WO2012011528A1 - Light-emitting device and lighting device - Google Patents

Light-emitting device and lighting device Download PDF

Info

Publication number
WO2012011528A1
WO2012011528A1 PCT/JP2011/066565 JP2011066565W WO2012011528A1 WO 2012011528 A1 WO2012011528 A1 WO 2012011528A1 JP 2011066565 W JP2011066565 W JP 2011066565W WO 2012011528 A1 WO2012011528 A1 WO 2012011528A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
wavelength conversion
conversion member
Prior art date
Application number
PCT/JP2011/066565
Other languages
French (fr)
Japanese (ja)
Inventor
作本 大輔
三宅 徹
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2012011528A1 publication Critical patent/WO2012011528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/10Refractors for light sources comprising photoluminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the upper surface of the base 3 is made of a metal material such as aluminum, silver, gold, copper, or platinum with a space between the wiring conductor and the plating layer in order to efficiently reflect light above the base 3.
  • a metal reflective layer may be formed.
  • an insulating transparent member such as a silicone resin containing white ceramic powder is applied to a portion of the upper surface of the substrate 3 excluding a portion where the light emitting element 5 is mounted to form a reflective layer. May be. As a result, light emitted downward from the light emitting element 5 is diffusely reflected upward on the upper or lower surface of the reflective layer, so that the light emission efficiency can be increased.
  • the inner wall surfaces of the frame body 9 facing each other are inclined so that the interval between the inner wall surfaces facing each other increases from the lower side to the upper side.
  • a metal layer made of tungsten, molybdenum, copper or silver, and a plating layer made of nickel or gold covering the metal layer may be formed on the inclined inner wall surface of the frame body 9. This plating layer has a function of efficiently reflecting the light emitted from the light emitting element 5.
  • the inclination angle of the inner wall surface of the frame body 9 is set to an angle of, for example, 55 degrees or more and 70 degrees or less with respect to the upper surface of the base 3.
  • the surface roughness of the plating layer is set such that the arithmetic average roughness Ra is, for example, 1 ⁇ m or more and 3 ⁇ m or less.
  • a step 9 a is provided inside the upper end of the frame body 9.
  • the step 9 a of the frame body 9 is for supporting the wavelength conversion member 7.
  • the step 9a is a part of the upper portion of the frame body 9 cut out inward, and can support the end of the wavelength conversion member 7.
  • a plating layer may be formed up to the surface of the step 9a.
  • the width in the height direction is set to 0.5 mm or more and 3 mm or less
  • the width in the thickness direction of the frame body 9 (lateral direction in FIG. 2) is set to 0.3 mm or more and 3 mm or less. Can do.
  • the wavelength conversion member 7 in this embodiment is disposed above the light emitting element 5. Specifically, the wavelength conversion member 7 is positioned above the light emitting element 5 so as to face the light emitting element 5 with a gap.
  • the wavelength conversion member 7 has a flange-shaped portion on the outer peripheral portion thereof and outside the peripheral portion 7e.
  • the wavelength conversion member 7 is positioned on the frame body 9, and the collar-shaped part is supported by the frame body 9.
  • the wavelength conversion member 7 has an inner surface facing the light emitting element 5 and an outer surface located on the side opposite to the inner surface.
  • the inner surface of the wavelength conversion member 7 has a concave curved shape.
  • the inner surface has a concave dome shape as compared with the case where the inner surface has a flat shape, the light emitted from the light emitting element 5 and incident on the wavelength converting member 7 is reflected on the inner surface of the wavelength converting member 7. Since it is difficult to reflect, more light can enter the wavelength conversion member 7.
  • the wavelength conversion member 7 is made of a silicone resin, an acrylic resin, or an epoxy resin, and a configuration in which a phosphor is contained in the resin can be given as an example.
  • a phosphor a blue phosphor emitting fluorescence of 430 nm to 490 nm, a green phosphor emitting fluorescence of 500 nm to 560 nm, a yellow phosphor emitting fluorescence of 540 nm to 600 nm, or a fluorescence of 590 nm to 700 nm
  • a red phosphor that emits is one containing a red phosphor that emits.
  • the phosphor is uniformly dispersed in the wavelength conversion member 7.
  • the thermal conductivity of the wavelength conversion member 7 is set to, for example, 0.10 W / (m ⁇ K) or more and 0.30 W / (m ⁇ K) or less.
  • the diameter can be set to 1 mm or more and 18 mm or less when the shape is circular when viewed in plan.
  • the thickness of the wavelength conversion member 7 is set such that the smallest thickness portion is 0.7 mm or more and the thickest portion is 3 mm or less.
  • the light emitting device 1 of the present embodiment has a plurality of light emitting elements 5.
  • each light emitting element 5 overlaps the wavelength conversion member 7 in the central region 7a.
  • the light emitted from each light emitting element 5 in the directly upward direction is easily reflected in the flat central region 7a, and the light emitted obliquely above the region where the plurality of light emitting elements 5 are disposed is a convex curved surface. It is because it becomes difficult to reflect in the peripheral area
  • the flat surface portion, that is, the thickness T1 in the central portion 7d has a convex curved surface portion, that is, a peripheral edge. It is preferable that the thickness is larger than the thickness T2 in the portion 7e.
  • the thickness T1 at the smallest thickness in the central portion 7d is the thickness in the peripheral portion 7e.
  • the thickness is preferably larger than the thickness T2 at the smallest portion.
  • the ratio T1 / T2 between the thickness T1 in the central portion 7d and the thickness T2 in the peripheral portion 7e is more preferably about 1.2 to 5.
  • the wavelength conversion member 7 As described above, the light emitted from the light emitting element 5 enters the inside of the wavelength conversion member 7, the phosphor contained in the wavelength conversion member 7 is excited, and the light whose wavelength is converted from the phosphor Radiated. At this time, since the wavelength conversion member 7 generates heat due to the loss of wavelength conversion, the wavelength conversion member 7 is thermally expanded. In the wavelength conversion member 7 of the present embodiment, thermal stress caused by this thermal expansion tends to concentrate on the boundary portion between the central region 7a and the peripheral region 7b having different outer surface shapes. However, when the thickness T1 of the central portion in the central portion 7d is smaller than the thickness T3 of the peripheral end portion in the central portion 7d as in the wavelength conversion member 7 in the present embodiment, the strength of the boundary portion is increased. Therefore, the boundary portion can be prevented from being greatly deformed or broken.
  • the light loss at the boundary portion is likely to increase.
  • the thickness T1 of the central portion in the central portion 7d is smaller than the thickness T3 of the peripheral end portion in the central portion 7d, the amount of the phosphor existing in the vicinity of the boundary portion can be increased. As a result, light emission from the center portion 7d is increased, and unevenness in light emission between the central portion of the central portion 7d and the peripheral end portion of the central portion 7d can be reduced.
  • the end of the wavelength conversion member 7 is positioned on the step 9 a of the frame 9, and the end of the wavelength conversion member 7 is surrounded by the frame 9.
  • the light that has entered the wavelength conversion member 7 from the light emitting element 5 may reach the end within the wavelength conversion member 7.
  • the reflected light can be returned into the wavelength conversion member 7 again by reflecting the light traveling from the end of the wavelength conversion member 7 toward the frame body 9 with the frame body 9.
  • the phosphor is excited by the light that has returned to the wavelength conversion member 7 again, so that the light output of the light emitting device 1 can be improved.
  • the end of the wavelength conversion member 7 is bonded and fixed to the step 9 a of the frame body 9 via a translucent bonding member 11.
  • the bonding member 11 is bonded to the side surface, the upper surface, and the lower surface of the wavelength conversion member 7. In such a case, the possibility that the wavelength conversion member 7 peels from the bonding member 11 can be suppressed.
  • the thermal conductivity of the bonding member 11 is set to be larger than the thermal conductivity of the wavelength conversion member 7.
  • the bonding member 11 is formed from the end position on the upper surface of the wavelength conversion member 7 to the end position on the lower surface of the wavelength conversion member 7.
  • the joining member 11 is made of a translucent insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin.
  • a silicone resin as the bonding member 11. This is because light of a short wavelength can be transmitted satisfactorily and the deterioration of transmittance due to light energy is small.
  • the wavelength of the light-emitting element 5 is 450 nm or less, a decrease in transmittance due to light energy is large, and therefore it is desirable to use a silicone resin as the wavelength conversion member 7.
  • the light emitting device 1 of the present embodiment further includes a light-transmitting sealing member 13 disposed on the light emitting element 5 between the light emitting element 5 and the wavelength conversion member 7.
  • the translucent sealing member 13 is disposed on the light emitting element 5, and the wavelength conversion member 7 is disposed above the translucent sealing member 13.
  • the sealing member 13 has a function of sealing the light emitting element 5 and transmitting light emitted from the light emitting element 5.
  • the sealing member 13 is a region surrounded by the frame body 9 in a state where the light emitting element 5 is accommodated inside the frame body 9, and is filled up to a position lower than the height position of the step 9a. Therefore, there is a gap between the wavelength conversion member 7 and the sealing member 13 in the present embodiment.
  • At least a portion of the upper surface of the sealing member 13 positioned immediately above the light emitting element 5 is a plane parallel to the upper surface of the light emitting element 5.
  • the light emitted from the upper surface of the light emitting element 5 and traveling inside the sealing member 13 and reaching the upper surface of the sealing member 13 is incident at an acute angle with respect to the upper surface of the sealing member 13. Reflecting on the upper surface of 13 is suppressed, and it becomes easy to radiate above the sealing member 13.
  • the entire upper surface of the sealing member 13 is a plane parallel to the upper surface of the light emitting element 5.
  • the light is refracted to the side of the light emitting element 5 when proceeding from the sealing member 13 to the gap.
  • the fact that the upper surface of the sealing member 13 is a plane parallel to the upper surface of the light emitting element 5 does not mean that it is strictly a planar shape.
  • the top surface of the sealing member 13 inevitably occurs in the manufacturing process, and the side end surface of the sealing member 13 is joined to the inner peripheral surface of the frame body 9, sealing is performed.
  • Some concave shape or convex shape is unavoidably generated at the side end portion of the sealing member 13 due to the wettability between the stop member 13 and the frame body 9.
  • the bonding member 11 is exposed to the gap between the wavelength conversion member 7 and the sealing member 13. This is because it is possible to increase the possibility that the light incident on the bonding member 11 is reflected upward on the surface of the bonding member 11 exposed in the gap having a refractive index smaller than that of the bonding member 11. Therefore, it is possible to reduce light loss caused by entering the sealing member 13 from the joining member 11 and repeating irregular reflection inside the light emitting device 1. Furthermore, the light traveling on the surface exposed to the gap of the bonding member 11 is easily reflected upward, and the light emitted to the outside of the light emitting device 1 through the upper surface of the bonding portion can be increased. As a result, the light emission efficiency of the light emitting device 1 can be increased.
  • the sealing member 13 has a function of absorbing heat caused by photoelectric conversion of the light emitting element 5 and diffusing in the sealing member 13. Further, heat caused by light emitted from the light emitting element 5 is transmitted to the base 3 and the frame body 9 through the sealing member 13, so that the heat is easily diffused throughout the light emitting device 1. If heat concentrates at a specific location in the sealing member 13, the thermal expansion of the sealing member 13 becomes extremely large locally, and the sealing member 13 may be peeled off from the base 3. Further, when heat concentration occurs in the sealing member 13, the light emitting element 5 becomes high temperature, the wavelength of light emitted from the light emitting element 5 changes, and the emission color of the light emitting element 5 may greatly deviate from the desired light color. Occurs.
  • the light emitting device 1 of the second embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5 similarly to the light emitting device 1 of the first embodiment.
  • the light emitting device 1 of the first embodiment corners are formed at the boundary between the flat surface (center region 7a) and the convex curved surface (peripheral region 7b) of the wavelength conversion member 7, but in this embodiment.
  • the peripheral region 7b of the wavelength conversion member 7 is smoothly connected to the central region 7a. In other words, no corner is formed at the boundary between the central region 7a and the peripheral region 7b of the wavelength conversion member 7.
  • the central region 7a and the peripheral region 7b are smoothly connected to each other in that the boundary portion between the central region 7a and the peripheral region 7b is strictly smoothly connected.
  • a corner having a size of irregularities inevitably generated in the manufacturing process is formed on the outer surface of the wavelength conversion member 7 at the boundary between the central region 7a and the peripheral region 7b.
  • the effect of the present embodiment can be sufficiently obtained as long as the boundary portion between the central region 7a and the peripheral region 7b cannot be visually recognized.
  • the wavelength conversion member 7 has a central portion 7d including a region overlapping with the light emitting element 5 and a peripheral portion 7e positioned so as to surround the central portion 7d when seen in a plan view.
  • the outer surface of the wavelength conversion member 7 has a central region 7a including a region overlapping the light emitting element 5 and a peripheral region 7b positioned so as to surround the central region 7a when seen through on a plane.
  • the central region 7a is a flat surface and the peripheral region 7b is a convex curved surface, but the wavelength in the light emitting device 1 of the present embodiment.
  • region 7b are convex curved surfaces, respectively.
  • the curvature of the central region 7 a is smaller than the curvature of the peripheral region 7 b and the curvature of the inner surface, and the outer surface is similar to the light emitting device 1 of the first embodiment.
  • the central portion 7d which is the central region 7a, functions as a concave lens
  • the central portion 7d functions as a concave lens, the light emitted from the central region 7a can be efficiently dispersed obliquely above the light emitting device 1. it can. Therefore, it is possible to reduce the variation in the amount of light irradiated to the portion located directly above the light emitting device 1 on the irradiation surface and the amount of light irradiated to the portion positioned obliquely above the light emitting device 1 on the irradiation surface.
  • the curvature of the central region 7a is smaller than the curvature of the peripheral region 7b and the curvature of the inner surface. This is because the curvature radius of the central region 7a is the curvature radius of the peripheral region 7b and the curvature of the inner surface. In other words, it is larger than the radius.
  • the ratio of the radius of curvature of the central region 7a to the radius of curvature of the peripheral region 7b and the ratio of the radius of curvature of the central region 7a to the radius of curvature of the inner surface are about 1.1 to 2.0, respectively. preferable.
  • the light emitting device 1 of the fourth embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5, similarly to the light emitting device 1 of the first embodiment. Further, the inner surface (the lower surface in FIG. 5) facing the light emitting element 5 in the wavelength conversion member 7 is a concave curved surface.
  • the central portion 7d functions as a concave lens, the light emitted from the central region 7a can be efficiently dispersed obliquely above the light emitting device 1. it can. Therefore, it is possible to reduce the variation in the amount of light irradiated to the portion located directly above the light emitting device 1 on the irradiation surface and the amount of light irradiated to the portion positioned obliquely above the light emitting device 1 on the irradiation surface.
  • the light emitting device 1 according to the fifth embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5, similarly to the light emitting device 1 according to the first embodiment.
  • the wavelength conversion member 7 in this embodiment has the several recessed part 7c in the outer surface.
  • a region including a region overlapping the light emitting element and excluding a portion where the recess 7c is formed is a central region.
  • a region that is located so as to surround the central region and has a convex curved surface except for a portion where the concave portion 7c is formed is defined as a peripheral region.
  • the wavelength conversion member 7 has a concave inner surface and a plurality of concave portions 7c on the outer surface.
  • the surface area of the surface of the conversion member 7 can be increased. For this reason, light that has been wavelength-converted inside the wavelength conversion member 7 can easily be emitted to the outside while making a large amount of light enter the wavelength conversion member 7, so that the light emission efficiency of the light-emitting device 1 can be improved.
  • the width of the recess 7c can be set to 0.4 mm to 4 mm, for example.
  • the width of the recess 7c means the length of one side when the shape of the opening of the recess 7c is rectangular, and the shape of the opening of the recess 7c is oval. Means the major axis.
  • the depth of the recess 7c can be set to 0.3 mm to 1.5 mm, for example.
  • a plating layer is formed on the surface of the wiring conductor exposed on the upper and lower surfaces of the substrate 3 to prevent the wiring conductor from being oxidized. Then, the light emitting element 5 is electrically connected to the plating layer via solder.
  • the frame body 9 is sintered at a desired temperature to be a porous sintered body, and is bonded to the upper surface of the substrate 3 so as to surround the light emitting element 5 with an adhesive made of silicone resin.
  • the wavelength conversion member 7 is prepared.
  • the wavelength conversion member 7 can be obtained by mixing a phosphor with uncured resin, filling the uncured wavelength conversion member 7 into a mold, curing, and taking it out, for example.
  • the wavelength conversion member 7 having the outer surface of the desired shape can be obtained. That is, a form having a shape that is formed according to the shape of the wavelength conversion member 7 in the light emitting device 1 of each embodiment may be prepared in advance.
  • a molding method of the wavelength conversion member 7 a general molding method represented by injection molding, extrusion molding, hollow molding, compression molding, and thermoforming may be appropriately used.
  • the formation of the central region 7a and the peripheral region 7b of the wavelength conversion member 7 is not limited to the above method, and the wavelength conversion member 7 may be formed by scraping off a part of the outer surface of the wavelength conversion member 7 that has been hardened and taken out.
  • the wavelength conversion member 7 produced by the above method is bonded onto the step 9 a of the frame body 9 via the bonding member 11.
  • the joining member 11 is disposed on the step 9 a of the frame body 9, and the prepared wavelength conversion member 7 is disposed on the joining member 11.
  • the wavelength conversion member 7 can be bonded onto the frame body 9 via the bonding member 11 by curing the bonding member 11.
  • an excessive bonding member 11 is disposed on the step 9 a of the frame body 9 and is disposed while pressing the wavelength conversion member 7 against the bonding member 11, whereby a part of the bonding member 11 is disposed on the wavelength conversion member 7. Can be extruded onto the top surface.
  • the bonding member 11 can be bonded to the side surface, the upper surface, and the lower surface of the wavelength conversion member 7.
  • the step 9 a between the wavelength conversion member 7 and the frame body 9 so that a part of the bonding member 11 is bonded to the upper surface of the wavelength conversion member 7.
  • the bonding member 11 can be bonded to the side surface, the upper surface, and the lower surface of the wavelength conversion member 7 by filling the gap between the bonding member 11 with a dispenser or the like. As described above, the light-emitting device 1 of the above-described embodiment can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

