero type organic thin film solar cell is essentially preferable because of high conversion efficiency compared to other organic thin film solar cells (for example, planar hetero type organic thin film solar cells). For this reason, producing a bulk hetero type organic thin film solar cell using a transparent conductive film having a conductive mesh and a conductive polymer as a conductive layer is one of the most preferable methods for obtaining a highly efficient flexible organic thin film solar cell. It is thought that.
  • the cause of the leakage current is that electrons leak from the electron transport material present in the bulk hetero layer to the conductive layer.
  • the present inventors have provided a conductive polymer layer having a low volume resistivity at least in the opening of the conductive mesh, and a conductive polymer layer having a high volume resistivity is laminated thereon. It has been found that the object of the present invention is achieved. That is, in the transparent conductive film of the present invention, the conductive polymer in contact with the opening of the conductive mesh is made highly conductive rather than simply laminating the conductive mesh and the conductive polymer layer on the light transmissive support.
  • the device is designed to reduce the conductivity of the conductive polymer in contact with the photoelectric conversion layer. By this device, we succeeded in greatly suppressing the leakage current.
  • a bulk hetero type organic thin film solar cell having higher power generation efficiency than a transparent conductive film formed only of a conductive polymer or a transparent conductive film combining a conductive mesh and one conductive polymer layer. can get. This will become clear from the following examples.
  • FIG. 1A is a schematic cross-sectional view showing one embodiment of the transparent conductive film of the present invention
  • FIG. 2 is a schematic plan view showing an example of a pattern of a conductive mesh.
  • the transparent conductive film 10 of the embodiment shown in FIG. 1A includes at least a light-transmitting substrate 12 as a support, a conductive mesh 14 disposed on the substrate 12, and an opening 20 of the conductive mesh 14. And a first conductive polymer layer 16 disposed on and in contact with the conductive mesh 14 and a second conductive polymer layer 18 disposed on the first conductive polymer layer 16. It is comprised including.
  • the transparent conductive film according to this embodiment has the above-described configuration, the transparent conductive film has good conductivity, and when used as an electrode of an organic electronic device, gives a good device with little leakage current. For this reason, the transparent conductive film 10 of this invention is useful for manufacture of a lightweight flexible organic thin-film solar cell and an organic electroluminescent element.
  • the organic thin-film solar cell using the transparent conductive film 10 of the present invention is excellent in power generation efficiency.
  • the method for producing the transparent conductive film 10 of the present invention having such a configuration is not particularly limited.
  • a hole block layer an exciton diffusion prevention layer, a hole transport layer, an electron transport layer, a hole collection layer, an electron collection layer, an easily bonding layer
  • a known layer such as a layer, a protective layer, a gas barrier layer, a matting agent layer, an antireflection layer, a hard coat layer, an antifogging layer, or an antifouling layer may be further provided.
  • the surface resistance value is preferably 10 ⁇ / sq or less, more preferably 3 ⁇ / sq or less. More preferably, it is 1 ⁇ / sq or less.
  • the surface resistance value of the transparent conductive film 10 of this invention is mainly determined by the electroconductivity of a conductive mesh. That is, in the present invention, it is possible to obtain a surface resistance value of 10 ⁇ / sq or less with only the conductive mesh.
  • the power generation efficiency is low.
  • the transparent conductive film 10 of the present invention includes a low-resistance first conductive polymer layer 16 that covers the conductive mesh 14 and a high-resistance second conductive polymer on the first conductive polymer layer 16.
  • a surface electrode can be formed and a surface resistance value of 10 ⁇ / sq or less can be obtained.
  • the transparent conductive film 10 of the present invention is suitable as a transparent electrode of an organic electronic device.
  • An organic electronic device provided with the counter electrode arranged oppositely can be constituted.
  • the transparent conductive film 10 of the present invention is particularly preferably used as a member of an organic thin film solar cell.
  • the organic thin film solar cell includes at least the transparent conductive film of the present invention, a photoelectric conversion layer, and a second electrode, and the transparent conductive film of the present invention functions as a first electrode.
  • the first electrode can be used as both a positive electrode (cathode) and a negative electrode (anode).
  • the first electrode should be used as the positive electrode. Is preferred.
  • the transparent conductive film of the present invention is also suitably used as a member of an organic electroluminescent element.
  • an organic electroluminescent element is equipped with the transparent conductive film of the said this invention, a light emitting layer, and a 2nd electrode at least, and the transparent conductive film of this invention functions as a 1st electrode.
  • the first electrode can be used as both an anode (anode) and a cathode (cathode), but a hole transportable one is generally selected as the conductive polymer. Is preferred.
  • the support used for the transparent conductive film of the present invention is not particularly limited as long as it has a smooth surface capable of holding a conductive mesh or a polymer layer, and may be appropriately selected according to the purpose.
  • a plastic film substrate will be described as a representative example of the support.
  • the plastic film substrate is not particularly limited as long as it can hold a conductive mesh and a water-soluble polymer layer, which will be described later, and can be appropriately selected according to the purpose.
  • the film has excellent transparency to light in the wavelength range of 400 nm to 800 nm.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. be able to.
  • thermoplastic resins such as a ring-modified polycarbonate resin, an alicyclic modified polycarbonate resin, a fluorene ring-modified polyester resin, and an acryloyl compound.
  • the plastic film substrate is preferably made of a heat-resistant material.
  • the glass transition temperature (Tg) has a heat resistance satisfying at least one of physical properties of 100 ° C. or higher and a linear thermal expansion coefficient of 40 ppm / ° C. or lower. Further, as described above, the exposure wavelength is adjusted. On the other hand, it is preferable to be molded from a material having high transparency.
  • the Tg and linear expansion coefficient of the plastic film are measured by the plastic transition temperature measurement method described in JIS K 7121 and the linear expansion coefficient test method based on the thermomechanical analysis of plastic described in JIS K 7197. In, the value measured by this method is used.
  • thermoplastic resin having excellent heat resistance for example, polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), alicyclic polyolefin (for example, ZEONOR 1600: 160 ° C.
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • alicyclic polyolefin for example, ZEONOR 1600: 160 ° C.
  • the plastic film used as the support substrate 12 in the transparent conductive film 10 of the present invention is required to be transparent to light. More specifically, the light transmittance for light in the wavelength range of 400 nm to 800 nm is usually preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the thickness of the plastic film is not particularly limited, but is typically 1 ⁇ m to 800 ⁇ m, preferably 10 ⁇ m to 300 ⁇ m.
  • a known functional layer may be provided on the back surface of the plastic film (the surface on which the conductive mesh is not provided). Examples of the functional layer include a gas barrier layer, a mat agent layer, an antireflection layer, a hard coat layer, an antifogging layer, and an antifouling layer.
  • the functional layer is described in detail in paragraph numbers [0036] to [0038] of JP-A-2006-289627.
  • the surface of the plastic film substrate (the surface on which the conductive mesh is placed) may have an easy adhesion layer or an undercoat layer from the viewpoint of improving adhesion.
  • the easy adhesion layer or the undercoat layer may be a single layer or a multilayer.
  • Various hydrophilic undercoat polymers are used to form the easy-adhesion layer or the undercoat layer. Examples of hydrophilic undercoat polymers used in the present invention include gelatin, gelatin derivatives, casein, agar, sodium alginate, starch, polyvinyl alcohol and other water-soluble polymers, carboxymethylcellulose, cellulose esters such as hydroxyethylcellulose, and vinyl chloride-containing copolymers.
  • Examples include latex polymers such as vinylidene chloride-containing copolymers, acrylate-containing copolymers, vinyl acetate-containing copolymers, and butadiene-containing copolymers, polyacrylic acid copolymers, and maleic anhydride copolymers. Is done.
  • the coating thickness after drying the easy-adhesion layer or undercoat layer is preferably in the range of 50 nm to 2 ⁇ m.
  • a support body as a temporary support body, it is also possible to give an easily peelable process to the support surface.
  • the conductive mesh 14 is formed of various metal materials.
  • the metal material include gold, platinum, iron, copper, silver, aluminum, chromium, cobalt, and stainless steel.
  • Preferable examples of the metal material include low resistance metals such as copper, silver, aluminum, and gold. Among them, silver or copper having excellent conductivity is preferably used.
  • the mesh pattern Stripes, squares, rectangles, diamonds, honeycombs, or curves may be used.
  • FIG. 2 is a schematic plan view showing an example of a square mesh network pattern. These mesh designs are adjusted so that the aperture ratio (light transmittance) and the surface resistance (conductivity) have desired values. In FIG.
  • a region 20 surrounded by the conductive mesh 14 represents an opening, and the opening ratio is 70% or more, preferably 80% or more, and more preferably 85% or more.
  • the surface resistance of the conductive mesh when no conductive polymer is installed is preferably 10 ⁇ / sq or less, more preferably 3 ⁇ / sq or less, and even more preferably 1 ⁇ / sq or less. Since the light transmittance and the conductivity are in a trade-off relationship, the larger the aperture ratio, the better. However, in practice, it becomes 95% or less.
  • the thickness of the conductive mesh 14 is not particularly limited, but is usually 0.02 ⁇ m or more and 20 ⁇ m or less.
  • the line width of the fine metal wire is in the range of 1 ⁇ m or more and 500 ⁇ m or less, preferably 1 ⁇ m or more and 100 ⁇ m or less, and more preferably 3 ⁇ m or more and 20 ⁇ m or less from the viewpoint of light transmittance and conductivity.
  • the conductive polymer layer 16 formed in contact with the conductive mesh 14 has lower carrier (hole and electron) mobility than the metal conductive mesh.
  • a finer pitch of the conductive mesh is advantageous in terms of device characteristics.
  • the finer the pitch the lower the light transmission, so a compromise is chosen.
  • the pitch in plan view is preferably 50 ⁇ m or more and 2000 ⁇ m or less, more preferably 100 ⁇ m or more and 1000 ⁇ m or less, and further preferably 150 ⁇ m or more and 500 ⁇ m or less.
  • the area of the opening 20 serving as a repeating unit of the conductive mesh 14 is preferably 1 ⁇ 10 ⁇ 9 m 2 or more and 1 ⁇ 10 ⁇ 5 m 2 or less, and 3 ⁇ 10 ⁇ 9. More preferably, it is m 2 or more and 1 ⁇ 10 ⁇ 6 m 2 or less, and further preferably 1 ⁇ 10 ⁇ 8 m 2 or more and 1 ⁇ 10 ⁇ 7 m 2 or less.
  • the conductive mesh 14 may have a bus line (thick line) for large area current collection. The thickness and pitch of the bus line are appropriately selected according to the device to be used.
  • the formation method of the conductive mesh 14 in the present invention is not particularly limited, and a known formation method can be appropriately used.
  • a method in which a metal mesh prepared in advance is bonded to the substrate surface a method in which a conductive material is applied in a pattern, a conductive film is formed on the entire surface by vapor deposition or sputtering, and then etched to form a mesh-shaped conductive film.
  • a method using a silver halide photosensitive material described in JP-A No. 352073, JP-A-2009-231194, and the like hereinafter sometimes referred to as a silver salt method).
  • the conductive mesh 14 of the present invention is preferably formed by a silver salt method because the pattern is fine.
  • a coating liquid for forming the conductive mesh is provided on the support, and a pattern exposure is performed on the coating film for forming the conductive mesh, and the pattern exposure is performed.
  • a conductive mesh having a desired pattern can be formed on the support by the step of developing the coating film and the step of fixing the developed coating film.
  • the conductive mesh produced by the silver salt method is a layer of silver and a hydrophilic polymer.
  • hydrophilic polymers examples include water-soluble polymers such as gelatin, gelatin derivatives, casein, agar, sodium alginate, starch, and polyvinyl alcohol; cellulose esters such as carboxymethyl cellulose and hydroxyethyl cellulose.
  • the layer contains substances derived from the coating, developing and fixing processes. A method of obtaining a conductive mesh having a lower resistance by forming a conductive mesh by the silver salt method and then performing copper plating is also preferably used.
  • the conductive polymer layer has a two-layer structure. That is, in the present invention, the conductive polymer layer is formed in the opening 20 of the conductive mesh 14 and on the conductive mesh 14, and the first conductive polymer layer 16 in contact with the conductive mesh 14, and the first conductive It is comprised from the 2nd conductive polymer layer 18 which exists on the polymer layer 16 and contacts an organic compound layer (for example, photoelectric conversion layer).
  • the first conductive polymer layer 16 is a low resistance layer
  • the second conductive polymer layer 18 is a high resistance layer.
  • each of the conductive polymer layers 16 and 18 needs to be transparent in the action spectrum range of the solar cell to be applied, and usually from visible light. It needs to be excellent in light transmittance of near infrared light.
  • the average light transmittance in the wavelength region of 400 nm to 800 nm when the film thickness is 0.2 ⁇ m is preferably 75% or more, and more preferably 85% or more.
  • each conductive polymer layer 16, 18 is not particularly limited as long as it is a polymer material having conductivity. With respect to the charge to be transported, either hole conductivity or electron conductivity may be used.
  • specific conductive polymers include, for example, polythiophene, polypyrrole, polyaniline, polyphenylene vinylene, polyphenylene, polyacetylene, polyquinoxaline, polyoxadiazole, polybenzothiadiazole, and polymers having a plurality of these conductive skeletons. It is done. Among these, polythiophene is preferable, and polyethylenedioxythiophene is particularly preferable. These polythiophenes are usually partially oxidized in order to obtain conductivity.
  • the conductivity of the conductive polymer can be adjusted by the degree of partial oxidation (doping amount), and the higher the doping amount, the higher the conductivity. Since polythiophene becomes cationic by partial oxidation, it has a counter anion to neutralize the charge.
  • An example of such a polythiophene is polyethylene dioxythiophene (PEDOT-PSS) having polystyrene sulfonic acid as a counter ion.
  • polymers may be added to the respective conductive polymer layers 16 and 18 as long as the desired conductivity is not impaired. Other polymers are added for the purpose of improving coatability and increasing the film strength.
  • examples of other polymers include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose Acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modified polycarbonate resin , Fluorene ring-modified polyester resins, acryloyl compounds and other thermoplastic resins, gelatin, polyvinyl alcohol, polyacrylic acid, poly
  • the first conductive polymer layer 16 in the present invention is preferably within a volume resistivity alone contains 1 ⁇ 10 -1 ⁇ cm or less of the conductive polymer, 1 ⁇ 10 -2 ⁇ cm or less of the conductive polymer More preferably.
  • the volume resistivity of the first conductive polymer layer 16 is preferably 5 ⁇ 10 ⁇ 1 ⁇ cm or less, and preferably 5 ⁇ 10 ⁇ 2 ⁇ cm or less. More preferably.
  • the second conductive polymer layer 18 preferably contains a conductive polymer having a volume resistivity of 10 ⁇ cm or more, and more preferably contains a conductive polymer having a volume resistivity of 100 ⁇ cm or more.
  • the volume resistivity of the second conductive polymer layer 18 is preferably 10 ⁇ cm or more, and more preferably 100 ⁇ cm or more.
  • the conductive polymer is an aqueous solution or a water dispersion, and therefore, a normal aqueous coating method is used for forming the conductive polymer layers 16 and 18.
  • a hydrophilic polymer is present around the conductive mesh, which is convenient for applying an aqueous dispersion.
  • Various solvents, surfactants, thickeners and the like may be added to the conductive polymer coating solution as coating aids.
  • the film thickness of the first conductive polymer layer 16 is preferably in the range of 30 nm to 3 ⁇ m, more preferably 100 nm to 1 ⁇ m, from the viewpoints of conductivity and transparency.
  • the film thickness of the second conductive polymer layer 18 is preferably in the range of 1 to 100 nm, and more preferably 5 to 50 nm, from the viewpoint of electron blocking properties and hole conductivity.
  • the transparent conductive film of the present invention may further have a functional layer depending on the purpose in addition to the above essential components.
  • the functional layer used on the surface side include a peelable temporary protective layer.
  • functional layers used on the back side include gas barrier layers, matting agent layers, antireflection layers, hard coat layers, antifogging layers, antifouling layers, and easy adhesion. Layer and the like.
  • FIG. 1B is a schematic cross-sectional view showing another embodiment of the transparent conductive film of the present invention.
  • the transparent conductive film 10 of the embodiment shown in FIG. 1B is arranged in contact with the conductive mesh 14 in the opening of the support 12, the conductive mesh 14 disposed on the support 12, and the conductive mesh 14.
  • First conductive polymer layer 16 having a volume resistivity higher than that of the first conductive polymer layer 16 and on the conductive mesh 14 and the first conductive polymer.
  • a second conductive polymer layer 18 disposed on the layer 16. As shown in FIG.
  • the first conductive polymer layer 16 is disposed in the opening of the conductive mesh 14 so as to be in contact with the conductive mesh 14, and the second conductive polymer layer 18 having high resistance is connected to the conductive mesh 14. 14 and the first conductive polymer layer 16, the first conductive polymer layer 16 imparts conductivity to the openings of the conductive mesh 14 and the second conductive polymer layer 16. Since the movement of electrons from the photoelectric conversion layer is hindered by the conductive polymer layer 18, the conversion efficiency can be improved.
  • the first conductive polymer layer 16 disposed in the opening of the conductive mesh 14 needs to be in contact with the conductive mesh 14, but the first conductive polymer layer 16 disposed in the opening of the conductive mesh 14.
  • the thickness of the polymer layer 16 is not necessarily the same as the thickness of the conductive mesh 14.
  • the first conductive polymer layer 16 is filled up to an intermediate height in the mesh opening, and the second conductive polymer layer 18 covers the conductive mesh 14 and the first conductive polymer layer 16 thereon.
  • positioned may be sufficient.
  • a step of forming a conductive mesh 14 on the support 12 and a first contact with the conductive mesh 14 in the opening of the conductive mesh 14 A step of forming a conductive polymer layer 16 and a volume resistivity higher than the volume resistivity of the first conductive polymer layer 16 on the conductive mesh 14 and the first conductive polymer layer 16; And the step of forming the second conductive polymer layer 18.
  • the transparent conductive film of the present invention can be used for purposes such as organic EL displays, organic EL lighting, dye-sensitized solar cells, and organic thin-film solar cells. Especially, it uses suitably for the organic thin-film solar cell excellent in electric power generation efficiency.
  • the organic thin film solar cell of the present invention includes the transparent conductive film (first electrode) of the present invention, a photoelectric conversion layer disposed on the second conductive polymer layer of the transparent electrode film, and the transparent conductive film. And a counter electrode (second electrode) disposed to face the film so as to sandwich the photoelectric conversion layer.
  • the first electrode may be either a positive electrode or a negative electrode.
  • the second electrode has a polarity opposite to that of the first electrode.
  • the first electrode is usually a positive electrode.
  • the configuration in which the first electrode (the transparent conductive film 10 of the present invention) is a positive electrode will be described in detail.
  • the organic thin-film solar cell using the transparent conductive film shown in FIG. 1A will be mainly described.
  • the present invention is not limited to this, and a transparent conductive film having the form shown in FIG. 1B may be used.
  • FIG. 3 schematically shows an example of the configuration of the organic thin-film solar cell of the present invention.
  • the organic thin film solar cell 30 of the present invention is most simply configured as transparent conductive film 10 / bulk heterolayer 22 / negative electrode 24).
  • An electron trapping layer may be provided between the bulk hetero layer and the negative electrode, and other organic layers may be provided between the layers as necessary.
  • the organic thin film solar cell of the present invention may take a so-called tandem configuration in which a plurality of photoelectric conversion layers are laminated.
  • the tandem element may be a serial connection type or a parallel connection type.
  • the transparent conductive film 10 of the present invention serves as a positive electrode.
  • Molybdenum oxide may be used as part of the positive electrode. In this case, for example, molybdenum oxide may be deposited on the conductive film 10 of the present invention.
  • the negative electrode can be appropriately selected from known electrode materials. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specific examples include alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, copper, aluminum, magnesium-silver alloy, indium, nickel and the like. These may be used alone or in combination of two or more.
  • silver is particularly preferable.
  • the method for forming the negative electrode is not particularly limited, and can be performed according to a known method.
  • the negative electrode is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the negative electrode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like.
  • Patterning for forming the negative electrode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or vacuum deposition or sputtering may be performed with a mask overlapped. Alternatively, the lift-off method or the printing method may be used.
  • the formation position of the negative electrode is not particularly limited as long as it is disposed opposite to the transparent conductive film so as to sandwich an organic layer such as a bulk hetero layer, and may be formed on the entire organic layer. It may be formed in a part thereof. Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the negative electrode and the organic layer in a thickness of 0.1 to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like. The thickness of the negative electrode can be appropriately selected depending on the material constituting the negative electrode and cannot be generally defined, but is usually about 10 nm to 5 ⁇ m, and preferably 50 nm to 500 nm.
  • the bulk hetero layer is an organic photoelectric conversion layer in which a hole transport material and an electron transport material are mixed.
  • the mixing ratio of the hole transport material and the electron transport material is adjusted so that the conversion efficiency is the highest, but is usually selected from the range of 10:90 to 90:10 by mass ratio.
  • a method for forming such a mixed organic layer for example, a co-evaporation method by vacuum deposition is used. Or it is also possible to produce by carrying out solvent application
  • the thickness of the bulk hetero layer is preferably 10 to 500 nm, and particularly preferably 20 to 300 nm.
  • the hole transport material is a ⁇ -electron conjugated compound having a HOMO level of 4.5 to 6.0 eV, specifically, various arenes (for example, thiophene, carbazole, fluorene, silafluorene, thienopyrazine, thienobenzothiophene). , Dithienosilol, quinoxaline, benzothiadiazole, thienothiophene, etc.) coupled polymers, phenylene vinylene polymers, porphyrins, phthalocyanines, and the like.
  • Chem. Rev. The compound group described as Hole Transport material in 2007, 107, 953-1010 and the porphyrin derivative described in Journal of the American Chemical Society Vol.
  • a conjugated polymer obtained by coupling a structural unit selected from the group consisting of thiophene, carbazole, fluorene, silafluorene, thienopyrazine, thienobenzothiophene, dithienosilole, quinoxaline, benzothiadiazole, and thienothiophene is particularly preferable.
  • Specific examples include poly-3-hexylthiophene, poly-3-octylthiophene, various polythiophene derivatives described in Journal of the American Chemical Society, Vol. 130, p. 3020 (2008), Advanced Materials, Vol. 19, p. 2295 (2007).
  • the electron transport material is a ⁇ -electron conjugated compound having a LUMO level of 3.5 to 4.5 eV.
  • fullerene and its derivatives, phenylene vinylene polymers, naphthalene tetracarboxylic imide derivatives, perylene tetra Examples thereof include carboxylic acid imide derivatives. Of these, fullerene derivatives are preferred.
  • fullerene derivative examples include C 60 , phenyl-C 61 -methyl butyrate (fullerene derivative referred to as PCBM, [60] PCBM, or PC 61 BM in the literature), C 70 , phenyl-C 71 -methyl butyrate (Fullerene derivatives referred to as PCBM, [70] PCBM, or PC 71 BM in many literatures) and fullerene derivatives described in Advanced Functional Materials, Vol. 19, pp. 779-788 (2009), journals Examples of the fullerene derivative SIMEF and the like described in The American Chemical Society Vol. 131, page 16048 (2009).
  • an electron transport layer made of an electron transport material may be provided between the bulk hetero layer and the negative electrode.
  • the electron transport material that can be used for the electron transport layer include those described above and Chem. Rev. 2007, 107, 953-1010, and those described as Electron Transport Materials.
  • the electron transport layer can be suitably formed by any of various types of wet film forming methods, dry film forming methods such as vapor deposition and sputtering, transfer methods, and printing methods.
  • An electron collection layer may be provided between the bulk hetero layer and the negative electrode.
  • an electron transport material or a compound for example, bathocuproine, titanium oxide, or the like
  • the thickness of the electron trapping layer is 1 nm to 30 nm, preferably 2 nm to 15 nm.
  • the electron collection layer can be suitably formed by any of various wet film forming methods, dry film forming methods such as vapor deposition and sputtering, transfer methods, and printing methods.
  • a recombination layer is provided between the two photoelectric conversion layers.
  • an ultrathin layer of a conductive material is used as the material of the recombination layer.
  • Preferred metals include gold, silver, aluminum, platinum, ruthenium oxide and the like. Of these, silver is preferred.
  • the thickness of the recombination layer is 0.01 to 5 nm, preferably 0.1 to 1 nm, and particularly preferably 0.2 to 0.6 nm.
  • the formation method of a recombination layer For example, it can form by a vacuum evaporation method, sputtering method, an ion plating method, etc.
  • organic layer is used as a general term for layers using organic compounds such as a bulk hetero layer, a hole transport layer, an electron transport layer, an electron block layer, a hole block layer, and an exciton diffusion prevention layer.
  • the organic thin film solar cell of the present invention may be annealed by various methods for the purpose of crystallization of the organic layer and promotion of phase separation of the bulk hetero layer.
  • the annealing method include a method of heating the substrate temperature during vapor deposition to 50 ° C. to 150 ° C. and a method of setting the drying temperature after coating to 50 ° C. to 150 ° C. Further, after the formation of the second electrode is completed, annealing may be performed by heating to 50 ° C. to 150 ° C.
  • the organic thin film solar cell of the present invention may be protected by a protective layer.
  • the material contained in the protective layer MgO, SiO, SiO 2, Al 2 O 3, Y 2 O 3, TiO metal oxides such as 2, metal nitrides such as SiN x, metal nitrides such as SiN x O y
  • examples thereof include oxides, metal fluorides such as MgF 2 , LiF, AlF 3 , and CaF 2 , and polymers such as polyethylene, polypropylene, polyvinylidene fluoride, and polyparaxylylene.
  • the protective layer may be a single layer or a multilayer structure.
  • the method for forming the protective layer is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, vacuum ultraviolet CVD method, coating method, printing method, transfer method can be applied.
  • a protective layer may be used as the conductive layer.
  • the organic thin film solar cell of the present invention may have a gas barrier layer.
  • the gas barrier layer is not particularly limited as long as it has a gas barrier property.
  • the gas barrier layer is an inorganic layer.
  • the inorganic substance includes boron, magnesium, aluminum, silicon, titanium, zinc, tin oxide, nitride, oxynitride, carbide, hydride, and the like. These may be pure substances, or may be a mixture of multiple compositions or a gradient material layer. Of these, aluminum oxide, nitride or oxynitride, or silicon oxide, nitride or oxynitride is preferable.
  • the inorganic layer may be a single layer or a laminate of a plurality of layers.
  • a laminate of an organic layer and an inorganic layer may be used, or an alternating laminate of a plurality of inorganic layers and a plurality of organic layers may be used.
  • the organic layer is not particularly limited as long as it is a smooth layer, but a layer made of a polymer of (meth) acrylate is preferably exemplified.
  • the thickness of the inorganic layer is not particularly limited, but usually attached to one layer, It is in the range of 5 to 500 nm, preferably 10 to 200 nm.
  • the inorganic layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition. Further, as disclosed in US Patent Publication No. 2004-46497, a layer in which the interface with the organic polymer layer is not clear and the composition continuously changes in the film thickness direction may be used.
  • the thickness of the organic thin layer solar cell of the present invention is preferably 50 ⁇ m to 1 mm, and more preferably 100 ⁇ m to 500 ⁇ m.
  • the silver chlorobromide cubic grain emulsion was chemically sensitized at 40 ° C. for 80 minutes using 20 mg of sodium thiosulfate per mole of silver halide. After chemical sensitization, 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene (TAI) is 500 mg per mole of silver halide and 1-phenyl-5-mercaptotetrazole is 1 mole of silver halide.
  • a silver halide emulsion was obtained by adding 150 mg per unit. This silver halide emulsion had a volume ratio of silver halide grains to gelatin (silver halide grains / gelatin) of 0.625.
  • a hardening agent H-1: tetrakis (vinylsulfonylmethyl) methane
  • a surfactant SU-2: sulfosuccinate disulfate
  • (2-ethylhexyl) .sodium was added to adjust the surface tension.
  • Polyethylene naphthalate having a coating thickness of 100 ⁇ m and a transmittance of 92% (anti-reflective treatment on the back surface) was applied to the coating solution thus obtained so that the basis weight in terms of silver was 0.625 g / m 2.
  • a curing process was carried out at 50 ° C. for 24 hours to obtain a photosensitive material.
  • the obtained photosensitive material was exposed with a UV exposure device through a mesh photomask (line width: 5 ⁇ m, pitch: 300 ⁇ m).
  • FIX-1 750 mL of pure water Sodium thiosulfate 250g Anhydrous sodium sulfite 15g Glacial acetic acid 15mL Potash alum 15g Water was added to make up a total volume of 1 liter.
  • electrolytic copper plating treatment was performed at 25 ° C. using the following electrolytic plating solution, followed by washing with water and drying treatment. In addition, the current control in electrolytic copper plating was performed over 3 minutes, 3 minutes for 1 minute and then 12 minutes for 1A. After the completion of the plating treatment, the plate was rinsed with tap water for 10 minutes to carry out a water washing treatment, and dried using a dry air (50 ° C.) until it was in a dry state.
  • Electrolytic plating solution Copper sulfate (pentahydrate) 200g 50g of sulfuric acid Sodium chloride 0.1g Water was added to make up a total volume of 1000 mL.
  • first conductive polymer layer An aqueous dispersion of polyethylene dioxythiophene / polystyrene sulfonic acid (abbreviation: PEDOT-PSS) (manufactured by HC Starck Co., Ltd.) on the surface of the transparent conductive film (A-0) (side on which the conductive mesh is formed) A solution in which 5% by mass of dimethyl sulfoxide was added to Clevios PH-500) was applied. Next, this film was heated and dried at 120 ° C. for 20 minutes to form a first conductive polymer layer, and a transparent conductive film (A-1) was obtained. At this time, the film thickness of the conductive polymer layer was 200 nm.
  • PEDOT-PSS polyethylene dioxythiophene / polystyrene sulfonic acid
  • the PEDOT-PSS aqueous dispersion was applied to the cleaned glass surface and subjected to the same treatment.
  • a single layer (B-1) of a conductive polymer having a thickness of 220 nm was obtained.
  • a high-resistance PEDOT-PSS aqueous dispersion (manufactured by HC Starck Co., Clevios P-VP-AI4083) was applied to the surface of the transparent conductive film (A-0). Next, this film was heated and dried at 130 ° C. for 10 minutes to form a first conductive polymer layer, and a transparent conductive film (A-2) was obtained. At this time, the film thickness of the conductive polymer layer was 220 nm.
  • the high-resistance PEDOT-PSS aqueous dispersion was applied to the cleaned glass surface and subjected to the same treatment.
  • a single layer (B-2) of a conductive polymer having a thickness of 210 nm was obtained.
  • a comparative film (A-3) was prepared by laminating Clevios PH-500 at 200 nm and Clevios P-VP-AI4083 at 20 nm on the PEN film.
  • Second conductive polymer layer On the surface of the transparent conductive film (A-1) (the side on which the first conductive polymer layer is formed), an aqueous dispersion of the above-mentioned high-resistance PEDOT-PSS (manufactured by HC Starck, Crevius P -VP-AI4083) was applied. Next, this film was heated and dried at 130 ° C. for 10 minutes to form a second conductive polymer layer, and a transparent conductive film (F-1) was obtained. At this time, the film thickness of the second conductive polymer layer was 20 nm.
  • PEDOT-PSS manufactured by HC Starck, Crevius P -VP-AI4083
  • a transparent conductive film (F-1) of the present invention having a layer was obtained.
  • the transparent conductive film (F-2) of the present invention was produced in the same manner as (F-1) except that the line width of the mesh was changed to 30 ⁇ m by changing the exposure conditions. Further, the transparent conductive film (F-3) of the present invention was produced in the same manner as (F-1) except that the mesh pitch was changed to 600 ⁇ m by changing the exposure conditions. It will be apparent from the following examples that the transparent conductive film of the present invention exhibits excellent performance as an electrode of an organic thin film solar cell.
  • Example 1 According to the following procedure, an organic thin film solar cell having the transparent conductive film (F-1) of the present invention as a positive electrode was produced.
  • P3HT poly-3-hexylthiophene, Lisicon SP-001 (trade name), manufactured by Merck & Co., Inc.
  • PCBM [6,6] -phenyl C 61 -butylic acid methyl ester, Nanom Spectra E-100H (product) Name
  • 14 mg 14 mg (manufactured by Frontier Carbon Co., Ltd.) was dissolved in 1 ml of chlorobenzene to obtain a photoelectric conversion layer coating solution.
  • a photoelectric conversion coating solution was spin-coated on the transparent conductive film (F-1) and dried to form a photoelectric conversion layer.
  • the rotation speed of the spin coater was 2000 rpm, and the dry film thickness was 90 nm.
  • Aluminum was deposited on the photoelectric conversion layer to a thickness of 100 nm to form a negative electrode. At this time, mask deposition was performed so that the effective area of photoelectric conversion was 4 cm 2 .
  • a comparative organic thin film solar cell (PA-0, PA-1) was prepared in the same manner as in Example 1 except that the prepared A-0, A-1, or A-2 was used instead of F-1. , PA-2).
  • a comparative organic thin-film solar cell (PA-3) was obtained in the same manner as in Example 1 except that the prepared A-3 was used instead of F-1.
  • the organic thin film solar cells obtained in the examples and comparative examples were irradiated with simulated sunlight of AM1.5G, 100 mW / cm 2 using a Pexel Technologies L12 type solar simulator, and the source measure unit (SMU2400).
  • the current value was measured in a voltage range of ⁇ 0.1 V to 0.7 V using a mold (manufactured by KEITHLEY).
  • the obtained current-voltage characteristics were evaluated using a Pexel Technologies IV curve analyzer, and the characteristic parameters were calculated. The measurement results are shown in Table 1 below.
  • the PGIP of Comparative Example 4 is preferable in terms of a high short circuit current, since the surface resistance of the positive electrode is as high as 10 ⁇ / sq, the shape factor is low and the total power generation efficiency does not reach the present invention.
  • the present invention is not limited to the above embodiment and examples.
  • the conductors constituting the conductive mesh 14 have a rectangular cross-sectional shape in the thickness direction, but the cross-sectional shape is not limited.
  • the conductive wire constituting the conductive mesh 14 may have a rounded surface shape, and the thickness of the conductive polymer layer is extremely large with respect to the height of the protrusion. It may be too thin.

