WO2012017821A1 - Medical image diagnostic device and cardiac measurement value display method - Google Patents

Medical image diagnostic device and cardiac measurement value display method Download PDF

Info

Publication number
WO2012017821A1
WO2012017821A1 PCT/JP2011/066407 JP2011066407W WO2012017821A1 WO 2012017821 A1 WO2012017821 A1 WO 2012017821A1 JP 2011066407 W JP2011066407 W JP 2011066407W WO 2012017821 A1 WO2012017821 A1 WO 2012017821A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
unit
heart
cardiac
measurement
Prior art date
Application number
PCT/JP2011/066407
Other languages
French (fr)
Japanese (ja)
Inventor
西浦 朋史
貴広 樫山
哲矢 林
智章 長野
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2012527660A priority Critical patent/JP5814921B2/en
Priority to CN201180032615.7A priority patent/CN102958448B/en
Publication of WO2012017821A1 publication Critical patent/WO2012017821A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a medical image diagnostic apparatus and a cardiac measurement value display method for measuring living tissue using measurement points set in a tomographic image.
  • a conventional medical image diagnostic apparatus an operator sets a measurement point on an acquired tomographic image using an input unit such as a mouse or a trackball. Thereafter, the medical image diagnostic apparatus measures a cardiac measurement value based on the set measurement point, and displays the cardiac measurement value.
  • the measurement application of the medical image diagnostic apparatus measures the distance between the measurement points and the area or volume surrounded by the plurality of measurement points.
  • the measurement application calculates the area and volume in the set predetermined area.
  • Patent Document 1 does not consider updating and measuring a heart measurement value for each heartbeat cycle that is sequentially updated. Therefore, in Patent Document 1, the heart measurement value is displayed without being updated every heartbeat cycle.
  • the present invention comprises a tomographic image of a subject, detects a feature waveform from the shape of an electrocardiogram waveform, and the feature waveform having the smallest time difference from the reference time among the detected feature waveforms Is set as a first feature waveform, a heartbeat cycle set by the second feature waveform and the first feature waveform that are continuous with the first feature waveform is set, and a cardiac measurement value is based on the configured tomographic image Is measured, and the tomographic image and the heart measurement value are displayed.
  • the medical image diagnostic apparatus of the present invention includes a tomographic image forming unit that forms a tomographic image of a subject, a measuring unit that measures a heart measurement value based on the tomographic image, the tomographic image, and the heart
  • a medical image diagnostic apparatus comprising: an image display unit that displays measurement values; a feature waveform detection unit that detects a feature waveform from the shape of an electrocardiogram waveform of the subject; and a detection by the feature waveform detection unit Among the measured feature waveforms, the feature waveform having the smallest time difference from the reference time is taken as the first feature waveform, and the heartbeat cycle set by the second feature waveform and the first feature waveform that are continuous with the first feature waveform
  • a heart rate cycle setting unit that sets the heart rate measurement value based on the tomographic image, the characteristic waveform, and the heart rate cycle.
  • the cardiac measurement display method of the present invention includes a step of constructing a tomographic image of a subject, a step of detecting a feature waveform from the shape of the electrocardiogram waveform of the subject, and a reference among the detected feature waveforms Setting the heartbeat cycle set by the second feature waveform and the first feature waveform that are continuous with the first feature waveform as the feature waveform having the smallest time difference from the time, and the tomography
  • the method includes a step of measuring a heart measurement value based on the image, the characteristic waveform, and the heartbeat cycle, and a step of displaying the tomographic image and the heart measurement value.
  • FIG. 1 is a diagram showing an overall configuration of a medical image diagnostic apparatus (ultrasound diagnostic apparatus) according to the present invention.
  • 1 is a diagram showing Example 1 of the present invention.
  • FIG. 1 is a diagram showing Example 1 of the present invention.
  • FIG. 2 is a flowchart showing the operation of the first embodiment of the present invention.
  • FIG. 4 is a diagram showing Example 2 of the present invention.
  • FIG. 4 is a diagram showing Example 2 of the present invention.
  • FIG. 6 is a diagram showing Example 3 of the present invention.
  • FIG. 6 is a diagram showing Example 4 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a medical image diagnostic apparatus to which the present invention is applied.
  • an ultrasonic diagnostic apparatus will be described as an example of a medical image diagnostic apparatus.
  • an ultrasonic diagnostic apparatus uses an ultrasonic probe 12 that is applied to a subject 10, and ultrasonic waves are applied to the subject 10 via the ultrasonic probe 12 at time intervals.
  • Transmitting unit 14 that repeatedly transmits, receiving unit 16 that receives the ultrasonic wave reflected from the subject 10 as a reflected echo signal, an ultrasonic transmission / reception control unit 18 that controls the transmitting unit 14 and the receiving unit 16, and a receiving unit 16
  • a tomographic image forming unit for forming a tomographic image of the subject 10, for example, a black and white tomographic image, based on the RF signal frame data from the phasing and adding unit 20 22, a black and white scan converter 24 that converts the tomographic image data output from the tomographic image construction unit 22 so as to match the display of the image display unit 26, and an image display unit 26 that displays an image such as a tomographic image. ing.
  • the ultrasonic diagnostic apparatus includes an electrocardiogram waveform detection unit 30 that detects an electrocardiogram waveform with an electrocardiograph attached to a desired part of the subject 10, for example, a hand and a leg of the subject 10, and an electrocardiogram waveform detection Analyzing the electrocardiogram waveform detected by the unit 30 and detecting a feature waveform of the electrocardiogram waveform, and a real-time (current) heart among the feature waveforms detected by the feature waveform detection unit 32 Heart rate cycle setting that sets the heart rate cycle using the feature waveform with the shortest time difference and time difference (newest first feature waveform) and the feature waveform continuous to the first feature waveform (second feature waveform) Part 34.
  • the first feature waveform has been described so as to select the feature waveform having the shortest time difference from the actual time (current), but the feature waveform at the time of the second feature waveform described above is selected.
  • the first feature waveform may be set, and the time phase one heartbeat before may be set as the second feature waveform. In this way, even if the electrocardiographic waveform goes back from the present, the first feature waveform and the second feature waveform can be arbitrarily selected by the operation of the operation unit 40 as long as both are continuous. It is.
  • the arbitrary selection of the first feature waveform and the second feature waveform is defined in the present specification as being performed on the electrocardiogram waveform measured at the reference time. That is, the reference time in the heartbeat cycle setting unit may be real time (current), or a heartbeat cycle immediately after desired selection may be set.
  • the operator sets a plurality of measurement points on the tomographic image displayed on the image display unit 26.
  • heart measurement values such as the heart area, the heart volume, and the length between the measurement points are measured based on the set measurement points. Is provided on the image display unit 26.
  • an operation unit 40 that gives an instruction such as setting a measurement point by an operator, and a control unit 42 that controls each component according to the instruction from the operation unit 40 are provided.
  • the operation unit 40 includes a trackball for positioning the measurement points, an execution key for executing the operation, a freeze key for freezing the tomographic image, and the like.
  • the ultrasonic probe 12 is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 10 via the transducers.
  • the transmission unit 14 generates a transmission pulse for generating an ultrasonic wave by driving the ultrasonic probe 12, and has a function of setting a convergence point of the transmitted ultrasonic wave to a certain depth. Yes.
  • the receiving unit 16 has a function of amplifying the reflected echo signal based on the ultrasonic wave received by the ultrasonic probe 12 with a predetermined gain to generate an RF signal, that is, a received signal.
  • the phasing / adding unit 20 has a function of inputting the RF signal amplified by the receiving unit 16 and performing phase control, and forming an ultrasonic beam at one or more convergence points to generate RF signal frame data. ing.
  • the tomographic image construction unit 22 receives the RF signal frame data from the phasing addition unit 20 and performs signal processing such as gain correction, log compression, detection, contour enhancement, and filter processing to obtain tomographic image data.
  • the monochrome scan converter 24 also includes an A / D converter that converts tomographic image data output from the tomographic image construction unit 22 into a digital signal, and a frame memory that stores a plurality of converted tomographic image data in time series. , Including a controller.
  • the black and white scan converter 24 acquires tomographic image data in the subject 10 stored in the frame memory as an image, and reads the acquired tomographic image data in synchronization with the television of the image display unit 26.
  • the feature waveform detection unit 32 analyzes the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30, and detects a feature waveform that appears for each heartbeat period from the shape of the electrocardiogram waveform.
  • the vertical axis indicates voltage (potential difference) and the horizontal axis indicates time.
  • the characteristic waveform detection unit 32 is a characteristic waveform using the characteristic that the R wave is the largest waveform among the electrocardiographic waveforms detected by the electrocardiogram waveform detection unit 30, that is, the R wave has the largest voltage. R wave is detected.
  • the feature waveform detection unit 32 compares the voltage of the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30 with a predetermined threshold value, and if the voltage exceeds the threshold value, it is an R wave. Is detected. This threshold is set so that the peak (maximum voltage) of the electrocardiographic waveform can be detected. Further, the feature waveform detection unit 32 may detect the R wave based on a differential value obtained by differentiating the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30. In the present embodiment, an example of detecting the characteristic waveform of the R wave has been described.
  • the characteristic waveform detected by the characteristic waveform detection unit 32 is an electrocardiographic waveform such as a P wave, a Q wave, an S wave, or a T wave. It may be a characteristic waveform.
  • the type of feature waveform detected by the feature waveform detector 32 can be selected from the R wave, P wave, Q wave, S wave, T wave, and the like by the operation unit 40.
  • the R wave cannot be detected clearly, it can be used so that, for example, 500 ms after the P wave time is set as the R wave time in a pseudo manner.
  • the heartbeat cycle setting unit 34 Based on the feature waveform that appears for each heartbeat cycle detected by the feature waveform detection unit 32, the heartbeat cycle setting unit 34 includes a newest first feature waveform, a second feature waveform that is continuous with the first feature waveform, Set the heart cycle based on.
  • the second feature waveform is the next new feature waveform after the first feature waveform. Therefore, the heartbeat cycle set by the heartbeat cycle setting unit 34 is the newest heartbeat cycle with respect to the real time (current) time.
  • the measurement unit 36 uses the newest first feature waveform and the second feature waveform continuous to the first feature waveform. Cardiac measurement values such as heart area, heart volume, length between two measurement points, ejection fraction (EF value), etc. in a set heartbeat cycle are measured. Then, the measurement unit 36 causes the image display unit 26 to display the cardiac measurement value together with the tomographic image updated in real time (current).
  • EF value ejection fraction
  • FIG. 2 is an example of an image displayed on the image display unit 26.
  • the image display unit 26 displays an electrocardiogram waveform 50 detected by the electrocardiogram waveform detection unit 30, a tomographic image 70 output from the black and white scan converter 24, and a heart measurement value 80 measured by the measurement unit 36.
  • the electrocardiogram waveform 50 is detected by the electrocardiogram waveform detection unit 30, and on the electrocardiogram waveform 50, a display time phase mark 52 indicating the real time (current) time (time phase) is displayed. .
  • the display time phase mark 52 is moved and displayed in the time direction (right direction) as the electrocardiogram waveform 50 is updated.
  • the display time phase mark 52 reaches the right end, the display time phase mark 52 is moved to the left end and repeatedly displayed as the electrocardiographic waveform 50 is updated.
  • An electrocardiogram waveform 50 shown on the left side of the display time phase mark 52 is an updated electrocardiogram waveform.
  • R wave 58 is displayed.
  • the R wave detected by the feature waveform detection unit 32 is a kind of feature waveform.
  • the R wave 54 is the newest R wave and the newest R wave with respect to the real time (current) time.
  • the R wave 56 is the second new R wave with respect to the real time (current) time.
  • the R wave 58 is the third newest R wave with respect to the real time (current) time.
  • the heartbeat cycle setting unit 34 is configured by a heartbeat cycle A that is set by the newest R wave 54 and the R wave 56 that is next to the R wave 54.
  • Set (R-R cycle) The heartbeat period A sandwiched between the R wave 54 and the R wave 56 is one heartbeat period sandwiched between the newest feature waveform and the second newest feature waveform. Therefore, the heartbeat cycle A sandwiched between the R wave 54 and the R wave 56 is the heartbeat cycle having the shortest difference from the real time (current) time.
  • the heartbeat cycle with the shortest difference from the real time (current) time may be referred to as the newest heartbeat cycle.
  • An electrocardiogram mark 60 is displayed on the image display unit 26 on the electrocardiogram waveform 50 corresponding to the heartbeat cycle A so that it can be recognized that the latest heartbeat cycle A has been set by the heartbeat cycle setting unit 34.
  • the electrocardiogram waveform mark 60 is indicated by, for example, a line type (thick line, broken line, etc.) different from the electrocardiogram waveform 50 on the electrocardiogram waveform 50 corresponding to the heartbeat period A sandwiched between the R wave 54 and the R wave 56.
  • the electrocardiogram waveform 50 corresponding to the heartbeat cycle A is indicated by a color (red, blue, etc.) different from the electrocardiogram waveform 50.
  • the tomographic image 70 is a cross-sectional image of the heart of the subject 10, and is, for example, a two-chamber image (A2C) of the apex.
  • the tomographic image 70 has a plurality of measurement points. In this embodiment, nine measurement points are set along the inner wall of the heart displayed as a tomographic image.
  • the region 76 is a region surrounded by a plurality of measurement points.
  • the measuring unit 36 is a cardiac measurement value such as heart area, heart volume, length between two measurement points, ejection fraction, etc., in the diastole and the systole of the heart cycle A set by the heart cycle setting unit 34 Measure.
  • the diastolic period is a section in which the heart expands after the heart contracts and blood is collected from the whole body into the heart.
  • the systole is a section where the heart contracts and pumps blood to the whole body.
  • the expansion period is a section before and after the R wave, for example, a section from 500 ms before the R wave to 50 ms after the R wave.
  • the systole is a section after a predetermined time has elapsed from the R wave, for example, a section from 50 ms after the R wave to 300 ms after the R wave.
  • the R wave is included in the diastole section, and the R wave indicates the end diastole immediately before the systole begins.
  • the measurement unit 36 measures the area of the heart, the volume of the heart, and the length between two measurement points in the diastole of the heartbeat cycle A set by the heartbeat cycle setting unit 34.
  • the measurement unit 36 measures the area of the heart, the volume of the heart, and the length between two measurement points at the time of the R wave that is the end diastole of the heartbeat cycle A.
  • the end diastole indicates when the dilation of the heart ends.
  • the R wave that is the end diastole of the cardiac cycle A may be the R wave 54 that is newest to the real time (current) time or the R wave 56 that is continuous with the R wave 54.
  • the measurement in the diastole is performed at the time of the R wave 56 in the heartbeat cycle A.
  • the measurement unit 36 measures the area of the heart, the volume of the heart, and the length between two measurement points at the time of the R wave 56.
  • the area of the heart in the diastole, the volume of the heart, and the length between the two measurement points measured by the measurement unit 36 are displayed as the heart measurement value 80 of the image display unit 26.
  • the measurement unit 36 is configured so that the heart area, the heart volume, and the two measurement points in the systole of the heartbeat cycle A set by the heartbeat cycle setting unit 34. Measure the length.
  • the measurement unit 36 measures, for example, the heart area, the heart volume, and the length between two measurement points at the end systole after a predetermined time from the R wave time.
  • the end systole indicates a time when the heart contraction ends, for example, when the heart volume is the smallest.
  • the measurement unit 36 performs volume calculation for all tomographic image frames in the cardiac cycle A (the immediately preceding cardiac cycle), and determines the end systolic time by specifying the tomographic image frame that gives the minimum volume of the heart. Then, the measurement unit 36 measures the area of the heart, the volume of the heart, and the length between the two measurement points using the tomographic image frame at the end systole.
  • Measure unit 36 can measure the length between two arbitrarily set measurement points. Further, the measurement unit 36 can measure cardiac measurement values such as the long axis length and the short axis length by combining a plurality of measurement results of the length between two arbitrarily set measurement points. Further, the measurement unit 36 can also measure the L index value that is the ratio of the major axis lengths of different cross sections.
  • the measurement unit 36 measures the change in the volume of the heart in advance, and based on the measured change in the volume of the heart, the time (T1) from the time of the R wave to the time when the volume of the heart becomes the smallest Measure. Then, the measurement unit 36 measures the heart area, the heart volume, and the length between the two measurement points at the end systole after a predetermined time (T1) from the time of the R wave 56.
  • the area of the region 76 surrounded by the plurality of measurement points is measured based on the number of pixels included in the region 76.
  • the measurement unit 36 counts the number of pixels in the region 76.
