WO2012015048A1 - Series resonant dc/dc conversion device and power conversion method - Google Patents

Series resonant dc/dc conversion device and power conversion method Download PDF

Info

Publication number
WO2012015048A1
WO2012015048A1 PCT/JP2011/067522 JP2011067522W WO2012015048A1 WO 2012015048 A1 WO2012015048 A1 WO 2012015048A1 JP 2011067522 W JP2011067522 W JP 2011067522W WO 2012015048 A1 WO2012015048 A1 WO 2012015048A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic energy
switches
switch
terminal
inductor
Prior art date
Application number
PCT/JP2011/067522
Other languages
French (fr)
Japanese (ja)
Inventor
嶋田 隆一
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Publication of WO2012015048A1 publication Critical patent/WO2012015048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a series resonance DC / DC converter and a power conversion method.
  • MERS Magnetic Energy Recovery Switch
  • Patent Document 1 discloses a low-loss DC / AC power converter that can supply AC power from a DC voltage source to a load or DC power from an AC voltage source to a load using the MERS. is there.
  • This DC / AC power converter forms a series circuit with the MERS and an AC power supply or an AC load, forms an AC inductor connected between the AC terminals of the MERS, a DC power supply or a DC load, and forms a series circuit with the MERS. And a DC inductor connected between the DC terminals.
  • This DC / AC power converter can turn on / off a reverse conductive semiconductor switch of MERS, for example, to charge a secondary battery from an AC power supply or supply AC power from a secondary battery to a load. it can.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a series resonance DC / DC converter and a power conversion method capable of direct current / direct current (DC / DC) conversion.
  • a series resonant DC / DC converter includes: A first magnetic energy regenerative switch; a second magnetic energy regenerative switch; and one or more inductors for storing magnetic energy,
  • the first magnetic energy regeneration switch accumulates electric power supplied from a first power source as first electrostatic energy
  • the one or more inductors for storing magnetic energy store the first electrostatic energy stored by the first magnetic energy regeneration switch as first magnetic energy
  • the second magnetic energy regenerative switch stores the first magnetic energy stored in the one or more magnetic energy storage inductors as second electrostatic energy, and stores the stored second electrostatic energy.
  • Supplying the first load Thus, the first conversion is performed by converting the power supplied from the first power source and supplying the power to the first load.
  • a series resonant DC / DC converter provides:
  • Each of the first and second terminals, the third terminal, and the fourth terminal includes a current path, and switches each current path on and off in response to a control signal supplied thereto.
  • a first switch and a second switch that conduct substantially in both directions when turned on, and substantially conduct only in one direction from the predetermined end to the other end of the current path when turned off.
  • Each of which includes a first and second rectifier elements each having a current path substantially conducting only in one direction from the predetermined end to the other end, and a capacitor.
  • the one end of the first rectifier element and the other end of the second switch are connected to the second terminal, and the one end of the first switch and the other end of the second rectifier element are connected to the second terminal.
  • 3 terminals with the one end of the capacitor and the other end of the first rectifying element The other end of the first switch is connected to the fourth terminal, and the other end of the capacitor, the one end of the second switch, and the one end of the second rectifying element are connected to the fourth terminal.
  • An energy regeneration switch 1st and 2nd AC input and 1st and 2nd DC output are provided, The electric power input from between the 1st and 2nd AC input is rectified, Between the 1st and 2nd AC output A rectifier that outputs from A series circuit is formed with an external DC power supply, one end of the series circuit is connected to the third terminal of the magnetic energy regeneration switch, and the other end of the series circuit is connected to the fourth terminal of the magnetic energy regeneration switch.
  • a first inductor connected;
  • a second circuit in which a series circuit is formed with an external DC load, one end of the series circuit is connected to a first DC output of the rectifier, and the other end of the series circuit is connected to a second DC output of the rectifier.
  • An inductor The second terminal of the magnetic energy regenerative switch and the first AC input of the rectifier are electrically connected, and the second AC input of the rectifier and the first terminal of the magnetic energy regenerative switch Between the second terminal of the magnetic energy regenerative switch and the first AC input of the rectifier, or the second AC input of the rectifier and the magnetic energy regenerative switch.
  • a third inductor that stores magnetic energy by a current flowing between the first terminal and the first inductor;
  • a control signal for turning on and off each current path of the first and second switches of the magnetic energy regenerative switch and a control signal for turning off are supplied to the control terminals of the first and second switches of the magnetic energy regenerative switch.
  • a control unit The control unit repeats control for simultaneously turning on and off the first and second switches of the magnetic energy regeneration switch.
  • a power conversion method includes: Converting power supplied from a power source into first electrostatic energy; Converting the first electrostatic energy into magnetic energy; Converting the magnetic energy into second electrostatic energy; Supplying the second electrostatic energy to a load; including.
  • DC / DC conversion can be performed.
  • FIG. 1 is a circuit diagram showing a configuration of a DC / DC converter according to a first embodiment of the present invention. It is a circuit diagram of the prior art for demonstrating the difference with the conventional DC / DC converter shown in FIG. It is a circuit diagram of the prior art for demonstrating the difference with the conventional DC / DC converter shown in FIG.
  • FIG. 2 is a circuit diagram showing a part of the DC / DC converter of FIG. 1 for explaining a difference from the conventional DC / DC converter shown in FIG. 1. It is a figure for demonstrating the operation
  • FIG. 6 is a diagram for explaining the relationship between the time change of the power supply, the time change of the power supplied from the battery on the power transmission side to the battery on the power receiving side, and the transition of the logic state of the gate signals SGGV1, SGGX1, SGGV2, and SGGX2.
  • (A) to (c) are the DC / DC converters of FIG. 1, the time variations of the current flowing through the two DC reluctances and the inductor when the voltages on the power receiving side and the power transmission side are substantially equal, and the DC / DC converter.
  • FIG. 6 is a diagram for explaining the relationship between the time change of the power supply, the time change of the power supplied from the battery on the power transmission side to the battery on the power receiving side, and the transition of the logic state of the gate signals SGGV1, SGGX1, SGGV2, and SGGX2. .
  • (A)-(c) is a figure for demonstrating that the DC / DC converter of FIG. 1 can reversely convert. It is a figure which shows the structure of the modification of the DC / DC converter of FIG. It is a figure which shows the structure of the modification of the DC / DC converter of FIG. (A) to (c) are the DC / DC converter of FIG.
  • FIG. 36 is a diagram for explaining a change in the amount of power conversion per unit time when the frequency at which control is repeated is changed in the DC / DC converter of FIG. 35.
  • the DC / DC converter according to the embodiment of the present invention uses two MERSs in series that perform soft switch operation, and resonance of current energy (magnetic energy) and electric field energy (electrostatic energy) controlled by a gate. This phenomenon is used for DC / DC power conversion.
  • the resonance phenomenon is caused by switching of two MERS on and off.
  • MERS ON means a state in which specific (or all) reverse conduction switches among a plurality of reverse conduction switches (details will be described later) included in MERS are turned on
  • MERS OFF is A state in which all of the plurality of reverse conducting switches provided in the MERS are turned off.
  • the route through which current can flow in MERS may differ depending on which specific reverse-conducting switch is used (see the second embodiment). Further, the route through which the current in the MERS can flow differs depending on whether the MERS is on or off.
  • DC / DC converter direct current / direct current converter
  • This DC / DC converter has a configuration in which two MERSs are connected in series via an inductor.
  • the DC / DC converter 10A includes MERSs 101 and 102, inductors Ldc1 and Ldc2, an inductor Lm, and a control unit 200, as shown in FIG.
  • the MERS 101 and 102 are unidirectional MERS as shown in FIG.
  • the MERS 101 in FIG. 1 includes DC terminals DC11 and DC21, AC terminals AC11 and AC21, two reverse conducting semiconductor switches SWV1 and SWX1, two diode units DU1 and DY1, and a capacitor CM1. Yes.
  • the MERS 102 includes DC terminals DC12 and DC22, AC terminals AC12 and AC22, two reverse conducting semiconductor switches SWV2 and SWX2, two diode units DU2 and DY2, and a capacitor CM2. Yes.
  • the reverse conducting semiconductor switch SWV1 includes a diode part DV1 and a switch part SV1.
  • the reverse conducting semiconductor switch SWX1 includes a diode portion DX1 and a switch portion SX1
  • the reverse conducting semiconductor switch SWV2 includes a diode portion DV2 and a switch portion SV2
  • the reverse conducting semiconductor switch SWX2 includes a diode portion DX2.
  • the switch unit SX2 is configured.
  • Each of the switch units SV1, SX1, SV2, and SX2 is, for example, a MOSFET (Metal-Oxide-Silicon-Field-Effect-Transistor), an insulated gate bipolar transistor (IGBT: Insulated-Gate-Bipolar-Transistor), a gate turn-off thyristor (GTO: Gate-Turn-Off-thyristor). ) Or other semiconductor switching elements, each having a current path and a control end.
  • the switch units SV1, SX1, SV2, and SX2 are turned on when a later-described ON signal is supplied to their control ends, and the current path is conducted. When the OFF signal is supplied, the switch sections are turned OFF and the current path is interrupted. To do.
  • MOSFET Metal-Oxide-Silicon-Field-Effect-Transistor
  • IGBT Insulated-Gate-Bipolar-Transistor
  • GTO Gate-Turn-Off-thyristor
  • Each of the diode portions DU1, DV1, DX1, DY1, DU2, DV2, DX2, DY2 is formed of a rectifying element such as a semiconductor diode, for example, and includes a current path that conducts current only in one direction.
  • the diode parts DV1, DX1, DV2, DX2 may be, for example, parasitic diodes of a semiconductor switch constituting the switch part.
  • the diode units DU1, DY1, DU2, and DY2 are semiconductor switches similar to the reverse conducting semiconductor switch SWV1 as an example of a rectifying element, and the switch unit is turned off for a predetermined period, and substantially functions as a diode. It may be a thing.
  • the predetermined period is a period other than the entire period or a period in which current flows in the forward direction of the diode portion.
  • each diode part is made of a semiconductor diode and each switch part is made of an n-channel MOSFET.
  • the drain-source of this MOSFET forms a current path of the switch part, and the gate forms the control end.
  • each of the reverse conducting semiconductor switches has the current flowing in the direction from the drain to the source (forward direction) of the switch unit to the value of the signal applied to the gate of the switch unit. Accordingly, it is turned on (flowing current flowing in the forward direction) / turned off (does not flow current flowing in the forward direction).
  • the diode unit always keeps the on state (current flowing in the reverse direction) as a result of securing the bypass of this current.
  • the anode of the diode unit DU1 and the cathode of the diode unit DX1 are connected to the AC terminal AC11 of the MERS 101.
  • the AC terminal AC21 is connected to the anode of the diode part DV1, the cathode of the diode part DY1, and one end of the inductor Lm.
  • the inductor Lm is an inductor connected for magnetic energy storage that temporarily stores electric power supplied from the MERS 101 as magnetic energy.
  • the cathodes of the diode portions DU1 and DV1, one end of the capacitor CM1, and one end of the inductor Ldc1 are connected to the DC terminal DC11 of the MERS 101.
  • the other end of the inductor Ldc1 is connected to the first DC positive terminal DC + 1 of the DC / DC converter 10A.
  • the anodes of the diode parts DX1 and DY1 and the other end of the capacitor CM1 are connected to the DC terminal DC21 and connected to the first DC negative terminal DC-1 of the DC / DC converter 10A.
  • the positive electrode terminal DC + 1 is connected to the positive electrode of an external secondary battery E1, which is a DC voltage source, and the negative electrode terminal DC-1 is connected to the negative electrode of the secondary battery E2.
  • the secondary battery E1 and the inductor Ldc1 form a series circuit.
  • the inductor Ldc1 stably supplies the power output from the secondary battery E1 to the MERS 101.
  • the inductor Ldc1 is a direct current reactor, for example.
  • the anode of the diode unit DU2, the cathode of the diode unit DX2, and the other end of the inductor Lm are connected to the AC terminal AC12 of the MERS 102.
  • the AC terminal AC22 is connected to the anode of the diode part DV2, the cathode of the diode part DY2, and the AC terminal AC11 of the MERS101.
  • the AC terminal AC22 is connected to a common ground line together with the AC terminal AC11 of the MERS101.
  • the DC terminals DC12 of the MERS 102 are connected to the cathodes of the diode portions DU2 and DV2, one end of the capacitor CM2, and one end of the inductor Ldc2.
  • the other end of the inductor Ldc2 is connected to the second DC positive terminal DC + 2 of the DC / DC converter 10A.
  • the DC terminal DC22 is connected to the anodes of the diode portions DX2 and DY2 and the other end of the capacitor CM2, and is connected to the second DC negative terminal DC-2 of the DC / DC converter 10A.
  • the positive electrode terminal DC + 2 is connected to the positive electrode of an external secondary battery E2, which is a DC voltage source, and the negative electrode terminal DC-2 is connected to the negative electrode of the secondary battery E2.
  • the secondary battery E2 and the inductor Ldc2 form a series circuit, and the inductor Ldc2 stably supplies the power output from the secondary battery E2 to the MERS 102.
  • the inductor Ldc2 is a direct current reactor, for example.
  • Each gate (in order, GV1, GX1, GV2, and GX2) of the switch units SV1, SX1, SV2, and SX2 is a control end of the MERS101 and the MERS102, and all are connected to the control unit 200.
  • the control unit 200 is constituted by a computer including a processor such as a CPU (Central Processing Unit) and a storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), for example.
  • a processor such as a CPU (Central Processing Unit)
  • a storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), for example.
  • the processor 200 reads and executes a program stored in advance in the control unit 200, for example, its own storage device, the processing described later, for example, by repeating a cycle described later, the gates GV1, GX1, GV2, GX2 Processing for supplying gate signals SGGV1, SGGX1, SGGV2, and SGGX2, respectively, is performed.
  • Each gate signal is a signal for instructing on or off of a semiconductor switch including a gate to which the gate signal is supplied.
  • the gate signal (ON signal) when instructing ON takes a voltage (high level voltage) sufficient to turn on the semiconductor switch
  • the gate signal (OFF signal) when instructing OFF is A voltage (low level voltage) sufficient to turn off the semiconductor switch is taken.
  • the gate signal SGGV2 and SGGX2 A time d2 that is to be kept on and is shorter than the time d1 and a frequency f1 for repeating a later-described cycle of the gate signals SGGV1, SGGX1, SGGV2, and SGGX2 are stored in advance.
  • the control unit 200 outputs all the gate signals SGGV1, SGGX1, SGGV2, and SGGX2 as off signals before the operation is started, for example, in response to a user instruction, the times d1 and d2 and the frequency stored in advance.
  • the next cycle C1 is repeated based on f1.
  • control unit 200 simultaneously switches all gate signals SGGV1, SGGX1, SGGV2, and SGGX2 from the off signal to the on signal.
  • the gate signals SGGV2 and SGGX2 are switched from the on signal to the off signal, and after the time (d1-d2) has elapsed, the gate signals SGGV1 and SGGX1 are switched from the on signal to the off signal. Switch.
  • the control unit 200 repeats this cycle C1 at the frequency f1.
  • the output voltage of the secondary battery E1 is 300V
  • the output voltage of the secondary battery E2 is 500V
  • the inductances of the inductors Ldc1 and Ldc2 are both 1 mmH
  • the capacitances of the capacitors CM1 and CM2 are Both are 5 micro F
  • the inductance of the inductor Lm is 0.2 milliH
  • the time d1 is 60 microseconds
  • the time d2 is 30 microseconds
  • the frequency f1 is 7 kHz.
  • the times d1 and d2 and the frequency f1 are adjusted in advance so that is turned off. It is preferable to select the capacitors CM1 and CM2 and the inductors Ldc1 and Ldc2 so that the resonance frequency of the capacitor CM1 and the inductor Ldc1 and the resonance frequency of the capacitor CM2 and the inductor Ldc2 are less than or equal to half of the frequency f1. .
  • Fig. 2 shows a flyback boost of a conventional hard switch
  • Fig. 3 shows a soft switch of the hard switch with MERS
  • Fig. 4 shows a DC power supply and an inductance series circuit connected between the DC terminals of MERS. Shows a circuit (which is also a part of the circuit of this embodiment) to which another inductance is connected.
  • the basic principle of the circuit shown in FIG. 2 is that a current flows from the secondary battery E1 on the low voltage side through the switch to the inductance, the switch is turned off to generate a high voltage in the inductor, and the high voltage side through the diode. It is to supply electric power to the secondary battery E2 irreversibly. If the switch of the boost circuit in FIG. 2 is replaced with MERS as shown in FIG. 3, soft switching becomes possible.
  • the basic principle is to repeat the following two operations alternately.
  • the first operation by turning on MERS, electrostatic energy once accumulated in the capacitor of MERS is discharged to the inductor. As a result, current flows through the inductor and magnetic energy is accumulated.
  • the second operation the current flowing through the inductor is blocked by the MERS capacitor by turning off MERS. Thereby, the magnetic energy of the inductor is recovered by the capacitor.
  • the circuit shown in FIG. 4 corresponds to a part of the DC / DC converter 10A of FIG. 1 other than the MERS 102 and the inductor Ldc2.
  • the secondary power supply E1 When the secondary power supply E1 is connected in a state where the MERS 101 is off, as shown in FIG. 5, the secondary battery E1, the inductor Ldc1, and the capacitor CM1 form a series circuit. As a result, the capacitor CM1 accumulates electric power.
  • the control unit 200 starts control of the reverse conduction switches SWX1 and SWV1 and switches the MERS 101 on and off, the MERS 101 repeats the following operation.
  • the control unit 200 supplies the gate signals SGGV1 and SGGX1 in the pattern described below, so that the MERS 101 will be described in [1] to [4] below, with T1 to T5 described later as one cycle. Repeat the operation.
  • the control unit 200 switches the gate signals SGGV1 and SGGX1 from the off signal to the on signal, as shown in FIG.
  • the reverse conducting semiconductor switches SWV1 and SWX1 are switched from OFF to ON (MERS 101 is switched from OFF to ON).
  • the capacitor CM1 starts discharging, and, as shown in FIG. 6, from the positive electrode of the capacitor CM1, via the reverse conducting semiconductor switch SWV1, the inductance Lm, and the turning on reverse conducting semiconductor switch SWX1, A current flows into the negative electrode.
  • the voltage Vcm1 of the capacitor CM1 decreases as shown in FIG.
  • the electrostatic energy accumulated in the capacitor CM1 is discharged, the current ILm flowing through the inductor Lm is amplified as shown in FIG. 10A, and magnetic energy is accumulated in the inductor Lm.
  • the first path is a path that sequentially passes from the AC terminal AC11 through the current path of the reverse conducting semiconductor switch SWV1 that is on with the diode unit DU1.
  • the second path is a path that sequentially passes through the current path of the reverse conducting semiconductor switch SWX1 that is turned on and the diode part DY1. That is, all the electrostatic energy accumulated in the capacitor CM1 is accumulated as magnetic energy in the inductor Lm.
  • the current ILm does not substantially change as shown in FIG. 10A while the current flows through the path shown in FIG.
  • the voltage Vcm1 does not change substantially.
  • the control unit 200 switches the gate signals SGGV1 and SGGX1 from the on signal to the off signal at time T3 after time d1 after switching the gate signals SGGV1 and SGGX1 from the off signal to the on signal.
  • the reverse conduction type semiconductor switches SWV1 and SWX1 are switched from on to off (MERS 101 is switched from on to off).
  • the currents flowing through the reverse conducting semiconductor switches SWV1 and SWX1 are cut off, and the magnetic energy accumulated in the inductor Lm causes the positive electrode of the capacitor CM1 from the inductor Lm via the diode unit DU1, as shown in FIG.
  • the capacitor CM1 accumulates the magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges, so that the voltage Vcm1 rises as shown in FIG. 10B.
  • the current ILm decreases as shown in FIG.
  • the inductor Lm and the capacitor CM1 generate electrostatic energy and magnetic energy as shown in FIGS. 10 (a) and 10 (b). Let them convert to each other. That is, the control unit 200 switches the reverse conducting semiconductor switches SWV1 and SWX1 from on to off (switches the MERS 101 from on to off), and the magnetic energy stored in the inductor Lm is electrostatically charged to the capacitor CM1 in the form of charges. It is recovered as energy, and the control unit 200 switches the reverse conducting semiconductor switches SWV1 and SWX1 from OFF to ON (MERS101 is switched from OFF to ON), thereby returning the energy recovered in the capacitor CM1 to the inductor Lm again. Realize the effect.
  • the voltage Vcm1 of the capacitor CM1 may have a peak higher than the output voltage 300V of the secondary battery E1. Is possible. In this example, the peak of the voltage Vcm1 exceeds 400V as shown in FIG. In this example, ideally, there is nothing that consumes power including the inductor Lm. Therefore, in the steady state, the power P output from the secondary battery E1 is approximately 0 W as shown in FIG. It becomes. Here, the power P indicates an average power for 1 millisecond.
  • the control unit 200 switches the reverse conducting semiconductor switches SWV1 and SWX1 from on to off with respect to the MERS 101, thereby converting the magnetic energy stored in the inductor Lm into the capacitor CM1 in the form of electrostatic energy. And switching the reverse conducting semiconductor switches SWV1 and SWX1 from OFF to ON, the energy recovered by the capacitor CM1 is returned to the inductor Lm again.
  • control unit 200 switches reverse conduction semiconductor switches SWV ⁇ b> 2 and SWX ⁇ b> 2 on and off for MERS 102 as well.
  • the magnetic energy stored in the inductor Lm is recovered by the capacitor CM2 as electrostatic energy in the form of electric charges. Further, by switching from OFF to ON, the energy recovered by the capacitor CM2 is discharged again to the inductor Lm.
  • control unit 200 discharges the electrostatic energy stored in the capacitors CM1 and CM2 and stores it as magnetic energy in the inductor Lm, and stores the magnetic energy stored in the inductor Lm in the capacitor CM1 or the capacitor CM2.
  • MERS 101 and 102 are controlled so as to be stored as electrostatic energy.
  • the control unit 200 first turns off the reverse conducting semiconductor switches SWV2 and SWX2 of the MERS 102 among the MERSs 101 and 102. Therefore, all or most of the magnetic energy stored in the inductor Lm is charged in the capacitor CM2. As a result, the secondary battery E2 is charged with the power charged in the capacitor CM2.
  • the magnetic energy of the inductor Lm used for charging the secondary battery E2 is supplied from the secondary battery E1 via the inductor Ldc1 and from the secondary battery E2 via the inductor Ldc2. However, since the electric power supplied from the secondary battery E2 returns to the secondary battery E2, the secondary battery E1 substantially charges the secondary battery E2. In this example, since the resonance frequency of the capacitor CM1 and the inductor Ldc1 and the resonance frequency of the capacitor CM2 and the inductor Ldc2 are half of the frequency f1, the power is supplied from the secondary battery E2 to the DC / DC converter 10A. Not supplied.
  • a current ILdc1 indicates a current flowing from the positive electrode of the secondary battery E1 toward the DC terminal DC11 of the MERS 101
  • a current ILdc2 indicates a current flowing from the DC terminal DC12 of the MERS 102 toward the positive electrode of the secondary battery E2.
  • the control unit 200 supplies the gate signals SGGV1, SGGX1, SGGV2, and SGGX2 in the pattern described below, so that the MERS 101 performs a cycle from Ta1 to Ta7, which will be described later, at a predetermined frequency f1.
  • the operations described in [Phase PA1] to [Phase PA6] are periodically performed.
  • control unit 200 switches gate signals SGGV1, SGGX1, SGGV2, and SGGX2 from an off signal to an on signal.
  • the reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 are switched from OFF to ON (MERS 101 and 102 are switched from OFF to ON).
  • the capacitors CM1 and CM2 start discharging, and as shown in FIG. 12, from the positive electrode of the capacitor CM1, the reverse-conducting semiconductor switch SWV1, the inductance Lm, and the reverse-conducting semiconductor switch SWX2 are turned on.
  • a current that flows into the negative electrode and a current that flows from the positive electrode of the capacitor CM2 into the negative electrode of the capacitor CM1 through the reverse conducting semiconductor switch SWV2 and the reverse conducting semiconductor switch SWX1 are generated.
  • the voltage Vcm1 of the capacitors CM1 and CM2 decreases as shown in FIG.
  • the current ILm flowing through the inductor Lm is amplified as shown in FIG. 18A, and magnetic energy is accumulated in the inductor Lm. .
  • the discharge of the capacitor CM2 is completed before the capacitor CM1.
  • the current sequentially passes from the AC terminal AC12 of the MERS 102 through the current path of the diode unit DU2 and the reverse conducting semiconductor switch SWV2.
  • the current flows into the AC terminal AC22 by branching into a route and a route passing through the current path of the reverse conducting semiconductor switch SWX2 that is turned on and the diode part DY2 in order. That is, all of the electrostatic energy accumulated in the capacitor CM2 is accumulated as magnetic energy in the inductor Lm. In this example, the capacitor CM1 has not completed discharging at this time.
  • control unit 200 switches gate signals SGGV2 and SGGX2 from the on signal to the off signal at time Ta3 after time d2 from time Ta1.
  • reverse conduction type semiconductor switches SWV2 and SWX2 are switched from on to off (MERS102 is switched from on to off).
  • time Ta3 is reached immediately after time Ta2.
  • each current flowing through the reverse conducting semiconductor switches SWV2 and SWX2 is cut off, and the magnetic energy accumulated in the inductor Lm causes the positive electrode of the capacitor CM2 from the inductor Lm via the diode unit DU2 as shown in FIG.
  • the capacitor CM2 accumulates the magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges, so that the voltage Vcm2 increases as shown in FIG.
  • the current ILm decreases as shown in FIG.
  • the capacitor CM1 continues to discharge, the voltage Vcm1 decreases as shown in FIG.
  • control unit 200 switches gate signals SGGV1 and SGGX1 from an on signal to an off signal. Thereby, reverse conduction type semiconductor switches SWV1 and SWX1 are switched from on to off (MERS 101 is switched from on to off).
  • the time Ta5 is a state in which a current flows through the inductor Lm (magnetic energy remains). Then, the currents flowing through the reverse conducting semiconductor switches SWV1 and SWX1 are cut off, and the magnetic energy accumulated in the inductor Lm causes the positive electrode of the capacitor CM1 from the inductor Lm via the diode unit DU1, as shown in FIG.
  • the capacitors CM1 and CM2 accumulate the magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges, and the voltages Vcm1 and Vcm2 rise as shown in FIG.
  • the current ILm decreases as shown in FIG.
  • two MERS are connected via an inductor.
  • the electrostatic energy discharged from one MERS is stored as magnetic energy in the inductor in the form of current.
  • the other MERS charges the capacitor by this magnetic energy.
  • Power can be supplied to the load by the power stored in the capacitor. If it demonstrates corresponding to the said embodiment, first, the electric power supplied from the secondary batteries E1 and E2 will be accumulate
  • the output voltage of the secondary battery E2 becomes higher. Therefore, the capacitor CM2 charges the secondary battery E2.
  • the power supplied to the secondary battery E2 is always supplied from the secondary battery E1, as shown in FIG.
  • the conversion power from the secondary battery E1 to the secondary battery E2 is 6300W. If the switching control frequency f1 is changed to 5 kHz, the converted power is 3600 W, and if changed to 10 kHz, the converted power is 11700 W. Since the magnetic energy is interposed between the electrostatic energy accumulated in the capacitor CM1 and the electrostatic energy accumulated in the capacitor CM2, the voltage of the capacitor CM1 may be higher than the voltage of the capacitor CM2. It can be lower. That is, it can be stepped up and down.
  • the conversion power from the secondary battery E1 to the secondary battery E2 is 4800W. If the switching control repetition frequency f1 is changed to 5 kHz, the converted power is 3200 W, and if changed to 10 kHz, the converted power is 7700 W. In this use example, step-down conversion is performed.
  • the reverse conducting semiconductor switches SWV1 and SWX1 are turned off first, power is supplied from the secondary battery E2 to the secondary battery E1.
  • the conversion power from the secondary battery E2 to the secondary battery E1 is 12900W.
  • the time for holding the gate signals SGGV1 and SGGX1 as the on signal is shorter than the time for holding the gate signals SGGV2 and SGGX2 as the on signal.
  • electric power can also be supplied from the secondary battery E2 to the secondary battery E1 (reverse conversion is possible). That is, according to the DC / DC converter 10A according to the first embodiment of the present invention, the time for holding the gate signals SGGV1 and SGGX1 in the on signal and the time for holding the gate signals SGGV2 and SGGX2 in the on signal are appropriate. By selecting this, power can be charged between the secondary battery E1 and the secondary battery E2.
  • the inductor Lm of the DC / DC converter 10A is connected to the inductor Lm1 connected between the AC terminal AC21 of the MERS101 and the AC terminal AC12 of the MERS102, and the AC terminal of the MERS102. It divides
  • the inductors Lm1 and Lm2 preferably have the same inductance. Thereby, even if the secondary batteries E1 and E2 are grounded, the leakage current can be reduced.
  • the inductors Ldc1 and Ldc2 may be arranged symmetrically around the secondary batteries E1 and E2.
  • An inductor Ldc1 is connected between one end of the secondary battery E1 and the DC terminal DC11 of the MERS101, and an inductor Ldc21 connected between the other end of the secondary battery E1 and the DC terminal DC21 of the MERS101.
  • Divide into An inductor Ldc2 is connected between one end of the secondary battery E2 and the DC terminal DC12 of the MERS 102, and an inductor Ldc22 connected between the other end of the secondary battery E2 and the DC terminal DC22 of the MERS 102.
  • the secondary battery E1 is set to 300V
  • the secondary battery E2 is set to 500V
  • the ON time of the gate signals GGV1 and SGGX1 is set to 60 microseconds
  • the ON time of the gate signals SGGV2 and SVVX2 is set to 30 microseconds.
  • the frequency f1 is set to 7 kHz
  • the conversion power from the secondary battery E1 to the secondary battery E2 is about 5900W.
  • the inductor Lm may use the leakage inductance of a two-winding transformer. That is, like the DC / DC converter 10C shown in FIG. 23, for example, the inductor Lm of the DC / DC converter 10B may be replaced with a high-frequency transformer RFT.
  • the high frequency transformer RFT includes a primary coil L1, a secondary coil, and leakage inductances LM1 and LM2.
  • the primary coil L1 and the secondary coil are electromagnetically connected.
  • Leakage inductances LM1 and LM2 are leakage inductances in the coupling between the primary coil L1 and the secondary coil L2. Note that the primary coil L1, the secondary coil L2, and the leakage inductances LM1 and LM2 in the figure are simple models of transformer coupling.
  • the leakage inductance LM1 has one end connected to one end of the primary coil L1 and the other end connected to the AC terminal AC21 of the MERS101.
  • One end of leakage inductance LM2 is connected to one end of secondary coil L2, and the other end is connected to AC terminal AC21 of MERS102.
  • the other end of primary coil L1 is connected to AC terminal AC11 of MERS101.
  • the other end of secondary coil L2 is connected to AC terminal AC22 of MERS102.
  • the leakage inductances LM1 and LM2 do not exist, and one end of the primary coil L1 is connected to the AC terminal AC21, and one end of the secondary coil L2 is connected to the AC terminal AC12.
  • an inductor may be further connected to the leakage inductance LM1 and the leakage inductance LM2.
  • the current Ilink flowing through the first coil LM1 is selected.
  • the relationship between the time change, the time changes of the voltages Vcm1 and Vcm2 of the capacitors CM1 and CM2, and the time transition of the gate signals SGGV1 and SGGX1 and the gate signals SGGV2 and SGGX2 is as shown in FIG.
  • the waveform shown in FIG. 24 is very similar to the waveform shown in FIG. 19 because the circuit is substantially equivalent.
  • the secondary battery E1 is 300V
  • the secondary battery E2 is 300V
  • the ON time of the gate signals GGV1 and SGGX1 is 60 microseconds
  • the ON time of the gate signals SGGV2 and SVVX2 is 30 microseconds
  • the switching control repetition frequency When f1 is set to 7 kHz, the conversion power from the secondary battery E1 to the secondary battery E2 is about 5600W.
  • the power supplied to the power receiving side increases.
  • the conversion power from the secondary battery E1 to the secondary battery E2 is 6300W.
  • the time for holding the gate signals SGGV1 and SGGX1 on is 60 microseconds
  • the time for holding the gate signals SGGV2 and SGGX2 on is 30 microseconds
  • the repetition is 7 kHz
  • FIG. 25 shows the current and voltage of the semiconductor switch when performing step-up conversion to the secondary battery E2.
  • the capacitors CM1 and CM2 and the inductor Lm resonate. Therefore, the higher the resonance frequency, the shorter the time from the time Ta1 to the time Ta2.
  • the capacitors CM1 and / or CM2 and the inductor Lm resonate. Therefore, as these resonance frequencies are higher, each cycle is shorter and the number of times of power conversion per unit time is increased. Therefore, the times d1 and d2 can be set short, and the control repetition frequency f1 can be set high.
  • or 10C the structure of DC / DC converter 10A thru
  • both MERS 101 and 102 do not necessarily perform soft switching.
  • the secondary battery E2 can be charged from the secondary battery E1 via the DC / DC converter 10A.
  • the output of the power supply can be performed with a simple control of turning on the two MERSs 101 and 102 simultaneously and turning off the power receiving side first. Regardless of the voltage, DC power can be supplied in a predetermined direction.
  • the power supply direction can be easily changed. For this reason, bidirectional power supply is possible with simple control. Also, it is turned on when substantially no current flows through the inductor Lm, the MERS 102 switch is turned off when the capacitor CM2 is substantially free of voltage, and the MERS 101 switch is turned off when the capacitor CM1 is substantially free of voltage. By doing so, soft switching is possible.
  • the MERS 101 and 102 are unidirectional MERS. However, MERS 101 and 102 may be full-bridge MERS. In the first embodiment, the current flowing in the inductor Lm is also unidirectional because the current direction uses MERS for one direction. However, if a full bridge type MERS is used, a bidirectional current can be supplied to the inductor Lm. Below, 2nd Embodiment of this invention which has such a structure is described.
  • the MERS 101 is changed to a full bridge type MERS 103 and the MERS 102 is changed to a full bridge type MERS 104 in the DC / DC converter 10A of the first embodiment. It is a thing.
  • the control unit 200 switches the ON signal / OFF signal of each gate signal by alternately repeating the above-described cycle C1 and C2 described later.
  • Other configurations are substantially the same as those of the DC / DC converter 10A of the first embodiment.
  • the MERS 103 has a switch unit SU1 connected in parallel to the diode unit DU1 of the MERS 101 and a switch unit SY1 connected in parallel to the diode unit DY1. Other configurations of the MERS 103 are substantially the same as those of the MERS 101.
  • the MERS 104 has a switch unit SU2 connected in parallel to the diode unit DU2 of the MERS 102 and a switch unit SY2 connected in parallel to the diode unit DY2. Other configurations of the MERS 104 are substantially the same as the MERS 102.
  • Each of the switch units SU1, SY1, SU2, SY2 is, for example, a MOSFET (Metal-Oxide-Silicon-Field-Effect-Transistor), an insulated gate bipolar transistor (IGBT: Insulated-Gate-Bipolar-Transistor), a gate turn-off thyristor (GTO: Gate-Turn-Off-thyristor). ) Or other semiconductor switching elements, each having a current path and a control end. When a later-described ON signal is supplied to each control terminal, the current path is conducted, and when an OFF signal is supplied, the current path is interrupted.
  • MOSFET Metal-Oxide-Silicon-Field-Effect-Transistor
  • IGBT Insulated-Gate-Bipolar-Transistor
  • GTO Gate-Turn-Off-thyristor
  • the diode units DU1, DY1, DU2, DY2 may be, for example, parasitic diodes of semiconductor switches that constitute the switch unit.
  • each diode part is made of a semiconductor diode and each switch part is made of an n-channel MOSFET.
  • the drain-source of this MOSFET forms a current path of the switch part, and the gate forms the control end.
  • the control unit 200 outputs all the gate signals SGGU1 to SGGY1 and SGGU2 to SGGY2 as off signals before the operation starts, for example, in response to a user instruction, the times d1 and d2 and the frequency stored in advance. Based on f1, the above-mentioned cycle C1 and the next cycle C2 are alternately repeated at the frequency f1. In cycle C2, control unit 200 simultaneously switches the pair of gate signals SGGU1 and SGGY1 and the pair of gate signals SGGU2 and SGGY2 from the off signal to the on signal.
  • the pair of gate signals SGGU2 and SGGY2 is switched from the on signal to the off signal, and after a time (d1-d2) has passed (after time d1 since switching to the on signal)
  • the pair of gate signals SGGU1 and SGGY1 is switched from the on signal to the off signal.
  • the output voltage of the secondary battery E1 is 300V
  • the output voltage of the secondary battery E2 is 500V
  • the inductances of the inductors Ldc1 and Ldc2 are both 1 mmH
  • the capacitances of the capacitors CM1 and CM2 are Both are 5 micro F
  • the inductance of the inductor Lm is 0.2 milliH
  • the time d1 is 60 microseconds
  • the time d2 is 30 microseconds
  • the frequency f is 7 kHz.
  • control unit 200 switches gate signals SGGV1, SGGX1, SGGV2, and SGGX2 from an off signal to an on signal, and holds gate signals SGGU1, SGGG1, SGGU2, and SGGY2 at the off signal.
  • the reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 are switched from OFF to ON (MERS 101 and 102 are switched from OFF to ON).
  • the reverse conducting semiconductor switches SWU1, SWY1, SWU2, and SWY2 remain off and do not change.
  • the capacitors CM1 and CM2 start discharging, and magnetic energy is accumulated in the inductor Lm.
  • the control unit 200 switches the gate signals SGGV2 and SGGX2 from the on signal to the off signal at time Tb2 after time d2 after switching the gate signals SGGV1, SGGX1, SGGV2 and SGGX2 from the off signal to the on signal. .
  • Other gate signals hold off signals.
  • reverse conduction type semiconductor switches SWV2 and SWX2 are switched from on to off (MERS102 is switched from on to off).
  • the current flowing through the inductor Lm is cut off by the capacitor CM2, and the capacitor CM2 stores the magnetic energy stored in the inductor Lm as electrostatic energy in the form of electric charges.
  • control unit 200 switches gate signals SGGV1 and SGGX1 from the on signal to the off signal (switches MERS 101 from on to off). Then, as shown in FIG. 29, the current flowing through the inductor Lm is cut off by the capacitors CM1 and CM2, and the capacitors CM1 and CM2 use the remaining magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges. accumulate.
  • Phase PB4 Thereafter, when time TB4 when the magnetic energy accumulated in the inductor Lm is exhausted, the current flowing through the inductor Lm disappears as shown in FIG.
  • the capacitor CM2 collects most of the electric power once stored as the electrostatic energy in the capacitors CM1 and CM2 and once stored as the magnetic energy in the inductor Lm. Therefore, the voltage Vcm2 of the capacitor CM2 becomes higher than the output voltage of the secondary battery E2. Therefore, the capacitor CM2 charges the secondary battery E2. Since most of the electric power is recovered by the capacitor CM2, the voltage Vcm1 of the capacitor CM1 becomes lower than the output voltage of the secondary battery E1. Therefore, the capacitor CM1 is charged to the secondary battery E1.
  • control unit 200 switches gate signals SGGU1, SGGY1, SGGU2, and SGGY2 from an off signal to an on signal, and holds gate signals SGGV1, SGGX1, SGGV2, and SGGX2 as an off signal.
  • the reverse conducting semiconductor switches SWU1, SWY1, SWU2, and SWY2 are switched from OFF to ON (MERS 101 and 102 are switched from OFF to ON).
  • the reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 remain off and do not change.
  • capacitors CM1 and CM2 start discharging, and magnetic energy is accumulated in inductor Lm.
  • the control unit 200 switches the gate signals SGGU2 and SGGY2 from the on signal to the off signal at time Tb6 after time d2 after switching the gate signals SGGU1, SGGY1, SGGU2 and SGGY2 from the off signal to the on signal. .
  • Other gate signals hold off signals.
  • the reverse conducting semiconductor switches SWU2 and SWY2 are switched from on to off (MERS102 is switched from on to off).
  • the current flowing through the inductor Lm is cut off by the capacitor CM2, and the capacitor CM2 stores the magnetic energy stored in the inductor Lm as electrostatic energy in the form of electric charges.
  • the control unit 200 switches the gate signals SGGU1 and SGGY1 from the on signal to the off signal at time Tb7 after the elapse of time (d1-d2) from time Tb6 (MERS 101 switches from on to off). Then, as shown in FIG. 33, the current flowing through the inductor Lm is cut off by the capacitors CM1 and CM2, and the capacitors CM1 and CM2 store the magnetic energy stored in the inductor Lm as electrostatic energy in the form of electric charges. .
  • power can be supplied in a predetermined direction also by the DC / DC converter 10D of the second embodiment of the present invention, and either MERS is turned off first as in the first embodiment.
  • the power supply direction can be controlled with simple control.
  • the DC / DC converter 10D of the present embodiment since an alternating current flows through the inductor Lm, there is an advantage that it is less likely to be demagnetized than the DC / DC converter 10A of the first embodiment.
  • the inductors Ldc1 and Ldc2 of the DC / DC converter 10D may be arranged symmetrically about the secondary batteries E1 and E2.
  • the inductor Ldc1 is connected to the inductor Ldc11 connected between one end of the secondary battery E1 and the DC terminal DC11 of the MERS 103, the other end of the secondary battery E1, and the MERS 103. This is divided into an inductor Ldc21 connected between the DC terminal DC21.
  • An inductor Ldc2 is connected between one end of the secondary battery E2 and the DC terminal DC12 of the MERS 104, and an inductor Ldc22 connected between the other end of the secondary battery E2 and the DC terminal DC22 of the MERS 104.
  • the inductor Lm may use the inductance of a two-winding transformer structure. That is, for example, like the DC / DC converter 10F shown in FIG. 36, the inductor Lm of the DC / DC converter 10E may be replaced with a high-frequency transformer RFT.
  • an inductor may be connected in series with the first coil, or an inductor may be connected in series with the second coil, or both.
  • This circuit shown in FIG. 36 is similar to the circuit diagram of the conventional insulated transformer coupled DC / DC conversion by the inverter, but has the inductances of the inductor Ldc1 (inductors Ldc11 and Ldc12) and the inductor Ldc2 (inductors Ldc21 and Ldc22).
  • the difference is that the secondary batteries E1 and E2 are operated close to current sources and that the capacitors CM1 and CM2 are discharged until their voltages are substantially zero, thereby realizing soft switching.
  • the voltage of the capacitors CM1 and CM2 is greatly different from that of the connected battery.
  • the present invention is greatly different from the conventional insulation transformer coupling DC / DC conversion by the inverter in that the leakage inductance in the transformer coupling can be used.
  • a diode DR1 that cuts off a current flowing in the direction from the DC terminal DC + 1 of the MERS 103 to one end of the secondary battery E1
  • the secondary It may further include a diode DR2 that cuts off a current flowing from one end of the battery E1 to the DC terminal DC + 2 of the MERS 104.
  • the secondary battery E1 is not charged by the power output from the secondary battery E2.
  • a DC reactor can be used as the inductor Ldc1, and the inductance of the inductor Ldc1 can be reduced.
  • inductor Ldc1 can be reduced in size. Since the current flowing in the direction from one end of the secondary battery E1 to the DC terminal DC + 2 of the MERS 104 is cut off, the inductor Ldc2 can be downsized for the same reason that the inductor Ldc1 can be downsized. Moreover, when it is not necessary to output electric power from the secondary battery E2, there is an advantage that the secondary battery E2 does not perform unnecessary discharge.
  • the time change of the current Ilink flowing through the first coil L1, the current ILdc1 flowing through the inductor Ldc1 and the current ILdc2 flowing through the inductor Ldc2, and the time change of the voltage Vcm1 of the capacitor CM1 and the voltage Vcm2 of the capacitor CM2 The time transition of the gate signals SGGV1 and SGGX1 and the gate signals SGGV2 and SGGX2, and the time change of the output power P1 of the secondary battery E1 and the power P2 supplied to the secondary battery E2 are as shown in FIG.
  • the secondary batteries E1 and E2 have an output of 100V, the inductors L1 and L2 are 0.2 mmH, the capacitors CM1 and CM2 are 0.5 ⁇ F, and the leakage inductances LM1 and LM2 are 0.1 mmH.
  • the on-time of the gate signals SGGV1 and SGGX1 is 30 microseconds, the on-time of the gate signals SGGV2 and SGGX2 is 15 microseconds, and the repetition frequency f1 is 6 kHz.
  • the reverse conducting semiconductor switches SGGV1 and SGGX1 When the reverse conducting semiconductor switches SGGV1 and SGGX1 are turned off, the capacitor CM1 is charged, so that the capacitor voltage Vcm1 rises, and the voltage is held at the resonance peak of the inductor L1 and the capacitor CM1.
  • the electrostatic energy of the capacitor CM1 When all the reverse conducting semiconductor switches are turned on, the electrostatic energy of the capacitor CM1 is discharged and stored as magnetic energy in the leakage inductances LM1 and LM2 as a current Ilink. Therefore, the voltage Vcm1 of the capacitor CM1 decreases, and the current Ilink flowing through the leakage inductance Lm1 increases.
  • the reverse conducting semiconductor switches SWV2 and SWX2 are turned off first when the voltage Vcm1 of the capacitor CM1 becomes almost zero.
  • the capacitor CM2 When the reverse conducting semiconductor switches SWV2 and SWX2 are turned off first, the current Ilink flowing through the inductance Lm1 is recovered by the capacitor CM2, so that the voltage of the capacitor CM2 increases.
  • the voltage of the capacitor CM2 exceeds the voltage 100V of the secondary battery E2, discharging starts from the capacitor CM2 to the secondary battery E2.
  • the capacitor L2 discharges power to the battery E2 by the inductor Ldc3 until the voltage becomes almost zero. Thereafter, when the reverse conducting semiconductor switches SWV1 and SWX1 are turned off, the capacitor CM1 is charged. Thereafter, the above operation is repeated.
  • the inductances of the inductors Ldc1 and Ldc2 are described as 1 mmH.
  • the inductances of the inductors Ldc1 and Ldc2 are 0.2 mmH.
  • the inductances of the inductors Ldc1 to Ldc2 be sufficiently large so that there is no backflow of current.
  • the dial 300 for changing the control repetition frequency f1 may be connected to the control unit 200 of the DC / DC converter 10D of the second embodiment of the present invention. .
  • the dial 300 is turned counterclockwise, the frequency f1 is lowered, and if the dial 300 is turned clockwise, the frequency f1 is raised.
  • FIGS. 40 shows the relationship when the frequency f1 is 10 kHz
  • FIG. 41 is 20 kHz
  • FIG. 42 is 6 kHz.
  • the current ILm rises to about 16A.
  • the current ILm flows for about 100 milliseconds. No flow for 100 milliseconds (current discontinuous mode).
  • the frequency f2 is 20 kHz
  • the voltages Vcm1 and Vcm2 rise to about 230V
  • the current ILm rises to about 25A.
  • the current ILm flows almost continuously. Yes.
  • the MERS capacitor can be discharged (current critical mode).
  • the frequency f3 is 6 kHz
  • the voltages Vcm1 and Vcm2 rise to about 180V
  • the current ILm rises to about 10A.
  • the current ILm flows for about 100 milliseconds. It does not flow until the next cycle.
  • the MERS capacitor may be discharged before all the current ILm is absorbed by the MERS capacitor. In this case, however, MERS is hard-switched (current continuous mode).
  • the frequency When the frequency is increased, the capacitor voltage peak increases and the charge per cycle increases. In addition, the number of cycles described above per unit time increases. Therefore, as the frequency is increased, the amount of power supplied from the secondary battery E1 to the secondary battery E2 increases. However, if one period is less than the time during which current flows continuously in one direction in the inductor Lm, switching becomes hard switching (current continuous mode). Therefore, it is desirable that one period determined by the frequency f1 is equal to or longer than the resonance time in which current flows continuously in one direction through the inductor Lm (current discontinuous mode or current critical mode).
  • the change in the amount of power supplied from the secondary battery E1 to the secondary battery E2 when the frequency f1 is changed is approximately 50 W when the frequency f1 is 6 kHz as shown in FIG.
  • the power is about 230 W
  • the frequency f1 is 20 kHz
  • the power is about 970 W.
  • the amount of power supply increases.
  • the control unit 200 turns on the switches of the MERSs 101 and 102 substantially simultaneously, turns off one of the MERSs after the first predetermined time has elapsed, and further, after the second predetermined time has elapsed.
  • the secondary battery E1 is changed to the secondary battery E2 by adjusting the third predetermined time.
  • the amount of power supplied per hour can be adjusted.
  • the amount of charge per hour increases when the dial 300 is turned clockwise, and the amount of charge per hour decreases when the dial 300 is turned counterclockwise.
  • the duty ratio of MERS switching and the repetition frequency may be changed so as to maintain the current coastal mode.
  • the frequency when the frequency is increased, the converted power decreases, and when the frequency is decreased, the converted power may increase.
  • the DC-DC converter of the first embodiment or the like after two MERS are turned on (the route through which the current in MERS can flow is set as the first route), that is, , After conducting in one direction, control to turn off one (power receiving side) MERS earlier than the other MERS (the route through which the current in MERS can flow is the second route) By repeating, power can be converted in a predetermined direction regardless of the magnitude of the voltage. Further, by changing the one MERS (MERS to be turned off first), it is possible to supply power in the reverse direction. That is, in the DC-DC converter, the power supply direction can be changed depending on which of the two MERSs is turned off. Therefore, the DC-DC converter can supply power in both directions. .
  • MERS101,102 to full bridge type MERS103,104 and making MERS101 and 102 conduct
  • MERS of one side power-receiving side
  • the control and the MERS 101 and 102 are turned on in the opposite direction, and then the other MERS switch is turned off before the one MERS switch is alternately repeated.
  • the power can be converted and supplied in a predetermined direction, and the magnetism of the inductor Lm can be suppressed.
  • the one MERS (MERS to be turned off first)
  • power can be supplied in the reverse direction. In other words, the power supply direction can be changed depending on which of the two MERSs is turned off, so that even in this case (such as the second embodiment), power can be supplied in both directions. ing.
  • the power from the power source is first converted into electrostatic energy, then the converted electrostatic energy is converted into magnetic energy, and the converted magnetic energy is converted into electrostatic energy to be loaded. Since it is supplied, DC / DC conversion can be performed by a simple method (control method of the power conversion device), and further, by converting magnetic energy back to electrostatic energy, either DC or DC can be boosted or stepped down. The voltage after conversion can be easily controlled. That is, the control of the step-up / down pressure is simple in the above.
  • the power supplied from the power source on the power transmission side to the power source on the power receiving side can be adjusted by adjusting the on-time and the repetition frequency.
  • the secondary battery E1 is used as the DC voltage source and the secondary battery E2 is used as the load.
  • the secondary battery E1 may be changed to one that rectifies a household power supply and is smoothed by a smoothing capacitor, or the secondary battery E2 is changed to an electric device that operates by being supplied with DC power.
  • the power supply side (secondary battery E1) is output to the one that does not need to supply power (for example, the primary battery), or the power supply side (secondary battery E2) is output.
  • a diode DR1 that cuts off the current to the supply side and a diode DR2 that cuts off the current from the power receiving side are used as shown in FIG. That's fine. As a result, power supplied to the power supply side is cut off, and power output from the power supply side is cut off.
  • a DC bus may be connected instead of the secondary batteries E1, E2.
  • a DC bus connected to various electric devices in the home may be connected, and an internal battery of the electric vehicle may be connected instead of the secondary battery E2.
  • the internal battery of the electric vehicle is the power receiving side and the DC bus is the power transmitting side.
  • the battery of the electric vehicle is used as the power transmission side, and power is supplied to the DC bus on the power reception side.
  • the power-receiving MERS may function as a rectifier.
  • the switch units SV2 and SX2 of the MERS 102 of the DC-DC converter 10A may not be provided.
  • the MERS on the power receiving side functions as a rectifier in the case of unidirectional power conversion. Therefore, the MERS on the power receiving side may be replaced with a rectifier circuit. Also in this case, as shown in FIG.
  • the MERS 101 accumulates the electric power output from the secondary battery E1 as electrostatic energy, and the secondary battery E2 is charged by passing a current through the inductance by turning on the MERS 101.
  • the inductor Ldc1 is 0.2 mmH
  • the capacitor CM1 is 0.5 ⁇ F
  • the leakage inductors LM1 and LM2 are 0.1 mmH
  • the output voltage of the secondary battery E1 is 100V.
  • the output voltage of the secondary battery E2 is 70V.
  • the MERS capacitor is described as being connected to the DC terminal of the MERS, but the MERS capacitor may be connected between the AC terminals of the MERS. Moreover, you may connect between both series terminals and between alternating current terminals. In this case, the total capacity of these capacitors corresponds to the above-described resonance-related capacitance.
  • the winding ratio of the high-frequency transformer RFT need not be 1: 1. By appropriately changing, the ratio of step-up and step-down can be adjusted to a desired one.
  • the control unit 200 may be configured by a dedicated electronic circuit including a comparator, a flip-flop, a timer, and the like. For example, when the repetition frequency f1 is 7 kHz, the ON times of the gate signals SGGV1 and SGGX1 are 60 microseconds, and the ON times of the gate signals SGGV1 and SGGX1 are 30 microseconds, the circuit of the control unit 200 is as shown in FIG. become.
  • FIG. 46A is a control circuit that outputs gate signals SGGV1, SGGX1, SGGV2, and SGGX2 when the one-way MERS 101, 102 is used.
  • This circuit includes an oscillator OSC and one-shot multivibrators MV1 and MV2.
  • the oscillator OSC outputs a clock pulse having the frequency of 7 kHz (frequency f1).
  • the output of the one-shot multivibrator MV1 is output to the gates GV1 and GX1 of the reverse conducting semiconductor switches SWV1 and SWX1 as the gate signals SGGV1 and SGGX1.
  • the one-shot multivibrator MV1 switches the off signal to the on signal, holds the on signal for 60 microseconds, and then switches to the off signal.
  • the output of the one-shot multivibrator MV2 is output to the gates GV2 and GX2 of the reverse conducting semiconductor switches SWV2 and SWX2 as the gate signals SGGV2 and SGGX2.
  • the one-shot multivibrator MV2 switches the off signal to the on signal in response to the rise of the clock pulse output from the oscillator OSC, and switches to the off signal after holding the on signal for 30 microseconds.
  • FIG. 46B is a control circuit that outputs the gate signals SGGU1, SGGV1, SGGX1, SGGY1, SGGU2, SGGV2, SGGX2, and SGGY2 of the DC-DC converter using the bidirectional MERS 103, 104.
  • This circuit further includes one-shot multivibrators MU1 and MU2 in the control unit 200 described with reference to FIG.
  • the output of the one-shot multivibrator MU1 is output to the gates GU1 and GY1 of the reverse conducting semiconductor switches SWU1 and SWY1 as the gate signals SGGU1 and SGGY1.
  • the one-shot multivibrator MU1 switches the off signal to the on signal, holds the on signal for 60 microseconds, and then switches to the off signal.
  • the output of the one-shot multivibrator MU2 is output to the gates GU2 and GY2 of the reverse conducting semiconductor switches SWU2 and SWY2 as the gate signals SGGU2 and SGGY2.
  • the one-shot multivibrator MU2 switches the off signal to the on signal, holds the on signal for 30 microseconds, and then switches to the off signal.
  • the control part 200 controlled the gate signal based on preset time d1, d2 and frequency f1.
  • the on-time of each switch may be controlled by the duty ratio.
  • the control unit 200 turns on the switches of the MERSs 101 and 102 substantially simultaneously, turns off the switch of one MERS after the first predetermined time elapses, and turns on the other MERS after the second predetermined time elapses. The control of turning off and holding both MERS switches off for a third predetermined time is repeated.
  • control unit 200 in each of the above embodiments can also be realized using a normal computer system.
  • a program for executing the above-described processing performed by the control unit 200 is stored in a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), or other computer-readable recording medium and distributed.
  • control part 200 can be constituted by installing this program in a computer.
  • the program may be stored in a disk device or the like included in a predetermined server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
  • the above-described processing can also be achieved by starting and executing a program while transferring it via a communication network.
  • OS Operating System
  • only the part other than the OS may be stored in a medium and distributed. Alternatively, it may be downloaded to a computer.
  • a power conversion device connected to a power source (for example, a secondary battery) and a load (for example, a secondary battery) is connected in series via one or more inductors, for example.
  • a power source for example, a secondary battery
  • a load for example, a secondary battery
  • two MERSs connected to the network both MERSs are turned on simultaneously (including substantially simultaneously), and the power-receiving MERS (MERS connected to the load) of the two MERSs is turned off first.
  • the voltage can be boosted or lowered from the power supply and output to the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