Abstract

A transparent conductive film (10) comprises a support (12), a conductive mesh (14) disposed on the support, a first conductive polymer layer (16) formed upon the conductive mesh and the openings (20) in the conductive mesh so as to be in contact with the conductive mesh, and a second conductive polymer layer (18) having a volume resistivity higher than the volume resistivity of the first conductive polymer layer and formed on the first conductive polymer layer. The first conductive polymer layer may be formed only in the openings of the conductive mesh, and the second conductive polymer layer may be formed on the conductive mesh and the first conductive layer.

Description

透明導電フィルム及びその製造方法並びに有機電子デバイス及び有機薄膜太陽電池Transparent conductive film, method for producing the same, organic electronic device, and organic thin film solar cell
 本発明は透明導電フィルム及びその製造方法並びに有機電子デバイス及び有機薄膜太陽電池に関する。 The present invention relates to a transparent conductive film, a manufacturing method thereof, an organic electronic device, and an organic thin film solar cell.
 近年、軽量、低コスト、フレキシブル化が期待できる有機電子デバイスが注目されている。特に、バルクヘテロ型有機薄膜太陽電池への期待が高まっている。
 バルクヘテロ型有機薄膜太陽電池の構成としては、2つの異種電極間に、電子輸送材料とホール輸送材料を混合してなるバルクヘテロ型の光電変化層(適宜、「バルクへテロ層」と記す。)を配置してなるものが一般的である。バルクヘテロ型有機薄膜太陽電池は、アモルファスシリコン等を用いてなるフレキシブル太陽電池に比べて製造が容易で、低コストで任意の面積の太陽電池を製造しうるという利点があり、実用化が望まれている。
In recent years, organic electronic devices that can be expected to be lightweight, low cost, and flexible have attracted attention. In particular, expectations for bulk hetero-type organic thin film solar cells are increasing.
As a structure of the bulk hetero type organic thin-film solar cell, a bulk hetero type photoelectric change layer (referred to as “bulk hetero layer” as appropriate) formed by mixing an electron transport material and a hole transport material between two different electrodes. What is arranged is common. Bulk hetero-type organic thin-film solar cells are easier to manufacture than flexible solar cells using amorphous silicon or the like, and have the advantage of being able to manufacture solar cells of any area at a low cost. Yes.
 有機薄膜太陽電池のような有機電子デバイスにおいては、受光側の電極は高い透明性を有することが発電効率の点から好ましい。透明電極としては、通常、金属酸化物薄膜が用いられており、なかでも、透明性が高いことから、インジウム錫酸化物(ITO)が主に使用されている。しかしながら、ITO膜は気相法で形成され、高価で、且つ、気相法製膜のための製造設備も必要である。また、効率を上げるため、膜厚を上げると透明性が低下することから、代替となる電極材料が求められているのが現状である。 In an organic electronic device such as an organic thin film solar cell, it is preferable from the viewpoint of power generation efficiency that the electrode on the light receiving side has high transparency. As the transparent electrode, a metal oxide thin film is usually used. In particular, indium tin oxide (ITO) is mainly used because of its high transparency. However, the ITO film is formed by a vapor phase method, is expensive, and requires a manufacturing facility for vapor phase film formation. In addition, in order to increase the efficiency, when the film thickness is increased, the transparency is lowered. Therefore, an alternative electrode material is currently required.
 即ち、軽量、低コスト、可撓性を有する有機電子デバイスを得るには、ITOを用いずに必要性能を満たした透明導電フィルムが必要となる。この目的のために、導電性の金属メッシュと導電性ポリマーとを組み合わせた透明導電フィルムが開示されている(例えば、特開2009-76668号公報、特開2009-231194号公報参照。)。 That is, in order to obtain an organic electronic device having light weight, low cost, and flexibility, a transparent conductive film that satisfies the required performance without using ITO is required. For this purpose, a transparent conductive film in which a conductive metal mesh and a conductive polymer are combined has been disclosed (see, for example, JP 2009-76668 A and JP 2009-231194 A).
 また、PET基板上に陽極として2層構造の導電性ポリマー層を形成した有機太陽電池が提案されている(“Investigation on polymer anode design for flexible polymer solar cells”Applied Physics Letters, Vol.92, 233308 published online 13 June 2008)参照)。 In addition, an organic solar cell in which a conductive polymer layer having a two-layer structure is formed as an anode on a PET substrate has been proposed (“Investigation on polymer anode design for flexible polymer solar cells” Applied Physics Letters, Vol.92, 233308 published See online (13 June 2008)).
 本発明の目的は、導電性が高く、有機電子デバイスの電極として用いたときに該デバイス物性が良好である透明導電フィルム及びその製造方法を提供することにある。また、本発明のさらなる目的は、前記本発明の透明導電フィルムを用いた、発電効率の高い有機薄膜太陽電池などの有機電子デバイスを提供することにある。 An object of the present invention is to provide a transparent conductive film having high conductivity and good device physical properties when used as an electrode of an organic electronic device, and a method for producing the same. Moreover, the further objective of this invention is to provide organic electronic devices, such as an organic thin-film solar cell with high electric power generation efficiency using the transparent conductive film of the said this invention.
 上記目的を達成するため、以下の発明が提供される。
<1> 支持体と、該支持体上に配置されている導電メッシュと、該導電メッシュの開口部内及び該導電メッシュ上に該導電メッシュと接触して配置されている第一の導電性ポリマー層と、該第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有し、該第一の導電性ポリマー層上に配置されている第二の導電性ポリマー層と、を有する透明導電フィルム。
<2> 支持体と、該支持体上に配置されている導電メッシュと、該導電メッシュの開口部内に該導電メッシュと接触して配置されている第一の導電性ポリマー層と、該第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有し、前記導電性メッシュ上及び前記第一の導電性ポリマー層上に配置されている第二の導電性ポリマー層と、を有する透明導電フィルム。
<3> 前記導電メッシュが銀を含む<1>又は<2>に記載の透明導電フィルム。
<4> 前記導電メッシュが銀および親水性ポリマーを含む<1>から<3>のいずれかに記載の透明導電フィルム。
<5> 前記導電メッシュの平面視による線幅が1μm以上20μm以下である<1>から<4>のいずれかに記載の透明導電フィルム。
<6> 前記導電メッシュの平面視によるピッチが50μm以上500μm以下である<1>から<5>のいずれかに記載の透明導電フィルム。
<7> 前記導電メッシュにおいて繰り返し単位となる開口部の面積が1×10-8以上1×10-7以下である<1>から<6>のいずれかに記載の透明導電フィルム。
<8> 前記第一の導電性ポリマー層および前記第二の導電性ポリマー層が、ポリチオフェン誘導体を含有する<1>から<7>のいずれかに記載の透明導電フィルム。
<9> 前記ポリチオフェン誘導体が、ポリエチレンジオキシチオフェンである<8>に記載の透明導電フィルム。
<10> 前記第一の導電性ポリマー層の体積抵抗率が5×10-1Ωcm以下であり、前記第二の導電性ポリマー層の体積抵抗率が10Ωcm以上である<1>から<8>のいずれかに記載の透明導電フィルム。
<11> 前記第一の導電性ポリマー層は体積抵抗率が1×10-2Ωcm以下のポリチオフェン誘導体を含有し、前記第二の導電性ポリマー層は体積抵抗率が10Ωcm以上のポリチオフェン誘導体を含有する<8>から<10>のいずれかに記載の透明導電フィルム。
<12> <1>から<11>のいずれかに記載の透明導電フィルムと、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されている有機化合物層と、前記透明導電フィルムに対し、前記有機化合物層を挟むように対向配置されている対向電極と、を備える有機電子デバイス。
<13> <1>から<11>のいずれかに記載の透明導電フィルムと、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されている光電変換層と、前記透明導電フィルムに対し、前記光電変換層を挟むように対向配置されている対向電極と、を備える有機電子デバイス。
<14> <1>から<11>のいずれかに記載の透明導電フィルムと、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されているバルクへテロ型の光電変換層と、前記透明導電フィルムに対し、前記光電変換層を挟むように対向配置されている対向電極と、を備えるバルクヘテロ型有機薄膜太陽電池。
<15> 支持体上に導電メッシュを形成する工程と、該導電メッシュの開口部内及び該導電性メッシュ上に第一の導電性ポリマー層を形成する工程と、該第一の導電性ポリマー層上に該第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有する第二の導電性ポリマー層を形成する工程と、を含む透明導電フィルムの製造方法。
<16> 支持体上に導電メッシュを形成する工程と、該導電メッシュの開口部内に該導電メッシュと接触する第一の導電性ポリマー層を形成する工程と、前記導電メッシュ上及び第一の導電性ポリマー層上に、前記第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有する第二の導電性ポリマー層を形成する工程と、を含む透明導電フィルムの製造方法。
<17> 前記支持体上に導電メッシュを形成する工程が、前記導電メッシュを形成するための塗膜に対してパターン露光を行う工程と、前記パターン露光された塗膜を現像する工程と、前記現像された塗膜を定着する工程と、を含む<15>又は<16>に記載の透明導電フィルムの製造方法。
In order to achieve the above object, the following invention is provided.
<1> A support, a conductive mesh disposed on the support, and a first conductive polymer layer disposed in contact with the conductive mesh in an opening of the conductive mesh and on the conductive mesh And a second conductive polymer layer having a volume resistivity higher than that of the first conductive polymer layer and disposed on the first conductive polymer layer. Conductive film.
<2> a support, a conductive mesh disposed on the support, a first conductive polymer layer disposed in contact with the conductive mesh in an opening of the conductive mesh, and the first A second conductive polymer layer having a volume resistivity higher than that of the conductive polymer layer, and disposed on the conductive mesh and the first conductive polymer layer. Transparent conductive film.
<3> The transparent conductive film according to <1> or <2>, wherein the conductive mesh contains silver.
<4> The transparent conductive film according to any one of <1> to <3>, wherein the conductive mesh includes silver and a hydrophilic polymer.
<5> The transparent conductive film according to any one of <1> to <4>, wherein a line width of the conductive mesh in plan view is 1 μm or more and 20 μm or less.
<6> The transparent conductive film according to any one of <1> to <5>, wherein a pitch of the conductive mesh in plan view is 50 μm or more and 500 μm or less.
<7> The transparent conductive film according to any one of <1> to <6>, wherein an area of an opening serving as a repeating unit in the conductive mesh is 1 × 10 −8 m 2 or more and 1 × 10 −7 m 2 or less. .
<8> The transparent conductive film according to any one of <1> to <7>, wherein the first conductive polymer layer and the second conductive polymer layer contain a polythiophene derivative.
<9> The transparent conductive film according to <8>, wherein the polythiophene derivative is polyethylenedioxythiophene.
<10> The volume resistivity of the first conductive polymer layer is 5 × 10 −1 Ωcm or less, and the volume resistivity of the second conductive polymer layer is 10 Ωcm or more. <1> to <8> The transparent conductive film according to any one of the above.
<11> The first conductive polymer layer contains a polythiophene derivative with a volume resistivity of 1 × 10 −2 Ωcm or less, and the second conductive polymer layer contains a polythiophene derivative with a volume resistivity of 10 Ωcm or more. <8> to <10> The transparent conductive film according to any one of <10>.
<12> The transparent conductive film according to any one of <1> to <11>, the organic compound layer disposed on the second conductive polymer layer of the transparent electrode film, and the transparent conductive film On the other hand, an organic electronic device provided with the counter electrode arrange | positioned facing so that the said organic compound layer may be pinched | interposed.
<13> The transparent conductive film according to any one of <1> to <11>, the photoelectric conversion layer disposed on the second conductive polymer layer of the transparent electrode film, and the transparent conductive film On the other hand, an organic electronic device provided with the counter electrode arrange | positioned facing so that the said photoelectric converting layer may be pinched | interposed.
<14> The transparent conductive film according to any one of <1> to <11>, a bulk hetero photoelectric conversion layer disposed on the second conductive polymer layer of the transparent electrode film, A bulk hetero type organic thin-film solar cell comprising: a counter electrode disposed opposite to the transparent conductive film so as to sandwich the photoelectric conversion layer.
<15> A step of forming a conductive mesh on a support, a step of forming a first conductive polymer layer in the opening of the conductive mesh and on the conductive mesh, and on the first conductive polymer layer Forming a second conductive polymer layer having a volume resistivity higher than the volume resistivity of the first conductive polymer layer.
<16> A step of forming a conductive mesh on the support, a step of forming a first conductive polymer layer in contact with the conductive mesh in the opening of the conductive mesh, the conductive mesh and the first conductive Forming a second conductive polymer layer having a volume resistivity higher than the volume resistivity of the first conductive polymer layer on the conductive polymer layer.
<17> The step of forming a conductive mesh on the support includes a step of performing pattern exposure on the coating film for forming the conductive mesh, a step of developing the pattern-exposed coating, The method for producing a transparent conductive film according to <15> or <16>, comprising a step of fixing the developed coating film.
 本発明によれば、導電性が高く、有機電子デバイスの電極として用いたときに該デバイス物性が良好である透明導電フィルム及びその製造方法並びに発電効率の高い有機薄膜太陽電池などの有機電子デバイスが提供される。 According to the present invention, an organic electronic device such as a transparent conductive film having high conductivity and good device physical properties when used as an electrode of an organic electronic device, a method for producing the transparent conductive film, and an organic thin film solar cell having high power generation efficiency. Provided.
本発明の透明導電フィルムの一態様を示す概略断面図である。It is a schematic sectional drawing which shows the one aspect | mode of the transparent conductive film of this invention. 本発明の透明導電フィルムの他の態様を示す概略断面図である。It is a schematic sectional drawing which shows the other aspect of the transparent conductive film of this invention. 本発明の透明導電フィルムにおける導電メッシュの一態様を示す概略平面図である。It is a schematic plan view which shows the one aspect | mode of the conductive mesh in the transparent conductive film of this invention. 本発明の有機薄膜太陽電池の構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the organic thin film solar cell of this invention. 本発明の透明導電フィルムの他の態様を示す概略断面図である。It is a schematic sectional drawing which shows the other aspect of the transparent conductive film of this invention. 本発明の透明導電フィルムの他の態様を示す概略断面図である。It is a schematic sectional drawing which shows the other aspect of the transparent conductive film of this invention.
 以下において、本発明の内容について詳細に説明する。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。 Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 導電メッシュ上に導電性ポリマー層を積層すると、面内方向への電荷拡散が可能となって有機薄膜太陽電池の発電効率が向上する。このとき、導電性ポリマー層の導電性が高いほど電荷の拡散距離が大きくなり、発電効率には有利に働く。
 一方、有機薄膜太陽電池の中で最も発電効率が高いのは所謂「バルクヘテロ型」の有機薄膜太陽電池である。バルクヘテロ型有機薄膜太陽電池とは光電変換層がバルクヘテロ層である有機薄膜太陽電池であって、バルクヘテロ層とは正孔輸送材料と電子輸送材料の混合層である。ここで、混合層とは複数の材料が均一に混合した層であっても良いし、ミクロに相分離した層であっても良い。
When the conductive polymer layer is laminated on the conductive mesh, charge diffusion in the in-plane direction becomes possible and the power generation efficiency of the organic thin film solar cell is improved. At this time, the higher the conductivity of the conductive polymer layer, the longer the diffusion distance of charges, which favors the power generation efficiency.
On the other hand, the so-called “bulk hetero type” organic thin film solar cell has the highest power generation efficiency among the organic thin film solar cells. A bulk hetero type organic thin film solar cell is an organic thin film solar cell in which a photoelectric conversion layer is a bulk hetero layer, and the bulk hetero layer is a mixed layer of a hole transport material and an electron transport material. Here, the mixed layer may be a layer in which a plurality of materials are uniformly mixed, or may be a layer that is microscopically phase-separated.
 導電メッシュと導電性ポリマーを導電層とする透明導電フィルムは、ITOに比べて表面抵抗値が低く、電子デバイス用として本質的に好ましい。一方、バルクヘテロ型有機薄膜太陽電池は他の有機薄膜太陽電池(例えば平面ヘテロ型有機薄膜太陽電池)に比べて変換効率が高く、本質的に好ましい。このため、導電メッシュと導電性ポリマーを導電層とする透明導電フィルムを用いてバルクヘテロ型有機薄膜太陽電池を作製することは、高効率なフレキシブル有機薄膜太陽電池を得るための最も好ましい方法の一つであると考えられる。 A transparent conductive film having a conductive mesh and a conductive polymer as a conductive layer has a lower surface resistance than ITO and is essentially preferable for electronic devices. On the other hand, a bulk hetero type organic thin film solar cell is essentially preferable because of high conversion efficiency compared to other organic thin film solar cells (for example, planar hetero type organic thin film solar cells). For this reason, producing a bulk hetero type organic thin film solar cell using a transparent conductive film having a conductive mesh and a conductive polymer as a conductive layer is one of the most preferable methods for obtaining a highly efficient flexible organic thin film solar cell. It is thought that.
 ところが、本発明者の研究によれば、導電性の金属メッシュと導電性ポリマーとを組み合わせたフィルムをバルクヘテロ型の有機薄膜太陽電池に適用した場合、導電性ポリマーの導電性を高めるに従いリーク電流が増大し、最適な変換効率が得られないことが判明した。すなわち、金属メッシュと導電性ポリマーを併用する透明導電性フィルムは、有機電子デバイス、とりわけ、バルクヘテロ層を有する有機電子デバイスへの応用のためには改良が必要である。
 一方、導電性ポリマーのみで電極を構成した導電フィルムでは、導電性を確保すべく導電性ポリマー層の厚さを大きくする必要があるが、導電性ポリマー層の厚みを大きくすると、透明性が低下してしまう。
However, according to the research of the present inventors, when a film in which a conductive metal mesh and a conductive polymer are combined is applied to a bulk hetero type organic thin film solar cell, the leakage current increases as the conductivity of the conductive polymer increases. It has been found that optimum conversion efficiency cannot be obtained. That is, a transparent conductive film using a metal mesh and a conductive polymer in combination needs to be improved for application to an organic electronic device, particularly an organic electronic device having a bulk hetero layer.
On the other hand, in the case of a conductive film comprising an electrode only with a conductive polymer, it is necessary to increase the thickness of the conductive polymer layer in order to ensure conductivity. However, increasing the thickness of the conductive polymer layer reduces the transparency. Resulting in.
 そして、本発明者らが鋭意研究及び検討を行った結果、リーク電流の原因はバルクヘテロ層中に存在する電子輸送材料から、導電層へ電子が漏出する事が原因であることを突き止めた。さらに、本発明者らは、研究及び検討を重ねた結果、少なくとも導電メッシュの開口部内に体積抵抗率の低い導電性ポリマー層を設け、その上に体積抵抗率の高い導電性ポリマー層を積層することによって、本発明の目的が達成されることを見出した。すなわち、本発明の透明導電フィルムでは、光透過性の支持体上に単に導電メッシュと導電性ポリマー層を積層するのではなく、導電メッシュの開口部内で接している導電性ポリマーを高導電性とし、光電変換層に接している導電性ポリマーを低導電性とする工夫を施してある。この工夫により、リーク電流を大幅に抑制することに成功した。本発明によれば、導電性ポリマーのみを形成した透明導電性フィルムや、導電メッシュと1層の導電性ポリマー層とを組み合わせた透明導電フィルムに比べて発電効率の高いバルクヘテロ型有機薄膜太陽電池が得られる。このことは、後の実施例によって明らかとなる。 And, as a result of intensive studies and examinations by the present inventors, it has been found that the cause of the leakage current is that electrons leak from the electron transport material present in the bulk hetero layer to the conductive layer. Further, as a result of repeated research and investigation, the present inventors have provided a conductive polymer layer having a low volume resistivity at least in the opening of the conductive mesh, and a conductive polymer layer having a high volume resistivity is laminated thereon. It has been found that the object of the present invention is achieved. That is, in the transparent conductive film of the present invention, the conductive polymer in contact with the opening of the conductive mesh is made highly conductive rather than simply laminating the conductive mesh and the conductive polymer layer on the light transmissive support. The device is designed to reduce the conductivity of the conductive polymer in contact with the photoelectric conversion layer. By this device, we succeeded in greatly suppressing the leakage current. According to the present invention, there is provided a bulk hetero type organic thin film solar cell having higher power generation efficiency than a transparent conductive film formed only of a conductive polymer or a transparent conductive film combining a conductive mesh and one conductive polymer layer. can get. This will become clear from the following examples.