The disclosed light-emitting device is provided with: a substrate; a light-emitting element arranged on the main surface of the substrate; and a wavelength conversion member which is arranged on the light-emitting element, and which has an inner surface that faces the light-emitting element and an outer surface on the reverse side of the inner surface. The inner surface is a concave shaped curved surface. The outer surface has a flat surface and convex shaped curved surfaces positioned so as to enclose the flat surface. The flat surface is positioned so as to overlap with the light-emitting element, when viewed in the planar perspective.

Description

発光装置および照明装置Light emitting device and lighting device
 本発明は、発光素子を備えた発光装置および照明装置に関するものである。発光装置および照明装置は、例えば、電子ディスプレイ用のバックライト電源、蛍光ランプに好適に用いることができる。 The present invention relates to a light emitting device and a lighting device provided with a light emitting element. The light emitting device and the lighting device can be suitably used for, for example, a backlight power source for an electronic display and a fluorescent lamp.
 近年、LEDに代表される発光素子を有する発光装置の開発が進められている。発光装置としては、特許文献1に開示された構成が知られている。発光素子から発せられた一次光の少なくとも一部は、蛍光体が含有された波長変換部材において一次光とは異なる波長の二次光に波長変換される。波長変換された二次光は発光装置の外部に発せられる。特に、白色光により照明を行う照明器具の光源装置として発光装置を用いる場合に、白色光を発するため波長変換部材が好適に用いられる。 In recent years, development of light-emitting devices having light-emitting elements typified by LEDs has been underway. As a light emitting device, a configuration disclosed in Patent Document 1 is known. At least a part of the primary light emitted from the light emitting element is wavelength-converted into secondary light having a wavelength different from that of the primary light in the wavelength conversion member containing the phosphor. The wavelength-converted secondary light is emitted outside the light emitting device. In particular, when a light emitting device is used as a light source device of a lighting fixture that performs illumination with white light, a wavelength conversion member is preferably used in order to emit white light.
 特許文献1には、内表面が凹形状のドーム形状である、蛍光材料を含有した樹脂(波長変換部材)が開示されている。波長変換部材の内表面が平板形状である場合と比較して、内表面が凹形状である場合には、発光素子から出射して波長変換部材に入射する光の入射角が小さくなりやすい。そのため、波長変換部材の内表面で反射しにくくなり、より多くの光を波長変換部材の中に入射させることができる。 Patent Document 1 discloses a resin (wavelength conversion member) containing a fluorescent material whose inner surface has a concave dome shape. Compared with the case where the inner surface of the wavelength conversion member has a flat plate shape, when the inner surface has a concave shape, the incident angle of the light emitted from the light emitting element and entering the wavelength conversion member tends to be small. Therefore, it becomes difficult to reflect on the inner surface of the wavelength conversion member, and more light can enter the wavelength conversion member.
 また、波長変換部材の厚みが一定である場合のように、波長変換部材の内表面の凹形状に対応して外表面が凸形状である場合、波長変換部材の中を進行する光の波長変換部材の外表面への入射角が小さくなり易い。そのため、発光装置全体として外部へ取り出される光の量を増加させることができる。 Further, when the outer surface has a convex shape corresponding to the concave shape of the inner surface of the wavelength conversion member, such as when the thickness of the wavelength conversion member is constant, the wavelength conversion of the light traveling in the wavelength conversion member The incident angle on the outer surface of the member tends to be small. Therefore, the amount of light extracted to the outside as the entire light emitting device can be increased.
 しかしながら、照明器具の光源装置として発光装置を用いる場合、発光装置からの放射光は、一般的に平坦な照射面に向かって放射されることが多い。そのため、照射面における発光装置の直上に位置する部分と比較して、照射面における発光装置の斜め上方に位置する部分においては単位面積あたりに照射される光の量が相対的に少なくなる。結果として、照射面における発光装置の直上に位置する部分と発光装置の斜め上方に位置する部分との間で照射される光の量のばらつきが大きくなるので、大きな発光ムラが生じる可能性がある。
特開2004-343149号公報
However, when a light-emitting device is used as a light source device of a lighting fixture, emitted light from the light-emitting device is often emitted toward a generally flat irradiation surface. For this reason, the amount of light irradiated per unit area is relatively small in a portion located obliquely above the light emitting device on the irradiation surface compared to a portion located directly above the light emitting device on the irradiation surface. As a result, the variation in the amount of light irradiated between the portion located directly above the light emitting device on the irradiation surface and the portion located obliquely above the light emitting device becomes large, which may cause large light emission unevenness. .
JP 2004-343149 A
 本発明の一つの態様に基づく発光装置は、基体と、該基体の主面上に配設された発光素子と、該発光素子上に配設された、前記発光素子と対向する内表面および該内表面と反対側の外表面を有する波長変換部材とを備えている。前記波長変換部材の前記内表面は、凹状の曲面である。前記波長変換部材の前記外表面は、平坦面および該平坦面を取り囲むように位置する凸状の曲面を有している。前記平坦面は、平面透視した場合に、前記発光素子に重なり合うように位置している。 A light emitting device according to an aspect of the present invention includes a base, a light emitting element disposed on a main surface of the base, an inner surface disposed on the light emitting element and facing the light emitting element, and the light emitting element. A wavelength conversion member having an outer surface opposite to the inner surface. The inner surface of the wavelength conversion member is a concave curved surface. The outer surface of the wavelength conversion member has a flat surface and a convex curved surface positioned so as to surround the flat surface. The flat surface is positioned so as to overlap the light emitting element when viewed through.
第1の実施形態の発光装置を示す平面図である。It is a top view which shows the light-emitting device of 1st Embodiment. 図1に示す発光装置のA-A断面における断面図である。FIG. 2 is a cross-sectional view taken along the line AA of the light emitting device shown in FIG. 第2の実施形態の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of 2nd Embodiment. 第3の実施形態の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of 3rd Embodiment. 第4の実施形態の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of 4th Embodiment. 第5の実施形態の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of 5th Embodiment. 第6の実施形態の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of 6th Embodiment. 本発明の一実施形態にかかる照明装置を示す斜視断面図である。It is a perspective sectional view showing an illuminating device concerning one embodiment of the present invention.
 以下、本発明の各実施形態の発光装置および照明装置について、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、各実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。したがって、本発明に係る発光装置は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。 Hereinafter, a light-emitting device and a lighting device according to each embodiment of the present invention will be described in detail with reference to the drawings. However, in the drawings referred to below, for convenience of explanation, among the constituent members of each embodiment, only the main members necessary for explaining the present invention are shown in a simplified manner. Therefore, the light-emitting device according to the present invention can include arbitrary constituent members that are not shown in the drawings referred to in this specification. Moreover, the dimension of the member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each member, etc. faithfully.
 図1,2に示すように、第1の実施形態の発光装置1は、基体3と、基体3の主面上に配設された発光素子5と、発光素子5の上に配設された波長変換部材7とを備えている。波長変換部材7は、発光素子5と対向する内表面(図2における下面)および内表面と反対側の外表面(図2における上面)を有している。 As shown in FIGS. 1 and 2, the light emitting device 1 of the first embodiment is provided with a base 3, a light emitting element 5 provided on the main surface of the base 3, and a light emitting element 5. And a wavelength conversion member 7. The wavelength conversion member 7 has an inner surface (lower surface in FIG. 2) facing the light emitting element 5 and an outer surface (upper surface in FIG. 2) opposite to the inner surface.
 波長変換部材7の内表面は凹状の曲面である。また、波長変換部材7の外表面は、平坦面および平坦面を取り囲むように位置する凸状の曲面を有している。そして、平坦面が、平面透視した場合に、発光素子5に重なり合うように位置している。 The inner surface of the wavelength conversion member 7 is a concave curved surface. The outer surface of the wavelength conversion member 7 has a flat surface and a convex curved surface positioned so as to surround the flat surface. The flat surface is positioned so as to overlap the light emitting element 5 when seen through the plane.
 本実施形態の発光装置1においては、波長変換部材7が、平面透視した場合に、発光素子5に重なり合う領域を含む中央部分7dおよび中央部分7dを囲むように位置する周縁部分7eを有している。中央部分7dにおける外表面を便宜的に中央領域7aとする。また、周縁部分7eにおける外表面を便宜的に周縁領域7bとする。本実施形態の発光装置1においては、中央領域7aが上述の平坦面に対応している。また、周縁領域7bが上述の凸状の曲面に対応している。 In the light emitting device 1 of the present embodiment, the wavelength conversion member 7 has a central portion 7d including a region overlapping the light emitting element 5 and a peripheral portion 7e positioned so as to surround the central portion 7d when seen in a plan view. Yes. For convenience, the outer surface of the central portion 7d is referred to as a central region 7a. For convenience, the outer surface of the peripheral portion 7e is referred to as a peripheral region 7b. In the light emitting device 1 of the present embodiment, the central region 7a corresponds to the flat surface described above. The peripheral area 7b corresponds to the convex curved surface described above.
 波長変換部材7の外表面全体が平坦である場合、波長変換部材7の内部から外表面へと進む光が外表面において反射されやすくなる。このとき、発光素子5から斜め上方に進行する光の、波長変換部材7の外表面への入射角が、発光素子5から直上方向に進行する光の、波長変換部材7の外表面への入射角よりも大きくなりやすい。そのため、発光素子5から直上方向に進行する光と比較して、発光素子5から斜め上方に進行する光が相対的に外表面において反射されやすくなる。結果として、発光素子5の直上方向に放射される光の光量と発光素子5の斜め上方の方向に放射される光の光量とのばらつきを小さくすることが困難となる。 When the entire outer surface of the wavelength conversion member 7 is flat, light traveling from the inside of the wavelength conversion member 7 to the outer surface is easily reflected on the outer surface. At this time, the incident angle of the light traveling obliquely upward from the light emitting element 5 to the outer surface of the wavelength converting member 7 is incident on the outer surface of the wavelength converting member 7 while the light traveling from the light emitting element 5 in the directly upward direction. It tends to be larger than the corner. For this reason, light traveling obliquely upward from the light emitting element 5 is relatively easily reflected on the outer surface as compared with light traveling in the upward direction from the light emitting element 5. As a result, it becomes difficult to reduce the variation between the amount of light emitted in the direction directly above the light emitting element 5 and the amount of light emitted obliquely above the light emitting element 5.
 また、波長変換部材7の厚みが一定であって外表面全体が凸状の曲面である場合、既に示した通り、発光装置1全体として外部へ取り出される光の量を増加させて、発光効率を大きくすることができる。しかしながら、照射面における発光装置1の直上に位置する部分と比較して、照射面における発光装置1の斜め上方に位置する部分の単位面積あたりに照射される光の量が相対的に少なくなる。そのため、大きな発光ムラが生じる可能性がある。 Further, when the wavelength conversion member 7 has a constant thickness and the entire outer surface is a convex curved surface, as already shown, the amount of light extracted to the outside as the entire light emitting device 1 is increased, thereby improving the luminous efficiency. Can be bigger. However, the amount of light irradiated per unit area of the portion located obliquely above the light emitting device 1 on the irradiation surface is relatively small as compared to the portion located directly above the light emitting device 1 on the irradiation surface. Therefore, there is a possibility that large light emission unevenness occurs.
 一方、本実施形態の発光装置1では、波長変換部材7の内表面が凹状の曲面である。また、波長変換部材7の外表面は、平坦面および平坦面を取り囲むように位置する凸状の曲面を有している。そして、平坦面が、平面透視した場合に、発光素子5に重なり合うように位置している。 On the other hand, in the light emitting device 1 of the present embodiment, the inner surface of the wavelength conversion member 7 is a concave curved surface. The outer surface of the wavelength conversion member 7 has a flat surface and a convex curved surface positioned so as to surround the flat surface. The flat surface is positioned so as to overlap the light emitting element 5 when seen through the plane.
 これにより、外表面が平坦面である部分(本実施形態の発光装置1においては、外表面が中央領域7aである中央部分7d)を凹レンズとして機能させることができる。また、外表面が凸状の曲面である部分(本実施形態の発光装置1においては、外表面が周縁領域7bである周縁部分7e)を凸レンズとして機能させることができる。平面透視した場合に発光素子5に重なり合う部分を含む中央部分7dが凹レンズとして機能することから、中央領域7aから放射される光を効率よく発光装置1の斜め上方に分散させることができる。そのため、照射面における発光装置1の直上方向に照射される光の量と、照射面における発光装置1の斜め上方の方向に照射される光の量のバラツキを小さくできる。 Thereby, a portion whose outer surface is a flat surface (in the light emitting device 1 of the present embodiment, the central portion 7d whose outer surface is the central region 7a) can function as a concave lens. In addition, a portion whose outer surface is a convex curved surface (in the light emitting device 1 of the present embodiment, the peripheral portion 7e whose outer surface is the peripheral region 7b) can function as a convex lens. Since the central portion 7d including the portion that overlaps the light emitting element 5 when seen in a plan view functions as a concave lens, the light emitted from the central region 7a can be efficiently dispersed obliquely above the light emitting device 1. Therefore, it is possible to reduce variation in the amount of light irradiated in the direction directly above the light emitting device 1 on the irradiation surface and the amount of light irradiated in the obliquely upward direction of the light emitting device 1 on the irradiation surface.