In the disclosed power conversion method, power supplied by a secondary battery (E1) is converted to first electrostatic energy by a MERS (101). Then, the first electrostatic energy is converted to magnetic energy by an inductor (Lm). Next, the magnetic energy is converted to second electrostatic energy by a MERS (102). The second electrostatic energy is supplied to a secondary battery (E2). Power is thus supplied from one secondary battery (E1) to another secondary battery (E2).

Description

直列共振DC/DC変換装置及び電力変換方法Series resonance DC / DC converter and power conversion method
 本発明は、直列共振DC/DC変換装置及び電力変換方法に関する。 The present invention relates to a series resonance DC / DC converter and a power conversion method.
 誘導性負荷に蓄積された磁気エネルギーを回生することが可能な低損失なスイッチとして、MERS(磁気エネルギー回生スイッチ:Magnetic Energy Recovery Switch)が知られている。
 このMERSを用いて直流電圧源から交流電力を負荷に、あるいは、交流電圧源から直流電力を負荷に供給できる低損失な直流/交流電力変換装置として、たとえば特許文献1に開示されているものがある。
MERS (Magnetic Energy Recovery Switch) is known as a low-loss switch capable of regenerating magnetic energy stored in an inductive load.
For example, Patent Document 1 discloses a low-loss DC / AC power converter that can supply AC power from a DC voltage source to a load or DC power from an AC voltage source to a load using the MERS. is there.
 この直流/交流電力変換装置は、MERSと、交流電源あるいは交流負荷と直列回路を形成し、MERSの交流端子間に接続された交流インダクタと、直流電源あるいは直流負荷と直列回路を形成しMERSの直流端子間に接続された直流インダクタと、を備える。
 この直流/交流電力変換装置は、MERSの逆導通型半導体スイッチをオン・オフすることで、例えば、交流電源から二次電池を充電、または、二次電池から交流電力を負荷へ供給することができる。
This DC / AC power converter forms a series circuit with the MERS and an AC power supply or an AC load, forms an AC inductor connected between the AC terminals of the MERS, a DC power supply or a DC load, and forms a series circuit with the MERS. And a DC inductor connected between the DC terminals.
This DC / AC power converter can turn on / off a reverse conductive semiconductor switch of MERS, for example, to charge a secondary battery from an AC power supply or supply AC power from a secondary battery to a load. it can.
特開2008-193817号公報JP 2008-193817 A
 ところで、上記のように交流/直流変換の他、例えば二次電池から他の二次電池への充電などのように、直流/直流変換を行いたいこともある。しかし、上記のように、特許文献1に開示されたものは、直流/交流電力変換装置なので、直流/直流変換が難しい。 By the way, in addition to AC / DC conversion as described above, there are cases where it is desired to perform DC / DC conversion, such as charging from a secondary battery to another secondary battery. However, as described above, since what is disclosed in Patent Document 1 is a DC / AC power converter, DC / DC conversion is difficult.
 本発明は、上述の課題に鑑みてなされたもので、直流/直流(DC/DC)変換が出来る、直列共振DC/DC変換装置及び電力変換方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a series resonance DC / DC converter and a power conversion method capable of direct current / direct current (DC / DC) conversion.
 上記目的を達成するため、本発明の第1の観点に係る直列共振DC/DC変換装置は、
 第1の磁気エネルギー回生スイッチと、第2の磁気エネルギー回生スイッチと、1以上の磁気エネルギー蓄積用のインダクタとを、備え、
 前記第1の磁気エネルギー回生スイッチは、第1の電源から供給された電力を第1の静電エネルギーとして蓄積し、
 前記1以上の磁気エネルギー蓄積用のインダクタは、前記第1の磁気エネルギー回生スイッチが蓄積した前記第1の静電エネルギーを第1の磁気エネルギーとして蓄積し、
 前記第2の磁気エネルギー回生スイッチは、前記1以上の磁気エネルギー蓄積用インダクタに蓄積された前記第1の磁気エネルギーを第2の静電エネルギーとして蓄積し、蓄積した前記第2の静電エネルギーを第1の負荷に供給する、
 ことによって、前記第1の電源から供給される電力を変換して前記第1の負荷に供給する第1の変換を行う。
In order to achieve the above object, a series resonant DC / DC converter according to a first aspect of the present invention includes:
A first magnetic energy regenerative switch; a second magnetic energy regenerative switch; and one or more inductors for storing magnetic energy,
The first magnetic energy regeneration switch accumulates electric power supplied from a first power source as first electrostatic energy,
The one or more inductors for storing magnetic energy store the first electrostatic energy stored by the first magnetic energy regeneration switch as first magnetic energy;
The second magnetic energy regenerative switch stores the first magnetic energy stored in the one or more magnetic energy storage inductors as second electrostatic energy, and stores the stored second electrostatic energy. Supplying the first load,
Thus, the first conversion is performed by converting the power supplied from the first power source and supplying the power to the first load.
 上記目的を達成するため、本発明の第2の観点に係る直列共振DC/DC変換装置は、
 第1及び第2の端子と、第3及び第4の端子と、それぞれ電流路を備え、各自に供給される制御信号に応答して各自の電流路をオン及びオフするスイッチであって、各自の電流路を、オンしたとき双方向に実質的に導通させ、オフしたとき電流路の所定の一端から他端の一方向にのみ実質的に導通させる第1及び第2のスイッチと、それぞれ電流路を備え、各自の電流路が所定の一端から他端の一方向にのみ実質的に導通する第1及び第2の整流素子と、コンデンサと、より構成され、前記第1の端子に前記第1の整流素子の前記一端と前記第2のスイッチの前記他端とが、前記第2の端子に前記第1のスイッチの前記一端と前記第2の整流素子の前記他端とが、前記第3の端子に前記コンデンサの前記一端と前記第1の整流素子の前記他端と前記第1のスイッチの前記他端とが、前記第4の端子に前記コンデンサの前記他端と前記第2のスイッチの前記一端と前記第2の整流素子の前記一端とが、接続される磁気エネルギー回生スイッチと、
 第1と第2の交流入力と第1と第2の直流出力とを備え、前記第1と第2の交流入力間から入力された電力を整流して前記第1と第2の交流出力間から出力する整流器と、
 外部の直流電源と直列回路をなし、前記直列回路の一端が前記磁気エネルギー回生スイッチの前記第3の端子に接続され、前記直列回路の他端が前記磁気エネルギー回生スイッチの前記第4の端子に接続される第1のインダクタと、
 外部の直流負荷と直列回路をなし、前記直列回路の一端が前記整流器の第1の直流出力に接続され、前記直列回路の他端が前記整流器の第2の直流出力に接続される第2のインダクタと、
 前記磁気エネルギー回生スイッチの前記第2の端子と前記整流器の前記第1の交流入力とが電気的に接続され、前記整流器の前記第2の交流入力と前記磁気エネルギー回生スイッチの前記第1の端子とが電気的に接続され、前記磁気エネルギー回生スイッチの前記第2の端子と前記整流器の前記第1の交流入力との間、または、前記整流器の前記第2の交流入力と前記磁気エネルギー回生スイッチの前記第1の端子との間に流れる電流によって磁気エネルギーを蓄える第3のインダクタと、
 前記磁気エネルギー回生スイッチの前記第1及び第2のスイッチの各電流路をオンさせる制御信号並びにオフさせる制御信号を前記磁気エネルギー回生スイッチの前記第1及び第2のスイッチの各制御端に供給する制御部と、を備え、
 前記制御部は、前記磁気エネルギー回生スイッチの前記第1及び第2のスイッチを同時にオン・オフさせる制御、を繰り返す。
In order to achieve the above object, a series resonant DC / DC converter according to a second aspect of the present invention provides:
Each of the first and second terminals, the third terminal, and the fourth terminal includes a current path, and switches each current path on and off in response to a control signal supplied thereto. A first switch and a second switch that conduct substantially in both directions when turned on, and substantially conduct only in one direction from the predetermined end to the other end of the current path when turned off. Each of which includes a first and second rectifier elements each having a current path substantially conducting only in one direction from the predetermined end to the other end, and a capacitor. The one end of the first rectifier element and the other end of the second switch are connected to the second terminal, and the one end of the first switch and the other end of the second rectifier element are connected to the second terminal. 3 terminals with the one end of the capacitor and the other end of the first rectifying element The other end of the first switch is connected to the fourth terminal, and the other end of the capacitor, the one end of the second switch, and the one end of the second rectifying element are connected to the fourth terminal. An energy regeneration switch,
1st and 2nd AC input and 1st and 2nd DC output are provided, The electric power input from between the 1st and 2nd AC input is rectified, Between the 1st and 2nd AC output A rectifier that outputs from
A series circuit is formed with an external DC power supply, one end of the series circuit is connected to the third terminal of the magnetic energy regeneration switch, and the other end of the series circuit is connected to the fourth terminal of the magnetic energy regeneration switch. A first inductor connected;
A second circuit in which a series circuit is formed with an external DC load, one end of the series circuit is connected to a first DC output of the rectifier, and the other end of the series circuit is connected to a second DC output of the rectifier. An inductor;
The second terminal of the magnetic energy regenerative switch and the first AC input of the rectifier are electrically connected, and the second AC input of the rectifier and the first terminal of the magnetic energy regenerative switch Between the second terminal of the magnetic energy regenerative switch and the first AC input of the rectifier, or the second AC input of the rectifier and the magnetic energy regenerative switch. A third inductor that stores magnetic energy by a current flowing between the first terminal and the first inductor;
A control signal for turning on and off each current path of the first and second switches of the magnetic energy regenerative switch and a control signal for turning off are supplied to the control terminals of the first and second switches of the magnetic energy regenerative switch. A control unit,
The control unit repeats control for simultaneously turning on and off the first and second switches of the magnetic energy regeneration switch.
 上記目的を達成するため、本発明の第3の観点に係る電力変換方法は、
 電源から供給された電力を第1の静電エネルギーに変換するステップと、
 第1の静電エネルギーを磁気エネルギーに変換するステップと、
 前記磁気エネルギーを第2の静電エネルギーに変換するステップと、
 前記第2の静電エネルギーを負荷に供給するステップと、
 を含む。
In order to achieve the above object, a power conversion method according to a third aspect of the present invention includes:
Converting power supplied from a power source into first electrostatic energy;
Converting the first electrostatic energy into magnetic energy;
Converting the magnetic energy into second electrostatic energy;
Supplying the second electrostatic energy to a load;
including.
 本発明にかかる直列共振DC/DC変換装置及び電力変換方法によれば、直流/直流変換が出来る。 According to the series resonance DC / DC converter and the power conversion method according to the present invention, DC / DC conversion can be performed.
本発明の第1実施形態に係るDC/DCコンバータの構成を示す回路図である。1 is a circuit diagram showing a configuration of a DC / DC converter according to a first embodiment of the present invention. 図1に示すDC/DCコンバータの従来との違いを説明するための従来技術の回路図である。It is a circuit diagram of the prior art for demonstrating the difference with the conventional DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの従来との違いを説明するための従来技術の回路図である。It is a circuit diagram of the prior art for demonstrating the difference with the conventional DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの従来との違いを説明するための図1のDC/DCコンバータの一部を示す回路図である。FIG. 2 is a circuit diagram showing a part of the DC / DC converter of FIG. 1 for explaining a difference from the conventional DC / DC converter shown in FIG. 1. 図4に示すMERSをオフにした場合の動作を説明するための図である。It is a figure for demonstrating the operation | movement at the time of turning off MERS shown in FIG. 図4に示すMERSの動作を説明するための図である。It is a figure for demonstrating operation | movement of MERS shown in FIG. 図4に示すMERSの動作を説明するための図である。It is a figure for demonstrating operation | movement of MERS shown in FIG. 図4に示すMERSの動作を説明するための図である。It is a figure for demonstrating operation | movement of MERS shown in FIG. 図4に示すMERSの動作を説明するための図である。It is a figure for demonstrating operation | movement of MERS shown in FIG. (a)~(d)は、図4のMERSの交流端子に接続されたインダクタに流れる電流の時間変化と、前記MERSのコンデンサの電圧の時間変化と、MERSに接続された直流電源から出力される電力の時間変化と、ゲート信号SGGV1及びSGGX1の論理状態の遷移と、の関係を説明するための図である。(A) to (d) are output from the time change of the current flowing through the inductor connected to the AC terminal of the MERS in FIG. 4, the time change of the voltage of the capacitor of the MERS, and the DC power source connected to the MERS. It is a figure for demonstrating the relationship between the time change of the electric power and the transition of the logic state of gate signals SGGV1 and SGGX1. 図1に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図1に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. (a)~(e)は、図1のDC/DCコンバータにおいて昇圧変換する場合の、2つの直流リアタンス及びインダクタを流れる電流の時間変化と、前記DC/DCコンバータの2つMERSのコンデンサの電圧の時間変化と、送電側の電池から受電側の電池に供給される電力の時間変化と、ゲート信号SGGV1及びSGGX1,SGGV2及びSGGX2の論理状態の遷移と、の関係を説明するための図である。(A) to (e) are the time variations of the current flowing through the two DC reluctances and the inductor when the step-up conversion is performed in the DC / DC converter of FIG. 1, and the voltages of the two MERS capacitors of the DC / DC converter. FIG. 6 is a diagram for explaining the relationship between the time change of the power supply, the time change of the power supplied from the battery on the power transmission side to the battery on the power receiving side, and the transition of the logic state of the gate signals SGGV1, SGGX1, SGGV2, and SGGX2. . (a)~(c)は、図1のDC/DCコンバータにおいて、受電側と送電側の電圧が略等しい場合の、2つの直流リアタンス及びインダクタを流れる電流の時間変化と、前記DC/DCコンバータの2つのMERSのコンデンサの電圧の時間変化と、ゲート信号SGGV1及びSGGX1,SGGV2及びSGGX2の論理状態の遷移と、の関係を説明するための図である。(A) to (c) are the DC / DC converters of FIG. 1, the time variations of the current flowing through the two DC reluctances and the inductor when the voltages on the power receiving side and the power transmission side are substantially equal, and the DC / DC converter. It is a figure for demonstrating the relationship between the time change of the voltage of the capacitor | condenser of these 2 MERS, and the transition of the logic state of gate signal SGGV1, SGGX1, SGGV2, and SGGX2. (a)~(c)は、図1のDC/DCコンバータにおいて降圧変換する場合の、2つの直流リアタンス及びインダクタを流れる電流の時間変化と、前記DC/DCコンバータの2つのMERSのコンデンサの電圧の時間変化と、送電側の電池から受電側の電池に供給される電力の時間変化と、ゲート信号SGGV1及びSGGX1,SGGV2及びSGGX2の論理状態の遷移と、の関係を説明するための図である。(A) to (c) are the time variations of the current flowing through the two DC reluctances and the inductor when the step-down conversion is performed in the DC / DC converter of FIG. 1, and the voltages of the two MERS capacitors of the DC / DC converter. FIG. 6 is a diagram for explaining the relationship between the time change of the power supply, the time change of the power supplied from the battery on the power transmission side to the battery on the power receiving side, and the transition of the logic state of the gate signals SGGV1, SGGX1, SGGV2, and SGGX2. . (a)~(c)は、図1のDC/DCコンバータが逆変換可能であることを説明するための図である。(A)-(c) is a figure for demonstrating that the DC / DC converter of FIG. 1 can reversely convert. 図1のDC/DCコンバータの変形例の構成を示す図である。It is a figure which shows the structure of the modification of the DC / DC converter of FIG. 図1のDC/DCコンバータの変形例の構成を示す図である。It is a figure which shows the structure of the modification of the DC / DC converter of FIG. (a)~(c)は、図23のDC/DCコンバータにおいて、受電側と送電側の電圧が略等しい場合の、2つの直流リアタンス及びインダクタを流れる電流の時間変化と、前記DC/DCコンバータの2つのMERSのコンデンサの電圧の時間変化と、ゲート信号SGGV1及びSGGX1,SGGV2及びSGGX2の論理状態の遷移と、の関係を説明するための図である。(A) to (c) are the DC / DC converter of FIG. 23, the time variation of the current flowing through the two DC reluctances and the inductor when the voltages on the power receiving side and the power transmission side are substantially equal, and the DC / DC converter. It is a figure for demonstrating the relationship between the time change of the voltage of the capacitor | condenser of these 2 MERS, and the transition of the logic state of gate signal SGGV1, SGGX1, SGGV2, and SGGX2. (a)~(c)は、図1のDC/DCコンバータのスイッチング損失を説明するための図である。(A)-(c) is a figure for demonstrating the switching loss of the DC / DC converter of FIG. 本発明の第2実施形態に係るDC/DCコンバータの構成を示す回路図である。It is a circuit diagram which shows the structure of the DC / DC converter which concerns on 2nd Embodiment of this invention. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26に示すDC/DCコンバータの動作を説明するための図である。It is a figure for demonstrating operation | movement of the DC / DC converter shown in FIG. 図26のDC/DCコンバータの変形例の構成を示す図である。It is a figure which shows the structure of the modification of the DC / DC converter of FIG. 図26のDC/DCコンバータの変形例の構成を示す図である。It is a figure which shows the structure of the modification of the DC / DC converter of FIG. 図26のDC/DCコンバータの変形例の構成を示す図である。It is a figure which shows the structure of the modification of the DC / DC converter of FIG. (a)~(d)は、図37のDC/DCコンバータにおいて、2つの直流リアタンス及びインダクタを流れる電流の時間変化と、前記DC/DCコンバータの2つのMERSのコンデンサの電圧の時間変化と、ゲート信号SGGV1及びSGGX1,SGGV2及びSGGX2の論理状態の遷移と、二次電池E1の出力電力P1と二次電池E2へ供給される電力P2の時間変化と、の関係を説明するための図である。(A) to (d) in the DC / DC converter of FIG. 37, the time change of the current flowing through the two DC reluctances and the inductor, the time change of the voltage of the two MERS capacitors of the DC / DC converter, It is a figure for demonstrating the relationship between the transition of the logic state of gate signal SGGV1 and SGGX1, SGGV2, and SGGX2, and the time change of the output electric power P1 of the secondary battery E1, and the electric power P2 supplied to the secondary battery E2. . 図26のDC/DCコンバータの応用例の構成を示す図である。It is a figure which shows the structure of the application example of the DC / DC converter of FIG. (a)~(c)は、図35のDC/DCコンバータにおいて、制御を繰り返す周波数を10kHzに設定した場合の、前記DC/DCコンバータの2つのMERSのコンデンサの電圧のそれぞれの時間変化と、インダクタを流れる電流の時間変化と、各スイッチのオン・オフの遷移と、の関係を説明するための図である。(A) to (c) are the time variations of the voltages of the two MERS capacitors of the DC / DC converter when the frequency at which the control is repeated is set to 10 kHz in the DC / DC converter of FIG. It is a figure for demonstrating the relationship between the time change of the electric current which flows through an inductor, and ON / OFF transition of each switch. (a)~(c)は、図35のDC/DCコンバータにおいて、制御を繰り返す周波数を20kHzに設定した場合の、前記DC/DCコンバータの2つのMERSのコンデンサの電圧のそれぞれの時間変化と、インダクタを流れる電流の時間変化と、各スイッチのオン・オフの遷移と、の関係を説明するための図である。(A) to (c) are the respective time changes of the voltages of the two MERS capacitors of the DC / DC converter when the frequency at which the control is repeated is set to 20 kHz in the DC / DC converter of FIG. It is a figure for demonstrating the relationship between the time change of the electric current which flows through an inductor, and ON / OFF transition of each switch. (a)~(c)は、図35のDC/DCコンバータにおいて、制御を繰り返す周波数を6kHzに設定した場合の、前記DC/DCコンバータの2つのMERSのコンデンサの電圧のそれぞれの時間変化と、インダクタを流れる電流の時間変化と、各スイッチのオン・オフの遷移と、の関係を説明するための図である。(A) to (c) are the respective time variations of the voltages of the two MERS capacitors of the DC / DC converter when the frequency at which the control is repeated is set to 6 kHz in the DC / DC converter of FIG. It is a figure for demonstrating the relationship between the time change of the electric current which flows through an inductor, and ON / OFF transition of each switch. 図35のDC/DCコンバータにおいて、制御を繰り返す周波数を変化させた場合における単位時間あたりの電力変換量の変化を説明するための図である。FIG. 36 is a diagram for explaining a change in the amount of power conversion per unit time when the frequency at which control is repeated is changed in the DC / DC converter of FIG. 35. 図1のDC/DCコンバータの変形例の構成を示す図である。It is a figure which shows the structure of the modification of the DC / DC converter of FIG. 図44のDC/DCコンバータにおいて、2つの直流リアタンス及びインダクタを流れる電流の時間変化と、前記DC/DCコンバータのMERSのコンデンサの電圧の時間変化と、ゲート信号SGGV1及びSGGX1の論理状態の遷移と、の関係を説明するための図である。In the DC / DC converter of FIG. 44, the time change of the current flowing through the two DC reluctances and the inductor, the time change of the voltage of the MERS capacitor of the DC / DC converter, and the transition of the logic state of the gate signals SGGV1 and SGGX1 It is a figure for demonstrating the relationship of these. (a),(b)は制御部の変形例を示すブロック図である。(A), (b) is a block diagram which shows the modification of a control part.
 本発明の実施形態例に係るDC/DCコンバータは、ソフトなスイッチ動作を行うMERSを直列に2つ用いて、ゲートで制御された電流エネルギー(磁気エネルギー)及び電界エネルギー(静電エネルギー)の共振現象を直流/直流電力変換に利用するものである。共振現象は、2つのMERSのオンとオフとの切り替わりによって生じる。MERSのオンとは、MERSが備える複数の逆導通型スイッチ(詳細は後述)のうちの特定(全部であってもよい)の逆導通型スイッチがオンする状態をいい、MERSのオフとは、MERSが備える複数の逆導通型スイッチすべてがオフする状態をいう。MERSがオンするときには、特定の逆導通型スイッチがどれであるかによって、MERS内の電流の流れることが可能なルートが異なる場合がある(第2実施形態参照)。また、MERSがオンのときと、オフのときとでも、MERS内の電流の流れることが可能なルートが異なる。 The DC / DC converter according to the embodiment of the present invention uses two MERSs in series that perform soft switch operation, and resonance of current energy (magnetic energy) and electric field energy (electrostatic energy) controlled by a gate. This phenomenon is used for DC / DC power conversion. The resonance phenomenon is caused by switching of two MERS on and off. MERS ON means a state in which specific (or all) reverse conduction switches among a plurality of reverse conduction switches (details will be described later) included in MERS are turned on, and MERS OFF is A state in which all of the plurality of reverse conducting switches provided in the MERS are turned off. When MERS is turned on, the route through which current can flow in MERS may differ depending on which specific reverse-conducting switch is used (see the second embodiment). Further, the route through which the current in the MERS can flow differs depending on whether the MERS is on or off.
 以下、本発明の実施形態を、2つの二次電池を相互に充電させるDC/DCコンバータ(直流/直流変換器)を例として、図面を参照しつつ説明する。このDC/DCコンバータは、2つのMERSをインダクタを介して直列接続にした構成を有する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking as an example a DC / DC converter (direct current / direct current converter) that mutually charges two secondary batteries. This DC / DC converter has a configuration in which two MERSs are connected in series via an inductor.
(第1実施形態の構成)
 本発明の第1実施形態に係るDC/DCコンバータ10Aは、図1に示すように、MERS101及び102と、インダクタLdc1及びLdc2と、インダクタLmと、制御部200と、を備える。
(Configuration of the first embodiment)
The DC / DC converter 10A according to the first embodiment of the present invention includes MERSs 101 and 102, inductors Ldc1 and Ldc2, an inductor Lm, and a control unit 200, as shown in FIG.
 MERS101及び102は、たとえば図1に示すような一方向MERSである。図1のMERS101は、直流端子DC11及びDC21と、交流端子AC11及びAC21と、2個の逆導通型半導体スイッチSWV1及びSWX1と、2つのダイオード部DU1及びDY1と、コンデンサCM1と、から構成されている。同様に、MERS102は、直流端子DC12及びDC22と、交流端子AC12及びAC22と、2個の逆導通型半導体スイッチSWV2及びSWX2と、2つのダイオード部DU2及びDY2と、コンデンサCM2と、から構成されている。 The MERS 101 and 102 are unidirectional MERS as shown in FIG. The MERS 101 in FIG. 1 includes DC terminals DC11 and DC21, AC terminals AC11 and AC21, two reverse conducting semiconductor switches SWV1 and SWX1, two diode units DU1 and DY1, and a capacitor CM1. Yes. Similarly, the MERS 102 includes DC terminals DC12 and DC22, AC terminals AC12 and AC22, two reverse conducting semiconductor switches SWV2 and SWX2, two diode units DU2 and DY2, and a capacitor CM2. Yes.
 逆導通型半導体スイッチSWV1は、ダイオード部DV1及びスイッチ部SV1から構成されている。同様に、逆導通型半導体スイッチSWX1はダイオード部DX1及びスイッチ部SX1から構成され、逆導通型半導体スイッチSWV2はダイオード部DV2及びスイッチ部SV2から構成され、逆導通型半導体スイッチSWX2はダイオード部DX2及びスイッチ部SX2から構成されている。 The reverse conducting semiconductor switch SWV1 includes a diode part DV1 and a switch part SV1. Similarly, the reverse conducting semiconductor switch SWX1 includes a diode portion DX1 and a switch portion SX1, the reverse conducting semiconductor switch SWV2 includes a diode portion DV2 and a switch portion SV2, and the reverse conducting semiconductor switch SWX2 includes a diode portion DX2. The switch unit SX2 is configured.
 スイッチ部SV1,SX1,SV2,SX2はいずれも、たとえばMOSFET(Metal-Oxide-Silicon Field Effect Transistor)、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)、ゲートターンオフサイリスタ(GTO:Gate Turn-Off thyristor)あるいはその他の半導体スイッチング素子からなり、それぞれ電流路と制御端とを備えている。そして、スイッチ部SV1,SX1,SV2,SX2は、各自の制御端に後述のオン信号が供給されるとオンして電流路を導通させ、オフ信号が供給されるとオフして電流路を遮断する。 Each of the switch units SV1, SX1, SV2, and SX2 is, for example, a MOSFET (Metal-Oxide-Silicon-Field-Effect-Transistor), an insulated gate bipolar transistor (IGBT: Insulated-Gate-Bipolar-Transistor), a gate turn-off thyristor (GTO: Gate-Turn-Off-thyristor). ) Or other semiconductor switching elements, each having a current path and a control end. The switch units SV1, SX1, SV2, and SX2 are turned on when a later-described ON signal is supplied to their control ends, and the current path is conducted. When the OFF signal is supplied, the switch sections are turned OFF and the current path is interrupted. To do.
 ダイオード部DU1,DV1,DX1,DY1,DU2,DV2,DX2,DY2はいずれも、たとえば半導体ダイオード等の整流素子からなり、電流を一方向にのみ導通させる電流路を備える。ダイオード部DV1,DX1,DV2,DX2はたとえば、スイッチ部を構成する半導体スイッチの寄生ダイオードであってもよい。また、ダイオード部DU1,DY1,DU2,DY2は、整流素子の一例として、逆導通型半導体スイッチSWV1などと同様の半導体スイッチであって、スイッチ部を所定期間オフにし、実質的にダイオードとして機能するものであってもよい。所定期間とは、全ての期間又はダイオード部の順方向に電流が流れる期間以外の期間をいう。 Each of the diode portions DU1, DV1, DX1, DY1, DU2, DV2, DX2, DY2 is formed of a rectifying element such as a semiconductor diode, for example, and includes a current path that conducts current only in one direction. The diode parts DV1, DX1, DV2, DX2 may be, for example, parasitic diodes of a semiconductor switch constituting the switch part. The diode units DU1, DY1, DU2, and DY2 are semiconductor switches similar to the reverse conducting semiconductor switch SWV1 as an example of a rectifying element, and the switch unit is turned off for a predetermined period, and substantially functions as a diode. It may be a thing. The predetermined period is a period other than the entire period or a period in which current flows in the forward direction of the diode portion.
 以下では、各ダイオード部はいずれも半導体ダイオードからなり、各スイッチ部はいずれもnチャネルMOSFETからなるものとして説明する。この場合、このMOSFETのドレイン-ソース間がスイッチ部の電流路をなし、ゲートが制御端をなすものである。 In the following description, it is assumed that each diode part is made of a semiconductor diode and each switch part is made of an n-channel MOSFET. In this case, the drain-source of this MOSFET forms a current path of the switch part, and the gate forms the control end.
 それぞれの逆導通型半導体スイッチにつき、ダイオード部のアノードはスイッチ部のソースに接続されており、ダイオード部のカソードはスイッチ部のドレインに接続されており、スイッチ部の電流路とダイオード部の電流路とが、合わせて逆導通型半導体スイッチの電流路をなす。
 このような接続関係をとる結果、各逆導通型半導体スイッチはいずれも、スイッチ部のドレインからソースに向かう方向(順方向)に流れる電流を、前記スイッチ部のゲートに印加される信号の値に応じてオン(順方向に流れる電流を流す)/オフ(順方向に流れる電流を流さない)する。一方、前記スイッチ部のソースからドレインに向かう方向(逆方向)の電流については、ダイオード部がこの電流のバイパスを確保する結果、常にオン状態(逆方向に流れる電流を流す)を保つ。
For each reverse conducting semiconductor switch, the anode of the diode part is connected to the source of the switch part, the cathode of the diode part is connected to the drain of the switch part, and the current path of the switch part and the current path of the diode part Together form the current path of the reverse conducting semiconductor switch.
As a result of taking such a connection relationship, each of the reverse conducting semiconductor switches has the current flowing in the direction from the drain to the source (forward direction) of the switch unit to the value of the signal applied to the gate of the switch unit. Accordingly, it is turned on (flowing current flowing in the forward direction) / turned off (does not flow current flowing in the forward direction). On the other hand, as for the current in the direction from the source to the drain (reverse direction) of the switch unit, the diode unit always keeps the on state (current flowing in the reverse direction) as a result of securing the bypass of this current.
 MERS101の交流端子AC11には、ダイオード部DU1のアノードとダイオード部DX1のカソードとが接続されている。交流端子AC21には、ダイオード部DV1のアノードと、ダイオード部DY1のカソードと、インダクタLmの一端と、が接続されている。
 インダクタLmは、MERS101から供給された電力を一時的に磁気エネルギーとして蓄える磁気エネルギー蓄積用に接続されたインダクタである。
The anode of the diode unit DU1 and the cathode of the diode unit DX1 are connected to the AC terminal AC11 of the MERS 101. The AC terminal AC21 is connected to the anode of the diode part DV1, the cathode of the diode part DY1, and one end of the inductor Lm.
The inductor Lm is an inductor connected for magnetic energy storage that temporarily stores electric power supplied from the MERS 101 as magnetic energy.