‐透明導電フィルム‐
 まず、本発明の透明導電フィルムの構成について説明する。
 図1Aは、本発明の透明導電フィルムの一態様を示す概略断面図であり、図2は導電メッシュのパターンの一例を示す概略平面図である。図1Aに示す実施形態の透明導電フィルム10は、少なくとも、支持体としての光透過性の基板12と、該基板12上に配置されている導電メッシュ14と、該導電メッシュ14の開口部20内及び該導電メッシュ14上に該導電メッシュと接して配置されている第一の導電性ポリマー層16と、該第一の導電性ポリマー層16上に配置されている第二の導電性ポリマー層18を含んで構成される。
-Transparent conductive film-
First, the structure of the transparent conductive film of this invention is demonstrated.
FIG. 1A is a schematic cross-sectional view showing one embodiment of the transparent conductive film of the present invention, and FIG. 2 is a schematic plan view showing an example of a pattern of a conductive mesh. The transparent conductive film 10 of the embodiment shown in FIG. 1A includes at least a light-transmitting substrate 12 as a support, a conductive mesh 14 disposed on the substrate 12, and an opening 20 of the conductive mesh 14. And a first conductive polymer layer 16 disposed on and in contact with the conductive mesh 14 and a second conductive polymer layer 18 disposed on the first conductive polymer layer 16. It is comprised including.
 本実施形態に係る透明導電フィルムは、前記構成としたために、導電性が良好であり、有機電子デバイスの電極として用いるとリーク電流が少ない良好なデバイスを与える。このため、本発明の透明導電フィルム10は、軽量フレキシブルな有機薄膜太陽電池や有機電界発光素子の製造に有用である。本発明の透明導電フィルム10を用いた有機薄膜太陽電は、発電効率に優れる。
 このような構成を有する本発明の透明導電フィルム10を製造する方法は特に限定されないが、通常は、支持体12上に導電メッシュ14を形成する工程と、該導電メッシュ14の開口部20内及び該導電性メッシュ14上に第一の導電性ポリマー層16を形成する工程と、該第一の導電性ポリマー層16上に該第一の導電性ポリマー層16の体積抵抗率よりも高い体積抵抗率を有する第二の導電性ポリマー層18を形成する工程と、を含む方法により製造することができる。
 なお、上記構成を有し、本発明の効果を損なわない限り、所望により、ホールブロック層、励起子拡散防止層、ホール輸送層、電子輸送層、ホール捕集層、電子捕集層、易接着層、保護層、ガスバリア層、マット剤層、反射防止層、ハードコート層、防曇層、防汚層などの公知の層をさらに設けてもよい。
Since the transparent conductive film according to this embodiment has the above-described configuration, the transparent conductive film has good conductivity, and when used as an electrode of an organic electronic device, gives a good device with little leakage current. For this reason, the transparent conductive film 10 of this invention is useful for manufacture of a lightweight flexible organic thin-film solar cell and an organic electroluminescent element. The organic thin-film solar cell using the transparent conductive film 10 of the present invention is excellent in power generation efficiency.
The method for producing the transparent conductive film 10 of the present invention having such a configuration is not particularly limited. Usually, however, the step of forming the conductive mesh 14 on the support 12, the inside of the opening 20 of the conductive mesh 14, and Forming a first conductive polymer layer 16 on the conductive mesh 14; and a volume resistivity higher than the volume resistivity of the first conductive polymer layer 16 on the first conductive polymer layer 16. And forming a second conductive polymer layer 18 having a rate.
In addition, as long as it has the said structure and does not impair the effect of this invention, as needed, a hole block layer, an exciton diffusion prevention layer, a hole transport layer, an electron transport layer, a hole collection layer, an electron collection layer, an easily bonding layer A known layer such as a layer, a protective layer, a gas barrier layer, a matting agent layer, an antireflection layer, a hard coat layer, an antifogging layer, or an antifouling layer may be further provided.
 本発明の透明導電フィルム10の好ましい物性値としては、表面抵抗値は、10Ω/sq以下であることが好ましく、より好ましくは3Ω/sq以下である。さらに好ましくは1Ω/sq以下である。
 なお、本発明の透明導電フィルム10の表面抵抗値は、主として導電メッシュの導電性によって決定される。すなわち、本発明においては導電メッシュだけで10Ω/sq以下の表面抵抗値を得ることが可能である。しかしながら、導電メッシュのみで導電性ポリマー層を有しない透明導電フィルムを用いて有機薄膜太陽電池を作製した場合、発電効率は低い。これは、導電性ポリマーがないと面内方向に電荷が拡散できず、発生した電荷の多くが導電メッシュまで到達できないからである。
 これに対し、本発明の透明導電フィルム10は、導電メッシュ14を覆う低抵抗の第一の導電性ポリマー層16と、第一の導電性ポリマー層16上に高抵抗の第二の導電性ポリマー層18を有することで面電極を形成し、10Ω/sq以下の表面抵抗値を得ることができる。
As a preferable physical property value of the transparent conductive film 10 of the present invention, the surface resistance value is preferably 10 Ω / sq or less, more preferably 3 Ω / sq or less. More preferably, it is 1 Ω / sq or less.
In addition, the surface resistance value of the transparent conductive film 10 of this invention is mainly determined by the electroconductivity of a conductive mesh. That is, in the present invention, it is possible to obtain a surface resistance value of 10 Ω / sq or less with only the conductive mesh. However, when an organic thin film solar cell is produced using a transparent conductive film having only a conductive mesh and no conductive polymer layer, the power generation efficiency is low. This is because without the conductive polymer, charges cannot be diffused in the in-plane direction, and most of the generated charges cannot reach the conductive mesh.
In contrast, the transparent conductive film 10 of the present invention includes a low-resistance first conductive polymer layer 16 that covers the conductive mesh 14 and a high-resistance second conductive polymer on the first conductive polymer layer 16. By having the layer 18, a surface electrode can be formed and a surface resistance value of 10Ω / sq or less can be obtained.
 本発明の透明導電フィルム10は有機電子デバイスの透明電極として好適である。具体的には、本発明の透明導電フィルムと、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されている有機化合物層と、透明導電フィルムに対し前記有機化合物層を挟むように対向配置されている対向電極と、を備える有機電子デバイスを構成することができる。
 本発明の透明導電フィルム10は、特に、有機薄膜太陽電池の部材として好適に使用される。その場合、有機薄膜太陽電池は、少なくとも、前記本発明の透明導電フィルムと、光電変換層と、第二電極とを備え、本発明の透明導電フィルムは第一電極として機能する。このとき、第一電極は正極(カソード)としても、負極(アノード)としても用いることができるが、導電性ポリマーとしてホール輸送性のものが選ばれることが一般的であるため、正極として用いることが好ましい。
The transparent conductive film 10 of the present invention is suitable as a transparent electrode of an organic electronic device. Specifically, the transparent conductive film of the present invention, the organic compound layer disposed on the second conductive polymer layer of the transparent electrode film, and the organic compound layer sandwiched between the transparent conductive film An organic electronic device provided with the counter electrode arranged oppositely can be constituted.
The transparent conductive film 10 of the present invention is particularly preferably used as a member of an organic thin film solar cell. In that case, the organic thin film solar cell includes at least the transparent conductive film of the present invention, a photoelectric conversion layer, and a second electrode, and the transparent conductive film of the present invention functions as a first electrode. At this time, the first electrode can be used as both a positive electrode (cathode) and a negative electrode (anode). However, since it is common to select a hole transportable polymer as the conductive polymer, the first electrode should be used as the positive electrode. Is preferred.
 また、本発明の透明導電フィルムは、有機電界発光素子の部材としても好適に使用される。その場合、有機電界発光素子は、少なくとも、前記本発明の透明導電フィルムと、発光層と、第二電極とを備え、本発明の透明導電フィルムは第一電極として機能する。このとき、第一電極は陽極(アノード)としても、陰極(カソード)としても用いることができるが、導電性ポリマーとしてホール輸送性のものが選ばれることが一般的であるため、陽極として用いることが好ましい。 The transparent conductive film of the present invention is also suitably used as a member of an organic electroluminescent element. In that case, an organic electroluminescent element is equipped with the transparent conductive film of the said this invention, a light emitting layer, and a 2nd electrode at least, and the transparent conductive film of this invention functions as a 1st electrode. At this time, the first electrode can be used as both an anode (anode) and a cathode (cathode), but a hole transportable one is generally selected as the conductive polymer. Is preferred.
 以下、本発明に好ましく用いることのできる材料について詳しく述べる。
<支持体>
 本発明の透明導電フィルムに用いる支持体は、導電メッシュやポリマー層を保持できる表面平滑なものであれば特に制限はなく、目的に応じて適宜選択しうる。以下、支持体の代表的な例としてプラスチックフィルム基板について説明する。
 プラスチックフィルム基板は、後述する導電メッシュ及び水溶性ポリマー層等を保持できるものであれば、材質、厚み等に特に制限はなく、目的に応じて適宜選択することができるが、光、例えば、後述する本発明の有機薄膜太陽電池に用いる際には、400nm~800nmの波長範囲の光に対する透過性に優れることが好ましい。
 光透過率は、JIS-K7105に記載された方法、すなわち積分球式光透過率測定装置を用いて全光透過率及び散乱光量を測定し、全光透過率から拡散透過率を引いて算出することができる。
 基板に用いうるプラスチックフィルムの素材としては、具体的には、例えば、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
 プラスチックフィルム基板は、耐熱性を有する素材からなることが好ましい。具体的には、ガラス転移温度(Tg)が100℃以上、及び、線熱膨張係数が40ppm/℃以下の少なくともいずれかの物性を満たす耐熱性を有し、さらに、前記したように露光波長に対し高い透明性を有する素材により成形されることが好ましい。
 なお、プラスチックフィルムのTg及び線膨張係数は、JIS K 7121に記載のプラスチックの転移温度測定方法、及び、JIS K 7197に記載のプラスチックの熱機械分析による線膨張率試験方法により測定され、本発明においては、この方法により測定した値を用いている。
Hereinafter, materials that can be preferably used in the present invention will be described in detail.
<Support>
The support used for the transparent conductive film of the present invention is not particularly limited as long as it has a smooth surface capable of holding a conductive mesh or a polymer layer, and may be appropriately selected according to the purpose. Hereinafter, a plastic film substrate will be described as a representative example of the support.
The plastic film substrate is not particularly limited as long as it can hold a conductive mesh and a water-soluble polymer layer, which will be described later, and can be appropriately selected according to the purpose. When used in the organic thin film solar cell of the present invention, it is preferable that the film has excellent transparency to light in the wavelength range of 400 nm to 800 nm.
The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. be able to.
Specific examples of the plastic film material that can be used for the substrate include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, Polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene Examples thereof include thermoplastic resins such as a ring-modified polycarbonate resin, an alicyclic modified polycarbonate resin, a fluorene ring-modified polyester resin, and an acryloyl compound.
The plastic film substrate is preferably made of a heat-resistant material. Specifically, the glass transition temperature (Tg) has a heat resistance satisfying at least one of physical properties of 100 ° C. or higher and a linear thermal expansion coefficient of 40 ppm / ° C. or lower. Further, as described above, the exposure wavelength is adjusted. On the other hand, it is preferable to be molded from a material having high transparency.
The Tg and linear expansion coefficient of the plastic film are measured by the plastic transition temperature measurement method described in JIS K 7121 and the linear expansion coefficient test method based on the thermomechanical analysis of plastic described in JIS K 7197. In, the value measured by this method is used.
 プラスチックフィルム基板のTgや線膨張係数は、添加剤などによって調整することができる。このような耐熱性に優れる熱可塑性樹脂として、例えば、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン(株)製 ゼオノア1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報の化合物:162℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報の化合物:300℃以上)、ポリイミド等が挙げられ(括弧内はTgを示す)、これらは本発明における基材として好適である。なかでも、特に透明性が求められる用途には、脂環式ポレオレフィン等を使用するのが好ましい。 The Tg and linear expansion coefficient of the plastic film substrate can be adjusted by additives. As such a thermoplastic resin having excellent heat resistance, for example, polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), alicyclic polyolefin (for example, ZEONOR 1600: 160 ° C. manufactured by Nippon Zeon Co., Ltd.) , Polyarylate (PAr: 210 ° C.), polyether sulfone (PES: 220 ° C.), polysulfone (PSF: 190 ° C.), cycloolefin copolymer (COC: compound of JP 2001-150584 A, 162 ° C.), fluorene ring Modified polycarbonate (BCF-PC: compound of JP 2000-227603 A: 225 ° C.), alicyclic modified polycarbonate (IP-PC: compound of JP 2000-227603 A: 205 ° C.), acryloyl compound (JP 2002) Compounds of No. 80616 300 ° C. or higher), polyimide and the like (in parentheses indicate the Tg), they are suitable as substrates in the present invention. Especially, it is preferable to use alicyclic polyolefin etc. especially for the use for which transparency is required.
 本発明の透明導電フィルム10において支持基板12として用いるプラスチックフィルムは、光に対して透明であることが求められる。より具体的には、400nm~800nmの波長範囲の光に対する光透過率は、通常80%以上が好ましく、より好ましくは85%以上、さらに好ましくは90%以上である。
 プラスチックフィルムの厚みに関して特に制限はないが、典型的には1μm~800μmであり、好ましくは10μm~300μmである。
 プラスチックフィルムの裏面(導電メッシュを設置しない側の面)には、公知の機能性層を設けても良い。機能層の例としては、ガスバリア層、マット剤層、反射防止層、ハードコート層、防曇層、防汚層等が挙げられる。このほか、機能性層に関しては特開2006-289627号公報の段落番号〔0036〕~〔0038〕に詳しく記載されている。
The plastic film used as the support substrate 12 in the transparent conductive film 10 of the present invention is required to be transparent to light. More specifically, the light transmittance for light in the wavelength range of 400 nm to 800 nm is usually preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
The thickness of the plastic film is not particularly limited, but is typically 1 μm to 800 μm, preferably 10 μm to 300 μm.
A known functional layer may be provided on the back surface of the plastic film (the surface on which the conductive mesh is not provided). Examples of the functional layer include a gas barrier layer, a mat agent layer, an antireflection layer, a hard coat layer, an antifogging layer, and an antifouling layer. In addition, the functional layer is described in detail in paragraph numbers [0036] to [0038] of JP-A-2006-289627.
(易接着層/下塗り層)
 プラスチックフィルム基板の表面(導電メッシュを設置するほうの面)は、密着性向上の観点から、易接着層もしくは下塗り層を有していてもよい。易接着層もしくは下塗り層は、単層であってもよく、多層であってもよい。
 易接着層もしくは下塗り層の形成には、各種の親水性下塗ポリマーが用いられる。本発明に使用する親水性下塗ポリマーとしては、ゼラチン、ゼラチン誘導体、カゼイン、寒天、アルギン酸ソーダ、でんぷん、ポリビニルアルコールなどの水溶性ポリマー、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロースエステル、塩化ビニル含有共重合体、塩化ビニリデン含有共重合体、アクリル酸エステル含有共重合体、酢酸ビニル含有共重合体、ブタジエン含有共重合体などのラテックスポリマー、ポリアクリル酸共重合体、無水マレイン酸共重合体、等が例示される。
 易接着層もしくは下塗り層の乾燥後の塗布膜厚は、50nm~2μmの範囲であることが好ましい。なお、支持体を仮支持体として用いる場合には、支持体表面に易剥離性処理を施すことも可能である。
(Easily adhesive layer / undercoat layer)
The surface of the plastic film substrate (the surface on which the conductive mesh is placed) may have an easy adhesion layer or an undercoat layer from the viewpoint of improving adhesion. The easy adhesion layer or the undercoat layer may be a single layer or a multilayer.
Various hydrophilic undercoat polymers are used to form the easy-adhesion layer or the undercoat layer. Examples of hydrophilic undercoat polymers used in the present invention include gelatin, gelatin derivatives, casein, agar, sodium alginate, starch, polyvinyl alcohol and other water-soluble polymers, carboxymethylcellulose, cellulose esters such as hydroxyethylcellulose, and vinyl chloride-containing copolymers. Examples include latex polymers such as vinylidene chloride-containing copolymers, acrylate-containing copolymers, vinyl acetate-containing copolymers, and butadiene-containing copolymers, polyacrylic acid copolymers, and maleic anhydride copolymers. Is done.
The coating thickness after drying the easy-adhesion layer or undercoat layer is preferably in the range of 50 nm to 2 μm. In addition, when using a support body as a temporary support body, it is also possible to give an easily peelable process to the support surface.
<導電メッシュ>
 本発明において導電メッシュ14は各種の金属材料によって形成される。金属材料の例としては、金、白金、鉄、銅、銀、アルミニウム、クロム、コバルト、ステンレス等が挙げられる。金属材料の好ましい例としては、銅、銀、アルミニウム、金等の低抵抗金属が挙げられ、なかでも、導電性に優れる銀もしくは銅が好ましく用いられる。
 メッシュのパターンには特に制限がない。ストライプ、正方形、長方形、菱形、ハニカム、あるいは曲線を用いてもよい。図2は、正方形のメッシュ網目パターンの一例を示す概略平面図である。
 これらのメッシュデザインは開口率(光透過率)と表面抵抗(導電性)が所望の値となるように調整される。図2では、導電メッシュ14に囲まれた領域20が開口部を表し、該開口率は70%以上であり、80%以上が好ましく、85%以上がより好ましい。
 導電性ポリマーを設置していない状態での導電メッシュの表面抵抗は10Ω/sq以下であることが好ましく、3Ω/sq以下であることがさらに好ましく、1Ω/sq以下であることがより好ましい。光透過率と導電性はトレードオフの関係にあるため、開口率は大きいほど好ましいが、現実的には95%以下となる。
<Conductive mesh>
In the present invention, the conductive mesh 14 is formed of various metal materials. Examples of the metal material include gold, platinum, iron, copper, silver, aluminum, chromium, cobalt, and stainless steel. Preferable examples of the metal material include low resistance metals such as copper, silver, aluminum, and gold. Among them, silver or copper having excellent conductivity is preferably used.
There is no particular limitation on the mesh pattern. Stripes, squares, rectangles, diamonds, honeycombs, or curves may be used. FIG. 2 is a schematic plan view showing an example of a square mesh network pattern.
These mesh designs are adjusted so that the aperture ratio (light transmittance) and the surface resistance (conductivity) have desired values. In FIG. 2, a region 20 surrounded by the conductive mesh 14 represents an opening, and the opening ratio is 70% or more, preferably 80% or more, and more preferably 85% or more.
The surface resistance of the conductive mesh when no conductive polymer is installed is preferably 10 Ω / sq or less, more preferably 3 Ω / sq or less, and even more preferably 1 Ω / sq or less. Since the light transmittance and the conductivity are in a trade-off relationship, the larger the aperture ratio, the better. However, in practice, it becomes 95% or less.
 導電メッシュ14の厚みは特に制限は無いが、通常は0.02μm以上、20μm以下である。金属細線の線幅は、光透過性と導電性の観点から、平面視による線幅が1μm以上500μm以下の範囲であり、1μm以上100μm以下が好ましく、3μm以上20μm以下がより好ましい。 The thickness of the conductive mesh 14 is not particularly limited, but is usually 0.02 μm or more and 20 μm or less. The line width of the fine metal wire is in the range of 1 μm or more and 500 μm or less, preferably 1 μm or more and 100 μm or less, and more preferably 3 μm or more and 20 μm or less from the viewpoint of light transmittance and conductivity.
 本発明において、導電メッシュ14に接して形成される導電性ポリマー層16は金属製の導電メッシュよりもキャリア(ホールおよび電子)の移動度が低い。このため、導電メッシュのピッチは細かい方がデバイス特性上有利である。しかしながらピッチが細かいと光の透過率が低下するので、妥協点が選ばれる。ピッチは金属細線の線幅に応じて変化するが、平面視によるピッチが50μm以上2000μm以下であることが好ましく、100μm以上1000μm以下がより好ましく、150μm以上500μm以下がさらに好ましい。
 開口部20の観点から言えば、導電メッシュ14の繰り返し単位となる開口部20の面積が1×10-9以上1×10-5以下であることが好ましく、3×10-9以上1×10-6以下であることがより好ましく、1×10-8以上1×10-7以下であることがさらに好ましい。
 導電メッシュ14は、大面積集電のために、バスライン(太線)を有していても良い。バスラインの太さやピッチは、使用するデバイスに応じて適宜選択される。
In the present invention, the conductive polymer layer 16 formed in contact with the conductive mesh 14 has lower carrier (hole and electron) mobility than the metal conductive mesh. For this reason, a finer pitch of the conductive mesh is advantageous in terms of device characteristics. However, the finer the pitch, the lower the light transmission, so a compromise is chosen. Although the pitch varies depending on the line width of the fine metal wire, the pitch in plan view is preferably 50 μm or more and 2000 μm or less, more preferably 100 μm or more and 1000 μm or less, and further preferably 150 μm or more and 500 μm or less.