 具体的には、中央領域7aが平坦面であることから、波長変換部材7の中を進行して中央領域7aへ入射する光については、その一部が中央領域7aで屈折することによって照射面における発光装置1の斜め上方に位置する部分へと進み易くなる。加えて、相対的に光量の多い発光素子5の直上方向に放射される光が平坦面である中央領域7aにおいて反射しやすくなることから、発光素子5の直上方向に放射される光の光量を抑制できる。また、中央領域7aへ入射する光の一部は中央領域7aで上述のように反射して波長変換部材7の中を進行し、周縁領域7bへと達する。そのため、照射面における発光装置1の斜め上方に位置する部分に照射される光の量を増やすことができる。 Specifically, since the central region 7a is a flat surface, the light that travels through the wavelength conversion member 7 and enters the central region 7a is partially refracted by the central region 7a, thereby irradiating the surface. It becomes easy to advance to the part located diagonally above the light emitting device 1 in FIG. In addition, since light emitted in a direction directly above the light emitting element 5 having a relatively large amount of light is easily reflected in the central region 7a which is a flat surface, the amount of light emitted in the direction directly above the light emitting element 5 is reduced. Can be suppressed. Further, a part of the light incident on the central region 7a is reflected in the central region 7a as described above, travels in the wavelength conversion member 7, and reaches the peripheral region 7b. For this reason, it is possible to increase the amount of light irradiated to a portion located obliquely above the light emitting device 1 on the irradiation surface.
 また、波長変換部材7の中を進行して周縁領域7bへと達する光については、周縁領域7bが凸状の曲面であることから、周縁領域7bへの入射角を小さくしやすい。そのため、周縁領域7bにおける光の反射を抑制して、照射面における発光装置1の斜め上方に位置する部分に照射される光の量を増やすことができる。従って、照射面における発光装置1の直上に位置する部分に照射される光の量と、照射面における発光装置1の斜め上方に位置する部分に照射される光の量のバラツキを小さくできる。 Also, for the light that travels through the wavelength conversion member 7 and reaches the peripheral region 7b, the incident angle to the peripheral region 7b can be easily reduced because the peripheral region 7b is a convex curved surface. Therefore, reflection of light in the peripheral region 7b can be suppressed, and the amount of light irradiated to a portion located obliquely above the light emitting device 1 on the irradiation surface can be increased. Therefore, it is possible to reduce the variation in the amount of light applied to the portion located on the irradiation surface immediately above the light emitting device 1 and the amount of light applied to the portion located on the irradiation surface obliquely above the light emitting device 1.
 本実施形態の発光装置1では、基体3として絶縁性基板を用いている。絶縁性基板の材料としては、例えば、アルミナおよびムライトに代表されるセラミック材料、或いはガラスセラミック材料が挙げられる。また、これらの材料のうち複数の材料を混合した複合系材料を用いてもよい。また、基体3の材料として、金属酸化物の微粒子を分散させた高分子樹脂を用いることができる。上記の微粒子が分散されていることにより、基体3の熱膨張を調整することが容易となるとともに、熱伝導率を調整することが容易となる。基体3の大きさとしては、例えば、平板形状である場合、一辺を2mm以上20mm以下に設定することができる。また、基体3の厚みとしては、例えば、0.2mm以上2mm以下に設定することができる。 In the light emitting device 1 of the present embodiment, an insulating substrate is used as the base 3. Examples of the material for the insulating substrate include a ceramic material typified by alumina and mullite, or a glass ceramic material. Further, a composite material obtained by mixing a plurality of materials among these materials may be used. Further, a polymer resin in which fine particles of metal oxide are dispersed can be used as the material of the substrate 3. By dispersing the fine particles, it becomes easy to adjust the thermal expansion of the base 3 and to adjust the thermal conductivity. As the size of the substrate 3, for example, in the case of a flat plate shape, one side can be set to 2 mm or more and 20 mm or less. Moreover, as thickness of the base | substrate 3, it can set to 0.2 mm or more and 2 mm or less, for example.
 基体3には、基体3の内外を電気的に導通する配線導体(不図示)が形成されている。配線導体は、タングステン、モリブデン、マンガンまたは銅に代表される導電材料を含有している。配線導体は、例えば、タングステンのような粉末に有機溶剤を添加して得た金属ペーストを、基体3となるセラミックグリーンシートに所定パターンで印刷し、このセラミックグリーンシートとともに焼成することによって得られる。なお、基体3の内外に露出する配線導体の表面には、酸化防止のためにニッケルまたは金のようなめっき層(不図示)が被着されている。 A wiring conductor (not shown) that electrically connects the inside and outside of the base 3 is formed on the base 3. The wiring conductor contains a conductive material typified by tungsten, molybdenum, manganese, or copper. The wiring conductor is obtained, for example, by printing a metal paste obtained by adding an organic solvent to a powder such as tungsten on a ceramic green sheet serving as the base 3 in a predetermined pattern and firing together with the ceramic green sheet. A plating layer (not shown) such as nickel or gold is deposited on the surface of the wiring conductor exposed inside and outside the base 3 to prevent oxidation.
 また、基体3の上面には、基体3の上方に効率良く光を反射させるために、配線導体およびめっき層と間を空けて、アルミニウム、銀、金、銅またはプラチナのような金属材料からなる金属反射層が形成されていてもよい。また例えば、白色のセラミック粉末が含有されたシリコーン樹脂のような絶縁性の透明部材が、基板3の上面であって発光素子5が搭載される部分を除く部位に塗布され、反射層が形成されてもよい。これにより、発光素子5から下方向に放射される光が反射層の上面または下面で上方向に拡散反射されるので、発光効率を高めることができる。 In addition, the upper surface of the base 3 is made of a metal material such as aluminum, silver, gold, copper, or platinum with a space between the wiring conductor and the plating layer in order to efficiently reflect light above the base 3. A metal reflective layer may be formed. In addition, for example, an insulating transparent member such as a silicone resin containing white ceramic powder is applied to a portion of the upper surface of the substrate 3 excluding a portion where the light emitting element 5 is mounted to form a reflective layer. May be. As a result, light emitted downward from the light emitting element 5 is diffusely reflected upward on the upper or lower surface of the reflective layer, so that the light emission efficiency can be increased.
 発光素子5は、基体3上に複数個実装される。具体的には、複数の発光素子5は、基体3の上に形成された配線導体の表面に被着しためっき層上に、例えばロウ材または半田を介してそれぞれ電気的に接続される。なお、本実施形態の発光装置1では、複数の発光素子5を備えているが、一つのみの発光素子5を備えた構成であっても何ら問題ない。 A plurality of light emitting elements 5 are mounted on the substrate 3. Specifically, the plurality of light emitting elements 5 are electrically connected to the plating layer deposited on the surface of the wiring conductor formed on the substrate 3 via, for example, a brazing material or solder. In addition, although the light-emitting device 1 of this embodiment is provided with the some light emitting element 5, even if it is the structure provided with only one light emitting element 5, there is no problem.
 発光素子5は、透光性基体と、透光性基体上に形成される光半導体層とを有している。透光性基体は、有機金属気相成長法または分子線エピタキシャル成長法のような化学気相成長法を用いて、光半導体層を成長させることが可能なものであればよい。透光性基体に用いられる材料としては、例えば、サファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウムを用いることができる。なお、透光性基体の厚みは、例えば50μm以上1000μm以下とすればよい。 The light emitting element 5 has a translucent base and an optical semiconductor layer formed on the translucent base. The light-transmitting substrate may be any substrate that can grow an optical semiconductor layer using a chemical vapor deposition method such as a metal organic chemical vapor deposition method or a molecular beam epitaxial growth method. As a material used for the translucent substrate, for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon, or zirconium diboride can be used. In addition, what is necessary is just to let the thickness of a translucent base | substrate be 50 micrometers or more and 1000 micrometers or less, for example.
 光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層と、から構成されている。 The optical semiconductor layer includes a first semiconductor layer formed on the translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer. Yes.
 第1半導体層、発光層および第2半導体層は、例えば、III族窒化物半導体、ガリウム燐またはガリウムヒ素のようなIII-V族半導体、或いは、窒化ガリウム、窒化アルミニウムまたは窒化インジウムのようなIII族窒化物半導体などを用いることができる。なお、第1半導体層の厚みは、例えば1μm以上5μm以下であって、発光層の厚みは、例えば25nm以上150nm以下であって、第2半導体層の厚みは、例えば50nm以上600nm以下とすればよい。このように構成された発光素子5は、例えば370nm以上420nm以下の波長範囲の励起光を発する素子として用いることができる。 The first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphide or gallium arsenide, or a group III such as gallium nitride, aluminum nitride, or indium nitride. A group nitride semiconductor or the like can be used. The thickness of the first semiconductor layer is, for example, 1 μm to 5 μm, the thickness of the light emitting layer is, for example, 25 nm to 150 nm, and the thickness of the second semiconductor layer is, for example, 50 nm to 600 nm. Good. The light emitting element 5 configured as described above can be used as an element that emits excitation light in a wavelength range of, for example, 370 nm to 420 nm.
 本実施形態の発光装置1は、基体3の主面上であって発光素子5を囲むように配設された枠体9を備えている。枠体9は、基体3と同一組成のセラミック材料から成り、基体3の上面に積層されて一体焼成されている。枠体9は、基体3の上の発光素子5を取り囲むように設けられている。なお、平面視して、枠体9の内壁面の形状を円形とすると、発光素子5が発光する光を全方向に満遍なく反射させて外部に極めて均一に放射することができる。また、枠体9は基体3の上面に接着されてもよい。 The light emitting device 1 of the present embodiment includes a frame body 9 disposed on the main surface of the base 3 so as to surround the light emitting element 5. The frame body 9 is made of a ceramic material having the same composition as the base body 3, and is laminated on the upper surface of the base body 3 and integrally fired. The frame body 9 is provided so as to surround the light emitting element 5 on the base 3. If the shape of the inner wall surface of the frame 9 is circular in plan view, the light emitted from the light emitting element 5 can be uniformly reflected in all directions and radiated to the outside very uniformly. Further, the frame body 9 may be bonded to the upper surface of the base 3.
 枠体9の大きさとしては、例えば、平面視した場合における外壁面の直径を2mm以上20mm以下に、また、内壁面の直径を1mm以上19mm以下に設定することができる。また、枠体9の高さ方向の厚みとしては1mm以上10mm以下に設定することができる。枠体9の内壁面と外壁面との間の厚みは最も薄いところでも0.5mm以上であることが好ましい。 As the size of the frame 9, for example, the diameter of the outer wall surface in a plan view can be set to 2 mm or more and 20 mm or less, and the diameter of the inner wall surface can be set to 1 mm or more and 19 mm or less. The thickness of the frame 9 in the height direction can be set to 1 mm or more and 10 mm or less. The thickness between the inner wall surface and the outer wall surface of the frame 9 is preferably 0.5 mm or more even at the thinnest place.
 また、枠体9は、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウムのようなセラミック材料を所望の形状に形成して焼結された多孔質材料から構成されていてもよい。枠体9が上記の多孔質材料から構成される場合、発光素子5から発せられる光の枠体9の表面における反射率の低下が抑制されるとともに、長期間の使用によって枠体9の機械的な強度が低下することが抑制される。 The frame body 9 may be made of a porous material formed by sintering a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide in a desired shape. When the frame body 9 is made of the above porous material, the reflectance of the light emitted from the light emitting element 5 on the surface of the frame body 9 is prevented from being reduced, and the frame body 9 is mechanically used for a long time. Reduction of the strength is suppressed.
 枠体9が多孔質材料から構成される場合には、後述する接合部材11の一部が枠体9の内部に含浸されやすくなる。そのため、接合部材11をより強固に枠体9に接合固定することができる。また、接合部材11を介して波長変換部材7をより強固に枠体9に接合固定することができる。 When the frame body 9 is made of a porous material, a part of the joining member 11 described later is easily impregnated inside the frame body 9. Therefore, the joining member 11 can be joined and fixed to the frame body 9 more firmly. In addition, the wavelength conversion member 7 can be more firmly bonded and fixed to the frame body 9 via the bonding member 11.
 本実施形態の発光装置1を断面視した場合に、枠体9の互いに向かい合う内壁面は、互いに向かい合う内壁面の間隔が下方から上方に向かうに従って広くなるように傾斜している。また、枠体9の傾斜する内壁面には、例えば、タングステン、モリブデン、銅または銀から成る金属層、およびこの金属層を被覆するニッケルまたは金から成るめっき層が形成されてもよい。このめっき層は、発光素子5の発する光を効率よく反射させる機能を有する。 When the light emitting device 1 of the present embodiment is viewed in cross section, the inner wall surfaces of the frame body 9 facing each other are inclined so that the interval between the inner wall surfaces facing each other increases from the lower side to the upper side. Further, on the inclined inner wall surface of the frame body 9, for example, a metal layer made of tungsten, molybdenum, copper or silver, and a plating layer made of nickel or gold covering the metal layer may be formed. This plating layer has a function of efficiently reflecting the light emitted from the light emitting element 5.
 枠体9の内壁面の傾斜角度は、基体3の上面に対して例えば55度以上70度以下の角度に設定されている。また、めっき層の表面粗さは、算術平均粗さRaが例えば1μm以上3μm以下に設定されている。 The inclination angle of the inner wall surface of the frame body 9 is set to an angle of, for example, 55 degrees or more and 70 degrees or less with respect to the upper surface of the base 3. The surface roughness of the plating layer is set such that the arithmetic average roughness Ra is, for example, 1 μm or more and 3 μm or less.
 また、枠体9の上端内側には段差9aが設けられている。枠体9の段差9aは、波長変換部材7を支持するためのものである。段差9aは、枠体9の上部の一部を内側に向けて切欠いたものであって、波長変換部材7の端部を支持することができる。なお、段差9aの表面にまで、めっき層が形成されてもよい。段差9aの大きさとしては、高さ方向の幅を0.5mm以上3mm以下に、また、枠体9の厚み方向(図2における横方向)における幅を0.3mm以上3mm以下に設定することができる。 Further, a step 9 a is provided inside the upper end of the frame body 9. The step 9 a of the frame body 9 is for supporting the wavelength conversion member 7. The step 9a is a part of the upper portion of the frame body 9 cut out inward, and can support the end of the wavelength conversion member 7. Note that a plating layer may be formed up to the surface of the step 9a. As the size of the step 9a, the width in the height direction is set to 0.5 mm or more and 3 mm or less, and the width in the thickness direction of the frame body 9 (lateral direction in FIG. 2) is set to 0.3 mm or more and 3 mm or less. Can do.