 MERS101の直流端子DC11には、ダイオード部DU1及びDV1の各カソードと、コンデンサCM1の一端と、インダクタLdc1の一端と、が接続されている。インダクタLdc1の他端は、DC/DCコンバータ10Aの第1の直流正極端子DC+1に接続されている。直流端子DC21には、ダイオード部DX1及びDY1の各アノードと、コンデンサCM1の他端と、が接続され、DC/DCコンバータ10Aの第1の直流負極端子DC-1に接続されている。 The cathodes of the diode portions DU1 and DV1, one end of the capacitor CM1, and one end of the inductor Ldc1 are connected to the DC terminal DC11 of the MERS 101. The other end of the inductor Ldc1 is connected to the first DC positive terminal DC + 1 of the DC / DC converter 10A. The anodes of the diode parts DX1 and DY1 and the other end of the capacitor CM1 are connected to the DC terminal DC21 and connected to the first DC negative terminal DC-1 of the DC / DC converter 10A.
 直流正極端子DC+1には、直流電圧源である外部の二次電池E1の正極が接続され、直流負極端子DC-1には、二次電池E2の負極が接続される。なお、このように接続される結果、二次電池E1とインダクタLdc1とが直列回路を形成することになる。これにより、インダクタLdc1は、二次電池E1の出力する電力を安定してMERS101に供給する。
 インダクタLdc1は例えば直流リアクトルである。
The positive electrode terminal DC + 1 is connected to the positive electrode of an external secondary battery E1, which is a DC voltage source, and the negative electrode terminal DC-1 is connected to the negative electrode of the secondary battery E2. As a result of the connection, the secondary battery E1 and the inductor Ldc1 form a series circuit. Thereby, the inductor Ldc1 stably supplies the power output from the secondary battery E1 to the MERS 101.
The inductor Ldc1 is a direct current reactor, for example.
 MERS102の交流端子AC12には、ダイオード部DU2のアノードと、ダイオード部DX2のカソードと、インダクタLmの他端と、が接続されている。交流端子AC22には、ダイオード部DV2のアノードと、ダイオード部DY2のカソードと、MERS101の交流端子AC11と、が接続されている。なお、本実施形態においては、交流端子AC22は、MERS101の交流端子AC11とともに共通の接地線に接続されている。 The anode of the diode unit DU2, the cathode of the diode unit DX2, and the other end of the inductor Lm are connected to the AC terminal AC12 of the MERS 102. The AC terminal AC22 is connected to the anode of the diode part DV2, the cathode of the diode part DY2, and the AC terminal AC11 of the MERS101. In the present embodiment, the AC terminal AC22 is connected to a common ground line together with the AC terminal AC11 of the MERS101.
 MERS102の直流端子DC12は、ダイオード部DU2及びDV2の各カソードと、コンデンサCM2の一端と、インダクタLdc2の一端と、が接続されている。インダクタLdc2の他端は、DC/DCコンバータ10Aの第2の直流正極端子DC+2に接続されている。直流端子DC22は、ダイオード部DX2及びDY2の各アノードと、コンデンサCM2の他端と、が接続され、DC/DCコンバータ10Aの第2の直流負極端子DC-2に接続されている。 The DC terminals DC12 of the MERS 102 are connected to the cathodes of the diode portions DU2 and DV2, one end of the capacitor CM2, and one end of the inductor Ldc2. The other end of the inductor Ldc2 is connected to the second DC positive terminal DC + 2 of the DC / DC converter 10A. The DC terminal DC22 is connected to the anodes of the diode portions DX2 and DY2 and the other end of the capacitor CM2, and is connected to the second DC negative terminal DC-2 of the DC / DC converter 10A.
 直流正極端子DC+2には、直流電圧源である外部の二次電池E2の正極が接続され、直流負極端子DC-2には、二次電池E2の負極が接続される。このような接続されることによって、二次電池E2とインダクタLdc2とが直列回路を形成することになり、インダクタLdc2は二次電池E2の出力する電力を安定してMERS102に供給する。
 インダクタLdc2は例えば直流リアクトルである。
The positive electrode terminal DC + 2 is connected to the positive electrode of an external secondary battery E2, which is a DC voltage source, and the negative electrode terminal DC-2 is connected to the negative electrode of the secondary battery E2. By such connection, the secondary battery E2 and the inductor Ldc2 form a series circuit, and the inductor Ldc2 stably supplies the power output from the secondary battery E2 to the MERS 102.
The inductor Ldc2 is a direct current reactor, for example.
 スイッチ部SV1,SX1,SV2及びSX2の各ゲート(順に、GV1,GX1,GV2及びGX2)は、MERS101及びMERS102の制御端をなすもので、いずれも制御部200に接続されている。 Each gate (in order, GV1, GX1, GV2, and GX2) of the switch units SV1, SX1, SV2, and SX2 is a control end of the MERS101 and the MERS102, and all are connected to the control unit 200.
 制御部200は、たとえば、CPU(Central Processing Unit)等のプロセッサと、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶装置とを備えたコンピュータから構成されている。
 制御部200、たとえば自己の記憶装置が予め記憶するプログラムを自己のプロセッサが読み出して実行することにより、後述する処理、たとえば、後述するサイクルを繰り返すことにより、ゲートGV1,GX1,GV2,GX2に、それぞれ、ゲート信号SGGV1,SGGX1,SGGV2,SGGX2を供給する処理を行う。
The control unit 200 is constituted by a computer including a processor such as a CPU (Central Processing Unit) and a storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), for example.
When the processor 200 reads and executes a program stored in advance in the control unit 200, for example, its own storage device, the processing described later, for example, by repeating a cycle described later, the gates GV1, GX1, GV2, GX2 Processing for supplying gate signals SGGV1, SGGX1, SGGV2, and SGGX2, respectively, is performed.
 それぞれのゲート信号は、前記ゲート信号の供給先であるゲートを備える半導体スイッチのオン又はオフを指示する信号である。たとえば、オンを指示するときの前記ゲート信号(オン信号)は、前記半導体スイッチをオンさせるに足る電圧(ハイレベル電圧)をとり、オフを指示するときの前記ゲート信号(オフ信号)は、前記半導体スイッチをオフさせるに足る電圧(ローレベル電圧)をとる。 Each gate signal is a signal for instructing on or off of a semiconductor switch including a gate to which the gate signal is supplied. For example, the gate signal (ON signal) when instructing ON takes a voltage (high level voltage) sufficient to turn on the semiconductor switch, and the gate signal (OFF signal) when instructing OFF is A voltage (low level voltage) sufficient to turn off the semiconductor switch is taken.
 制御部200の記憶装置は、制御部200がMERS101に後述のサイクルにおける、ゲート信号SGGV1及びSGGX1がオンを保持するべき時間d1と、MERS102に後述のサイクルを実行させる際にゲート信号SGGV2及びSGGX2がオンを保持するべき時間であって時間d1より短い時間d2と、ゲート信号SGGV1,SGGX1,SGGV2,SGGX2の後述のサイクルを繰り返す周波数f1とを予め記憶する。 In the storage device of the control unit 200, when the control unit 200 causes the MERS 101 to hold the gate signals SGGV1 and SGGX1 in the later-described cycle, the gate signal SGGV2 and SGGX2 A time d2 that is to be kept on and is shorter than the time d1 and a frequency f1 for repeating a later-described cycle of the gate signals SGGV1, SGGX1, SGGV2, and SGGX2 are stored in advance.
 制御部200は、動作開始前においては、全てのゲート信号SGGV1,SGGX1,SGGV2,SGGX2をオフ信号として出力し、例えば、ユーザの指示に応答して、予め記憶している時間d1,d2並びに周波数f1に基づいて、次のサイクルC1を繰り返す。
 制御部200は、サイクルC1において、全てのゲート信号SGGV1,SGGX1,SGGV2,SGGX2をオフ信号からオン信号に同時に切り替える。そして、オン信号に切り替えてから時間d2後に、まず、ゲート信号SGGV2,SGGX2をオン信号からオフ信号に切り替え、更に時間(d1-d2)経過後に、ゲート信号SGGV1,SGGX1をオン信号からオフ信号に切り替える。
 制御部200は、このサイクルC1を周波数f1で繰り返す。
The control unit 200 outputs all the gate signals SGGV1, SGGX1, SGGV2, and SGGX2 as off signals before the operation is started, for example, in response to a user instruction, the times d1 and d2 and the frequency stored in advance. The next cycle C1 is repeated based on f1.
In cycle C1, control unit 200 simultaneously switches all gate signals SGGV1, SGGX1, SGGV2, and SGGX2 from the off signal to the on signal. Then, after time d2 from switching to the on signal, first, the gate signals SGGV2 and SGGX2 are switched from the on signal to the off signal, and after the time (d1-d2) has elapsed, the gate signals SGGV1 and SGGX1 are switched from the on signal to the off signal. Switch.
The control unit 200 repeats this cycle C1 at the frequency f1.
 なお、本実施形態では、二次電池E1の出力電圧は300V,二次電池E2の出力電圧は500Vであり、インダクタLdc1及びLdc2のインダクタンスはともに1ミリHであり、コンデンサCM1及びCM2のキャパシタンスはともに5マイクロFであり、インダクタLmのインダクタンスは0.2ミリHであり、時間d1は60マイクロ秒、時間d2は30マイクロ秒、周波数f1は7キロHzである。
 インダクタLmに電流が流れていない時に各スイッチがオンされるように、コンデンサCM1の電圧がほぼ0の時にMERS101の各スイッチがオフされるように、コンデンサCM2の電圧がほぼ0の時にMERS102のスイッチがオフされるように、時間d1及びd2並びに周波数f1は予め調整されている。
 なお、コンデンサCM1とインダクタLdc1との共振周波数と、コンデンサCM2とインダクタLdc2との共振周波数とは、周波数f1の半分以下になるように、コンデンサCM1及びCM2並びにインダクタLdc1及びLdc2を選択することが好ましい。
In the present embodiment, the output voltage of the secondary battery E1 is 300V, the output voltage of the secondary battery E2 is 500V, the inductances of the inductors Ldc1 and Ldc2 are both 1 mmH, and the capacitances of the capacitors CM1 and CM2 are Both are 5 micro F, the inductance of the inductor Lm is 0.2 milliH, the time d1 is 60 microseconds, the time d2 is 30 microseconds, and the frequency f1 is 7 kHz.
The switches of the MERS 102 when the voltage of the capacitor CM2 is almost zero, so that the switches of the MERS 101 are turned off when the voltage of the capacitor CM1 is almost zero, so that the switches are turned on when no current flows through the inductor Lm. The times d1 and d2 and the frequency f1 are adjusted in advance so that is turned off.
It is preferable to select the capacitors CM1 and CM2 and the inductors Ldc1 and Ldc2 so that the resonance frequency of the capacitor CM1 and the inductor Ldc1 and the resonance frequency of the capacitor CM2 and the inductor Ldc2 are less than or equal to half of the frequency f1. .
(従来技術との構成の差異)
 フライバックブースト回路にトランス結合した回路が従来からある。また、そのスイッチをソフト化するためにスナバロスレススイッチ回路(Cブリッジと呼ばれることもある回路)を使用するものも知られている。
 図2に従来のハードスイッチのフライバックブーストを、図3にハードスイッチをMERSでソフト化したものを、図4にMERSの直流端子間に直流電源とインダクタンスの直列回路を接続し、交流端子間に他のインダクタンスを接続した回路(本実施形態の回路の一部でもある)を示す。
(Differences in configuration from conventional technology)
Conventionally, there is a circuit that is transformer-coupled to a flyback boost circuit. Further, there is also known one that uses a snubber lossless switch circuit (a circuit sometimes called a C bridge) to soften the switch.
Fig. 2 shows a flyback boost of a conventional hard switch, Fig. 3 shows a soft switch of the hard switch with MERS, and Fig. 4 shows a DC power supply and an inductance series circuit connected between the DC terminals of MERS. Shows a circuit (which is also a part of the circuit of this embodiment) to which another inductance is connected.
 図2に示した回路の基本原理は,低圧側の二次電池E1からスイッチを介してインダクタンスに電流を流し、そのスイッチをオフすることでインダクタに高圧を発生させ、ダイオードを介して高圧側の二次電池E2に非可逆に電力を供給することである。
 図2のブースト回路のスイッチを、図3に示すようにMERSに置き換えると、ソフトスイッチングが可能になる。
The basic principle of the circuit shown in FIG. 2 is that a current flows from the secondary battery E1 on the low voltage side through the switch to the inductance, the switch is turned off to generate a high voltage in the inductor, and the high voltage side through the diode. It is to supply electric power to the secondary battery E2 irreversibly.
If the switch of the boost circuit in FIG. 2 is replaced with MERS as shown in FIG. 3, soft switching becomes possible.
 一方、本実施形態に係るDC/DCコンバータでは、次の二つの動作を交互に繰り返すことが基本原理である。
 一つ目の動作では、MERSをオンすることで、MERSのコンデンサに一度蓄積された静電エネルギーをインダクタに放電する。これによって、インダクタに電流が流れ、磁気エネルギーが蓄積される。
 二つ目の動作では、MERSをオフすることで、インダクタに流れる電流をMERSのコンデンサで遮断する。これによって、インダクタの磁気エネルギーは、コンデンサに回収される。
On the other hand, in the DC / DC converter according to this embodiment, the basic principle is to repeat the following two operations alternately.
In the first operation, by turning on MERS, electrostatic energy once accumulated in the capacitor of MERS is discharged to the inductor. As a result, current flows through the inductor and magnetic energy is accumulated.
In the second operation, the current flowing through the inductor is blocked by the MERS capacitor by turning off MERS. Thereby, the magnetic energy of the inductor is recovered by the capacitor.
 (本実施形態の基本的な動作の説明)
 本実施形態の理解を容易にするために、まず、本実施形態の一部、すなわち、図4に示した電流一方向のMERSの動作について説明する。図4に示した回路は、図1のDC/DCコンバータ10Aの、MERS102,インダクタLdc2以外の部分に対応する。
(Description of basic operation of this embodiment)
In order to facilitate understanding of the present embodiment, a part of the present embodiment, that is, the operation of the current unidirectional MERS shown in FIG. 4 will be described first. The circuit shown in FIG. 4 corresponds to a part of the DC / DC converter 10A of FIG. 1 other than the MERS 102 and the inductor Ldc2.
 (電流一方向のMERSの動作)
 図5~図10を参照して、MERS101の動作を説明する。
(MERS operation in one direction of current)
The operation of the MERS 101 will be described with reference to FIGS.
 MERS101がオフの状態で二次電源E1が接続されると、図5に示すように、二次電池E1,インダクタLdc1及びコンデンサCM1は直列回路を形成する。これにより、コンデンサCM1は電力を蓄積する。
 制御部200が逆導通型スイッチSWX1及びSWV1の制御を開始し、MERS101のオン・オフを切り替えることにより、MERS101は以下の動作を繰り返す。
When the secondary power supply E1 is connected in a state where the MERS 101 is off, as shown in FIG. 5, the secondary battery E1, the inductor Ldc1, and the capacitor CM1 form a series circuit. As a result, the capacitor CM1 accumulates electric power.
When the control unit 200 starts control of the reverse conduction switches SWX1 and SWV1 and switches the MERS 101 on and off, the MERS 101 repeats the following operation.
 以下、コンデンサCM1に静電エネルギーが蓄積されており、逆導通型半導体スイッチSWV1及びSWX1がともにオンである状態(すなわち後述の図9の状態)が初期状態であるとして説明する。
 この初期状態から、制御部200は、以下に述べるパターンでゲート信号SGGV1及びSGGX1を供給することで、MERS101は、後述するT1~T5までを1サイクルとして、以下[1]~[4]で述べる動作を繰り返す。
In the following description, it is assumed that the electrostatic energy is stored in the capacitor CM1 and the reverse conducting semiconductor switches SWV1 and SWX1 are both on (that is, the state shown in FIG. 9 described later) is the initial state.
From this initial state, the control unit 200 supplies the gate signals SGGV1 and SGGX1 in the pattern described below, so that the MERS 101 will be described in [1] to [4] below, with T1 to T5 described later as one cycle. Repeat the operation.
[1] 時刻T1に至ると、制御部200は、図10(d)に示すように、ゲート信号SGGV1及びSGGX1をオフ信号からオン信号に切り替える。これにより、逆導通型半導体スイッチSWV1及びSWX1はオフからオンに切り替わる(MERS101がオフからオンに切り替わる)。
 すると、コンデンサCM1は放電を開始し、図6に示すように、コンデンサCM1の正極から、オンの逆導通型半導体スイッチSWV1、インダクタンスLm、オンの逆導通型半導体スイッチSWX1を介して、コンデンサCM1の負極へと流れ込む電流が生じる。
 このようにコンデンサCM1が放電することによりコンデンサCM1の電圧Vcm1は図10(b)に示すように減少する。一方、コンデンサCM1に蓄積されていた静電エネルギーが放電されることによって、図10(a)に示すようにインダクタLmに流れる電流ILmが増幅し、インダクタLmに磁気エネルギーが蓄積されていく。
[1] When the time T1 is reached, the control unit 200 switches the gate signals SGGV1 and SGGX1 from the off signal to the on signal, as shown in FIG. As a result, the reverse conducting semiconductor switches SWV1 and SWX1 are switched from OFF to ON (MERS 101 is switched from OFF to ON).
Then, the capacitor CM1 starts discharging, and, as shown in FIG. 6, from the positive electrode of the capacitor CM1, via the reverse conducting semiconductor switch SWV1, the inductance Lm, and the turning on reverse conducting semiconductor switch SWX1, A current flows into the negative electrode.
As the capacitor CM1 is thus discharged, the voltage Vcm1 of the capacitor CM1 decreases as shown in FIG. On the other hand, when the electrostatic energy accumulated in the capacitor CM1 is discharged, the current ILm flowing through the inductor Lm is amplified as shown in FIG. 10A, and magnetic energy is accumulated in the inductor Lm.
[2] コンデンサCM1の放電が完了する時刻T2に至ると、図7に示すように、2つの経路で電流が流れる。
 第1の経路は、交流端子AC11から、ダイオード部DU1とオンしている逆導通型半導体スイッチSWV1の電流路を順に通るルートである。
 第2の経路は、オンしている逆導通型半導体スイッチSWX1の電流路とダイオード部DY1を順に通るルートである。
 すなわち、コンデンサCM1に蓄積されていた静電エネルギーは全て、インダクタLmに磁気エネルギーとして蓄積されていることになる。
 この回路形態においては、電力は消費されないため、図7に示す経路で電流が流れている間は、図10(a)に示すように電流ILmはほぼ変化せず、図10(b)に示すように電圧Vcm1もほぼ変化しない。
[2] When the time T2 at which the discharge of the capacitor CM1 is completed is reached, current flows through two paths as shown in FIG.
The first path is a path that sequentially passes from the AC terminal AC11 through the current path of the reverse conducting semiconductor switch SWV1 that is on with the diode unit DU1.
The second path is a path that sequentially passes through the current path of the reverse conducting semiconductor switch SWX1 that is turned on and the diode part DY1.
That is, all the electrostatic energy accumulated in the capacitor CM1 is accumulated as magnetic energy in the inductor Lm.
In this circuit configuration, since no power is consumed, the current ILm does not substantially change as shown in FIG. 10A while the current flows through the path shown in FIG. Thus, the voltage Vcm1 does not change substantially.
[3] 上述したように、制御部200は、ゲート信号SGGV1及びSGGX1をオフ信号からオン信号に切り替えてから時間d1後の時刻T3において、ゲート信号SGGV1及びSGGX1をオン信号からオフ信号に切り替える。これにより、逆導通型半導体スイッチSWV1及びSWX1はオンからオフに切り替わる(MERS101がオンからオフに切り替わる)。
 すると、逆導通型半導体スイッチSWV1及びSWX1を流れていた各電流は遮断され、インダクタLmに蓄積された磁気エネルギーによって、図8に示すように、インダクタLmから、ダイオード部DU1を介しコンデンサCM1の正極に流入する電流が生じ、コンデンサCM1の負極からは、ダイオード部DY1を経て交流端子AC21へと電流が流れる。これによりコンデンサCM1は、インダクタLmに蓄積された磁気エネルギーを電荷の形で静電エネルギーとして蓄積するため、図10(b)に示すように電圧Vcm1が上昇する。一方、磁気エネルギーが電荷の形で静電エネルギーとしてコンデンサCM1に回収されるため、図10(a)に示すように、電流ILmは減少する。
[3] As described above, the control unit 200 switches the gate signals SGGV1 and SGGX1 from the on signal to the off signal at time T3 after time d1 after switching the gate signals SGGV1 and SGGX1 from the off signal to the on signal. As a result, the reverse conduction type semiconductor switches SWV1 and SWX1 are switched from on to off (MERS 101 is switched from on to off).
Then, the currents flowing through the reverse conducting semiconductor switches SWV1 and SWX1 are cut off, and the magnetic energy accumulated in the inductor Lm causes the positive electrode of the capacitor CM1 from the inductor Lm via the diode unit DU1, as shown in FIG. Is generated, and current flows from the negative electrode of the capacitor CM1 to the AC terminal AC21 via the diode portion DY1. As a result, the capacitor CM1 accumulates the magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges, so that the voltage Vcm1 rises as shown in FIG. 10B. On the other hand, since the magnetic energy is collected in the capacitor CM1 as electrostatic energy in the form of electric charges, the current ILm decreases as shown in FIG.
[4] その後、インダクタLmに蓄積されていた磁気エネルギーが尽きる時刻T4に至ると、図9に示すように、交流端子AC11から交流端子AC21へ流れる電流は消滅する。
 この間、コンデンサCM1は二次電池E1とインダクタLdc1と直列回路を形成するが、定常状態においては、図10(b)に示すように、電圧Vcm1はほとんど変化しない。
[4] Thereafter, when time T4 when the magnetic energy accumulated in the inductor Lm is exhausted, the current flowing from the AC terminal AC11 to the AC terminal AC21 disappears as shown in FIG.
During this time, the capacitor CM1 forms a series circuit with the secondary battery E1 and the inductor Ldc1, but in the steady state, the voltage Vcm1 hardly changes as shown in FIG.
 そして、次のサイクルにおける時刻T1に相当する時刻T5(この時刻T5は、上記周波数f1によって決定される)に至ると、再び、上述の[1]~[4]に示した動作を繰り返す。 Then, when the time T5 corresponding to the time T1 in the next cycle (this time T5 is determined by the frequency f1) is reached, the operations shown in the above [1] to [4] are repeated again.
 このように、[1]~[5]として説明した動作が繰り返される結果、インダクタLmとコンデンサCM1とは、図10(a),(b)に示すように、静電エネルギーと磁気エネルギーとを相互に変換させる。すなわち、制御部200が逆導通型半導体スイッチSWV1及びSWX1をオンからオフに切り替える(MERS101をオンからオフに切り替える)ことによってインダクタLmに蓄積されていた磁気エネルギーをコンデンサCM1に電荷の形で静電エネルギーとして回収させ、制御部200が逆導通型半導体スイッチSWV1及びSWX1をオフからオンに切り替える(MERS101をオフからオンに切り替える)ことによって、コンデンサCM1に回収されたエネルギーを再びインダクタLmに戻す、という効果を実現させる。 As described above, as a result of the operations described as [1] to [5] being repeated, the inductor Lm and the capacitor CM1 generate electrostatic energy and magnetic energy as shown in FIGS. 10 (a) and 10 (b). Let them convert to each other. That is, the control unit 200 switches the reverse conducting semiconductor switches SWV1 and SWX1 from on to off (switches the MERS 101 from on to off), and the magnetic energy stored in the inductor Lm is electrostatically charged to the capacitor CM1 in the form of charges. It is recovered as energy, and the control unit 200 switches the reverse conducting semiconductor switches SWV1 and SWX1 from OFF to ON (MERS101 is switched from OFF to ON), thereby returning the energy recovered in the capacitor CM1 to the inductor Lm again. Realize the effect.
 また、上記のような動作では、コンデンサCM1とインダクタLmとの共振現象が利用されているため、コンデンサCM1の電圧Vcm1は、二次電池E1の出力電圧300Vよりも高い電圧をピークに持つことが可能である。
 この例では電圧Vcm1のピークは、図10(b)に示すように、400Vを超える。
 また、この例では、理想的にはインダクタLmを含め電力を消費するものがないため、定常状態では、図10(c)に示すように、二次電池E1から出力される電力Pは略0Wとなる。なお、ここで、電力Pは、1ミリ秒間の平均電力を示す。
In the operation as described above, since the resonance phenomenon between the capacitor CM1 and the inductor Lm is used, the voltage Vcm1 of the capacitor CM1 may have a peak higher than the output voltage 300V of the secondary battery E1. Is possible.
In this example, the peak of the voltage Vcm1 exceeds 400V as shown in FIG.
In this example, ideally, there is nothing that consumes power including the inductor Lm. Therefore, in the steady state, the power P output from the secondary battery E1 is approximately 0 W as shown in FIG. It becomes. Here, the power P indicates an average power for 1 millisecond.
 なお、図10(a)(d)に示すように、ゲート信号SGGV1及びSGGX1がオフ信号からオン信号に切り替わる時刻T1には、インダクタLmには電流が流れていない。このため、時刻T5でゲート信号の切り替えがあった直後の時点には、電流が流れていない状態を維持しようとする向きの逆起電力がインダクタLmに生じる。従って、この時点では、インダクタLmから逆導通型半導体スイッチSWX1の電流路(順方向)、コンデンサCM、逆導通型半導体スイッチSWV1の電流路(順方向)を順に至る電流路は、インダクタLmによって遮断された状態にあるということができる。よって、時刻T5における逆導通型半導体スイッチSWV1及びSWX1のオフからオンへのスイッチングは、半導体スイッチSX1及びSV1のスイッチングによる状態遷移中にこれらの電流路に流れる電流が略0である状態で行われることになり、このスイッチングはソフトスイッチングになっている。 As shown in FIGS. 10A and 10D, no current flows through the inductor Lm at time T1 when the gate signals SGGV1 and SGGX1 are switched from the off signal to the on signal. For this reason, at the time immediately after the switching of the gate signal at time T5, a counter electromotive force is generated in the inductor Lm in a direction to maintain a state in which no current flows. Therefore, at this time, the current path from the inductor Lm to the current path (forward direction) of the reverse conducting semiconductor switch SWX1, the capacitor CM, and the current path (forward direction) of the reverse conducting semiconductor switch SWV1 in order is cut off by the inductor Lm. It can be said that it is in a state that has been done. Therefore, switching from OFF to ON of the reverse conducting semiconductor switches SWV1 and SWX1 at time T5 is performed in a state where the current flowing through these current paths is substantially zero during the state transition by switching of the semiconductor switches SX1 and SV1. Therefore, this switching is soft switching.
 また、図10(b)及び(d)に示すように、ゲート信号SGGV1及びSGGX1がオン信号からオフ信号に切り替わる時刻T3の直後では、コンデンサCM1はほぼ完全に放電された状態にある。このため、逆導通型半導体スイッチSWV1の電流路は、ダイオード部DY1を介してコンデンサCM1により短絡された状態にあるということができ、また、逆導通型半導体スイッチSWX1の電流路は、ダイオード部DU1を介してコンデンサCM1により短絡された状態にあるということができる。よって、時刻T3における逆導通型半導体スイッチSWV1及びSWX1のオンからオフへのスイッチングは、これらの電流路の両端間の電圧が略0である状態でのスイッチングとなり、スイッチングによる半導体スイッチの状態遷移中に生じるスイッチング損失が少ないスイッチング、すなわちソフトスイッチングになっている。 Also, as shown in FIGS. 10B and 10D, immediately after time T3 when the gate signals SGGV1 and SGGX1 are switched from the on signal to the off signal, the capacitor CM1 is almost completely discharged. Therefore, it can be said that the current path of the reverse conducting semiconductor switch SWV1 is short-circuited by the capacitor CM1 via the diode unit DY1, and the current path of the reverse conducting semiconductor switch SWX1 is the diode unit DU1. It can be said that it is short-circuited by the capacitor CM1. Therefore, switching from reverse on-type semiconductor switches SWV1 and SWX1 from on to off at time T3 is performed when the voltage across these current paths is substantially zero, and the semiconductor switch is undergoing state transition due to switching. Switching with little switching loss occurs, that is, soft switching.
(第1実施形態:DC/DCコンバータの動作)
 上述のように、制御部200がMERS101に対して、逆導通型半導体スイッチSWV1及びSWX1をオンからオフに切り替えることによってインダクタLmに蓄積されていた磁気エネルギーをコンデンサCM1に電荷の形で静電エネルギーとして回収させ、逆導通型半導体スイッチSWV1及びSWX1をオフからオンに切り替えることによって、コンデンサCM1が回収したエネルギーを再びインダクタLmに戻す。
(First Embodiment: Operation of DC / DC Converter)
As described above, the control unit 200 switches the reverse conducting semiconductor switches SWV1 and SWX1 from on to off with respect to the MERS 101, thereby converting the magnetic energy stored in the inductor Lm into the capacitor CM1 in the form of electrostatic energy. And switching the reverse conducting semiconductor switches SWV1 and SWX1 from OFF to ON, the energy recovered by the capacitor CM1 is returned to the inductor Lm again.
 一方、DC/DCコンバータ10Aにおいては、制御部200は、MERS102に対しても、逆導通型半導体スイッチSWV2及びSWX2のオン・オフを切り替える。オンからオフに切り替わることによって、インダクタLmに蓄積されていた磁気エネルギーはコンデンサCM2に電荷の形で静電エネルギーとして回収させる。
 また、オフからオンに切り替わることによって、コンデンサCM2が回収したエネルギーは再びインダクタLmに放電される。
On the other hand, in DC / DC converter 10 </ b> A, control unit 200 switches reverse conduction semiconductor switches SWV <b> 2 and SWX <b> 2 on and off for MERS 102 as well. By switching from on to off, the magnetic energy stored in the inductor Lm is recovered by the capacitor CM2 as electrostatic energy in the form of electric charges.
Further, by switching from OFF to ON, the energy recovered by the capacitor CM2 is discharged again to the inductor Lm.
 このように、制御部200は、コンデンサCM1及びCM2に蓄積されていた静電エネルギーを放電させてインダクタLmに磁気エネルギーとして蓄積し、インダクタLmに蓄積された磁気エネルギーを、コンデンサCM1あるいはコンデンサCM2に静電エネルギーとして蓄積させるように、MERS101及び102を制御する。 As described above, the control unit 200 discharges the electrostatic energy stored in the capacitors CM1 and CM2 and stores it as magnetic energy in the inductor Lm, and stores the magnetic energy stored in the inductor Lm in the capacitor CM1 or the capacitor CM2. MERS 101 and 102 are controlled so as to be stored as electrostatic energy.
 本実施形態のDC/DCコンバータ10Aでは、制御部200は、MERS101及び102のうち、MERS102の逆導通型半導体スイッチSWV2及びSWX2を先にオフさせる。そのため、インダクタLmに蓄積されていた磁気エネルギーの全てあるいは大部分がコンデンサCM2に充電させる。その結果、コンデンサCM2に充電された電力によって、二次電池E2が充電される。 In the DC / DC converter 10A of the present embodiment, the control unit 200 first turns off the reverse conducting semiconductor switches SWV2 and SWX2 of the MERS 102 among the MERSs 101 and 102. Therefore, all or most of the magnetic energy stored in the inductor Lm is charged in the capacitor CM2. As a result, the secondary battery E2 is charged with the power charged in the capacitor CM2.
 二次電池E2の充電に用いられるインダクタLmの磁気エネルギーは、インダクタLdc1を介して二次電池E1から、インダクタLdc2を介して二次電池E2から供給されたものである。しかし、二次電池E2から供給される電力は二次電池E2に戻るので、実質的には、二次電池E1が、二次電池E2を充電することになる。
 なお、この例では、コンデンサCM1とインダクタLdc1との共振周波数と、コンデンサCM2とインダクタLdc2との共振周波数とは、周波数f1の半分いかになるため、二次電池E2からDC/DCコンバータ10Aに電力は供給されない。
The magnetic energy of the inductor Lm used for charging the secondary battery E2 is supplied from the secondary battery E1 via the inductor Ldc1 and from the secondary battery E2 via the inductor Ldc2. However, since the electric power supplied from the secondary battery E2 returns to the secondary battery E2, the secondary battery E1 substantially charges the secondary battery E2.
In this example, since the resonance frequency of the capacitor CM1 and the inductor Ldc1 and the resonance frequency of the capacitor CM2 and the inductor Ldc2 are half of the frequency f1, the power is supplied from the secondary battery E2 to the DC / DC converter 10A. Not supplied.
(第1実施形態:DC/DCコンバータの具体的な動作)
 以下、本実施形態のDC/DCコンバータ10Aの具体的な動作について、図11から図18を参照して説明する。なお、図18において、電流ILdc1は二次電池E1の正極からMERS101の直流端子DC11方向に流れる電流を示し、電流ILdc2はMERS102の直流端子DC12から二次電池E2の正極方向に流れる電流を示す。
(First Embodiment: Specific Operation of DC / DC Converter)
Hereinafter, a specific operation of the DC / DC converter 10A of the present embodiment will be described with reference to FIGS. In FIG. 18, a current ILdc1 indicates a current flowing from the positive electrode of the secondary battery E1 toward the DC terminal DC11 of the MERS 101, and a current ILdc2 indicates a current flowing from the DC terminal DC12 of the MERS 102 toward the positive electrode of the secondary battery E2.