From the viewpoint of the opening 20, the area of the opening 20 serving as a repeating unit of the conductive mesh 14 is preferably 1 × 10 −9 m 2 or more and 1 × 10 −5 m 2 or less, and 3 × 10 −9. More preferably, it is m 2 or more and 1 × 10 −6 m 2 or less, and further preferably 1 × 10 −8 m 2 or more and 1 × 10 −7 m 2 or less.
The conductive mesh 14 may have a bus line (thick line) for large area current collection. The thickness and pitch of the bus line are appropriately selected according to the device to be used.
 本発明における導電メッシュ14の形成方法としては特に制限はなく、公知の形成方法を適宜使用しうる。例えば、予め作製した金属メッシュを基材表面に貼り合せる方法、導電材料をパターン状に塗布する方法、蒸着もしくはスパッタ法を用いて導電膜を全面に形成した後にエッチングしてメッシュ状の導電膜を形成する方法、スクリーン印刷、インクジェット印刷などの各種印刷法によりパターン状に導電材料を適用する方法、マスク蒸着法等を用いて導電メッシュを基材表面にパターン状に直接形成する方法、特開2006-352073、特開2009-231194等に記載のハロゲン化銀感光材料を用いる方法(以下、銀塩法と呼ぶことがある)等が挙げられる。 The formation method of the conductive mesh 14 in the present invention is not particularly limited, and a known formation method can be appropriately used. For example, a method in which a metal mesh prepared in advance is bonded to the substrate surface, a method in which a conductive material is applied in a pattern, a conductive film is formed on the entire surface by vapor deposition or sputtering, and then etched to form a mesh-shaped conductive film. A method of forming, a method of applying a conductive material in a pattern by various printing methods such as screen printing and ink jet printing, a method of directly forming a conductive mesh in a pattern on a substrate surface using a mask vapor deposition method, etc. And a method using a silver halide photosensitive material described in JP-A No. 352073, JP-A-2009-231194, and the like (hereinafter sometimes referred to as a silver salt method).
 本発明の導電メッシュ14は、そのパターンが細かいため、銀塩法で形成することが好ましい。銀塩法で導電メッシュを形成する場合、導電メッシュを形成するための塗液を支持体上に設け、導電メッシュを形成するための塗膜に対してパターン露光を行う工程と、パターン露光された塗膜を現像する工程と、現像された塗膜を定着する工程とにより、支持体上に所望のパターンを有する導電メッシュを形成することができる。
 銀塩法で作製される導電メッシュは、銀と親水性ポリマーの層である。親水性ポリマーの例としては、ゼラチン、ゼラチン誘導体、カゼイン、寒天、アルギン酸ソーダ、でんぷん、ポリビニルアルコールなどの水溶性ポリマー;カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロースエステル等が例示される。層内には銀や親水性ポリマーのほかにも塗布、現像、定着工程に由来する物質が含まれる。
 銀塩法で導電メッシュを形成したあとに銅めっきを施して、さらに抵抗の低い導電メッシュを得る方法も好ましく用いられる。
The conductive mesh 14 of the present invention is preferably formed by a silver salt method because the pattern is fine. When the conductive mesh is formed by the silver salt method, a coating liquid for forming the conductive mesh is provided on the support, and a pattern exposure is performed on the coating film for forming the conductive mesh, and the pattern exposure is performed. A conductive mesh having a desired pattern can be formed on the support by the step of developing the coating film and the step of fixing the developed coating film.
The conductive mesh produced by the silver salt method is a layer of silver and a hydrophilic polymer. Examples of hydrophilic polymers include water-soluble polymers such as gelatin, gelatin derivatives, casein, agar, sodium alginate, starch, and polyvinyl alcohol; cellulose esters such as carboxymethyl cellulose and hydroxyethyl cellulose. In addition to silver and hydrophilic polymer, the layer contains substances derived from the coating, developing and fixing processes.
A method of obtaining a conductive mesh having a lower resistance by forming a conductive mesh by the silver salt method and then performing copper plating is also preferably used.
<導電性ポリマー層>
 本発明において導電性ポリマー層は2層構成である。すなわち、本発明において導電性ポリマー層は、導電メッシュ14の開口部20内と該導電メッシュ14上に形成され、導電性メッシュ14に接触する第一の導電ポリマー層16と、第一の導電性ポリマー層16上にあって有機化合物層(例えば、光電変換層)と接触する第二の導電性ポリマー層18から構成される。第一の導電性ポリマー層16は低抵抗層であり、第二の導電性ポリマー層18は高抵抗層である。
<Conductive polymer layer>
In the present invention, the conductive polymer layer has a two-layer structure. That is, in the present invention, the conductive polymer layer is formed in the opening 20 of the conductive mesh 14 and on the conductive mesh 14, and the first conductive polymer layer 16 in contact with the conductive mesh 14, and the first conductive It is comprised from the 2nd conductive polymer layer 18 which exists on the polymer layer 16 and contacts an organic compound layer (for example, photoelectric conversion layer). The first conductive polymer layer 16 is a low resistance layer, and the second conductive polymer layer 18 is a high resistance layer.
 本発明の透明導電フィルムを太陽電池の電極として適用する場合、各導電性ポリマー層16,18は、適用しようとする太陽電池の作用スペクトル範囲において透明であることを要し、通常、可視光から近赤外光の光透過性に優れることを要する。具体的には、膜厚0.2μmのときの波長400nm~800nm領域における平均光透過率が75%以上であることが好ましく85%以上であることがより好ましい。 When the transparent conductive film of the present invention is applied as an electrode of a solar cell, each of the conductive polymer layers 16 and 18 needs to be transparent in the action spectrum range of the solar cell to be applied, and usually from visible light. It needs to be excellent in light transmittance of near infrared light. Specifically, the average light transmittance in the wavelength region of 400 nm to 800 nm when the film thickness is 0.2 μm is preferably 75% or more, and more preferably 85% or more.
 各導電性ポリマー層16,18を形成する材料としては、導電性を有するポリマー材料であれば特に制限はない。輸送する電荷に関しては、ホール伝導性、電子伝導性のいずれでもよい。具体的な導電性ポリマーの例としては、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリフェニレンビニレン、ポリフェニレン、ポリアセチレン、ポリキノキサリン、ポリオキサジアゾール、ポリベンゾチアジアゾール等や、これら導電骨格を複数有するポリマー等が挙げられる。
 これらのなかではポリチオフェンが好ましく、ポリエチレンジオキシチオフェンが特に好ましい。これらのポリチオフェンは導電性を得るために、通常、部分酸化されている。導電性ポリマーの導電性は部分酸化の程度(ドープ量)で調節することができ、ドープ量が多いほど導電性が高くなる。部分酸化によりポリチオフェンはカチオン性となるので、電荷を中和するための対アニオンを有する。そのようなポリチオフェンの例としては、ポリスチレンスルホン酸を対イオンとするポリエチレンジオキシチオフェン(PEDOT-PSS)が挙げられる。
The material for forming each conductive polymer layer 16, 18 is not particularly limited as long as it is a polymer material having conductivity. With respect to the charge to be transported, either hole conductivity or electron conductivity may be used. Examples of specific conductive polymers include, for example, polythiophene, polypyrrole, polyaniline, polyphenylene vinylene, polyphenylene, polyacetylene, polyquinoxaline, polyoxadiazole, polybenzothiadiazole, and polymers having a plurality of these conductive skeletons. It is done.
Among these, polythiophene is preferable, and polyethylenedioxythiophene is particularly preferable. These polythiophenes are usually partially oxidized in order to obtain conductivity. The conductivity of the conductive polymer can be adjusted by the degree of partial oxidation (doping amount), and the higher the doping amount, the higher the conductivity. Since polythiophene becomes cationic by partial oxidation, it has a counter anion to neutralize the charge. An example of such a polythiophene is polyethylene dioxythiophene (PEDOT-PSS) having polystyrene sulfonic acid as a counter ion.
 各導電性ポリマー層16,18には、所望の導電性を損なわない範囲であれば、他のポリマーが添加されても良い。他のポリマーは塗布性を向上させる目的や膜強度を高める目的で添加される。他のポリマーの例としては、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂や、ゼラチン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリビニルピリジン、ポリビニルイミダゾール等の親水性ポリマー等が挙げられる。これらのポリマーは膜強度を高めるために架橋しても良い。 Other polymers may be added to the respective conductive polymer layers 16 and 18 as long as the desired conductivity is not impaired. Other polymers are added for the purpose of improving coatability and increasing the film strength. Examples of other polymers include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose Acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modified polycarbonate resin , Fluorene ring-modified polyester resins, acryloyl compounds and other thermoplastic resins, gelatin, polyvinyl alcohol, polyacrylic acid, polyacrylamide, Pyrrolidone, polyvinyl pyridine, a hydrophilic polymer polyvinyl imidazole, and the like. These polymers may be cross-linked to increase the film strength.
 本発明において第一の導電性ポリマー層16には、単独での体積抵抗率が1×10-1Ωcm以下の導電性ポリマーを含むことが好ましく、1×10-2Ωcm以下の導電性ポリマーを含むことがより好ましい。このような導電性ポリマー(好ましくはポリチオフェン誘導体)を含むことで、第一の導電性ポリマー層16の体積抵抗率として5×10-1Ωcm以下となることが好ましく、5×10-2Ωcm以下となることがより好ましい。導電メッシュ14の開口部20と導電メッシュ14に接して上記のような体積抵抗率を有する低抵抗の第一の導電性ポリマー層16を形成することで、メッシュ14の開口部20にも導電性を付与し、変換効率を向上することができる。 The first conductive polymer layer 16 in the present invention, is preferably within a volume resistivity alone contains 1 × 10 -1 Ωcm or less of the conductive polymer, 1 × 10 -2 Ωcm or less of the conductive polymer More preferably. By including such a conductive polymer (preferably a polythiophene derivative), the volume resistivity of the first conductive polymer layer 16 is preferably 5 × 10 −1 Ωcm or less, and preferably 5 × 10 −2 Ωcm or less. More preferably. By forming the first conductive polymer layer 16 having the above-described volume resistivity in contact with the opening 20 of the conductive mesh 14 and the conductive mesh 14, the opening 20 of the mesh 14 is also conductive. The conversion efficiency can be improved.
 第二の導電性ポリマー層18には体積抵抗率が10Ωcm以上の導電性ポリマーを含むことが好ましく、体積抵抗率が100Ωcm以上の導電性ポリマーを含むことがより好ましい。このような導電性ポリマー(好ましくはポリチオフェン誘導体)を含むことで、第二の導電性ポリマー層18の体積抵抗率として10Ωcm以上となることが好ましく、100Ωcm以上となることがより好ましい。第一の導電性ポリマー層16上に上記のような体積低効率を有する高抵抗の第二の導電性ポリマー層18を形成することで、光電変換層からの電子の移動を妨げ、変換効率の向上を図ることができる。 The second conductive polymer layer 18 preferably contains a conductive polymer having a volume resistivity of 10 Ωcm or more, and more preferably contains a conductive polymer having a volume resistivity of 100 Ωcm or more. By including such a conductive polymer (preferably a polythiophene derivative), the volume resistivity of the second conductive polymer layer 18 is preferably 10 Ωcm or more, and more preferably 100 Ωcm or more. By forming the high-resistance second conductive polymer layer 18 having low volumetric efficiency as described above on the first conductive polymer layer 16, movement of electrons from the photoelectric conversion layer is prevented, and conversion efficiency is improved. Improvements can be made.
 導電性ポリマーは多くの場合、水溶液もしくは水分散物であるため、各導電性ポリマー層16,18の形成には、通常の水系塗布法が用いられる。導電メッシュを銀塩法で作製した場合は、導電メッシュの周りに親水性ポリマーが存在するため、水分散物を塗布するのに都合がよい。導電性ポリマー塗布液には、塗布助剤として、各種の溶剤、界面活性剤、増粘剤等を添加してもよい。
 第一の導電性ポリマー層16の膜厚としては、導電性と透明性の観点から、30nm~3μmの範囲内であることが好ましく、100nm~1μmであることがより好ましい。
 第二の導電性ポリマー層18の膜厚としては、電子ブロック性とホール伝導性の観点から、1~100nmの範囲内であることが好ましく、5~50nmであることがより好ましい。
In many cases, the conductive polymer is an aqueous solution or a water dispersion, and therefore, a normal aqueous coating method is used for forming the conductive polymer layers 16 and 18. When the conductive mesh is produced by a silver salt method, a hydrophilic polymer is present around the conductive mesh, which is convenient for applying an aqueous dispersion. Various solvents, surfactants, thickeners and the like may be added to the conductive polymer coating solution as coating aids.
The film thickness of the first conductive polymer layer 16 is preferably in the range of 30 nm to 3 μm, more preferably 100 nm to 1 μm, from the viewpoints of conductivity and transparency.
The film thickness of the second conductive polymer layer 18 is preferably in the range of 1 to 100 nm, and more preferably 5 to 50 nm, from the viewpoint of electron blocking properties and hole conductivity.
<機能性層>
 本発明の透明導電フィルムは、上記必須の構成要素に加え、さらに、目的に応じて機能性層を有してもよい。
 表面側(導電性ポリマー層形成面側)に用いる機能性層としては、例えば、剥離性の一時保護層が挙げられる。裏面側(プラスチックフィルム基材の導電メッシュを形成しない面側)に用いる機能層の例としては、ガスバリア層、マット剤層、反射防止層、ハードコート層、防曇層、防汚層、易接着層等が挙げられる。このほか、機能性層に関しては特開2006-289627号公報の段落番号〔0036〕~〔0038〕に詳しく記載されており、ここに記載の機能性層を目的に応じて本発明の透明導電フィルムに設けてもよい。
<Functional layer>
The transparent conductive film of the present invention may further have a functional layer depending on the purpose in addition to the above essential components.
Examples of the functional layer used on the surface side (conductive polymer layer forming surface side) include a peelable temporary protective layer. Examples of functional layers used on the back side (the side of the plastic film substrate that does not form a conductive mesh) include gas barrier layers, matting agent layers, antireflection layers, hard coat layers, antifogging layers, antifouling layers, and easy adhesion. Layer and the like. In addition, the functional layer is described in detail in paragraphs [0036] to [0038] of JP-A-2006-289627, and the functional layer described here is used in accordance with the purpose according to the transparent conductive film of the present invention. May be provided.
 図1Bは、本発明の透明導電フィルムの他の態様を示す概略断面図である。図1Bに示す実施形態の透明導電フィルム10は、支持体12と、該支持体12上に配置されている導電メッシュ14と、該導電メッシュ14の開口部内に該導電メッシュ14と接触して配置されている第一の導電性ポリマー層16と、該第一の導電性ポリマー層16の体積抵抗率よりも高い体積抵抗率を有し、前記導電性メッシュ14上及び前記第一の導電性ポリマー層16上に配置されている第二の導電性ポリマー層18と、を有して構成されている。図1Bに示すように、導電メッシュ14の開口部内に導電メッシュ14と接触するように第一の導電性ポリマー層16が配置されており、高抵抗の第二の導電性ポリマー層18が導電メッシュ14上と第一の導電性ポリマー層16上に連続して配置されている場合も、第一の導電性ポリマー層16によって導電メッシュ14の開口部に導電性が付与されるとともに、第二の導電性ポリマー層18によって光電変換層からの電子の移動が妨げられるため、変換効率の向上を図ることができる。 FIG. 1B is a schematic cross-sectional view showing another embodiment of the transparent conductive film of the present invention. The transparent conductive film 10 of the embodiment shown in FIG. 1B is arranged in contact with the conductive mesh 14 in the opening of the support 12, the conductive mesh 14 disposed on the support 12, and the conductive mesh 14. First conductive polymer layer 16 having a volume resistivity higher than that of the first conductive polymer layer 16 and on the conductive mesh 14 and the first conductive polymer. And a second conductive polymer layer 18 disposed on the layer 16. As shown in FIG. 1B, the first conductive polymer layer 16 is disposed in the opening of the conductive mesh 14 so as to be in contact with the conductive mesh 14, and the second conductive polymer layer 18 having high resistance is connected to the conductive mesh 14. 14 and the first conductive polymer layer 16, the first conductive polymer layer 16 imparts conductivity to the openings of the conductive mesh 14 and the second conductive polymer layer 16. Since the movement of electrons from the photoelectric conversion layer is hindered by the conductive polymer layer 18, the conversion efficiency can be improved.
 なお、導電メッシュ14の開口部内に配置されている第一の導電性ポリマー層16は導電メッシュ14と接している必要はあるが、導電メッシュ14の開口部内に配置されている第一の導電性ポリマー層16の厚みは導電メッシュ14の厚みと必ずしも同じである必要はない。例えば、第一の導電性ポリマー層16がメッシュ開口部内の途中の高さまで充填され、その上に第二の導電性ポリマー層18が導電メッシュ14と第一の導電性ポリマー層16を覆うように配置されている形態でもよい。
 図1Bに示すような構成を有する透明導電フィルムを製造する場合は、支持体12上に導電メッシュ14を形成する工程と、該導電メッシュ14の開口部内に該導電メッシュ14と接触する第一の導電性ポリマー層16を形成する工程と、前記導電メッシュ14上及び第一の導電性ポリマー層16上に、前記第一の導電性ポリマー層16の体積抵抗率よりも高い体積抵抗率を有する第二の導電性ポリマー層18を形成する工程と、により好適に製造することができる。
The first conductive polymer layer 16 disposed in the opening of the conductive mesh 14 needs to be in contact with the conductive mesh 14, but the first conductive polymer layer 16 disposed in the opening of the conductive mesh 14. The thickness of the polymer layer 16 is not necessarily the same as the thickness of the conductive mesh 14. For example, the first conductive polymer layer 16 is filled up to an intermediate height in the mesh opening, and the second conductive polymer layer 18 covers the conductive mesh 14 and the first conductive polymer layer 16 thereon. The form which is arrange | positioned may be sufficient.
When manufacturing a transparent conductive film having a structure as shown in FIG. 1B, a step of forming a conductive mesh 14 on the support 12 and a first contact with the conductive mesh 14 in the opening of the conductive mesh 14 A step of forming a conductive polymer layer 16 and a volume resistivity higher than the volume resistivity of the first conductive polymer layer 16 on the conductive mesh 14 and the first conductive polymer layer 16; And the step of forming the second conductive polymer layer 18.
<用途>
 本発明の透明導電性フィルムは、有機ELディスプレイ、有機EL照明、色素増感太陽電池、有機薄膜太陽電池などの目的に使用しうる。なかでも、発電効率に優れた有機薄膜太陽電池に好適に使用される。
<Application>
The transparent conductive film of the present invention can be used for purposes such as organic EL displays, organic EL lighting, dye-sensitized solar cells, and organic thin-film solar cells. Especially, it uses suitably for the organic thin-film solar cell excellent in electric power generation efficiency.
‐有機薄膜太陽電池‐
 次に、本発明の透明導電性フィルムを備えた有機薄膜太陽電池について説明する。
 本発明の有機薄膜太陽電池は、前記本発明の透明導電フィルム(第一電極)と、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されている光電変換層と、前記透明導電フィルムに対し、前記光電変換層を挟むように対向配置されている対向電極(第二電極)と、を備えて構成される。
 本発明の有機薄膜太陽電池において、第一電極は正極、負極のいずれの場合もありうる。第二電極は第一電極と反対の極性である。ただし、透明導電フィルムの導電性ポリマーとしてポリチオフェンを使用する場合は、第一電極は通常正極である。以下、第一電極(本発明の透明導電フィルム10)が正極である構成について詳しく説明する。
 なお、以下では、図1Aに示した透明導電フィルムを用いた有機薄膜太陽電池について主に説明するが、これに限定されず、図1Bに示す形態の透明導電フィルムを用いてもよい。
-Organic thin film solar cell-
Next, the organic thin-film solar cell provided with the transparent conductive film of this invention is demonstrated.
The organic thin film solar cell of the present invention includes the transparent conductive film (first electrode) of the present invention, a photoelectric conversion layer disposed on the second conductive polymer layer of the transparent electrode film, and the transparent conductive film. And a counter electrode (second electrode) disposed to face the film so as to sandwich the photoelectric conversion layer.
In the organic thin film solar cell of the present invention, the first electrode may be either a positive electrode or a negative electrode. The second electrode has a polarity opposite to that of the first electrode. However, when polythiophene is used as the conductive polymer of the transparent conductive film, the first electrode is usually a positive electrode. Hereinafter, the configuration in which the first electrode (the transparent conductive film 10 of the present invention) is a positive electrode will be described in detail.
In the following, the organic thin-film solar cell using the transparent conductive film shown in FIG. 1A will be mainly described. However, the present invention is not limited to this, and a transparent conductive film having the form shown in FIG. 1B may be used.