 発光素子5からの光が波長変換部材7で波長変換される際に、変換損失に起因して波長変換部材7の内部に熱が発生する。段差9aの表面にまでめっき層が形成されることによって、波長変換部材7とめっき層とが接している場合には、波長変換部材7の内部に生じた上記の熱を枠体9にめっき層を介して放熱しやすくなる。波長変換部材7の内部に生じた熱の放熱性を良好なものとすることによって、波長変換部材7における波長変換効率および透過率が低下することを抑制できる。また、波長変換部材7の機械的強度が低下することも抑制できる。 When light from the light emitting element 5 is wavelength-converted by the wavelength conversion member 7, heat is generated inside the wavelength conversion member 7 due to conversion loss. When the wavelength conversion member 7 and the plating layer are in contact with each other by forming the plating layer up to the surface of the step 9a, the heat generated in the wavelength conversion member 7 is applied to the frame body 9 in the plating layer. It becomes easy to dissipate heat through. By making the heat dissipation of the heat generated inside the wavelength conversion member 7 favorable, it is possible to suppress the wavelength conversion efficiency and transmittance of the wavelength conversion member 7 from being lowered. Moreover, it can suppress that the mechanical strength of the wavelength conversion member 7 falls.
 本実施形態における波長変換部材7は、発光素子5の上方に配設されている。具体的には、波長変換部材7は、発光素子5と間をあけて対向するように発光素子5の上方に位置している。波長変換部材7は、その外周部分であって周縁部分7eの外側につば形状の部位を有している。波長変換部材7は、枠体9の上に位置して、上記のつば形状の部位が枠体9に支持されている。波長変換部材7は、発光素子5と対向する内表面およびこの内表面とは反対側に位置する外表面を有している。 The wavelength conversion member 7 in this embodiment is disposed above the light emitting element 5. Specifically, the wavelength conversion member 7 is positioned above the light emitting element 5 so as to face the light emitting element 5 with a gap. The wavelength conversion member 7 has a flange-shaped portion on the outer peripheral portion thereof and outside the peripheral portion 7e. The wavelength conversion member 7 is positioned on the frame body 9, and the collar-shaped part is supported by the frame body 9. The wavelength conversion member 7 has an inner surface facing the light emitting element 5 and an outer surface located on the side opposite to the inner surface.
 波長変換部材7の内表面は凹状の曲面形状である。内表面が平坦な形状である場合と比較して内表面が凹状のドーム形状である場合には、発光素子5から出射して波長変換部材7に入射する光が波長変換部材7の内表面で反射しにくいので、より多くの光を波長変換部材7の中に入射させることができる。 The inner surface of the wavelength conversion member 7 has a concave curved shape. When the inner surface has a concave dome shape as compared with the case where the inner surface has a flat shape, the light emitted from the light emitting element 5 and incident on the wavelength converting member 7 is reflected on the inner surface of the wavelength converting member 7. Since it is difficult to reflect, more light can enter the wavelength conversion member 7.
 波長変換部材7は、発光素子5から発せられる光の少なくとも一部の波長を変換して外部に放射するための部材である。波長変換部材7としては、例えば、蛍光体を含有するものが挙げられる。発光素子5から発せられる光が波長変換部材7の内部に入射して、波長変換部材7の内部に含有される蛍光体が励起されて、波長変換された光を発することができる。 The wavelength conversion member 7 is a member for converting the wavelength of at least a part of the light emitted from the light emitting element 5 and radiating it outside. Examples of the wavelength conversion member 7 include those containing a phosphor. Light emitted from the light emitting element 5 is incident on the inside of the wavelength conversion member 7, and the phosphor contained in the wavelength conversion member 7 is excited to emit wavelength-converted light.
 具体的には、波長変換部材7として、シリコーン樹脂、アクリル樹脂またはエポキシ樹脂から成り、その樹脂中に蛍光体が含有された構成を一例として挙げることができる。また、蛍光体として、430nm以上490nm以下の蛍光を発する青色蛍光体、500nm以上560nm以下の蛍光を発する緑色蛍光体、540nm以上600nm以下の蛍光を発する黄色蛍光体、または、590nm以上700nm以下の蛍光を発する赤色蛍光体が含有されたものが一例として挙げられる。 Specifically, the wavelength conversion member 7 is made of a silicone resin, an acrylic resin, or an epoxy resin, and a configuration in which a phosphor is contained in the resin can be given as an example. Further, as a phosphor, a blue phosphor emitting fluorescence of 430 nm to 490 nm, a green phosphor emitting fluorescence of 500 nm to 560 nm, a yellow phosphor emitting fluorescence of 540 nm to 600 nm, or a fluorescence of 590 nm to 700 nm An example is one containing a red phosphor that emits.
 また、蛍光体は、波長変換部材7中に均一に分散するようにしている。なお、波長変換部材7の熱伝導率は、例えば0.10W/(m・K)以上0.30W/(m・K)以下に設定されている。波長変換部材7の大きさとしては、例えば、図1に示すように、平面視した場合に円形状である場合には、直径を1mm以上18mm以下に設定することができる。また、波長変換部材7の厚みは、例えば最も厚みの小さい部分が0.7mm以上であるとともに最も厚みの大きい部分が3mm以下に設定されている。 Further, the phosphor is uniformly dispersed in the wavelength conversion member 7. The thermal conductivity of the wavelength conversion member 7 is set to, for example, 0.10 W / (m · K) or more and 0.30 W / (m · K) or less. As the size of the wavelength conversion member 7, for example, as shown in FIG. 1, the diameter can be set to 1 mm or more and 18 mm or less when the shape is circular when viewed in plan. The thickness of the wavelength conversion member 7 is set such that the smallest thickness portion is 0.7 mm or more and the thickest portion is 3 mm or less.
 蛍光体を含有する樹脂部材を波長変換部材7の一例として示したが、波長変換部材7は上記の構成に限定されるものではない。例えば上記の蛍光体の代わりに、酸化チタンもしくは酸化亜鉛のような光散乱剤、または、イリジウム錯体のような燐光材料を用いてもよい。また、蛍光体を含有する樹脂部材の代わりに、Eu3+を蛍光媒体とする酸化物ガラス系、又はフツ燐酸塩ガラス系の蛍光ガラスを用いてもよい。 Although the resin member containing a phosphor is shown as an example of the wavelength conversion member 7, the wavelength conversion member 7 is not limited to the above configuration. For example, a light scattering agent such as titanium oxide or zinc oxide, or a phosphorescent material such as an iridium complex may be used in place of the phosphor described above. Further, instead of the resin member containing the phosphor, an oxide glass-based or fluorophosphate glass-based fluorescent glass using Eu 3+ as a fluorescent medium may be used.
 本実施形態の発光装置1は複数の発光素子5を有している。波長変換部材7を平面透視した場合に、それぞれの発光素子5が中央領域7aおいて波長変換部材7に重なり合っていることが好ましい。それぞれの発光素子5から直上方向に放射される光が平坦な中央領域7aにおいて反射されやすくなるとともに、複数の発光素子5が配設された領域の斜め上方に放射される光が凸状の曲面形状である周縁領域7bにおいて反射されにくくなるからである。 The light emitting device 1 of the present embodiment has a plurality of light emitting elements 5. When the wavelength conversion member 7 is seen through, it is preferable that each light emitting element 5 overlaps the wavelength conversion member 7 in the central region 7a. The light emitted from each light emitting element 5 in the directly upward direction is easily reflected in the flat central region 7a, and the light emitted obliquely above the region where the plurality of light emitting elements 5 are disposed is a convex curved surface. It is because it becomes difficult to reflect in the peripheral area | region 7b which is a shape.
 波長変換部材7は、基体3の主面に垂直な発光素子5を通る断面で断面視した場合に、平坦面の部分、すなわち中央部分7dにおける厚みT1が、凸状の曲面の部分、すなわち周縁部分7eにおける厚みT2よりも大きいことが好ましい。具体的には、基体3の主面に垂直な発光素子5を通る断面で波長変換部材7を断面視した場合に、中央部分7dにおける厚みの最も小さい個所での厚みT1が周縁部分7eにおける厚みの最も小さい個所での厚みT2よりも大きいことが好ましい。特に、中央部分7dにおける厚みT1と周縁部分7eにおける厚みT2との比T1/T2が、1.2~5程度であることがより好ましい。 When the wavelength conversion member 7 is viewed in a cross section passing through the light emitting element 5 perpendicular to the main surface of the substrate 3, the flat surface portion, that is, the thickness T1 in the central portion 7d has a convex curved surface portion, that is, a peripheral edge. It is preferable that the thickness is larger than the thickness T2 in the portion 7e. Specifically, when the wavelength conversion member 7 is viewed in a cross section through the light emitting element 5 perpendicular to the main surface of the substrate 3, the thickness T1 at the smallest thickness in the central portion 7d is the thickness in the peripheral portion 7e. The thickness is preferably larger than the thickness T2 at the smallest portion. In particular, the ratio T1 / T2 between the thickness T1 in the central portion 7d and the thickness T2 in the peripheral portion 7e is more preferably about 1.2 to 5.
 本実施形態のように発光素子5が透光性基体および透光性基体上に形成される光半導体層を有する積層構造である場合、発光素子5から放射される光は、斜め上方よりも直上に向かって比較的多く放射される。そのため、発光素子5の直上の方向に位置する波長変換部材7の中央部分7dには、この中央部分7dの周囲であって枠体9に近い周縁部分7eよりも多くの光が入射する。中央部分7dにおける厚みT1が周縁部分7eにおける厚みT2よりも大きい場合には、周縁部分7eと比較して相対的に多くの光が入射する中央部分7dにおいて、効率良く発光素子5から発せられた一次光の波長変換を行うことができる。従って、発光装置1の発光効率を向上させることができる。 When the light-emitting element 5 has a laminated structure having a light-transmitting substrate and an optical semiconductor layer formed on the light-transmitting substrate as in this embodiment, the light emitted from the light-emitting element 5 is directly above the diagonally upper side. A relatively large amount of radiation is emitted. Therefore, more light is incident on the central portion 7 d of the wavelength conversion member 7 positioned in the direction immediately above the light emitting element 5 than the peripheral portion 7 e around the central portion 7 d and close to the frame body 9. When the thickness T1 in the central portion 7d is larger than the thickness T2 in the peripheral portion 7e, the light is emitted from the light emitting element 5 efficiently in the central portion 7d where relatively more light is incident as compared with the peripheral portion 7e. The wavelength conversion of the primary light can be performed. Therefore, the light emission efficiency of the light emitting device 1 can be improved.
 また、波長変換部材7は、基体3の主面に垂直な発光素子5を通る断面で断面視した場合に、中央部分7dにおける中心部の厚みT1が中央部分7dにおける周端部の厚みT3よりも小さいことが好ましい。これにより、波長変換部材7の耐久性を高めることができるからである。特に、中心部の厚みT1と周端部の厚みT3との比T1/T3が、0.2~0.8程度であることがより好ましい。 Further, when the wavelength converting member 7 is viewed in a cross section passing through the light emitting element 5 perpendicular to the main surface of the substrate 3, the thickness T1 of the central portion in the central portion 7d is larger than the thickness T3 of the peripheral end portion in the central portion 7d. Is preferably small. Thereby, the durability of the wavelength conversion member 7 can be enhanced. In particular, the ratio T1 / T3 between the thickness T1 at the center and the thickness T3 at the peripheral edge is more preferably about 0.2 to 0.8.
 上述の通り、発光素子5から発せられる光が波長変換部材7の内部に入射して、波長変換部材7の内部に含有される蛍光体が励起されて、蛍光体から波長が変換された光が放射される。このとき、波長変換のロスによって波長変換部材7が発熱するため、波長変換部材7が熱膨張する。本実施形態の波長変換部材7においては、外表面の形状が異なる中央領域7aと周縁領域7bとの境界部分に、この熱膨張によって生じる熱応力が集中しやすい。しかしながら、本実施形態における波長変換部材7のように、中央部分7dにおける中心部の厚みT1が中央部分7dにおける周端部の厚みT3よりも小さい場合には、上記の境界部分の強度を高めることができるので、この境界部分が大きく変形する、或いは、破断するといったことを抑制することができる。 As described above, the light emitted from the light emitting element 5 enters the inside of the wavelength conversion member 7, the phosphor contained in the wavelength conversion member 7 is excited, and the light whose wavelength is converted from the phosphor Radiated. At this time, since the wavelength conversion member 7 generates heat due to the loss of wavelength conversion, the wavelength conversion member 7 is thermally expanded. In the wavelength conversion member 7 of the present embodiment, thermal stress caused by this thermal expansion tends to concentrate on the boundary portion between the central region 7a and the peripheral region 7b having different outer surface shapes. However, when the thickness T1 of the central portion in the central portion 7d is smaller than the thickness T3 of the peripheral end portion in the central portion 7d as in the wavelength conversion member 7 in the present embodiment, the strength of the boundary portion is increased. Therefore, the boundary portion can be prevented from being greatly deformed or broken.
 また、この中央領域7aと周縁領域7bとの境界部分の近傍においては光が多重反射しやすいので、この境界部分における光損失が大きくなりやすい。しかしながら、中央部分7dにおける中心部の厚みT1が中央部分7dにおける周端部の厚みT3よりも小さいことによって、この境界部分の近傍に存在する蛍光体の量を大きくすることができるので、蛍光体からの光放射が多くなり、中央部分7dにおける中心部と中央部分7dにおける周端部との間での発光ムラを小さくすることができる。 In addition, since light is likely to be multiple-reflected in the vicinity of the boundary portion between the central region 7a and the peripheral region 7b, the light loss at the boundary portion is likely to increase. However, since the thickness T1 of the central portion in the central portion 7d is smaller than the thickness T3 of the peripheral end portion in the central portion 7d, the amount of the phosphor existing in the vicinity of the boundary portion can be increased. As a result, light emission from the center portion 7d is increased, and unevenness in light emission between the central portion of the central portion 7d and the peripheral end portion of the central portion 7d can be reduced.
 また、波長変換部材7の端部は、枠体9の段差9a上に位置しており、枠体9によって波長変換部材7の端部が囲まれている。発光素子5から波長変換部材7の内部に進入した光が、波長変換部材7の内部で端部にまで達することがある。しかしながら、その波長変換部材7の端部から枠体9に向かって進行する光を枠体9にて反射することで、反射された光を再び波長変換部材7内に戻すことができる。その結果、波長変換部材7内に再び戻った光によって蛍光体が励起されるので、発光装置1の光出力を向上させることができる。 Further, the end of the wavelength conversion member 7 is positioned on the step 9 a of the frame 9, and the end of the wavelength conversion member 7 is surrounded by the frame 9. The light that has entered the wavelength conversion member 7 from the light emitting element 5 may reach the end within the wavelength conversion member 7. However, the reflected light can be returned into the wavelength conversion member 7 again by reflecting the light traveling from the end of the wavelength conversion member 7 toward the frame body 9 with the frame body 9. As a result, the phosphor is excited by the light that has returned to the wavelength conversion member 7 again, so that the light output of the light emitting device 1 can be improved.