  • the measuring unit 36 grasps the number of pixels per 1 mm 2 in advance and measures the area of the region 76 by performing area conversion on the number of pixels counted in the region 76. For example, if the measuring unit 36 grasps the number of pixels per 1 mm 2 as 10 pixels in advance, if the number of pixels counted in the region 76 is 5000 pixels, the area is converted to 500 mm 2 .
  • the measuring unit 36 measures the volume of the heart using the Simpson method.
  • the Simpson method divides an area 76 surrounded by a plurality of measurement points into rectangular areas in the longitudinal direction, calculates the area of the rectangular area, calculates the volume for each rectangular area, and divides the obtained volume into This is a technique for obtaining a volume by adding.
  • the operator sets two measurement points among the nine measurement points using the operation unit 40.
  • the measurement point 72 and the measurement point 74 are set.
  • the measurement unit 36 measures the distance between the set measurement point 72 and the measurement point 74 as the length between the two measurement points.
  • the measurement unit 36 calculates the ejection fraction from the measured end-diastolic heart volume and end-systolic heart volume.
  • the ejection fraction can be obtained by the following equation using the volume of the heart in the diastole and the volume of the heart in the systole.
  • ⁇ Number 1 ⁇ Ejection rate (%) (Va (end-diastolic heart volume)-Vb (end-systolic heart volume) / Va x 100
  • the ejection fraction is calculated by the measuring unit 36 based on the volume of the heart at the time of the R wave 56 that is the end diastole and the minimum volume of the heart that is the end systole.
  • the ejection fraction is an evaluation value indicating the contractile function of the heart.
  • the measurement unit 36 may calculate an index value indicating the circulatory function of the cardiac cycle A by combining the measurement value at the end diastole and the measurement value at the end systole.
  • the measuring unit 36 can measure the cardiac output or single cardiac output in the cardiac cycle A from the difference between the volume of the heart at the end diastole and the volume of the heart at the end systole according to the following formula. it can.
  • ⁇ Equation 2 ⁇ Cardiac output Heart rate x (Va-Vb)
  • ⁇ Equation 3 ⁇ Stroke output Va-Vb
  • FIG. 3 (a) is a form showing the heartbeat state shown in FIG.
  • FIG. 3 (b) is a form showing a heartbeat state in which a predetermined time has elapsed from the heartbeat state shown in FIG. 3 (a).
  • FIG. 3 (c) is a form showing a heartbeat state in which a predetermined time has elapsed from the heartbeat state shown in FIG. 3 (b).
  • the display time phase mark 52 indicating the real time (current) time (time phase) shown in FIG. 3 (a) is moved and displayed in the time direction (right direction) as the electrocardiogram waveform 50 is updated.
  • the characteristic waveform detection unit 32 detects the R wave 62 that is a characteristic waveform.
  • the R wave 62 is the newest R wave with respect to the real time (current) time, and is the newest R wave.
  • the R wave 54 becomes a new R wave with respect to the second at the time of the real time (current).
  • the heartbeat cycle setting unit 34 newly sets a heartbeat cycle B (R ⁇ R cycle) sandwiched between the newest R wave 62 and the R wave 54 continuous with the R wave 62. Therefore, in the heartbeat state shown in FIG. 3 (b), the heartbeat cycle B sandwiched between the R wave 62 and the R wave 54 is the newest heartbeat cycle.
  • the measurement unit 36 calculates the area of the heart, the volume of the heart, and the length between the two measurement points in the heartbeat cycle B set by the heartbeat cycle setting unit 34. Then, measure cardiac values such as ejection fraction.
  • the measurement in the diastole and the systole of the heartbeat cycle B is the same as the measurement in the diastole and the systole of the heartbeat cycle A, and the description is omitted.
  • the heart area, heart volume, and length between two measurement points in the diastole and systole of the heartbeat cycle B measured by the measurement unit 36 were measured in the past as the heart measurement value 80 of the image display unit 26. Displayed by overwriting the cardiac measurement.
  • the heartbeat cycle setting unit 34 Set the heart rate cycle. Specifically, the heartbeat cycle setting unit 34 sets the heartbeat cycle set by the newly detected first feature waveform and the second feature waveform that is continuous with the first feature waveform. Therefore, each time the feature waveform detection unit 32 detects a new feature waveform, the heartbeat cycle setting unit 34 can keep the heartbeat cycle up to date by updating the heartbeat cycle.
  • the measurement unit 36 updates the heart area in the diastole and systole of the heartbeat period, the volume of the heart, the length between two measurement points, and the ejection rate heart that is updated each time a new feature waveform is detected. Measure the measured value.
  • the image display unit 26 displays the updated cardiac measurement value 80 in the diastole and systole of the heartbeat cycle.
  • the feature waveform detection unit 32 detects the R wave 62 that is the feature waveform until the next R wave is detected. Continue to display heart measurements 80 of the area of the heart during diastole and systole, the volume of the heart, and the length between the two measurement points.
  • the control unit 42 freezes the tomographic image 70 updated in the real time (current) in the image display unit 26, and The update of the cardiac measurement value 80 can be stopped.
  • the operator can confirm the frozen tomographic image 70 displayed on the image display unit 26 and the latest cardiac measurement value 80. Further, the operator can freeze and display the tomographic image 70 suitable for diagnosis while referring to the updated cardiac measurement value 80.
  • Fig. 4 shows a flowchart showing the operation of this embodiment.
  • the operator freezes the tomographic image 70 displayed on the image display unit 26 by the control unit 42 by pressing the freeze button of the operation unit 40.
  • a frozen tomographic image 70 is displayed on the image display unit 26.
  • the operator positions the measurement point on the frozen tomographic image 70 by rotating the trackball of the operation unit 40.
  • the operator presses the execution key of the operation unit 40 to set the measurement point at the positioned position.
  • a plurality of measurement points can be set on the frozen tomographic image 70.
  • the freeze of the tomographic image 70 is canceled and the tomographic image 70 is displayed in real time (current). A plurality of measurement points are followed in accordance with the movement of the tomographic image 70.
  • the measurement unit 36 determines to which position the plurality of measurement points have sequentially moved as the heart beats. Specifically, the measurement unit 36 sets a region having an arbitrary shape including a measurement point and the vicinity of the measurement point on the tomographic image, and performs correlation processing between the two tomographic images for this region to track the measurement point.
  • the control unit 42 can also analyze the tissue shape of the tomographic image 70 updated in real time (currently) for each heartbeat, and automatically set measurement points based on the tissue shape.
  • the control unit 42 has a database that stores diagnostic image information based on the templated tissue of the subject.
  • the control unit 42 collates the tomographic image updated in real time (current) with the templated diagnostic image information stored in the database, and based on the collation result, sets the measurement points according to the tissue shape. Install. For example, a plurality of measurement points are set along the tissue shape (heart lumen).
  • the measurement unit 36 uses the newest first feature waveform and the second feature waveform that is continuous with the first feature waveform. Measures cardiac measurement values such as heart area, heart volume, length between two measurement points, ejection fraction, etc. in the heartbeat cycle set by the characteristic waveform of.
  • the measurement unit 36 updates the heart area in the diastole and systole of the heart cycle, the volume of the heart, the length between the two measurement points, and the ejection fraction, which are updated each time a new feature waveform is detected.
  • the heart measurement value is measured, and the heart measurement value 80 is updated.
  • a tomographic image forming unit that forms a tomographic image of a subject, a measuring unit that measures a cardiac measurement value based on the tomographic image, and an image that displays the tomographic image and the cardiac measurement value
  • a medical image diagnostic apparatus comprising: a display unit; a feature waveform detection unit that detects a feature waveform from a shape of an electrocardiogram waveform of the subject; and a feature waveform detected by the feature waveform detection unit
  • a heartbeat cycle setting unit that sets a heartbeat cycle that is set by the second feature waveform that is continuous with the first feature waveform and the first feature waveform as a feature waveform that has the smallest time difference from the reference time
  • the measurement unit measures a cardiac measurement value based on the tomographic image, the characteristic waveform, and the heartbeat cycle, and therefore updates and measures the cardiac measurement value for each heartbeat cycle that is sequentially updated.
  • the step of constructing a tomographic image of the subject the step of detecting a feature waveform from the shape of the electrocardiographic waveform of the subject, and the time difference from the reference time among the detected feature waveforms
  • the measurement unit measures the cardiac measurement value or the index value indicating the cardiovascular function in the diastole and the systole of the heartbeat cycle set by the heartbeat cycle setting unit.
  • the measurement unit measures the cardiac measurement value or the index value indicating the cardiovascular function in the diastole and the systole of the heartbeat cycle set by the heartbeat cycle setting unit.
  • the cardiac measurement value is updated for each heartbeat cycle that is sequentially updated.
  • the cardiac measurement value is updated for each heartbeat cycle that is sequentially updated.
  • an operation unit for setting a plurality of measurement points on the tomographic image displayed on the image display unit the measurement unit based on the set plurality of measurement points, the area of the heart, the volume of the heart, Even if at least one cardiac measurement value of the ejection fraction of the heart is measured, it is possible to provide a medical image diagnostic apparatus that updates and measures a cardiac measurement value for each heartbeat cycle that is sequentially updated.
  • the heartbeat cycle setting unit detects a first feature waveform that is newly detected and a second feature that is continuous with the first feature waveform. It is possible to provide a medical image diagnostic apparatus that updates and measures a heart measurement value for each heartbeat cycle that is sequentially updated even if the heartbeat cycle is set according to the waveform.
  • the tomographic image configuration unit 22 that configures the tomographic image of the subject 10
  • the image display unit 26 that displays the tomographic image configured by the tomographic image configuration unit 22, and the image display unit 26
  • a medical image diagnostic apparatus including a measurement unit 36 that measures a cardiac measurement value based on a displayed tomographic image
  • an electrocardiogram waveform detected from the subject 10 is analyzed, and a feature waveform is detected from the shape of the electrocardiogram waveform
  • the newest first feature waveform and the second feature waveform continuous to the first feature waveform are set.
  • a heartbeat cycle setting unit 34 for setting a heartbeat cycle the measurement unit 36 measures a heart measurement value in the heartbeat cycle, and the image display unit 26 displays the heart measurement value. Therefore, it is possible to measure the heart measurement value for each heartbeat period for the tomographic image updated at the real time (current) and update the heart measurement value together with the tomographic image updated at the real time (current).
  • the heartbeat cycle setting unit 34 is sandwiched between the latest R wave 54 and the R wave 56 that is continuous to the R wave 54 based on the R wave that is the feature waveform detected by the feature waveform detection unit 32. Although one period which is the heartbeat period A is set, a plurality of periods may be set.
  • the heartbeat cycle setting unit 34 can set, for example, a heartbeat 2 cycle sandwiched between the latest R wave 54 and the third new R wave R wave 58.
  • Example 2 will be described with reference to FIGS.
  • the difference from the first embodiment is that the measurement unit 36 measures a cardiac measurement value at every end diastole of the heartbeat cycle or every end systole of the heartbeat cycle.
  • FIG. 5 shows the state of the end of diastole (R wave time) of the heartbeat cycle, and the display time phase mark 52 has reached the R wave 54.
  • the measurement unit 36 determines the area of the heart, the volume of the heart, and the length between the two measurement points.
  • the heart measurement value 80 is measured.
  • the image display unit 26 displays a cardiac measurement value 80 that is updated every end diastole of the heartbeat cycle.
  • Fig. 6 shows the state of the end systole of the heartbeat cycle (after a predetermined time (T1) from the time of the R wave when the heart is at the minimum volume).
  • T1 a predetermined time
  • the measurement unit 36 measures a heart measurement value 80 of the heart area, the heart volume, and the length between two measurement points.
  • the image display unit 26 displays a heart measurement value 80 that is updated every end systole of the heartbeat cycle.
  • the measuring unit 36 calculates and updates the ejection fraction for each end systole of the heart cycle based on the heart volume obtained for each end diastole of the heart cycle and the heart volume obtained for each end systole of the heart cycle. To do.
  • the measurement unit measures a cardiac measurement value for each end diastole of the heartbeat cycle or for each end systole of the heartbeat cycle
  • the operator performs cardiac measurement for each end diastole of the heartbeat cycle or every end systole of the heartbeat cycle.
  • the value can be confirmed in real time (current).
  • Example 3 will be described with reference to FIG.
  • the difference from the first and second embodiments is that, when the ejection rate measured by the measurement unit 36 is less than or equal to the threshold, the image display unit 26 uses a heart for identifying a cardiac cycle in which an ejection rate less than or equal to the threshold exists. It is a point to display the radio wave type mark.
  • the ejection fraction is an evaluation value indicating the contractile function of the heart, and it is generally assumed that the ejection fraction is 40% or less in heart failure.
  • the threshold value in this embodiment is set to 40%, for example, in the control unit 42.
  • the control unit 42 can recognize a heartbeat cycle in which the ejection fraction less than the threshold exists. Then, an electrocardiographic waveform mark 62 for identifying a cardiac cycle in which an ejection fraction equal to or less than the threshold exists is displayed on the image display unit 26.
  • the electrocardiogram waveform mark 62 is indicated on the electrocardiogram waveform 50 by a different line type (thick line, broken line, etc.) from the electrocardiogram waveform 50, or a color different from the electrocardiogram waveform 50 (red, blue) on the electrocardiogram waveform 50. Etc.).
  • Ejection rate varies depending on the medical condition.
  • the operator can change the threshold set in the control unit 42 by the operation unit 40 according to the medical condition to be observed. Therefore, the operator can identify the heartbeat cycle suitable for the medical condition.
  • the operator freezes the tomographic image 70 displayed on the image display unit 26 by the control unit 42 by pressing the freeze button of the operation unit 40.
  • the operator can arbitrarily move the display time phase mark 52 by rotating the trackball of the operation unit 40.
  • the freeze button is pressed, the tomographic image 70 is not updated in real time (current).
  • a tomographic image 70 acquired when the arbitrarily moved display time phase mark 52 passes is displayed on the image display unit 26.
  • the operator moves and sets the display time phase mark 52 within the heartbeat cycle where the ejection fraction below the threshold exists as shown in FIG. 7 (b). Then, the tomographic image 70 with the possibility of heart failure can be displayed on the image display unit 26. Therefore, the operator can observe the tomographic image 70 with the possibility of heart failure in detail.
  • the image display unit 26 can loop-reproduce the moving image of the tomographic image 70 in the heartbeat cycle in which the ejection rate is equal to or less than the threshold value. Specifically, the image display unit 26 moves the display time phase mark 52 within the heartbeat period sandwiched between the R wave 56 and the R wave 58, and performs the loop reproduction of the moving image on the tomographic image 70.
  • the image display unit 26 identifies the cardiac cycle for identifying the cardiac cycle in which the ejection rate equal to or less than the threshold exists. Since the radio wave shape mark is displayed, the operator can observe the tomographic image 70 with the possibility of heart failure in detail with the moving image.
  • Example 4 will be described with reference to FIG.
  • the difference from the first to third embodiments is that the image display unit 26 displays cardiac measurement values in tomographic images having different cross sections.
  • the cardiac measurement value 82 of the apex four-chamber image (A4C) is measured in advance, and is stored together with RF signal frame data or tomographic image data of the apex four-chamber image (A4C) in a storage unit (not shown). By reading the cardiac measurement value 82 from the storage unit, the image display unit 26 can display the cardiac measurement value 82 of the apex four-chamber image (A4C).
  • the tomographic image 70 displayed on the image display unit 26 is a two-chamber apex image (A2C).
  • the measurement unit 36 includes the newest first feature waveform and the second feature waveform that is continuous with the first feature waveform.
  • Measurement of cardiac measurement values such as the area of the heart, the volume of the heart, the length between two measurement points, the ejection fraction, etc. in the heartbeat cycle set by.
  • the heart measurement value 80 is updated together with the tomographic image 70 and displayed on the image display unit 26.
  • the cardiac measurement value 80 of the apex two-chamber image (A2C) and the cardiac measurement value 82 of the apex four-chamber image (A4C) can be displayed on the image display unit 26.
  • the image display unit 26 displays the cardiac measurement values 80 and 82 in the tomographic images of different cross sections for displaying the cardiac measurement values in the tomographic images of different cross sections, thereby enabling the operator to perform a highly accurate diagnosis. Can do.
  • the RF signal frame data or tomographic image data stored in the storage unit is read, and the tomographic image of the apex four-chamber image (A4C) is converted into the tomographic image 70 of the apex two-chamber image (A2C). At the same time, it can be displayed on the image display unit 26.
  • the tomographic image 70 of the apex two-chamber image (A2C) can be displayed in accordance with the cardiac cycle.
  • the measurement unit 36 uses the tomographic image of the apex four-chamber image (A4C) read from the storage unit to determine the area of the heart, the volume of the heart, the length between two measurement points, the ejection rate, etc. It is also possible to measure the measured heart value and display the measured heart value 82 on the image display unit 26.
  • A4C apex four-chamber image