 図3は、本発明の有機薄膜太陽電池の構成の一例を概略的に示している。本発明の有機薄膜太陽電池30は最も単純には、図3に示されるように、透明導電フィルム10/バルクヘテロ層22/負極24)の構成をとる。バルクヘテロ層と負極との間には、電子捕集層を設置しても良い、各層の間には必要に応じてその他の有機層を設置しても良い。 FIG. 3 schematically shows an example of the configuration of the organic thin-film solar cell of the present invention. As shown in FIG. 3, the organic thin film solar cell 30 of the present invention is most simply configured as transparent conductive film 10 / bulk heterolayer 22 / negative electrode 24). An electron trapping layer may be provided between the bulk hetero layer and the negative electrode, and other organic layers may be provided between the layers as necessary.
 また、本発明の有機薄膜太陽電池は複数の光電変換層を積層した、いわゆるタンデム型構成を採っても良い。タンデム型素子は直列接続型であっても、並列接続型であっても良い。 Further, the organic thin film solar cell of the present invention may take a so-called tandem configuration in which a plurality of photoelectric conversion layers are laminated. The tandem element may be a serial connection type or a parallel connection type.
<正極>
 本発明の導電フィルムがホール輸送性の導電性ポリマーを用いる場合は、本発明の透明導電フィルム10が正極となる。正極の一部として酸化モリブデンを用いても良い。この場合、例えば、本発明の導電フィルム10上に酸化モリブデンを蒸着しても良い。
<Positive electrode>
When the conductive film of the present invention uses a hole transporting conductive polymer, the transparent conductive film 10 of the present invention serves as a positive electrode. Molybdenum oxide may be used as part of the positive electrode. In this case, for example, molybdenum oxide may be deposited on the conductive film 10 of the present invention.
<負極>
 負極は、公知の電極材料の中から適宜選択することができる。例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられる。具体例としては、アルカリ土類金属(たとえばMg,Ca等)、金、銀、銅、アルミニウム、マグネシウム-銀合金、インジウム、ニッケルなどが挙げられる。これらは、1種単独で使用しても、2種以上を併用しても良い。
<Negative electrode>
The negative electrode can be appropriately selected from known electrode materials. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specific examples include alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, copper, aluminum, magnesium-silver alloy, indium, nickel and the like. These may be used alone or in combination of two or more.
 これらの中でも、銀、マグネシウム-銀合金、若しくはアルミニウムを含むことが好ましい。さらに、長期の耐久性を考慮すると、銀が特に好ましい。 Among these, it is preferable to contain silver, magnesium-silver alloy, or aluminum. Furthermore, when long-term durability is considered, silver is particularly preferable.
 負極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した負極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、負極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。負極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等を行ってもよいし、リフトオフ法や印刷法によって行ってもよい。 The method for forming the negative electrode is not particularly limited, and can be performed according to a known method. For example, the negative electrode is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the negative electrode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like. Patterning for forming the negative electrode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or vacuum deposition or sputtering may be performed with a mask overlapped. Alternatively, the lift-off method or the printing method may be used.
 本発明において、負極の形成位置は、透明導電フィルムに対し、バルクへテロ層などの有機層を挟むように対向配置されていれば特に制限はなく、有機層上の全部に形成されていてもよく、その一部に形成されていてもよい。また、負極と有機層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1~5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
 負極の厚みは、負極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm~5μm程度であり、50nm~500nmが好ましい。
In the present invention, the formation position of the negative electrode is not particularly limited as long as it is disposed opposite to the transparent conductive film so as to sandwich an organic layer such as a bulk hetero layer, and may be formed on the entire organic layer. It may be formed in a part thereof. Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the negative electrode and the organic layer in a thickness of 0.1 to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
The thickness of the negative electrode can be appropriately selected depending on the material constituting the negative electrode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 500 nm.
<バルクヘテロ層>
 バルクヘテロ層は正孔輸送材料と電子輸送材料が混合された有機の光電変換層である。正孔輸送材料と電子輸送材料の混合比は変換効率が最も高くなるように調整されるが、通常は、質量比で、10:90~90:10の範囲から選ばれる。このような混合有機層の形成方法は、例えば、真空蒸着による共蒸着法が用いられる。あるいは、両方の有機材料が溶解する溶媒を用いて溶剤塗布することによって作製することも可能である。溶剤塗布法の具体例については後述する。
 バルクヘテロ層の膜厚は10~500nmが好ましく、20~300nmが特に好ましい。
<Bulk hetero layer>
The bulk hetero layer is an organic photoelectric conversion layer in which a hole transport material and an electron transport material are mixed. The mixing ratio of the hole transport material and the electron transport material is adjusted so that the conversion efficiency is the highest, but is usually selected from the range of 10:90 to 90:10 by mass ratio. As a method for forming such a mixed organic layer, for example, a co-evaporation method by vacuum deposition is used. Or it is also possible to produce by carrying out solvent application | coating using the solvent in which both organic materials melt | dissolve. Specific examples of the solvent coating method will be described later.
The thickness of the bulk hetero layer is preferably 10 to 500 nm, and particularly preferably 20 to 300 nm.
 正孔輸送材料は、HOMO準位が4.5~6.0eVのπ電子共役化合物であり、具体的には、各種のアレーン(例えば、チオフェン、カルバゾール、フルオレン、シラフルオレン、チエノピラジン、チエノベンゾチオフェン、ジチエノシロール、キノキサリン、ベンゾチアジアゾール、チエノチオフェンなど)をカップリングさせた共役ポリマー、フェニレンビニレン系ポリマー、ポルフィリン類、フタロシアニン類等が例示される。このほか、Chem.Rev.2007,107,953-1010にHole Transport materialとして記載されている化合物群やジャーナル オブ ジ アメリカン ケミカル ソサエティー第131巻、16048頁(2009年)に記載のポルフィリン誘導体も適用可能である。
 これらの中では、チオフェン、カルバゾール、フルオレン、シラフルオレン、チエノピラジン、チエノベンゾチオフェン、ジチエノシロール、キノキサリン、ベンゾチアジアゾール、チエノチオフェンからなる群より選ばれた構成単位をカップリングさせた共役ポリマーが特に好ましい。具体例としてはポリ3-ヘキシルチオフェン、ポリ3-オクチルチオフェン、ジャーナル オブ ジ アメリカン ケミカル ソサエティー第130巻、3020頁(2008年)に記載の各種ポリチオフェン誘導体、アドバンスト マテリアルズ第19巻、2295頁(2007年)に記載のPCDTBT、ジャーナル オブ ジ アメリカン ケミカル ソサエティー第130巻、732頁(2008年)に記載のPCDTQx、PCDTPP、PCDTPT、PCDTBX、PCDTPX、ネイチャー フォトニクス第3巻、649頁(2009年)に記載のPBDTTT-E、PBDTTT-C、PBDTTT-CF、アドバンスト マテリアルズ第22巻1-4頁(2010年)に記載のPTB7等が挙げられる。
The hole transport material is a π-electron conjugated compound having a HOMO level of 4.5 to 6.0 eV, specifically, various arenes (for example, thiophene, carbazole, fluorene, silafluorene, thienopyrazine, thienobenzothiophene). , Dithienosilol, quinoxaline, benzothiadiazole, thienothiophene, etc.) coupled polymers, phenylene vinylene polymers, porphyrins, phthalocyanines, and the like. In addition, Chem. Rev. The compound group described as Hole Transport material in 2007, 107, 953-1010 and the porphyrin derivative described in Journal of the American Chemical Society Vol. 131, page 16048 (2009) are also applicable.
Among these, a conjugated polymer obtained by coupling a structural unit selected from the group consisting of thiophene, carbazole, fluorene, silafluorene, thienopyrazine, thienobenzothiophene, dithienosilole, quinoxaline, benzothiadiazole, and thienothiophene is particularly preferable. Specific examples include poly-3-hexylthiophene, poly-3-octylthiophene, various polythiophene derivatives described in Journal of the American Chemical Society, Vol. 130, p. 3020 (2008), Advanced Materials, Vol. 19, p. 2295 (2007). PCDTBT, Journal of the American Chemical Society, Volume 130, p. 732 (2008), PCDTQx, PCDTPP, PCDTPT, PCDTBX, PCDTPX, Nature Photonics, Volume 3, p. 649 (2009) PBDTTTT-E, PBDTTTT-C, PBDTTTT-CF, PTB7 described in Advanced Materials, Vol. 22, pages 1-4 (2010), and the like.
 電子輸送材料は、LUMO準位が3.5~4.5eVであるようなπ電子共役化合物であり、具体的にはフラーレンおよびその誘導体、フェニレンビニレン系ポリマー、ナフタレンテトラカルボン酸イミド誘導体、ペリレンテトラカルボン酸イミド誘導体等が挙げられる。これらの中では、フラーレン誘導体が好ましい。フラーレン誘導体の具体例としてはC60、フェニル-C61-酪酸メチル(文献等でPCBM、[60]PCBM、あるいはPC61BMと称されるフラーレン誘導体)、C70、フェニル-C71-酪酸メチル(多くの文献等でPCBM、[70]PCBM、あるいはPC71BMと称されるフラーレン誘導体)、およびアドバンスト ファンクショナル マテリアルズ第19巻、779-788頁(2009年)に記載のフラーレン誘導体、ジャーナル オブ ジ アメリカン ケミカル ソサエティー第131巻、16048頁(2009年)に記載のフラーレン誘導体SIMEF等が挙げられる。 The electron transport material is a π-electron conjugated compound having a LUMO level of 3.5 to 4.5 eV. Specifically, fullerene and its derivatives, phenylene vinylene polymers, naphthalene tetracarboxylic imide derivatives, perylene tetra Examples thereof include carboxylic acid imide derivatives. Of these, fullerene derivatives are preferred. Specific examples of the fullerene derivative include C 60 , phenyl-C 61 -methyl butyrate (fullerene derivative referred to as PCBM, [60] PCBM, or PC 61 BM in the literature), C 70 , phenyl-C 71 -methyl butyrate (Fullerene derivatives referred to as PCBM, [70] PCBM, or PC 71 BM in many literatures) and fullerene derivatives described in Advanced Functional Materials, Vol. 19, pp. 779-788 (2009), journals Examples of the fullerene derivative SIMEF and the like described in The American Chemical Society Vol. 131, page 16048 (2009).
<電子輸送層>
 本発明では、必要に応じて、バルクヘテロ層と負極との間に電子輸送材料からなる電子輸送層を設置しても良い。電子輸送層に用いることのできる電子輸送材料としては、前記の材料および、Chem.Rev.2007,107,953-1010にElectron Transport Materialsとして記載されているものが挙げられる。電子輸送層は、各種の湿式製膜法、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法など、いずれによっても好適に形成することができる。
<Electron transport layer>
In the present invention, if necessary, an electron transport layer made of an electron transport material may be provided between the bulk hetero layer and the negative electrode. Examples of the electron transport material that can be used for the electron transport layer include those described above and Chem. Rev. 2007, 107, 953-1010, and those described as Electron Transport Materials. The electron transport layer can be suitably formed by any of various types of wet film forming methods, dry film forming methods such as vapor deposition and sputtering, transfer methods, and printing methods.
<電子捕集層>
 バルクヘテロ層と負極との間には電子捕集層を設置しても良い。電子捕集層には、電子輸送材料、もしくは、電子輸送材料よりもHOMO準位とLUMO準位のエネルギーレベル差が大きい化合物(例えばバソクプロイン、酸化チタン等)が用いられる。電子捕集層の膜厚は1nm~30nmであり、好ましくは2nm~15nmである。電子捕集層は、各種の湿式製膜法、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法など、いずれによっても好適に形成することができる。
<Electronic collection layer>
An electron collection layer may be provided between the bulk hetero layer and the negative electrode. For the electron collection layer, an electron transport material or a compound (for example, bathocuproine, titanium oxide, or the like) having a larger energy level difference between the HOMO level and the LUMO level than the electron transport material is used. The thickness of the electron trapping layer is 1 nm to 30 nm, preferably 2 nm to 15 nm. The electron collection layer can be suitably formed by any of various wet film forming methods, dry film forming methods such as vapor deposition and sputtering, transfer methods, and printing methods.
<再結合層>
 2層の光電変換層を有するタンデム型の素子では、2層の光電変換層の間に再結合層が設けられる。再結合層の材料としては、導電材料の超薄層が用いられる。好ましい金属としては、金、銀、アルミニウム、白金、酸化ルテニウム等が挙げられる。これらのうち、銀が好ましい。再結合層の膜厚は0.01~5nmであり、0.1~1nmが好ましく、0.2~0.6nmが特に好ましい。再結合層の形成方法については特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等で形成することができる。
<Recombination layer>
In a tandem element having two photoelectric conversion layers, a recombination layer is provided between the two photoelectric conversion layers. As the material of the recombination layer, an ultrathin layer of a conductive material is used. Preferred metals include gold, silver, aluminum, platinum, ruthenium oxide and the like. Of these, silver is preferred. The thickness of the recombination layer is 0.01 to 5 nm, preferably 0.1 to 1 nm, and particularly preferably 0.2 to 0.6 nm. There is no restriction | limiting in particular about the formation method of a recombination layer, For example, it can form by a vacuum evaporation method, sputtering method, an ion plating method, etc.
<その他の有機層>
 本発明では、必要に応じて、ホールブロック層、励起子拡散防止層等の補助層を有していてもよい。なお、本発明においてバルクヘテロ層、正孔輸送層、電子輸送層、電子ブロック層、ホールブロック層、励起子拡散防止層など、有機化合物を用いる層の総称として、「有機層」の言葉を用いる。
<Other organic layers>
In this invention, you may have auxiliary layers, such as a hole block layer and an exciton diffusion prevention layer, as needed. In the present invention, the term “organic layer” is used as a general term for layers using organic compounds such as a bulk hetero layer, a hole transport layer, an electron transport layer, an electron block layer, a hole block layer, and an exciton diffusion prevention layer.
<アニール>
 本発明の有機薄膜太陽電池は、有機層の結晶化やバルクヘテロ層の相分離促進を目的として、種々の方法でアニールしても良い。アニールの方法としては、蒸着中の基板温度を50℃~150℃に加熱する方法や、塗布後の乾燥温度を50℃~150℃とする方法などがある。また、第二電極の形成が終了したのちに50℃~150℃に加熱してアニールしても良い。
<Annealing>
The organic thin film solar cell of the present invention may be annealed by various methods for the purpose of crystallization of the organic layer and promotion of phase separation of the bulk hetero layer. Examples of the annealing method include a method of heating the substrate temperature during vapor deposition to 50 ° C. to 150 ° C. and a method of setting the drying temperature after coating to 50 ° C. to 150 ° C. Further, after the formation of the second electrode is completed, annealing may be performed by heating to 50 ° C. to 150 ° C.
<保護層>
 本発明の有機薄膜太陽電池は、保護層によって保護されていてもよい。保護層に含まれる材料としては、MgO,SiO,SiO,Al,Y,TiO等の金属酸化物、SiN等の金属窒化物、SiN等の金属窒化酸化物、MgF,LiF,AlF,CaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリパラキシリレン等のポリマー等が挙げられる。これらのうち、金属の酸化物、窒化物、窒化酸化物が好ましく、珪素、アルミニウムの酸化物、窒化物、窒化酸化物が特に好ましい。保護層は単層でも多層構成であっても良い。
 保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、真空紫外CVD法、コーティング法、印刷法、転写法を適用できる。本発明においては、保護層が導電性層として使用されてもよい。
<Protective layer>
The organic thin film solar cell of the present invention may be protected by a protective layer. The material contained in the protective layer, MgO, SiO, SiO 2, Al 2 O 3, Y 2 O 3, TiO metal oxides such as 2, metal nitrides such as SiN x, metal nitrides such as SiN x O y Examples thereof include oxides, metal fluorides such as MgF 2 , LiF, AlF 3 , and CaF 2 , and polymers such as polyethylene, polypropylene, polyvinylidene fluoride, and polyparaxylylene. Of these, metal oxides, nitrides, and nitride oxides are preferable, and silicon, aluminum oxides, nitrides, and nitride oxides are particularly preferable. The protective layer may be a single layer or a multilayer structure.
The method for forming the protective layer is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, vacuum ultraviolet CVD method, coating method, printing method, transfer method can be applied. In the present invention, a protective layer may be used as the conductive layer.
<ガスバリア層>
 本発明の有機薄膜太陽電池はガスバリア層を有しても良い。ガスバリア層は、ガスバリア性を有する層であれば、特に制限はない。通常、ガスバリア層は無機物の層である。無機物としては、典型的には、ホウ素、マグネシウム、アルミニウム、珪素、チタン、亜鉛、スズの酸化物、窒化物、酸窒化物、炭化物、水素化物等が挙げられる。これらは純物質でもよいし、複数組成からなる混合物や傾斜材料層でもよい。これらのうち、アルミニウムの酸化物、窒化物若しくは酸窒化物、又は珪素の酸化物、窒化物若しくは酸窒化物が好ましい。
 無機層は単層でも、複数層の積層でも良い。有機層と無機層の積層でも良く、複数の無機層と複数の有機層の交互積層でも良い。有機層は平滑性の層であれば特に制限はないが、(メタ)アクリレートの重合物からなる層などが好ましく例示される
 無機層の厚みに関しては特に限定されないが、1層に付き、通常、5~500nmの範囲内であり、好ましくは10~200nmである。無機層は複数のサブレイヤーから成る積層構造であってもよい。この場合、各サブレイヤーが同じ組成であっても異なる組成であってもよい。また、米国公開特許2004-46497号明細書に開示してあるように有機ポリマー層との界面が明確で無く、組成が膜厚方向で連続的に変化する層であってもよい。
<Gas barrier layer>
The organic thin film solar cell of the present invention may have a gas barrier layer. The gas barrier layer is not particularly limited as long as it has a gas barrier property. Usually, the gas barrier layer is an inorganic layer. Typically, the inorganic substance includes boron, magnesium, aluminum, silicon, titanium, zinc, tin oxide, nitride, oxynitride, carbide, hydride, and the like. These may be pure substances, or may be a mixture of multiple compositions or a gradient material layer. Of these, aluminum oxide, nitride or oxynitride, or silicon oxide, nitride or oxynitride is preferable.
The inorganic layer may be a single layer or a laminate of a plurality of layers. A laminate of an organic layer and an inorganic layer may be used, or an alternating laminate of a plurality of inorganic layers and a plurality of organic layers may be used. The organic layer is not particularly limited as long as it is a smooth layer, but a layer made of a polymer of (meth) acrylate is preferably exemplified. The thickness of the inorganic layer is not particularly limited, but usually attached to one layer, It is in the range of 5 to 500 nm, preferably 10 to 200 nm. The inorganic layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition. Further, as disclosed in US Patent Publication No. 2004-46497, a layer in which the interface with the organic polymer layer is not clear and the composition continuously changes in the film thickness direction may be used.
 本発明の有機薄層太陽電池の厚さは、50μm~1mmであることが好ましく、100μm~500μmであることがより好ましい。 The thickness of the organic thin layer solar cell of the present invention is preferably 50 μm to 1 mm, and more preferably 100 μm to 500 μm.
 本発明の有機薄層太陽電池を用いて太陽電池モジュールを作製する場合、濱川圭弘著、太陽光発電、最新の技術とシステム(出版:株式会社 シーエムシー)等の記載を参酌することができる。 When producing a solar cell module using the organic thin-layer solar cell of the present invention, it is possible to take into account descriptions by Yasuhiro Tsujikawa, photovoltaic power generation, the latest technology and system (publishing: CMC Co., Ltd.) and the like.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
〔導電フィルムの作製〕
 〔導電メッシュの形成〕
 [ハロゲン化銀乳剤の調製]
 反応容器内で下記溶液Aを34℃に保ち、特開昭62-160128号公報記載の混合撹拌装置を用いて高速に撹拌しながら、硝酸(濃度6%)を用いてpHを2.95に調整した。引き続き、ダブルジェット法を用いて下記溶液Bと下記溶液Cを一定の流量で8分6秒間かけて添加した。添加終了後に、炭酸ナトリウム(濃度5%)を用いてpHを5.90に調整し、続いて下記溶液Dと溶液Eを添加した。
[Preparation of conductive film]
[Formation of conductive mesh]
[Preparation of silver halide emulsion]
The following solution A was kept at 34 ° C. in a reaction vessel, and the pH was adjusted to 2.95 using nitric acid (concentration 6%) while stirring at high speed using a mixing and stirring apparatus described in JP-A-62-160128. It was adjusted. Subsequently, the following solution B and the following solution C were added at a constant flow rate over 8 minutes and 6 seconds using the double jet method. After completion of the addition, the pH was adjusted to 5.90 using sodium carbonate (concentration 5%), and then the following solution D and solution E were added.
 (溶液A)
 アルカリ処理不活性ゼラチン(平均分子量10万)    18.7g
 塩化ナトリウム                    0.31g
 溶液I(下記)                   1.59mL
 純水                       1,246mL
(Solution A)
Alkali-treated inert gelatin (average molecular weight 100,000) 18.7g
Sodium chloride 0.31g
Solution I (below) 1.59 mL
Pure water 1,246mL
 (溶液B)
 硝酸銀                       169.9g
 硝酸(濃度6%)                  5.89mL
 純水にて全量を317.1mLとした。
(Solution B)
169.9g of silver nitrate
Nitric acid (concentration 6%) 5.89 mL
The total volume was adjusted to 317.1 mL with pure water.
 (溶液C)
 アルカリ処理不活性ゼラチン(平均分子量10万)    5.66g
 塩化ナトリウム                    58.8g
 臭化カリウム                     13.3g