 波長変換部材7は、基体3の主面に垂直な発光素子5を通る断面で断面視した場合に、凸状の曲面の曲率、すなわち外表面の周縁領域7bの曲率が内表面における凹状の曲面の曲率よりも小さいことが好ましい。言い換えれば、外表面の周縁領域7bの曲率半径が内表面の曲率半径よりも大きいことが好ましい。特に、外表面の周縁領域7bの曲率半径と内表面の曲率半径との比が、1.1~2.0程度であることがより好ましい。 The wavelength conversion member 7 has a concave curved surface on the inner surface where the curvature of the convex curved surface, that is, the curvature of the peripheral region 7b on the outer surface, when viewed in cross section through the light emitting element 5 perpendicular to the main surface of the substrate 3. It is preferable that the curvature is smaller than the curvature. In other words, it is preferable that the radius of curvature of the peripheral region 7b on the outer surface is larger than the radius of curvature of the inner surface. In particular, the ratio of the radius of curvature of the peripheral region 7b on the outer surface to the radius of curvature of the inner surface is more preferably about 1.1 to 2.0.
 枠体9の段差9a上には、透光性の接合部材11を介して波長変換部材7の端部が接合固定されている。このとき、接合部材11が波長変換部材7の側面、上面および下面に接合されている。このような場合には、波長変換部材7が接合部材11から剥離する可能性を抑制することができる。 The end of the wavelength conversion member 7 is bonded and fixed to the step 9 a of the frame body 9 via a translucent bonding member 11. At this time, the bonding member 11 is bonded to the side surface, the upper surface, and the lower surface of the wavelength conversion member 7. In such a case, the possibility that the wavelength conversion member 7 peels from the bonding member 11 can be suppressed.
 接合部材11の熱伝導率は、波長変換部材7の熱伝導率よりも大きく設定されている。接合部材11は、波長変換部材7の上面の端部位置から波長変換部材7の下面の端部位置にかけて形成される。また、接合部材11は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂のような透光性の絶縁樹脂が用いられる。上記の部材のうち、接合部材11としてシリコーン樹脂を用いることが好ましい。短波長の光を良好に透過できるとともに、光エネルギーによる透過率の劣化が小さいからである。特に、発光素子5の波長が450nm以下である場合、光エネルギーによる透過率の低下が大きいため、波長変換部材7としてシリコーン樹脂を使用することが望ましい。 The thermal conductivity of the bonding member 11 is set to be larger than the thermal conductivity of the wavelength conversion member 7. The bonding member 11 is formed from the end position on the upper surface of the wavelength conversion member 7 to the end position on the lower surface of the wavelength conversion member 7. The joining member 11 is made of a translucent insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin. Of the above members, it is preferable to use a silicone resin as the bonding member 11. This is because light of a short wavelength can be transmitted satisfactorily and the deterioration of transmittance due to light energy is small. In particular, when the wavelength of the light-emitting element 5 is 450 nm or less, a decrease in transmittance due to light energy is large, and therefore it is desirable to use a silicone resin as the wavelength conversion member 7.
 また、接合部材11として、波長変換部材7を構成する部材を含有していることが好ましい。接合部材11と波長変換部材7との接合性を向上させられるからである。また、接合部材11の熱膨張係数と波長変換部材7の熱膨張係数の差を小さくすることができるので、これらの部材の熱膨張差に起因して接合部材11と波長変換部材7との接合面に生じる応力を低減することができる。なお、接合部材11の熱伝導率は、例えば0.14W/(m・K)以上4.0W/(m・K)以下に設定されている。 Further, it is preferable that the joining member 11 includes a member constituting the wavelength conversion member 7. This is because the bondability between the bonding member 11 and the wavelength conversion member 7 can be improved. Moreover, since the difference between the thermal expansion coefficient of the joining member 11 and the thermal expansion coefficient of the wavelength conversion member 7 can be reduced, the joining of the joining member 11 and the wavelength conversion member 7 due to the difference in thermal expansion of these members. Stress generated on the surface can be reduced. The thermal conductivity of the joining member 11 is set to, for example, 0.14 W / (m · K) or more and 4.0 W / (m · K) or less.
 本実施形態の発光装置1は、発光素子5の上に、発光素子5と波長変換部材7との間に配設された透光性の封止部材13をさらに備えている。言い換えれば、発光素子5の上に透光性の封止部材13が配設されるとともに透光性の封止部材13の上方に波長変換部材7が配設されている。封止部材13は、発光素子5を封止するとともに、発光素子5から発せられる光が透過する機能を備えている。封止部材13は、枠体9の内方に発光素子5を収容した状態で、枠体9で囲まれる領域であって、段差9aの高さ位置よりも低い位置まで充填される。そのため、本実施形態における波長変換部材7と封止部材13との間には隙間が存在している。 The light emitting device 1 of the present embodiment further includes a light-transmitting sealing member 13 disposed on the light emitting element 5 between the light emitting element 5 and the wavelength conversion member 7. In other words, the translucent sealing member 13 is disposed on the light emitting element 5, and the wavelength conversion member 7 is disposed above the translucent sealing member 13. The sealing member 13 has a function of sealing the light emitting element 5 and transmitting light emitted from the light emitting element 5. The sealing member 13 is a region surrounded by the frame body 9 in a state where the light emitting element 5 is accommodated inside the frame body 9, and is filled up to a position lower than the height position of the step 9a. Therefore, there is a gap between the wavelength conversion member 7 and the sealing member 13 in the present embodiment.
 封止部材13は、その上面のうち、少なくとも発光素子5の直上に位置する部分が発光素子5の上面と平行な平面であることが好ましい。発光素子5の上面から放射されて封止部材13の内部を進行し、封止部材13の上面に達する光が、封止部材13の上面に対して鋭角に入射されることにより、封止部材13の上面で反射することを抑制して、封止部材13の上方へ放射させやすくなる。 It is preferable that at least a portion of the upper surface of the sealing member 13 positioned immediately above the light emitting element 5 is a plane parallel to the upper surface of the light emitting element 5. The light emitted from the upper surface of the light emitting element 5 and traveling inside the sealing member 13 and reaching the upper surface of the sealing member 13 is incident at an acute angle with respect to the upper surface of the sealing member 13. Reflecting on the upper surface of 13 is suppressed, and it becomes easy to radiate above the sealing member 13.
 さらに、封止部材13は、その上面全体が発光素子5の上面と平行な平面であることが好ましい。封止部材13の上方に空隙が形成されている場合には、封止部材13からこの空隙に進行する際に発光素子5の側方に屈折する。これにより、波長変換部材7の周縁部分に入射する光の量を多くすることができるので、波長変換部材7の中央部分7dに入射する光と波長変換部材7の周縁部分7eに入射する光とのばらつきを小さくすることができる。結果として、波長変換部材7における発光ムラをさらに抑制することができる。 Furthermore, it is preferable that the entire upper surface of the sealing member 13 is a plane parallel to the upper surface of the light emitting element 5. When a gap is formed above the sealing member 13, the light is refracted to the side of the light emitting element 5 when proceeding from the sealing member 13 to the gap. Thereby, since the amount of light incident on the peripheral portion of the wavelength conversion member 7 can be increased, the light incident on the central portion 7d of the wavelength conversion member 7 and the light incident on the peripheral portion 7e of the wavelength conversion member 7 The variation of can be reduced. As a result, light emission unevenness in the wavelength conversion member 7 can be further suppressed.
 なお、封止部材13の上面が発光素子5の上面と平行な平面であるとは、厳密に平面形状であることを意味するものではない。たとえば、製造工程上で不可避に生じる封止部材13の上面の凹凸を含むものであり、また、封止部材13の側端面が枠体9の内周面と接合している場合には、封止部材13と枠体9との濡れ性によって封止部材13の側端部に多少の凹面形状または凸面形状が不可避に生じるがこれを含むものである。 It should be noted that the fact that the upper surface of the sealing member 13 is a plane parallel to the upper surface of the light emitting element 5 does not mean that it is strictly a planar shape. For example, if the top surface of the sealing member 13 inevitably occurs in the manufacturing process, and the side end surface of the sealing member 13 is joined to the inner peripheral surface of the frame body 9, sealing is performed. Some concave shape or convex shape is unavoidably generated at the side end portion of the sealing member 13 due to the wettability between the stop member 13 and the frame body 9.
 また、接合部材11の少なくとも一部が波長変換部材7と封止部材13との間の隙間に対して露出していることが好ましい。接合部材11の、この接合部材11より屈折率が小さい隙間に露出する表面において、接合部材11に入射した光が上方向に反射される可能性を大きくすることができるからである。従って、接合部材11から封止部材13に入射して発光装置1の内部で乱反射を繰り返すことによって生じる光損失を低減できる。さらに、接合部材11の上記隙間に露出する表面に進行する光が上方向に反射されやすくなるとともに、接合部の上面を介して発光装置1の外部へ放射される光を増加することができる。その結果、発光装置1の発光効率を高めることができる。 Further, it is preferable that at least a part of the bonding member 11 is exposed to the gap between the wavelength conversion member 7 and the sealing member 13. This is because it is possible to increase the possibility that the light incident on the bonding member 11 is reflected upward on the surface of the bonding member 11 exposed in the gap having a refractive index smaller than that of the bonding member 11. Therefore, it is possible to reduce light loss caused by entering the sealing member 13 from the joining member 11 and repeating irregular reflection inside the light emitting device 1. Furthermore, the light traveling on the surface exposed to the gap of the bonding member 11 is easily reflected upward, and the light emitted to the outside of the light emitting device 1 through the upper surface of the bonding portion can be increased. As a result, the light emission efficiency of the light emitting device 1 can be increased.
 また、封止部材13は、発光素子5の光電変換に起因した熱を吸収し、封止部材13内にて拡散する機能を備えている。また、発光素子5が発する光に起因した熱が、封止部材13を介して基体3および枠体9に伝達されることによって、発光装置1の全体に熱を拡散させ易くなる。仮に、封止部材13内の特定箇所に熱が集中すると、封止部材13の熱膨張が局所的に非常に大きくなり、封止部材13が基体3から剥離する可能性が生じる。また、封止部材13内にて熱集中が起きると発光素子5が高温となり、発光素子5の発する光の波長が変化し、発光素子5の発光色が、所望する光色から大きく外れる可能性が生じる。なお、封止部材13としては、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂のような透光性の絶縁樹脂が用いられる。また、封止部材13の熱伝導率は、例えば0.14W/(m・K)以上0.40W/(m・K)以下に設定されている。 Moreover, the sealing member 13 has a function of absorbing heat caused by photoelectric conversion of the light emitting element 5 and diffusing in the sealing member 13. Further, heat caused by light emitted from the light emitting element 5 is transmitted to the base 3 and the frame body 9 through the sealing member 13, so that the heat is easily diffused throughout the light emitting device 1. If heat concentrates at a specific location in the sealing member 13, the thermal expansion of the sealing member 13 becomes extremely large locally, and the sealing member 13 may be peeled off from the base 3. Further, when heat concentration occurs in the sealing member 13, the light emitting element 5 becomes high temperature, the wavelength of light emitted from the light emitting element 5 changes, and the emission color of the light emitting element 5 may greatly deviate from the desired light color. Occurs. In addition, as the sealing member 13, translucent insulating resin like a silicone resin, an acrylic resin, or an epoxy resin is used, for example. The thermal conductivity of the sealing member 13 is set to, for example, 0.14 W / (m · K) or more and 0.40 W / (m · K) or less.
 次に、第2の実施形態の発光装置について図面を用いて詳細に説明する。なお、本実施形態にかかる各構成において、第1の実施形態と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。 Next, the light emitting device of the second embodiment will be described in detail with reference to the drawings. In addition, in each structure concerning this embodiment, about the structure which has the same function as 1st Embodiment, the same referential mark is attached and the detailed description is abbreviate | omitted.
 図3に示すように、第2の実施形態の発光装置1は、第1の実施形態の発光装置1と同様に、発光素子5上に配設された波長変換部材7を備えている。第1の実施形態の発光装置1においては、波長変換部材7の平坦面(中央領域7a)および凸状の曲面(周縁領域7b)の境界部分に角部が形成されているが、本実施形態の発光装置1においては、波長変換部材7における周縁領域7bが中央領域7aに滑らかにつながっている。言い換えれば、波長変換部材7の中央領域7aおよび周縁領域7bの境界部分に角部が形成されていない。 As shown in FIG. 3, the light emitting device 1 of the second embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5 similarly to the light emitting device 1 of the first embodiment. In the light emitting device 1 of the first embodiment, corners are formed at the boundary between the flat surface (center region 7a) and the convex curved surface (peripheral region 7b) of the wavelength conversion member 7, but in this embodiment. In the light emitting device 1, the peripheral region 7b of the wavelength conversion member 7 is smoothly connected to the central region 7a. In other words, no corner is formed at the boundary between the central region 7a and the peripheral region 7b of the wavelength conversion member 7.
 第1の実施形態において示した通り、波長変換部材7の中央領域7aおよび周縁領域7bの境界部分に角部が形成されている場合、この境界部分の近傍においては光が多重反射しやすい。しかしながら、本実施形態の波長変換部材7においては、中央領域7aおよび周縁領域7bが滑らかにつながっていることから、中央領域7aと周縁領域7bの境界部分において波長変換部材7からの光の発光性が急激に変化することを抑制できる。そのため、この境界部分での発光ムラを小さくすることができる。さらには、波長変換部材7の内部に発生した応力が角部に集中することなく、その周囲に分散されることから、応力に起因して発生するクラックや割れが抑制され、発光装置1は長期間にわたって正常に作動させることができる。 As shown in the first embodiment, when a corner is formed at the boundary between the central region 7a and the peripheral region 7b of the wavelength conversion member 7, light is likely to be multiple-reflected in the vicinity of the boundary. However, in the wavelength conversion member 7 of the present embodiment, since the central region 7a and the peripheral region 7b are smoothly connected, the light emission from the wavelength conversion member 7 at the boundary between the central region 7a and the peripheral region 7b. Can be prevented from changing rapidly. Therefore, the light emission unevenness at the boundary portion can be reduced. Furthermore, since the stress generated in the wavelength conversion member 7 is not concentrated on the corner portion but is distributed around the corner portion, cracks and cracks generated due to the stress are suppressed, and the light emitting device 1 is long. Can operate normally over a period of time.