 制御部200から出力されるゲート信号SGGV1,SGGX1,SGGV2及びSGGX2が全てオフ信号の場合、図11に示すように、逆導通型半導体スイッチSWV1,SWX1,SWV2及びSWX2は全てオフであり、コンデンサCM1はインダクタLdc1を介して二次電池E1から、コンデンサCM2はインダクタLdc2を介して二次電池E2から、電力を供給される。 When the gate signals SGGV1, SGGX1, SGGV2, and SGGX2 output from the control unit 200 are all off signals, as shown in FIG. 11, the reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 are all off, and the capacitor CM1 Is supplied from the secondary battery E1 through the inductor Ldc1, and the capacitor CM2 is supplied from the secondary battery E2 through the inductor Ldc2.
 以下、コンデンサCM1及びCM2に静電エネルギーが蓄積されており、逆導通型半導体スイッチSWV1,SWX1,SWV2及びSWX2がともにオンである状態(すなわち後述の図17の状態)が初期状態であるとして説明する。
 この初期状態から、制御部200は、以下に述べるパターンでゲート信号SGGV1,SGGX1,SGGV2及びSGGX2を供給することで、MERS101は、後述するTa1~Ta7までを1サイクルとして所定の周波数f1で、以下[フェイズPA1]~[フェイズPA6]で述べる動作を周期的に行わせる。
In the following description, it is assumed that the electrostatic energy is accumulated in the capacitors CM1 and CM2 and the reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 are all on (that is, the state shown in FIG. 17 described later) is the initial state. To do.
From this initial state, the control unit 200 supplies the gate signals SGGV1, SGGX1, SGGV2, and SGGX2 in the pattern described below, so that the MERS 101 performs a cycle from Ta1 to Ta7, which will be described later, at a predetermined frequency f1. The operations described in [Phase PA1] to [Phase PA6] are periodically performed.
[フェイズPA1]
 制御部200は、時刻Ta1において、ゲート信号SGGV1,SGGX1,SGGV2及びSGGX2をオフ信号からオン信号に切替える。これにより、逆導通型半導体スイッチSWV1,SWX1,SWV2及びSWX2はオフからオンに切り替わる(MERS101及び102はオフからオンに切り替わる)。
 すると、コンデンサCM1及びCM2は放電を開始し、図12に示すように、コンデンサCM1の正極から、オンの逆導通型半導体スイッチSWV1、インダクタンスLm、逆導通型半導体スイッチSWX2を介して、コンデンサCM2の負極へと流れ込む電流と、コンデンサCM2の正極から、オンの逆導通型半導体スイッチSWV2、逆導通型半導体スイッチSWX1を介して、コンデンサCM1の負極へと流れ込む電流と、が生じる。
 このようにコンデンサCM1及びCM2が放電することによりコンデンサCM1及びCM2の電圧Vcm1は図18(b)に示すように減少する。一方、コンデンサCM1及びCM2に蓄積されていた静電エネルギーは放電されることによって、図18(a)に示すようにインダクタLmに流れる電流ILmが増幅し、インダクタLmに磁気エネルギーが蓄積されていく。
[Phase PA1]
At time Ta1, control unit 200 switches gate signals SGGV1, SGGX1, SGGV2, and SGGX2 from an off signal to an on signal. As a result, the reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 are switched from OFF to ON ( MERS 101 and 102 are switched from OFF to ON).
Then, the capacitors CM1 and CM2 start discharging, and as shown in FIG. 12, from the positive electrode of the capacitor CM1, the reverse-conducting semiconductor switch SWV1, the inductance Lm, and the reverse-conducting semiconductor switch SWX2 are turned on. A current that flows into the negative electrode and a current that flows from the positive electrode of the capacitor CM2 into the negative electrode of the capacitor CM1 through the reverse conducting semiconductor switch SWV2 and the reverse conducting semiconductor switch SWX1 are generated.
As the capacitors CM1 and CM2 are discharged in this way, the voltage Vcm1 of the capacitors CM1 and CM2 decreases as shown in FIG. On the other hand, when the electrostatic energy accumulated in the capacitors CM1 and CM2 is discharged, the current ILm flowing through the inductor Lm is amplified as shown in FIG. 18A, and magnetic energy is accumulated in the inductor Lm. .
[フェイズPA2]
 本実施形態においては、コンデンサCM2の放電がコンデンサCM1よりも先に放電を完了する。コンデンサCM2の放電が完了する時刻Ta2に至ると、図13に示すように、電流が、MERS102の交流端子AC12から、ダイオード部DU2とオンしている逆導通型半導体スイッチSWV2の電流路を順に通るルートと、オンしている逆導通型半導体スイッチSWX2の電流路とダイオード部DY2を順に通るルートと、の2つに分岐して交流端子AC22へ流れる。
 すなわち、コンデンサCM2に蓄積されていた静電エネルギーは全て、インダクタLmに磁気エネルギーとして蓄積されることになる。なお、この例では、コンデンサCM1は、この時点で放電を完了していない。
[Phase PA2]
In this embodiment, the discharge of the capacitor CM2 is completed before the capacitor CM1. When the time Ta2 at which the discharge of the capacitor CM2 is completed is reached, as shown in FIG. 13, the current sequentially passes from the AC terminal AC12 of the MERS 102 through the current path of the diode unit DU2 and the reverse conducting semiconductor switch SWV2. The current flows into the AC terminal AC22 by branching into a route and a route passing through the current path of the reverse conducting semiconductor switch SWX2 that is turned on and the diode part DY2 in order.
That is, all of the electrostatic energy accumulated in the capacitor CM2 is accumulated as magnetic energy in the inductor Lm. In this example, the capacitor CM1 has not completed discharging at this time.
[フェイズPA3]
 上述したように、制御部200は、時刻Ta1から時間d2後の時刻Ta3において、ゲート信号SGGV2及びSGGX2をオン信号からオフ信号に切り替える。これにより、逆導通型半導体スイッチSWV2及びSWX2はオンからオフに切り替わる(MERS102はオンからオフに切り替わる)。本実施形態においては、時刻Ta2の直後に時刻Ta3に至る。
 すると、逆導通型半導体スイッチSWV2及びSWX2を流れていた各電流は遮断され、インダクタLmに蓄積された磁気エネルギーによって、図14に示すように、インダクタLmから、ダイオード部DU2を介しコンデンサCM2の正極に流入する電流が生じ、コンデンサCM2の負極からは、ダイオード部DY2を経て交流端子AC22へと電流が流れる。これによりコンデンサCM2は、インダクタLmに蓄積された磁気エネルギーを電荷の形で静電エネルギーとして蓄積するため、図18(b)に示すように電圧Vcm2が上昇する。一方、磁気エネルギーが電荷の形で静電エネルギーとしてコンデンサCM2に蓄積されるため、図18(a)に示すように、電流ILmは減少する。また、コンデンサCM1は放電を継続するため、図18(b)に示すように、電圧Vcm1は減少する。
[Phase PA3]
As described above, control unit 200 switches gate signals SGGV2 and SGGX2 from the on signal to the off signal at time Ta3 after time d2 from time Ta1. Thereby, reverse conduction type semiconductor switches SWV2 and SWX2 are switched from on to off (MERS102 is switched from on to off). In the present embodiment, time Ta3 is reached immediately after time Ta2.
Then, each current flowing through the reverse conducting semiconductor switches SWV2 and SWX2 is cut off, and the magnetic energy accumulated in the inductor Lm causes the positive electrode of the capacitor CM2 from the inductor Lm via the diode unit DU2 as shown in FIG. Is generated, and current flows from the negative electrode of the capacitor CM2 to the AC terminal AC22 via the diode portion DY2. As a result, the capacitor CM2 accumulates the magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges, so that the voltage Vcm2 increases as shown in FIG. On the other hand, since the magnetic energy is stored in the capacitor CM2 as electrostatic energy in the form of electric charges, the current ILm decreases as shown in FIG. Further, since the capacitor CM1 continues to discharge, the voltage Vcm1 decreases as shown in FIG.
[フェイズPA4]
 その後、コンデンサCM1の放電が完了する時刻Ta4に至ると、図15に示すように、電流が、MERS101の交流端子AC11から、ダイオード部DU1とオンしている逆導通型半導体スイッチSWV1の電流路を順に通るルートと、オンしている逆導通型半導体スイッチSWX1の電流路とダイオード部DY1を順に通るルートと、の2つに分岐して交流端子AC21へ流れる。
 すなわち、コンデンサCM1に蓄積されていた静電エネルギーも、全て、インダクタLmに磁気エネルギーとして蓄積されることになる。
[Phase PA4]
After that, when the time Ta4 at which the discharge of the capacitor CM1 is completed is reached, as shown in FIG. A route that passes in sequence and a route that passes through the current path of the reverse conducting semiconductor switch SWX1 that is turned on and the route that passes through the diode portion DY1 branch into two and flow to the AC terminal AC21.
That is, all of the electrostatic energy stored in the capacitor CM1 is also stored as magnetic energy in the inductor Lm.
[フェイズPA5]
 制御部200は、時刻Ta3から時間(d1-d2)後(時刻Ta1から時間d1後)の時刻Ta5において、ゲート信号SGGV1及びSGGX1をオン信号からオフ信号に切り替える。これにより、逆導通型半導体スイッチSWV1及びSWX1はオンからオフに切り替わる(MERS101はオンからオフに切り替わる)。なお、本実施形態においては、時刻Ta5は、インダクタLmには電流が流れている(磁気エネルギーが残っている)状態である。
 すると、逆導通型半導体スイッチSWV1及びSWX1を流れていた各電流は遮断され、インダクタLmに蓄積された磁気エネルギーによって、図16に示すように、インダクタLmから、ダイオード部DU1を介しコンデンサCM1の正極に流入する電流が生じ、コンデンサCM1の負極からは、ダイオード部DY1を経て交流端子AC21へと電流が流れる。一方、MERS102では、上記フェイズP5で示した経路で電流が流れる。
 そのため、コンデンサCM1及びCM2が、インダクタLmに蓄積された磁気エネルギーを電荷の形で静電エネルギーとして蓄積し、図18(b)に示すように電圧Vcm1及びVcm2が上昇する。一方、磁気エネルギーが電荷の形で静電エネルギーとしてコンデンサCM1及びCM2に蓄積されるため、図18(a)に示すように、電流ILmは減少する。
[Phase PA5]
At time Ta5 after time (d1-d2) from time Ta3 (after time Ta1 after time d1), control unit 200 switches gate signals SGGV1 and SGGX1 from an on signal to an off signal. Thereby, reverse conduction type semiconductor switches SWV1 and SWX1 are switched from on to off (MERS 101 is switched from on to off). In the present embodiment, the time Ta5 is a state in which a current flows through the inductor Lm (magnetic energy remains).
Then, the currents flowing through the reverse conducting semiconductor switches SWV1 and SWX1 are cut off, and the magnetic energy accumulated in the inductor Lm causes the positive electrode of the capacitor CM1 from the inductor Lm via the diode unit DU1, as shown in FIG. Is generated, and current flows from the negative electrode of the capacitor CM1 to the AC terminal AC21 via the diode portion DY1. On the other hand, in the MERS 102, a current flows through the path indicated by the phase P5.
Therefore, the capacitors CM1 and CM2 accumulate the magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges, and the voltages Vcm1 and Vcm2 rise as shown in FIG. On the other hand, since the magnetic energy is stored in the capacitors CM1 and CM2 as electrostatic energy in the form of electric charges, the current ILm decreases as shown in FIG.
[フェイズPA6]
 その後、インダクタLmに蓄積されていた磁気エネルギーが尽きる時刻Ta6に至ると、図17に示すように、インダクタLmを流れる電流は消滅する。
[Phase PA6]
Thereafter, when the time Ta6 when the magnetic energy accumulated in the inductor Lm runs out is reached, the current flowing through the inductor Lm disappears as shown in FIG.
 そして、次のサイクルにおける時刻Ta1に相当する時刻Ta7(前サイクルの時刻Ta1から時間1/f1後)に至ると、再び、上述のフェイズPA1からPA6に示した動作を繰り返す。
 この動作を繰り返されている間、図18(a)に示すように、二次電池E1からは常に電力がMERS101に供給され(電流ILdc1が正)、二次電池E2には常に電力がMERS102から供給されている(電流ILdc2が正)。
When the time Ta7 corresponding to the time Ta1 in the next cycle (time 1 / f1 after the time Ta1 of the previous cycle) is reached, the operations shown in the phases PA1 to PA6 are repeated again.
While this operation is repeated, as shown in FIG. 18A, power is always supplied from the secondary battery E1 to the MERS 101 (current ILdc1 is positive), and power is always supplied from the MERS 102 to the secondary battery E2. Is supplied (current ILdc2 is positive).
 このように、インダクタを介して2つのMERSを接続する。片方のMERSが放電した静電エネルギーは、電流の形でインダクタに磁気エネルギーとして蓄積される。この磁気エネルギーによって他方のMERSがコンデンサに充電する。このコンデンサに蓄積される電力によって、負荷に電力を供給することができる。
 上記実施形態に対応して説明すると、まず、二次電池E1及びE2から供給された電力が、コンデンサCM1及びCM2に静電エネルギーとして蓄積される。この静電エネルギーが放電されることでインダクタLmに磁気エネルギーが蓄積される。この磁気エネルギーの大部分を、コンデンサCM2が回収するため、コンデンサCM2は、二次電池E2の電圧から昇圧される。この例では、図18(b)に示すように、二次電池E2の出力電圧をより高くなる。よって、コンデンサCM2は、二次電池E2を充電する。
 なお、この例では、二次電池E2に供給される電力は、図18(a)に示すように、二次電池E1から常時供給されている。
Thus, two MERS are connected via an inductor. The electrostatic energy discharged from one MERS is stored as magnetic energy in the inductor in the form of current. The other MERS charges the capacitor by this magnetic energy. Power can be supplied to the load by the power stored in the capacitor.
If it demonstrates corresponding to the said embodiment, first, the electric power supplied from the secondary batteries E1 and E2 will be accumulate | stored as electrostatic energy in capacitor | condenser CM1 and CM2. When this electrostatic energy is discharged, magnetic energy is accumulated in the inductor Lm. Since most of the magnetic energy is recovered by the capacitor CM2, the capacitor CM2 is boosted from the voltage of the secondary battery E2. In this example, as shown in FIG.18 (b), the output voltage of the secondary battery E2 becomes higher. Therefore, the capacitor CM2 charges the secondary battery E2.
In this example, the power supplied to the secondary battery E2 is always supplied from the secondary battery E1, as shown in FIG.
 また、この例では、二次電池E1から二次電池E2への変換電力は6300Wである。スイッチング制御の周波数f1を5キロHzに変更すると変換電力は3600Wに,10キロHzに変更すると変換電力は11700Wである。
 なお、コンデンサCM1に蓄積される静電エネルギーとコンデンサCM2に蓄積される静電エネルギーとの間に磁気エネルギーを介しているため、コンデンサCM1の電圧が、コンデンサCM2の電圧よりも高くなることも、低くなることもありうる。すなわち昇降圧可能である。
In this example, the conversion power from the secondary battery E1 to the secondary battery E2 is 6300W. If the switching control frequency f1 is changed to 5 kHz, the converted power is 3600 W, and if changed to 10 kHz, the converted power is 11700 W.
Since the magnetic energy is interposed between the electrostatic energy accumulated in the capacitor CM1 and the electrostatic energy accumulated in the capacitor CM2, the voltage of the capacitor CM1 may be higher than the voltage of the capacitor CM2. It can be lower. That is, it can be stepped up and down.
 (第1実施形態の他の使用例1)
 上記二次電池E2を500Vから300Vの二次電池を変更した場合のインダクタLmを流れる電流ILmの時間変化と、コンデンサCM1,CM2の電圧Vcm1,Vcm2の時間変化と、ゲート信号SGGV1及びSGGX1並びにゲート信号SGGV2及びSGGX2の時間遷移と、の関係は図19のようになる。
 この例では、コンデンサCM1,CM2の電圧のピークはほぼ同じ値をとる。二次電池E1から二次電池E2への変換電力は5600W である。
(Another usage example 1 of the first embodiment)
When the secondary battery E2 is changed from a 500V to 300V secondary battery, the time change of the current ILm flowing through the inductor Lm, the time change of the voltages Vcm1 and Vcm2 of the capacitors CM1 and CM2, the gate signals SGGV1 and SGGX1, and the gate The relationship between the time transitions of the signals SGGV2 and SGGX2 is as shown in FIG.
In this example, the voltage peaks of the capacitors CM1 and CM2 have substantially the same value. The conversion power from the secondary battery E1 to the secondary battery E2 is 5600W.
 (第1実施形態の他の使用例2)
 上記二次電池E2を200Vの電池に変更した場合のインダクタLmを流れる電流ILmの時間変化と、コンデンサCM1,CM2の電圧Vcm1,Vcm2の時間変化と、ゲート信号SGGV1及びSGGX1並びにゲート信号SGGV2及びSGGX2の時間遷移と、の関係は図20のようになる。
(Other use example 2 of the first embodiment)
When the secondary battery E2 is changed to a 200V battery, the time change of the current ILm flowing through the inductor Lm, the time change of the voltages Vcm1 and Vcm2 of the capacitors CM1 and CM2, the gate signals SGGV1 and SGGX1, and the gate signals SGGV2 and SGGX2 The relationship with the time transition is as shown in FIG.
 この例では、二次電池E1から二次電池E2への変換電力は4800W である。なお、スイッチング制御の繰返周波数f1を5キロHzに変更すると変換電力は3200Wに,10キロHzに変更すると変換電力は7700Wである。
 この使用例では、降圧変換されている。
In this example, the conversion power from the secondary battery E1 to the secondary battery E2 is 4800W. If the switching control repetition frequency f1 is changed to 5 kHz, the converted power is 3200 W, and if changed to 10 kHz, the converted power is 7700 W.
In this use example, step-down conversion is performed.
 (第1実施形態の構成の変形例1)
 なお、上記実施形態では、ゲート信号SGGV1及びSGGX1をオン信号に保持する時間が、ゲート信号SGGV2及びSGGX2をオン信号に保持する時間よりも長い場合について説明したが、短くてもよい。
 例えば、ゲート信号SGGV1及びSGGX1をオン信号に保持する時間を時間d2に、ゲート信号SGGV2及びSGGX2をオン信号に保持する時間を時間d1に設定してもよい。この場合の、インダクタLmを流れる電流ILmの時間変化と、コンデンサCM1,CM2の電圧Vcm1,Vcm2の時間変化と、ゲート信号SGGV1及びSGGX1並びにゲート信号SGGV2及びSGGX2の時間遷移と、の関係は図21のようになる。
(Modification 1 of the configuration of the first embodiment)
In the above-described embodiment, the case where the time during which the gate signals SGGV1 and SGGX1 are held as the ON signal is longer than the time during which the gate signals SGGV2 and SGGX2 are held as the ON signal has been described.
For example, the time for holding the gate signals SGGV1 and SGGX1 as the ON signal may be set as the time d2, and the time for holding the gate signals SGGV2 and SGGX2 as the ON signal may be set as the time d1. The relationship between the time change of the current ILm flowing through the inductor Lm, the time change of the voltages Vcm1 and Vcm2 of the capacitors CM1 and CM2, and the time transition of the gate signals SGGV1 and SGGX1 and the gate signals SGGV2 and SGGX2 in this case is shown in FIG. become that way.
 この場合は、逆導通型半導体スイッチSWV1及びSWX1が先にオフするため、二次電池E2から二次電池E1へ電力が供給されることになる。この例では、二次電池E2から二次電池E1への変換電力は12900Wである。 In this case, since the reverse conducting semiconductor switches SWV1 and SWX1 are turned off first, power is supplied from the secondary battery E2 to the secondary battery E1. In this example, the conversion power from the secondary battery E2 to the secondary battery E1 is 12900W.
 このように、本発明の第1実施形態に係るDC/DCコンバータ10Aによれば、ゲート信号SGGV1及びSGGX1をオン信号に保持する時間を、ゲート信号SGGV2及びSGGX2をオン信号に保持する時間より短くすることによって、二次電池E2から二次電池E1に電力を供給することもできる(逆変換可能である)。
 すなわち、本発明の第1実施形態に係るDC/DCコンバータ10Aによれば、ゲート信号SGGV1及びSGGX1をオン信号に保持する時間、及び、ゲート信号SGGV2及びSGGX2をオン信号に保持する時間、を適切に選択することによって、二次電池E1と二次電池E2との間で相互に電力を充電させることができる。
As described above, according to the DC / DC converter 10A according to the first embodiment of the present invention, the time for holding the gate signals SGGV1 and SGGX1 as the on signal is shorter than the time for holding the gate signals SGGV2 and SGGX2 as the on signal. By doing so, electric power can also be supplied from the secondary battery E2 to the secondary battery E1 (reverse conversion is possible).
That is, according to the DC / DC converter 10A according to the first embodiment of the present invention, the time for holding the gate signals SGGV1 and SGGX1 in the on signal and the time for holding the gate signals SGGV2 and SGGX2 in the on signal are appropriate. By selecting this, power can be charged between the secondary battery E1 and the secondary battery E2.
 (第1実施形態の構成の変形例2)
 第1実施形態では、MERS101の交流端子AC11とMERS102の交流端子AC22とが、接地ラインに接続されていた。しかし、二次電池E1の負極と二次電池E2の負極とを、あるいは二次電池E1の正極と二次電池E2の正極とが、接地ラインに接続されていてもよい。ただし、二次電池E1と、二次電池E2と、が違う出力電圧である場合、共通の接地ラインを介して電流が漏れてしまう可能性がある。
(Modification 2 of the configuration of the first embodiment)
In 1st Embodiment, AC terminal AC11 of MERS101 and AC terminal AC22 of MERS102 were connected to the ground line. However, the negative electrode of the secondary battery E1 and the negative electrode of the secondary battery E2 or the positive electrode of the secondary battery E1 and the positive electrode of the secondary battery E2 may be connected to the ground line. However, if the secondary battery E1 and the secondary battery E2 have different output voltages, current may leak through the common ground line.
 そこで、図22に示すDC/DCコンバータ10Bように、DC/DCコンバータ10AのインダクタLmを、MERS101の交流端子AC21とMERS102の交流端子AC12との間に接続されたインダクタLm1と、MERS102の交流端子AC22とMERS101の交流端子AC11との間に接続されたインダクタLm2と、に分割する。インダクタLm1及びLm2とは同一のインダクタンスを持つことが好ましい。これによって、二次電池E1及びE2を接地させたとしても漏れ電流を低減することができる。 Therefore, like the DC / DC converter 10B shown in FIG. 22, the inductor Lm of the DC / DC converter 10A is connected to the inductor Lm1 connected between the AC terminal AC21 of the MERS101 and the AC terminal AC12 of the MERS102, and the AC terminal of the MERS102. It divides | segments into the inductor Lm2 connected between AC22 and AC terminal AC11 of MERS101. The inductors Lm1 and Lm2 preferably have the same inductance. Thereby, even if the secondary batteries E1 and E2 are grounded, the leakage current can be reduced.
 また、図22に示すように、インダクタLdc1,Ldc2を二次電池E1,E2を中心に対称に配置してもよい。インダクタLdc1を、二次電池E1の一端とMERS101の直流端子DC11との間に接続されたインダクタLdc11と、二次電池E1の他端とMERS101の直流端子DC21との間に接続されたインダクタLdc21と、に分割する。インダクタLdc2を、二次電池E2の一端とMERS102の直流端子DC12との間に接続されたインダクタLdc12と、二次電池E2の他端とMERS102の直流端子DC22との間に接続されたインダクタLdc22と、に分割する。インダクタLdc11及びLdc21とは同じインダクタンス、インダクタLdc12及びLdc22とは同じインダクタンス、であることが好ましい。これによっても漏れ電流を低減することができる。 Further, as shown in FIG. 22, the inductors Ldc1 and Ldc2 may be arranged symmetrically around the secondary batteries E1 and E2. An inductor Ldc1 is connected between one end of the secondary battery E1 and the DC terminal DC11 of the MERS101, and an inductor Ldc21 connected between the other end of the secondary battery E1 and the DC terminal DC21 of the MERS101. Divide into An inductor Ldc2 is connected between one end of the secondary battery E2 and the DC terminal DC12 of the MERS 102, and an inductor Ldc22 connected between the other end of the secondary battery E2 and the DC terminal DC22 of the MERS 102. Divide into It is preferable that the inductors Ldc11 and Ldc21 have the same inductance, and the inductors Ldc12 and Ldc22 have the same inductance. This also reduces the leakage current.
 例えば、二次電池E1を300Vに、二次電池E2を500Vに、ゲート信号GGV1及びSGGX1のオン時間を60マイクロ秒に、ゲート信号SGGV2及びSVVX2のオン時間を30マイクロ秒に、スイッチング制御の繰り返し周波数f1を7キロHzにした場合、二次電池E1から二次電池E2への変換電力はおよそ5900Wである。 For example, the secondary battery E1 is set to 300V, the secondary battery E2 is set to 500V, the ON time of the gate signals GGV1 and SGGX1 is set to 60 microseconds, and the ON time of the gate signals SGGV2 and SVVX2 is set to 30 microseconds. When the frequency f1 is set to 7 kHz, the conversion power from the secondary battery E1 to the secondary battery E2 is about 5900W.
(第1実施形態における構成の変形例3)
 インダクタLmは、2巻き線トランスの漏れインダクタンスを利用してもよい。すなわち、図23に示すDC/DCコンバータ10Cのように、例えば、DC/DCコンバータ10BのインダクタLmを高周波トランスRFTに置き換えてもよい。
 高周波トランスRFTは一次コイルL1と二次コイルと、漏れインダクタンスLM1及びLM2と、から構成されている。
(Modification 3 of the configuration in the first embodiment)
The inductor Lm may use the leakage inductance of a two-winding transformer. That is, like the DC / DC converter 10C shown in FIG. 23, for example, the inductor Lm of the DC / DC converter 10B may be replaced with a high-frequency transformer RFT.
The high frequency transformer RFT includes a primary coil L1, a secondary coil, and leakage inductances LM1 and LM2.
 一次コイルL1と二次コイルとは電磁的に接続される。
 漏れインダクタンスLM1及びLM2は、一次コイルL1と二次コイルL2との結合における漏れインダクタンスである。なお、図中の一次コイルL1、二次コイルL2、及び漏れインダクタンスLM1及びLM2はトランス結合の簡単なモデルである。
The primary coil L1 and the secondary coil are electromagnetically connected.
Leakage inductances LM1 and LM2 are leakage inductances in the coupling between the primary coil L1 and the secondary coil L2. Note that the primary coil L1, the secondary coil L2, and the leakage inductances LM1 and LM2 in the figure are simple models of transformer coupling.
 漏れインダクタンスLM1は、一端が一次コイルL1の一端に、他端がMERS101の交流端子AC21に接続されている。漏れインダクタンスLM2は、一端が二次コイルL2の一端に、他端がMERS102の交流端子AC21に接続されている。
 一次コイルL1の他端はMERS101の交流端子AC11に、接続されている。二次コイルL2の他端はMERS102の交流端子AC22に接続されている。
 ただし、実際には、漏れインダクタンスLM1及びLM2が存在するわけでは無く,1次コイルL1の一端が交流端子AC21に、二次コイルL2の一端が交流端子AC12に接続されている。
The leakage inductance LM1 has one end connected to one end of the primary coil L1 and the other end connected to the AC terminal AC21 of the MERS101. One end of leakage inductance LM2 is connected to one end of secondary coil L2, and the other end is connected to AC terminal AC21 of MERS102.
The other end of primary coil L1 is connected to AC terminal AC11 of MERS101. The other end of secondary coil L2 is connected to AC terminal AC22 of MERS102.
However, actually, the leakage inductances LM1 and LM2 do not exist, and one end of the primary coil L1 is connected to the AC terminal AC21, and one end of the secondary coil L2 is connected to the AC terminal AC12.
 このようにトランスを介してMERS101とMERS102とを絶縁接続することも可能である。 It is also possible to insulate and connect MERS101 and MERS102 through a transformer in this way.
 なお、漏れインダクタンスLM1及び漏れインダクタンスLM2に更に、インダクタを接続してもよい。 Note that an inductor may be further connected to the leakage inductance LM1 and the leakage inductance LM2.
 上記DC/DCコンバータ10Cにおいて、漏れインダクタンスが0.2ミリHの高周波トランスRFT、二次電池E1及びE2として出力300Vの二次電池を選択した場合の、第1のコイルLM1を流れる電流Ilinkの時間変化と、コンデンサCM1,CM2の電圧Vcm1,Vcm2の時間変化と、ゲート信号SGGV1及びSGGX1並びにゲート信号SGGV2及びSGGX2の時間遷移と、の関係は図24のようになる。
 図24に示す波形は、回路が実質的に等価であるため、上記図19の波形と酷似する。
In the DC / DC converter 10C, when the high frequency transformer RFT having a leakage inductance of 0.2 mmH and the secondary battery having an output of 300 V are selected as the secondary batteries E1 and E2, the current Ilink flowing through the first coil LM1 is selected. The relationship between the time change, the time changes of the voltages Vcm1 and Vcm2 of the capacitors CM1 and CM2, and the time transition of the gate signals SGGV1 and SGGX1 and the gate signals SGGV2 and SGGX2 is as shown in FIG.
The waveform shown in FIG. 24 is very similar to the waveform shown in FIG. 19 because the circuit is substantially equivalent.
 例えば、二次電池E1が300Vで二次電池E2が300Vで、ゲート信号GGV1及びSGGX1のオン時間を60マイクロ秒に、ゲート信号SGGV2及びSVVX2のオン時間を30マイクロ秒に、スイッチング制御の繰り返し周波数f1を7キロHzに設定した場合、二次電池E1から二次電池E2への変換電力はおよそ5600Wである。 For example, the secondary battery E1 is 300V, the secondary battery E2 is 300V, the ON time of the gate signals GGV1 and SGGX1 is 60 microseconds, the ON time of the gate signals SGGV2 and SVVX2 is 30 microseconds, and the switching control repetition frequency When f1 is set to 7 kHz, the conversion power from the secondary battery E1 to the secondary battery E2 is about 5600W.
 なお、受電側の電圧が大きくなると、受電側に供給される電力が大きくなる特徴がある。
 例えば、二次電池E2が500Vに変更した場合、二次電池E1から二次電池E2への変換電力は6300Wになる。
Note that when the voltage on the power receiving side increases, the power supplied to the power receiving side increases.
For example, when the secondary battery E2 is changed to 500V, the conversion power from the secondary battery E1 to the secondary battery E2 is 6300W.
(第1実施形態におけるスイッチング損失)
 また、上述したように、上記第1実施形態並びにその変形例において、ソフトスイッチングが実現されている。
 例えば、ゲート信号SGGV1及びSGGX1をオンに保持する時間が60マイクロ秒で、ゲート信号SGGV2及びSGGX2をオンに保持する時間が30マイクロ秒で、繰り返しは7キロHz、300Vの二次電池E1から500Vの二次電池E2へ昇圧変換する場合の半導体スイッチの電流と電圧を図25に示す。上から逆導通型半導体スイッチSV1の電流Isv1及び電圧Vsv1の時間変化、逆導通型半導体スイッチSV2の電流Isv2及び電圧Vsv2の時間変化、ゲート信号SGGV1及びSGGX1並びにゲート信号SGGV2及びSGGX2の時間遷移を示す。
(Switching loss in the first embodiment)
In addition, as described above, soft switching is realized in the first embodiment and the modifications thereof.
For example, the time for holding the gate signals SGGV1 and SGGX1 on is 60 microseconds, the time for holding the gate signals SGGV2 and SGGX2 on is 30 microseconds, and the repetition is 7 kHz, 500 V from the secondary battery E1 of 300 V FIG. 25 shows the current and voltage of the semiconductor switch when performing step-up conversion to the secondary battery E2. From the top, the time change of the current Isv1 and the voltage Vsv1 of the reverse conducting semiconductor switch SV1, the time change of the current Isv2 and the voltage Vsv2 of the reverse conducting semiconductor switch SV2, the time transition of the gate signals SGGV1 and SGGX1, and the gate signals SGGV2 and SGGX2 are shown. .
 上述したように、ゲート信号SGGV1及びSGGX1がオフからオンに切り替わる時、電流Isv1はほぼ流れておらず、オンからオフに切り替わる時、電圧Vsv1はほぼ0ボルトである。同様に、上述したように、ゲート信号SGGV2及びSGGX2がオフからオンに切り替わる時、電流Isv2はほぼ流れておらず、オンからオフに切り替わる時、電圧Vsv2はほぼ0Vである。 As described above, when the gate signals SGGV1 and SGGX1 are switched from OFF to ON, the current Isv1 is hardly flowing, and when the gate signals SGGV1 and SGGX1 are switched from ON to OFF, the voltage Vsv1 is approximately 0 volts. Similarly, as described above, when the gate signals SGGV2 and SGGX2 are switched from OFF to ON, the current Isv2 hardly flows, and when the gate signals SGGV2 and SGGX2 are switched from ON to OFF, the voltage Vsv2 is approximately 0V.
 このように、ゲート信号が切り替わる時、すなわち、逆導通型半導体スイッチのオン・オフが切り替わる時、ゼロ電流あるいはゼロ電圧になっているため、ソフトスイッチングが実現され、スイッチング損失がほとんど無い。
 なお、時刻Ta1から時刻Ta2の期間は(上記フェイズPA1の期間は)、コンデンサCM1及びCM2とインダクタLmとが共振している。そのため、その共振周波数が高ければ高いほど、上述の時刻Ta1から時刻Ta2の時間は短くなる。
 同様に、上記各フェイズでは、コンデンサCM1及び/またはCM2とインダクタLmとが共振している。そのため、これらの共振周波数が高ければ高いほど、各周期は短くなり、単位時間あたりの電力の変換回数が増える。よって、時間d1,d2を短く設定でき、制御の繰り返し周波数f1を高く設定できる。
As described above, when the gate signal is switched, that is, when the reverse conducting semiconductor switch is switched on / off, since the current is zero current or voltage, soft switching is realized, and there is almost no switching loss.
During the period from time Ta1 to time Ta2 (during the phase PA1), the capacitors CM1 and CM2 and the inductor Lm resonate. Therefore, the higher the resonance frequency, the shorter the time from the time Ta1 to the time Ta2.
Similarly, in each phase described above, the capacitors CM1 and / or CM2 and the inductor Lm resonate. Therefore, as these resonance frequencies are higher, each cycle is shorter and the number of times of power conversion per unit time is increased. Therefore, the times d1 and d2 can be set short, and the control repetition frequency f1 can be set high.
 以上、本発明の第1実施形態を説明したが、DC/DCコンバータ10A乃至10Cの構成は上述のものに限られない。たとえば、MERS101及び102はいずれも、必ずしもソフトスイッチングを行わなくてもよい。電力の損失は大きくなるが、二次電池E1からDC/DCコンバータ10Aを介して二次電池E2を充電することができる。 As mentioned above, although 1st Embodiment of this invention was described, the structure of DC / DC converter 10A thru | or 10C is not restricted to the above-mentioned thing. For example, both MERS 101 and 102 do not necessarily perform soft switching. Although the power loss increases, the secondary battery E2 can be charged from the secondary battery E1 via the DC / DC converter 10A.
 以上のように本発明に係る第1実施形態のDC/DCコンバータ10A乃至10Cによれば、2つのMERS101,102を同時にオンし、受電側を先にオフするという簡単な制御で、電源の出力電圧にかかわらず、所定の方向に直流電力を供給可能である。また、受電側のMERSをMERS101,102のどちらにするかで、容易に電力の供給方向を変更できる。このため、簡単な制御で双方向の電力供給が可能になっている。
 また、インダクタLmに実質的に電流が流れていないときにオン、コンデンサCM2に電圧が実質的にないときにMERS102のスイッチをオフ、コンデンサCM1に電圧が実質的にないときにMERS101のスイッチをオフ、することによってソフトスイッチングが可能である。
As described above, according to the DC / DC converters 10A to 10C of the first embodiment of the present invention, the output of the power supply can be performed with a simple control of turning on the two MERSs 101 and 102 simultaneously and turning off the power receiving side first. Regardless of the voltage, DC power can be supplied in a predetermined direction. In addition, depending on which of the MERSs 101 and 102 is the power-receiving MERS, the power supply direction can be easily changed. For this reason, bidirectional power supply is possible with simple control.
Also, it is turned on when substantially no current flows through the inductor Lm, the MERS 102 switch is turned off when the capacitor CM2 is substantially free of voltage, and the MERS 101 switch is turned off when the capacitor CM1 is substantially free of voltage. By doing so, soft switching is possible.
(第2実施形態)
 上記第1実施形態では、MERS101及び102は片方向MERSであった。しかし、MERS101及び102は、フルブリッジ型MERSであってもよい。また、第1実施形態では、電流の向きが片方向用のMERSを使用していたため、インダクタLmに流れる電流も一方向であった。しかし、フルブリッジ型MERSを使用すれば、インダクタLmに双方向の電流を供給することができる。以下では、そのような構成を有する、本発明の第2実施形態を説明する。
(Second Embodiment)
In the first embodiment, the MERS 101 and 102 are unidirectional MERS. However, MERS 101 and 102 may be full-bridge MERS. In the first embodiment, the current flowing in the inductor Lm is also unidirectional because the current direction uses MERS for one direction. However, if a full bridge type MERS is used, a bidirectional current can be supplied to the inductor Lm. Below, 2nd Embodiment of this invention which has such a structure is described.
 第2実施形態に係るDC/DCコンバータ10Dは、図26に示すように、第1実施形態のDC/DCコンバータ10Aの、MERS101をフルブリッジ型のMERS103に、MERS102をフルブリッジ型のMERS104に変更したものである。また、制御部200は上述のサイクルC1と後述のC2とを交互に繰り返すことで各ゲート信号のオン信号・オフ信号を切替える。
 他の構成は、第1実施形態のDC/DCコンバータ10Aと実質的に同一である。
As shown in FIG. 26, in the DC / DC converter 10D according to the second embodiment, the MERS 101 is changed to a full bridge type MERS 103 and the MERS 102 is changed to a full bridge type MERS 104 in the DC / DC converter 10A of the first embodiment. It is a thing. In addition, the control unit 200 switches the ON signal / OFF signal of each gate signal by alternately repeating the above-described cycle C1 and C2 described later.
Other configurations are substantially the same as those of the DC / DC converter 10A of the first embodiment.
 MERS103は、MERS101のダイオード部DU1に並列にスイッチ部SU1が、ダイオード部DY1に並列にスイッチ部SY1が、接続されているものである。MERS103の他の構成は、MERS101と実質的に同一である。
 MERS104は、MERS102のダイオード部DU2に並列にスイッチ部SU2が、ダイオード部DY2に並列にスイッチ部SY2が、接続されているものである。MERS104の他の構成は、MERS102と実質的に同一である。
The MERS 103 has a switch unit SU1 connected in parallel to the diode unit DU1 of the MERS 101 and a switch unit SY1 connected in parallel to the diode unit DY1. Other configurations of the MERS 103 are substantially the same as those of the MERS 101.
The MERS 104 has a switch unit SU2 connected in parallel to the diode unit DU2 of the MERS 102 and a switch unit SY2 connected in parallel to the diode unit DY2. Other configurations of the MERS 104 are substantially the same as the MERS 102.
 スイッチ部SU1,SY1,SU2,SY2はいずれも、たとえばMOSFET(Metal-Oxide-Silicon Field Effect Transistor)、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)、ゲートターンオフサイリスタ(GTO:Gate Turn-Off thyristor)あるいはその他の半導体スイッチング素子からなり、それぞれ電流路と制御端とを備えている。そして、各自の制御端に後述のオン信号が供給されると電流路を導通させ、オフ信号が供給されると電流路を遮断する。 Each of the switch units SU1, SY1, SU2, SY2 is, for example, a MOSFET (Metal-Oxide-Silicon-Field-Effect-Transistor), an insulated gate bipolar transistor (IGBT: Insulated-Gate-Bipolar-Transistor), a gate turn-off thyristor (GTO: Gate-Turn-Off-thyristor). ) Or other semiconductor switching elements, each having a current path and a control end. When a later-described ON signal is supplied to each control terminal, the current path is conducted, and when an OFF signal is supplied, the current path is interrupted.
 ダイオード部DU1,DY1,DU2,DY2はたとえば、スイッチ部を構成する半導体スイッチの寄生ダイオードであってもよい。 The diode units DU1, DY1, DU2, DY2 may be, for example, parasitic diodes of semiconductor switches that constitute the switch unit.
 以下では、各ダイオード部はいずれも半導体ダイオードからなり、各スイッチ部はいずれもnチャネルMOSFETからなるものとして説明する。この場合、このMOSFETのドレイン-ソース間がスイッチ部の電流路をなし、ゲートが制御端をなすものである。 In the following description, it is assumed that each diode part is made of a semiconductor diode and each switch part is made of an n-channel MOSFET. In this case, the drain-source of this MOSFET forms a current path of the switch part, and the gate forms the control end.
 制御部200は、動作開始前においては、全てのゲート信号SGGU1乃至SGGY1,SGGU2乃至SGGY2をオフ信号として出力し、例えば、ユーザの指示に応答して、予め記憶している時間d1,d2並びに周波数f1に基づいて、上述のサイクルC1と次のサイクルC2を周波数f1で交互に繰り返す。
 サイクルC2において、制御部200は、ゲート信号SGGU1とSGGY1のペアと,ゲート信号SGGU2及びSGGY2のペアと、をオフ信号からオン信号に同時に切り替える。その後、オン信号に切り替えてから時間d2後に、まず、ゲート信号SGGU2及びSGGY2のペアをオン信号からオフ信号に切り替え、更に時間(d1-d2)経過後(オン信号に切替えてから時間d1後)に、ゲート信号SGGU1及びSGGY1のペアをオン信号からオフ信号に切り替える。
The control unit 200 outputs all the gate signals SGGU1 to SGGY1 and SGGU2 to SGGY2 as off signals before the operation starts, for example, in response to a user instruction, the times d1 and d2 and the frequency stored in advance. Based on f1, the above-mentioned cycle C1 and the next cycle C2 are alternately repeated at the frequency f1.
In cycle C2, control unit 200 simultaneously switches the pair of gate signals SGGU1 and SGGY1 and the pair of gate signals SGGU2 and SGGY2 from the off signal to the on signal. Thereafter, after time d2 after switching to the on signal, first, the pair of gate signals SGGU2 and SGGY2 is switched from the on signal to the off signal, and after a time (d1-d2) has passed (after time d1 since switching to the on signal) In addition, the pair of gate signals SGGU1 and SGGY1 is switched from the on signal to the off signal.
 なお、本実施形態では、二次電池E1の出力電圧は300V,二次電池E2の出力電圧は500Vであり、インダクタLdc1及びLdc2のインダクタンスはともに1ミリHであり、コンデンサCM1及びCM2のキャパシタンスはともに5マイクロFであり、インダクタLmのインダクタンスは0.2ミリHであり、時間d1は60マイクロ秒、時間d2は30マイクロ秒、周波数fは7キロHzである。 In the present embodiment, the output voltage of the secondary battery E1 is 300V, the output voltage of the secondary battery E2 is 500V, the inductances of the inductors Ldc1 and Ldc2 are both 1 mmH, and the capacitances of the capacitors CM1 and CM2 are Both are 5 micro F, the inductance of the inductor Lm is 0.2 milliH, the time d1 is 60 microseconds, the time d2 is 30 microseconds, and the frequency f is 7 kHz.
(第2実施形態:DC/DCコンバータの動作)
 以下、本実施形態のDC/DCコンバータ10Dの動作について、図26~図34を参照して説明する。
 初期状態は、全ての逆導通型半導体スイッチSWU1乃至SWY1,SWU2乃至SWY2がオフで、コンデンサCM1及びCM2に静電エネルギーが蓄積されている後述のフェイズPB8であるとして説明する。
(Second Embodiment: Operation of DC / DC Converter)
Hereinafter, the operation of the DC / DC converter 10D of the present embodiment will be described with reference to FIGS.
The initial state will be described as a later-described phase PB8 in which all reverse conducting semiconductor switches SWU1 to SWY1, SWU2 to SWY2 are off and electrostatic energy is accumulated in the capacitors CM1 and CM2.
[フェイズPB1]
 制御部200は、時刻Tb1において、ゲート信号SGGV1,SGGX1,SGGV2及びSGGX2をオフ信号からオン信号に切り替え、ゲート信号SGGU1,SGGY1,SGGU2及びSGGY2をオフ信号に保持する。これにより、逆導通型半導体スイッチSWV1,SWX1,SWV2及びSWX2はオフからオンに切り替わる(MERS101及び102はオフからオンに切り替わる)。逆導通型半導体スイッチSWU1,SWY1,SWU2及びSWY2はオフのまま変化しない。
 すると、図27に示すように、コンデンサCM1及びCM2は放電を開始し、インダクタLmに磁気エネルギーが蓄積されていく。
[Phase PB1]
At time Tb1, control unit 200 switches gate signals SGGV1, SGGX1, SGGV2, and SGGX2 from an off signal to an on signal, and holds gate signals SGGU1, SGGG1, SGGU2, and SGGY2 at the off signal. As a result, the reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 are switched from OFF to ON ( MERS 101 and 102 are switched from OFF to ON). The reverse conducting semiconductor switches SWU1, SWY1, SWU2, and SWY2 remain off and do not change.
Then, as shown in FIG. 27, the capacitors CM1 and CM2 start discharging, and magnetic energy is accumulated in the inductor Lm.
[フェイズPB2]
 上述したように、制御部200は、ゲート信号SGGV1,SGGX1,SGGV2及びSGGX2をオフ信号からオン信号に切り替えてから時間d2後の時刻Tb2において、ゲート信号SGGV2及びSGGX2をオン信号からオフ信号に切り替える。他のゲート信号はオフ信号を保持する。これにより、逆導通型半導体スイッチSWV2及びSWX2はオンからオフに切り替わる(MERS102はオンからオフに切り替わる)。
 すると、図28に示すように、インダクタLmを流れる電流はコンデンサCM2によって遮断され、コンデンサCM2は、インダクタLmに蓄積された磁気エネルギーを電荷の形で静電エネルギーとして蓄積する。
[Phase PB2]
As described above, the control unit 200 switches the gate signals SGGV2 and SGGX2 from the on signal to the off signal at time Tb2 after time d2 after switching the gate signals SGGV1, SGGX1, SGGV2 and SGGX2 from the off signal to the on signal. . Other gate signals hold off signals. Thereby, reverse conduction type semiconductor switches SWV2 and SWX2 are switched from on to off (MERS102 is switched from on to off).
Then, as shown in FIG. 28, the current flowing through the inductor Lm is cut off by the capacitor CM2, and the capacitor CM2 stores the magnetic energy stored in the inductor Lm as electrostatic energy in the form of electric charges.
[フェイズPB3]
 そして、時刻tb2から時間(d1-d2)経過後の時刻Tb3において、制御部200は、ゲート信号SGGV1及びSGGX1をオン信号からオフ信号に切り替える(MERS101をオンからオフに切り替える)。
 すると、図29に示すように、インダクタLmを流れる電流は、コンデンサCM1及びコンデンサCM2によって遮断され、コンデンサCM1及びCM2が、インダクタLmに蓄積された残りの磁気エネルギーを電荷の形で静電エネルギーとして蓄積する。
[Phase PB3]
Then, at time Tb3 after the elapse of time (d1-d2) from time tb2, control unit 200 switches gate signals SGGV1 and SGGX1 from the on signal to the off signal (switches MERS 101 from on to off).
Then, as shown in FIG. 29, the current flowing through the inductor Lm is cut off by the capacitors CM1 and CM2, and the capacitors CM1 and CM2 use the remaining magnetic energy accumulated in the inductor Lm as electrostatic energy in the form of electric charges. accumulate.
[フェイズPB4]
 その後、インダクタLmに蓄積されていた磁気エネルギーが尽きる時刻TB4に至ると、図30に示すように、インダクタLmを流れる電流は消滅する。
 以上フェイズPB1乃至PB4において、コンデンサCM1及びCM2に静電エネルギーとして蓄積され、放電されることで一度インダクタLmに磁気エネルギーとして蓄積された電力の大部分を、コンデンサCM2が回収する。そのため、コンデンサCM2の電圧Vcm2は、二次電池E2の出力電圧より高くなる。よって、コンデンサCM2は、二次電池E2を充電する。電力の大部分をコンデンサCM2が回収するため、コンデンサCM1の電圧Vcm1は、二次電池E1の出力電圧よりも低くなる。そのため、コンデンサCM1は、二次電池E1に充電される。
[Phase PB4]
Thereafter, when time TB4 when the magnetic energy accumulated in the inductor Lm is exhausted, the current flowing through the inductor Lm disappears as shown in FIG.
As described above, in the phases PB1 to PB4, the capacitor CM2 collects most of the electric power once stored as the electrostatic energy in the capacitors CM1 and CM2 and once stored as the magnetic energy in the inductor Lm. Therefore, the voltage Vcm2 of the capacitor CM2 becomes higher than the output voltage of the secondary battery E2. Therefore, the capacitor CM2 charges the secondary battery E2. Since most of the electric power is recovered by the capacitor CM2, the voltage Vcm1 of the capacitor CM1 becomes lower than the output voltage of the secondary battery E1. Therefore, the capacitor CM1 is charged to the secondary battery E1.
[フェイズPB5]
 制御部200は、周波数f1によって定まる時刻Tb5において、ゲート信号SGGU1,SGGY1,SGGU2及びSGGY2をオフ信号からオン信号に切替え、ゲート信号SGGV1,SGGX1,SGGV2及びSGGX2をオフ信号に保持する。これにより、逆導通型半導体スイッチSWU1,SWY1,SWU2及びSWY2はオフからオンに切り替わる(MERS101及び102はオフからオンに切り替わる)。逆導通型半導体スイッチSWV1,SWX1,SWV2及びSWX2はオフのまま変化しない。
 すると、図31に示すように、コンデンサCM1及びCM2は放電を開始し、インダクタLmに磁気エネルギーが蓄積されていく。
[Phase PB5]
At time Tb5 determined by frequency f1, control unit 200 switches gate signals SGGU1, SGGY1, SGGU2, and SGGY2 from an off signal to an on signal, and holds gate signals SGGV1, SGGX1, SGGV2, and SGGX2 as an off signal. As a result, the reverse conducting semiconductor switches SWU1, SWY1, SWU2, and SWY2 are switched from OFF to ON ( MERS 101 and 102 are switched from OFF to ON). The reverse conducting semiconductor switches SWV1, SWX1, SWV2, and SWX2 remain off and do not change.
Then, as shown in FIG. 31, capacitors CM1 and CM2 start discharging, and magnetic energy is accumulated in inductor Lm.
[フェイズPB6]
 上述したように、制御部200は、ゲート信号SGGU1,SGGY1,SGGU2及びSGGY2をオフ信号からオン信号に切り替えてから時間d2後の時刻Tb6において、ゲート信号SGGU2及びSGGY2をオン信号からオフ信号に切り替える。他のゲート信号はオフ信号を保持する。これにより、逆導通型半導体スイッチSWU2及びSWY2はオンからオフに切り替わる(MERS102はオンからオフに切り替わる)。
 すると、図32に示すように、インダクタLmを流れる電流はコンデンサCM2によって遮断され、コンデンサCM2は、インダクタLmに蓄積された磁気エネルギーを電荷の形で静電エネルギーとして蓄積する。
[Phase PB6]
As described above, the control unit 200 switches the gate signals SGGU2 and SGGY2 from the on signal to the off signal at time Tb6 after time d2 after switching the gate signals SGGU1, SGGY1, SGGU2 and SGGY2 from the off signal to the on signal. . Other gate signals hold off signals. As a result, the reverse conducting semiconductor switches SWU2 and SWY2 are switched from on to off (MERS102 is switched from on to off).
Then, as shown in FIG. 32, the current flowing through the inductor Lm is cut off by the capacitor CM2, and the capacitor CM2 stores the magnetic energy stored in the inductor Lm as electrostatic energy in the form of electric charges.
[フェイズPB7]
 その後、制御部200は、時刻Tb6より時間(d1-d2)経過後の時刻Tb7において、ゲート信号SGGU1及びSGGY1をオン信号からオフ信号に切り替える(MERS101はオンからオフに切り替える)。
 すると、図33に示すように、インダクタLmを流れる電流は、コンデンサCM1及びコンデンサCM2によって遮断され、コンデンサCM1及びCM2が、インダクタLmに蓄積された磁気エネルギーを電荷の形で静電エネルギーとして蓄積する。
[Phase PB7]
Thereafter, the control unit 200 switches the gate signals SGGU1 and SGGY1 from the on signal to the off signal at time Tb7 after the elapse of time (d1-d2) from time Tb6 (MERS 101 switches from on to off).
Then, as shown in FIG. 33, the current flowing through the inductor Lm is cut off by the capacitors CM1 and CM2, and the capacitors CM1 and CM2 store the magnetic energy stored in the inductor Lm as electrostatic energy in the form of electric charges. .
[フェイズPB8]
 その後、インダクタLmに蓄積されていた磁気エネルギーが尽きる時刻TB8に至ると、図34に示すように、インダクタLmを流れる電流は消滅する。
 以上フェイズPB5乃至PB8において、コンデンサCM1及びCM2に静電エネルギーとして蓄積され、放電されることで一度インダクタLmに磁気エネルギーとして蓄積された電力の大部分を、コンデンサCM2が回収する。そのため、コンデンサCM2の電圧は昇圧され、二次電池E2の出力電圧をより高くなる。よって、コンデンサCM2は、二次電池E2を充電する。電力の大部分をコンデンサCM2が回収するため、コンデンサCM1の電圧Vcm1は、二次電池E1の出力電圧よりも低くなる。そのため、コンデンサCM1は、二次電池E1に充電される。
[Phase PB8]
Thereafter, when the time TB8 when the magnetic energy accumulated in the inductor Lm is exhausted, the current flowing through the inductor Lm disappears as shown in FIG.
As described above, in the phases PB5 to PB8, the capacitor CM2 recovers most of the electric power once stored as electrostatic energy in the capacitors CM1 and CM2 and once stored as magnetic energy in the inductor Lm. Therefore, the voltage of the capacitor CM2 is boosted, and the output voltage of the secondary battery E2 becomes higher. Therefore, the capacitor CM2 charges the secondary battery E2. Since most of the electric power is recovered by the capacitor CM2, the voltage Vcm1 of the capacitor CM1 becomes lower than the output voltage of the secondary battery E1. Therefore, the capacitor CM1 is charged to the secondary battery E1.
 以上説明したように、本発明の第2実施形態のDC/DCコンバータ10Dによっても所定の方向への電力供給は可能であり、上記第1実施形態と同様にどちらかのMERSを先にオフにすることで、低電圧側の二次電池E1と高電圧側の二次電池E2との間で相互に電力を供給させることができる。第2実施形態でも簡単な制御で、電力の供給方向を制御できる。
 また、本実施形態のDC/DCコンバータ10Dにおいて、インダクタLmには交流電流が流れるため、第1実施形態のDC/DCコンバータ10Aに比べ偏磁しにくい、という利点もある。
As described above, power can be supplied in a predetermined direction also by the DC / DC converter 10D of the second embodiment of the present invention, and either MERS is turned off first as in the first embodiment. By doing so, electric power can be supplied mutually between the secondary battery E1 of the low voltage side, and the secondary battery E2 of the high voltage side. In the second embodiment, the power supply direction can be controlled with simple control.
Further, in the DC / DC converter 10D of the present embodiment, since an alternating current flows through the inductor Lm, there is an advantage that it is less likely to be demagnetized than the DC / DC converter 10A of the first embodiment.
 また、本実施形態のDC/DCコンバータ10Dの場合、各ダイオード部に電流が流れるとき、そのダイオードに並列に接続されているスイッチ部をオンすることにより電力の損失をよりおさえることが可能である。 Further, in the case of the DC / DC converter 10D of the present embodiment, when a current flows through each diode part, it is possible to further reduce power loss by turning on a switch part connected in parallel to the diode. .
(第2実施形態における構成の変形例1)
 上記DC/DCコンバータ10DのインダクタLdc1,Ldc2を二次電池E1,E2を中心に対称に配置してもよい。
 図35に示すDC/DCコンバータ10Eのように、インダクタLdc1を、二次電池E1の一端とMERS103の直流端子DC11との間に接続されたインダクタLdc11と、二次電池E1の他端とMERS103の直流端子DC21との間に接続されたインダクタLdc21とに、分割する。インダクタLdc2を、二次電池E2の一端とMERS104の直流端子DC12との間に接続されたインダクタLdc12と、二次電池E2の他端とMERS104の直流端子DC22との間に接続されたインダクタLdc22とに、分割する。インダクタLdc11及びLdc21とは同じインダクタンス、インダクタLdc12及びLdc22とは同じインダクタンス、であることが好ましい。これによって漏れ電流を低減することができる。
(Modification 1 of the structure in 2nd Embodiment)
The inductors Ldc1 and Ldc2 of the DC / DC converter 10D may be arranged symmetrically about the secondary batteries E1 and E2.
Like the DC / DC converter 10E shown in FIG. 35, the inductor Ldc1 is connected to the inductor Ldc11 connected between one end of the secondary battery E1 and the DC terminal DC11 of the MERS 103, the other end of the secondary battery E1, and the MERS 103. This is divided into an inductor Ldc21 connected between the DC terminal DC21. An inductor Ldc2 is connected between one end of the secondary battery E2 and the DC terminal DC12 of the MERS 104, and an inductor Ldc22 connected between the other end of the secondary battery E2 and the DC terminal DC22 of the MERS 104. Divide into two. It is preferable that the inductors Ldc11 and Ldc21 have the same inductance, and the inductors Ldc12 and Ldc22 have the same inductance. As a result, the leakage current can be reduced.
(第2実施形態における構成の変形例2)
 また、インダクタLmは、2巻き線トランス構造のインダクタンスを利用してもよい。すなわち、例えば、図36に示すDC/DCコンバータ10Fのように、DC/DCコンバータ10EのインダクタLmを高周波トランスRFTに置き換えてもよい。
(Modification 2 of the structure in 2nd Embodiment)
Further, the inductor Lm may use the inductance of a two-winding transformer structure. That is, for example, like the DC / DC converter 10F shown in FIG. 36, the inductor Lm of the DC / DC converter 10E may be replaced with a high-frequency transformer RFT.
 このようにトランスを介してMERS101とMERS102とを絶縁接続することも可能である。また、第1のコイルに直列にインダクタを、あるいは、第2のコイルに直列にインダクタを、またはその両方を接続してもよい。 It is also possible to insulate and connect MERS101 and MERS102 through a transformer in this way. Further, an inductor may be connected in series with the first coil, or an inductor may be connected in series with the second coil, or both.
 図36に示すこの回路は、従来のインバータによる絶縁トランス結合DC/DC変換の回路図と似ているが,インダクタLdc1(インダクタLdc11及びLdc12),インダクタLdc2(インダクタLdc21及びLdc22)のインダクタンスがあることで二次電池E1及びE2を電流源に近い動作をさせる点と,コンデンサCM1とCM2が、その電圧が略ゼロなるまで放電することでソフトスイッチングが実現している点と、で大きく異なる。
 また、コンデンサCM1及びCM2の電圧が、接続されている電池の電圧より昇圧される、という点でも大きく異なる。
 また、トランス結合における漏れインダクタンスを利用できる、という点でも、従来のインバータによる絶縁トランス結合DC/DC変換とは大きく異なる。
This circuit shown in FIG. 36 is similar to the circuit diagram of the conventional insulated transformer coupled DC / DC conversion by the inverter, but has the inductances of the inductor Ldc1 (inductors Ldc11 and Ldc12) and the inductor Ldc2 (inductors Ldc21 and Ldc22). Thus, the difference is that the secondary batteries E1 and E2 are operated close to current sources and that the capacitors CM1 and CM2 are discharged until their voltages are substantially zero, thereby realizing soft switching.
In addition, the voltage of the capacitors CM1 and CM2 is greatly different from that of the connected battery.
In addition, the present invention is greatly different from the conventional insulation transformer coupling DC / DC conversion by the inverter in that the leakage inductance in the transformer coupling can be used.
(第1及び第2実施形態における構成の変形例1)
 また、図37に示すDC/DCコンバータ10Fに示すように、DC/DCコンバータ10Fにおいて、MERS103の直流端子DC+1から二次電池E1の一端への方向に流れる電流を遮断するダイオードDR1と、二次電池E1の一端からMERS104の直流端子DC+2への方向に流れる電流を遮断するダイオードDR2と、を更に備えてもよい。
(Modification 1 of the structure in 1st and 2nd embodiment)
As shown in the DC / DC converter 10F shown in FIG. 37, in the DC / DC converter 10F, a diode DR1 that cuts off a current flowing in the direction from the DC terminal DC + 1 of the MERS 103 to one end of the secondary battery E1, and the secondary It may further include a diode DR2 that cuts off a current flowing from one end of the battery E1 to the DC terminal DC + 2 of the MERS 104.
 この場合、二次電池E2の出力する電力によって二次電池E1を充電することはない。また、二次電池E1の一端への方向に流れる電流は遮断されるため、インダクタLdc1として、直流リアクトルを用いることができ、かつ、インダクタLdc1のインダクタンスを小さくすることもできる。これにより、インダクタLdc1を小型化することができる。
 二次電池E1の一端からMERS104の直流端子DC+2への方向に流れる電流は遮断されるため、インダクタLdc1を小型化できるのと同様の理由で、インダクタLdc2を小型化することができる。
 また、二次電池E2から電力を出力させる必要がない場合、二次電池E2は不必要な放電を行わない、という利点もある。
In this case, the secondary battery E1 is not charged by the power output from the secondary battery E2. In addition, since the current flowing in the direction toward one end of the secondary battery E1 is cut off, a DC reactor can be used as the inductor Ldc1, and the inductance of the inductor Ldc1 can be reduced. Thereby, inductor Ldc1 can be reduced in size.
Since the current flowing in the direction from one end of the secondary battery E1 to the DC terminal DC + 2 of the MERS 104 is cut off, the inductor Ldc2 can be downsized for the same reason that the inductor Ldc1 can be downsized.
Moreover, when it is not necessary to output electric power from the secondary battery E2, there is an advantage that the secondary battery E2 does not perform unnecessary discharge.
 この例では、全ての逆導通型半導体スイッチがオンされてコンデンサCM1及びCM2の静電エネルギーが放電されて電流Ilinkとして漏れインダクタンスLM1及びLM2に磁気エネルギーとして蓄積され、逆導通型半導体スイッチSWV2及びSWX2を先にオフすることで、電流IlinkがコンデンサCM2に遮断されて、漏れインダクタンスLM1及びLM2の磁気エネルギーがコンデンサCM2に回収され、コンデンサCM2の電圧によって二次電池E2が充電される。
 この動作が繰り返されることにより、二次電池E1から二次電池E2に電力を供給することができる。
In this example, all the reverse conducting semiconductor switches are turned on, the electrostatic energy of the capacitors CM1 and CM2 is discharged and stored as magnetic energy in the leakage inductances LM1 and LM2 as the current Ilink, and the reverse conducting semiconductor switches SWV2 and SWX2 Is turned off first, the current Ilink is cut off by the capacitor CM2, the magnetic energy of the leakage inductances LM1 and LM2 is recovered by the capacitor CM2, and the secondary battery E2 is charged by the voltage of the capacitor CM2.
By repeating this operation, power can be supplied from the secondary battery E1 to the secondary battery E2.
 DC/DCコンバータ10Fの、第1のコイルL1を流れる電流Ilink,インダクタLdc1を流れる電流ILdc1及びインダクタLdc2を流れる電流ILdc2の時間変化と、コンデンサCM1の電圧Vcm1及びコンデンサCM2の電圧Vcm2の時間変化と、ゲート信号SGGV1及びSGGX1並びにゲート信号SGGV2及びSGGX2の時間遷移と、二次電池E1の出力電力P1と二次電池E2へ供給される電力P2の時間変化と、は図38に示すようになる。
 なお、二次電池E1及びE2は出力100Vで、インダクタL1及びL2は0.2ミリHで、コンデンサCM1及びCM2は0.5マイクロFで、漏れインダクタンスLM1及びLM2は0.1ミリHで、ゲート信号SGGV1及びSGGX1のオン時間は30マイクロ秒で、ゲート信号SGGV2及びSGGX2のオン時間は15マイクロ秒で、繰り返し周波数f1は6キロHzである。
In the DC / DC converter 10F, the time change of the current Ilink flowing through the first coil L1, the current ILdc1 flowing through the inductor Ldc1 and the current ILdc2 flowing through the inductor Ldc2, and the time change of the voltage Vcm1 of the capacitor CM1 and the voltage Vcm2 of the capacitor CM2 The time transition of the gate signals SGGV1 and SGGX1 and the gate signals SGGV2 and SGGX2, and the time change of the output power P1 of the secondary battery E1 and the power P2 supplied to the secondary battery E2 are as shown in FIG.
The secondary batteries E1 and E2 have an output of 100V, the inductors L1 and L2 are 0.2 mmH, the capacitors CM1 and CM2 are 0.5 μF, and the leakage inductances LM1 and LM2 are 0.1 mmH. The on-time of the gate signals SGGV1 and SGGX1 is 30 microseconds, the on-time of the gate signals SGGV2 and SGGX2 is 15 microseconds, and the repetition frequency f1 is 6 kHz.
 逆導通型半導体スイッチSGGV1及びSGGX1がオフされると、コンデンサCM1が充電されるため、コンデンサ電圧Vcm1は上昇し、インダクタL1とコンデンサCM1の共振のピークで電圧が保持されている。
 全ての逆導通型半導体スイッチがオンされると、コンデンサCM1の静電エネルギーが放電されて電流Ilinkとして漏れインダクタンスLM1及びLM2に磁気エネルギーとして蓄積される。そのため、コンデンサCM1の電圧Vcm1は減少し、漏れインダクタンスLm1に流れる電流Ilinkは上昇している。
 この例では、コンデンサCM1の電圧Vcm1がほぼ0になるタイミングで、逆導通型半導体スイッチSWV2及びSWX2が先にオフされる。逆導通型半導体スイッチSWV2及びSWX2が先にオフされることにより、インダクタンスLm1に流れる電流IlinkはコンデンサCM2に回収されるため、コンデンサCM2の電圧が上昇する。コンデンサCM2の電圧が二次電池E2の電圧100Vを超えると、コンデンサCM2から二次電池E2に放電が開始される。この例では、インダクタLdc3によって、コンデンサCM2は電圧がほぼ0になるまで電力を電池E2に放電する。
 その後、逆導通型半導体スイッチSWV1及びSWX1がオフされると、コンデンサCM1は充電される。
 以降上記動作を繰り返す。
When the reverse conducting semiconductor switches SGGV1 and SGGX1 are turned off, the capacitor CM1 is charged, so that the capacitor voltage Vcm1 rises, and the voltage is held at the resonance peak of the inductor L1 and the capacitor CM1.
When all the reverse conducting semiconductor switches are turned on, the electrostatic energy of the capacitor CM1 is discharged and stored as magnetic energy in the leakage inductances LM1 and LM2 as a current Ilink. Therefore, the voltage Vcm1 of the capacitor CM1 decreases, and the current Ilink flowing through the leakage inductance Lm1 increases.
In this example, the reverse conducting semiconductor switches SWV2 and SWX2 are turned off first when the voltage Vcm1 of the capacitor CM1 becomes almost zero. When the reverse conducting semiconductor switches SWV2 and SWX2 are turned off first, the current Ilink flowing through the inductance Lm1 is recovered by the capacitor CM2, so that the voltage of the capacitor CM2 increases. When the voltage of the capacitor CM2 exceeds the voltage 100V of the secondary battery E2, discharging starts from the capacitor CM2 to the secondary battery E2. In this example, the capacitor L2 discharges power to the battery E2 by the inductor Ldc3 until the voltage becomes almost zero.
Thereafter, when the reverse conducting semiconductor switches SWV1 and SWX1 are turned off, the capacitor CM1 is charged.
Thereafter, the above operation is repeated.
 上記DC/DCコンバータ10A乃至10Eでは、インダクタLdc1及びLdc2のインダクタンスは1ミリHであるとして説明した。一方本変更例であるDC/DCコンバータ10Fでは、インダクタLdc1及びLdc2のインダクタンスは0.2ミリHである。 In the DC / DC converters 10A to 10E, the inductances of the inductors Ldc1 and Ldc2 are described as 1 mmH. On the other hand, in the DC / DC converter 10F according to this modification, the inductances of the inductors Ldc1 and Ldc2 are 0.2 mmH.
 DC/DCコンバータ10A乃至10Eでは、ダイオードDR1及びDR2がないため、インダクタLdc1乃至Ldc2のインダクタンスを電流の逆流がないように十分に大きくすることが好ましい。 In the DC / DC converters 10A to 10E, since there are no diodes DR1 and DR2, it is preferable that the inductances of the inductors Ldc1 to Ldc2 be sufficiently large so that there is no backflow of current.
 一方、一方本変更例であるDC/DCコンバータ10Fでは、ダイオードDR1によって二次電池E1の一端への方向に流れる電流は遮断され、ダイオードDR2によって二次電池E2の出力する電力は遮断される。
 そのため、インダクタLdc1として、直流リアクトルを用いることができ、かつ、インダクタLdc1のインダクタンスを小さくすることもできる。これにより、インダクタLdc1を小型化することができる。
On the other hand, in the DC / DC converter 10F according to this modification, the current flowing in the direction toward one end of the secondary battery E1 is blocked by the diode DR1, and the power output from the secondary battery E2 is blocked by the diode DR2.
Therefore, a DC reactor can be used as the inductor Ldc1, and the inductance of the inductor Ldc1 can be reduced. Thereby, inductor Ldc1 can be reduced in size.
(第1及び第2実施形態における構成の変形例2)
 MERSの各スイッチのオン時間やオフ時間を変化させる装置を別途備えてもよい。
 例えば、図39に示すDC/DCコンバータ10Gように、本発明の第2実施形態のDC/DCコンバータ10Dの制御部200に、制御の繰り返し周波数f1を、変更させるダイヤル300を接続させてもよい。この例では、ダイヤル300を反時計回りに回せば周波数f1は低くなり、時計回りに回せば周波数f1は高くなる。
(Modification 2 of the configuration in the first and second embodiments)
You may provide separately the apparatus which changes the ON time and OFF time of each switch of MERS.
For example, like the DC / DC converter 10G shown in FIG. 39, the dial 300 for changing the control repetition frequency f1 may be connected to the control unit 200 of the DC / DC converter 10D of the second embodiment of the present invention. . In this example, if the dial 300 is turned counterclockwise, the frequency f1 is lowered, and if the dial 300 is turned clockwise, the frequency f1 is raised.
 二次電池E1及びE2が100Vで、インダクタLmが200mHで、コンデンサCM1及びCM2が1mFで、時間d1が25ms,時間d2が40msで、周波数f1を変化させた場合の、コンデンサCM1,CM2の電圧Vcm1,Vcm2と、インダクタLmに流れる電流ILmと、ゲート信号SU1及びSY1,SV1及びSX1,SU2及びSY2,SV2及びSX2の関係は、図40乃至42のようになる。
 図40は、周波数f1が10kHz、図41は20kHz、図42は6kHzの時の、それぞれ関係を示したものである。
Voltages of the capacitors CM1 and CM2 when the secondary batteries E1 and E2 are 100 V, the inductor Lm is 200 mH, the capacitors CM1 and CM2 are 1 mF, the time d1 is 25 ms, the time d2 is 40 ms, and the frequency f1 is changed. The relationships among Vcm1 and Vcm2, the current ILm flowing through the inductor Lm, and the gate signals SU1 and SY1, SV1, and SX1, SU2, and SY2, SV2, and SX2 are as shown in FIGS.
FIG. 40 shows the relationship when the frequency f1 is 10 kHz, FIG. 41 is 20 kHz, and FIG. 42 is 6 kHz.
 図40に示すように、周波数f1が10kHzの時、電圧Vcm1及びVcm2は、およそ200Vまで上昇し、電流ILmはおよそ16Aまで上昇している。また、各周期(例えば、ゲート信号SU1,SY1,SV1及びSX1がオンしてからゲート信号SU2,SY2,SV2及びSX2がオンするまでの1周期)において、電流ILmは、およそ100ミリ秒間は流れ、100ミリ秒間は流れてない(電流不連続モード)。
 また、図41に示すように、周波数f2が20kHzの時、電圧Vcm1及びVcm2は、およそ230Vまで上昇し、電流ILmはおよそ25Aまで上昇している。また、各周期(例えば、ゲート信号SU1,SY1,SV1及びSX1がオンしてからゲート信号SU2,SY2,SV2及びSX2がオンするまでの1周期)において、電流ILmは、ほぼ連続して流れている。このように、電流ILmが全てMERSのコンデンサに吸収される時点で、MERSのコンデンサを放電させることも可能である(電流臨界モード)。
 また、図42に示すように、周波数f3が6kHzの時、電圧Vcm1及びVcm2は、およそ180Vまで上昇し、電流ILmはおよそ10Aまで上昇している。また、各周期(例えば、ゲート信号SU1,SY1,SV1及びSX1がオンしてからゲート信号SU2,SY2,SV2及びSX2がオンするまでの1周期)において、電流ILmは、およそ100ミリ秒間の流れ、次の周期までは流れない。
 また、例示していないが、電流ILmが全てMERSのコンデンサに吸収される前に、MERSのコンデンサを放電させてもよい。しかし、この場合、MERSはハードスイッチングになる(電流連続モード)。
As shown in FIG. 40, when the frequency f1 is 10 kHz, the voltages Vcm1 and Vcm2 rise to about 200V, and the current ILm rises to about 16A. In each period (for example, one period from when the gate signals SU1, SY1, SV1, and SX1 are turned on until the gate signals SU2, SY2, SV2, and SX2 are turned on), the current ILm flows for about 100 milliseconds. No flow for 100 milliseconds (current discontinuous mode).
As shown in FIG. 41, when the frequency f2 is 20 kHz, the voltages Vcm1 and Vcm2 rise to about 230V, and the current ILm rises to about 25A. In each cycle (for example, one cycle from when the gate signals SU1, SY1, SV1, and SX1 are turned on until the gate signals SU2, SY2, SV2, and SX2 are turned on), the current ILm flows almost continuously. Yes. As described above, when all the current ILm is absorbed by the MERS capacitor, the MERS capacitor can be discharged (current critical mode).
As shown in FIG. 42, when the frequency f3 is 6 kHz, the voltages Vcm1 and Vcm2 rise to about 180V, and the current ILm rises to about 10A. In each cycle (for example, one cycle from when the gate signals SU1, SY1, SV1, and SX1 are turned on until the gate signals SU2, SY2, SV2, and SX2 are turned on), the current ILm flows for about 100 milliseconds. It does not flow until the next cycle.
Although not illustrated, the MERS capacitor may be discharged before all the current ILm is absorbed by the MERS capacitor. In this case, however, MERS is hard-switched (current continuous mode).
 周波数を上げると、コンデンサの電圧のピークは上がり、1周期当たりの充電量は上昇する。その上、単位時間あたりの上述のサイクルの回数が増える。そのため、周波数を上げれば上げるほど、二次電池E1から二次電池E2への電力の供給量は増大する。ただし、1周期が、インダクタLmに1方向に連続して電流が流れている時間未満になると、スイッチングがハードスイッチングになってしまう(電流連続モード)。よって、周波数f1による定まる1周期は、インダクタLmに1方向に連続して電流が流れる共振時間以上であること(電流不連続モードまたは電流臨界モード)が望ましい。 When the frequency is increased, the capacitor voltage peak increases and the charge per cycle increases. In addition, the number of cycles described above per unit time increases. Therefore, as the frequency is increased, the amount of power supplied from the secondary battery E1 to the secondary battery E2 increases. However, if one period is less than the time during which current flows continuously in one direction in the inductor Lm, switching becomes hard switching (current continuous mode). Therefore, it is desirable that one period determined by the frequency f1 is equal to or longer than the resonance time in which current flows continuously in one direction through the inductor Lm (current discontinuous mode or current critical mode).
 周波数f1を変化させた場合における二次電池E1から二次電池E2への電力の供給量の変化は、この例では、図43に示すように、周波数f1が6kHzの時およそ50W、周波数f1が10kHzの時およそ230W、周波数f1が20kHzの時およそ970Wになり、周波数の上昇に伴い電力の供給量も増大する。 In this example, the change in the amount of power supplied from the secondary battery E1 to the secondary battery E2 when the frequency f1 is changed is approximately 50 W when the frequency f1 is 6 kHz as shown in FIG. When the frequency is 10 kHz, the power is about 230 W, and when the frequency f1 is 20 kHz, the power is about 970 W. As the frequency increases, the amount of power supply increases.
 このように、周波数f1を調整させることによって、二次電池E1から二次電池E2への電力の時間あたりの充電量を調整させることができる。
 具体的には、制御部200は、MERS101及び102のスイッチを実質的に同時にオンし、第1の所定の時間経過後に、一方のMERSのスイッチをオフし、更に第2の所定の時間経過後に、他方のMERSをオフし、更に第3の所定の時間両方のMERSのスイッチをオフに保持させる場合において、第3の所定の時間を調整することによって、二次電池E1から二次電池E2への電力の時間あたりの供給量を調整させることができる。
 DC/DCコンバータ10Fにおいては、ダイヤル300を時計回りに回せば時間あたりの充電量が増え、反時計回りに回せば時間あたりの充電量が減る。
In this way, by adjusting the frequency f1, it is possible to adjust the charge amount per hour of power from the secondary battery E1 to the secondary battery E2.
Specifically, the control unit 200 turns on the switches of the MERSs 101 and 102 substantially simultaneously, turns off one of the MERSs after the first predetermined time has elapsed, and further, after the second predetermined time has elapsed. In the case where the other MERS is turned off and the switches of both MERS are held off for the third predetermined time, the secondary battery E1 is changed to the secondary battery E2 by adjusting the third predetermined time. The amount of power supplied per hour can be adjusted.
In the DC / DC converter 10F, the amount of charge per hour increases when the dial 300 is turned clockwise, and the amount of charge per hour decreases when the dial 300 is turned counterclockwise.
 また、図40乃至42からもわかるように、各ゲート信号のオン信号からオフ信号に切り替える時は、そのMERSのコンデンサ電圧はほぼゼロであり、各ゲート信号のオフ信号からオン信号に切り替える時は、インダクタLmに流れる電流はほぼ0である。そのため、各スイッチのスイッチングはゼロ電圧またはゼロ電流となっており、時間あたりの充電量が高い場合も低い場合もソフトスイッチングが実現される。 As can be seen from FIGS. 40 to 42, when switching from the ON signal of each gate signal to the OFF signal, the capacitor voltage of the MERS is almost zero, and when switching from the OFF signal of each gate signal to the ON signal, The current flowing through the inductor Lm is almost zero. Therefore, the switching of each switch is zero voltage or zero current, and soft switching is realized both when the amount of charge per hour is high and low.
 なお、図41のように電流が0になる時にスイッチングされる場合(臨界モード)、寄生振動などが少なく、変換効率が良いという特徴がある。そのため、この電流の臨海モードを保つように、MERSのスイッチングのデューティ比及び繰り返しの周波数を変更してもよい。この場合、周波数を上げると変換電力は減少し、周波数を下げると変換電力が増加することもある。 In addition, as shown in FIG. 41, when the current is switched to 0 (critical mode), there is a feature that there is little parasitic vibration and the conversion efficiency is good. Therefore, the duty ratio of MERS switching and the repetition frequency may be changed so as to maintain the current coastal mode. In this case, when the frequency is increased, the converted power decreases, and when the frequency is decreased, the converted power may increase.
 以上説明したように、上記第1実施形態等のDC-DCコンバータによれば2つのMERSをオンさせた(MERS内の電流が流れることが可能なルートを第1のルートにした)後、つまり、一方向に導通させた後、片方(受電側)のMERSを、他方のMERSよりも先にオフさせる(MERS内の電流が流れることが可能なルートを第2のルートにする)制御、を繰り返すことによって、その電圧の大小にかかわらずに、所定の方向に電力を変換することができる。また、前記片方のMERS(先にオフさせるMERS)を変更することによって、逆方向への電力の供給も可能である。つまり、上記DC-DCコンバータでは、2つのMERSのうちのいずれをオフにさせるかで、電力の供給方向を変更できるので、上記DC-DCコンバータは、双方向に電力が供給可能になっている。 As described above, according to the DC-DC converter of the first embodiment or the like, after two MERS are turned on (the route through which the current in MERS can flow is set as the first route), that is, , After conducting in one direction, control to turn off one (power receiving side) MERS earlier than the other MERS (the route through which the current in MERS can flow is the second route) By repeating, power can be converted in a predetermined direction regardless of the magnitude of the voltage. Further, by changing the one MERS (MERS to be turned off first), it is possible to supply power in the reverse direction. That is, in the DC-DC converter, the power supply direction can be changed depending on which of the two MERSs is turned off. Therefore, the DC-DC converter can supply power in both directions. .
 また、MERS101,102を、フルブリッジ型MERS103,104に変更し、MERS101及び102を一方向に導通(オン)させた後、片方(受電側)のMERSを、他方のMERSよりも先にオフさせる制御と、MERS101及び102をさきほどとは逆方向に導通(オン)させた後、他方のMERSのスイッチを、片方のMERSのスイッチよりも先にオフさせる制御と、の2つの制御を交互に繰り返すことで(第2実施形態等)、その電圧の大小にかかわらずに、電力を変換及び所定方向に電力を供給することができ、かつ、インダクタLmの偏磁を抑制することができる。また、前記片方のMERS(先にオフさせるMERS)を変更することによって、逆方向への電力の供給も可能である。つまり、2つのMERSのうちのいずれをオフにさせるかで、電力の供給方向を変更できるので、この場合(第2実施形態等)のDC-DCコンバータでも、双方向に電力が供給可能になっている。 Moreover, after changing MERS101,102 to full bridge type MERS103,104 and making MERS101 and 102 conduct | electrically_connecting (ON) to one direction, MERS of one side (power-receiving side) is turned off before the other MERS. The control and the MERS 101 and 102 are turned on in the opposite direction, and then the other MERS switch is turned off before the one MERS switch is alternately repeated. Thus (regardless of the magnitude of the voltage, etc.), the power can be converted and supplied in a predetermined direction, and the magnetism of the inductor Lm can be suppressed. Further, by changing the one MERS (MERS to be turned off first), power can be supplied in the reverse direction. In other words, the power supply direction can be changed depending on which of the two MERSs is turned off, so that even in this case (such as the second embodiment), power can be supplied in both directions. ing.
 さらに上記各実施形態等では、電源からの電力を、まず静電エネルギーに変換してから、変換した静電エネルギーを磁気エネルギーに変換し、変換した磁気エネルギーを静電エネルギーに変換して負荷に供給するので、簡単な方法(電力変換装置の制御方法)で直流/直流変換が行え、さらに、磁気エネルギーを再度静電エネルギーに変換することで、直流/直流変換において、昇圧、降圧のいずれかを選択的に行うことができ、変換後の電圧も制御しやすい。つまり、上記では昇降圧の制御も簡単である。 Further, in each of the above embodiments, the power from the power source is first converted into electrostatic energy, then the converted electrostatic energy is converted into magnetic energy, and the converted magnetic energy is converted into electrostatic energy to be loaded. Since it is supplied, DC / DC conversion can be performed by a simple method (control method of the power conversion device), and further, by converting magnetic energy back to electrostatic energy, either DC or DC can be boosted or stepped down. The voltage after conversion can be easily controlled. That is, the control of the step-up / down pressure is simple in the above.
 また、オン時間や繰り返す周波数を調整することで、送電側の電源から受電側の電源に供給される電力を調整することができる。 Also, the power supplied from the power source on the power transmission side to the power source on the power receiving side can be adjusted by adjusting the on-time and the repetition frequency.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。上記実施形態などは、例えば、次のような、種々の変形が可能である。例えば、上記実施形態における各設定値は1例であり、様々な設定が可能である。また、上述の実施形態に記載した構成の全てを備える必要はなく、所期の目的を達成できるならば、一部の構成の組み合わせであってもよい。 It should be noted that the present invention can be variously modified and modified without departing from the broad spirit and scope of the present invention. The above-described embodiment and the like can be variously modified as follows, for example. For example, each set value in the above embodiment is an example, and various settings are possible. Moreover, it is not necessary to provide all the configurations described in the above-described embodiment, and a combination of some configurations may be used as long as the intended purpose can be achieved.
 また、上記各実施形態においては、直流電圧源として二次電池E1を、負荷として二次電池E2を用いたが、もちろんそれぞれ二次電池である必要はない。
 例えば、二次電池E1を、家庭用電源を整流し平滑コンデンサによって平滑するものに変更してもよいし、二次電池E2を、直流電力を供給されることによって動作する電気機器に変更してもよい。
 例えば、電力を供給する側(二次電池E1)を、電力を供給する必要のないもの(例えば、一次電池)に、あるいは、電力を供給される側(二次電池E2)を、電力を出力させる必要がないもの(例えば、家庭用電化製品等)に、するならば、図37に示すように、供給側への電流を遮断するダイオードDR1と受電側からの電流を遮断するダイオードDR2を用いればよい。これによって、電力を供給する側に供給される電力は遮断され、電力を供給される側から出力される電力は遮断される。
Further, in each of the above embodiments, the secondary battery E1 is used as the DC voltage source and the secondary battery E2 is used as the load.
For example, the secondary battery E1 may be changed to one that rectifies a household power supply and is smoothed by a smoothing capacitor, or the secondary battery E2 is changed to an electric device that operates by being supplied with DC power. Also good.
For example, the power supply side (secondary battery E1) is output to the one that does not need to supply power (for example, the primary battery), or the power supply side (secondary battery E2) is output. For example, a diode DR1 that cuts off the current to the supply side and a diode DR2 that cuts off the current from the power receiving side are used as shown in FIG. That's fine. As a result, power supplied to the power supply side is cut off, and power output from the power supply side is cut off.
 また、二次電池E1,E2の代わりに直流母線を接続してもよい。
 例えば、二次電池E1の代わりに、家庭内の様々な電気機器に接続された直流母線を接続し、二次電池E2の代わりに電気自動車の内部電池を接続してもよい。
 この時、夜間、電気自動車の内部電池を受電側とし、直流母線を送電側とする。そして、昼間、例えば電気自動車のユーザが自宅にいる場合は、電気自動車の電池を送電側とし、受電側の直流母線に電力を供給する。
Further, a DC bus may be connected instead of the secondary batteries E1, E2.
For example, instead of the secondary battery E1, a DC bus connected to various electric devices in the home may be connected, and an internal battery of the electric vehicle may be connected instead of the secondary battery E2.
At this time, at night, the internal battery of the electric vehicle is the power receiving side and the DC bus is the power transmitting side. In the daytime, for example, when a user of an electric vehicle is at home, the battery of the electric vehicle is used as the power transmission side, and power is supplied to the DC bus on the power reception side.
 受電側のMERSのコンデンサを放電しないように制御してもよい。
 例えば、受電側のMERSを整流器として機能させてもよい。例えば、図44に示すDC-DCコンバータ10Hのように、上記DC-DCコンバータ10AのMERS102のスイッチ部SV2,SX2がなくともよい。
 この場合、片方向の電力変換であれば、受電側のMERSは整流器として機能する。よって、受電側のMERSは整流回路で置き換えてもよい。
 この場合も、図45に示すように、二次電池E1から出力された電力をMERS101が静電エネルギーとして蓄積し、MERS101をオンすることでインダクタンスに電流を流すことで二次電池E2を充電する。
 なお、図45の例では、インダクタLdc1は0.2ミリHで、コンデンサCM1は0.5マイクロFで、漏れインダクタLM1及びLM2は0.1ミリHで、二次電池E1の出力電圧は100Vで、二次電池E2の出力電圧は70Vである。
You may control not to discharge the capacitor | condenser of MERS on the receiving side.
For example, the power-receiving MERS may function as a rectifier. For example, like the DC-DC converter 10H shown in FIG. 44, the switch units SV2 and SX2 of the MERS 102 of the DC-DC converter 10A may not be provided.
In this case, the MERS on the power receiving side functions as a rectifier in the case of unidirectional power conversion. Therefore, the MERS on the power receiving side may be replaced with a rectifier circuit.
Also in this case, as shown in FIG. 45, the MERS 101 accumulates the electric power output from the secondary battery E1 as electrostatic energy, and the secondary battery E2 is charged by passing a current through the inductance by turning on the MERS 101. .
In the example of FIG. 45, the inductor Ldc1 is 0.2 mmH, the capacitor CM1 is 0.5 μF, the leakage inductors LM1 and LM2 are 0.1 mmH, and the output voltage of the secondary battery E1 is 100V. Thus, the output voltage of the secondary battery E2 is 70V.
 また、上記説明では、MERSのコンデンサは、MERSの直流端子に接続されているとして説明したが、MERSのコンデンサは、MERSの交流端子間に接続してもよい。また、直列端子間と交流端子間の両方に接続してもよい。この場合、コンデンサは、これらのコンデンサの容量の合計が、上述した共振に係る容量にあたる。 In the above description, the MERS capacitor is described as being connected to the DC terminal of the MERS, but the MERS capacitor may be connected between the AC terminals of the MERS. Moreover, you may connect between both series terminals and between alternating current terminals. In this case, the total capacity of these capacitors corresponds to the above-described resonance-related capacitance.
 また、高周波トランスRFTの巻線比は1対1である必要はない。適宜変更することによって、昇圧,降圧の割合を所望のものに調整可能である。 Also, the winding ratio of the high-frequency transformer RFT need not be 1: 1. By appropriately changing, the ratio of step-up and step-down can be adjusted to a desired one.
 また、第1,第2実施形態などにおいて、制御部200は、コンパレータ、フリップフロップ、タイマ等からなる専用の電子回路から構成されていてもよい。
 例えば、繰り返し周波数f1が7キロHz、ゲート信号SGGV1及びSGGX1のオン時間が60マイクロ秒、ゲート信号SGGV1及びSGGX1のオン時間が30マイクロ秒、である時の制御部200の回路は図46のようになる。
In the first and second embodiments, the control unit 200 may be configured by a dedicated electronic circuit including a comparator, a flip-flop, a timer, and the like.
For example, when the repetition frequency f1 is 7 kHz, the ON times of the gate signals SGGV1 and SGGX1 are 60 microseconds, and the ON times of the gate signals SGGV1 and SGGX1 are 30 microseconds, the circuit of the control unit 200 is as shown in FIG. become.
 図46(a)は、上記片方向MERS101,102を用いた場合のゲート信号SGGV1,SGGX1,SGGV2及びSGGX2を出力する制御回路である。この回路は、発振器OSCと、ワンショットマルチバイブレータMV1,MV2と、を備える。
 発振器OSCは、上記周波数7キロHz(周波数f1)のクロックパルスを出力する。
 ワンショットマルチバイブレータMV1の出力は、ゲート信号SGGV1及びSGGX1として逆導通型半導体スイッチSWV1及びSWX1のゲートGV1及びGX1に出力される。ワンショットマルチバイブレータMV1は、発振器OSCの出力するクロックパルスが立ち上がることに応答し、オフ信号をオン信号に切り替え、オン信号を60マイクロ秒保持した後オフ信号に切り替える。
 同様に、ワンショットマルチバイブレータMV2の出力は、ゲート信号SGGV2及びSGGX2として逆導通型半導体スイッチSWV2及びSWX2のゲートGV2及びGX2に出力される。ワンショットマルチバイブレータMV2は、発振器OSCの出力するクロックパルスが立ち上がることに応答し、オフ信号をオン信号に切り替え、オン信号を30マイクロ秒保持した後オフ信号に切り替える。
FIG. 46A is a control circuit that outputs gate signals SGGV1, SGGX1, SGGV2, and SGGX2 when the one- way MERS 101, 102 is used. This circuit includes an oscillator OSC and one-shot multivibrators MV1 and MV2.
The oscillator OSC outputs a clock pulse having the frequency of 7 kHz (frequency f1).
The output of the one-shot multivibrator MV1 is output to the gates GV1 and GX1 of the reverse conducting semiconductor switches SWV1 and SWX1 as the gate signals SGGV1 and SGGX1. In response to the rise of the clock pulse output from the oscillator OSC, the one-shot multivibrator MV1 switches the off signal to the on signal, holds the on signal for 60 microseconds, and then switches to the off signal.
Similarly, the output of the one-shot multivibrator MV2 is output to the gates GV2 and GX2 of the reverse conducting semiconductor switches SWV2 and SWX2 as the gate signals SGGV2 and SGGX2. The one-shot multivibrator MV2 switches the off signal to the on signal in response to the rise of the clock pulse output from the oscillator OSC, and switches to the off signal after holding the on signal for 30 microseconds.
 図46(b)は、上記両方向MERS103,104を用いたDC-DCコンバータのゲート信号SGGU1,SGGV1,SGGX1,SGGY1,SGGU2,SGGV2,SGGX2及びSGGY2を出力する制御回路である。この回路は、図46(a)で説明した制御部200に、更に、ワンショットマルチバイブレータMU1,MU2と、を備えるものである。
 ワンショットマルチバイブレータMU1の出力は、ゲート信号SGGU1及びSGGY1として逆導通型半導体スイッチSWU1及びSWY1のゲートGU1及びGY1に出力される。ワンショットマルチバイブレータMU1は、発振器OSCの出力するクロックパルスが立ち上がることに応答し、オフ信号をオン信号に切り替え、オン信号を60マイクロ秒保持した後オフ信号に切り替える。
 同様に、ワンショットマルチバイブレータMU2の出力は、ゲート信号SGGU2及びSGGY2として逆導通型半導体スイッチSWU2及びSWY2のゲートGU2及びGY2に出力される。ワンショットマルチバイブレータMU2は、発振器OSCの出力するクロックパルスが立ち上がることに応答し、オフ信号をオン信号に切り替え、オン信号を30マイクロ秒保持した後オフ信号に切り替える。
FIG. 46B is a control circuit that outputs the gate signals SGGU1, SGGV1, SGGX1, SGGY1, SGGU2, SGGV2, SGGX2, and SGGY2 of the DC-DC converter using the bidirectional MERS 103, 104. This circuit further includes one-shot multivibrators MU1 and MU2 in the control unit 200 described with reference to FIG.
The output of the one-shot multivibrator MU1 is output to the gates GU1 and GY1 of the reverse conducting semiconductor switches SWU1 and SWY1 as the gate signals SGGU1 and SGGY1. In response to the rise of the clock pulse output from the oscillator OSC, the one-shot multivibrator MU1 switches the off signal to the on signal, holds the on signal for 60 microseconds, and then switches to the off signal.
Similarly, the output of the one-shot multivibrator MU2 is output to the gates GU2 and GY2 of the reverse conducting semiconductor switches SWU2 and SWY2 as the gate signals SGGU2 and SGGY2. In response to the rise of the clock pulse output from the oscillator OSC, the one-shot multivibrator MU2 switches the off signal to the on signal, holds the on signal for 30 microseconds, and then switches to the off signal.
 また、上記実施形態では、制御部200は、予め設定された時間d1,d2及び周波数f1に基づいて、ゲート信号を制御した。しかし、ゲート信号の制御は様々な変更が考えられる。例えば、デューティ比で各スイッチのオン時間を制御してもよい。
 制御部200は、MERS101及び102のスイッチを実質的に同時にオンし、第1の所定の時間経過後に、一方のMERSのスイッチをオフし、更に第2の所定の時間経過後に、他方のMERSをオフし、更に第3の所定の時間両方のMERSのスイッチをオフに保持させる、という制御を繰り返す。
Moreover, in the said embodiment, the control part 200 controlled the gate signal based on preset time d1, d2 and frequency f1. However, various changes can be considered for the control of the gate signal. For example, the on-time of each switch may be controlled by the duty ratio.
The control unit 200 turns on the switches of the MERSs 101 and 102 substantially simultaneously, turns off the switch of one MERS after the first predetermined time elapses, and turns on the other MERS after the second predetermined time elapses. The control of turning off and holding both MERS switches off for a third predetermined time is repeated.
 一方、上記各実施形態における制御部200の構成は、通常のコンピュータシステムを用いても実現することができる。
 例えば、制御部200が行う上述の処理を実行させるためのプログラムを、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)あるいはその他のコンピュータ読み取り可能な記録媒体に格納して配布し、このプログラムをコンピュータにインストールすることにより、上述の制御部200を構成することができる。
On the other hand, the configuration of the control unit 200 in each of the above embodiments can also be realized using a normal computer system.
For example, a program for executing the above-described processing performed by the control unit 200 is stored in a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), or other computer-readable recording medium and distributed. And the above-mentioned control part 200 can be constituted by installing this program in a computer.
 また、プログラムをインターネット等の通信ネットワーク上の所定のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロード等するようにしてもよい。更に、通信ネットワークを介してプログラムを転送しながら起動実行することによっても、上述の処理を達成することができる。
 また、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロード等してもよい。
Further, the program may be stored in a disk device or the like included in a predetermined server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example. Furthermore, the above-described processing can also be achieved by starting and executing a program while transferring it via a communication network.
In addition, when the above functions are realized by sharing an OS (Operating System), or when the functions are realized by cooperation between the OS and an application, only the part other than the OS may be stored in a medium and distributed. Alternatively, it may be downloaded to a computer.
 以上の実施形態などを例として説明したように、電源(例えば、二次電池)と負荷(例えば、二次電池)とに接続された電力変換装置が、例えば、1以上のインダクタを介して直列に接続した二つのMERSを備え、両方のMERSが同時(実質的同時も含む。)にオンし、二つのMERSのうちの受電側のMERS(負荷に接続されたMERS)が先にオフすることによって、例えば、電源から電圧を昇圧又は降圧して負荷に出力することができる。 As described in the above embodiments and the like, a power conversion device connected to a power source (for example, a secondary battery) and a load (for example, a secondary battery) is connected in series via one or more inductors, for example. Two MERSs connected to the network, both MERSs are turned on simultaneously (including substantially simultaneously), and the power-receiving MERS (MERS connected to the load) of the two MERSs is turned off first. Thus, for example, the voltage can be boosted or lowered from the power supply and output to the load.
 本出願は、2010年7月30日に出願された日本国特許出願特願2010-173095に基づく。本明細書中に、それらの明細書、請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2010-173095 filed on Jul. 30, 2010. The specification, claims, and entire drawings are incorporated herein by reference.
10A乃至10H DC/DCコンバータ
DC+1,DC+2 直流入力端子
DC-1,DC-2 直流出力端子
Ldc1,Ldc2,Ldc11,Ldc12,Ldc21,Ldc22 インダクタ
101,102,103,104 MERS
AC11,AC21,AC12,AC22 交流端子
DC11,DC21,DC12,DC22 直流端子
SWU1,SWV1,SWX1,SWY1,SWU2,SWV2,SWX2,SWY2 
逆導通型半導体スイッチ
DU1,DV1,DX1,DY1,DU2,DV2,DX2,DY2 ダイオード部
SU1,SV1,SX1,SY1,SU2,SV2,SX2,SY2 スイッチ部
GU1,GV1,GX1,GY1,GU2,GV2,GX2,GY2 ゲート
CM1,CM2 コンデンサ
Lm,Lm1,Lm2 インダクタ
RFT 高周波トランス
L1 一次巻線
L2 二次巻線
LM1,LM2 漏れインダクタンス
200 制御部
SGGU1,SGGV1,SGGX1,SGGY1,SGGU2,SGGV2,SGGX
2,SGGY2 ゲート信号
E1,E2 二次電池
10A to 10H DC / DC converters DC + 1, DC + 2 DC input terminals DC-1, DC-2 DC output terminals Ldc1, Ldc2, Ldc11, Ldc12, Ldc21, Ldc22 Inductors 101, 102, 103, 104 MERS
AC11, AC21, AC12, AC22 AC terminals DC11, DC21, DC12, DC22 DC terminals SWU1, SWV1, SWX1, SWY1, SWU2, SWV2, SWX2, SWY2
Reverse conducting semiconductor switch DU1, DV1, DX1, DY1, DU2, DV2, DX2, DY2 Diode unit SU1, SV1, SX1, SY1, SU2, SV2, SX2, SY2 Switch unit GU1, GV1, GX1, GY1, GU2, GV2 , GX2, GY2 Gate CM1, CM2 Capacitors Lm, Lm1, Lm2 Inductor RFT High frequency transformer L1 Primary winding L2 Secondary winding LM1, LM2 Leakage inductance 200 Control unit SGGU1, SGGV1, SGGX1, SGGY1, SGGU2, SGGV2, SGGX
2, SGGY2 Gate signal E1, E2 Secondary battery

Claims (21)

  1.  第1の磁気エネルギー回生スイッチと、第2の磁気エネルギー回生スイッチと、1以上の磁気エネルギー蓄積用のインダクタとを、備え、
     前記第1の磁気エネルギー回生スイッチは、第1の電源から供給された電力を第1の静電エネルギーとして蓄積し、
     前記1以上の磁気エネルギー蓄積用のインダクタは、前記第1の磁気エネルギー回生スイッチが蓄積した前記第1の静電エネルギーを第1の磁気エネルギーとして蓄積し、
     前記第2の磁気エネルギー回生スイッチは、前記1以上の磁気エネルギー蓄積用インダクタに蓄積された前記第1の磁気エネルギーを第2の静電エネルギーとして蓄積し、蓄積した前記第2の静電エネルギーを第1の負荷に供給する、
     ことによって、前記第1の電源から供給される電力を変換して前記第1の負荷に供給する第1の変換を行う、
     ことを特徴とする直列共振DC/DC変換装置。
    A first magnetic energy regenerative switch; a second magnetic energy regenerative switch; and one or more inductors for storing magnetic energy,
    The first magnetic energy regeneration switch accumulates electric power supplied from a first power source as first electrostatic energy,
    The one or more inductors for storing magnetic energy store the first electrostatic energy stored by the first magnetic energy regeneration switch as first magnetic energy;
    The second magnetic energy regenerative switch stores the first magnetic energy stored in the one or more magnetic energy storage inductors as second electrostatic energy, and stores the stored second electrostatic energy. Supplying the first load,
    By performing the first conversion to convert the power supplied from the first power supply and supply to the first load,
    A series resonance DC / DC converter characterized by the above.
  2.  前記第2の磁気エネルギー回生スイッチは、第2の電源から供給された電力を第3の静電エネルギーとして蓄積し、
     前記1以上の磁気エネルギー蓄積用のインダクタは、前記第2の磁気エネルギー回生スイッチが蓄積した前記第3の静電エネルギーを第2の磁気エネルギーとして蓄積し、
     前記第1の磁気エネルギー回生スイッチは、前記1以上の磁気エネルギー蓄積用インダクタに蓄積された前記第2の磁気エネルギーを第4の静電エネルギーとして蓄積し、蓄積した前記第4の静電エネルギーを第2の負荷に供給する、
     ことによって、前記第2の電源から供給される電力を変換して前記第2の負荷に供給する前記第1の変換とは逆の第2の変換を行う、
     ことを特徴とする請求項1に記載の直列共振DC/DC変換装置。
    The second magnetic energy regenerative switch stores power supplied from a second power source as third electrostatic energy,
    The one or more magnetic energy storage inductors store the third electrostatic energy stored by the second magnetic energy regenerative switch as second magnetic energy,
    The first magnetic energy regenerative switch stores the second magnetic energy stored in the one or more magnetic energy storage inductors as fourth electrostatic energy, and stores the stored fourth electrostatic energy. Supplying a second load,
    By performing a second conversion opposite to the first conversion for converting the power supplied from the second power source and supplying the power to the second load,
    The series resonance DC / DC converter according to claim 1, wherein
  3.  前記第1及び前記第2の磁気エネルギー回生スイッチはそれぞれ、第1及び第2の端子と、第3及び第4の端子と、それぞれ電流路を備え、各自に供給される制御信号に応答して各自の電流路をオン及びオフするスイッチであって、各自の電流路を、オンしたとき双方向に実質的に導通させ、オフしたとき電流路の所定の一端から他端の一方向にのみ実質的に導通させる第1及び第2のスイッチと、それぞれ電流路を備え、各自の電流路が所定の一端から他端の一方向にのみ実質的に導通する第1及び第2の整流素子と、コンデンサと、を備え、前記第1の端子に前記第1の整流素子の前記一端と前記第2のスイッチの前記他端とが、前記第2の端子に前記第1のスイッチの前記一端と前記第2の整流素子の前記他端とが、前記第3の端子に前記コンデンサの前記一端と前記第1の整流素子の前記他端と前記第1のスイッチの前記他端とが、前記第4の端子に前記コンデンサの前記他端と前記第2のスイッチの前記一端と前記第2の整流素子の前記一端とが、接続されており、
     前記1以上の磁気エネルギー蓄積用インダクタのうちの1つは、前記第1の磁気エネルギー回生スイッチの前記第2の端子と前記第2の磁気エネルギー回生スイッチの前記第1の端子との間、または、前記第2の磁気エネルギー回生スイッチの前記第2の端子と前記第1の磁気エネルギー回生スイッチの前記第1の端子との間に接続されている、
     ことを特徴とする請求項1に記載の直列共振DC/DC変換装置。
    Each of the first and second magnetic energy regenerative switches includes first and second terminals, third and fourth terminals, and current paths, respectively, in response to a control signal supplied to each of the first and second magnetic energy regenerative switches. A switch for turning on and off the current path of the current path. When the switch is turned on, the current path is substantially conducted in both directions. When the switch is turned off, the current path is substantially only in one direction from the predetermined end of the current path. First and second switches that are electrically connected to each other, and first and second rectifying elements that each have a current path, and each current path substantially conducts only in one direction from the predetermined end to the other end; A capacitor, the one end of the first rectifier element and the other end of the second switch at the first terminal, and the one end of the first switch at the second terminal The other end of the second rectifier element is connected to the third terminal. The one end of the capacitor, the other end of the first rectifying element, and the other end of the first switch are connected to the other end of the capacitor and the one end of the second switch, respectively. And the one end of the second rectifying element are connected,
    One of the one or more magnetic energy storage inductors is between the second terminal of the first magnetic energy regenerative switch and the first terminal of the second magnetic energy regenerative switch, or , Being connected between the second terminal of the second magnetic energy regenerative switch and the first terminal of the first magnetic energy regenerative switch,
    The series resonance DC / DC converter according to claim 1, wherein
  4.  前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチの各電流路をオンさせる制御信号並びにオフさせる制御信号を前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチの各制御端に供給する制御部を備え、
     前記第1の電源は、前記第1の磁気エネルギー回生スイッチの前記第3の端子と前記第4の端子とに接続され、
     前記第1の負荷は、前記第2の磁気エネルギー回生スイッチの前記第3の端子と前記第4の端子とに接続され、
     前記制御部が、前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオンさせ前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフさせた後に前記第1の磁気エネルギー回生スイッチの前記第1及び第2のスイッチをオフさせる制御を繰り返すことによって前記第1の変換が行われる、
     ことを特徴とする請求項3に記載の直列共振DC/DC変換装置。
    Control signals for turning on and off the current paths of the first and second switches of the first and second magnetic energy regenerative switches and control signals for turning off the current paths of the first and second magnetic energy regenerative switches A controller for supplying the control ends of the first and second switches;
    The first power source is connected to the third terminal and the fourth terminal of the first magnetic energy regeneration switch,
    The first load is connected to the third terminal and the fourth terminal of the second magnetic energy regenerative switch;
    The control unit turns on the first and second switches of the first and second magnetic energy regeneration switches and turns off the first and second switches of the second magnetic energy regeneration switches. The first conversion is performed by repeating the control to turn off the first and second switches of the first magnetic energy regenerative switch after
    The series resonance DC / DC converter according to claim 3 characterized by things.
  5.  前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチの各電流路をオンさせる制御信号並びにオフさせる制御信号を前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチの各制御端に供給する制御部を備え、
     前記第2の磁気エネルギー回生スイッチは、第2の電源から供給された電力を第3の静電エネルギーとして蓄積し、前記磁気エネルギー蓄積用のインダクタは、前記第2の磁気エネルギー回生スイッチが蓄積した前記第3の静電エネルギーを第2の磁気エネルギーとして蓄積し、前記第1の磁気エネルギー回生スイッチは、前記1以上の磁気エネルギー蓄積用インダクタに蓄積された前記第2磁気エネルギーを第4の静電エネルギーとして蓄積し、蓄積した前記第4の静電エネルギーを第2の負荷に供給する、ことによって、前記第2の電源から供給される電力を変換して前記第2の負荷に供給する前記第1の変換とは逆の第2の変換を行い、
     前記第2の負荷は、前記第1の磁気エネルギー回生スイッチの前記第3の端子と前記第4の端子とに接続され、
     前記第2の電源は、前記第2の磁気エネルギー回生スイッチの前記第3の端子と前記第4の端子とに接続され、
     前記制御部が、前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオンさせ前記第1の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフさせた後に前記第2の磁気エネルギー回生スイッチの前記第1及び第2のスイッチをオフさせる制御を繰り返すことによって前記第2の変換が行われる、
     ことを特徴とする請求項3に記載の直列共振DC/DC変換装置。
    Control signals for turning on and off the current paths of the first and second switches of the first and second magnetic energy regenerative switches and control signals for turning off the current paths of the first and second magnetic energy regenerative switches A controller for supplying the control ends of the first and second switches;
    The second magnetic energy regenerative switch stores power supplied from a second power source as third electrostatic energy, and the magnetic energy storage inductor is stored by the second magnetic energy regenerative switch. The third electrostatic energy is stored as second magnetic energy, and the first magnetic energy regenerative switch stores the second magnetic energy stored in the one or more magnetic energy storage inductors in a fourth static energy. By storing the fourth electrostatic energy stored as electric energy and supplying the second load to the second load, the power supplied from the second power source is converted and supplied to the second load. Perform a second transformation opposite to the first transformation,
    The second load is connected to the third terminal and the fourth terminal of the first magnetic energy regenerative switch;
    The second power source is connected to the third terminal and the fourth terminal of the second magnetic energy regeneration switch;
    The controller turns on the first and second switches of the first and second magnetic energy regeneration switches and turns off the first and second switches of the first magnetic energy regeneration switches. The second conversion is performed by repeating the control of turning off the first and second switches of the second magnetic energy regenerative switch after
    The series resonance DC / DC converter according to claim 3 characterized by things.
  6.  前記制御部が、前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び第2のスイッチをオンする時は前記1以上の磁気エネルギー蓄積用インダクタに電流は実質的に流れておらず、前記第1の磁気エネルギー回生スイッチの第1及び第2のスイッチをオフする時は前記第1の磁気エネルギー回生スイッチの前記コンデンサに実質的に静電エネルギーは蓄積されておらず、前記第2の磁気エネルギー回生スイッチの前記第1及び第2のスイッチをオフする時は前記第2の磁気エネルギー回生スイッチの前記コンデンサに実質的に静電エネルギーは蓄積されていない、
     ことを特徴とする請求項4に記載の直列共振DC/DC変換装置。
    When the control unit turns on the first and second switches of the first and second magnetic energy regenerative switches, substantially no current flows through the one or more magnetic energy storage inductors. When the first and second switches of the first magnetic energy regenerative switch are turned off, substantially no electrostatic energy is accumulated in the capacitor of the first magnetic energy regenerative switch, and the second When the first and second switches of the magnetic energy regenerative switch are turned off, substantially no electrostatic energy is stored in the capacitor of the second magnetic energy regenerative switch.
    The series resonance DC / DC converter according to claim 4 characterized by things.
  7.  前記制御部は、前記第1及び第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチを実質的に同じタイミングでオンし第1の所定の時間経過後に前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフし更に第2の所定の時間経過後に前記第1の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフし更に第3の所定の時間の間前記第1の及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフに保持させる制御を繰り返す、
     ことを特徴とする請求項4に記載の直列共振DC/DC変換装置。
    The control unit turns on the first and second switches of the first and second magnetic energy regeneration switches at substantially the same timing, and the second magnetic energy regeneration after the first predetermined time has elapsed. The first and second switches of the switch are turned off, and after the second predetermined time has elapsed, the first and second switches of the first magnetic energy regeneration switch are turned off, and a third predetermined Repeating the control of keeping the first and second switches of the first and second magnetic energy regenerative switches off for a period of time;
    The series resonance DC / DC converter according to claim 4 characterized by things.
  8.  前記第3の所定の時間が変更可能である、
     ことを特徴とする請求項7に記載の直列共振DC/DC変換装置。
    The third predetermined time is changeable;
    The series resonance DC / DC converter according to claim 7.
  9.  前記1以上の磁気エネルギー蓄積用インダクタは、前記第1の磁気エネルギー回生スイッチの前記第2の端子と前記第2の磁気エネルギー回生スイッチの前記第1の端子との間に接続された第1の磁気エネルギー蓄積用インダクタと、前記第2の磁気エネルギー回生スイッチの前記第2の端子と前記第1の磁気エネルギー回生スイッチの前記第1の端子との間に接続された第2の磁気エネルギー蓄積用インダクタと、を含む、
     ことを特徴とする請求項3記載の直列共振DC/DC変換装置。
    The one or more magnetic energy storage inductors are connected to each other between the second terminal of the first magnetic energy regenerative switch and the first terminal of the second magnetic energy regenerative switch. A second magnetic energy storage inductor connected between the magnetic energy storage inductor and the second terminal of the second magnetic energy regenerative switch and the first terminal of the first magnetic energy regenerative switch. Including an inductor,
    The series resonance DC / DC converter according to claim 3.
  10.  前記1以上の磁気エネルギー蓄積用インダクタは、前記第1の磁気エネルギー回生スイッチの第1及び第2の端子に接続された第1のコイルと、前記第2の磁気エネルギー回生スイッチの第1及び第2の端子に接続され、前記第1のコイルと電磁的に結合する第2のコイルと、から構成された変圧器の漏れインダクタンスを含む、
     ことを特徴とする請求項2に記載の直列共振DC/DC変換装置。
    The one or more inductors for storing magnetic energy include a first coil connected to first and second terminals of the first magnetic energy regeneration switch, and first and second coils of the second magnetic energy regeneration switch. A transformer having a leakage inductance connected to the first terminal and electromagnetically coupled to the first coil,
    The series resonance DC / DC converter according to claim 2, wherein
  11.  前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2の整流素子は、それぞれ、第3及び第4のスイッチより構成されており、
     前記第3及び前記第4のスイッチは、それぞれ電流路を備え、各自に供給される制御信号に応答して各自の電流路をオン及びオフするスイッチであって、各自の電流路を、オンしたとき双方向に実質的に導通させ、オフしたとき電流路の所定の一端から他端の一方向にのみ実質的に導通させるものであり、
     前記直列共振DC/DC変換装置は、前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1乃至第4のスイッチの各電流路をオンさせる制御信号並びにオフさせる制御信号を前記第1乃至第4のスイッチの各制御端に供給する制御部を備え、
     前記制御部が、
     前記第1及び前記第2の磁気エネルギー回生スイッチの前記第3と前記第4のスイッチをオフに保持させたまま、前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオンさせ前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフさせた後に前記第1の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフさせる制御と、
     前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1と前記第2のスイッチをオフに保持させたまま、前記第1及び前記第2の磁気エネルギー回生スイッチの前記第3及び前記第4のスイッチをオンさせ前記第2の磁気エネルギー回生スイッチの前記第3及び前記第4のスイッチをオフさせた後に前記第1の磁気エネルギー回生スイッチの前記第3及び前記第4のスイッチをオフさせる制御と、
     を交互に繰り返すことによって前記第1の変換が行われる、
     ことを特徴とする請求項3に記載の直列共振DC/DC変換装置。
    The first and second rectifying elements of the first and second magnetic energy regenerative switches are configured by third and fourth switches, respectively.
    Each of the third and fourth switches has a current path, and is a switch that turns on and off the current path in response to a control signal supplied to the third switch, and turns on the current path. When it is substantially conductive in both directions, it is substantially conductive only in one direction from the predetermined end of the current path when turned off,
    The series resonance DC / DC converter includes a control signal for turning on and a control signal for turning off the current paths of the first to fourth switches of the first and second magnetic energy regenerative switches. A control unit for supplying to each control end of the fourth switch;
    The control unit is
    The first and second magnetic energy regenerative switches of the first and second magnetic energy regenerative switches are held off while the third and fourth switches of the first and second magnetic energy regenerative switches are held off. Control to turn off the first and second switches of the first magnetic energy regenerative switch after turning on the switch and turning off the first and second switches of the second magnetic energy regenerative switch When,
    The third and fourth of the first and second magnetic energy regenerative switches, with the first and second switches of the first and second magnetic energy regenerative switches held off. Control to turn off the third and fourth switches of the first magnetic energy regeneration switch after turning on the switch and turning off the third and fourth switches of the second magnetic energy regeneration switch When,
    The first conversion is performed by alternately repeating
    The series resonance DC / DC converter according to claim 3 characterized by things.
  12.  前記制御部が、
     前記第1及び前記第2の磁気エネルギー回生スイッチの前記第3と前記第4のスイッチをオフに保持させたまま、前記第1及び第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチを実質的に同じタイミングでオンし、第1の所定の時間経過後に前記第2の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフし、更に第2の所定の時間経過後に前記第1の磁気エネルギー回生スイッチの前記第1及び前記第2のスイッチをオフし、更に第3の所定の時間の間、前記第1乃至第4のスイッチをオフに保持させる制御と、
     前記第1及び前記第2の磁気エネルギー回生スイッチの前記第1と前記第2のスイッチをオフに保持させたまま、前記第1及び前記第2の磁気エネルギー回生スイッチの前記第3及び前記第4のスイッチを実質的に同じタイミングでオンし、前記第1の所定の時間経過後に前記第2の磁気エネルギー回生スイッチの前記第3及び前記第4のスイッチをオフし、更に前記第2の所定の時間経過後に前記第1の磁気エネルギー回生スイッチの前記第3及び善意第4のスイッチをオフし、更に前記第3の所定の時間の間、前記第1乃至第4のスイッチをオフに保持させる制御と、を交互に繰り返す、
     ことによって前記第1の変換が行われる、
     ことを特徴とする請求項11に記載の直列共振DC/DC変換装置。
    The control unit is
    The first and second magnetic energy regenerative switches of the first and second magnetic energy regenerative switches are held off while the third and fourth switches of the first and second magnetic energy regenerative switches are held off. The switch is turned on at substantially the same timing, the first and second switches of the second magnetic energy regenerative switch are turned off after a first predetermined time has passed, and further after the second predetermined time has passed. Control for turning off the first and second switches of the first magnetic energy regenerative switch and holding the first to fourth switches off for a third predetermined time;
    The third and fourth of the first and second magnetic energy regenerative switches, with the first and second switches of the first and second magnetic energy regenerative switches held off. Are switched on at substantially the same timing, and after the first predetermined time has elapsed, the third and fourth switches of the second magnetic energy regeneration switch are turned off, and the second predetermined power Control for turning off the third and good intention fourth switches of the first magnetic energy regenerative switch after a lapse of time, and further holding the first to fourth switches off for the third predetermined time. And alternately,
    The first conversion is performed by
    The series resonant DC / DC converter according to claim 11.
  13.  前記第3の所定の時間が変更可能である、
     ことを特徴とする請求項12に記載の直列共振DC/DC変換装置。
    The third predetermined time is changeable;
    The series resonance DC / DC converter according to claim 12, wherein:
  14.  前記第1の電源及び前記第2の負荷は同一の第1の二次電池であり、
     前記第2の電源及び前記第1の負荷は同一の第2の二次電池である、
     ことを特徴とする請求項2に記載の直列共振DC/DC変換装置。
    The first power source and the second load are the same first secondary battery,
    The second power source and the first load are the same second secondary battery,
    The series resonance DC / DC converter according to claim 2, wherein
  15.  前記第1の電源は、直流電圧源とインダクタとの直列回路を含む、
     ことを特徴とする請求項1に記載の直列共振DC/DC変換装置。
    The first power source includes a series circuit of a DC voltage source and an inductor.
    The series resonance DC / DC converter according to claim 1, wherein
  16.  前記第1の電源は、直流電圧源とインダクタとの直列回路を含み、
     前記第1の電源の前記インダクタと前記第1の磁気エネルギー回生スイッチの前記コンデンサとの共振周波数は、前記制御部の前記制御を繰り返す周波数の半分以下である、
     ことを特徴とする請求項4に記載の直列共振DC/DC変換装置。
    The first power source includes a series circuit of a DC voltage source and an inductor,
    The resonant frequency of the inductor of the first power source and the capacitor of the first magnetic energy regenerative switch is less than or equal to half the frequency at which the control unit repeats the control.
    The series resonance DC / DC converter according to claim 4 characterized by things.
  17.  前記第1の負荷は、直流負荷とインダクタとの直列回路を含む、
     ことを特徴とする請求項1に記載の直列共振DC/DC変換装置。
    The first load includes a series circuit of a DC load and an inductor,
    The series resonance DC / DC converter according to claim 1, wherein
  18.  前記第1の負荷は、直流負荷とインダクタとの直列回路を含み、
     前記第1の負荷の前記インダクタと前記第2の磁気エネルギー回生スイッチの前記コンデンサとの共振周波数は、前記制御部の前記制御を繰り返す周波数の半分以下である、
     ことを特徴とする請求項4に記載の直列共振DC/DC変換装置。
    The first load includes a series circuit of a DC load and an inductor,
    The resonant frequency of the inductor of the first load and the capacitor of the second magnetic energy regenerative switch is less than or equal to half the frequency at which the control unit repeats the control.
    The series resonance DC / DC converter according to claim 4 characterized by things.
  19.  前記第1の磁気エネルギー回生スイッチから前記第1の電源への方向に流れる電流を遮断する第3の整流素子と、
     前記第1の負荷から前記第2の磁気エネルギー回生スイッチへの方向に流れる電流を遮断する第4の整流素子と、
     を更に備える、
     ことを特徴とする請求項1に記載の直列共振DC/DC変換装置。
    A third rectifying element that cuts off a current flowing in a direction from the first magnetic energy regeneration switch to the first power source;
    A fourth rectifying element that cuts off a current flowing in a direction from the first load to the second magnetic energy regeneration switch;
    Further comprising
    The series resonance DC / DC converter according to claim 1, wherein
  20.  第1及び第2の端子と、第3及び第4の端子と、それぞれ電流路を備え、各自に供給される制御信号に応答して各自の電流路をオン及びオフするスイッチであって、各自の電流路を、オンしたとき双方向に実質的に導通させ、オフしたとき電流路の所定の一端から他端の一方向にのみ実質的に導通させる第1及び第2のスイッチと、それぞれ電流路を備え、各自の電流路が所定の一端から他端の一方向にのみ実質的に導通する第1及び第2の整流素子と、コンデンサと、より構成され、前記第1の端子に前記第1の整流素子の前記一端と前記第2のスイッチの前記他端とが、前記第2の端子に前記第1のスイッチの前記一端と前記第2の整流素子の前記他端とが、前記第3の端子に前記コンデンサの前記一端と前記第1の整流素子の前記他端と前記第1のスイッチの前記他端とが、前記第4の端子に前記コンデンサの前記他端と前記第2のスイッチの前記一端と前記第2の整流素子の前記一端とが、接続される磁気エネルギー回生スイッチと、
     第1と第2の交流入力と第1と第2の直流出力とを備え、前記第1と第2の交流入力間から入力された電力を整流して前記第1と第2の交流出力間から出力する整流器と、
     外部の直流電源と直列回路をなし、前記直列回路の一端が前記磁気エネルギー回生スイッチの前記第3の端子に接続され、前記直列回路の他端が前記磁気エネルギー回生スイッチの前記第4の端子に接続される第1のインダクタと、
     外部の直流負荷と直列回路をなし、前記直列回路の一端が前記整流器の第1の直流出力に接続され、前記直列回路の他端が前記整流器の第2の直流出力に接続される第2のインダクタと、
     前記磁気エネルギー回生スイッチの前記第2の端子と前記整流器の前記第1の交流入力とが電気的に接続され、前記整流器の前記第2の交流入力と前記磁気エネルギー回生スイッチの前記第1の端子とが電気的に接続され、前記磁気エネルギー回生スイッチの前記第2の端子と前記整流器の前記第1の交流入力との間、または、前記整流器の前記第2の交流入力と前記磁気エネルギー回生スイッチの前記第1の端子との間に流れる電流によって磁気エネルギーを蓄える第3のインダクタと、
     前記磁気エネルギー回生スイッチの前記第1及び第2のスイッチの各電流路をオンさせる制御信号並びにオフさせる制御信号を前記磁気エネルギー回生スイッチの前記第1及び第2のスイッチの各制御端に供給する制御部と、を備え、
     前記制御部は、前記磁気エネルギー回生スイッチの前記第1及び第2のスイッチを同時にオン・オフさせる制御、を繰り返す、
     ことを特徴とする直列共振DC/DC変換装置。
    Each of the first and second terminals, the third terminal, and the fourth terminal includes a current path, and switches each current path on and off in response to a control signal supplied thereto. A first switch and a second switch that conduct substantially in both directions when turned on, and substantially conduct only in one direction from the predetermined end to the other end of the current path when turned off. Each of which includes a first and second rectifier elements each having a current path substantially conducting only in one direction from the predetermined end to the other end, and a capacitor. The one end of the first rectifier element and the other end of the second switch are connected to the second terminal, and the one end of the first switch and the other end of the second rectifier element are connected to the second terminal. 3 terminals with the one end of the capacitor and the other end of the first rectifying element The other end of the first switch is connected to the fourth terminal, and the other end of the capacitor, the one end of the second switch, and the one end of the second rectifying element are connected to the fourth terminal. An energy regeneration switch,
    1st and 2nd AC input and 1st and 2nd DC output are provided, The electric power input from between the 1st and 2nd AC input is rectified, Between the 1st and 2nd AC output A rectifier that outputs from
    A series circuit is formed with an external DC power supply, one end of the series circuit is connected to the third terminal of the magnetic energy regeneration switch, and the other end of the series circuit is connected to the fourth terminal of the magnetic energy regeneration switch. A first inductor connected;
    A second circuit in which a series circuit is formed with an external DC load, one end of the series circuit is connected to a first DC output of the rectifier, and the other end of the series circuit is connected to a second DC output of the rectifier. An inductor;
    The second terminal of the magnetic energy regenerative switch and the first AC input of the rectifier are electrically connected, and the second AC input of the rectifier and the first terminal of the magnetic energy regenerative switch Between the second terminal of the magnetic energy regenerative switch and the first AC input of the rectifier, or the second AC input of the rectifier and the magnetic energy regenerative switch. A third inductor that stores magnetic energy by a current flowing between the first terminal and the first inductor;
    A control signal for turning on and off each current path of the first and second switches of the magnetic energy regenerative switch and a control signal for turning off are supplied to the control terminals of the first and second switches of the magnetic energy regenerative switch. A control unit,
    The control unit repeats the control for simultaneously turning on and off the first and second switches of the magnetic energy regeneration switch,
    A series resonance DC / DC converter characterized by the above.
  21.  電源から供給された電力を第1の静電エネルギーに変換するステップと、
     第1の静電エネルギーを磁気エネルギーに変換するステップと、
     前記磁気エネルギーを第2の静電エネルギーに変換するステップと、
     前記第2の静電エネルギーを負荷に供給するステップと、
     を含むことを特徴とする電力変換方法。
    Converting power supplied from a power source into first electrostatic energy;
    Converting the first electrostatic energy into magnetic energy;
    Converting the magnetic energy into second electrostatic energy;
    Supplying the second electrostatic energy to a load;
    The power conversion method characterized by including.
PCT/JP2011/067522 2010-07-30 2011-07-29 Series resonant dc/dc conversion device and power conversion method WO2012015048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010173095A JP2012034522A (en) 2010-07-30 2010-07-30 Current-fed series resonance dc/dc converter and power conversion control method
JP2010-173095 2010-07-30

Publications (1)

Publication Number Publication Date
WO2012015048A1 true WO2012015048A1 (en) 2012-02-02

Family

ID=45530247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067522 WO2012015048A1 (en) 2010-07-30 2011-07-29 Series resonant dc/dc conversion device and power conversion method

Country Status (2)

Country Link
JP (1) JP2012034522A (en)
WO (1) WO2012015048A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118678A1 (en) * 2012-02-10 2013-08-15 日産自動車株式会社 Power conversion device and method for driving same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007942A (en) * 2012-06-01 2014-01-16 Denso Corp Bidirectional power transmission apparatus
JP2016170000A (en) * 2015-03-12 2016-09-23 日立マクセル株式会社 Battery testing device and operation method therefor
US10295611B2 (en) * 2015-06-09 2019-05-21 Premier Technologies, Ltd. Efficient battery tester
US10075096B2 (en) 2016-05-24 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Power supply system
WO2018080913A1 (en) * 2016-10-27 2018-05-03 University Of Florida Research Foundation, Incorporated Loop noise balance technique for cm emi noise reduction of the full bridge llc resonant converter
CN110365219A (en) * 2019-08-16 2019-10-22 北京机械设备研究所 A kind of two-way DC/DC circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285479A (en) * 1991-03-12 1992-10-09 Brother Ind Ltd Resonance type switching power source
WO2009075366A1 (en) * 2007-12-11 2009-06-18 Tokyo Institute Of Technology Soft-switching power converting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285479A (en) * 1991-03-12 1992-10-09 Brother Ind Ltd Resonance type switching power source
WO2009075366A1 (en) * 2007-12-11 2009-06-18 Tokyo Institute Of Technology Soft-switching power converting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118678A1 (en) * 2012-02-10 2013-08-15 日産自動車株式会社 Power conversion device and method for driving same
JP2013165572A (en) * 2012-02-10 2013-08-22 Nissan Motor Co Ltd Power conversion device and method of driving the same
EP2814160A4 (en) * 2012-02-10 2016-06-22 Nissan Motor Power conversion device and method for driving same

Also Published As

Publication number Publication date
JP2012034522A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5065188B2 (en) Series resonant converter
JP5590124B2 (en) DC-DC converter
WO2012015048A1 (en) Series resonant dc/dc conversion device and power conversion method
US5574636A (en) Zero-voltage-transition (ZVT) 3-phase PWM voltage link converters
JP5472183B2 (en) Switching power supply
Fujiwara et al. A novel lossless passive snubber for soft-switching boost-type converters
JP2008048483A (en) Dc-ac converter
JP2011120370A (en) Dc-dc bidirectional converter circuit
JP3699082B2 (en) Switching power supply circuit
CN115868105A (en) Soft switching pulse width modulation DC-DC power converter
JP5831275B2 (en) Power converter and driving method thereof
JP2013132175A (en) Series resonant converter circuit
Park et al. Low loss soft switching boost converter
JP2008048484A (en) Driving method of dc/ac converter
JP3585025B2 (en) AC / DC converter
JP5517361B2 (en) DC-DC converter
KR101270326B1 (en) Two-switch flyback converter with center-tap capacitor
Ku et al. Low-power LLC resonant AC-DC converter for phone charging applications
JP2012157118A (en) Power conversion apparatus
KR101656021B1 (en) Series resonant converter
Mukherjee et al. A simple flyback microinverter for solar energy systems with variable frequency controlled ZVS
Yang et al. A novel series input parallel output soft-switching high step-down converter: Analysis and implementation
Wijeratne et al. A ZVS-PWM full-bridge converter with reduced conduction losses
KR20180055266A (en) Ac-dc converting apparatus for reducing a current ripple
JP2014200173A (en) DC-DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812637

Country of ref document: EP

Kind code of ref document: A1