 溶液I(下記)                   0.85mL
 溶液II(下記)                  2.72mL
 純水にて全量を317.1mLとした。
(Solution C)
Alkali-treated inert gelatin (average molecular weight 100,000) 5.66 g
Sodium chloride 58.8g
13.3 g of potassium bromide
Solution I (below) 0.85mL
Solution II (below) 2.72 mL
The total volume was adjusted to 317.1 mL with pure water.
 (溶液D)
 2-メチル-4ヒドロキシ-1,3,3a,7-テトラアザインデン
                            0.56g
 純水                       112.1mL
(Solution D)
2-Methyl-4hydroxy-1,3,3a, 7-tetraazaindene 0.56 g
Pure water 112.1mL
 (溶液E)
 アルカリ処理不活性ゼラチン(平均分子量10万)    3.96g
 溶液I(下記)                   0.40mL
 純水                       128.5mL
(Solution E)
Alkali-treated inert gelatin (average molecular weight 100,000) 3.96 g
Solution I (below) 0.40mL
128.5 mL of pure water
 〈溶液I〉
 界面活性剤:ポリイソプロピレンポリエチレンオキシジコハク酸エステルナトリウム塩の10質量%メタノール溶液
<Solution I>
Surfactant: 10% by mass methanol solution of polyisopropylene polyethylene oxydisuccinate sodium salt
 〈溶液II〉
 六塩化ロジウム錯体の10質量%水溶液
<Solution II>
10% by weight aqueous solution of rhodium hexachloride complex
 上記操作終了後に、常法に従い40℃にてフロキュレーション法を用いて脱塩及び水洗処理を施し、溶液Fと防バイ剤を加えて60℃でよく分散し、40℃にてpHを5.90に調整して、最終的に臭化銀を10モル%含む平均粒子径0.09μm、変動係数10%の塩臭化銀立方体粒子乳剤を得た。 After completion of the above operation, desalting and washing with water using a flocculation method are performed at 40 ° C. according to a conventional method, and the solution F and an anti-bacterial agent are added and dispersed well at 60 ° C. To 90.90 to obtain a silver chlorobromide cubic grain emulsion finally containing 10 mol% of silver bromide and having an average grain size of 0.09 μm and a coefficient of variation of 10%.
 (溶液F)
 アルカリ処理不活性ゼラチン(平均分子量10万)    16.5g
 純水                       139.8mL
(Solution F)
Alkali-treated inert gelatin (average molecular weight 100,000) 16.5g
Pure water 139.8mL
 上記塩臭化銀立方体粒子乳剤に対し、チオ硫酸ナトリウムをハロゲン化銀1モル当たり20mg用い、40℃にて80分間化学増感を行った。化学増感終了後に4-ヒドロキシ-6-メチル-1,3,3a,7-テトラザインデン(TAI)をハロゲン化銀1モル当たり500mg、1-フェニル-5-メルカプトテトラゾールをハロゲン化銀1モル当たり150mg添加して、ハロゲン化銀乳剤を得た。このハロゲン化銀乳剤のハロゲン化銀粒子とゼラチンの体積比(ハロゲン化銀粒子/ゼラチン)は0.625であった。 The silver chlorobromide cubic grain emulsion was chemically sensitized at 40 ° C. for 80 minutes using 20 mg of sodium thiosulfate per mole of silver halide. After chemical sensitization, 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene (TAI) is 500 mg per mole of silver halide and 1-phenyl-5-mercaptotetrazole is 1 mole of silver halide. A silver halide emulsion was obtained by adding 150 mg per unit. This silver halide emulsion had a volume ratio of silver halide grains to gelatin (silver halide grains / gelatin) of 0.625.
 [塗布]
 さらに硬膜剤(H-1:テトラキス(ビニルスルホニルメチル)メタン)をゼラチン1g当たり200mgの比率となるようにして添加し、また塗布助剤として、界面活性剤(SU-2:スルホ琥珀酸ジ(2-エチルヘキシル)・ナトリウム)を添加し、表面張力を調整した。
[Application]
Further, a hardening agent (H-1: tetrakis (vinylsulfonylmethyl) methane) was added at a ratio of 200 mg per 1 g of gelatin, and a surfactant (SU-2: sulfosuccinate disulfate) was applied as a coating aid. (2-ethylhexyl) .sodium) was added to adjust the surface tension.
 こうして得られた塗布液を、銀換算の目付け量が0.625g/mとなるように、下塗り層を施した厚さ100μm、透過率92%(裏面に反射防止加工)のポリエチレンナフタレート(PEN)フィルム基材上に塗布した後、50℃、24時間のキュア処理を実施して感光材料を得た。 Polyethylene naphthalate having a coating thickness of 100 μm and a transmittance of 92% (anti-reflective treatment on the back surface) was applied to the coating solution thus obtained so that the basis weight in terms of silver was 0.625 g / m 2. After coating on a PEN) film substrate, a curing process was carried out at 50 ° C. for 24 hours to obtain a photosensitive material.
 [露光]
 得られた感光材料を、メッシュ状のフォトマスク(線幅5μm、ピッチ300μm)を介してUV露光器で露光した。
[exposure]
The obtained photosensitive material was exposed with a UV exposure device through a mesh photomask (line width: 5 μm, pitch: 300 μm).
 [化学現像]
 露光した感光材料を、下記現像液(DEV-1)を用いて25℃で60秒間の現像処理を行った後、下記定着液(FIX-1)を用いて25℃で120秒間の定着処理を行った。
[Chemical development]
The exposed photosensitive material is subjected to development processing at 25 ° C. for 60 seconds using the following developer (DEV-1), and then subjected to fixing processing at 25 ° C. for 120 seconds using the following fixing solution (FIX-1). went.
 (DEV-1)
 純水                         500mL
 メトール                          2g
 無水亜硫酸ナトリウム                   80g
 ハイドロキノン                       4g
 ホウ砂                           4g
 チオ硫酸ナトリウム                    10g
 臭化カリウム                      0.5g
 水を加えて全量を1リットルとした。
(DEV-1)
500 mL of pure water
Metol 2g
80 g of anhydrous sodium sulfite
Hydroquinone 4g
4g borax
Sodium thiosulfate 10g
Potassium bromide 0.5g
Water was added to make up a total volume of 1 liter.
 (FIX-1)
 純水                         750mL
 チオ硫酸ナトリウム                   250g
 無水亜硫酸ナトリウム                   15g
 氷酢酸                         15mL
 カリミョウバン                      15g
 水を加えて全量を1リットルとした。
(FIX-1)
750 mL of pure water
Sodium thiosulfate 250g
Anhydrous sodium sulfite 15g
Glacial acetic acid 15mL
Potash alum 15g
Water was added to make up a total volume of 1 liter.
 [物理現像]
 次に、下記物理現像液(PDEV-1)を用いて30℃で10分間物理現像を行った後、水道水で10分間洗い流して水洗処理を行った。
[Physical development]
Next, physical development was performed for 10 minutes at 30 ° C. using the following physical developer (PDEV-1), followed by washing with tap water for 10 minutes.
 (PDEV-1)
 純水                         900mL
 クエン酸                         10g
 クエン酸三ナトリウム                    1g
 アンモニア水(28%)                 1.5g
 ハイドロキノン                     2.3g
 硝酸銀                        0.23g
 水を加えて全量を1000mLとした。
(PDEV-1)
900mL pure water
Citric acid 10g
Trisodium citrate 1g
Ammonia water (28%) 1.5g
Hydroquinone 2.3g
Silver nitrate 0.23g
Water was added to make up a total volume of 1000 mL.
 [電解めっき]
 物理現像処理の後に、下記電解めっき液を用いて25℃で電解銅めっき処理を施した後、水洗、乾燥処理を行った。なお電解銅めっきにおける電流制御は3Aで1分間、次いで1Aで12分間、計13分間かけて実施した。めっき処理終了後に、水道水で10分間洗い流して水洗処理を行い、乾燥風(50℃)を用いてドライ状態になるまで乾燥した。
[Electrolytic plating]
After the physical development treatment, electrolytic copper plating treatment was performed at 25 ° C. using the following electrolytic plating solution, followed by washing with water and drying treatment. In addition, the current control in electrolytic copper plating was performed over 3 minutes, 3 minutes for 1 minute and then 12 minutes for 1A. After the completion of the plating treatment, the plate was rinsed with tap water for 10 minutes to carry out a water washing treatment, and dried using a dry air (50 ° C.) until it was in a dry state.
 (電解めっき液)
 硫酸銅(五水和物)                   200g
 硫酸                           50g
 塩化ナトリウム                     0.1g
 水を加えて全量を1000mLとした。
(Electrolytic plating solution)
Copper sulfate (pentahydrate) 200g
50g of sulfuric acid
Sodium chloride 0.1g
Water was added to make up a total volume of 1000 mL.
 めっき処理後のフィルムを電子顕微鏡にて観察したところ、フィルム基材上に線幅19μm、ピッチ300μmの金属メッシュパターンが形成されていることが確認された。このようにして透明導電フィルム(A-0)を得た。 When the film after the plating treatment was observed with an electron microscope, it was confirmed that a metal mesh pattern having a line width of 19 μm and a pitch of 300 μm was formed on the film substrate. In this way, a transparent conductive film (A-0) was obtained.
 [表面抵抗の測定]
 透明導電フィルム(A-0)の表面抵抗を、三菱化学(株)低抵抗率計ロレスターGP/ASPプローブを用いて、JIS7194に従い測定したところ、表面抵抗値は1Ω/sq以下であった。
[Measurement of surface resistance]
When the surface resistance of the transparent conductive film (A-0) was measured according to JIS 7194 using a Mitsubishi Chemical Corporation low resistivity meter Lorester GP / ASP probe, the surface resistance value was 1 Ω / sq or less.
〔第一の導電性ポリマー層の形成〕
 透明導電フィルム(A-0)の表面(導電メッシュが形成されている側)に、ポリエチレンジオキシチオフェン・ポリスチレンスルホン酸(略称:PEDOT-PSS)の水分散物(H.C.シュタルク社製、クレビオスPH-500に5質量%のジメチルスルホキシドを添加した溶液)を塗布した。次に、このフィルムを120℃で20分間加熱乾燥して、第一の導電性ポリマー層を形成し、透明導電フィルム(A-1)とした。このとき、導電性ポリマー層の膜厚は200nmであった。
 これとは別に、洗浄したガラス表面に前記PEDOT-PSSの水分散物を塗布し、同様の処理を施した。これにより膜厚220nmの導電性ポリマーの単独層(B-1)を得た。
 透明導電フィルム(A-0)の表面に、高抵抗なPEDOT-PSSの水分散物(H.C.シュタルク社製、クレビオスP-VP-AI4083)を塗布した。次に、このフィルムを130℃で10分間加熱乾燥して、第一の導電性ポリマー層を形成し、透明導電フィルム(A-2)とした。このとき、導電性ポリマー層の膜厚は220nmであった。
 これとは別に、洗浄したガラス表面に前記高抵抗なPEDOT-PSSの水分散物を塗布し、同様の処理を施した。これにより膜厚210nmの導電性ポリマーの単独層(B-2)を得た。
[Formation of first conductive polymer layer]
An aqueous dispersion of polyethylene dioxythiophene / polystyrene sulfonic acid (abbreviation: PEDOT-PSS) (manufactured by HC Starck Co., Ltd.) on the surface of the transparent conductive film (A-0) (side on which the conductive mesh is formed) A solution in which 5% by mass of dimethyl sulfoxide was added to Clevios PH-500) was applied. Next, this film was heated and dried at 120 ° C. for 20 minutes to form a first conductive polymer layer, and a transparent conductive film (A-1) was obtained. At this time, the film thickness of the conductive polymer layer was 200 nm.
Separately, the PEDOT-PSS aqueous dispersion was applied to the cleaned glass surface and subjected to the same treatment. As a result, a single layer (B-1) of a conductive polymer having a thickness of 220 nm was obtained.
A high-resistance PEDOT-PSS aqueous dispersion (manufactured by HC Starck Co., Clevios P-VP-AI4083) was applied to the surface of the transparent conductive film (A-0). Next, this film was heated and dried at 130 ° C. for 10 minutes to form a first conductive polymer layer, and a transparent conductive film (A-2) was obtained. At this time, the film thickness of the conductive polymer layer was 220 nm.
Separately, the high-resistance PEDOT-PSS aqueous dispersion was applied to the cleaned glass surface and subjected to the same treatment. As a result, a single layer (B-2) of a conductive polymer having a thickness of 210 nm was obtained.
 さらに、前記PENフィルム上に、クレビオスPH-500を200nm、クレビオスP-VP-AI4083を20nmとして積層した比較用フィルム(A-3)を作製した。 Further, a comparative film (A-3) was prepared by laminating Clevios PH-500 at 200 nm and Clevios P-VP-AI4083 at 20 nm on the PEN film.
 [表面抵抗の測定]
 透明導電フィルム(A-1)および(A-2)の表面抵抗を、前記と同様に測定したところ、表面抵抗値はどちらも1Ω/sq以下であった。
 導電性ポリマーの単独層(B-1)の表面抵抗値は195Ω/sqであった。このことから、B-1の体積抵抗率は4.3×10-3Ωcmと算出される。
 導電性ポリマーの単独層(B-2)の表面抵抗値は30MΩ/sqであった。このことから、B-2の体積抵抗率は600Ωcmと算出される。
[Measurement of surface resistance]
When the surface resistances of the transparent conductive films (A-1) and (A-2) were measured in the same manner as described above, the surface resistance values were both 1 Ω / sq or less.
The surface resistance value of the single layer (B-1) of the conductive polymer was 195Ω / sq. From this, the volume resistivity of B-1 is calculated as 4.3 × 10 −3 Ωcm.
The surface resistance value of the single layer (B-2) of the conductive polymer was 30 MΩ / sq. From this, the volume resistivity of B-2 is calculated as 600 Ωcm.
〔第二の導電性ポリマー層の形成〕
 透明導電フィルム(A-1)の表面(第一の導電性ポリマー層が形成されている側)に、前記の高抵抗なPEDOT-PSSの水分散物(H.C.シュタルク社製、クレビオスP-VP-AI4083)を塗布した。次に、このフィルムを130℃で10分間加熱乾燥して、第二の導電性ポリマー層を形成し、透明導電フィルム(F-1)とした。このとき、第二の導電性ポリマー層の膜厚は20nmであった。
[Formation of second conductive polymer layer]
On the surface of the transparent conductive film (A-1) (the side on which the first conductive polymer layer is formed), an aqueous dispersion of the above-mentioned high-resistance PEDOT-PSS (manufactured by HC Starck, Crevius P -VP-AI4083) was applied. Next, this film was heated and dried at 130 ° C. for 10 minutes to form a second conductive polymer layer, and a transparent conductive film (F-1) was obtained. At this time, the film thickness of the second conductive polymer layer was 20 nm.
 [表面抵抗の測定]
 透明導電フィルム(F-1)の表面抵抗を、前記と同様に測定したところ、表面抵抗値は1Ω/sq以下であった。
[Measurement of surface resistance]
When the surface resistance of the transparent conductive film (F-1) was measured in the same manner as described above, the surface resistance value was 1 Ω / sq or less.
 以上により、導電メッシュのみ有するフィルム(A-0)、導電メッシュ上に体積抵抗率4.3×10-3Ωcmの導電性ポリマー層を有するフィルム(A-1)、導電メッシュ上に体積抵抗率600Ωcmの導電性ポリマー層を有するフィルム(A-2)、導電メッシュ上に体積抵抗率4.3×10-3Ωcmの導電性ポリマー層を有し、その上に体積抵抗率600Ωcmの導電性ポリマー層を有する本発明の透明導電フィルム(F-1)を得た。 As described above, the film (A-0) having only the conductive mesh, the film (A-1) having the conductive polymer layer having a volume resistivity of 4.3 × 10 −3 Ωcm on the conductive mesh, and the volume resistivity on the conductive mesh. A film (A-2) having a conductive polymer layer of 600 Ωcm, a conductive polymer layer having a volume resistivity of 4.3 × 10 −3 Ωcm on a conductive mesh, and a conductive polymer having a volume resistivity of 600 Ωcm on the conductive polymer layer A transparent conductive film (F-1) of the present invention having a layer was obtained.
 次に、露光条件を変えることで、メッシュの線幅を30μmとする以外は上記(F-1)と同様にして、本発明の透明導電フィルム(F-2)を作製した。
 また、露光条件を変えることで、メッシュのピッチを600μmとする以外は上記(F-1)と同様にして本発明の透明導電フィルム(F-3)を作製した。
 本発明の透明導電フィルムが有機薄膜太陽電池の電極として優れた性能を示すことは、以下の実施例において明らかとなる。
Next, the transparent conductive film (F-2) of the present invention was produced in the same manner as (F-1) except that the line width of the mesh was changed to 30 μm by changing the exposure conditions.
Further, the transparent conductive film (F-3) of the present invention was produced in the same manner as (F-1) except that the mesh pitch was changed to 600 μm by changing the exposure conditions.
It will be apparent from the following examples that the transparent conductive film of the present invention exhibits excellent performance as an electrode of an organic thin film solar cell.
〔実施例1〕
 以下の手順に従い、本発明の透明導電フィルム(F-1)を正極とする有機薄膜太陽電池を作製した。
<バルクヘテロ層の塗布>
 P3HT(ポリ-3-ヘキシルチオフェン、Lisicon SP-001(商品名)、メルク社製)20mg、及び、PCBM([6,6]-phenyl C61-butyric acid methyl ester、ナノムスペクトラE-100H(商品名)、フロンティアカーボン社製)14mgをクロロベンゼン1mlに溶解させ、光電変換層塗布液とした。窒素で置換したグローブボックス内にて、光電変換塗布液を前記透明導電フィルム(F-1)上にスピンコートし、乾燥して光電変換層を形成した。スピンコーターの回転速度は2000rpm、乾燥膜厚は90nmであった。
 光電変換層の上にアルミニウムを100nmの厚さとなるように蒸着し、負極を形成した。このとき、光電変換の有効面積が4cmとなるようにマスク蒸着した。
[Example 1]
According to the following procedure, an organic thin film solar cell having the transparent conductive film (F-1) of the present invention as a positive electrode was produced.
<Application of bulk hetero layer>
P3HT (poly-3-hexylthiophene, Lisicon SP-001 (trade name), manufactured by Merck & Co., Inc.) 20 mg, and PCBM ([6,6] -phenyl C 61 -butylic acid methyl ester, Nanom Spectra E-100H (product) Name), 14 mg (manufactured by Frontier Carbon Co., Ltd.) was dissolved in 1 ml of chlorobenzene to obtain a photoelectric conversion layer coating solution. In a glove box substituted with nitrogen, a photoelectric conversion coating solution was spin-coated on the transparent conductive film (F-1) and dried to form a photoelectric conversion layer. The rotation speed of the spin coater was 2000 rpm, and the dry film thickness was 90 nm.
Aluminum was deposited on the photoelectric conversion layer to a thickness of 100 nm to form a negative electrode. At this time, mask deposition was performed so that the effective area of photoelectric conversion was 4 cm 2 .
<アニール>
 試料をグローブボックスに戻し、ホットプレートを用いて130℃で15分間加熱して、本発明の有機薄膜太陽電池(PF-1)を完成させた。
<Annealing>
The sample was returned to the glove box and heated at 130 ° C. for 15 minutes using a hot plate to complete the organic thin film solar cell (PF-1) of the present invention.
〔比較例1~3〕
 F-1に代えて、前記作製したA-0、A-1、またはA-2を用いた以外は、実施例1と同様にして比較用の有機薄膜太陽電池(PA-0、PA-1、PA-2)を得た。
[Comparative Examples 1 to 3]
A comparative organic thin film solar cell (PA-0, PA-1) was prepared in the same manner as in Example 1 except that the prepared A-0, A-1, or A-2 was used instead of F-1. , PA-2).
〔比較例4〕
 表面抵抗値10Ω/sqのITO付きガラス基板上に、前記の高抵抗なPEDOT-PSSの水分散物(H.C.シュタルク社製、クレビオスP-VP-AI4083)を塗布した。次に、このフィルムを130℃で10分間加熱乾燥して、透明導電基板(GIP)とした。このとき、導電性ポリマー層の膜厚は20nmであった。
 F-1に代えて、GIPを用いた以外は、実施例1と同様にして比較用の有機薄膜太陽電池(PGIP)を得た。
[Comparative Example 4]
The high-resistance PEDOT-PSS aqueous dispersion (manufactured by HC Starck Co., Clevios P-VP-AI4083) was applied on a glass substrate with ITO having a surface resistance value of 10Ω / sq. Next, this film was heat-dried at 130 ° C. for 10 minutes to obtain a transparent conductive substrate (GIP). At this time, the film thickness of the conductive polymer layer was 20 nm.
A comparative organic thin film solar cell (PGIP) was obtained in the same manner as in Example 1 except that GIP was used instead of F-1.
〔比較例5〕
 F-1に代えて、前記作製したA-3を用いた以外は、実施例1と同様にして比較用の有機薄膜太陽電池(PA-3)を得た。
[Comparative Example 5]
A comparative organic thin-film solar cell (PA-3) was obtained in the same manner as in Example 1 except that the prepared A-3 was used instead of F-1.
〔実施例2、3〕
 F-1に代えて、前記作製したF-2またはF-3を用いた以外は、実施例1と同様にして有機薄膜太陽電池(PF-2、PF-3)を得た。
[Examples 2 and 3]
Organic thin-film solar cells (PF-2, PF-3) were obtained in the same manner as in Example 1 except that the prepared F-2 or F-3 was used instead of F-1.
 実施例及び比較例にて得られた有機薄膜太陽電池を、ペクセルテクノロジーズ社L12型ソーラシミュレーターを用いて、AM1.5G、100mW/cmの模擬太陽光を照射しながら、ソースメジャーユニット(SMU2400型、KEITHLEY社製)を用いて電圧範囲-0.1Vから0.7Vにて、電流値を測定した。得られた電流電圧特性をペクセルテクノロジーズ社I-Vカーブアナライザーを用いて評価し、特性パラメーターを算出した。測定結果を下記表1に示す。 The organic thin film solar cells obtained in the examples and comparative examples were irradiated with simulated sunlight of AM1.5G, 100 mW / cm 2 using a Pexel Technologies L12 type solar simulator, and the source measure unit (SMU2400). The current value was measured in a voltage range of −0.1 V to 0.7 V using a mold (manufactured by KEITHLEY). The obtained current-voltage characteristics were evaluated using a Pexel Technologies IV curve analyzer, and the characteristic parameters were calculated. The measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 比較例4のPGIPは、短絡電流が高い点では好ましいものの、正極の表面抵抗が10Ω/sqと高いために、形状因子が低く、トータルの発電効率は本発明に及ばない。 Although the PGIP of Comparative Example 4 is preferable in terms of a high short circuit current, since the surface resistance of the positive electrode is as high as 10 Ω / sq, the shape factor is low and the total power generation efficiency does not reach the present invention.
 本発明は上記実施形態及び実施例に限定されない。例えば、図1A~図3では、導電メッシュ14を構成する導線は厚さ方向の断面形状が矩形状に示されているが、断面形状は限定されない。例えば、図4~5に示すように、導電メッシュ14を構成する導線は丸みを帯びた表面形状を有していてもよいし、突起の高さに対して導電性ポリマー層の膜厚が極端に薄い場合もあり得る。 The present invention is not limited to the above embodiment and examples. For example, in FIGS. 1A to 3, the conductors constituting the conductive mesh 14 have a rectangular cross-sectional shape in the thickness direction, but the cross-sectional shape is not limited. For example, as shown in FIGS. 4 to 5, the conductive wire constituting the conductive mesh 14 may have a rounded surface shape, and the thickness of the conductive polymer layer is extremely large with respect to the height of the protrusion. It may be too thin.