 なお、本実施形態の発光装置1において、中央領域7aおよび周縁領域7bが滑らかにつながっているとは、中央領域7aと周縁領域7bとの境界部分が厳密に滑らかにつながっていることに限定されるものではなく、波長変換部材7の外表面に製造工程上で不可避に生じる凹凸程度の大きさの角部が中央領域7aと周縁領域7bとの境界部分に形成されていても問題ない。たとえば、波長変換部材7の外表面を目視した場合に、中央領域7aと周縁領域7bとの境界部分が視認できない程度であれば、本実施形態の効果を十分に得ることができる。 In the light emitting device 1 of the present embodiment, the central region 7a and the peripheral region 7b are smoothly connected to each other in that the boundary portion between the central region 7a and the peripheral region 7b is strictly smoothly connected. However, there is no problem even if a corner having a size of irregularities inevitably generated in the manufacturing process is formed on the outer surface of the wavelength conversion member 7 at the boundary between the central region 7a and the peripheral region 7b. For example, when the outer surface of the wavelength conversion member 7 is visually observed, the effect of the present embodiment can be sufficiently obtained as long as the boundary portion between the central region 7a and the peripheral region 7b cannot be visually recognized.
 次に、第3の実施形態の発光装置について図面を用いて詳細に説明する。なお、本実施形態にかかる各構成において、第1の実施形態と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。 Next, the light emitting device of the third embodiment will be described in detail with reference to the drawings. In addition, in each structure concerning this embodiment, about the structure which has the same function as 1st Embodiment, the same referential mark is attached and the detailed description is abbreviate | omitted.
 図4に示すように、第3の実施形態の発光装置1は、第1の実施形態の発光装置1と同様に、発光素子5の上に配設された波長変換部材7を備えている。また、波長変換部材7における発光素子5と対向する内表面(図4における下面)が凹状の曲面である。 As shown in FIG. 4, the light emitting device 1 according to the third embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5, similarly to the light emitting device 1 according to the first embodiment. Moreover, the inner surface (the lower surface in FIG. 4) facing the light emitting element 5 in the wavelength conversion member 7 is a concave curved surface.
 波長変換部材7は、平面透視した場合に、発光素子5に重なり合う領域を含む中央部分7dおよび中央部分7dを囲むように位置する周縁部分7eを有している。波長変換部材7の外表面は、平面透視した場合に、発光素子5に重なり合う領域を含む中央領域7aおよび中央領域7aを囲むように位置する周縁領域7bを有している。 The wavelength conversion member 7 has a central portion 7d including a region overlapping with the light emitting element 5 and a peripheral portion 7e positioned so as to surround the central portion 7d when seen in a plan view. The outer surface of the wavelength conversion member 7 has a central region 7a including a region overlapping the light emitting element 5 and a peripheral region 7b positioned so as to surround the central region 7a when seen through on a plane.
 このとき、第1の実施形態の発光装置1における波長変換部材7では、中央領域7aが平坦面であって、周縁領域7bが凸状の曲面であるが、本実施形態の発光装置1における波長変換部材7では、中央領域7aおよび周縁領域7bがそれぞれ凸状の曲面である。ただし、基体3の主面に対して垂直な断面において、中央領域7aの曲率が周縁領域7bの曲率および内表面の曲率よりも小さく、第1の実施形態の発光装置1と同様に、外表面が中央領域7aである中央部分7dが凹レンズとして機能するとともに、外表面が周縁領域7bである周縁部分7eが凸レンズとして機能している。 At this time, in the wavelength conversion member 7 in the light emitting device 1 of the first embodiment, the central region 7a is a flat surface and the peripheral region 7b is a convex curved surface, but the wavelength in the light emitting device 1 of the present embodiment. In the conversion member 7, the center area | region 7a and the peripheral area | region 7b are convex curved surfaces, respectively. However, in the cross section perpendicular to the main surface of the substrate 3, the curvature of the central region 7 a is smaller than the curvature of the peripheral region 7 b and the curvature of the inner surface, and the outer surface is similar to the light emitting device 1 of the first embodiment. The central portion 7d, which is the central region 7a, functions as a concave lens, and the peripheral portion 7e, whose outer surface is the peripheral region 7b, functions as a convex lens.
 上述の通り、第1の実施形態の発光装置1と同様に、中央部分7dが凹レンズとして機能することから、中央領域7aから放射される光を効率よく発光装置1の斜め上方に分散させることができる。そのため、照射面における発光装置1の直上に位置する部分に照射される光の量と、照射面における発光装置1の斜め上方に位置する部分に照射される光の量のバラツキを小さくできる。 As described above, like the light emitting device 1 of the first embodiment, since the central portion 7d functions as a concave lens, the light emitted from the central region 7a can be efficiently dispersed obliquely above the light emitting device 1. it can. Therefore, it is possible to reduce the variation in the amount of light irradiated to the portion located directly above the light emitting device 1 on the irradiation surface and the amount of light irradiated to the portion positioned obliquely above the light emitting device 1 on the irradiation surface.
 本実施形態の発光装置1において、中央領域7aの曲率が周縁領域7bの曲率および内表面の曲率よりも小さく、これは、中央領域7aの曲率半径が周縁領域7bの曲率半径および内表面の曲率半径よりも大きいと言い換えることができる。特に、中央領域7aの曲率半径と周縁領域7bの曲率半径との比、および中央領域7aの曲率半径と内表面の曲率半径との比が、それぞれ1.1~2.0程度であることが好ましい。 In the light emitting device 1 of the present embodiment, the curvature of the central region 7a is smaller than the curvature of the peripheral region 7b and the curvature of the inner surface. This is because the curvature radius of the central region 7a is the curvature radius of the peripheral region 7b and the curvature of the inner surface. In other words, it is larger than the radius. In particular, the ratio of the radius of curvature of the central region 7a to the radius of curvature of the peripheral region 7b and the ratio of the radius of curvature of the central region 7a to the radius of curvature of the inner surface are about 1.1 to 2.0, respectively. preferable.
 次に、第4の実施形態の発光装置について図面を用いて詳細に説明する。なお、本実施形態にかかる各構成において、第1の実施形態と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。 Next, the light emitting device of the fourth embodiment will be described in detail with reference to the drawings. In addition, in each structure concerning this embodiment, about the structure which has the same function as 1st Embodiment, the same referential mark is attached and the detailed description is abbreviate | omitted.
 図5に示すように、第4の実施形態の発光装置1は、第1の実施形態の発光装置1と同様に、発光素子5の上に配設された波長変換部材7を備えている。また、波長変換部材7における発光素子5と対向する内表面(図5における下面)が凹状の曲面である。 As shown in FIG. 5, the light emitting device 1 of the fourth embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5, similarly to the light emitting device 1 of the first embodiment. Further, the inner surface (the lower surface in FIG. 5) facing the light emitting element 5 in the wavelength conversion member 7 is a concave curved surface.
 波長変換部材7は、平面透視した場合に、発光素子5に重なり合う領域を含む中央部分7dおよび中央部分7dを囲むように位置する周縁部分7eを有している。波長変換部材7の外表面は、平面透視した場合に、発光素子5に重なり合う領域を含む中央領域7aおよび中央領域7aを囲むように位置する周縁領域7bを有している。 The wavelength conversion member 7 has a central portion 7d including a region overlapping with the light emitting element 5 and a peripheral portion 7e positioned so as to surround the central portion 7d when seen in a plan view. The outer surface of the wavelength conversion member 7 has a central region 7a including a region overlapping the light emitting element 5 and a peripheral region 7b positioned so as to surround the central region 7a when seen through on a plane.
 このとき、第1の実施形態の発光装置1における波長変換部材7では、中央領域7aが平坦面であって、周縁領域7bが凸状の曲面であるが、本実施形態の発光装置1における波長変換部材7では、中央領域7aが凹状の曲面であって、周縁領域7bが凸状の曲面である。 At this time, in the wavelength conversion member 7 in the light emitting device 1 of the first embodiment, the central region 7a is a flat surface and the peripheral region 7b is a convex curved surface, but the wavelength in the light emitting device 1 of the present embodiment. In the conversion member 7, the central region 7a is a concave curved surface, and the peripheral region 7b is a convex curved surface.
 第1の実施形態の発光装置1のように中央領域7aが平坦面である場合だけでなく、本実施形態の発光装置1のように中央領域7aが凹状の曲面である場合においても第1の実施形態の発光装置1と同様に、外表面が中央領域7aである中央部分7dが凹レンズとして機能するとともに、外表面が周縁領域7bである周縁部分7eが凸レンズとして機能している。 The first region is not only when the central region 7a is a flat surface as in the light emitting device 1 of the first embodiment, but also when the central region 7a is a concave curved surface as in the light emitting device 1 of the present embodiment. Similar to the light emitting device 1 of the embodiment, the central portion 7d whose outer surface is the central region 7a functions as a concave lens, and the peripheral portion 7e whose outer surface is the peripheral region 7b functions as a convex lens.
 このように、第1の実施形態の発光装置1と同様に、中央部分7dが凹レンズとして機能することから、中央領域7aから放射される光を効率よく発光装置1の斜め上方に分散させることができる。そのため、照射面における発光装置1の直上に位置する部分に照射される光の量と、照射面における発光装置1の斜め上方に位置する部分に照射される光の量のバラツキを小さくできる。 Thus, like the light emitting device 1 of the first embodiment, since the central portion 7d functions as a concave lens, the light emitted from the central region 7a can be efficiently dispersed obliquely above the light emitting device 1. it can. Therefore, it is possible to reduce the variation in the amount of light irradiated to the portion located directly above the light emitting device 1 on the irradiation surface and the amount of light irradiated to the portion positioned obliquely above the light emitting device 1 on the irradiation surface.
 また、第1の実施形態の発光装置1と比較して、中央領域7aが凹状の曲面である場合には、中央領域7aから放射される光をより多く発光装置1の斜め上方に分散させることができる。そのため、照射面における発光装置1の斜め上方に位置する部分により多くの光を照射させることができる。照射面における発光装置1の直上に位置する部分よりも照射面における発光装置1の斜め上方に位置する部分に多くの光を照射させたい場合には、本実施形態の発光装置1が特に有効となる。 Further, as compared with the light emitting device 1 of the first embodiment, when the central region 7a is a concave curved surface, more light emitted from the central region 7a is distributed obliquely above the light emitting device 1. Can do. Therefore, more light can be irradiated to the portion located obliquely above the light emitting device 1 on the irradiation surface. The light emitting device 1 of the present embodiment is particularly effective when it is desired to irradiate more light on a portion of the irradiation surface located obliquely above the light emitting device 1 than on the portion of the irradiation surface located immediately above the light emitting device 1. Become.
 次に、第5の実施形態の発光装置について図面を用いて詳細に説明する。なお、本実施形態にかかる各構成において、第1の実施形態と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。 Next, the light emitting device of the fifth embodiment will be described in detail with reference to the drawings. In addition, in each structure concerning this embodiment, about the structure which has the same function as 1st Embodiment, the same referential mark is attached and the detailed description is abbreviate | omitted.
 図6に示すように、第5の実施形態の発光装置1は、第1の実施形態の発光装置1と同様に、発光素子5上に配設された波長変換部材7を備えている。そして、本実施形態における波長変換部材7は、外表面に複数の凹部7cを有している。なお、本実施形態の発光装置1では、波長変換部材1の外表面を平面透視した場合に、発光素子に重なり合う領域を含み、凹部7cが形成された部分を除く箇所が平坦な領域を中央領域、中央領域を囲むように位置して、凹部7cが形成された部分を除く箇所が凸状の曲面形状である領域を周縁領域としている。 As shown in FIG. 6, the light emitting device 1 according to the fifth embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5, similarly to the light emitting device 1 according to the first embodiment. And the wavelength conversion member 7 in this embodiment has the several recessed part 7c in the outer surface. In the light emitting device 1 of the present embodiment, when the outer surface of the wavelength conversion member 1 is seen in a plane, a region including a region overlapping the light emitting element and excluding a portion where the recess 7c is formed is a central region. A region that is located so as to surround the central region and has a convex curved surface except for a portion where the concave portion 7c is formed is defined as a peripheral region.
 単に波長変換部材7を大きくすることによっても波長変換部材7の表面積を大きくすることはできるが、そのような場合、波長変換部材7の体積も大きくなるので、波長変換部材7に吸収される光量も増加する。そのため、発光効率を向上させることが困難となる。また、波長変換部材7の発光装置1の外方に面する表面だけでなく、発光素子5と対向する内表面を含む発光装置1の内方に面する表面の面積も大きくなり、発光装置1の内方に反射される光が増加するため、波長変換部材7の内部で波長変換された光を効率良く外部に取り出すことが困難となる。 Although it is possible to increase the surface area of the wavelength conversion member 7 simply by increasing the wavelength conversion member 7, the volume of the wavelength conversion member 7 also increases in such a case, and thus the amount of light absorbed by the wavelength conversion member 7. Will also increase. Therefore, it becomes difficult to improve the light emission efficiency. Further, not only the surface of the wavelength conversion member 7 facing the outside of the light emitting device 1 but also the area of the surface facing the inside of the light emitting device 1 including the inner surface facing the light emitting element 5 is increased. Therefore, it becomes difficult to efficiently extract the light whose wavelength has been converted inside the wavelength conversion member 7 to the outside.