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The medical image diagnostic device of the present invention is a medical image diagnostic device provided with a tomography image construction unit for constructing a tomography image of a subject body, a measurement unit for measuring cardiac measurement values on the basis of the tomography image; and an image display unit for displaying the tomography image and the cardiac measurement values; wherein the medical image diagnostic device is provided with a characteristic waveform detection unit for detecting a characteristic waveform from the shape of the ECG waveform of the subject body; and a cardiac period setting unit which treats as a first characteristic waveform a characteristic waveform which, among characteristic waveforms detected at the characteristic waveform detection unit, has the smallest difference in time relative to a reference time, and sets a cardiac period, which is set according to a second characteristic waveform succeeding the first characteristic waveform, and the first characteristic waveform; wherein the measurement unit measures the cardiac measurement values on the basis of the tomography image, the characteristic waveform, and the cardiac period.

Description

医用画像診断装置及び心臓計測値表示方法MEDICAL IMAGE DIAGNOSTIC APPARATUS AND HEART MEASURED DISPLAY METHOD
 本発明は、断層画像に設定された計測点を用いて生体組織の計測を行う医用画像診断装置及び心臓計測値表示方法に関するものである。 The present invention relates to a medical image diagnostic apparatus and a cardiac measurement value display method for measuring living tissue using measurement points set in a tomographic image.
 従来の医用画像診断装置では、操作者は、取得した断層画像上でマウスやトラックボール等の入力部を用いて計測点を設定する。その後、医用画像診断装置は、設定された計測点に基づいて心臓計測値を計測し、心臓計測値を表示する。 In a conventional medical image diagnostic apparatus, an operator sets a measurement point on an acquired tomographic image using an input unit such as a mouse or a trackball. Thereafter, the medical image diagnostic apparatus measures a cardiac measurement value based on the set measurement point, and displays the cardiac measurement value.
 具体的には、医用画像診断装置の計測アプリケーションは、操作者が断層画像上で複数の計測点を設定すると、計測点間の距離、複数の計測点で囲まれた面積や容積を計測する。また、操作者が断層画像上で所定領域を設定すると、計測アプリケーションは、設定された所定領域内の面積や体積を計算する。 Specifically, when the operator sets a plurality of measurement points on the tomographic image, the measurement application of the medical image diagnostic apparatus measures the distance between the measurement points and the area or volume surrounded by the plurality of measurement points. When the operator sets a predetermined area on the tomographic image, the measurement application calculates the area and volume in the set predetermined area.
 医用画像診断装置の計測アプリケーションでは、断層画像上に計測点を表示して計測を実行する場合において、計測点を自動的に設定することが行われている。(例えば、特許文献1)。 In a measurement application of a medical image diagnostic apparatus, when a measurement point is displayed on a tomographic image and measurement is performed, the measurement point is automatically set. (For example, Patent Document 1).
特開2005-224465号公報JP 2005-224465 A
 特許文献1では、順次更新される心拍周期毎に心臓計測値を更新して計測することについては考慮されていない。よって、特許文献1では、心拍周期毎に心臓計測値が更新されないで表示されることとなる。 Patent Document 1 does not consider updating and measuring a heart measurement value for each heartbeat cycle that is sequentially updated. Therefore, in Patent Document 1, the heart measurement value is displayed without being updated every heartbeat cycle.
 本発明では、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置及び心臓計測値表示方法を提供することを目的とする。 It is an object of the present invention to provide a medical image diagnostic apparatus and a cardiac measurement value display method for updating and measuring cardiac measurement values for each heartbeat cycle that is sequentially updated.
 上記目的を達成するため、本発明は、被検体の断層画像を構成し、心電波形の形状から特徴波形を検出し、前記検出された特徴波形のうちの基準時と最も時間差が小さい特徴波形を第1の特徴波形とし、第1の特徴波形に連続する第2の特徴波形と第1の特徴波形とによって設定される心拍周期を設定し、前記構成された断層画像に基づいて心臓計測値を計測し、前記断層画像と前記心臓計測値を表示する。 To achieve the above object, the present invention comprises a tomographic image of a subject, detects a feature waveform from the shape of an electrocardiogram waveform, and the feature waveform having the smallest time difference from the reference time among the detected feature waveforms Is set as a first feature waveform, a heartbeat cycle set by the second feature waveform and the first feature waveform that are continuous with the first feature waveform is set, and a cardiac measurement value is based on the configured tomographic image Is measured, and the tomographic image and the heart measurement value are displayed.
 具体的には、本発明の医用画像診断装置は、被検体の断層画像を構成する断層画像構成部と、前記断層画像に基づいて心臓計測値を計測する計測部と、前記断層画像と前記心臓計測値とを表示する画像表示部と、を備えた医用画像診断装置であって、前記被検体の心電波形の形状から特徴波形を検出する特徴波形検出部と、前記特徴波形検出部で検出された特徴波形のうちの基準時と最も時間差が小さい特徴波形を第1の特徴波形とし、第1の特徴波形に連続する第2の特徴波形と第1の特徴波形とによって設定される心拍周期を設定する心拍周期設定部と、を備え、前記計測部は、前記断層画像と前記特徴波形と前記心拍周期に基づいて心臓計測値を計測することを特徴とする。 Specifically, the medical image diagnostic apparatus of the present invention includes a tomographic image forming unit that forms a tomographic image of a subject, a measuring unit that measures a heart measurement value based on the tomographic image, the tomographic image, and the heart A medical image diagnostic apparatus comprising: an image display unit that displays measurement values; a feature waveform detection unit that detects a feature waveform from the shape of an electrocardiogram waveform of the subject; and a detection by the feature waveform detection unit Among the measured feature waveforms, the feature waveform having the smallest time difference from the reference time is taken as the first feature waveform, and the heartbeat cycle set by the second feature waveform and the first feature waveform that are continuous with the first feature waveform A heart rate cycle setting unit that sets the heart rate measurement value based on the tomographic image, the characteristic waveform, and the heart rate cycle.
 また、本発明の心臓計測表示方法は、被検体の断層画像を構成するステップと、前記被検体の心電波形の形状から特徴波形を検出するステップと、前記検出された特徴波形のうちの基準時と最も時間差が小さい特徴波形を第1の特徴波形とし、第1の特徴波形に連続する第2の特徴波形と第1の特徴波形とによって設定される心拍周期を設定するステップと、前記断層画像と前記特徴波形と前記心拍周期に基づいて心臓計測値を計測するステップと、前記断層画像と前記心臓計測値とを表示するステップと、を含むことを特徴とする。 The cardiac measurement display method of the present invention includes a step of constructing a tomographic image of a subject, a step of detecting a feature waveform from the shape of the electrocardiogram waveform of the subject, and a reference among the detected feature waveforms Setting the heartbeat cycle set by the second feature waveform and the first feature waveform that are continuous with the first feature waveform as the feature waveform having the smallest time difference from the time, and the tomography The method includes a step of measuring a heart measurement value based on the image, the characteristic waveform, and the heartbeat cycle, and a step of displaying the tomographic image and the heart measurement value.
 本発明によれば、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置及び心臓計測値表示方法を提供することができるという効果を奏する。 According to the present invention, there is an effect that it is possible to provide a medical image diagnostic apparatus and a cardiac measurement value display method for updating and measuring a cardiac measurement value for each heartbeat cycle that is sequentially updated.
本発明の医用画像診断装置(超音波診断装置)の全体構成を示す図。1 is a diagram showing an overall configuration of a medical image diagnostic apparatus (ultrasound diagnostic apparatus) according to the present invention. 本発明の実施例1を示す図。1 is a diagram showing Example 1 of the present invention. FIG. 本発明の実施例1を示す図。1 is a diagram showing Example 1 of the present invention. FIG. 本発明の実施例1の動作を示すフローチャート。2 is a flowchart showing the operation of the first embodiment of the present invention. 本発明の実施例2を示す図。FIG. 4 is a diagram showing Example 2 of the present invention. 本発明の実施例2を示す図。FIG. 4 is a diagram showing Example 2 of the present invention. 本発明の実施例3を示す図。FIG. 6 is a diagram showing Example 3 of the present invention. 本発明の実施例4を示す図。FIG. 6 is a diagram showing Example 4 of the present invention.
 以下、図面を用いて本発明を適用した医用画像診断装置を説明する。 Hereinafter, a medical image diagnostic apparatus to which the present invention is applied will be described with reference to the drawings.
 図1は本発明を適用した医用画像診断装置の構成を示すブロック図である。ここでは、医用画像診断装置の一例として超音波診断装置を用いて説明する。 FIG. 1 is a block diagram showing a configuration of a medical image diagnostic apparatus to which the present invention is applied. Here, an ultrasonic diagnostic apparatus will be described as an example of a medical image diagnostic apparatus.
 図1に示すように、超音波診断装置には、被検体10に当てて用いる超音波探触子12と、超音波探触子12を介して被検体10に時間間隔をおいて超音波を繰り返し送信する送信部14と、被検体10から反射された超音波を反射エコー信号として受信する受信部16と、送信部14と受信部16を制御する超音波送受信制御部18と、受信部16で受信された反射エコーを整相加算する整相加算部20と、整相加算部20からのRF信号フレームデータに基づいて被検体10の断層画像、例えば白黒断層画像を構成する断層画像構成部22と、断層画像構成部22から出力される断層画像データを画像表示部26の表示に合うように変換する白黒スキャンコンバータ24と、断層画像等の画像を表示する画像表示部26とが備えられている。 As shown in FIG. 1, an ultrasonic diagnostic apparatus uses an ultrasonic probe 12 that is applied to a subject 10, and ultrasonic waves are applied to the subject 10 via the ultrasonic probe 12 at time intervals. Transmitting unit 14 that repeatedly transmits, receiving unit 16 that receives the ultrasonic wave reflected from the subject 10 as a reflected echo signal, an ultrasonic transmission / reception control unit 18 that controls the transmitting unit 14 and the receiving unit 16, and a receiving unit 16 And a tomographic image forming unit for forming a tomographic image of the subject 10, for example, a black and white tomographic image, based on the RF signal frame data from the phasing and adding unit 20 22, a black and white scan converter 24 that converts the tomographic image data output from the tomographic image construction unit 22 so as to match the display of the image display unit 26, and an image display unit 26 that displays an image such as a tomographic image. ing.
 さらに、超音波診断装置には、被検体10の所望部位、例えば被検体10の手と足に取り付けられた心電計により心電波形を検出する心電波形検出部30と、心電波形検出部30で検出された心電波形を解析し、心電波形の特徴波形を検出する特徴波形検出部32と、特徴波形検出部32で検出された特徴波形のうちの実時間(現在)の心電波形の時刻と時間差が最も短い特徴波形(最も新しい第1の特徴波形)と第1の特徴波形に連続する特徴波形(第2の特徴波形)とを用いて心拍周期を設定する心拍周期設定部34とを備えている。 Furthermore, the ultrasonic diagnostic apparatus includes an electrocardiogram waveform detection unit 30 that detects an electrocardiogram waveform with an electrocardiograph attached to a desired part of the subject 10, for example, a hand and a leg of the subject 10, and an electrocardiogram waveform detection Analyzing the electrocardiogram waveform detected by the unit 30 and detecting a feature waveform of the electrocardiogram waveform, and a real-time (current) heart among the feature waveforms detected by the feature waveform detection unit 32 Heart rate cycle setting that sets the heart rate cycle using the feature waveform with the shortest time difference and time difference (newest first feature waveform) and the feature waveform continuous to the first feature waveform (second feature waveform) Part 34.
 ここでは、第1の特徴波形は、実時間(現在)との時間差が最も短い特徴波形を選択するように説明しているが、上記で説明した第2の特徴波形の時刻での特徴波形を第1の特徴波形と設定し、その1心拍前の時相を第2特徴波形とすることとしてもよい。このように、現在より遡った心電波形であっても第1の特徴波形と第2の特徴波形は両者が連続していれば任意に選択することが操作部40の操作者による操作によって可能である。この第1の特徴波形と第2の特徴波形の任意選択は基準時に測定される心電波形において行うと、本願明細書では定義することとする。つまり、前記心拍周期設定部における基準時は、実時間(現在)であってもよいし、任意選択したい直後の心拍周期を設定すればよい。 Here, the first feature waveform has been described so as to select the feature waveform having the shortest time difference from the actual time (current), but the feature waveform at the time of the second feature waveform described above is selected. The first feature waveform may be set, and the time phase one heartbeat before may be set as the second feature waveform. In this way, even if the electrocardiographic waveform goes back from the present, the first feature waveform and the second feature waveform can be arbitrarily selected by the operation of the operation unit 40 as long as both are continuous. It is. The arbitrary selection of the first feature waveform and the second feature waveform is defined in the present specification as being performed on the electrocardiogram waveform measured at the reference time. That is, the reference time in the heartbeat cycle setting unit may be real time (current), or a heartbeat cycle immediately after desired selection may be set.
 操作者は、画像表示部26に表示されている断層画像に複数の計測点を設定する。心拍周期設定部34で設定された心拍周期において、設定された複数の計測点に基づいて、心臓の面積、心臓の体積、計測点間の長さ等の心臓計測値を計測し、心臓計測値を画像表示部26に表示させる計測部36を備えている。また、操作者が計測点を設定する等の指示を行う操作部40と、操作部40の指示に従って各構成要素の制御を行う制御部42が備えられている。操作部40には、計測点の位置決めなどを行うためのトラックボールや、操作を実行するための実行キー、断層画像をフリーズさせるためのフリーズキーなどが配置されている。 The operator sets a plurality of measurement points on the tomographic image displayed on the image display unit 26. In the heartbeat cycle set by the heartbeat cycle setting unit 34, heart measurement values such as the heart area, the heart volume, and the length between the measurement points are measured based on the set measurement points. Is provided on the image display unit 26. In addition, an operation unit 40 that gives an instruction such as setting a measurement point by an operator, and a control unit 42 that controls each component according to the instruction from the operation unit 40 are provided. The operation unit 40 includes a trackball for positioning the measurement points, an execution key for executing the operation, a freeze key for freezing the tomographic image, and the like.
 ここで、超音波診断装置について詳細に説明する。超音波探触子12は、複数の振動子を配設して形成されており、被検体10に振動子を介して超音波を送受信する機能を有している。送信部14は、超音波探触子12を駆動して超音波を発生させるための送波パルスを生成するとともに、送信される超音波の収束点をある深さに設定する機能を有している。また、受信部16は、超音波探触子12で受信した超音波に基づく反射エコー信号について所定のゲインで増幅してRF信号すなわち受波信号を生成する機能を有している。整相加算部20は、受信部16で増幅されたRF信号を入力して位相制御し、一点又は複数の収束点に対し超音波ビームを形成してRF信号フレームデータを生成する機能を有している。 Here, the ultrasonic diagnostic apparatus will be described in detail. The ultrasonic probe 12 is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 10 via the transducers. The transmission unit 14 generates a transmission pulse for generating an ultrasonic wave by driving the ultrasonic probe 12, and has a function of setting a convergence point of the transmitted ultrasonic wave to a certain depth. Yes. The receiving unit 16 has a function of amplifying the reflected echo signal based on the ultrasonic wave received by the ultrasonic probe 12 with a predetermined gain to generate an RF signal, that is, a received signal. The phasing / adding unit 20 has a function of inputting the RF signal amplified by the receiving unit 16 and performing phase control, and forming an ultrasonic beam at one or more convergence points to generate RF signal frame data. ing.
 断層画像構成部22は、整相加算部20からのRF信号フレームデータを入力してゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行い、断層画像データを得るものである。また、白黒スキャンコンバータ24は、断層画像構成部22から出力される断層画像データをデジタル信号に変換するA/D変換器と、変換された複数の断層画像データを時系列に記憶するフレームメモリと、制御コントローラを含んで構成されている。この白黒スキャンコンバータ24は、フレームメモリに格納された被検体10内の断層画像データを画像として取得し、取得された断像画像データを画像表示部26のテレビ同期で読み出すものである。 The tomographic image construction unit 22 receives the RF signal frame data from the phasing addition unit 20 and performs signal processing such as gain correction, log compression, detection, contour enhancement, and filter processing to obtain tomographic image data. . The monochrome scan converter 24 also includes an A / D converter that converts tomographic image data output from the tomographic image construction unit 22 into a digital signal, and a frame memory that stores a plurality of converted tomographic image data in time series. , Including a controller. The black and white scan converter 24 acquires tomographic image data in the subject 10 stored in the frame memory as an image, and reads the acquired tomographic image data in synchronization with the television of the image display unit 26.
 特徴波形検出部32は、心電波形検出部30で検出された心電波形を解析し、心電波形の形状から心拍周期毎に現れる特徴波形を検出する。心電波形検出部30で検出された心電波形は、縦軸が電圧(電位差)、横軸が時間で示される。特徴波形検出部32は、心電波形検出部30で検出された心電波形の中でR波が最も大きな波形である、すなわちR波は電圧が最も大きいという特性を利用して特徴波形であるR波を検出する。 The feature waveform detection unit 32 analyzes the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30, and detects a feature waveform that appears for each heartbeat period from the shape of the electrocardiogram waveform. In the electrocardiogram waveform detected by the electrocardiogram waveform detector 30, the vertical axis indicates voltage (potential difference) and the horizontal axis indicates time. The characteristic waveform detection unit 32 is a characteristic waveform using the characteristic that the R wave is the largest waveform among the electrocardiographic waveforms detected by the electrocardiogram waveform detection unit 30, that is, the R wave has the largest voltage. R wave is detected.
 具体的には、特徴波形検出部32は、心電波形検出部30で検出された心電波形の電圧に対し予め定められた閾値と比較し、電圧が閾値を超えた場合、R波であると検出する。この閾値は心電波形のピーク(極大電圧)を検出できるように設定されている。また、特徴波形検出部32は、心電波形検出部30で検出された心電波形を微分して得られた微分値によってR波を検出してもよい。なお、本実施例ではR波の特徴波形を検出した例を説明したが、特徴波形検出部32で検出される特徴波形は、心電波形のP波、Q波、S波、T波等の特徴波形であってもよい。操作部40によって、特徴波形検出部32で検出する特徴波形の種類をR波、P波、Q波、S波、T波等から選択することができる。 Specifically, the feature waveform detection unit 32 compares the voltage of the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30 with a predetermined threshold value, and if the voltage exceeds the threshold value, it is an R wave. Is detected. This threshold is set so that the peak (maximum voltage) of the electrocardiographic waveform can be detected. Further, the feature waveform detection unit 32 may detect the R wave based on a differential value obtained by differentiating the electrocardiogram waveform detected by the electrocardiogram waveform detection unit 30. In the present embodiment, an example of detecting the characteristic waveform of the R wave has been described. However, the characteristic waveform detected by the characteristic waveform detection unit 32 is an electrocardiographic waveform such as a P wave, a Q wave, an S wave, or a T wave. It may be a characteristic waveform. The type of feature waveform detected by the feature waveform detector 32 can be selected from the R wave, P wave, Q wave, S wave, T wave, and the like by the operation unit 40.
 特徴波形の種類の選択機能によって、左室の拡張期を検出するにはR波を使えばよく、左房の拡張期を検出するにはP波を使えばよいというような使い分けができる。 ∙ By selecting the type of feature waveform, it is possible to use the R wave to detect the left ventricular diastole and the P wave to detect the left atrial diastole.
 また、臨床においては、T波の振幅が低い」とか「Q波R波S波期間が異常に長い」といったことに注目して疾患を見つける通常の診断に用いることができる。 Also, in clinical practice, it can be used for normal diagnosis to find a disease by paying attention to the fact that the amplitude of the T wave is low or the period of the Q wave, R wave and S wave is abnormally long.
 また、R波が明確に検出できない場合は、P波の時刻から例えば500ms後を擬似的にR波時刻とするように用いることができる。 Also, if the R wave cannot be detected clearly, it can be used so that, for example, 500 ms after the P wave time is set as the R wave time in a pseudo manner.
 心拍周期設定部34は、特徴波形検出部32で検出された心拍周期毎に現れる特徴波形に基づいて、最も新しい第1の特徴波形と、第1の特徴波形に連続する第2の特徴波形とに基づいて心拍周期を設定する。第2の特徴波形は、第1の特徴波形の次に新しい特徴波形である。よって、心拍周期設定部34によって設定された心拍周期は、実時間(現在)の時刻に対し最も新しい心拍周期となる。 Based on the feature waveform that appears for each heartbeat cycle detected by the feature waveform detection unit 32, the heartbeat cycle setting unit 34 includes a newest first feature waveform, a second feature waveform that is continuous with the first feature waveform, Set the heart cycle based on. The second feature waveform is the next new feature waveform after the first feature waveform. Therefore, the heartbeat cycle set by the heartbeat cycle setting unit 34 is the newest heartbeat cycle with respect to the real time (current) time.
 計測部36は、白黒スキャンコンバータ24から出力され、実時間(現在)に更新される断層画像について、最も新しい第1の特徴波形と、第1の特徴波形に連続する第2の特徴波形とによって設定される心拍周期における、心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率(EF値)等の心臓計測値を計測する。そして、計測部36は、実時間(現在)に更新される断層画像とともに心臓計測値を画像表示部26に表示させる。 For the tomographic image output from the black-and-white scan converter 24 and updated in real time (current), the measurement unit 36 uses the newest first feature waveform and the second feature waveform continuous to the first feature waveform. Cardiac measurement values such as heart area, heart volume, length between two measurement points, ejection fraction (EF value), etc. in a set heartbeat cycle are measured. Then, the measurement unit 36 causes the image display unit 26 to display the cardiac measurement value together with the tomographic image updated in real time (current).
 図2を用いて本実施例を具体的に説明する。図2は画像表示部26に表示される画像の一例である。画像表示部26には、心電波形検出部30で検出された心電波形50と、白黒スキャンコンバータ24から出力される断層画像70と、計測部36で計測された心臓計測値80が表示される。 This example will be described in detail with reference to FIG. FIG. 2 is an example of an image displayed on the image display unit 26. The image display unit 26 displays an electrocardiogram waveform 50 detected by the electrocardiogram waveform detection unit 30, a tomographic image 70 output from the black and white scan converter 24, and a heart measurement value 80 measured by the measurement unit 36. The
 心電波形50は心電波形検出部30で検出されたものであり、心電波形50上には、実時間(現在)の時刻(時相)を示す表示時相マーク52が表示されている。表示時相マーク52は心電波形50の更新とともに時間方向(右方向)に移動して表示される。表示時相マーク52が右端に達したら、表示時相マーク52が左端に移動され、心電波形50の更新とともに繰り返し表示される。表示時相マーク52の左側に示される心電波形50は更新された心電波形である。 The electrocardiogram waveform 50 is detected by the electrocardiogram waveform detection unit 30, and on the electrocardiogram waveform 50, a display time phase mark 52 indicating the real time (current) time (time phase) is displayed. . The display time phase mark 52 is moved and displayed in the time direction (right direction) as the electrocardiogram waveform 50 is updated. When the display time phase mark 52 reaches the right end, the display time phase mark 52 is moved to the left end and repeatedly displayed as the electrocardiographic waveform 50 is updated. An electrocardiogram waveform 50 shown on the left side of the display time phase mark 52 is an updated electrocardiogram waveform.
 画像表示部26には、特徴波形検出部32によって検出された、実時間(現在)の時刻に対し最も新しいR波54と、R波54に連続するR波56と、R波56に連続するR波58が表示されている。特徴波形検出部32によって検出されたR波は特徴波形の一種である。 In the image display unit 26, the latest R wave 54 detected by the characteristic waveform detection unit 32, the R wave 56 continuous with the R wave 54, and the R wave 56 continuous with respect to the real time (current) time. R wave 58 is displayed. The R wave detected by the feature waveform detection unit 32 is a kind of feature waveform.
 R波54は実時間(現在)の時刻に対し最も新しいR波であり、最も新しいR波である。R波56は実時間(現在)の時刻に対し2番目に新しいR波である。同様にして、R波58は実時間(現在)の時刻に対し3番目に新しいR波である。 The R wave 54 is the newest R wave and the newest R wave with respect to the real time (current) time. The R wave 56 is the second new R wave with respect to the real time (current) time. Similarly, the R wave 58 is the third newest R wave with respect to the real time (current) time.
 心拍周期設定部34は、特徴波形検出部32で検出された特徴波形であるR波に基づいて、最も新しいR波54とR波54の次に新しいR波56とによって設定される心拍周期A(R-R周期)を設定する。R波54とR波56で挟まれる心拍周期Aは、最も新しい特徴波形と2番目に新しい特徴波形とによって挟まれる1周期の心拍周期となる。よって、R波54とR波56で挟まれる心拍周期Aは、実時間(現在)の時刻との差が最も短い心拍周期となる。実時間(現在)の時刻との差が最も短い心拍周期は最も新しい心拍周期と称してもよい。 Based on the R wave that is the feature waveform detected by the feature waveform detection unit 32, the heartbeat cycle setting unit 34 is configured by a heartbeat cycle A that is set by the newest R wave 54 and the R wave 56 that is next to the R wave 54. Set (R-R cycle). The heartbeat period A sandwiched between the R wave 54 and the R wave 56 is one heartbeat period sandwiched between the newest feature waveform and the second newest feature waveform. Therefore, the heartbeat cycle A sandwiched between the R wave 54 and the R wave 56 is the heartbeat cycle having the shortest difference from the real time (current) time. The heartbeat cycle with the shortest difference from the real time (current) time may be referred to as the newest heartbeat cycle.
 最も新しい心拍周期Aが心拍周期設定部34によって設定されたことが認識できるように、心拍周期Aに該当する心電波形50上に心電波形マーク60が画像表示部26に表示される。心電波形マーク60は、例えば、R波54とR波56で挟まれる心拍周期Aに該当する心電波形50上に心電波形50と異なる線種(太い線、破線等)で示されたり、心拍周期Aに該当する心電波形50上に心電波形50と異なる色(赤色、青色等)で示されたりする。 An electrocardiogram mark 60 is displayed on the image display unit 26 on the electrocardiogram waveform 50 corresponding to the heartbeat cycle A so that it can be recognized that the latest heartbeat cycle A has been set by the heartbeat cycle setting unit 34. The electrocardiogram waveform mark 60 is indicated by, for example, a line type (thick line, broken line, etc.) different from the electrocardiogram waveform 50 on the electrocardiogram waveform 50 corresponding to the heartbeat period A sandwiched between the R wave 54 and the R wave 56. In other words, the electrocardiogram waveform 50 corresponding to the heartbeat cycle A is indicated by a color (red, blue, etc.) different from the electrocardiogram waveform 50.
 断層画像70は被検体10の心臓の断面画像であり、例えば、心尖部二腔像(A2C)である。断層画像70には複数の計測点が設置されている。本実施例では、断層画像として表示される心臓の内壁に沿って9点の計測点が設定されている。領域76は、複数の計測点によって囲まれる領域である。 The tomographic image 70 is a cross-sectional image of the heart of the subject 10, and is, for example, a two-chamber image (A2C) of the apex. The tomographic image 70 has a plurality of measurement points. In this embodiment, nine measurement points are set along the inner wall of the heart displayed as a tomographic image. The region 76 is a region surrounded by a plurality of measurement points.
 計測部36は、心拍周期設定部34によって設定される心拍周期Aの拡張期及び収縮期における、心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率等の心臓計測値を計測する。 The measuring unit 36 is a cardiac measurement value such as heart area, heart volume, length between two measurement points, ejection fraction, etc., in the diastole and the systole of the heart cycle A set by the heart cycle setting unit 34 Measure.
 拡張期とは、心臓が収縮した後に心臓が拡張し、全身から心臓の中に血液を溜めこむ区間である。収縮期とは、心臓が収縮して血液を全身に送り出している区間である。拡張期は、R波前後の区間であり、例えば、R波前500msからR波後50msまでの区間である。収縮期は、R波から所定時間経過後の区間であり、例えば、R波後50msからR波後300msまでの区間である。R波は拡張期の区間に含まれており、R波は収縮期が始まる直前の拡張末期を示すものである。 The diastolic period is a section in which the heart expands after the heart contracts and blood is collected from the whole body into the heart. The systole is a section where the heart contracts and pumps blood to the whole body. The expansion period is a section before and after the R wave, for example, a section from 500 ms before the R wave to 50 ms after the R wave. The systole is a section after a predetermined time has elapsed from the R wave, for example, a section from 50 ms after the R wave to 300 ms after the R wave. The R wave is included in the diastole section, and the R wave indicates the end diastole immediately before the systole begins.
 まず、計測部36は、心拍周期設定部34によって設定される心拍周期Aの拡張期における心臓の面積、心臓の体積、2つの計測点間の長さを計測する。計測部36は、例えば、心拍周期Aの拡張末期であるR波の時刻における心臓の面積、心臓の体積、2つの計測点間の長さを計測する。拡張末期とは、心臓の拡張が終わる時期を示すものである。心拍周期Aの拡張末期であるR波は、実時間(現在)の時刻に対し最も新しいR波54であっても、R波54に連続するR波56であってもよい。なお、本実施例では、駆出率を計測することが前提であるため、拡張期の計測は、心拍周期AのR波56の時刻に行うものとする。計測部36は、R波56の時刻における心臓の面積、心臓の体積、2つの計測点間の長さを計測する。計測部36で計測された拡張期における心臓の面積、心臓の体積、2つの計測点間の長さは画像表示部26の心臓計測値80として表示される。 First, the measurement unit 36 measures the area of the heart, the volume of the heart, and the length between two measurement points in the diastole of the heartbeat cycle A set by the heartbeat cycle setting unit 34. For example, the measurement unit 36 measures the area of the heart, the volume of the heart, and the length between two measurement points at the time of the R wave that is the end diastole of the heartbeat cycle A. The end diastole indicates when the dilation of the heart ends. The R wave that is the end diastole of the cardiac cycle A may be the R wave 54 that is newest to the real time (current) time or the R wave 56 that is continuous with the R wave 54. In the present embodiment, since it is assumed that the ejection fraction is measured, the measurement in the diastole is performed at the time of the R wave 56 in the heartbeat cycle A. The measurement unit 36 measures the area of the heart, the volume of the heart, and the length between two measurement points at the time of the R wave 56. The area of the heart in the diastole, the volume of the heart, and the length between the two measurement points measured by the measurement unit 36 are displayed as the heart measurement value 80 of the image display unit 26.
 そして、計測部36は、心拍周期Aの拡張期の計測と同様にして、心拍周期設定部34によって設定される心拍周期Aの収縮期における心臓の面積、心臓の体積、2つの計測点間の長さを計測する。計測部36は、例えば、R波の時刻から所定時間後の収縮末期における心臓の面積、心臓の体積、2つの計測点間の長さを計測する。 Then, in the same way as in the measurement of the diastolic period of the heartbeat cycle A, the measurement unit 36 is configured so that the heart area, the heart volume, and the two measurement points in the systole of the heartbeat cycle A set by the heartbeat cycle setting unit 34. Measure the length. The measurement unit 36 measures, for example, the heart area, the heart volume, and the length between two measurement points at the end systole after a predetermined time from the R wave time.
 収縮末期とは、心臓の収縮が終わる時期を示すものであり、例えば、心臓の体積が最も小さくなる時である。計測部36は、心拍周期A(直前の1心拍周期)における全ての断層画像フレームについて体積計算を行ない、心臓の最小体積を与える断層画像フレームを特定することで収縮末期の時刻を決定する。そして、計測部36は、収縮末期における断層画像フレームを用いて心臓の面積、心臓の体積、2つの計測点間の長さを計測する。 The end systole indicates a time when the heart contraction ends, for example, when the heart volume is the smallest. The measurement unit 36 performs volume calculation for all tomographic image frames in the cardiac cycle A (the immediately preceding cardiac cycle), and determines the end systolic time by specifying the tomographic image frame that gives the minimum volume of the heart. Then, the measurement unit 36 measures the area of the heart, the volume of the heart, and the length between the two measurement points using the tomographic image frame at the end systole.
 計測部36は、任意に設定された2つの計測点間の長さを計測することができる。また、計測部36は、任意に設定された2つの計測点間の長さの計測結果を複数組み合わせることによって、長軸長や短軸長などの心臓計測値を計測することができる。また、計測部36は、異なる断面の長軸長の比であるL Index値を計測することもできる。 Measure unit 36 can measure the length between two arbitrarily set measurement points. Further, the measurement unit 36 can measure cardiac measurement values such as the long axis length and the short axis length by combining a plurality of measurement results of the length between two arbitrarily set measurement points. Further, the measurement unit 36 can also measure the L index value that is the ratio of the major axis lengths of different cross sections.
 また、計測部36は、予め、心臓の体積の変化の計測を行い、計測された心臓の体積の変化に基づいて、R波の時刻から心臓の体積が最も小さくなる時刻までの時間(T1)を計測しておく。そして、計測部36は、R波56の時刻から所定時間(T1)後の収縮末期における心臓の面積、心臓の体積、2つの計測点間の長さを計測する。 In addition, the measurement unit 36 measures the change in the volume of the heart in advance, and based on the measured change in the volume of the heart, the time (T1) from the time of the R wave to the time when the volume of the heart becomes the smallest Measure. Then, the measurement unit 36 measures the heart area, the heart volume, and the length between the two measurement points at the end systole after a predetermined time (T1) from the time of the R wave 56.
 ここで、心臓の面積の計測手法について説明する。複数の計測点によって囲まれる領域76の面積は、領域76に含まれる画素数に基づいて計測される。まず、計測部36は、領域76内の画素数をカウントする。計測部36は、予め1mm2辺りの画素数を把握しておき、領域76でカウントされた画素数に対して面積換算を行なうことにより、領域76の面積を計測する。例えば、計測部36が予め1mm2辺りの画素数を10画素として把握しておくと、領域76でカウントされた画素数が5000画素であれば、500 mm2として面積換算を行なう。 Here, a method for measuring the area of the heart will be described. The area of the region 76 surrounded by the plurality of measurement points is measured based on the number of pixels included in the region 76. First, the measurement unit 36 counts the number of pixels in the region 76. The measuring unit 36 grasps the number of pixels per 1 mm 2 in advance and measures the area of the region 76 by performing area conversion on the number of pixels counted in the region 76. For example, if the measuring unit 36 grasps the number of pixels per 1 mm 2 as 10 pixels in advance, if the number of pixels counted in the region 76 is 5000 pixels, the area is converted to 500 mm 2 .
 次に、心臓の体積の計測手法について説明する。計測部36は、シンプソン法を用いて心臓の体積を計測する。シンプソン法とは、複数の計測点によって囲まれる領域76を長手方向に矩形領域に分割し、矩形領域の面積を求め、矩形領域毎に体積を計算し、得られた体積を分割した矩形領域分加算することにより体積を求める手法である。 Next, a method for measuring the volume of the heart will be described. The measuring unit 36 measures the volume of the heart using the Simpson method. The Simpson method divides an area 76 surrounded by a plurality of measurement points into rectangular areas in the longitudinal direction, calculates the area of the rectangular area, calculates the volume for each rectangular area, and divides the obtained volume into This is a technique for obtaining a volume by adding.
 次に、2つの計測点間の長さの計測手法について説明する。まず、操作者は、操作部40によって9つの計測点の内、2つの計測点を設定する。ここでは、計測点72と計測点74とが設定されているものとする。計測部36は、設定された計測点72と計測点74の距離を2つの計測点間の長さとして計測する。 Next, a method for measuring the length between two measurement points will be described. First, the operator sets two measurement points among the nine measurement points using the operation unit 40. Here, it is assumed that the measurement point 72 and the measurement point 74 are set. The measurement unit 36 measures the distance between the set measurement point 72 and the measurement point 74 as the length between the two measurement points.
 そして、計測部36は、計測された拡張末期の心臓の体積と収縮末期の心臓の体積から駆出率を演算する。駆出率は拡張期の心臓の体積と収縮期の心臓の体積を用いた下記式により求められる。 Then, the measurement unit 36 calculates the ejection fraction from the measured end-diastolic heart volume and end-systolic heart volume. The ejection fraction can be obtained by the following equation using the volume of the heart in the diastole and the volume of the heart in the systole.
 {数1}
  駆出率(%)=(Va(拡張末期の心臓の体積)-Vb(収縮末期の心臓の体積)/Va×100 
 駆出率は、拡張末期であるR波56の時刻における心臓の体積と、収縮末期である心臓の最小体積とによって計測部36にて演算される。駆出率は心臓の収縮機能を示す評価値である。また、計測部36においては、駆出率以外にも、拡張末期における計測値と収縮末期における計測値を組み合わせて、心拍周期Aの循環器機能を示す指標値を算出してもよい。例えば、計測部36は、下記式により、拡張末期における心臓の体積と収縮末期における心臓の体積の差から、心拍周期Aにおける血液の心拍出量又は一回心拍出量を計測することができる。
{数2}
 心拍出量=心拍数×(Va-Vb)
{数3}
 一回心拍出量=Va-Vb
 次に、心臓計測値80を更新することについて、図3を用いて説明する。図3(a)は、図2に示される心拍状態を示す形態である。図3(b)は図3(a)に示される心拍状態から所定時間が経過した心拍状態を示す形態である。図3(c)は図3(b)に示される心拍状態から所定時間が経過した心拍状態を示す形態である。
{Number 1}
Ejection rate (%) = (Va (end-diastolic heart volume)-Vb (end-systolic heart volume) / Va x 100
The ejection fraction is calculated by the measuring unit 36 based on the volume of the heart at the time of the R wave 56 that is the end diastole and the minimum volume of the heart that is the end systole. The ejection fraction is an evaluation value indicating the contractile function of the heart. In addition to the ejection fraction, the measurement unit 36 may calculate an index value indicating the circulatory function of the cardiac cycle A by combining the measurement value at the end diastole and the measurement value at the end systole. For example, the measuring unit 36 can measure the cardiac output or single cardiac output in the cardiac cycle A from the difference between the volume of the heart at the end diastole and the volume of the heart at the end systole according to the following formula. it can.
{Equation 2}
Cardiac output = Heart rate x (Va-Vb)
{Equation 3}
Stroke output = Va-Vb
Next, updating the heart measurement value 80 will be described with reference to FIG. FIG. 3 (a) is a form showing the heartbeat state shown in FIG. FIG. 3 (b) is a form showing a heartbeat state in which a predetermined time has elapsed from the heartbeat state shown in FIG. 3 (a). FIG. 3 (c) is a form showing a heartbeat state in which a predetermined time has elapsed from the heartbeat state shown in FIG. 3 (b).
 図3(a)に示される実時間(現在)の時刻(時相)を示す表示時相マーク52が心電波形50の更新とともに時間方向(右方向)に移動して表示される。図3(b)に示されるように、表示時相マーク52が新たなR波であるR波62に到達した時、特徴波形検出部32は特徴波形であるR波62を検出する。R波62は実時間(現在)の時刻に対し最も新しいR波であり、最も新しいR波となる。R波54は実時間(現在)の時刻に2番目に対し新しいR波となる。 The display time phase mark 52 indicating the real time (current) time (time phase) shown in FIG. 3 (a) is moved and displayed in the time direction (right direction) as the electrocardiogram waveform 50 is updated. As shown in FIG. 3B, when the display time phase mark 52 reaches an R wave 62 that is a new R wave, the characteristic waveform detection unit 32 detects the R wave 62 that is a characteristic waveform. The R wave 62 is the newest R wave with respect to the real time (current) time, and is the newest R wave. The R wave 54 becomes a new R wave with respect to the second at the time of the real time (current).
 心拍周期設定部34は、最も新しいR波62とR波62に連続するR波54とによって挟まれる心拍周期B(R-R周期)を新たに設定する。よって、図3(b)に示される心拍状態では、R波62とR波54で挟まれる心拍周期Bは、最も新しい心拍周期となる。 The heartbeat cycle setting unit 34 newly sets a heartbeat cycle B (R−R cycle) sandwiched between the newest R wave 62 and the R wave 54 continuous with the R wave 62. Therefore, in the heartbeat state shown in FIG. 3 (b), the heartbeat cycle B sandwiched between the R wave 62 and the R wave 54 is the newest heartbeat cycle.
 そして、計測部36は、実時間(現在)に更新される断層画像70について、心拍周期設定部34によって設定される心拍周期Bにおける、心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率等の心臓計測値を計測する。心拍周期Bの拡張期及び収縮期における計測は、心拍周期Aの拡張期及び収縮期における計測と同様であるので、説明は省略する。計測部36で計測された心拍周期Bの拡張期及び収縮期における心臓の面積、心臓の体積、2つの計測点間の長さは画像表示部26の心臓計測値80として、過去に計測された心臓計測値に上書きされて表示される。 Then, for the tomographic image 70 that is updated in real time (current), the measurement unit 36 calculates the area of the heart, the volume of the heart, and the length between the two measurement points in the heartbeat cycle B set by the heartbeat cycle setting unit 34. Then, measure cardiac values such as ejection fraction. The measurement in the diastole and the systole of the heartbeat cycle B is the same as the measurement in the diastole and the systole of the heartbeat cycle A, and the description is omitted. The heart area, heart volume, and length between two measurement points in the diastole and systole of the heartbeat cycle B measured by the measurement unit 36 were measured in the past as the heart measurement value 80 of the image display unit 26. Displayed by overwriting the cardiac measurement.
 よって、実時間(現在)の時刻を示す表示時相マーク52が新たな特徴波形を通過する毎に、すなわち特徴波形検出部32が新たな特徴波形を検出する毎に、心拍周期設定部34は心拍周期を設定する。具体的には、心拍周期設定部34は、新たに検出された最も新しい第1の特徴波形と、第1の特徴波形に連続する第2の特徴波形とによって設定される心拍周期を設定する。よって、特徴波形検出部32が新たな特徴波形を検出する毎に、心拍周期設定部34は心拍周期を更新することにより、心拍周期を常に最新に保つことができる。 Therefore, every time the display time phase mark 52 indicating the real time (current) time passes through a new feature waveform, that is, every time the feature waveform detection unit 32 detects a new feature waveform, the heartbeat cycle setting unit 34 Set the heart rate cycle. Specifically, the heartbeat cycle setting unit 34 sets the heartbeat cycle set by the newly detected first feature waveform and the second feature waveform that is continuous with the first feature waveform. Therefore, each time the feature waveform detection unit 32 detects a new feature waveform, the heartbeat cycle setting unit 34 can keep the heartbeat cycle up to date by updating the heartbeat cycle.
 そして、計測部36は、新たな特徴波形を検出する毎に更新される心拍周期の拡張期及び収縮期における心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率の心臓計測値を計測する。画像表示部26は更新された心拍周期の拡張期及び収縮期における心臓計測値80を表示する。 Then, the measurement unit 36 updates the heart area in the diastole and systole of the heartbeat period, the volume of the heart, the length between two measurement points, and the ejection rate heart that is updated each time a new feature waveform is detected. Measure the measured value. The image display unit 26 displays the updated cardiac measurement value 80 in the diastole and systole of the heartbeat cycle.
 図3(c)に示されるように、特徴波形検出部32は特徴波形であるR波62を検出した時から次のR波が検出されるまでの間、画像表示部26は心拍周期Bの拡張期及び収縮期における心臓の面積、心臓の体積、2つの計測点間の長さの心臓計測値80を表示し続ける。 As shown in FIG. 3 (c), the feature waveform detection unit 32 detects the R wave 62 that is the feature waveform until the next R wave is detected. Continue to display heart measurements 80 of the area of the heart during diastole and systole, the volume of the heart, and the length between the two measurement points.
 操作者は、操作部40の任意の時刻(時相)でフリーズボタンを押すことにより、制御部42は画像表示部26で実時間(現在)に更新されている断層画像70をフリーズさせるとともに、心臓計測値80の更新を停止させることができる。操作者は、画像表示部26に表示されるフリーズされた断層画像70と最新の心臓計測値80を確認することができる。また、操作者は、更新される心臓計測値80を参考にしながら、診断に適した断像画像70をフリーズして表示させることができる。 When the operator presses the freeze button at an arbitrary time (time phase) of the operation unit 40, the control unit 42 freezes the tomographic image 70 updated in the real time (current) in the image display unit 26, and The update of the cardiac measurement value 80 can be stopped. The operator can confirm the frozen tomographic image 70 displayed on the image display unit 26 and the latest cardiac measurement value 80. Further, the operator can freeze and display the tomographic image 70 suitable for diagnosis while referring to the updated cardiac measurement value 80.
 本実施例の動作を示すフローチャートを図4に示す。 Fig. 4 shows a flowchart showing the operation of this embodiment.
 (S101)被検体10に当接させて用いる超音波探触子12を用いて、被検体10に時間間隔をおいて超音波を繰り返し送受信させることにより、画像表示部26に被検体10の断層画像70を表示する。画像表示部26に表示されている断層画像70は実時間(現在)に更新されている。 (S101) By using the ultrasonic probe 12 that is used in contact with the subject 10 and repeatedly transmitting and receiving ultrasonic waves to the subject 10 at time intervals, the image display unit 26 causes the tomography of the subject 10 The image 70 is displayed. The tomographic image 70 displayed on the image display unit 26 is updated in real time (current).
 (S102)操作者は、操作部40のフリーズボタンを押すことにより、制御部42によって画像表示部26に表示されている断層画像70をフリーズさせる。画像表示部26にはフリーズされた断層画像70が表示される。操作者は、操作部40のトラックボールを回転させることによって、フリーズされた断層画像70上に計測点の位置決めを行う。そして、操作者は、操作部40の実行キーを押すことによって、位置決めされた位置に計測点が設定される。このようにして、フリーズされた断層画像70に複数の計測点を設定することができる。断層画像70のフリーズを解除して、断層画像70を実時間(現在)に表示させる。断層画像70の動きに合わせて複数の計測点が追従される。計測部36は、複数の計測点が心臓の拍動に伴って順次どの位置に移動したかを求める。具体的には、計測部36は、計測点および計測点の近傍を含む任意形状の領域を断層画像上で設定し、この領域について2つの断層画像間で相関処理して計測点を追跡する。 (S102) The operator freezes the tomographic image 70 displayed on the image display unit 26 by the control unit 42 by pressing the freeze button of the operation unit 40. A frozen tomographic image 70 is displayed on the image display unit 26. The operator positions the measurement point on the frozen tomographic image 70 by rotating the trackball of the operation unit 40. Then, the operator presses the execution key of the operation unit 40 to set the measurement point at the positioned position. In this way, a plurality of measurement points can be set on the frozen tomographic image 70. The freeze of the tomographic image 70 is canceled and the tomographic image 70 is displayed in real time (current). A plurality of measurement points are followed in accordance with the movement of the tomographic image 70. The measurement unit 36 determines to which position the plurality of measurement points have sequentially moved as the heart beats. Specifically, the measurement unit 36 sets a region having an arbitrary shape including a measurement point and the vicinity of the measurement point on the tomographic image, and performs correlation processing between the two tomographic images for this region to track the measurement point.
 また、制御部42は、実時間(現在)に更新されている断層画像70の組織形状を心拍毎に解析して、組織形状に基づいて自動的に計測点を設定することもできる。具体的には、制御部42は、図示しないが、テンプレート化された被検体の組織に基づく診断用画像情報を格納しているデータベースを有している。制御部42は、実時間(現在)に更新される断層画像をデータベース中に格納されているテンプレート化された診断用画像情報と照合し、照合結果に基づいて、組織形状に合わせて計測点を設置する。例えば、組織形状(心臓の内腔)に沿って計測点が複数設置される。 The control unit 42 can also analyze the tissue shape of the tomographic image 70 updated in real time (currently) for each heartbeat, and automatically set measurement points based on the tissue shape. Specifically, although not shown, the control unit 42 has a database that stores diagnostic image information based on the templated tissue of the subject. The control unit 42 collates the tomographic image updated in real time (current) with the templated diagnostic image information stored in the database, and based on the collation result, sets the measurement points according to the tissue shape. Install. For example, a plurality of measurement points are set along the tissue shape (heart lumen).
 (S103)実時間(現在)に更新される断層画像70上で追跡される計測点を用いて、計測部36は、最も新しい第1の特徴波形と、第1の特徴波形に連続する第2の特徴波形とによって設定される心拍周期における、心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率等の心臓計測値を計測する。 (S103) Using the measurement points tracked on the tomographic image 70 updated in real time (current), the measurement unit 36 uses the newest first feature waveform and the second feature waveform that is continuous with the first feature waveform. Measures cardiac measurement values such as heart area, heart volume, length between two measurement points, ejection fraction, etc. in the heartbeat cycle set by the characteristic waveform of.
 (S104)計測部36は、新たに特徴波形を検出する毎に更新される心拍周期の拡張期及び収縮期における心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率の心臓計測値を計測し、心臓計測値80が更新される。 (S104) The measurement unit 36 updates the heart area in the diastole and systole of the heart cycle, the volume of the heart, the length between the two measurement points, and the ejection fraction, which are updated each time a new feature waveform is detected. The heart measurement value is measured, and the heart measurement value 80 is updated.
 (S105)操作者は、心臓計測値の計測を終了するか否かを選択する。計測を継続する場合、S104に戻り計測を続ける。計測を終了する場合、動作が終了する。 (S105) The operator selects whether or not to end the measurement of the cardiac measurement value. When continuing measurement, it returns to S104 and continues measurement. When the measurement is finished, the operation is finished.
 以上、実施例1は、被検体の断層画像を構成する断層画像構成部と、前記断層画像に基づいて心臓計測値を計測する計測部と、前記断層画像と前記心臓計測値とを表示する画像表示部と、を備えた医用画像診断装置であって、前記被検体の心電波形の形状から特徴波形を検出する特徴波形検出部と、前記特徴波形検出部で検出された特徴波形のうちの基準時と最も時間差が小さい特徴波形を第1の特徴波形とし、第1の特徴波形に連続する第2の特徴波形と第1の特徴波形とによって設定される心拍周期を設定する心拍周期設定部と、を備え、前記計測部は、前記断層画像と前記特徴波形と前記心拍周期に基づいて心臓計測値を計測するので、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置を提供することができる。 As described above, in the first embodiment, a tomographic image forming unit that forms a tomographic image of a subject, a measuring unit that measures a cardiac measurement value based on the tomographic image, and an image that displays the tomographic image and the cardiac measurement value A medical image diagnostic apparatus comprising: a display unit; a feature waveform detection unit that detects a feature waveform from a shape of an electrocardiogram waveform of the subject; and a feature waveform detected by the feature waveform detection unit A heartbeat cycle setting unit that sets a heartbeat cycle that is set by the second feature waveform that is continuous with the first feature waveform and the first feature waveform as a feature waveform that has the smallest time difference from the reference time And the measurement unit measures a cardiac measurement value based on the tomographic image, the characteristic waveform, and the heartbeat cycle, and therefore updates and measures the cardiac measurement value for each heartbeat cycle that is sequentially updated. An image diagnostic apparatus can be provided
 また、実施例1は、被検体の断層画像を構成するステップと、前記被検体の心電波形の形状から特徴波形を検出するステップと、前記検出された特徴波形のうちの基準時と最も時間差が小さい特徴波形を第1の特徴波形とし、第1の特徴波形に連続する第2の特徴波形と第1の特徴波形とによって設定される心拍周期を設定するステップと、前記断層画像と前記特徴波形と前記心拍周期に基づいて心臓計測値を計測するステップと、前記断層画像と前記心臓計測値とを表示するステップと、を含んでいるので、順次更新される心拍周期毎に心臓計測値を更新して計測する心臓計測値表示方法を提供することができる。 Further, in the first embodiment, the step of constructing a tomographic image of the subject, the step of detecting a feature waveform from the shape of the electrocardiographic waveform of the subject, and the time difference from the reference time among the detected feature waveforms Setting a heartbeat cycle set by the second feature waveform and the first feature waveform that are continuous to the first feature waveform, the tomographic image, and the feature A step of measuring a cardiac measurement value based on a waveform and the heartbeat period, and a step of displaying the tomographic image and the cardiac measurement value. It is possible to provide a cardiac measurement value display method for updating and measuring.
 また、前記計測部は、前記心拍周期設定部で設定された前記心拍周期の拡張期及び収縮期における心臓計測値又は循環器機能を示す指標値を計測しても、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置を提供することができる。 In addition, the measurement unit measures the cardiac measurement value or the index value indicating the cardiovascular function in the diastole and the systole of the heartbeat cycle set by the heartbeat cycle setting unit. In addition, it is possible to provide a medical image diagnostic apparatus that updates and measures cardiac measurement values.
 また、前記心拍周期設定部における基準時は、実時間(現在)であっても、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置を提供することができる。 In addition, it is possible to provide a medical image diagnostic apparatus that updates and measures a heart measurement value for each heartbeat cycle that is sequentially updated even when the reference time in the heartbeat cycle setting unit is real time (current).
 また、前記特徴波形は、前記心電波形のR波、P波、Q波、S波、T波のいずれか1つであっても、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置を提供することができる。 Further, even if the characteristic waveform is any one of the R wave, P wave, Q wave, S wave, and T wave of the electrocardiographic waveform, the cardiac measurement value is updated for each heartbeat cycle that is sequentially updated. Thus, it is possible to provide a medical image diagnostic apparatus that performs measurement.
 また、前記画像表示部に表示されている断層画像に複数の計測点を設定する操作部を備え、前記計測部は、設定された複数の計測点に基づいて、心臓の面積、心臓の体積、心臓の駆出率の少なくとも1つの心臓計測値を計測しても、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置を提供することができる。 In addition, an operation unit for setting a plurality of measurement points on the tomographic image displayed on the image display unit, the measurement unit based on the set plurality of measurement points, the area of the heart, the volume of the heart, Even if at least one cardiac measurement value of the ejection fraction of the heart is measured, it is possible to provide a medical image diagnostic apparatus that updates and measures a cardiac measurement value for each heartbeat cycle that is sequentially updated.
 また、前記特徴波形検出部が新たな特徴波形を検出する毎に、前記心拍周期設定部は、新たに検出される第1の特徴波形と、前記第1の特徴波形に連続する第2の特徴波形とによって心拍周期を設定しても、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置を提供することができる。 Further, each time the feature waveform detection unit detects a new feature waveform, the heartbeat cycle setting unit detects a first feature waveform that is newly detected and a second feature that is continuous with the first feature waveform. It is possible to provide a medical image diagnostic apparatus that updates and measures a heart measurement value for each heartbeat cycle that is sequentially updated even if the heartbeat cycle is set according to the waveform.
 また、前記計測部は、前記特徴波形検出部が新たな特徴波形を検出する毎に更新される心拍周期の拡張末期及び収縮末期における心臓計測値を計測しても、順次更新される心拍周期毎に心臓計測値を更新して計測する医用画像診断装置を提供することができる。 In addition, the measurement unit may measure the cardiac measurement values at the end diastole and end systole of the heartbeat cycle updated each time the feature waveform detection unit detects a new feature waveform, and sequentially update each heartbeat cycle. In addition, it is possible to provide a medical image diagnostic apparatus that updates and measures cardiac measurement values.
 また、実施例1によれば、被検体10の断層画像を構成する断層画像構成部22と、断層画像構成部22によって構成された断層画像を表示する画像表示部26と、画像表示部26に表示された断層画像に基づいて心臓計測値を計測する計測部36とを備える医用画像診断装置において、被検体10から検出された心電波形を解析し、心電波形の形状から特徴波形を検出する特徴波形検出部30と、特徴波形検出部30で検出された特徴波形に基づいて、最も新しい第1の特徴波形と、第1の特徴波形に連続する第2の特徴波形とによって設定される心拍周期を設定する心拍周期設定部34とを備え、計測部36は心拍周期における心臓計測値を計測し、画像表示部26は心臓計測値を表示する。よって、実時間(現在)に更新される断層画像について心拍周期毎に心臓計測値を計測し、実時間(現在)に更新される断層画像とともに心臓計測値を更新させることができる。 Further, according to the first embodiment, the tomographic image configuration unit 22 that configures the tomographic image of the subject 10, the image display unit 26 that displays the tomographic image configured by the tomographic image configuration unit 22, and the image display unit 26 In a medical image diagnostic apparatus including a measurement unit 36 that measures a cardiac measurement value based on a displayed tomographic image, an electrocardiogram waveform detected from the subject 10 is analyzed, and a feature waveform is detected from the shape of the electrocardiogram waveform Based on the feature waveform detected by the feature waveform detection unit 30 and the feature waveform detected by the feature waveform detection unit 30, the newest first feature waveform and the second feature waveform continuous to the first feature waveform are set. A heartbeat cycle setting unit 34 for setting a heartbeat cycle, the measurement unit 36 measures a heart measurement value in the heartbeat cycle, and the image display unit 26 displays the heart measurement value. Therefore, it is possible to measure the heart measurement value for each heartbeat period for the tomographic image updated at the real time (current) and update the heart measurement value together with the tomographic image updated at the real time (current).
 なお、実施例1では、心拍周期設定部34は、特徴波形検出部32で検出された特徴波形であるR波に基づいて、最も新しいR波54とR波54に連続するR波56で挟まれる心拍周期Aである1周期を設定したが、複数周期を設定してもよい。心拍周期設定部34は、例えば、最も新しいR波54と3番目に新しいR波であるR波58で挟まれる心拍2周期を設定することもできる。 In the first embodiment, the heartbeat cycle setting unit 34 is sandwiched between the latest R wave 54 and the R wave 56 that is continuous to the R wave 54 based on the R wave that is the feature waveform detected by the feature waveform detection unit 32. Although one period which is the heartbeat period A is set, a plurality of periods may be set. The heartbeat cycle setting unit 34 can set, for example, a heartbeat 2 cycle sandwiched between the latest R wave 54 and the third new R wave R wave 58.
 ここで実施例2について図5、6を用いて説明する。実施例1と異なる点は、計測部36は、心拍周期の拡張末期毎又は心拍周期の収縮末期毎に心臓計測値を計測する点である。 Here, Example 2 will be described with reference to FIGS. The difference from the first embodiment is that the measurement unit 36 measures a cardiac measurement value at every end diastole of the heartbeat cycle or every end systole of the heartbeat cycle.
 図5は、心拍周期の拡張末期(R波の時刻)の状態であり、表示時相マーク52がR波54に到達した状態である。心拍周期の拡張末期(R波の時刻)に到達した時、表示時相マーク52がR波54に到達した時、計測部36は、心臓の面積、心臓の体積、2つの計測点間の長さの心臓計測値80を計測する。画像表示部26は、心拍周期の拡張末期毎に更新される心臓計測値80を表示する。 FIG. 5 shows the state of the end of diastole (R wave time) of the heartbeat cycle, and the display time phase mark 52 has reached the R wave 54. When the display phase mark 52 reaches the R wave 54 when reaching the end diastole (R wave time) of the heartbeat cycle, the measurement unit 36 determines the area of the heart, the volume of the heart, and the length between the two measurement points. The heart measurement value 80 is measured. The image display unit 26 displays a cardiac measurement value 80 that is updated every end diastole of the heartbeat cycle.
 図6は、心拍周期の収縮末期(心臓が最小体積の時、R波の時刻から所定時間(T1)後)の状態である。心拍周期の収縮末期に到達した時、計測部36は、心臓の面積、心臓の体積、2つの計測点間の長さの心臓計測値80を計測する。画像表示部26は、心拍周期の収縮末期毎に更新される心臓計測値80を表示する。そして、計測部36は、心拍周期の拡張末期毎に得られる心臓の体積と心拍周期の収縮末期毎に得られる心臓の体積と基づいて駆出率を心拍周期の収縮末期毎に演算して更新する。 Fig. 6 shows the state of the end systole of the heartbeat cycle (after a predetermined time (T1) from the time of the R wave when the heart is at the minimum volume). When the end systole of the heartbeat cycle is reached, the measurement unit 36 measures a heart measurement value 80 of the heart area, the heart volume, and the length between two measurement points. The image display unit 26 displays a heart measurement value 80 that is updated every end systole of the heartbeat cycle. The measuring unit 36 calculates and updates the ejection fraction for each end systole of the heart cycle based on the heart volume obtained for each end diastole of the heart cycle and the heart volume obtained for each end systole of the heart cycle. To do.
 よって、前記計測部は、前記心拍周期の拡張末期毎又は前記心拍周期の収縮末期毎に心臓計測値を計測するので、操作者は心拍周期の拡張末期毎又は心拍周期の収縮末期毎に心臓計測値を実時間(現在)に確認することができる。 Therefore, since the measurement unit measures a cardiac measurement value for each end diastole of the heartbeat cycle or for each end systole of the heartbeat cycle, the operator performs cardiac measurement for each end diastole of the heartbeat cycle or every end systole of the heartbeat cycle. The value can be confirmed in real time (current).
 ここで実施例3について図7を用いて説明する。実施例1、2と異なる点は、計測部36で計測された駆出率が閾値以下である場合、画像表示部26は、閾値以下の駆出率が存在する心拍周期を識別するための心電波形マークを表示する点である。 Here, Example 3 will be described with reference to FIG. The difference from the first and second embodiments is that, when the ejection rate measured by the measurement unit 36 is less than or equal to the threshold, the image display unit 26 uses a heart for identifying a cardiac cycle in which an ejection rate less than or equal to the threshold exists. It is a point to display the radio wave type mark.
 駆出率は心臓の収縮機能を示す評価値であり、一般に心不全では駆出率が40%以下になるとされている。本実施例における閾値は例えば40%と制御部42において設定されている。 The ejection fraction is an evaluation value indicating the contractile function of the heart, and it is generally assumed that the ejection fraction is 40% or less in heart failure. The threshold value in this embodiment is set to 40%, for example, in the control unit 42.
 ここでは、R波56とR波58で挟まれる心拍周期における駆出率が閾値以下になったとする。計測部36で計測された駆出率が閾値以下になった場合、制御部42は、閾値以下の駆出率が存在する心拍周期を認識できるように、図7(a)に示されるように、画像表示部26に閾値以下の駆出率が存在する心拍周期を識別するための心電波形マーク62を表示させる。心電波形マーク62は、心電波形50上に心電波形50と異なる線種(太い線、破線等)で示されたり、心電波形50上に心電波形50と異なる色(赤色、青色等)で示されたりする。 Suppose here that the ejection fraction in the heartbeat period between the R wave 56 and the R wave 58 falls below the threshold. As shown in FIG. 7 (a), when the ejection fraction measured by the measurement unit 36 is equal to or less than the threshold, the control unit 42 can recognize a heartbeat cycle in which the ejection fraction less than the threshold exists. Then, an electrocardiographic waveform mark 62 for identifying a cardiac cycle in which an ejection fraction equal to or less than the threshold exists is displayed on the image display unit 26. The electrocardiogram waveform mark 62 is indicated on the electrocardiogram waveform 50 by a different line type (thick line, broken line, etc.) from the electrocardiogram waveform 50, or a color different from the electrocardiogram waveform 50 (red, blue) on the electrocardiogram waveform 50. Etc.).
 駆出率は病状によって異なる。操作者は観察したい病状に合わせて操作部40で制御部42に設定されている閾値を変更することができる。よって、操作者は病状に合った心拍周期を識別することができる。 Ejection rate varies depending on the medical condition. The operator can change the threshold set in the control unit 42 by the operation unit 40 according to the medical condition to be observed. Therefore, the operator can identify the heartbeat cycle suitable for the medical condition.
 また、操作者は、操作部40のフリーズボタンを押すことにより、制御部42によって画像表示部26に表示されている断層画像70をフリーズさせる。そして、操作者は、操作部40のトラックボールを回転させることによって、表示時相マーク52を任意に移動させることができる。フリーズボタンが押されると、断層画像70は実時間(現在)に更新されなくなる。任意に移動された表示時相マーク52が通過した時に取得された断層画像70が画像表示部26に表示される。 In addition, the operator freezes the tomographic image 70 displayed on the image display unit 26 by the control unit 42 by pressing the freeze button of the operation unit 40. The operator can arbitrarily move the display time phase mark 52 by rotating the trackball of the operation unit 40. When the freeze button is pressed, the tomographic image 70 is not updated in real time (current). A tomographic image 70 acquired when the arbitrarily moved display time phase mark 52 passes is displayed on the image display unit 26.
 そして、操作者は、心電波形マーク62を参考にして、図7(b)に示されるように、表示時相マーク52を閾値以下の駆出率が存在する心拍周期内に移動させて設定すれば、心不全の可能性がある断層画像70を画像表示部26に表示させることができる。よって、操作者は心不全の可能性がある断層画像70を詳細に観察することができる。 Then, referring to the electrocardiogram waveform mark 62, the operator moves and sets the display time phase mark 52 within the heartbeat cycle where the ejection fraction below the threshold exists as shown in FIG. 7 (b). Then, the tomographic image 70 with the possibility of heart failure can be displayed on the image display unit 26. Therefore, the operator can observe the tomographic image 70 with the possibility of heart failure in detail.
 また、画像表示部26は、閾値以下の駆出率が存在する心拍周期における断層画像70を動画像のループ再生することができる。具体的には、画像表示部26は、R波56とR波58で挟まれる心拍周期内で表示時相マーク52を移動させ、断層画像70を動画像のループ再生を行う。 Also, the image display unit 26 can loop-reproduce the moving image of the tomographic image 70 in the heartbeat cycle in which the ejection rate is equal to or less than the threshold value. Specifically, the image display unit 26 moves the display time phase mark 52 within the heartbeat period sandwiched between the R wave 56 and the R wave 58, and performs the loop reproduction of the moving image on the tomographic image 70.
 よって、前記計測部で計測された、心臓の駆出率を示す駆出率が閾値以下である場合、画像表示部26は、閾値以下の駆出率が存在する心拍周期を識別するための心電波形マークを表示するので、操作者は心不全の可能性がある断層画像70を動画像で詳細に観察することができる。 Therefore, when the ejection rate indicating the ejection rate of the heart measured by the measurement unit is equal to or less than the threshold, the image display unit 26 identifies the cardiac cycle for identifying the cardiac cycle in which the ejection rate equal to or less than the threshold exists. Since the radio wave shape mark is displayed, the operator can observe the tomographic image 70 with the possibility of heart failure in detail with the moving image.
 ここで実施例4について図8を用いて説明する。実施例1~3と異なる点は、画像表示部26は異なる断面の断層画像における心臓計測値を表示する点である。 Here, Example 4 will be described with reference to FIG. The difference from the first to third embodiments is that the image display unit 26 displays cardiac measurement values in tomographic images having different cross sections.
 心尖部四腔像(A4C)の心臓計測値82は予め計測されており、図示しない記憶部に心尖部四腔像(A4C)のRF信号フレームデータ又は断層画像データとともに記憶されている。記憶部から心臓計測値82を読み出すことにより、画像表示部26は心尖部四腔像(A4C)の心臓計測値82を表示させることができる。 The cardiac measurement value 82 of the apex four-chamber image (A4C) is measured in advance, and is stored together with RF signal frame data or tomographic image data of the apex four-chamber image (A4C) in a storage unit (not shown). By reading the cardiac measurement value 82 from the storage unit, the image display unit 26 can display the cardiac measurement value 82 of the apex four-chamber image (A4C).
 画像表示部26に表示されている断層画像70は心尖部二腔像(A2C)である。計測部36は、実時間(現在)に更新される心尖部二腔像(A2C)の断層画像70について、最も新しい第1の特徴波形と、第1の特徴波形に連続する第2の特徴波形とによって設定される心拍周期における、心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率等の心臓計測値の計測を行なう。断層画像70とともに心臓計測値80が更新されて画像表示部26に表示される。 The tomographic image 70 displayed on the image display unit 26 is a two-chamber apex image (A2C). For the tomographic image 70 of the apex two-chamber image (A2C) that is updated in real time (current), the measurement unit 36 includes the newest first feature waveform and the second feature waveform that is continuous with the first feature waveform. Measurement of cardiac measurement values such as the area of the heart, the volume of the heart, the length between two measurement points, the ejection fraction, etc. in the heartbeat cycle set by. The heart measurement value 80 is updated together with the tomographic image 70 and displayed on the image display unit 26.
 このように、心尖部二腔像(A2C)の心臓計測値80と心尖部四腔像(A4C)の心臓計測値82を画像表示部26に表示させることができる。 As described above, the cardiac measurement value 80 of the apex two-chamber image (A2C) and the cardiac measurement value 82 of the apex four-chamber image (A4C) can be displayed on the image display unit 26.
 よって、画像表示部26は、異なる断面の前記断層画像における前記心臓計測値を表示する異なる断面の断層画像における心臓計測値80、82を表示することにより、操作者は精度が高い診断を行なうことができる。 Therefore, the image display unit 26 displays the cardiac measurement values 80 and 82 in the tomographic images of different cross sections for displaying the cardiac measurement values in the tomographic images of different cross sections, thereby enabling the operator to perform a highly accurate diagnosis. Can do.
 また、図示はしないが、記憶部に記憶されているRF信号フレームデータ又は断層画像データを読み出して、心尖部四腔像(A4C)の断層画像を心尖部二腔像(A2C)の断層画像70とともに画像表示部26に表示させることもできる。心尖部四腔像(A4C)の断層画像を表示させる際、心尖部四腔像(A4C)で取得される特徴波形と心尖部二腔像(A2C)で取得される特徴波形を一致させることにより、心尖部二腔像(A2C)の断層画像70の心拍周期に合わせて表示させることもできる。 Although not shown, the RF signal frame data or tomographic image data stored in the storage unit is read, and the tomographic image of the apex four-chamber image (A4C) is converted into the tomographic image 70 of the apex two-chamber image (A2C). At the same time, it can be displayed on the image display unit 26. When displaying a tomographic image of the apex four-chamber image (A4C), by matching the feature waveform acquired in the apex four-chamber image (A4C) with the feature waveform acquired in the apex two-chamber image (A2C) The tomographic image 70 of the apex two-chamber image (A2C) can be displayed in accordance with the cardiac cycle.
 また、計測部36は、記憶部から読み出された心尖部四腔像(A4C)の断層画像を用いて、心臓の面積、心臓の体積、2つの計測点間の長さ、駆出率等の心臓計測値の計測を行ない、心臓計測値82を画像表示部26に表示させることもできる。 In addition, the measurement unit 36 uses the tomographic image of the apex four-chamber image (A4C) read from the storage unit to determine the area of the heart, the volume of the heart, the length between two measurement points, the ejection rate, etc. It is also possible to measure the measured heart value and display the measured heart value 82 on the image display unit 26.
 10 被検体、12 超音波探触子、14 送信部、16 受信部、18 超音波送受信制御部、20 整相加算部、22 断層画像構成部、24 白黒スキャンコンバータ、26 画像表示部、30 心電波形検出部、32 特徴波形検出部、34 心拍周期設定部、36 計測部、40 操作部、42 制御部 10 subjects, 12 ultrasound probes, 14 transmitters, 16 receivers, 18 ultrasound transmission / reception control units, 20 phasing adders, 22 tomographic image construction units, 24 monochrome scan converters, 26 image display units, 30 cores Radio wave shape detection unit, 32 feature waveform detection unit, 34 heart rate cycle setting unit, 36 measurement unit, 40 operation unit, 42 control unit

Claims (15)

  1.  被検体の断層画像を構成する断層画像構成部と、
     前記断層画像に基づいて心臓計測値を計測する計測部と、
     前記断層画像と前記心臓計測値とを表示する画像表示部と、を備えた医用画像診断装置であって、
     前記被検体の心電波形の形状から特徴波形を検出する特徴波形検出部と、
     前記特徴波形検出部で検出された特徴波形のうちの基準時と最も時間差が小さい特徴波形を第1の特徴波形とし、第1の特徴波形に連続する第2の特徴波形と第1の特徴波形とによって設定される心拍周期を設定する心拍周期設定部と、を備え、
     前記計測部は、前記断層画像と前記特徴波形と前記心拍周期に基づいて心臓計測値を計測することを特徴とする医用画像診断装置。
    A tomographic image constructing unit constituting a tomographic image of the subject;
    A measurement unit for measuring a cardiac measurement value based on the tomographic image;
    An image display unit that displays the tomographic image and the cardiac measurement value, and a medical image diagnostic apparatus comprising:
    A feature waveform detector that detects a feature waveform from the shape of the electrocardiogram waveform of the subject;
    Among the feature waveforms detected by the feature waveform detector, the feature waveform having the smallest time difference from the reference time is defined as the first feature waveform, and the second feature waveform and the first feature waveform that are continuous with the first feature waveform And a heartbeat cycle setting section for setting a heartbeat cycle set by
    The medical image diagnostic apparatus, wherein the measurement unit measures a cardiac measurement value based on the tomographic image, the characteristic waveform, and the heartbeat cycle.
  2.  前記計測部は、前記心拍周期設定部で設定された前記心拍周期の拡張期及び収縮期における心臓計測値又は循環器機能を示す指標値を計測することを特徴とする請求項1記載の医用画像診断装置。 2. The medical image according to claim 1, wherein the measurement unit measures a cardiac measurement value or an index value indicating a circulatory function in a diastole and a systole of the heartbeat cycle set by the heartbeat cycle setting unit. Diagnostic device.
  3.  前記心拍周期設定部における基準時は、実時間(現在)であること特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein the reference time in the heartbeat cycle setting unit is real time (current).
  4.  前記特徴波形は、前記心電波形のR波、P波、Q波、S波、T波のいずれか1つであることを特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein the characteristic waveform is any one of an R wave, a P wave, a Q wave, an S wave, and a T wave of the electrocardiographic waveform.
  5.  前記画像表示部に表示されている断層画像に複数の計測点を設定する操作部を備え、前記計測部は、設定された複数の計測点に基づいて、心臓の面積、心臓の体積、心臓の駆出率の少なくとも1つの心臓計測値を計測することを特徴とする請求項1記載の医用画像診断装置。 An operation unit configured to set a plurality of measurement points on the tomographic image displayed on the image display unit, the measurement unit based on the set plurality of measurement points, the area of the heart, the volume of the heart, 2. The medical image diagnostic apparatus according to claim 1, wherein at least one cardiac measurement value of ejection fraction is measured.
  6.  前記特徴波形検出部が新たな特徴波形を検出する毎に、前記心拍周期設定部は、新たに検出される第1の特徴波形と、前記第1の特徴波形に連続する第2の特徴波形とによって心拍周期を設定することを特徴とする請求項1記載の医用画像診断装置。 Each time the feature waveform detection unit detects a new feature waveform, the heartbeat period setting unit includes a first feature waveform that is newly detected, and a second feature waveform that is continuous with the first feature waveform, 2. The medical image diagnostic apparatus according to claim 1, wherein a heartbeat cycle is set by the method.
  7.  前記計測部は、前記特徴波形検出部が新たな特徴波形を検出する毎に更新される心拍周期の拡張末期及び収縮末期における心臓計測値を計測することを特徴とする請求項6記載の医用画像診断装置。 7. The medical image according to claim 6, wherein the measurement unit measures a cardiac measurement value at the end diastole and end systole of a heartbeat cycle that is updated each time the feature waveform detection unit detects a new feature waveform. Diagnostic device.
  8.  前記計測部は、前記心拍周期の拡張末期毎又は前記心拍周期の収縮末期毎に心臓計測値を計測することを特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein the measurement unit measures a cardiac measurement value for each end diastole of the heartbeat cycle or for each end systole of the heartbeat cycle.
  9.  前記計測部で計測された、心臓の駆出率を示す駆出率が閾値以下である場合、前記画像表示部は、閾値以下の駆出率が存在する心拍周期を識別するための心電波形マークを表示することを特徴とする請求項1記載の医用画像診断装置。 When the ejection rate indicating the ejection rate of the heart measured by the measurement unit is less than or equal to a threshold value, the image display unit is an electrocardiographic waveform for identifying a cardiac cycle in which the ejection rate is equal to or less than the threshold value 2. The medical image diagnostic apparatus according to claim 1, wherein a mark is displayed.
  10.  前記画像表示部は、異なる断面の前記断層画像における前記心臓計測値を表示する請求項1記載の医用画像診断装置。 The medical image diagnostic apparatus according to claim 1, wherein the image display unit displays the cardiac measurement values in the tomographic images of different cross sections.
  11.  被検体の断層画像を構成するステップと、
     前記被検体の心電波形の形状から特徴波形を検出するステップと、
     前記検出された特徴波形のうちの基準時と最も時間差が小さい特徴波形を第1の特徴波形とし、第1の特徴波形に連続する第2の特徴波形と第1の特徴波形とによって設定される心拍周期を設定するステップと、
     前記断層画像と前記特徴波形と前記心拍周期に基づいて心臓計測値を計測するステップと、
     前記断層画像と前記心臓計測値とを表示するステップと、
     を含むことを特徴とする心臓計測値表示方法。
    Constructing a tomographic image of the subject;
    Detecting a characteristic waveform from the shape of the electrocardiographic waveform of the subject;
    Among the detected feature waveforms, the feature waveform having the smallest time difference from the reference time is set as the first feature waveform, and is set by the second feature waveform and the first feature waveform that are continuous with the first feature waveform. Setting the heart rate cycle;
    Measuring a cardiac measurement value based on the tomographic image, the characteristic waveform, and the heartbeat cycle;
    Displaying the tomographic image and the cardiac measurement value;
    A method for displaying a cardiac measurement value, comprising:
  12.  前記計測するステップは、前記設定された心拍周期の拡張期及び収縮期における心臓計測値又は循環器機能を示す指標値を計測することを特徴とする請求項11記載の心臓計測値表示方法。 12. The cardiac measurement value display method according to claim 11, wherein the measuring step measures a cardiac measurement value or an index value indicating a circulatory function in a diastole and a systole of the set heartbeat cycle.
  13.  前記基準時は、実時間(現在)であること特徴とすることを特徴とする請求項11記載の心臓計測値表示方法。 12. The cardiac measurement value display method according to claim 11, wherein the reference time is real time (current).
  14.  前記断層画像に複数の計測点を設定するステップを含み、前記計測するステップは、設定された複数の計測点に基づいて、心臓の面積、心臓の体積、心臓の駆出率の少なくとも1つの心臓計測値を計測することを特徴とする請求項11記載の心臓計測値表示方法。 Setting a plurality of measurement points in the tomographic image, and the measuring step includes at least one heart of a heart area, a heart volume, and a heart ejection rate based on the set plurality of measurement points. 12. The cardiac measurement value display method according to claim 11, wherein the measurement value is measured.
  15.  前記特徴波形を検出するステップが新たな特徴波形を検出する毎に、前記心拍周期を設定するステップは、新たに検出される第1の特徴波形と、前記第1の特徴波形に連続する第2の特徴波形とによって心拍周期を設定することを特徴とする請求項11記載の心臓計測値表示方法。 Each time the step of detecting the feature waveform detects a new feature waveform, the step of setting the heartbeat cycle includes a first feature waveform that is newly detected and a second feature waveform that is continuous with the first feature waveform. 12. The cardiac measurement value display method according to claim 11, wherein the heartbeat cycle is set based on the characteristic waveform of the heartbeat.
PCT/JP2011/066407 2010-08-06 2011-07-20 Medical image diagnostic device and cardiac measurement value display method WO2012017821A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012527660A JP5814921B2 (en) 2010-08-06 2011-07-20 MEDICAL IMAGE DIAGNOSTIC APPARATUS AND HEART MEASURED DISPLAY METHOD
CN201180032615.7A CN102958448B (en) 2010-08-06 2011-07-20 Medical image diagnostic device and cardiac measurement value display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010176857 2010-08-06
JP2010-176857 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012017821A1 true WO2012017821A1 (en) 2012-02-09

Family

ID=45559327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066407 WO2012017821A1 (en) 2010-08-06 2011-07-20 Medical image diagnostic device and cardiac measurement value display method

Country Status (3)

Country Link
JP (1) JP5814921B2 (en)
CN (1) CN102958448B (en)
WO (1) WO2012017821A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214393A (en) * 2015-05-15 2016-12-22 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and control program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107174197B (en) * 2016-03-10 2020-11-24 深圳市理邦精密仪器股份有限公司 Monitoring equipment and waveform display method and device thereof
CN111142753A (en) * 2019-12-27 2020-05-12 杭州依图医疗技术有限公司 Interactive method, information processing method and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252253A (en) * 1995-03-17 1996-10-01 Hitachi Medical Corp Ultrasonic diagnostic system
JP2002330968A (en) * 2001-03-05 2002-11-19 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic instrument and image processor
JP2004181246A (en) * 2002-12-04 2004-07-02 Ge Medical Systems Global Technology Co Llc Determination of arbitrary cardiac phase using non-electrical signal
JP2006288785A (en) * 2005-04-12 2006-10-26 Toshiba Corp Ultrasonic diagnostic system, image display device and image display method
JP2007507248A (en) * 2003-09-29 2007-03-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultrasound heart volume quantification method
JP2009189691A (en) * 2008-02-18 2009-08-27 Toshiba Corp Ultrasonic diagnosis apparatus and image display device
WO2009138881A2 (en) * 2008-05-12 2009-11-19 Cardio Art Technologies, Ltd. Method and system for monitoring a health condition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141437A (en) * 1984-08-01 1986-02-27 オムロン株式会社 Electrocardiograph monitor apparatus
JPS6156634A (en) * 1984-08-28 1986-03-22 オムロン株式会社 Apparatus for recording and regenerating electrocardiograph
US6447454B1 (en) * 2000-12-07 2002-09-10 Koninklijke Philips Electronics N.V. Acquisition, analysis and display of ultrasonic diagnostic cardiac images
US8303507B2 (en) * 2004-09-07 2012-11-06 Kabushiki Kaisha Toshiba Ultrasonic doppler diagnostic apparatus and measuring method of diagnostic parameter
JP4206107B2 (en) * 2006-07-05 2009-01-07 アロカ株式会社 Ultrasonic diagnostic equipment
JP5414157B2 (en) * 2007-06-06 2014-02-12 株式会社東芝 Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program
JP5619347B2 (en) * 2007-12-20 2014-11-05 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus, ultrasonic image analysis apparatus, and ultrasonic image analysis program
KR101083936B1 (en) * 2008-09-26 2011-11-15 삼성메디슨 주식회사 Apparatus and method for processing ultrasound data
JP5624314B2 (en) * 2009-01-30 2014-11-12 株式会社東芝 Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, medical image diagnostic apparatus, and medical image processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252253A (en) * 1995-03-17 1996-10-01 Hitachi Medical Corp Ultrasonic diagnostic system
JP2002330968A (en) * 2001-03-05 2002-11-19 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic instrument and image processor
JP2004181246A (en) * 2002-12-04 2004-07-02 Ge Medical Systems Global Technology Co Llc Determination of arbitrary cardiac phase using non-electrical signal
JP2007507248A (en) * 2003-09-29 2007-03-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultrasound heart volume quantification method
JP2006288785A (en) * 2005-04-12 2006-10-26 Toshiba Corp Ultrasonic diagnostic system, image display device and image display method
JP2009189691A (en) * 2008-02-18 2009-08-27 Toshiba Corp Ultrasonic diagnosis apparatus and image display device
WO2009138881A2 (en) * 2008-05-12 2009-11-19 Cardio Art Technologies, Ltd. Method and system for monitoring a health condition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214393A (en) * 2015-05-15 2016-12-22 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and control program

Also Published As

Publication number Publication date
JP5814921B2 (en) 2015-11-17
CN102958448B (en) 2015-01-21
JPWO2012017821A1 (en) 2013-10-03
CN102958448A (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP4206107B2 (en) Ultrasonic diagnostic equipment
CN102469987B (en) The assay method of diagnostic ultrasound equipment and interior middle film composite thickness
JP5448328B2 (en) Ultrasonic diagnostic apparatus and image data generation apparatus
US11617561B2 (en) Ultrasound imaging system and method
JP5820128B2 (en) Ultrasonic diagnostic equipment
JP5292440B2 (en) Ultrasonic diagnostic equipment
US9579084B2 (en) Ultrasound diagnostic apparatus
WO2014091999A1 (en) Ultrasonic imaging device and method
WO2012023399A1 (en) Medical image diagnosis device and method for displaying cardiometry values
JP5814921B2 (en) MEDICAL IMAGE DIAGNOSTIC APPARATUS AND HEART MEASURED DISPLAY METHOD
JP5400095B2 (en) Ultrasonic diagnostic equipment
JP2011036271A (en) Ultrasonic diagnostic apparatus
JP2010269018A (en) Ultrasonic diagnostic apparatus
US10028726B2 (en) Ultrasound diagnostic apparatus
JP2009039277A (en) Ultrasonic diagnostic apparatus
JP4921816B2 (en) Ultrasonic diagnostic apparatus and control program therefor
US20120310090A1 (en) Ultrasound diagnostic apparatus
JPH09140711A (en) Automatic time phase discriminating method and ultrasonic diagnostic device
WO2006126485A1 (en) Ultrasonograph
JP7356229B2 (en) Ultrasound diagnostic equipment
JP5156206B2 (en) Ultrasonic diagnostic equipment
JP2004344370A (en) Ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032615.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527660

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814451

Country of ref document: EP

Kind code of ref document: A1