Claims (17)

  1.  支持体と、該支持体上に配置されている導電メッシュと、該導電メッシュの開口部内及び該導電メッシュ上に該導電メッシュと接触して配置されている第一の導電性ポリマー層と、該第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有し、該第一の導電性ポリマー層上に配置されている第二の導電性ポリマー層と、を有する透明導電フィルム。 A support, a conductive mesh disposed on the support, a first conductive polymer layer disposed in contact with the conductive mesh in an opening of the conductive mesh and on the conductive mesh; and The transparent conductive film which has a volume resistivity higher than the volume resistivity of a 1st conductive polymer layer, and has the 2nd conductive polymer layer arrange | positioned on this 1st conductive polymer layer.
  2.  支持体と、該支持体上に配置されている導電メッシュと、該導電メッシュの開口部内に該導電メッシュと接触して配置されている第一の導電性ポリマー層と、該第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有し、前記導電性メッシュ上及び前記第一の導電性ポリマー層上に配置されている第二の導電性ポリマー層と、を有する透明導電フィルム。 A support, a conductive mesh disposed on the support, a first conductive polymer layer disposed in contact with the conductive mesh in an opening of the conductive mesh, and the first conductive A transparent conductive film having a volume resistivity higher than that of the polymer layer and having a second conductive polymer layer disposed on the conductive mesh and the first conductive polymer layer .
  3.  前記導電メッシュが銀を含む請求項1又は請求項2に記載の透明導電フィルム。 The transparent conductive film according to claim 1 or 2, wherein the conductive mesh contains silver.
  4.  前記導電メッシュが銀および親水性ポリマーを含む請求項1から請求項3のいずれか1項に記載の透明導電フィルム。 The transparent conductive film according to any one of claims 1 to 3, wherein the conductive mesh contains silver and a hydrophilic polymer.
  5.  前記導電メッシュの平面視による線幅が1μm以上20μm以下である請求項1から請求項4のいずれか1項に記載の透明導電フィルム。 The transparent conductive film according to any one of claims 1 to 4, wherein a line width in a plan view of the conductive mesh is 1 µm or more and 20 µm or less.
  6.  前記導電メッシュの平面視によるピッチが50μm以上500μm以下である請求項1から請求項5のいずれか1項に記載の透明導電フィルム。 The transparent conductive film according to any one of claims 1 to 5, wherein a pitch of the conductive mesh in a plan view is 50 µm or more and 500 µm or less.
  7.  前記導電メッシュにおいて繰り返し単位となる開口部の面積が1×10-8以上1×10-7以下である請求項1から請求項6のいずれか1項に記載の透明導電フィルム。 7. The transparent conductive film according to claim 1, wherein an area of an opening serving as a repeating unit in the conductive mesh is 1 × 10 −8 m 2 or more and 1 × 10 −7 m 2 or less.
  8.  前記第一の導電性ポリマー層および前記第二の導電性ポリマー層が、ポリチオフェン誘導体を含有する請求項1から請求項7のいずれか1項に記載の透明導電フィルム。 The transparent conductive film according to any one of claims 1 to 7, wherein the first conductive polymer layer and the second conductive polymer layer contain a polythiophene derivative.
  9.  前記ポリチオフェン誘導体が、ポリエチレンジオキシチオフェンである請求項8に記載の透明導電フィルム。 The transparent conductive film according to claim 8, wherein the polythiophene derivative is polyethylene dioxythiophene.
  10.  前記第一の導電性ポリマー層の体積抵抗率が5×10-1Ωcm以下であり、前記第二の導電性ポリマー層の体積抵抗率が10Ωcm以上である請求項1から請求項8のいずれか1項に記載の透明導電フィルム。 9. The volume resistivity of the first conductive polymer layer is 5 × 10 −1 Ωcm or less, and the volume resistivity of the second conductive polymer layer is 10 Ωcm or more. The transparent conductive film of item 1.
  11.  前記第一の導電性ポリマー層は体積抵抗率が1×10-2Ωcm以下のポリチオフェン誘導体を含有し、前記第二の導電性ポリマー層は体積抵抗率が10Ωcm以上のポリチオフェン誘導体を含有する請求項8から請求項10のいずれか1項に記載の透明導電フィルム。 The first conductive polymer layer contains a polythiophene derivative with a volume resistivity of 1 × 10 −2 Ωcm or less, and the second conductive polymer layer contains a polythiophene derivative with a volume resistivity of 10 Ωcm or more. The transparent conductive film of any one of Claims 8-10.
  12.  請求項1から請求項11のいずれか1項に記載の透明導電フィルムと、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されている有機化合物層と、前記透明導電フィルムに対し、前記有機化合物層を挟むように対向配置されている対向電極と、を備える有機電子デバイス。 The transparent conductive film according to any one of claims 1 to 11, an organic compound layer disposed on the second conductive polymer layer of the transparent electrode film, and the transparent conductive film And an opposing electrode disposed so as to sandwich the organic compound layer.
  13.  請求項1から請求項11のいずれか1項に記載の透明導電フィルムと、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されている光電変換層と、前記透明導電フィルムに対し、前記光電変換層を挟むように対向配置されている対向電極と、を備える有機電子デバイス。 The transparent conductive film according to any one of claims 1 to 11, the photoelectric conversion layer disposed on the second conductive polymer layer of the transparent electrode film, and the transparent conductive film An organic electronic device comprising: a counter electrode disposed so as to sandwich the photoelectric conversion layer.
  14.  請求項1から請求項11のいずれか1項に記載の透明導電フィルムと、該透明電極フィルムの前記第二の導電性ポリマー層上に配置されているバルクへテロ型の光電変換層と、前記透明導電フィルムに対し、前記光電変換層を挟むように対向配置されている対向電極と、を備えるバルクヘテロ型有機薄膜太陽電池。 The transparent conductive film according to any one of claims 1 to 11, a bulk hetero photoelectric conversion layer disposed on the second conductive polymer layer of the transparent electrode film, A bulk hetero type organic thin-film solar cell comprising: a transparent conductive film; and a counter electrode disposed so as to face the photoelectric conversion layer.
  15.  支持体上に導電メッシュを形成する工程と、該導電メッシュの開口部内及び該導電性メッシュ上に第一の導電性ポリマー層を形成する工程と、該第一の導電性ポリマー層上に該第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有する第二の導電性ポリマー層を形成する工程と、を含む透明導電フィルムの製造方法。 Forming a conductive mesh on the support, forming a first conductive polymer layer in the openings of the conductive mesh and on the conductive mesh, and forming the first conductive polymer layer on the first conductive polymer layer. Forming a second conductive polymer layer having a volume resistivity higher than the volume resistivity of the one conductive polymer layer.
  16.  支持体上に導電メッシュを形成する工程と、該導電メッシュの開口部内に該導電メッシュと接触する第一の導電性ポリマー層を形成する工程と、前記導電メッシュ上及び第一の導電性ポリマー層上に、前記第一の導電性ポリマー層の体積抵抗率よりも高い体積抵抗率を有する第二の導電性ポリマー層を形成する工程と、を含む透明導電フィルムの製造方法。 Forming a conductive mesh on the support; forming a first conductive polymer layer in contact with the conductive mesh in the opening of the conductive mesh; and on the conductive mesh and the first conductive polymer layer. Forming a second conductive polymer layer having a volume resistivity higher than the volume resistivity of the first conductive polymer layer; and a method for producing a transparent conductive film.
  17.  前記支持体上に導電メッシュを形成する工程が、前記導電メッシュを形成するための塗膜に対してパターン露光を行う工程と、前記パターン露光された塗膜を現像する工程と、前記現像された塗膜を定着する工程と、を含む請求項15又は請求項16に記載の透明導電フィルムの製造方法。 The step of forming a conductive mesh on the support includes a step of performing pattern exposure on a coating film for forming the conductive mesh, a step of developing the pattern-exposed coating film, and the development The method for producing a transparent conductive film according to claim 15 or 16, comprising a step of fixing the coating film.
PCT/JP2011/067542 2010-08-12 2011-07-29 Transparent conductive film, manufacturing method therefor, organic electronic device, and organic thin film solar cell WO2012020657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-181078 2010-08-12
JP2010181078A JP2012043835A (en) 2010-08-12 2010-08-12 Transparent conductive film, manufacturing method of the same, organic electronic device and organic thin-film solar cell

Publications (1)

Publication Number Publication Date
WO2012020657A1 true WO2012020657A1 (en) 2012-02-16

Family

ID=45567626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067542 WO2012020657A1 (en) 2010-08-12 2011-07-29 Transparent conductive film, manufacturing method therefor, organic electronic device, and organic thin film solar cell

Country Status (2)

Country Link
JP (1) JP2012043835A (en)
WO (1) WO2012020657A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128932A1 (en) * 2012-02-29 2013-09-06 富士フイルム株式会社 Transparent conductive film, and organic thin film solar cell equipped with same
JP2015511771A (en) * 2012-03-16 2015-04-20 ケンブリッジ ディスプレイ テクノロジー リミテッド Photoelectric device
WO2016027620A1 (en) * 2014-08-21 2016-02-25 コニカミノルタ株式会社 Transparent electrode, method for producing transparent electrode and electronic device
JP2017188378A (en) * 2016-04-08 2017-10-12 学校法人五島育英会 Organic conductive film and manufacturing method therefor
WO2017212890A1 (en) * 2016-06-06 2017-12-14 住友化学株式会社 Method for manufacturing organic device
CN112582567A (en) * 2020-11-27 2021-03-30 固安翌光科技有限公司 Organic electroluminescent device and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201314497D0 (en) * 2013-08-13 2013-09-25 Cambridge Display Tech Ltd An Electrode for an Organic Electronic Device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076668A (en) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd Organic thin-film solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076668A (en) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd Organic thin-film solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YINHUA ZHOU ET AL.: "Investigation on polymer anode design for flexible polymer solar cells, art 233308", APPLIED PHYSICS LETTERS, vol. 92, 2008, pages 233308-1 - 233308-3 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128932A1 (en) * 2012-02-29 2013-09-06 富士フイルム株式会社 Transparent conductive film, and organic thin film solar cell equipped with same
JP2013211283A (en) * 2012-02-29 2013-10-10 Fujifilm Corp Transparent conductive film and organic thin film solar cell including the same
JP2015511771A (en) * 2012-03-16 2015-04-20 ケンブリッジ ディスプレイ テクノロジー リミテッド Photoelectric device
WO2016027620A1 (en) * 2014-08-21 2016-02-25 コニカミノルタ株式会社 Transparent electrode, method for producing transparent electrode and electronic device
JPWO2016027620A1 (en) * 2014-08-21 2017-07-06 コニカミノルタ株式会社 Transparent electrode, method for manufacturing transparent electrode, and electronic device
US9923165B2 (en) 2014-08-21 2018-03-20 Konica Minolta, Inc. Transparent electrode, method for producing transparent electrode and electronic device
JP2017188378A (en) * 2016-04-08 2017-10-12 学校法人五島育英会 Organic conductive film and manufacturing method therefor
WO2017212890A1 (en) * 2016-06-06 2017-12-14 住友化学株式会社 Method for manufacturing organic device
JPWO2017212890A1 (en) * 2016-06-06 2019-03-28 住友化学株式会社 Manufacturing method of organic device
CN112582567A (en) * 2020-11-27 2021-03-30 固安翌光科技有限公司 Organic electroluminescent device and preparation method thereof
CN112582567B (en) * 2020-11-27 2022-11-04 固安翌光科技有限公司 Organic electroluminescent device and preparation method thereof

Also Published As

Publication number Publication date
JP2012043835A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5484279B2 (en) Solar cell
WO2012020657A1 (en) Transparent conductive film, manufacturing method therefor, organic electronic device, and organic thin film solar cell
JP5748350B2 (en) Transparent conductive film, method for producing the same, flexible organic electronic device, and organic thin film solar cell
WO2012033102A1 (en) Transparent conductive film, manufacturing method therefor, electronic device, and organic thin-film solar cell
JP5814843B2 (en) Flexible organic electronic devices
WO2012033103A1 (en) Transparent conductive film, manufacturing method therefor, and organic thin-film solar cell using said transparent conductive film
WO2013128932A1 (en) Transparent conductive film, and organic thin film solar cell equipped with same
WO2012039246A1 (en) Organic thin film solar cell and process for production thereof
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
JP5774566B2 (en) Organic thin film solar cell
JP5961094B2 (en) Organic thin film solar cell
JP5444743B2 (en) Organic photoelectric conversion element
JP2012079869A (en) Organic thin-film solar cell
JP2013016670A (en) Transparent conductive film, method for producing the same, and organic thin-film solar cell
JP2013016668A (en) Manufacturing method of solar cell
WO2011158874A1 (en) Organic thin film solar cell
JP2011155155A (en) Transparent conductive film and method of manufacturing the same, and organic thin-film solar cell
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP2011155154A (en) Transparent conductive film and method of manufacturing the same, and organic thin-film solar cell
JP2011198811A (en) Photoelectric conversion element and organic thin-film solar cell
JP5944120B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND ORGANIC SOLAR CELL USING THE SAME
JP5310230B2 (en) Organic photoelectric conversion element
JP2013016669A (en) Manufacturing method of photoelectric conversion element
JP2013089627A (en) Organic photoelectric conversion element and organic solar cell using the same
JP6003071B2 (en) Tandem organic photoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816323

Country of ref document: EP

Kind code of ref document: A1