 一方、本実施形態の発光装置1は、波長変換部材7の内表面が凹形状であって、外表面に複数の凹部7cを有していることから、発光装置1の外方に面する波長変換部材7の表面の表面積を大きくすることができる。そのため、多くの光を波長変換部材7の中に入射させつつ、波長変換部材7の内部で波長変換された光が外部に出やすくなるので、発光装置1の発光効率を向上させることができる。 On the other hand, in the light emitting device 1 according to the present embodiment, the wavelength conversion member 7 has a concave inner surface and a plurality of concave portions 7c on the outer surface. The surface area of the surface of the conversion member 7 can be increased. For this reason, light that has been wavelength-converted inside the wavelength conversion member 7 can easily be emitted to the outside while making a large amount of light enter the wavelength conversion member 7, so that the light emission efficiency of the light-emitting device 1 can be improved.
 凹部7cの幅は、例えば0.4mm~4mmに設定することができる。なお、本実施形態において凹部7cの幅とは、凹部7cの開口部の形状が矩形状である場合は、その一辺の長さを意味し、凹部7cの開口部の形状が楕円形である場合は、その長径を意味している。また、凹部7cの深さは、例えば0.3mm~1.5mmに設定することができる。 The width of the recess 7c can be set to 0.4 mm to 4 mm, for example. In the present embodiment, the width of the recess 7c means the length of one side when the shape of the opening of the recess 7c is rectangular, and the shape of the opening of the recess 7c is oval. Means the major axis. The depth of the recess 7c can be set to 0.3 mm to 1.5 mm, for example.
 次に、第6の実施形態の発光装置について図面を用いて詳細に説明する。なお、本実施形態にかかる各構成において、第1の実施形態と同様の機能を有する構成については、同じ参照符号を付記し、その詳細な説明を省略する。 Next, the light emitting device of the sixth embodiment will be described in detail with reference to the drawings. In addition, in each structure concerning this embodiment, about the structure which has the same function as 1st Embodiment, the same referential mark is attached and the detailed description is abbreviate | omitted.
 図7に示すように、第6の実施形態の発光装置1は、第1の実施形態の発光装置1と同様に、発光素子5上に配設された波長変換部材7を備えている。第1の実施形態の発光装置1は、基体3の主面上であって発光素子5を囲むように配設された枠体9を備えているが、本実施形態の発光装置1は、この枠体9を備えておらず、波長変換部材7が接着剤(不図示)を介して直接に基体3に接合されている。本実施形態の発光装置1のように枠体9を備えず、波長変換部材7が接着剤を介して直接に基体3に接合されていても何ら問題ない。 As shown in FIG. 7, the light emitting device 1 according to the sixth embodiment includes a wavelength conversion member 7 disposed on the light emitting element 5, similarly to the light emitting device 1 according to the first embodiment. The light emitting device 1 according to the first embodiment includes a frame body 9 disposed on the main surface of the base 3 so as to surround the light emitting element 5. The light emitting device 1 according to the present embodiment includes the frame 9. The frame 9 is not provided, and the wavelength conversion member 7 is directly bonded to the base 3 via an adhesive (not shown). There is no problem even if the wavelength conversion member 7 is not directly provided with the frame body 9 and the wavelength conversion member 7 is directly bonded to the base 3 via an adhesive as in the light emitting device 1 of the present embodiment.
 接着剤としては、接合部材11と同様に、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂のような絶縁樹脂を用いることができる。なお、接合部材11としては、透光性の部材を用いているが、接着剤としては、波長変換前の発光素子5からの放射光が直接に漏れることを抑制するため、黒色のような有色の部材とすることが好ましい。 As the adhesive, an insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin can be used in the same manner as the bonding member 11. In addition, although the translucent member is used as the joining member 11, in order to suppress that the emitted light from the light emitting element 5 before wavelength conversion leaks directly as an adhesive agent, it is colored like black It is preferable to use this member.
 次に、上記実施形態にかかる発光装置1の製造方法について説明する。 Next, a method for manufacturing the light emitting device 1 according to the above embodiment will be described.
 まず、基体3および枠体9を準備する。基体3および枠体9が、例えば酸化アルミニウム質焼結体から成る場合、酸化アルミニウム、酸化珪素、酸化マグネシウムまたは酸化カルシウムのような原料粉末に、有機バインダー、可塑剤および溶剤を添加混合して混合物を得る。なお、第6の実施形態においては、基体3のみを準備すればよい。 First, the base 3 and the frame 9 are prepared. When the base body 3 and the frame body 9 are made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer and a solvent are added to and mixed with a raw material powder such as aluminum oxide, silicon oxide, magnesium oxide or calcium oxide. Get. In the sixth embodiment, only the base 3 needs to be prepared.
 そして、基体3および枠体9の型枠内に、混合物を充填して乾燥させた後、焼結前の基体3および枠体9を取り出す。 Then, the mixture of the base 3 and the frame 9 is filled with the mixture and dried, and then the base 3 and the frame 9 before sintering are taken out.
 また、タングステンまたはモリブデンのような高融点金属粉末を準備し、この粉末に有機バインダー、可塑剤または溶剤等を添加混合して金属ペーストを得る。そして、取り出した基体3となるセラミックグリーンシートに所定パターンで印刷し、複数のセラミックグリーンシートを積層した状態で焼成する。 Also, a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the powder to obtain a metal paste. And it prints with the predetermined pattern on the ceramic green sheet used as the taken-out base | substrate 3, and bakes in the state which laminated | stacked the several ceramic green sheet.
 次に、基体3の上面および下面に露出する配線導体の表面に、配線導体の酸化防止のため、めっき層を形成する。そして、発光素子5をめっき層上に半田を介して電気的に接続する。 Next, a plating layer is formed on the surface of the wiring conductor exposed on the upper and lower surfaces of the substrate 3 to prevent the wiring conductor from being oxidized. Then, the light emitting element 5 is electrically connected to the plating layer via solder.
 また、枠体9は、所望の温度で焼結されて多孔質の焼結体とされるとともに、シリコーン樹脂から成る接着剤によって基体3の上面に発光素子5を取囲むように接着される。 Further, the frame body 9 is sintered at a desired temperature to be a porous sintered body, and is bonded to the upper surface of the substrate 3 so as to surround the light emitting element 5 with an adhesive made of silicone resin.
 そして、枠体9で囲まれた領域に、例えばシリコーン樹脂を充填して、シリコーン樹脂を硬化させることで、封止部材13を形成する。なお、第6の実施形態においては、枠体9を用いていないので、枠体9の代わりとなる型枠を準備して、基体3及び型枠で囲まれた領域に封止部材13を充填して形成すればよい。 Then, the sealing member 13 is formed by filling the region surrounded by the frame body 9 with, for example, silicone resin and curing the silicone resin. In the sixth embodiment, since the frame body 9 is not used, a mold frame serving as a substitute for the frame body 9 is prepared, and the region surrounded by the base body 3 and the mold frame is filled with the sealing member 13. To be formed.
 次に、波長変換部材7を準備する。波長変換部材7は、未硬化の樹脂に蛍光体を混合して、例えば、未硬化の波長変換部材7を型枠に充填し、硬化して取り出すことによって、得ることができる。このとき、型枠形状を予め所望の形状に形成しておくことにより、所望の形状の外表面を有する波長変換部材7が得られる。すなわち、各実施形態の発光装置1における波長変換部材7の形状に応じて成形された形状の型枠を予め用意しておけばよい。 Next, the wavelength conversion member 7 is prepared. The wavelength conversion member 7 can be obtained by mixing a phosphor with uncured resin, filling the uncured wavelength conversion member 7 into a mold, curing, and taking it out, for example. At this time, by forming the shape of the mold in a desired shape in advance, the wavelength conversion member 7 having the outer surface of the desired shape can be obtained. That is, a form having a shape that is formed according to the shape of the wavelength conversion member 7 in the light emitting device 1 of each embodiment may be prepared in advance.
 例えば、第1の実施形態の発光装置1における波長変換部材7は下記のようにして作製することができる。波長変換部材7の外表面に形成される発光素子5に重なり合う領域を含む平坦な中央領域7aおよび中央領域7aを囲むように位置して凸状の曲面形状である周縁領域7bは、上記する型枠に、中央領域7aに対応する平面および周縁領域7bに対応する凹状の曲面を設けることによって形成することができる。型枠の平面に対応する平坦な中央領域7aおよび型枠の凹状の曲面に対応する凸状の曲面形状である周縁領域7bが波長変換部材7の外表面に形成される。 For example, the wavelength conversion member 7 in the light emitting device 1 of the first embodiment can be manufactured as follows. The flat central region 7a including the region overlapping the light emitting element 5 formed on the outer surface of the wavelength conversion member 7 and the peripheral region 7b having a convex curved surface located so as to surround the central region 7a are formed as described above. The frame can be formed by providing a flat surface corresponding to the central region 7a and a concave curved surface corresponding to the peripheral region 7b. A flat central region 7 a corresponding to the plane of the mold and a peripheral region 7 b having a convex curved shape corresponding to the concave curved surface of the mold are formed on the outer surface of the wavelength conversion member 7.
 なお、波長変換部材7の成形方法としては、射出成形、押出成形、中空成形、圧縮成形、および熱成形に代表される一般的な成形加工法を適宜用いればよい。また、波長変換部材7の中央領域7aおよび周縁領域7bの形成は上記の方法に限られず、硬化して取り出された波長変換部材7の外表面の一部を削り取ることによって形成してもよい。 In addition, as a molding method of the wavelength conversion member 7, a general molding method represented by injection molding, extrusion molding, hollow molding, compression molding, and thermoforming may be appropriately used. The formation of the central region 7a and the peripheral region 7b of the wavelength conversion member 7 is not limited to the above method, and the wavelength conversion member 7 may be formed by scraping off a part of the outer surface of the wavelength conversion member 7 that has been hardened and taken out.
 上記の方法によって作製された波長変換部材7を枠体9の段差9a上に、接合部材11を介して接着する。具体的には、接合部材11を枠体9の段差9a上に配設するとともに、準備した波長変換部材7を接合部材11の上に配設する。その後、接合部材11を硬化させることにより、接合部材11を介して波長変換部材7を枠体9の上に接着させることができる。このとき、過度の接合部材11を枠体9の段差9a上に配設するとともに波長変換部材7を接合部材11に押し当てながら配設することにより、接合部材11の一部を波長変換部材7の上面に押し出すことができる。その結果、接合部材11を波長変換部材7の側面、上面および下面に接合させることができる。 The wavelength conversion member 7 produced by the above method is bonded onto the step 9 a of the frame body 9 via the bonding member 11. Specifically, the joining member 11 is disposed on the step 9 a of the frame body 9, and the prepared wavelength conversion member 7 is disposed on the joining member 11. Thereafter, the wavelength conversion member 7 can be bonded onto the frame body 9 via the bonding member 11 by curing the bonding member 11. At this time, an excessive bonding member 11 is disposed on the step 9 a of the frame body 9 and is disposed while pressing the wavelength conversion member 7 against the bonding member 11, whereby a part of the bonding member 11 is disposed on the wavelength conversion member 7. Can be extruded onto the top surface. As a result, the bonding member 11 can be bonded to the side surface, the upper surface, and the lower surface of the wavelength conversion member 7.
 また、波長変換部材7を枠体9の段差9a上に配設した後、接合部材11の一部が波長変換部材7の上面と接合するように、波長変換部材7と枠体9の段差9aとの隙間に接合部材11をディスペンサー等で充填することによっても、接合部材11を波長変換部材7の側面、上面および下面に接合させることができる。以上により、上述の実施形態の発光装置1を作製することができる。 Further, after the wavelength conversion member 7 is disposed on the step 9 a of the frame body 9, the step 9 a between the wavelength conversion member 7 and the frame body 9 so that a part of the bonding member 11 is bonded to the upper surface of the wavelength conversion member 7. Also, the bonding member 11 can be bonded to the side surface, the upper surface, and the lower surface of the wavelength conversion member 7 by filling the gap between the bonding member 11 with a dispenser or the like. As described above, the light-emitting device 1 of the above-described embodiment can be manufactured.
 次に、本発明の一実施形態にかかる照明装置について説明する。 Next, a lighting device according to an embodiment of the present invention will be described.
 図8に示すように、本実施形態の照明装置15は、上記の実施形態に代表される発光装置1と、発光装置1が搭載された搭載板17と、発光装置1に通電する電気配線19と、発光装置1から出射される光を反射する光反射手段21とを備えている。 As shown in FIG. 8, the illumination device 15 of the present embodiment includes a light emitting device 1 typified by the above embodiment, a mounting plate 17 on which the light emitting device 1 is mounted, and an electrical wiring 19 that energizes the light emitting device 1. And a light reflecting means 21 for reflecting the light emitted from the light emitting device 1.
 本実施形態の照明装置15における発光装置1は搭載板17上に載置されている。このとき、図8に示すように、本実施形態の照明装置15は、下方を照明するように形成されているため、発光装置1は発光素子5が基体3よりも下方に位置するようにして、搭載板17上に載置される。本実施形態の照明装置15においては、電気配線19を通じて発光装置1に通電することにより、発光装置1から光が放射される。そして、光反射手段21により、上記の放射された光を反射させることで所望の方向を照らす照明装置15として機能する。 The light emitting device 1 in the lighting device 15 of the present embodiment is placed on the mounting plate 17. At this time, as shown in FIG. 8, since the illumination device 15 of the present embodiment is formed so as to illuminate the lower part, the light-emitting device 1 is arranged so that the light-emitting element 5 is positioned below the base 3. And placed on the mounting plate 17. In the illumination device 15 of the present embodiment, light is emitted from the light emitting device 1 by energizing the light emitting device 1 through the electrical wiring 19. And it functions as the illuminating device 15 which illuminates a desired direction by reflecting said emitted light by the light reflection means 21.
 照明装置15は、発光装置1を一つのみ備えていてもよく、また、図8に示すように、複数備えていても良い。また、発光装置1を複数備えている場合には、各発光装置1を電気配線19により、直列配置としても、並列配置としても良い。 The lighting device 15 may include only one light emitting device 1 or may include a plurality of light emitting devices 1 as shown in FIG. Further, when a plurality of light emitting devices 1 are provided, the light emitting devices 1 may be arranged in series or in parallel by the electric wiring 19.
 なお、本発明は、上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何ら差し支えない。 Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.
1・・・発光装置
3・・・基体
5・・・発光素子
7・・・波長変換部材
7a・・・中央領域
7b・・・周縁領域
7c・・・凹部
9・・・枠体
9a・・・段差
11・・・接合部材
13・・・封止部材
15・・・照明装置
17・・・搭載板
19・・・電気配線
21・・・光反射手段
 
