WO2012016624A1 - Bestimmung der isotopenverhältnisse von kohlenstoff und stickstoff in wasserproben - Google Patents

Bestimmung der isotopenverhältnisse von kohlenstoff und stickstoff in wasserproben Download PDF

Info

Publication number
WO2012016624A1
WO2012016624A1 PCT/EP2011/003412 EP2011003412W WO2012016624A1 WO 2012016624 A1 WO2012016624 A1 WO 2012016624A1 EP 2011003412 W EP2011003412 W EP 2011003412W WO 2012016624 A1 WO2012016624 A1 WO 2012016624A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
adsorption
isotope
combustion
cooled device
Prior art date
Application number
PCT/EP2011/003412
Other languages
English (en)
French (fr)
Inventor
Lutz Lange
Ralf Dunsbach
Original Assignee
Elementar Analysensysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elementar Analysensysteme Gmbh filed Critical Elementar Analysensysteme Gmbh
Publication of WO2012016624A1 publication Critical patent/WO2012016624A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/005Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1846Total carbon analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes

Definitions

  • the present invention relates to a method for determining the isotope ratios of carbon in water samples, wherein after Hochtemperaturauf- circuit of the sample, the resulting C0 2 is collected in an adsorption column, after the completion of combustion, the adsorption column is heated and the liberated CO 2 by a Carrier gas is an isotope ratio mass spectrometer (IRMS) is supplied.
  • IRMS isotope ratio mass spectrometer
  • the invention relates to a device for determining the isotopic ratios of carbon in water samples, with a combustion tube, a C0 2 -Adsorptionsklale which is heated, and with an isotopic ratio mass spectrometer, wherein the assembly is purged by a carrier gas to the constituents to be determined the combustion gases to the isotope ratio mass spectrometer.
  • Determining the isotope ratios of carbon in water samples is always of interest when analyzing predominantly water samples for their origin.
  • isotopic analysis of TOC (total organic carbon) in water can provide information about the source of potential groundwater contamination.
  • CONFIRMATION COPY Peroxodisulfatans oxidized to C0 2 , which is concentrated on various purification stages on a GC column and then fed to the mass spectrometer.
  • US Pat. No. 7,213,443 B2 discloses a method and a device for providing gas for the isotope ratio analysis.
  • the gas is generated from an eluate of a liquid chromatograph (LC), after which the gas is separated from the eluate.
  • the gas is then fed to an infrared mass spectrometer (IRMS) for isotopic ratio analysis.
  • LC liquid chromatograph
  • IRMS infrared mass spectrometer
  • This document also describes the coupling of an HPLC (High Performance Liquid Chromatography) with an oxidation interface, wherein the TOC (total organic carbon) in the liquid phase is oxidized to CO 2 and then the isotopic composition is examined.
  • HPLC High Performance Liquid Chromatography
  • the interface consists of the sample feed and a reaction chamber with UV lamp. The oxidation of the organic carbon is realized by the UV radiation of the lamp.
  • the present invention has for its object to provide a method and a corresponding device, which in addition to the determination of the isotopic ratios of carbons in water samples additional statements on the isotopic ratios of nitrogen in this sample can be made without requiring additional complex procedures and corresponding Devices become necessary.
  • This object is achieved in a method of the type mentioned in that for additional determination of the isotope ratios of nitrogen in the water sample, the nitrogen formed is collected in a cooled device after the adsorption that in a reaction zone in the area in front of the cooled device during combustion Nitrogen oxides formed are reduced to nitrogen and that the cooled device until the complete liberation of the nitrogen, is heated and the nitrogen with the carrier gas to the isotope ratio mass spectrometer (IRMS) is supplied.
  • IRMS isotope ratio mass spectrometer
  • the device used to achieve the object comprises a combustion tube, a C02 adsorption column which is heatable, a cooled device arranged after the C0 2 adsorption column, for collecting the nitrogen released from the water sample, a reaction zone in front of the cooled device, to reduce the oxides of nitrogen formed during combustion to nitrogen, and an isotope ratio mass spectrometer (IRMS), wherein the assembly is purged by a carrier gas to the constituents of the combustion gases to the isotope ratio mass spectrometer (IRMS) supply.
  • IRMS isotope ratio mass spectrometer
  • the cooled device is formed by a cold trap.
  • a cold trap which is, for example, a cooled molecular sieve, has the advantage that the entrapment of the nitrogen can be carried out at higher temperatures than when using a pure cooled device.
  • combustion should be performed at temperatures> 800 ° C. If combustion occurs at lower temperatures, there is no assurance that complete oxidation of all organic compounds will occur.
  • a combustion temperature of 1150 ° C is to be selected.
  • the SO 2 formed during the combustion should be adsorbed on an additional adsorption trap and the adsorbed SO 2 should be fed to the isotope ratio mass spectrometer (IRMS) as the last isotope determination by heating the adsorption trap.
  • IRMS isotope ratio mass spectrometer
  • Figure 1 shows schematically the structure of a device according to the invention
  • Figure 2 is an overview of measurements carried out with the device according to the invention in the form of bar graphs.
  • the device as shown in FIG. 1, comprises a TOC analyzer 1, which is shown only schematically.
  • This TOC analyzer 1 comprises a heatable combustion tube, a sample receiver which can be inserted into the combustion tube with the aqueous sample to be analyzed, and a heater which is designed so that the combustion tube in the region of the sample is at approximately 1150 ° C can be heated to burn the sample at this temperature.
  • the combustion tube is equipped with a connection for a carrier gas.
  • helium is supplied as the carrier gas.
  • the TOC analyzer contains multi-stage drying to ensure complete removal of the water from the carrier gas.
  • the carrier gas flow is equalized over a mass flow controller upstream of the IR detector. The amount of C0 2 , S0 2 and NO produced during combustion is determined by means of IR detection.
  • the TOC analyzer 1 is initially fluidly connected to a reduction tube 2, which is connected on the output side to an SO 2 trap 3.
  • the SO 2 trap 3 is in turn connected on the output side to a CO 2 trap 4.
  • Both the SO 2 trap 3 and the CO 2 trap 4 are designed as U-tube. Both traps are filled with suitable adsorption reagents.
  • the CO 2 trap 4 is followed by a cold trap 5.
  • the gas leaving the cold trap 5 is then fed to an isotope ratio mass spectrometer (IRMS) 6.
  • IRMS isotope ratio mass spectrometer
  • the aqueous sample is input to the TOC analyzer 1.
  • the amount of sample can range from 0.1-1.5 ml.
  • the sample is then burned at 1150 ° C.
  • the organic carbon contained in the sample is converted to CO 2 .
  • This reaction takes place in helium as a carrier gas to CuO as an oxidant, which is filled in the combustion tube of the TOC analyzer instead.
  • the sulfur compounds contained in the sample are converted to SO 2 , while the nitrogen compounds are converted to a mixture of different nitrogen oxides, mainly NO, and to N 2 .
  • the CO2, SO 2 and NO are first quantified in the IR detector, which is part of the TOC device 1.
  • the sample gas is passed after leaving the TOC device 1 through a reduction tube 2, in which the nitrogen oxides are reduced to N 2 . Thereafter, the measurement gas is passed through two adsorption columns 3, 4, of which the first adsorption column 3 adsorbs the SO 2 and the second adsorption column 4 adsorbs the CO 2 .
  • the nitrogen (N 2 ) is then removed in the cold trap 5 from the sample gas by the cold trap is cooled down to -147 ° C. After completion of the combustion, the cold trap 5 is first heated, for which purpose this cold trap 5 is equipped with a corresponding heating device, which is not shown. By this heating, the "frozen" N 2 is released again and in the downstream mass spectrometer 6 isotope distribution
  • the CO 2 trap 4 is now heated, for which purpose it is equipped with a corresponding heating device, which is not shown.
  • the adsorbed CO2 is released and supplied with the carrier gas to the IRMS, where it is analyzed for the isotope distribution 12 C / 13 C.
  • the S0 2 is then desorbed by heating the S0 2 trap 3 and fed to the IRMS 6 to make it 3 to analyze S to the isotopic distribution of 32 S /.
  • FIG. 2 shows the results of a determination of the isotope ratios of TIC (total inorganic carbon - total inorganic carbon) and TOC (total organic carbon - total organic carbon) carried out with the method according to the invention and the device, with a total of seven bar graphs in the overview are shown with the numbers 1 to 7.
  • Drinking water from the region Schweitenmaschinen (district Pfaffenhofen an der Ilm) was used as a sample for the TIC determination (bar chart no. 1).
  • the measured values (hatched bars) measured with the IRMS 6 are indicated in addition to the nominal values resulting from a comparative test using acid expulsion.
  • the isotope ratios for the TOC were determined in solutions of potassium hydrogen phthalate (KHP) (bar chart # 2), trichloroethene (TCE) (bar chart # 3), pentachloroethane (PCE) (bar chart # 4), citric acid (bar chart # 5 ), Caffeine with nitrogen reduction (bargraph # 6), and caffeine without nitrogen reduction (bargraph # 7) were determined and plotted.
  • KHP potassium hydrogen phthalate
  • TCE trichloroethene
  • PCE pentachloroethane
  • citric acid bar chart # 5
  • Caffeine with nitrogen reduction bargraph # 6
  • caffeine without nitrogen reduction was determined and plotted.
  • the measured value of the substances results from comparative measurements on the solid sample, determined by elemental analysis, whereby the desired value is obtained.
  • the bar graphs according to FIG. 2 show that there are practically no deviations between the measured values and the nominal values, with the nominal values being obtained from elementary analysis data. This applies in particular to non-nitrogenous samples (see bar charts Nos. (1) - (5)). For nitrogen-containing samples, a reduction distance is necessary to reduce NO2, since NO2 in the isotope measurement influences the isotope determination of CO 2 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung der Isotopenverhältnisse von Kohlenstoff in Wasserproben, bei dem nach dem Hochtemperaturaufschluss der Probe das entstehende CO2 auf einer Adsorptionssäule (4) gesammelt wird, nach Beendigung der Verbrennung die Adsorptionssäule (4) ausgeheizt wird und das dabei freigesetzte CO2 durch ein Trägergas einem Isotopenverhältnis-Massenspektrometer (6) zugeführt wird, das dadurch gekennzeichnet ist, dass zur zusätzlichen Bestimmung der Isotopenverhältnisse von Stickstoff in der Wasserprobe der gebildete Stickstoff in einer gekühlten Einrichtung (5) nach der Adsorptionssäule (4) gesammelt wird, dass in einer Reaktionsstrecke (2) im Bereich vor der gekühlten Einrichtung (5) bei der Verbrennung gebildete Stickoxide zu Stickstoff reduziert werden und dass die gekühlte Einrichtung (5) bis zur vollständigen Freisetzung des Stickstoffs, aufgeheizt wird und der Stickstoff mit dem Trägergas dem Isotopenverhältnis-Massenspektrometer (6) zugeführt wird. Weiterhin beschreibt die Erfindung eine Vorrichtung zu Durchführung des Verfahrens.

Description

BESTIMMUNG DER ISOTOPENVERHÄLTNISSE VON KOHLENSTOFF UND STICKSTOFF IN
WASSERPROBEN
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung der Isotopenverhältnisse von Kohlenstoff in Wasserproben, bei dem nach dem Hochtemperaturauf- schluss der Probe das entstehende C02 auf einer Adsorptionssäule gesammelt wird, nach Beendigung der Verbrennung die Adsorptionssäule ausgeheizt wird und das dabei freigesetzte CO2 durch ein Trägergas einem Isotopenverhältnis-Massen- spektrometer (IRMS) zugeführt wird. Weiterhin betrifft die Erfindung eine Vorrichtung zur Bestimmung der Isotopenverhältnisse von Kohlenstoff in Wasserproben, mit einem Verbrennungsrohr, einer C02-Adsorptionssäule, die beheizbar ist, und mit einem Isotopenverhältnis-Massenspektrometer, wobei die Anordnung durch ein Trägergas gespült wird, um die zu bestimmenden Bestandteile der Verbrennungsgase dem Isotopenverhältnis-Massenspektrometer zuzuführen.
Stand der Technik
Die Bestimmung der Isotopenverhältnisse von Kohlenstoff in Wasserproben ist immer dann von Interesse, wenn überwiegend aus Wasser bestehende Proben auf ihre Herkunft hin analysiert werden sollen. Außerdem kann die Isotopenanalyse des TOC (gesamter organischer Kohlenstoff) in Wasser Auskunft über den Verursacher von möglicher Grundwasserkontamination geben.
In dem Dokument Gilles St. Jean: "Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser", RAPID COMMUNICATIONS IN MASS
SPECTROMETRY, Rapid Commun. Mass Spectrom. 2003; 17: 419-428, wird die Kopplung eines TOC-Analysators mit einem Isotopen-Massenspektrometer beschrieben. Mit dieser Anordnung wird der organische Kohlenstoff mittels einer erhitz-
BESTÄTIGUNGSKOPIE ten Peroxodisulfatlösung zu C02 oxidiert, das über diverse Reinigungsstufen auf einer GC-Säule aufkonzentriert und danach dem Massenspektrometer zugeführt wird.
In der US 7,213,443 B2 werden ein Verfahren und eine Vorrichtung zum Bereitstellen von Gas für die Isotopen-Verhältnisanalyse angegeben. Das Gas wird aus einem Eluat eines Flüssigkeits-Chromatografen (LC) erzeugt, danach wird das Gas von dem Eluat separiert. Das Gas wird dann einem Infrarot-Massenspektrometer (IRMS) für die Isotopen-Verhältnisanalyse zugeführt. In diesem Dokument wird auch die Kopplung einer HPLC (Hochleistungsflüssigkeits-Chromatografie) mit einem Oxidati- ons-lnterface beschrieben, wobei der TOC (gesamter organischer Kohlenstoff) in der flüssigen Phase zu CO2 oxidiert und danach die Isotopenzusammensetzung untersucht wird. Das Interface besteht aus der Probenzuführung sowie einer Reaktionskammer mit UV-Lampe. Die Oxidation des organischen Kohlenstoffs wird dabei durch die UV-Strahlung der Lampe realisiert.
Das Dokument Huygens, et al.: "Advances in coupling a commercial total organic carbon analyser with an isotope ratio mass spectrometer to determine the isotopic Signal of the total dissolved nitrogen pool", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Rapid Commun. Mass Spectrom. 2005; 19: 3232-3238, beschreibt ein Verfahren, um 15N des gesamten gelösten Stickstoffs (TDN) zu lösen. Das Verfahren arbeitet mit einer kommerziellen TOC-Analysiereinrichtung, die mit einem Elementaranalysierer/Isotopenverhältnis-Massenspektrometer (EA-IRMS) verbunden ist. Diese Analysiereinrichtung wird eingesetzt, um die Stickoxide zu reduzieren und um die Gaskomponenten voneinander zu trennen. Die Umsetzung des gebundenen Stickstoffs zu Stickoxiden findet im TOC-Analysator statt, wobei die Umsetzung bei hoher Temperatur (>680°C) an einem Katalysator stattfindet.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine entsprechende Vorrichtung zu schaffen, mit denen neben der Bestimmung der Isotopenverhältnisse von Kohlenstoffen in Wasserproben zusätzliche Aussagen zu den Isotopenverhältnissen von Stickstoff in dieser Probe gemacht werden können, ohne dass hierzu zusätzliche aufwändige Verfahrensabläufe sowie entsprechende Vorrichtungen notwendig werden. Gelöst wird diese Aufgabe bei einem Verfahren der eingangs genannten Art dadurch, dass zur zusätzlichen Bestimmung der Isotopenverhältnisse von Stickstoff in der Wasserprobe der gebildete Stickstoff in einer gekühlten Einrichtung nach der Adsorptionssäule gesammelt wird, dass in einer Reaktionsstrecke im Bereich vor der gekühlten Einrichtung bei der Verbrennung gebildete Stickoxide zu Stickstoff reduziert werden und dass die gekühlte Einrichtung, bis zur vollständigen Freisetzung des Stickstoffs, aufgeheizt wird und der Stickstoff mit dem Trägergas dem Isotopenver- hältnis-Massenspektrometer (IRMS) zugeführt wird.
Die zur Lösung der Aufgabe eingesetzte Vorrichtung umfasst ein Verbrennungsrohr, eine C02-Adsorptionssäule, die beheizbar ist, eine gekühlte Einrichtung, die nach der C02-Adsorptionssäule angeordnet ist, zum Sammeln des aus der Wasserprobe freigegebenen Stickstoffs, eine Reaktionsstrecke vor der gekühlten Einrichtung, um die bei der Verbrennung gebildeten Stickoxide zu Stickstoff zu reduzieren, und ein Isoto- penverhältnis-Massenspektrometer (IRMS), wobei die Anordnung durch ein Trägergas gespült wird, um die zu bestimmenden Bestandteile der Verbrennungsgase dem Isotopenverhältnis-Massenspektrometer (IRMS) zuzuführen.
Durch das erfindungsgemäße Verfahren sowie die entsprechende Vorrichtung ist es somit möglich, in einem Verfahrensschritt sowohl die Isotopenverhältnisse des Kohlenstoffs als auch des Stickstoffs zu bestimmen. Durch die eingesetzte Hochtempe- raturoxidation ist außerdem gewährleistet, dass tatsächlich der gesamte im Wasser vorhandene organische Kohlenstoff zu CO2 umgesetzt wird und nicht nur der gelöste Anteil (DOC = dissolved organic carbon).
Als bevorzugte Maßnahme wird die gekühlte Einrichtung durch eine Kühlfalle gebildet. Eine solche Kühlfalle, bei der es sich beispielsweise um ein gekühltes Molekularsieb handelt, hat den Vorteil, dass das Trappen des Stickstoffs bei höheren Temperaturen vorgenommen werden kann als bei Einsatz einer reinen gekühlten Vorrichtung.
Um die vollständige Umsetzung auch stabiler Verbindungen sicherzustellen, sollte die Verbrennung bei Temperaturen von > 800 °C durchgeführt werden. Falls die Verbrennung bei niedrigeren Temperaturen abläuft, ist nicht sichergestellt, dass eine vollständige Oxidation aller organischen Verbindungen stattfindet. Für die Bestim- mung der Isotopenverhältnisse des Schwefels ist eine Verbrennungstemperatur von 1150 °C zu wählen.
Für die zusätzliche Bestimmung der Isotopenverhältnisse von Schwefel sollte das bei der Verbrennung gebildete SO2 auf einer zusätzlichen Adsorptionsfalle adsorbiert werden und das adsorbierte SO2 sollte als letzte Isotopenbestimmung durch Aufheizen der Adsorptionsfalle dem Isotopenverhältnis-Massenspektrometer (IRMS) zugeführt werden. Hierdurch ist gewährleistet, dass das S02 quantitativ dem Mas- senspektrometer zugeführt wird. Vorrichtungsgemäß ist, wie vorstehend erwähnt, daher eine zusätzliche Adsorptionsfalle vorgesehen, die vor der C02-Adsor- ptionssäule, in Strömungsrichtung des Trägergases gesehen, angeordnet ist.
Weitere Ziele, Merkmale sowie vorteilhafte Anwendungsmöglichkeiten der vorliegenden Erfindung werden anhand der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnung erläutert. Dabei bilden sämtliche wörtlich beschriebenen und/oder bildlich dargestellten Merkmale in ihrer sinnvollen Kombination den Gegenstand der vorliegenden Erfindung; auch unabhängig von den Patentansprüchen und deren Rückbezügen.
In der Zeichnung zeigt
Figur 1 schematisch den Aufbau einer erfindungsgemäßen Vorrichtung und
Figur 2 eine Übersicht von mit der erfindungsgemäße Vorrichtung durchgeführten Messungen in Form von Balkendiagrammen.
Die Vorrichtung, wie sie die Figur 1 zeigt, umfasst einen TOC-Analysator 1 , der nur schematisch dargestellt ist. Dieser TOC-Analysator 1 umfasst ein beheizbares Verbrennungsrohr, eine Probenaufnahme, die in das Verbrennungsrohr mit der wässri- gen, zu analysierenden Probe eingesetzt werden kann, und eine Heizeinrichtung, die so ausgelegt ist, dass das Verbrennungsrohr im Bereich der Probe auf etwa 1150 °C aufgeheizt werden kann, um die Probe bei dieser Temperatur zu verbrennen.
Weiterhin ist das Verbrennungsrohr mit einem Anschluss für ein Trägergas ausgestattet. In der gezeigten Vorrichtung wird als Trägergas Helium zugeführt. Außerdem enthält der TOC-Analysator eine mehrstufige Trocknung, um die vollständige Entfernung des Wassers aus dem Trägergas zu gewährleisten. Der Trägergasstrom wird über einen dem IR-Detektor vorgeschalteten Massflow-Controller vergleichmäßigt. Die bei der Verbrennung entstandene Menge an C02, S02 und NO wird mittels IR- Detektion bestimmt.
Wie durch die einzelnen Pfeile angedeutet ist, ist der TOC-Analysator 1 strömungsmäßig zunächst mjt einem Reduktionsrohr 2 verbunden, das ausgangsseitig mit einer SO2-Falle 3 verbunden ist. Die SO2-Falle 3 ist wiederum ausgangsseitig mit einer CO2-Falle 4 verbunden. Sowohl die SO2-Falle 3 als auch die CO2-Falle 4 sind als U- Rohr ausgeführt. Beide Fallen sind mit geeigneten Adsorptionsreagenzien gefüllt..
An die CO2-Falle 4 schließt sich eine Kühlfalle 5 an. Das aus der Kühlfalle 5 austretende Gas wird dann einem Isotopenverhältnis-Massenspektrometer (IRMS) 6 zugeführt.
Der Ablauf des mit dieser Vorrichtung vorgenommenen Verfahrens ist wie folgt.
Die wässrige Probe wird in den TOC-Analysator 1 eingegeben. Die Menge der Probe kann sich im Bereich von 0,1 - 1 ,5 ml bewegen. Die Probe wird dann bei 1150 °C verbrannt. Hierbei wird der in der Probe enthaltene, organische Kohlenstoff zu CO2 umgesetzt. Diese Umsetzung findet in Helium als Trägergas an CuO als Oxidations- mittel, das in das Verbrennungsrohr des TOC-Analysators eingefüllt ist, statt.
Die in der Probe enthaltenen Schwefelverbindungen werden zu SO2 umgesetzt, während die Stickstoffverbindungen zu einer Mischung aus unterschiedlichen Stickoxiden, hauptsächlich NO, sowie zu N2, umgesetzt werden.
Das CO2, SO2 sowie das NO werden zunächst im IR-Detektor, der Teil des TOC- Gerätes 1 ist, quantifiziert.
Das Messgas wird nach Verlassen des TOC-Gerätes 1 durch ein Reduktionsrohr 2 geleitet, in dem die Stickoxide zu N2 reduziert werden. Danach wird das Messgas durch zwei Adsorptionssäulen 3, 4 geleitet, von denen die erste Adsorptionssäule 3 das SO2 und die zweite Adsorptionssäule 4 das CO2 adsorbiert. Der Stickstoff (N2) wird anschließend in der Kühlfalle 5 aus dem Messgas entfernt, indem die Kühlfalle auf -147 °C heruntergekühlt wird. Nach Beendigung der Verbrennung wird zunächst die Kühlfalle 5 aufgeheizt, wozu diese Kühlfalle 5 mit einer entsprechenden Heizeinrichtung, die nicht dargestellt ist, ausgestattet ist. Durch dieses Aufheizen wird das "eingefrorene" N2 wieder freigesetzt und im nachgeschalteten Massenspektrometer 6 auf Isotopenverteilung
(14N/15N) analysiert.
Anschließend wird nun die CO2-Falle 4 beheizt, wozu diese mit einer entsprechenden Heizeinrichtung, die nicht dargestellt ist, ausgestattet ist. Durch dieses Aufheizen wird das adsorbierte CO2 freigesetzt und mit dem Trägergas dem IRMS zugeführt, wo es auf die Isotopenverteilung 12C/13C analysiert wird.
In einem letzten Schritt wird dann das S02 durch Aufheizen der S02-Falle 3 desor- biert und dem IRMS 6 zugeführt, um es auf die Isotopenverteilung 32S/3 S zu analysieren.
Mit diesem neuartigen Verfahren ist es somit möglich, auch die Isotopenverhältnisse von Stickstoff einer wässrigen Probe zu bestimmen, ohne dass hierzu eine zusätzliche Apparatur eingesetzt werden müsste.
Bei dem erfindungsgemäßen Verfahren sowie der entsprechenden Vorrichtung, wie sie vorstehend anhand der Figur 1 beschrieben sind, sind die Anordnung des Reduktionsrohrs 2, der S02-Falle 3, der C02-Falle 4 sowie der Kühlfalle 5 und das entsprechende Aufheizen der einzelnen Fallen 3, 4 und 5 in der vorstehend beschriebenen Reihenfolge wesentlich, um die jeweiligen Isotopenverteilungen 12C/13C und 32S/34S zu analysieren.
Die Übersicht der Figur 2 zeigt die Ergebnisse einer mit dem erfindungsgemäßen Verfahren sowie der Vorrichtung durchgeführten Bestimmung der Isotopenverhältnisse von TIC (total inorganic carbon - gesamter anorganischer Kohlenstoff) und TOC (total organic carbon - gesamter organischer Kohlenstoff), wobei in der Übersicht insgesamt sieben Balkendiagramme mit den Nummern 1 bis 7 dargestellt sind. Als Probe für die TIC-Bestimmung wurde Trinkwasser aus der Region Schweitenkir- chen (Landkreis Pfaffenhofen an der Ilm) verwendet (Balkendiagramm Nr. 1). In der Übersicht sind neben den Sollwerten, die sich aus einer Vergleichsuntersuchung mittels Säureaustreiben ergeben, die mit dem IRMS 6 gemessenen Messwerte (schraffierte Balken) angegeben. Die Isotopenverhältnisse für den TOC wurden in Lösungen von Kaliumhydro- genphthalat (KHP) (Balkendiagramm Nr. 2), Trichlorethen (TCE) (Balkendiagramm Nr. 3), Pentachlorethan (PCE) (Balkendiagramm Nr. 4), Zitronensäure (Balkendiagramm Nr. 5), Coffein mit Stickstoffreduktion (Balkendiagramm Nr. 6) und Coffein ohne Stickstoffreduktion (Balkendiagramm Nr. 7) bestimmt und aufgetragen. Die Balkenlänge in dem Diagramm gibt Ö13C in %o VPDB (VPDB = Vienna Peedee Belomite) an.
Der Messwert von den Substanzen ergibt sich aus Vergleichsmessungen an der Feststoffprobe, bestimmt durch Elementaranalyse, wodurch der Sollwert erhalten wird.
Die Balkendiagramme gemäß Figur 2 zeigen, dass zwischen den Messwerten und den Sollwerten, wobei die Sollwerte aus Elementaranalysedaten erhalten sind, praktische keine Abweichungen vorhanden sind. Dieses gilt insbesondere für nicht stickstoffhaltige Proben (siehe Balkendiagramme Nr.'n (1) - (5)). Für stickstoffhaltige Proben ist eine Reduktionsstrecke notwendig, um NO2 zu reduzieren, da NO2 in der Isotopenmessung die Isotopenbestimmung von CO2 beeinflusst.

Claims

Patentansprüche
1. Verfahren zur Bestimmung der Isotopenverhältnisse von Kohlenstoff in Was- serproben, bei dem nach dem Hochtemperaturaufschluss der Probe das entstehende CO2 auf einer Adsorptionssäule gesammelt wird, nach Beendigung der Verbrennung die Adsorptionssäule ausgeheizt wird und das dabei freigesetzte CO2 durch ein Trägergas einem Isotopenverhältnis-Massenspektro- meter zugeführt wird, dadurch gekennzeichnet, dass zur zusätzlichen Bestimmung der Isotopenverhältnisse von Stickstoff in der Wasserprobe der gebildete Stickstoff in einer gekühlten Einrichtung nach der Adsorptionssäule gesammelt wird, dass in einer Reaktionsstrecke im Bereich vor der gekühlten Einrichtung bei der Verbrennung gebildete Stickoxide zu Stickstoff reduziert werden und dass die gekühlte Einrichtung, bis zur vollständigen Freisetzung des Stickstoffs, aufgeheizt wird und der Stickstoff mit dem Trägergas dem Isotopenver- hältnis-Massenspektrometer zugeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die gekühlte Einrichtung durch eine Kühlfalle gebildet ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die gekühlte Einrichtung durch eine Adsorptionsfalle gebildet ist.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Verbrennung bei 1150 °C durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur zusätzlichen Bestimmung der Isotopenverhältnisse von Stickstoff das bei der Verbrennung gebildete SO2 auf einer zusätzlichen Adsorptionsfalle adsor- biert wird und das adsorbierte SO2 als letzte Isotopenbestimmung durch Aufheizen der Adsorptionsfalle dem Isotopenverhältnis-Massenspektrometer (IRMS) zugeführt wird.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Adsorption des S02 in Strömungsrichtung des Trägergases gesehen vor der Adsorptionssäule vorgenommen wird.
Vorrichtung zur Bestimmung der Isotopenverhältnisse von Kohlenstoff in Wasserproben, mit einem Verbrennungsrohr, einer C02-Adsorptionssäule (4), die beheizbar ist, einer gekühlten Einrichtung (5), die nach der C02-Adsorptionssäule (4) angeordnet ist, zum Sammeln des aus der Wasserprobe freigegebenen Stickstoffs, einer Reaktionsstrecke (2) vor der gekühlten Einrichtung (5), um die bei der Verbrennung gebildeten Stickoxide zu Stickstoff zu reduzieren, und einem Isotopenverhältnis-Massenspektrometer (6), wobei die Anordnung durch ein Trägergas gespült wird, um die zu bestimmenden Bestandteile der Verbrennungsgase dem Isotopenverhältnis-Massenspektrometer (6) zuzuführen.
Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass eine zusätzliche Adsorptionsfalle (3) vorgesehen ist, die vor der C02-Adsorptionssäule (4), in Strömungsrichtung des Trägergases gesehen, angeordnet ist.
PCT/EP2011/003412 2010-07-27 2011-07-08 Bestimmung der isotopenverhältnisse von kohlenstoff und stickstoff in wasserproben WO2012016624A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010032396 DE102010032396A1 (de) 2010-07-27 2010-07-27 Verfahren und Vorrichtung zur Bestimmung der Isotopenverhältnisse von Kohlenstoff in Wasserproben
DE102010032396.9 2010-07-27

Publications (1)

Publication Number Publication Date
WO2012016624A1 true WO2012016624A1 (de) 2012-02-09

Family

ID=44503688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/003412 WO2012016624A1 (de) 2010-07-27 2011-07-08 Bestimmung der isotopenverhältnisse von kohlenstoff und stickstoff in wasserproben

Country Status (2)

Country Link
DE (1) DE102010032396A1 (de)
WO (1) WO2012016624A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190871A (ja) * 2013-03-27 2014-10-06 Taiyo Nippon Sanso Corp 重酸素水の全有機体炭素の測定方法
WO2015070872A1 (en) * 2013-11-13 2015-05-21 Nanonord A/S A method for quantitative determination of nitrogen in an aqueous fluid
GB2533398A (en) * 2014-12-19 2016-06-22 Isoprime Ltd Isotope analysis
CN109856308A (zh) * 2019-04-01 2019-06-07 中国地质科学院矿产资源研究所 一种分析氮氧同位素组成的方法及装置
CN110208319A (zh) * 2019-06-05 2019-09-06 北京诺德泰科仪器仪表有限公司 一种杜马斯定氮仪反应管
CN111060634A (zh) * 2019-12-31 2020-04-24 东华理工大学 一种测定水中溶解性有机碳和溶解性总氮同位素比值的方法
KR20210012644A (ko) * 2019-07-26 2021-02-03 한국과학기술연구원 화학사고 후 안정성동위원소 분석을 통한 토양내 화학물질 저감 양상 모니터링을 위한 모의 실험 시스템
CN112362721A (zh) * 2019-07-26 2021-02-12 中国石油化工股份有限公司 连续流模式下检测气体中硫同位素的装置和方法
CN112666245A (zh) * 2020-12-18 2021-04-16 中国科学院地球环境研究所 天然水中铵态氮吸附包的制备方法及其同位素的检测方法
CN113945663A (zh) * 2021-10-22 2022-01-18 自然资源部第三海洋研究所 一种toc-irms联用技术测定水中溶解有机碳同位素方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014002266B3 (de) * 2014-02-20 2015-03-19 Elementar Analysensysteme Gmbh Verfahren und Vorrichtung zur Analyse von Stickstoff (N) in einer Probe
CN111983007A (zh) * 2020-08-27 2020-11-24 上海化工研究院有限公司 一种用于测定硝酸或硝酸盐15n同位素丰度的方法与装置
CN114137058A (zh) * 2021-11-04 2022-03-04 山东省海洋资源与环境研究院(山东省海洋环境监测中心、山东省水产品质量检验中心) 一种大型水母种间食物竞争关系的调查方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419167A1 (de) * 1989-09-20 1991-03-27 FISONS plc Analysator von Isotopenzusammensetzungen
EP1707253A1 (de) * 2005-03-29 2006-10-04 Elementar Analysensysteme GmbH Verfahren und Vorrichtung zur simultanen Bestimmung von Isotopenverhältnissen leichter Elemente
US7213443B2 (en) 2002-04-16 2007-05-08 University Of Bern Process and apparatus for providing gas for isotopic ratio analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419167A1 (de) * 1989-09-20 1991-03-27 FISONS plc Analysator von Isotopenzusammensetzungen
US7213443B2 (en) 2002-04-16 2007-05-08 University Of Bern Process and apparatus for providing gas for isotopic ratio analysis
EP1707253A1 (de) * 2005-03-29 2006-10-04 Elementar Analysensysteme GmbH Verfahren und Vorrichtung zur simultanen Bestimmung von Isotopenverhältnissen leichter Elemente

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRIAN FRY ET AL: "Cryoflow: Cryofocusing Nanomole Amounts of CO2, N2, and SO2 from an Elemental Analyzer for Stable Isotopic Analysis", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, HEYDEN, LONDON, GB, vol. 10, no. 8, 4 December 1998 (1998-12-04), pages 953 - 958, XP007919671, ISSN: 0951-4198, DOI: 10.1002/(SICI)1097-0231(19960610)10:8<953::AID-RCM534>3.0.CO;2-0 *
GILLES ST.JEAN: "Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, RAPID COMMUN. MASS SPECTROM, vol. 17, 2003, pages 419 - 428
HUYGENS ET AL.: "Advances in coupling a commercial total organic carbon analyser with an isotope ratio mass spectrometer to determine the isotopic signal of the total dissolved nitrogen pool", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, RAPID COMMUN. MASS SPECTROM., vol. 19, 2005, pages 3232 - 3238, XP055010924 *
HUYGENS ET AL.: "Advances in coupling a commercial total organic carbon analyser with an isotope ratio mass spectrometer to determine the isotopic signal of the total dissolved nitrogen pool", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, RAPID COMMUN. MASS SPECTROM., vol. 19, 2005, pages 3232 - 3238, XP055010924, DOI: doi:10.1002/rcm.2178
POLISSAR P J ET AL: "Measurement of 13C and 15N Isotopic Composition on Nanomolar Quantities of C and N", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 81, no. 2, 1 January 2008 (2008-01-01), pages 755 - 763, XP002571710, ISSN: 0003-2700, [retrieved on 20081210], DOI: 10.1021/AC801370C *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190871A (ja) * 2013-03-27 2014-10-06 Taiyo Nippon Sanso Corp 重酸素水の全有機体炭素の測定方法
WO2015070872A1 (en) * 2013-11-13 2015-05-21 Nanonord A/S A method for quantitative determination of nitrogen in an aqueous fluid
GB2533398A (en) * 2014-12-19 2016-06-22 Isoprime Ltd Isotope analysis
US10613072B2 (en) 2014-12-19 2020-04-07 Elementar UK Ltd. Isotope analysis
CN109856308B (zh) * 2019-04-01 2024-04-02 中国地质科学院矿产资源研究所 一种分析氮氧同位素组成的方法及装置
CN109856308A (zh) * 2019-04-01 2019-06-07 中国地质科学院矿产资源研究所 一种分析氮氧同位素组成的方法及装置
CN110208319A (zh) * 2019-06-05 2019-09-06 北京诺德泰科仪器仪表有限公司 一种杜马斯定氮仪反应管
KR20210012644A (ko) * 2019-07-26 2021-02-03 한국과학기술연구원 화학사고 후 안정성동위원소 분석을 통한 토양내 화학물질 저감 양상 모니터링을 위한 모의 실험 시스템
CN112362721A (zh) * 2019-07-26 2021-02-12 中国石油化工股份有限公司 连续流模式下检测气体中硫同位素的装置和方法
CN112362721B (zh) * 2019-07-26 2024-04-16 中国石油化工股份有限公司 连续流模式下检测气体中硫同位素的装置和方法
KR102242839B1 (ko) 2019-07-26 2021-04-21 한국과학기술연구원 화학사고 후 안정성동위원소 분석을 통한 토양내 화학물질 저감 양상 모니터링을 위한 모의 실험 시스템
CN111060634A (zh) * 2019-12-31 2020-04-24 东华理工大学 一种测定水中溶解性有机碳和溶解性总氮同位素比值的方法
CN112666245B (zh) * 2020-12-18 2024-01-09 中国科学院地球环境研究所 天然水中铵态氮吸附包的制备方法及其同位素的检测方法
CN112666245A (zh) * 2020-12-18 2021-04-16 中国科学院地球环境研究所 天然水中铵态氮吸附包的制备方法及其同位素的检测方法
CN113945663A (zh) * 2021-10-22 2022-01-18 自然资源部第三海洋研究所 一种toc-irms联用技术测定水中溶解有机碳同位素方法

Also Published As

Publication number Publication date
DE102010032396A1 (de) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2012016624A1 (de) Bestimmung der isotopenverhältnisse von kohlenstoff und stickstoff in wasserproben
EP1707253B1 (de) Verfahren und Vorrichtung zur Bestimmung von Isotopenverhältnissen leichter Elemente in einem Analyseablauf
DE69016900T2 (de) Analysator von Isotopenzusammensetzungen.
DE102014012914A1 (de) Verfahren sowie Analysegeräte für die wahlweise Analyse von einem oder mehreren der Elemente Kohlenstoff (C), Schwefel (S), Stickstoff (N), Sauerstoff (O) und Wasserstoff (H) in Metallen oder anderen anorganischen Proben
DE69909939T2 (de) Analysegerät zur kontinuierlichen messung von h2s in einem gas und dessen verwendung in einer vorrichtung zur regelung der injizierten luftmenge in einen oxydationsreaktor zur umsetzung von h2s zu schwefel
DE10216975B4 (de) Verfahren und Vorrichtung zur Bereitstellung von Gas für die Isotopenverhältnisanalyse
EP0255856A2 (de) Verfahren und Einrichtung zur Messung der Aldehydkonzentration in Abgasen
EP2210088B1 (de) Verfahren und vorrichtung zur isotopenverhältnisanalyse
WO2012025374A1 (de) Verfahren und vorrichtung zur online-bestimmung des isotopenverhältnisses von chlor, brom oder schwefel in einer organischen probe
EP2210087B1 (de) Verfahren und vorrichtung zur isotopenverhältnisanalyse
DE19956632C1 (de) Verfahren und Vorrichtung zur Herstellung von Standardgasen für die Bestimmung von Isotopenverhältnissen
DE10325702B3 (de) Abgasmessvorrichtung
DE19632847C2 (de) Gas-Analysegerät
DE19607062A1 (de) Verfahren zur Konzentrationsbestimmung eines Gases
DE102011006452A1 (de) Verfahren zur chromatographischen Analyse eines Wasserstoff enthaltenden Gasgemischs
DE102008016583A1 (de) Vorrichtung und Verfahren zur Bildung von CO2, N2 und/oder SO2 aus einer Probe
DE10315864A1 (de) Vorrichtung und Verfahren zur Konzentrationsbestimmung mindestens einer Gaskomponente in einem Atemgasgemisch
DE102014002266B3 (de) Verfahren und Vorrichtung zur Analyse von Stickstoff (N) in einer Probe
DE102013019697B4 (de) Vorrichtung und Verfahren zur Bestimmung des Gehalts an Stickstoff in einer Probe
DE19735927C2 (de) Verfahren und Vorrichtung zur automatisierten ·15·N-Bestimmung von ammonium-, nitrat- und nitrithaltigen wäßrigen Lösungen
DE10028391B4 (de) Anordnung zur Verbrennung von Mineralölproben und zur Analyse der Spureninhaltsstoffe
EP0421291B1 (de) Anordnung zur spektroskopischen Messung der Konzentration mehrerer Komponenten eines Gasgemisches
DE10035409B4 (de) Differentielle Thermodesorption für Gassensorsysteme
DE102006015258B3 (de) Vorrichtung und Verfahren zur gaschromatographischen Trennung von Substanzen
EP1225447A2 (de) Verfahren zur TC- und TNb- Messung bei Wasserproben sowie Katalysator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11746443

Country of ref document: EP

Kind code of ref document: A1