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 3 ... Base | substrate 5 ... Light-emitting element 7 ... Wavelength conversion member 7a ... Central area | region 7b ... Peripheral area | region 7c ... Recess 9 ... Frame 9a ... · Step 11 · · · Joining member 13 · · · Sealing member 15 · · · Lighting device 17 · · · Mounting plate 19 · · · Electrical wiring 21 · · · Light reflecting means

Claims (7)

  1.  基体と、
    該基体の主面上に配設された発光素子と、
    該発光素子と対向する内表面および該内表面と反対側の外表面を有する波長変換部材とを備え、
    前記内表面が、凹状の曲面であり、
    前記外表面が、平坦面および該平坦面を取り囲むように位置する凸状の曲面を有し、
    前記平坦面が、平面透視した場合に、前記発光素子に重なり合うように位置していることを特徴とする発光装置。
    A substrate;
    A light emitting device disposed on the main surface of the substrate;
    A wavelength conversion member having an inner surface facing the light emitting element and an outer surface opposite to the inner surface;
    The inner surface is a concave curved surface;
    The outer surface has a flat surface and a convex curved surface positioned so as to surround the flat surface,
    The light-emitting device, wherein the flat surface is positioned so as to overlap the light-emitting element when viewed through.
  2.  前記凸状の曲面は、前記平坦面に滑らかにつながっていることを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the convex curved surface is smoothly connected to the flat surface.
  3.  前記波長変換部材は、前記基体の主面に垂直な前記発光素子を通る断面で断面視した場合に、前記平坦面の部分の厚みが前記凸状の曲面部分の厚みよりも大きいことを特徴とする請求項1に記載の発光装置。 The wavelength converting member is characterized in that the thickness of the flat surface portion is larger than the thickness of the convex curved surface portion when viewed in cross section through the light emitting element perpendicular to the main surface of the substrate. The light emitting device according to claim 1.
  4.  前記波長変換部材は、前記基体の主面に垂直な前記発光素子を通る断面で断面視した場合に、前記凸状の曲面の曲率が前記凹状の曲面の曲率よりも小さいことを特徴とする請求項1に記載の発光装置。 The wavelength conversion member is characterized in that the curvature of the convex curved surface is smaller than the curvature of the concave curved surface when viewed in a cross section passing through the light emitting element perpendicular to the main surface of the substrate. Item 4. The light emitting device according to Item 1.
  5.  前記発光素子上に、該発光素子および前記波長変換部材の間に配設された透光性の封止部材をさらに備えていることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, further comprising a translucent sealing member disposed between the light-emitting element and the wavelength conversion member on the light-emitting element.
  6.  基体と、
    該基体の主面上に配設された発光素子と、
    該発光素子に対向する内表面を有する波長変換部材とを備え、
    前記内表面が、凹状の曲面であり、
    前記波長変換部材が、凹レンズを成す中央部分および該中央部分を取り囲むように位置する凸レンズを成す周縁部分を有し、
    前記中央部分が、平面透視した場合に、前記発光素子に重なり合うように位置していることを特徴とする発光装置。
    A substrate;
    A light emitting device disposed on the main surface of the substrate;
    A wavelength conversion member having an inner surface facing the light emitting element,
    The inner surface is a concave curved surface;
    The wavelength converting member has a central portion forming a concave lens and a peripheral portion forming a convex lens positioned so as to surround the central portion;
    The light emitting device, wherein the central portion is positioned so as to overlap the light emitting element when seen through in plan view.
  7.  請求項1~6のいずれかに記載の発光装置と、該発光装置が搭載された搭載板と、前記発光装置に通電する電気配線と、前記発光装置から出射される光を反射する光反射手段とを備えた照明装置。
     
    The light-emitting device according to any one of claims 1 to 6, a mounting plate on which the light-emitting device is mounted, an electrical wiring for energizing the light-emitting device, and a light reflecting means for reflecting light emitted from the light-emitting device And a lighting device.
PCT/JP2011/066565 2010-07-22 2011-07-21 Light-emitting device and lighting device WO2012011528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-165118 2010-07-22
JP2010165118 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012011528A1 true WO2012011528A1 (en) 2012-01-26

Family

ID=45496946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066565 WO2012011528A1 (en) 2010-07-22 2011-07-21 Light-emitting device and lighting device

Country Status (1)

Country Link
WO (1) WO2012011528A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672310A1 (en) * 2012-06-05 2013-12-11 Foshan Nationstar Optoelectronics Co., Ltd Large-angle lens and large-angle emission led light source module
EP2685496A3 (en) * 2012-07-09 2016-01-27 LG Innotek Co., Ltd. Light emitting apparatus
JP2016119477A (en) * 2014-12-23 2016-06-30 エルジー イノテック カンパニー リミテッド Light emitting device and lighting system
KR20160076606A (en) * 2014-12-23 2016-07-01 엘지이노텍 주식회사 Light emitting device
EP3690509A1 (en) * 2013-08-26 2020-08-05 Seoul Semiconductor Co., Ltd. Lens and light emitting module for surface illumination
US10948156B2 (en) 2016-11-22 2021-03-16 Signify Holding B.V. Cover for LED luminaires

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049019A (en) * 2005-08-11 2007-02-22 Koha Co Ltd Light emitting device
JP2008053702A (en) * 2006-07-26 2008-03-06 Kyocera Corp Light-emitting device, and lighting device
JP2009044016A (en) * 2007-08-09 2009-02-26 Sharp Corp Light-emitting device and illuminator equipped with same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049019A (en) * 2005-08-11 2007-02-22 Koha Co Ltd Light emitting device
JP2008053702A (en) * 2006-07-26 2008-03-06 Kyocera Corp Light-emitting device, and lighting device
JP2009044016A (en) * 2007-08-09 2009-02-26 Sharp Corp Light-emitting device and illuminator equipped with same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672310A1 (en) * 2012-06-05 2013-12-11 Foshan Nationstar Optoelectronics Co., Ltd Large-angle lens and large-angle emission led light source module
EP2685496A3 (en) * 2012-07-09 2016-01-27 LG Innotek Co., Ltd. Light emitting apparatus
US9347650B2 (en) 2012-07-09 2016-05-24 Lg Innotek Co., Ltd. Light emitting apparatus using medium layer between wavelength conversion layer and transparent layer
EP3690509A1 (en) * 2013-08-26 2020-08-05 Seoul Semiconductor Co., Ltd. Lens and light emitting module for surface illumination
US10809507B2 (en) 2013-08-26 2020-10-20 Seoul Semiconductor Co., Ltd. Lens and light emitting module for surface illumination
JP2016119477A (en) * 2014-12-23 2016-06-30 エルジー イノテック カンパニー リミテッド Light emitting device and lighting system
KR20160076606A (en) * 2014-12-23 2016-07-01 엘지이노텍 주식회사 Light emitting device
KR102282945B1 (en) * 2014-12-23 2021-07-29 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device
US10948156B2 (en) 2016-11-22 2021-03-16 Signify Holding B.V. Cover for LED luminaires

Similar Documents

Publication Publication Date Title
JP5482378B2 (en) Light emitting device
JP5393802B2 (en) Light emitting device
JP5393796B2 (en) Light emitting device
JP4698412B2 (en) Light emitting device and lighting device
KR100752586B1 (en) Light-emitting apparatus and illuminating apparatus
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2010272847A5 (en)
WO2012011528A1 (en) Light-emitting device and lighting device
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP4948841B2 (en) Light emitting device and lighting device
WO2011149052A1 (en) Light emitting device and lighting device
JP2012114336A (en) Light emitting device and lighting device
JP2012129003A (en) Lighting system
WO2011125428A1 (en) Light emitting device
JP5748575B2 (en) Light emitting device
JP5683352B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2012009719A (en) Light emitting device and lighting system
JP2012094678A (en) Light emitting device
JP5528210B2 (en) Light emitting device and lighting apparatus
JP2014160811A (en) Light-emitting device
JP5748599B2 (en) Lighting device
JP2013110297A (en) Light emitting device
JP5806153B2 (en) Light emitting device
JP7267836B2 (en) light emitting device
JP2014123598A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP