WO2012011322A1 - Apparatus for cutting cylindrical work and method for manufacturing metal ring - Google Patents

Apparatus for cutting cylindrical work and method for manufacturing metal ring Download PDF

Info

Publication number
WO2012011322A1
WO2012011322A1 PCT/JP2011/062662 JP2011062662W WO2012011322A1 WO 2012011322 A1 WO2012011322 A1 WO 2012011322A1 JP 2011062662 W JP2011062662 W JP 2011062662W WO 2012011322 A1 WO2012011322 A1 WO 2012011322A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
work
processing head
rotating
laser beam
Prior art date
Application number
PCT/JP2011/062662
Other languages
French (fr)
Japanese (ja)
Inventor
中島 克幸
章宏 根本
章憲 樋口
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2011552248A priority Critical patent/JPWO2012011322A1/en
Publication of WO2012011322A1 publication Critical patent/WO2012011322A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles

Definitions

  • the present invention relates to a cylindrical workpiece cutting apparatus for cutting a cylindrical workpiece made of metal, and a method for manufacturing a metal ring for cutting a cylindrical workpiece made of metal to form a metal ring.
  • a metal ring for a CVT belt is manufactured by circumferentially cutting a cylindrical work obtained by joining both end edges of a thin metal plate (see, for example, Patent Document 1).
  • the metal ring is formed by rounding the work with a push-cutting blade.
  • An object of the present invention is to prevent dross from adhering to a cut portion as much as possible when cutting a cylindrical work by irradiation of a laser beam.
  • the cylindrical work cutting apparatus cuts a rotating means for rotating a metal cylindrical work around its cylindrical axis, and cuts the work rotated by the rotating means.
  • the processing head for irradiating the workpiece with laser light, the position of the processing head, and the position of the processing head when the direction of laser light irradiation by the processing head is directed to the rotation axis by the rotating means And parallel control means for parallelly moving in the upstream direction of the rotation direction by the rotation means, and control means for controlling the parallel movement means, wherein the control means performs the parallel movement by the parallel movement means by the rotation means. Controlling the translation means so that the processing head is positioned at a position where the incident angle of the laser beam to the workpiece being rotated is a predetermined angle And features.
  • the position of the processing head is moved in parallel to the upstream side in the rotational direction as described above, and the incident angle of the laser light to the workpiece is set to a predetermined angle, whereby the cutting process is performed by the laser light irradiation.
  • the dross generated in the cutting process can be reduced, and the time for which the dross stays in the cut portion can be shortened. Therefore, the dross can be effectively prevented from adhering to the cut portion.
  • the processing head can be processed from this position according to the present invention.
  • Parallel movement to such a position that the incident angle of the laser light with respect to X is a predetermined angle can be performed with relatively high accuracy.
  • the mechanism for performing such translation is relatively inexpensive.
  • control means controls the speed of rotation of the work by the rotation means, and for each work made of various materials, the inclination angle of the drag line formed on the work, and Data associated with the thickness and rotational speed of the workpiece corresponding to the tilt angle and the position of the processing head corresponding to the predetermined incident angle is stored, and the control of the parallel movement means is based on the data
  • the position of the processing head corresponding to the thickness and rotational speed of the workpiece being rotated is obtained by the rotation means, and the parallel movement means is controlled so that the processing head is positioned at the position.
  • the position of the processing head corresponding to the thickness and rotational speed of the work is obtained, the processing head is moved in parallel to this position, and the work is irradiated by irradiating the laser light.
  • the workpiece can be cut such that a desired drag line inclination occurs depending on the material.
  • the drag line is a layered line formed on the cut surface when the molten metal generated when cutting the work W with the laser light solidifies. The slope of the drag line is related to the amount of dross attached to the cut portion by the laser light.
  • a holding step of holding a metal cylindrical work by supporting the inner surface by a holding member, and rotating the work held by the holding member. And rotating at a predetermined rotational speed around the cylindrical axis of the workpiece, and at a position determined according to the thickness and rotational speed of the workpiece held by the holding member, the upstream side of the rotational direction of the workpiece.
  • the workpiece is cut by irradiating a laser beam from the processing head moved in parallel in the moving step to the moving step in which the processing head is moved in parallel, and the workpiece being rotated in the rotating step. And a cutting step of forming a ring.
  • FIG. 1 It is a partial cross section figure of a cylindrical work cutting device concerning one embodiment of the present invention. It is a figure which shows the positional relationship of the process head and cylindrical work in the apparatus of FIG. It is a figure which shows a mode that the workpiece
  • FIG. 1 is a partial cross-sectional view of a cylindrical workpiece cutting apparatus according to an embodiment of the present invention.
  • this apparatus holds a cylindrical work W and performs processing to irradiate a laser beam to the holding portion 100 which can rotate around its cylindrical axis and the work W rotated by the holding portion 100.
  • a head 200, a spindle 300 connected to the base end side of the holding unit 100, and a motor 400 for rotating the spindle 300 are provided.
  • the cylindrical workpiece cutting apparatus further includes a timing belt 500 for transmitting power between the motor 400 and the spindle 300, and a pipe joint socket 600 for supplying compressed air to the inside of the holding unit 100 via the spindle 300.
  • the motor 400, the spindle 300, the holding unit 100 and the like of the present embodiment constitute a rotating means in the present invention.
  • the workpiece W is formed in a cylindrical shape by joining both ends of a rectangular metal thin plate.
  • the metal belt for CVT is manufactured by cutting this for every predetermined width with a cylindrical work cutting device.
  • the metal thin plate for example, maraging steel having a thickness of about 0.3 to 0.4 mm is used.
  • the holding unit 100 changes the diameters of a substantially cylindrical holding member 110 that supports the workpiece W in contact with the inner surface of the workpiece W, a substantially cylindrical pressing member 120 that presses the inner wall of the holding member 110, and the pressure member 120 Connecting bar for adjusting the positional relationship between the first diameter changing member 130 and the second diameter changing member 140 having the conical surfaces 131 and 141 for causing the movement, and the first diameter changing member 130 and the second diameter changing member 140 And 150 and a coil spring 160.
  • the holding member 110 is formed with a first slit (not shown) along the direction of the cylinder axis from the proximal end side to the vicinity of the distal end. Further, the same second slit is formed from the distal end side to the vicinity of the proximal end. The same number of first slits and second slits are alternately arranged, whereby the holding member 110 is elastically expandable in diameter.
  • the holding member 110 is also provided with a plurality of circumferential grooves 170 in the circumferential direction at predetermined intervals. Each circumferential groove 170 intersects the first slit and the second slit described above.
  • the holding member 110 is connected to the spindle 300 via two annular coupling members 701 and 702 fixed to the tip of the spindle 300.
  • An annular insertion port 702 a is provided at an end of the connection member 702 on the holding member 110 side.
  • a small diameter portion 111 having a diameter smaller than that of the support surface for supporting the work W is formed.
  • the small diameter portion 111 of the holding member 110 is fitted in the insertion port 702 a of the connecting member 702, and is fixed to the connecting member 702.
  • a large diameter portion 112 having a diameter larger than that of the support surface for supporting the workpiece W is formed.
  • the outer circumferential surface of the pressing member 120 faces the inner wall so as to press the inner wall of the holding member 110.
  • a conical surface 121 corresponding to the conical surface 131 of the first diameter change member 130 is provided inside the proximal end side of the pressing member 120.
  • a conical surface 122 corresponding to the conical surface 141 of the second diameter change member 140 is provided inside the tip side of the pressing member 120.
  • the conical surfaces 121 and 122 both face the center toward the center of the pressing member 120.
  • the pressing member 120 is formed with a proximal slit (not shown) along the cylindrical axis direction from the proximal end surface to the vicinity of the tip. Further, the same distal end side slit is formed from the distal end side end face to the vicinity of the proximal end.
  • the proximal slit and the distal slit are alternately arranged in the same number, for example, two each, so that the diameter of the pressing member 120 is elastically expandable.
  • the first diameter change member 130 includes a proximal cylindrical portion and a truncated conical portion located on the distal end side and having a conical surface 131.
  • the diameter of the cylindrical portion and the diameter of the bottom surface of the truncated cone portion are the same, and both portions are connected without any step.
  • the connecting bar 150 penetrates on the central axis of the first diameter change member 130.
  • the proximal end of the connecting bar 150 is fixed to the proximal end of the first diameter change member 130.
  • the second diameter change member 140 has a truncated cone shape and forms a conical surface 141.
  • the connecting bar 150 penetrates on the central axis of the second diameter change member 140.
  • the coil spring 160 is interposed between the top of the frusto-conical portion of the first diameter change member 130 and the top of the second diameter change member 140 having a frusto-conical shape, and both are biased in the direction away from each other.
  • the connection bar 150 passes through the inside of the coil spring 160.
  • the disk member 101 having a diameter corresponding to the inner diameter of the holding member 110 is fixed to the bottom surface of the second diameter change member 140 having a truncated cone shape.
  • a disc-like cover member 102 is fixed to the outside of the disc member 101.
  • the diameter of the cover member 102 is larger than the inner diameter of the holding member 110. Therefore, the cover member 102 is always located on the end face of the holding member 110.
  • a connecting bar 150 passes through the center of the disk member 101 and the cover member 102.
  • the position of the first diameter change member 130 with respect to the cover member 102 can be adjusted by the two nuts 103 and 104 fitted to the connecting bar 150 portion adjacent to the outside of the cover member 102.
  • the spindle 300 is supported by the support member 302 on the base 301.
  • a bearing 303 intervenes between the support member 302 and the spindle 300.
  • the spindle 300 is rotatable around its rotation axis.
  • the spindle 300 is provided with a through hole 311 for supplying air to the holding portion 100 on the central axis.
  • a gap is formed between the cylindrical portion of the first diameter change member 130 and the proximal end of the spindle 300, the first connecting member 701, the second connecting member 702, and the holding member 110.
  • the through hole 311 is connected to this gap.
  • an air supply passage 310 is formed which leads from the through hole 311 of the spindle 300 to the first slit and the second slit of the holding member 110.
  • the rotation shaft of the motor 400 and the spindle 300 are provided with pulleys 401 and 304, respectively.
  • the timing belt 500 is stretched between the pulleys 401 and 304.
  • the spindle 300 rotates in response to the rotation of the motor 400.
  • the fitting socket 600 includes a main body portion 620 to which a not-shown feed pipe is connected via a fitting 610, and a socket portion 630 connected to the main body portion 620.
  • the socket portion 630 is inserted into the end of the through hole 311 opposite to the holding portion 100.
  • the air supply pipe not shown is connected to a compressed air supply that supplies compressed air as a cooling medium.
  • FIG. 2 is a view showing the positional relationship between the processing head 200 and the work W.
  • reference numeral 210 denotes a discharge nozzle for discharging argon gas, nitrogen gas, compressed air and the like
  • reference numeral 220 denotes a suction nozzle which is disposed to face the discharge nozzle 210 and sucks surrounding gas.
  • the processing head 200 moves in a direction perpendicular to the line L1 from the position on the line L1 where the central axis of the processing head 200 is directed to the rotation center O of the workpiece W (holding member 110). It is moved to a position on the line L2 translated in the cutting direction by a predetermined distance D. This movement is performed in a plane perpendicular to the central axis of the holding member 110.
  • the cutting direction is the direction opposite to the rotation direction of the work W indicated by the arrow 230, that is, the upstream side in the rotation direction.
  • the predetermined distance D is set based on conditions such as the thickness of the workpiece W, the rotation speed, and the like so that the dross is less likely to adhere to the cut portion.
  • the parallel movement of the processing head 200 is performed by the parallel movement mechanism 240 and the control means 250.
  • the control means 250 acquires the distance D based on the thickness and the rotational speed of the workpiece W, and controls the parallel movement mechanism 240 to position the processing head 200 at the position of the distance D.
  • the parallel movement mechanism 240 guides the machining head 200 in a first direction parallel to the rotation axis of the workpiece W, and moves the first movement means 241 for moving the first movement means 241 perpendicular to the rotation axis. It is comprised by the 2nd moving means 242 which guides and moves to 2 directions. That is, the movement direction by the first movement means 241 is a direction along the rotation axis of the work W in FIG. 2 and perpendicular to the line L1, and the movement direction by the second movement means 242 is the rotation axis and the line The direction is perpendicular to L1.
  • the acquisition of the distance D is acquired based on a correspondence table configured from trial data obtained in advance by attempting to cut using various works W.
  • the trial data includes the material, thickness, and rotation speed of each workpiece W used in the trial, the inclination of the drag line generated on each workpiece W, the value of the distance D in each trial, and the height of the dross attached to the cut portion Is included.
  • the drag line is a layered line formed on the cut surface when the molten metal generated when cutting the work W with the laser light solidifies.
  • the slope of the drag line is related to the amount of dross attached to the cut portion by the laser light.
  • a correspondence table is configured. As the slope of at least one drag line included in the correspondence table, a value with a small amount of dross adhesion is adopted.
  • the correspondence table may correspond to the incident angle ⁇ of the laser beam corresponding to the distance D with respect to the work W instead of the distance D.
  • the holding member 110 when cutting the work W, first, the holding member 110 is inserted into the work W from the small diameter portion 111 side until the end of the work W contacts the large diameter portion 112. Next, the holding member 110 is connected to the connecting member 702. Thereby, the workpiece W is held by the cylindrical workpiece cutting device.
  • the first diameter change member 130 is displaced in the direction of the cover member 102 by turning the nuts 103 and 104.
  • the coil spring 160 is compressed.
  • the first diameter change member 130 and the second diameter change member 140 are deformed in the direction in which they approach each other, so the pressing member 120 can be formed via the conical surfaces of the first diameter change member 130 and the second diameter change member 140.
  • the diameter is expanded by receiving a force in the direction in which the diameter is expanded.
  • the inner wall of the holding member 110 is pressed by the side surface of the pressing member 120, and the diameter of the holding member 110 is enlarged. Thereby, the distortion of the work W is corrected.
  • the nuts 103 and 104 are turned in the opposite direction, and the first diameter changing member 130 and the second diameter changing member 140 are separated by the repulsive force of the coil spring 160 to slightly return the diameter of the pressing member 120 or It may be returned to the initial diameter.
  • the motor 400 is driven.
  • the workpiece W is rotated via the spindle 300.
  • the rotational speed of the workpiece W is controlled by the control means 250 described above, and is set to a speed along the circumferential direction of, for example, 30 to 200 m / min.
  • discharge of compressed air or the like from the discharge nozzle 210 and suction by the suction nozzle 220 are started. Further, the supply of compressed air as a cooling medium is started from an air supply source not shown.
  • the compressed air supplied from the air supply source is supplied to the first slit and the second slit of the holding member 110 via the socket for coupling 600 and the air supply passage 310, and is further supplied to the circumferential groove 170. Ru.
  • the supplied compressed air is at this clearance. Form an air film.
  • the side wall functions as a chiller excellent in cooling efficiency. Even when the diameter of the pressing member 120 is not returned, compressed air intrudes between the holding member 110 and the work W to form an air film.
  • the control means 250 mentioned above based on the material and thickness of the given work W, the required inclination of the drag line, and the rotational speed of the work W (holding member 110) grasped by itself.
  • the distance D is determined.
  • the parallel movement mechanism 240 is controlled to parallelly move the processing head 200 so that the position of the processing head 200 is on the line L2 separated by the distance D from the position on the line L1, as shown in FIG. .
  • the positions of the discharge nozzle 210 and the suction nozzle 220 are also adjusted.
  • the position of the processing head 200 in the axial direction of the workpiece W is set to a position where the laser beam is irradiated to the portion of the workpiece W located on the circumferential groove 170 on the most tip side of the holding member 110.
  • a laser beam is irradiated from the processing head 200 to the work W.
  • the temperature of the portion of the workpiece W irradiated with the laser beam rises and melts.
  • a layered line ie, the above-mentioned drag line, is formed on the work W along the laser beam.
  • a portion of the workpiece W is sublimated by the irradiation of the laser light, and a sublimated metal gas generated is aggregated and adheres to the cut portion or a molten metal adheres to the cut portion to cause dross Adhesion may occur.
  • the adhesion of the dross is caused by the air film formed between the holding member 110 and the work W, discharge of compressed air from the discharge nozzle 210, suction of the air film by the suction nozzle 220, suction of the compressed air, etc. Be suppressed.
  • FIGS. 3 and 4A show how the workpiece W is cut in this manner, as compared with the conventional case.
  • FIG. 3 shows the conventional case where the machining head 200 is located on the line L1 in FIG. 2
  • FIG. 4 (a) shows the case of the present embodiment where the machining head 200 is located on the line L2.
  • the laser beam 801 is perpendicularly incident on the workpiece W at an incident angle of 0 °.
  • the laser beam 801 acts to cut the workpiece W, and the portion where processing is in progress is inclined with respect to the surface of the workpiece W. For this reason, the length of the processing progress portion is relatively long, and accordingly, a relatively large amount of molten metal is generated, and the time for which the generated molten metal is retained in the cut portion 803 is also relatively long. Therefore, the molten metal becomes dross 802 and easily adheres to the cut portion 803 of the workpiece W. In addition, since the drag line is formed along the portion to be processed, in this case, the drag line forms an obtuse angle counterclockwise with respect to the cutting direction C.
  • the processing head 200 is located on the line L2 separated by a distance D from the line L1 in FIG. 2, and the laser light 801 is emitted along the line L2. Therefore, as shown in FIG. 4A, the laser beam 801 is incident on the work W at an incident angle ⁇ corresponding to the distance D. Note that N in the figure is a normal to the surface of the workpiece W.
  • the laser beam 801 acts, and the processing progressing part which is cutting the work W becomes substantially perpendicular to the work W. Therefore, compared with the conventional case of FIG. 3, the length of the processing progress portion is short. That is, the molten metal produced by processing is minimized, and the time for which the molten metal stays in the cut portion 803 is also minimized.
  • the molten metal is discharged as it is without giving a margin for attaching to the cut portion 803 as the dross 802. That is, the air film formed between the holding member 110 and the work W described above, discharge of compressed air and the like from the discharge nozzle 210, and suction of the air film and suction of compressed air and the like by the suction nozzle 220 make smooth. Will be discharged into
  • FIG. 4 (b) shows the cut surface 805 of the workpiece W when cut in this manner.
  • the broken line 804 in the drawing is a line along the drag line formed on the work W.
  • the angle of the drag line formed on the cut work W is substantially perpendicular to the surface of the work W as indicated by a broken line 804. Then, no dross adheres to the lower part of the cut surface 805.
  • FIG. 5 shows a comparative example to the present embodiment.
  • the same figure (a) shows a mode that the workpiece
  • the laser beam 801 acts, and the processing progress portion cutting the workpiece W is considerably inclined to the workpiece W.
  • a process progress part is long. That is, the amount of molten metal produced by processing increases, and the retention time in the cut portion 803 also increases. As a result, the molten metal becomes dross 802 and easily adheres to the cut portion 803.
  • FIG. 5 (b) shows the cut surface 806 of the workpiece W when it is cut in this manner.
  • a considerable amount of dross 802 adheres to the lower part of the cut surface 806.
  • the drag line forms an obtuse angle with the cutting direction C in a counterclockwise direction larger than in the case of FIG.
  • the processing head 200 When cutting of the first metal ring is completed, the processing head 200 is moved along the axial direction of the workpiece W so as to be positioned at a position corresponding to the next cutting position on the workpiece W. That is, the workpiece W located on the second circumferential groove 170 from the tip end side of the holding member 110 is moved to a position where the laser beam is irradiated. With the movement of the processing head 200, the positions of the discharge nozzle 210 and the suction nozzle 220 are also adjusted.
  • the laser beam is irradiated again in the same manner as described above, the work W is cut, and a second metal ring is formed.
  • the processing head 200 is sequentially positioned on the circumferential groove 170, and a metal ring is formed.
  • the position of the processing head 200 in the plane perpendicular to the axis of the workpiece W is always maintained at the position shown in FIG.
  • the position of the processing head 200 is moved in parallel to the upstream side in the rotational direction as described above so that the incident angle of the laser light to the work W becomes the predetermined angle ⁇ .
  • the length of the portion where the cutting process is in progress can be shortened by the irradiation of the laser beam 801.
  • the dross 802 generated by the cutting process can be reduced, and the time for which the dross stays in the cut portion can be shortened. Therefore, the dross 802 can be effectively prevented from adhering to the cut portion.
  • a method of rotating the processing head 200 and performing a swing operation may be considered.
  • the orientation and position of the processing head 200 are aligned with high accuracy to the position on the line L1 in FIG. 2 in which the irradiation direction of the laser light is the direction toward the rotation axis of the holding member 110.
  • the parallel movement of the processing head from this position to a position on the line L2 such that the incident angle ⁇ of the laser beam to the work W is a predetermined angle uses a mechanism with relatively high accuracy and inexpensiveness. Can be done.
  • the position of the processing head 200 corresponding to the thickness and rotational speed of the workpiece W is acquired, and the processing head 200 is moved in parallel to this position to irradiate the laser beam.
  • the workpiece W can be cut so as to produce a desired drag line inclination.
  • a metal ring without dross adhesion at the cut portion is manufactured, which is suitable for applications such as CVT belts Can be used as

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention minimizes adhesion of dross on a cut portion at the time of cutting a cylindrical work by laser beam irradiation. At the time of cutting a rotating cylindrical work (W) using a laser beam, a machining head (200) is displaced in parallel from a position on a line (L1), on which the laser beam travels toward the rotating axis of the work, to a position on a line (L2) in the upstream in the rotating direction of the work.

Description

円筒状ワーク切断装置及び金属リング製造方法Cylindrical work cutting apparatus and metal ring manufacturing method
 本発明は、金属製の円筒状のワークを切断する円筒状ワーク切断装置、及び金属製の円筒状のワークを切断して金属リングを形成する金属リング製造方法に関する。 The present invention relates to a cylindrical workpiece cutting apparatus for cutting a cylindrical workpiece made of metal, and a method for manufacturing a metal ring for cutting a cylindrical workpiece made of metal to form a metal ring.
 一般に、CVTベルト用の金属リングは、金属製薄板の両端縁を接合して得た円筒状のワークを周方向に切断することによって製造される(たとえば、特許文献1参照)。この文献においては、押し切り刃でワークを輪切りにすることにより、金属リングを形成するようにしている。 In general, a metal ring for a CVT belt is manufactured by circumferentially cutting a cylindrical work obtained by joining both end edges of a thin metal plate (see, for example, Patent Document 1). In this document, the metal ring is formed by rounding the work with a push-cutting blade.
 金属リングの製造に使用される装置として、レーザ光により切断加工を行うようにしたものも知られている(たとえば特許文献2及び3参照)。このような装置においては、金属製の円筒状のワークを円筒軸の周りに回転させながら、レーザ光を円筒軸の方向に向けてワークに照射することにより、ワークを切断するようにしている。 As an apparatus used for manufacture of a metal ring, what was made to cut-process by a laser beam is also known (for example, refer patent documents 2 and 3). In such an apparatus, the workpiece is cut by irradiating the workpiece with the laser beam directed in the direction of the cylindrical axis while rotating the metal cylindrical workpiece around the cylindrical axis.
特開2005-297074号公報Japanese Patent Application Publication No. 2005-297074 特公昭63-53912号公報Japanese Examined Patent Publication No. 63-53912 実開昭59-62879号公報Japanese Utility Model Publication No. 59-62879
 しかしながら、上述のレーザ光を用いた装置によれば、ワークを構成する金属がレーザ光の照射により溶融又は昇華することによって、ドロスが発生し、切断部分に付着するという問題がある。 However, according to the above-described apparatus using laser light, there is a problem that dross occurs due to melting or sublimation of the metal constituting the work by the irradiation of the laser light, and the dross adheres to the cut portion.
 従来、冷却媒体の供給により溶融金属の発生を抑制したり、昇華ガスを吸引したりすることにより、ドロスの発生や付着を防止するための工夫がなされている。しかし、それでもドロスの付着が問題となる場合があり、より確実にドロスの付着を防止することが望まれている。 Heretofore, measures have been made to prevent the generation or adhesion of dross by suppressing the generation of molten metal or supplying a cooling medium or by sucking the sublimation gas. However, the adhesion of dross may still be a problem, and it is desirable to more reliably prevent the adhesion of dross.
 本発明の目的は、このような従来技術の問題点に鑑み、円筒状のワークをレーザ光の照射により切断するに際して、ドロスが切断部分に付着するのを極力防止することにある。 An object of the present invention is to prevent dross from adhering to a cut portion as much as possible when cutting a cylindrical work by irradiation of a laser beam.
 この目的を達成するため、本発明に係る円筒状ワーク切断装置は、金属製の円筒状のワークをその円筒軸の周りに回転させる回転手段と、前記回転手段により回転されているワークを切断するために、該ワークに対してレーザ光を照射する加工ヘッドと、前記加工ヘッドの位置を、該加工ヘッドによるレーザ光の照射方向が前記回転手段による回転軸に向かうときの該加工ヘッドの位置から、該回転手段による回転方向の上流側へ平行移動させる平行移動手段と、前記平行移動手段を制御する制御手段とを備え、前記制御手段は、前記平行移動手段による平行移動に際し、前記回転手段により回転されているワークに対するレーザ光の入射角度が所定の角度となる位置に前記加工ヘッドが位置するように、前記平行移動手段を制御することを特徴とする。 In order to achieve this object, the cylindrical work cutting apparatus according to the present invention cuts a rotating means for rotating a metal cylindrical work around its cylindrical axis, and cuts the work rotated by the rotating means. In order to achieve this, the processing head for irradiating the workpiece with laser light, the position of the processing head, and the position of the processing head when the direction of laser light irradiation by the processing head is directed to the rotation axis by the rotating means And parallel control means for parallelly moving in the upstream direction of the rotation direction by the rotation means, and control means for controlling the parallel movement means, wherein the control means performs the parallel movement by the parallel movement means by the rotation means. Controlling the translation means so that the processing head is positioned at a position where the incident angle of the laser beam to the workpiece being rotated is a predetermined angle And features.
 これによれば、加工ヘッドの位置を、上述のように回転方向の上流側へ平行移動させ、ワークに対するレーザ光の入射角度が所定角度となるようにすることによって、レーザ光の照射により切断加工が進行している部分の長さを短縮することができる。これにより、切断加工で発生するドロスを減少させ、かつドロスが切断部分に滞留する時間を短縮することができる。したがって、ドロスが切断部分に付着するのを効果的に防止することができる。 According to this, the position of the processing head is moved in parallel to the upstream side in the rotational direction as described above, and the incident angle of the laser light to the workpiece is set to a predetermined angle, whereby the cutting process is performed by the laser light irradiation. Can shorten the length of the part where the Thereby, the dross generated in the cutting process can be reduced, and the time for which the dross stays in the cut portion can be shortened. Therefore, the dross can be effectively prevented from adhering to the cut portion.
 ここで、ワークに対するレーザ光の入射角度が所定角度となるようにするためには、加工ヘッドを、一定の中心の周りに回転させる方法も考えられる。しかしながら、これによれば、不可避的に発生する加工ヘッドの回転角度の調整誤差が、回転の中心から離れるほど拡大されるので、繰り返し高い精度で入射角度が所定角度となるように加工ヘッドの回転角度を制御するのは困難である。 Here, in order to make the incident angle of the laser beam to the workpiece be a predetermined angle, a method of rotating the processing head around a fixed center is also conceivable. However, according to this, since the adjustment error of the rotation angle of the processing head which occurs unavoidably is enlarged as it goes away from the center of rotation, the rotation of the processing head is repeated so that the incident angle becomes a predetermined angle with high accuracy. It is difficult to control the angle.
 この点、加工ヘッドの向き及び位置を、レーザ光の照射方向が回転手段の回転軸に向かう方向となる位置に高い精度で合わせておくことにより、本発明に従い、この位置から加工ヘッドを、ワークに対するレーザ光の入射角度が所定角度となるような位置に平行移動することは、比較的高い精度で行うことができる。また、このような平行移動を行うための機構は、比較的安価である。 In this respect, by aligning the direction and position of the processing head with a position where the irradiation direction of the laser light is the direction toward the rotation axis of the rotating means with high accuracy, the processing head can be processed from this position according to the present invention. Parallel movement to such a position that the incident angle of the laser light with respect to X is a predetermined angle can be performed with relatively high accuracy. Also, the mechanism for performing such translation is relatively inexpensive.
 また、本発明はさらに、前記制御手段は、前記回転手段によるワークの回転の速度を制御するものであり、各種材料による前記ワーク毎に、該ワークに形成されるドラグラインの傾き角度と、各傾き角度に対応する該ワークの厚み及び回転速度、並びに前記所定の入射角度に相当する加工ヘッドの位置とを関連付けたデータを記憶しており、前記平行移動手段の制御に際しては、該データに基づいて、前記回転手段により回転されているワークの厚み及び回転速度に対応する加工ヘッドの位置を取得し、該位置に前記加工ヘッドが位置するように、前記平行移動手段を制御するものであることを特徴とする。 Furthermore, according to the present invention, the control means controls the speed of rotation of the work by the rotation means, and for each work made of various materials, the inclination angle of the drag line formed on the work, and Data associated with the thickness and rotational speed of the workpiece corresponding to the tilt angle and the position of the processing head corresponding to the predetermined incident angle is stored, and the control of the parallel movement means is based on the data The position of the processing head corresponding to the thickness and rotational speed of the workpiece being rotated is obtained by the rotation means, and the parallel movement means is controlled so that the processing head is positioned at the position. It is characterized by
 これによれば、上述のデータに基づいて、ワークの厚み及び回転速度に対応する加工ヘッドの位置を取得し、この位置に加工ヘッドを平行移動させてレーザ光の照射を行うことにより、該ワークの材料に応じた所望のドラグラインの傾きが生じるようなワークの切断を行うことができる。なお、ドラグラインとは、レーザ光によりワークWを切断するときに発生した溶融金属が凝固するときに切断面に形成される層状の線である。ドラグラインの傾きは、レーザ光による切断部分へのドロスの付着量に関係する。 According to this, based on the above data, the position of the processing head corresponding to the thickness and rotational speed of the work is obtained, the processing head is moved in parallel to this position, and the work is irradiated by irradiating the laser light. The workpiece can be cut such that a desired drag line inclination occurs depending on the material. The drag line is a layered line formed on the cut surface when the molten metal generated when cutting the work W with the laser light solidifies. The slope of the drag line is related to the amount of dross attached to the cut portion by the laser light.
 本発明に係る金属リング製造方法は、金属製の円筒状のワークを、保持部材により内面を支持して保持する保持工程と、前記保持部材により保持されたワークを、前記保持部材を回転させることにより該ワークの円筒軸の周りに所定の回転速度で回転させる回転工程と、前記保持部材により保持されたワークの厚み及び回転速度に応じて定められた位置に、該ワークの回転方向の上流側へ、加工ヘッドを平行移動させる移動工程と、前記回転工程により回転しているワークに対し、前記移動工程により平行移動された加工ヘッドからレーザ光を照射することにより、該ワークを切断して金属リングを形成する切断工程とを具備することを特徴とする。 In the metal ring manufacturing method according to the present invention, a holding step of holding a metal cylindrical work by supporting the inner surface by a holding member, and rotating the work held by the holding member. And rotating at a predetermined rotational speed around the cylindrical axis of the workpiece, and at a position determined according to the thickness and rotational speed of the workpiece held by the holding member, the upstream side of the rotational direction of the workpiece The workpiece is cut by irradiating a laser beam from the processing head moved in parallel in the moving step to the moving step in which the processing head is moved in parallel, and the workpiece being rotated in the rotating step. And a cutting step of forming a ring.
 これによれば、上述の円筒状ワーク切断装置の場合と同様に、ドロスが切断部分に付着するのを効果的に防止することができる。また、ワークに対するレーザ光の入射角度が所定角度となるような位置に対し、簡便な平行移動機構を用い、比較的高い精度で平行移動させることができる。 According to this, as in the case of the above-mentioned cylindrical work cutting device, it is possible to effectively prevent the dross from adhering to the cut portion. Further, parallel movement with relatively high accuracy can be performed using a simple parallel movement mechanism at a position where the incident angle of the laser light to the work becomes a predetermined angle.
本発明の一実施形態に係る円筒状ワーク切断装置の一部断面図である。It is a partial cross section figure of a cylindrical work cutting device concerning one embodiment of the present invention. 図1の装置における加工ヘッドと円筒状ワークとの位置関係を示す図である。It is a figure which shows the positional relationship of the process head and cylindrical work in the apparatus of FIG. 図2のラインL1上に加工ヘッドが位置する場合にワークWが切断される様子を示す図である。It is a figure which shows a mode that the workpiece | work W is cut | disconnected when a process head is located on the line L1 of FIG. 図2のラインL2上に加工ヘッドが位置する場合にワークWが切断される様子及びその切断の結果を示す図である。It is a figure which shows a mode that the workpiece | work W is cut | disconnected when the process head is located on the line L2 of FIG. 2, and the result of the cutting | disconnection. 図4の場合と逆の方向からレーザ光を入射させる場合にワークWが切断される様子及びその切断の結果を示す図である。It is a figure which shows a mode that the workpiece | work W is cut | disconnected when entering a laser beam from the reverse direction to the case of FIG. 4, and the result of the cutting | disconnection.
 以下、図面を用いて本発明の実施形態について説明する。図1は本発明の一実施形態に係る円筒状ワーク切断装置の一部断面図である。同図に示すように、この装置は、円筒状ワークWを保持してその円筒軸の周りに回転可能な保持部100と、保持部100により回転されるワークWに対しレーザ光を照射する加工ヘッド200と、保持部100の基端側に連結されたスピンドル300と、スピンドル300を回転させるモータ400とを備える。 Hereinafter, embodiments of the present invention will be described using the drawings. FIG. 1 is a partial cross-sectional view of a cylindrical workpiece cutting apparatus according to an embodiment of the present invention. As shown in the figure, this apparatus holds a cylindrical work W and performs processing to irradiate a laser beam to the holding portion 100 which can rotate around its cylindrical axis and the work W rotated by the holding portion 100. A head 200, a spindle 300 connected to the base end side of the holding unit 100, and a motor 400 for rotating the spindle 300 are provided.
 円筒状ワーク切断装置はさらに、モータ400及びスピンドル300間における動力伝達を行うタイミングベルト500と、保持部100内部に圧縮エアを、スピンドル300を介して供給するための管継手用ソケット600とを備える。なお、本実施形態のモータ400、スピンドル300、保持部100等により本発明における回転手段が構成される。 The cylindrical workpiece cutting apparatus further includes a timing belt 500 for transmitting power between the motor 400 and the spindle 300, and a pipe joint socket 600 for supplying compressed air to the inside of the holding unit 100 via the spindle 300. . The motor 400, the spindle 300, the holding unit 100 and the like of the present embodiment constitute a rotating means in the present invention.
 ワークWは矩形状の金属製薄板の両端を接合して円筒状に形成したものである。これを円筒状ワーク切断装置によって所定幅毎に切断することにより、CVT用金属ベルトが製造される。金属製薄板としては、たとえば、厚さが0.3~0.4mm程度のマルエージング鋼が用いられる。 The workpiece W is formed in a cylindrical shape by joining both ends of a rectangular metal thin plate. The metal belt for CVT is manufactured by cutting this for every predetermined width with a cylindrical work cutting device. As the metal thin plate, for example, maraging steel having a thickness of about 0.3 to 0.4 mm is used.
 保持部100は、ワークWの内面に接してワークWを支持するほぼ円筒形状の保持部材110と、保持部材110の内壁を押圧するほぼ円筒状の押圧部材120と、押圧部材120の径を変化させるための円錐面131及び141をそれぞれ有する第1径変化部材130及び第2径変化部材140と、第1径変化部材130及び第2径変化部材140間の位置関係を調整するための連結バー150及びコイルスプリング160とを備える。 The holding unit 100 changes the diameters of a substantially cylindrical holding member 110 that supports the workpiece W in contact with the inner surface of the workpiece W, a substantially cylindrical pressing member 120 that presses the inner wall of the holding member 110, and the pressure member 120 Connecting bar for adjusting the positional relationship between the first diameter changing member 130 and the second diameter changing member 140 having the conical surfaces 131 and 141 for causing the movement, and the first diameter changing member 130 and the second diameter changing member 140 And 150 and a coil spring 160.
 保持部材110にはその円筒軸方向に沿った図示していない第1スリットが基端側から先端近傍まで形成されている。また、同様の第2スリットが先端側から基端近傍まで形成されている。第1スリット及び第2スリットは同数が交互に配置されており、これにより保持部材110は弾性的に径が伸縮自在となっている。 The holding member 110 is formed with a first slit (not shown) along the direction of the cylinder axis from the proximal end side to the vicinity of the distal end. Further, the same second slit is formed from the distal end side to the vicinity of the proximal end. The same number of first slits and second slits are alternately arranged, whereby the holding member 110 is elastically expandable in diameter.
 保持部材110にはまた、所定間隔で周方向に複数の周方向溝170が設けられる。各周方向溝170は上述の第1スリット及び第2スリットと交差する。保持部材110はスピンドル300の先端に固定された2つの円環状の連結部材701及び702を介してスピンドル300に連結される。連結部材702の保持部材110側の端部には、環状の挿入口702aが設けられる。 The holding member 110 is also provided with a plurality of circumferential grooves 170 in the circumferential direction at predetermined intervals. Each circumferential groove 170 intersects the first slit and the second slit described above. The holding member 110 is connected to the spindle 300 via two annular coupling members 701 and 702 fixed to the tip of the spindle 300. An annular insertion port 702 a is provided at an end of the connection member 702 on the holding member 110 side.
 保持部材110の基端近傍は、ワークWを支持する支持面よりも径が小さな小径部111となっている。保持部材110は、小径部111が連結部材702の挿入口702aに嵌合され、連結部材702に固定される。保持部材110の先端近傍は、ワークWを支持する支持面よりも径が大きな大径部112となっている。 In the vicinity of the base end of the holding member 110, a small diameter portion 111 having a diameter smaller than that of the support surface for supporting the work W is formed. The small diameter portion 111 of the holding member 110 is fitted in the insertion port 702 a of the connecting member 702, and is fixed to the connecting member 702. In the vicinity of the tip of the holding member 110, a large diameter portion 112 having a diameter larger than that of the support surface for supporting the workpiece W is formed.
 押圧部材120の外周面は保持部材110の内壁を押圧し得るように、該内壁に対向している。押圧部材120の基端側の内側には、第1径変化部材130の円錐面131に対応する円錐面121が設けられている。押圧部材120の先端側の内側には、第2径変化部材140の円錐面141に対応する円錐面122が設けられている。円錐面121及び122はいずれも頂部側が押圧部材120の中心に向いている。 The outer circumferential surface of the pressing member 120 faces the inner wall so as to press the inner wall of the holding member 110. A conical surface 121 corresponding to the conical surface 131 of the first diameter change member 130 is provided inside the proximal end side of the pressing member 120. A conical surface 122 corresponding to the conical surface 141 of the second diameter change member 140 is provided inside the tip side of the pressing member 120. The conical surfaces 121 and 122 both face the center toward the center of the pressing member 120.
 押圧部材120には、その円筒軸方向に沿った図示していない基端側スリットが基端側端面から先端近傍まで形成されている。また、同様の先端側スリットが先端側端面から基端近傍まで形成されている。基端側スリット及び先端側スリットは同数、たとえば2つずつが交互に配置されており、これにより押圧部材120は弾性的に径が伸縮自在となっている。 The pressing member 120 is formed with a proximal slit (not shown) along the cylindrical axis direction from the proximal end surface to the vicinity of the tip. Further, the same distal end side slit is formed from the distal end side end face to the vicinity of the proximal end. The proximal slit and the distal slit are alternately arranged in the same number, for example, two each, so that the diameter of the pressing member 120 is elastically expandable.
 第1径変化部材130は基端側の円柱状の部分と、その先端側に位置し、円錐面131を有する円錐台部分とを備える。該円柱状部分の径と、該円錐台部分の底面の径は同一であり、両部分は段差なく接続している。第1径変化部材130の中心軸上において連結バー150が貫通している。第1径変化部材130の基端部に連結バー150の基端部が固定されている。 The first diameter change member 130 includes a proximal cylindrical portion and a truncated conical portion located on the distal end side and having a conical surface 131. The diameter of the cylindrical portion and the diameter of the bottom surface of the truncated cone portion are the same, and both portions are connected without any step. The connecting bar 150 penetrates on the central axis of the first diameter change member 130. The proximal end of the connecting bar 150 is fixed to the proximal end of the first diameter change member 130.
 第2径変化部材140は円錐台状の形状を有し、円錐面141を形成している。第2径変化部材140の中心軸上において連結バー150が貫通している。コイルスプリング160は第1径変化部材130の円錐台部分の頂部と、円錐台状の第2径変化部材140の頂部との間に介在し、両者が離れる方向に付勢している。コイルスプリング160内を連結バー150が通っている。 The second diameter change member 140 has a truncated cone shape and forms a conical surface 141. The connecting bar 150 penetrates on the central axis of the second diameter change member 140. The coil spring 160 is interposed between the top of the frusto-conical portion of the first diameter change member 130 and the top of the second diameter change member 140 having a frusto-conical shape, and both are biased in the direction away from each other. The connection bar 150 passes through the inside of the coil spring 160.
 円錐台状の第2径変化部材140の底面には、保持部材110の内径に対応する径を有する円盤部材101が固定される。円盤部材101の外側には円盤状のカバー部材102が固定される。カバー部材102の径は保持部材110の内径よりも大きい。したがってカバー部材102は常に保持部材110の端面上に位置する。 The disk member 101 having a diameter corresponding to the inner diameter of the holding member 110 is fixed to the bottom surface of the second diameter change member 140 having a truncated cone shape. A disc-like cover member 102 is fixed to the outside of the disc member 101. The diameter of the cover member 102 is larger than the inner diameter of the holding member 110. Therefore, the cover member 102 is always located on the end face of the holding member 110.
 円盤部材101及びカバー部材102の中心を連結バー150が貫通している。カバー部材102の外側に隣接する連結バー150部分に嵌合する2つのナット103及び104により、カバー部材102に対する第1径変化部材130の位置を調整することができるようになっている。 A connecting bar 150 passes through the center of the disk member 101 and the cover member 102. The position of the first diameter change member 130 with respect to the cover member 102 can be adjusted by the two nuts 103 and 104 fitted to the connecting bar 150 portion adjacent to the outside of the cover member 102.
 スピンドル300は基盤301上において、支持部材302により支持される。支持部材302とスピンドル300との間にはベアリング303が介在する。これにより、スピンドル300はその回転軸の回りに回転自在となっている。 The spindle 300 is supported by the support member 302 on the base 301. A bearing 303 intervenes between the support member 302 and the spindle 300. Thus, the spindle 300 is rotatable around its rotation axis.
 スピンドル300には保持部100にエアを供給するための貫通孔311が中心軸上に設けられる。第1径変化部材130の円柱状部分と、スピンドル300、第1連結部材701、第2連結部材702、及び保持部材110の基端部との間には隙間が形成されている。貫通孔311はこの隙間に接続している。これにより、スピンドル300の貫通孔311から保持部材110の第1スリット及び第2スリットに通じるエア供給路310が形成されている。 The spindle 300 is provided with a through hole 311 for supplying air to the holding portion 100 on the central axis. A gap is formed between the cylindrical portion of the first diameter change member 130 and the proximal end of the spindle 300, the first connecting member 701, the second connecting member 702, and the holding member 110. The through hole 311 is connected to this gap. Thus, an air supply passage 310 is formed which leads from the through hole 311 of the spindle 300 to the first slit and the second slit of the holding member 110.
 モータ400の回転軸及びスピンドル300にはそれぞれプーリ401及び304が設けられる。タイミングベルト500はプーリ401及び304間に掛け渡される。これによりスピンドル300はモータ400の回転に応じて回転するようになっている。 The rotation shaft of the motor 400 and the spindle 300 are provided with pulleys 401 and 304, respectively. The timing belt 500 is stretched between the pulleys 401 and 304. Thus, the spindle 300 rotates in response to the rotation of the motor 400.
 管継手用ソケット600は、図示していない送気管が管継手610を介して接続される本体部620と、本体部620に接続したソケット部630とを備える。ソケット部630は、保持部100とは反対側の貫通孔311の端部に挿入される。図示していない送気管は、冷却媒体としての圧縮エアを供給する圧縮エア供給源に接続される。 The fitting socket 600 includes a main body portion 620 to which a not-shown feed pipe is connected via a fitting 610, and a socket portion 630 connected to the main body portion 620. The socket portion 630 is inserted into the end of the through hole 311 opposite to the holding portion 100. The air supply pipe not shown is connected to a compressed air supply that supplies compressed air as a cooling medium.
 図2は加工ヘッド200とワークWとの位置関係を示す図である。図中の210はアルゴンガスや窒素ガス、圧縮エア等を吐出する吐出ノズル、220は吐出ノズル210に対向するように配置され、周囲のガスを吸引する吸引ノズルである。 FIG. 2 is a view showing the positional relationship between the processing head 200 and the work W. As shown in FIG. In the figure, reference numeral 210 denotes a discharge nozzle for discharging argon gas, nitrogen gas, compressed air and the like, and reference numeral 220 denotes a suction nozzle which is disposed to face the discharge nozzle 210 and sucks surrounding gas.
 加工ヘッド200は、ワークWの切断加工を施す際には、加工ヘッド200の中心軸がワークW(保持部材110)の回転中心Oに向かうラインL1上の位置から、ラインL1に垂直な方向に所定の距離Dだけ、切断方向に平行移動したラインL2上の位置に移動される。この移動は、保持部材110の中心軸に垂直な面内において行われる。 When cutting the workpiece W, the processing head 200 moves in a direction perpendicular to the line L1 from the position on the line L1 where the central axis of the processing head 200 is directed to the rotation center O of the workpiece W (holding member 110). It is moved to a position on the line L2 translated in the cutting direction by a predetermined distance D. This movement is performed in a plane perpendicular to the central axis of the holding member 110.
 なお、切断方向は、矢印230で示されるワークWの回転方向とは反対側の方向、すなわち回転方向の上流側となる。 The cutting direction is the direction opposite to the rotation direction of the work W indicated by the arrow 230, that is, the upstream side in the rotation direction.
 所定距離DはワークWの厚み、回転速度等の条件に基づき、切断部分にドロスが付着しにくいように設定される。加工ヘッド200の平行移動は平行移動機構240及び制御手段250により行われる。制御手段250は、ワークWの厚みや回転速度に基づき、距離Dを取得し、平行移動機構240を制御して、加工ヘッド200を距離Dの位置に位置させる。 The predetermined distance D is set based on conditions such as the thickness of the workpiece W, the rotation speed, and the like so that the dross is less likely to adhere to the cut portion. The parallel movement of the processing head 200 is performed by the parallel movement mechanism 240 and the control means 250. The control means 250 acquires the distance D based on the thickness and the rotational speed of the workpiece W, and controls the parallel movement mechanism 240 to position the processing head 200 at the position of the distance D.
 平行移動機構240は、加工ヘッド200をワークWの回転軸に平行な第1の方向に案内し、移動させる第1の移動手段241と、第1の移動手段241を該回転軸に垂直な第2の方向に案内し、移動させる第2の移動手段242とにより構成される。すなわち、第1の移動手段241による移動方向は図2におけるワークWの回転軸に沿った方向でかつラインL1に垂直な方向となり、第2の移動手段242による移動方向は、該回転軸及びラインL1に垂直な方向となる。 The parallel movement mechanism 240 guides the machining head 200 in a first direction parallel to the rotation axis of the workpiece W, and moves the first movement means 241 for moving the first movement means 241 perpendicular to the rotation axis. It is comprised by the 2nd moving means 242 which guides and moves to 2 directions. That is, the movement direction by the first movement means 241 is a direction along the rotation axis of the work W in FIG. 2 and perpendicular to the line L1, and the movement direction by the second movement means 242 is the rotation axis and the line The direction is perpendicular to L1.
 距離Dの取得は、予め各種のワークWを用いて切断を試行することにより得られた試行データから構成した対応テーブルに基づいて取得される。試行データには、試行に使用した各ワークWの材料、厚み、及び回転速度、各ワークWに生じたドラグラインの傾き、各試行時における距離Dの値、さらに切断部分に付着したドロスの高さ等が含まれる。 The acquisition of the distance D is acquired based on a correspondence table configured from trial data obtained in advance by attempting to cut using various works W. The trial data includes the material, thickness, and rotation speed of each workpiece W used in the trial, the inclination of the drag line generated on each workpiece W, the value of the distance D in each trial, and the height of the dross attached to the cut portion Is included.
 なお、ドラグラインとは、レーザ光によりワークWを切断するときに発生した溶融金属が凝固するときに切断面に形成される層状の線である。ドラグラインの傾きは、レーザ光による切断部分へのドロスの付着量に関係する。 The drag line is a layered line formed on the cut surface when the molten metal generated when cutting the work W with the laser light solidifies. The slope of the drag line is related to the amount of dross attached to the cut portion by the laser light.
 試行データに基づき、各ワークWの材料毎に、少なくとも1つのドラグラインの傾き、並びに該傾きに対応するワークWの厚み、保持部材110(ワークW)の回転速度、及び距離Dを対応付けた対応テーブルが構成される。対応テーブルに含められる少なくとも1つのドラグラインの傾きとしては、ドロスの付着量が少なかった値が採用される。なお、対応テーブルは、距離Dの代わりに、距離Dに対応するレーザ光のワークWに対する入射角度θを対応付けたものであってもよい。 Based on the trial data, for each material of each work W, the inclination of at least one drag line, and the thickness of the work W corresponding to the inclination, the rotational speed of the holding member 110 (work W), and the distance D are associated. A correspondence table is configured. As the slope of at least one drag line included in the correspondence table, a value with a small amount of dross adhesion is adopted. The correspondence table may correspond to the incident angle θ of the laser beam corresponding to the distance D with respect to the work W instead of the distance D.
 この構成において、ワークWの切断加工を行う際には、まず、ワークWに対し、保持部材110を小径部111側から、ワークWの端部が大径部112に接するまで挿入する。次に、保持部材110を連結部材702に対して連結させる。これにより、ワークWが円筒状ワーク切断装置により保持される。 In this configuration, when cutting the work W, first, the holding member 110 is inserted into the work W from the small diameter portion 111 side until the end of the work W contacts the large diameter portion 112. Next, the holding member 110 is connected to the connecting member 702. Thereby, the workpiece W is held by the cylindrical workpiece cutting device.
 次に、ナット103及び104を回すことにより、第1径変化部材130をカバー部材102の方向に変位させる。これに伴ってコイルスプリング160が圧縮される。これにより、第1径変化部材130及び第2径変化部材140は相互に近接する方向に変異するので、押圧部材120は第1径変化部材130及び第2径変化部材140の円錐面を介して径が拡大する方向への力を受けて、径が拡大する。 Next, the first diameter change member 130 is displaced in the direction of the cover member 102 by turning the nuts 103 and 104. Along with this, the coil spring 160 is compressed. As a result, the first diameter change member 130 and the second diameter change member 140 are deformed in the direction in which they approach each other, so the pressing member 120 can be formed via the conical surfaces of the first diameter change member 130 and the second diameter change member 140. The diameter is expanded by receiving a force in the direction in which the diameter is expanded.
 押圧部材120の径が拡大すると、保持部材110の内壁が、押圧部材120の側面により押圧され、保持部材110の径が拡大する。これにより、ワークWの歪みが矯正される。この後、ナット103及び104を逆方向に回し、コイルスプリング160の反発力により第1径変化部材130及び第2径変化部材140を離間させて、押圧部材120の径を若干元に戻し、又は初期の径に戻すようにしてもよい。 When the diameter of the pressing member 120 is enlarged, the inner wall of the holding member 110 is pressed by the side surface of the pressing member 120, and the diameter of the holding member 110 is enlarged. Thereby, the distortion of the work W is corrected. After that, the nuts 103 and 104 are turned in the opposite direction, and the first diameter changing member 130 and the second diameter changing member 140 are separated by the repulsive force of the coil spring 160 to slightly return the diameter of the pressing member 120 or It may be returned to the initial diameter.
 次に、モータ400が駆動される。これにより、スピンドル300を介してワークWが回転される。ワークWの回転速度は、上述の制御手段250により制御され、たとえば30~200m/分の周方向に沿った速度に設定される。これと同時に、吐出ノズル210から圧縮エア等の吐出、及び吸引ノズル220による吸引が開始される。また、図示していないエア供給源からは、冷却媒体としての圧縮エアの供給が開始される。 Next, the motor 400 is driven. Thereby, the workpiece W is rotated via the spindle 300. The rotational speed of the workpiece W is controlled by the control means 250 described above, and is set to a speed along the circumferential direction of, for example, 30 to 200 m / min. At the same time, discharge of compressed air or the like from the discharge nozzle 210 and suction by the suction nozzle 220 are started. Further, the supply of compressed air as a cooling medium is started from an air supply source not shown.
 エア供給源から供給される圧縮エアは、管継手用ソケット600及びエア供給路310を介して、保持部材110の第1スリット及び第2スリットに供給され、さらには、周方向溝170に供給される。このとき、上述の押圧部材120の径の戻しが行われていた場合には、保持部材110とワークWとの間には若干のクリアランスが存在するので、供給される圧縮エアは、このクリアランスにおいて空気膜を形成する。 The compressed air supplied from the air supply source is supplied to the first slit and the second slit of the holding member 110 via the socket for coupling 600 and the air supply passage 310, and is further supplied to the circumferential groove 170. Ru. At this time, in the case where the diameter of the pressing member 120 described above is returned, a slight clearance exists between the holding member 110 and the work W, so the supplied compressed air is at this clearance. Form an air film.
 また、このようにして保持部材110の側壁に圧縮エアが到達することにより、該側壁が冷却効率に優れた冷やし金として機能する。なお、上述の押圧部材120の径の戻しが行われていなかった場合でも、圧縮エアが保持部材110とワークWとの間に侵入し、空気膜を形成する。 In addition, when the compressed air reaches the side wall of the holding member 110 in this manner, the side wall functions as a chiller excellent in cooling efficiency. Even when the diameter of the pressing member 120 is not returned, compressed air intrudes between the holding member 110 and the work W to form an air film.
 これに応じ、制御手段250は、与えられているワークWの材料と厚み、及び要求されるドラグラインの傾き、並びに自身が把握しているワークW(保持部材110)の回転速度に基づき、上述の対応テーブルを参照し、距離Dを求める。そして、平行移動機構240を制御し、図2のように、加工ヘッド200の位置が、ラインL1上の位置から距離Dだけ離れたラインL2上の位置となるように加工ヘッド200を平行移動させる。これに伴い、吐出ノズル210及び吸引ノズル220の位置も、調整される。 According to this, the control means 250 mentioned above based on the material and thickness of the given work W, the required inclination of the drag line, and the rotational speed of the work W (holding member 110) grasped by itself. Referring to the correspondence table of, the distance D is determined. Then, the parallel movement mechanism 240 is controlled to parallelly move the processing head 200 so that the position of the processing head 200 is on the line L2 separated by the distance D from the position on the line L1, as shown in FIG. . Along with this, the positions of the discharge nozzle 210 and the suction nozzle 220 are also adjusted.
 このとき、ワークWの軸方向における加工ヘッド200の位置は、保持部材110の最も先端側の周方向溝170上に位置するワークW部分に対してレーザ光が照射される位置に設定される。次に、加工ヘッド200からワークWに対し、レーザ光が照射される。レーザ光が照射されたワークWの部分は温度が上昇して溶融する。 At this time, the position of the processing head 200 in the axial direction of the workpiece W is set to a position where the laser beam is irradiated to the portion of the workpiece W located on the circumferential groove 170 on the most tip side of the holding member 110. Next, a laser beam is irradiated from the processing head 200 to the work W. The temperature of the portion of the workpiece W irradiated with the laser beam rises and melts.
 これにより、ワークWの最も先端側の部分が、1つ目の金属リングとして、他の部分から切り離される。なお、切断の最中に発生した溶融金属が凝固するときに、レーザ光に沿ってワークWに層状の線、すなわち上述のドラグラインが形成される。 Thereby, the most distal end portion of the work W is separated from the other portions as the first metal ring. When the molten metal generated during cutting solidifies, a layered line, ie, the above-mentioned drag line, is formed on the work W along the laser beam.
 このレーザ光による切断に際しては、レーザ光の照射によりワークWの一部が昇華して発生する昇華金属ガスが凝集して切断部分に付着したり、溶融金属が切断部分に付着したりしてドロスの付着が発生するおそれがある。かかるドロスの付着は、保持部材110とワークWとの間に形成される空気膜や、吐出ノズル210からの圧縮エア等の吐出、吸引ノズル220による該空気膜の吸引や圧縮エア等の吸引により抑制される。 At the time of cutting by this laser light, a portion of the workpiece W is sublimated by the irradiation of the laser light, and a sublimated metal gas generated is aggregated and adheres to the cut portion or a molten metal adheres to the cut portion to cause dross Adhesion may occur. The adhesion of the dross is caused by the air film formed between the holding member 110 and the work W, discharge of compressed air from the discharge nozzle 210, suction of the air film by the suction nozzle 220, suction of the compressed air, etc. Be suppressed.
 図3及び図4(a)はこのようにしてワークWが切断される様子を、従来の場合と比較して示す。図3は加工ヘッド200が図2におけるラインL1上に位置する従来の場合の様子であり、図4(a)は加工ヘッド200がラインL2上に位置する本実施形態の場合である。図3の従来の場合、レーザ光801はワークWに対し、入射角度0°で、垂直に入射する。 FIGS. 3 and 4A show how the workpiece W is cut in this manner, as compared with the conventional case. FIG. 3 shows the conventional case where the machining head 200 is located on the line L1 in FIG. 2, and FIG. 4 (a) shows the case of the present embodiment where the machining head 200 is located on the line L2. In the conventional case of FIG. 3, the laser beam 801 is perpendicularly incident on the workpiece W at an incident angle of 0 °.
 図3の従来の場合、レーザ光801が作用してワークWを切断し、加工が進行している部分は、ワークWの表面に対して傾斜している。このため、該加工進行部分の長さは比較的長く、その分、溶融金属が比較的多く発生し、発生した溶融金属が切断部分803に滞留する時間も比較的長い。したがって、溶融金属がドロス802となってワークWの切断部分803に付着し易い。なお、ドラグラインは加工進行部分に沿って形成されるので、この場合、ドラグラインは切断方向Cに対し、反時計回りで鈍角を成す。 In the conventional case of FIG. 3, the laser beam 801 acts to cut the workpiece W, and the portion where processing is in progress is inclined with respect to the surface of the workpiece W. For this reason, the length of the processing progress portion is relatively long, and accordingly, a relatively large amount of molten metal is generated, and the time for which the generated molten metal is retained in the cut portion 803 is also relatively long. Therefore, the molten metal becomes dross 802 and easily adheres to the cut portion 803 of the workpiece W. In addition, since the drag line is formed along the portion to be processed, in this case, the drag line forms an obtuse angle counterclockwise with respect to the cutting direction C.
 これに対し、本実施形態の場合、加工ヘッド200が図2のラインL1から距離Dだけ離れたラインL2上に位置し、ラインL2に沿ってレーザ光801が照射される。このため、図4(a)のように、レーザ光801はワークWに対し、距離Dに応じた入射角度θで入射する。なお、図中のNはワークWの表面に対する法線である。 On the other hand, in the case of the present embodiment, the processing head 200 is located on the line L2 separated by a distance D from the line L1 in FIG. 2, and the laser light 801 is emitted along the line L2. Therefore, as shown in FIG. 4A, the laser beam 801 is incident on the work W at an incident angle θ corresponding to the distance D. Note that N in the figure is a normal to the surface of the workpiece W.
 この場合、レーザ光801が作用し、ワークWを切断している加工進行部分は、ワークWに対してほぼ垂直となる。したがって、図3の従来の場合に比べ、加工進行部分の長さは短い。つまり、加工により生じる溶融金属は最少となり、溶融金属が切断部分803に滞留する時間も最短となる。 In this case, the laser beam 801 acts, and the processing progressing part which is cutting the work W becomes substantially perpendicular to the work W. Therefore, compared with the conventional case of FIG. 3, the length of the processing progress portion is short. That is, the molten metal produced by processing is minimized, and the time for which the molten metal stays in the cut portion 803 is also minimized.
 したがって、溶融金属は、ドロス802となって切断部分803に付着する余裕が与えられることなくそのまま排出される。すなわち、上述の保持部材110とワークWとの間に形成される空気膜や、吐出ノズル210からの圧縮エア等の吐出、吸引ノズル220による該空気膜の吸引や圧縮エア等の吸引により、スムーズに排出されることになる。 Therefore, the molten metal is discharged as it is without giving a margin for attaching to the cut portion 803 as the dross 802. That is, the air film formed between the holding member 110 and the work W described above, discharge of compressed air and the like from the discharge nozzle 210, and suction of the air film and suction of compressed air and the like by the suction nozzle 220 make smooth. Will be discharged into
 図4(b)は、このようにして切断された場合のワークWの切断面805を示す。図中の破線804は、ワークWに形成されたドラグラインに沿ったラインである。本実施形態の場合、同図に示すように、切断されたワークWに形成されるドラグラインの角度は破線804で示されるように、ワークWの表面に対し、ほぼ直角となる。そして、切断面805の下部にはドロスは付着していない。 FIG. 4 (b) shows the cut surface 805 of the workpiece W when cut in this manner. The broken line 804 in the drawing is a line along the drag line formed on the work W. In the case of the present embodiment, as shown in the figure, the angle of the drag line formed on the cut work W is substantially perpendicular to the surface of the work W as indicated by a broken line 804. Then, no dross adheres to the lower part of the cut surface 805.
 図5は本実施形態に対する比較例を示す。同図(a)は、レーザ光の入射角度の大きさは同じであるが、図4(a)の場合とは逆の方向からレーザ光を入射させる場合にワークWが切断される様子を示す。この場合、レーザ光801が作用し、ワークWを切断している加工進行部分は、ワークWに対してかなり傾斜する。 FIG. 5 shows a comparative example to the present embodiment. The same figure (a) shows a mode that the workpiece | work W is cut when making the magnitude | size of the incident angle of a laser beam the same, but making a laser beam enter from the reverse direction to the case of Fig.4 (a). . In this case, the laser beam 801 acts, and the processing progress portion cutting the workpiece W is considerably inclined to the workpiece W.
 したがって、図4(a)の本実施形態の場合に比べ、加工進行部分は長い。つまり、加工により生じる溶融金属は多くなり、切断部分803に滞留する時間も長期化する。その分、溶融金属は、ドロス802となって切断部分803に付着しやすくなる。 Therefore, compared with the case of this embodiment of FIG. 4 (a), a process progress part is long. That is, the amount of molten metal produced by processing increases, and the retention time in the cut portion 803 also increases. As a result, the molten metal becomes dross 802 and easily adheres to the cut portion 803.
 図5(b)はこのようにして切断された場合のワークWの切断面806を示す。この場合、同図に示すように、切断面806の下部にはかなりの量のドロス802が付着している。また、この場合、ドラグラインに沿った破線804によって示されるように、ドラグラインは切断方向Cに対し、反時計回りに、図3の場合よりも大きな鈍角を成す。 FIG. 5 (b) shows the cut surface 806 of the workpiece W when it is cut in this manner. In this case, as shown in the figure, a considerable amount of dross 802 adheres to the lower part of the cut surface 806. Also, in this case, as indicated by the broken line 804 along the drag line, the drag line forms an obtuse angle with the cutting direction C in a counterclockwise direction larger than in the case of FIG.
 1つ目の金属リングの切断が終了すると、加工ヘッド200が、ワークWにおける次の切断位置に対応する位置に位置するように、ワークWの軸方向に沿って移動される。すなわち、保持部材110の先端側から2番目の周方向溝170上に位置するワークWにレーザ光が照射される位置に移動される。加工ヘッド200の移動に伴い、吐出ノズル210及び吸引ノズル220の位置も調整される。 When cutting of the first metal ring is completed, the processing head 200 is moved along the axial direction of the workpiece W so as to be positioned at a position corresponding to the next cutting position on the workpiece W. That is, the workpiece W located on the second circumferential groove 170 from the tip end side of the holding member 110 is moved to a position where the laser beam is irradiated. With the movement of the processing head 200, the positions of the discharge nozzle 210 and the suction nozzle 220 are also adjusted.
 そして、この位置において、再び上述と同様にしてレーザ光が照射され、ワークWが切断され、2つ目の金属リングが形成される。このようにして、順次、周方向溝170上に加工ヘッド200が位置決めされ、金属リング形成されてゆく。ただし、この間、ワークWの軸に垂直な面内における加工ヘッド200の位置は、常に、図2で示される位置に維持される。 Then, at this position, the laser beam is irradiated again in the same manner as described above, the work W is cut, and a second metal ring is formed. Thus, the processing head 200 is sequentially positioned on the circumferential groove 170, and a metal ring is formed. However, during this time, the position of the processing head 200 in the plane perpendicular to the axis of the workpiece W is always maintained at the position shown in FIG.
 以上説明したように、本実施形態によれば、加工ヘッド200の位置を、上述のように回転方向の上流側へ平行移動させ、ワークWに対するレーザ光の入射角度が所定角度θとなるようにすることによって、レーザ光801の照射により切断加工が進行している部分の長さを短縮することができる。これにより、切断加工により発生するドロス802を減少させ、かつドロスが切断部分に滞留する時間を短縮することができる。したがって、ドロス802が切断部分に付着するのを効果的に防止することができる。 As described above, according to the present embodiment, the position of the processing head 200 is moved in parallel to the upstream side in the rotational direction as described above so that the incident angle of the laser light to the work W becomes the predetermined angle θ. By doing this, the length of the portion where the cutting process is in progress can be shortened by the irradiation of the laser beam 801. As a result, the dross 802 generated by the cutting process can be reduced, and the time for which the dross stays in the cut portion can be shortened. Therefore, the dross 802 can be effectively prevented from adhering to the cut portion.
 ここで、ワークWに対するレーザ光の入射角度が所定角度θとなるようにするためには加工ヘッド200を回動させ、首振り動作を行うようにする方法も考えられる。しかし加工ヘッド200を固定し、その固定した位置を極座標の原点として所定角度θだけ正確に傾ける動作を、繰り返し高精度で行うのは困難である。不可避的に発生する加工ヘッド200の回転角度の調整誤差が、極座標の原点から離れるほど拡大されるからである。 Here, in order to make the incident angle of the laser beam to the workpiece W be a predetermined angle θ, a method of rotating the processing head 200 and performing a swing operation may be considered. However, it is difficult to repeat the operation of fixing the processing head 200 and accurately inclining the fixed position by the predetermined angle θ with the fixed position as the origin of the polar coordinates with high accuracy. This is because the adjustment error of the rotation angle of the processing head 200 which occurs unavoidably is enlarged as it goes away from the origin of the polar coordinates.
 この点、本実施形態によれば、加工ヘッド200の向き及び位置を、レーザ光の照射方向が保持部材110の回転軸に向かう方向となる図2のラインL1上の位置に高い精度で合わせておくことにより、この位置から加工ヘッドを、ワークWに対するレーザ光の入射角度θが所定角度となるようなラインL2上の位置に平行移動することは、比較的高い精度でかつ安価な機構を用いて行うことができる。 In this respect, according to the present embodiment, the orientation and position of the processing head 200 are aligned with high accuracy to the position on the line L1 in FIG. 2 in which the irradiation direction of the laser light is the direction toward the rotation axis of the holding member 110. The parallel movement of the processing head from this position to a position on the line L2 such that the incident angle θ of the laser beam to the work W is a predetermined angle uses a mechanism with relatively high accuracy and inexpensiveness. Can be done.
 また、上述の対応テーブルに基づいて、ワークWの厚み及び回転速度に対応する加工ヘッド200の位置を取得し、この位置に加工ヘッド200を平行移動させてレーザ光の照射を行うことにより、ワークWの材料に応じ、所望のドラグラインの傾きが生じるようなワークWの切断を行うことができる。 Further, based on the correspondence table described above, the position of the processing head 200 corresponding to the thickness and rotational speed of the workpiece W is acquired, and the processing head 200 is moved in parallel to this position to irradiate the laser beam. Depending on the material of W, the workpiece W can be cut so as to produce a desired drag line inclination.
 レーザ光がワークに所定の入射角度で入射するように加工ヘッドを平行移動させてワークの切断を行うことによって、切断部分にドロスの付着の無い金属リングを製造し、CVTベルト等の用途に適したものとして利用することができる。 By moving the processing head in parallel and cutting the workpiece so that the laser beam is incident on the workpiece at a predetermined incident angle, a metal ring without dross adhesion at the cut portion is manufactured, which is suitable for applications such as CVT belts Can be used as
 100…保持部(回転手段)、200…加工ヘッド、240・・・平行移動機構(平行移動手段)、250・・・制御手段、801…レーザ光、W…ワーク、θ…入射角度。 100: holding unit (rotation means) 200: processing head 240: parallel movement mechanism (parallel movement means) 250: control means 801: laser light W: work, θ: incident angle.

Claims (3)

  1.  金属製の円筒状のワークをその円筒軸の周りに回転させる回転手段と、
     前記回転手段により回転されているワークを切断するために、該ワークに対してレーザ光を照射する加工ヘッドと、
     前記加工ヘッドの位置を、該加工ヘッドによるレーザ光の照射方向が前記回転手段による回転軸に向かうときの該加工ヘッドの位置から、該回転手段による回転方向の上流側へ平行移動させる平行移動手段と、
     前記平行移動手段を制御する制御手段とを備え、
     前記制御手段は、前記平行移動手段による平行移動に際し、前記回転手段により回転されているワークに対するレーザ光の入射角度が所定の角度となる位置に前記加工ヘッドが位置するように、前記平行移動手段を制御するものであることを特徴とする円筒状ワーク切断装置。
    Rotating means for rotating a metal cylindrical work around its cylindrical axis;
    A processing head for irradiating a laser beam to the work to cut the work being rotated by the rotating means;
    Parallel movement means for parallelly moving the position of the processing head from the position of the processing head when the irradiation direction of the laser beam by the processing head is directed to the rotation axis by the rotation means, to the upstream side in the rotation direction by the rotation means When,
    Control means for controlling the parallel movement means;
    The control unit is configured to move the processing head such that the processing head is positioned at a position where the incident angle of the laser beam to the workpiece rotated by the rotating unit is a predetermined angle during parallel movement by the parallel movement unit. A cylindrical work cutting apparatus characterized by controlling
  2.  前記制御手段は、
     前記回転手段によるワークの回転の速度を制御するものであり、
     各種材料による前記ワーク毎に、該ワークに形成されるドラグラインの傾き角度と、各傾き角度に対応する該ワークの厚み及び回転速度、並びに前記所定の入射角度に相当する加工ヘッドの位置とを関連付けたデータを記憶しており、
     前記平行移動手段の制御に際しては、該データに基づいて、前記回転手段により回転されているワークの厚み及び回転速度に対応する加工ヘッドの位置を取得し、該位置に前記加工ヘッドが位置するように、前記平行移動手段を制御するものであることを特徴とする請求項1に記載の円筒状ワーク切断装置。
    The control means
    Controlling the speed of rotation of the work by the rotation means;
    For each of the workpieces made of various materials, the inclination angle of the drag line formed on the workpiece, the thickness and rotational speed of the workpiece corresponding to each inclination angle, and the position of the processing head corresponding to the predetermined incident angle It stores the associated data,
    When controlling the parallel displacement means, based on the data, the position of the processing head corresponding to the thickness and rotational speed of the workpiece being rotated by the rotation means is obtained, and the processing head is positioned at this position The cylindrical workpiece cutting apparatus according to claim 1, wherein the parallel movement means is controlled.
  3.  金属製の円筒状のワークを、保持部材により内面を支持して保持する保持工程と、
     前記保持部材により保持されたワークを、前記保持部材を回転させることにより該ワークの円筒軸の周りに所定の回転速度で回転させる回転工程と、
     前記保持部材により保持されたワークの厚み及び回転速度に応じて定められた位置に、該ワークの回転方向の上流側へ、加工ヘッドを平行移動させる移動工程と、
     前記回転工程により回転しているワークに対し、前記移動工程により平行移動された加工ヘッドからレーザ光を照射することにより、該ワークを切断して金属リングを形成する切断工程とを具備することを特徴とする金属リング製造方法。
    A holding step of supporting and holding the inner surface of a metal cylindrical work by a holding member;
    Rotating the workpiece held by the holding member at a predetermined rotational speed around a cylindrical axis of the workpiece by rotating the holding member;
    Moving the processing head parallelly to the position determined according to the thickness and rotational speed of the workpiece held by the holding member, upstream of the rotational direction of the workpiece;
    And a cutting step of cutting the work to form a metal ring by irradiating a laser beam from the processing head moved in parallel by the moving step to the work rotating in the rotating step. Metal ring manufacturing method characterized by
PCT/JP2011/062662 2010-07-22 2011-06-02 Apparatus for cutting cylindrical work and method for manufacturing metal ring WO2012011322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552248A JPWO2012011322A1 (en) 2010-07-22 2011-06-02 Cylindrical workpiece cutting device and metal ring manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-165168 2010-07-22
JP2010165168 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012011322A1 true WO2012011322A1 (en) 2012-01-26

Family

ID=45496751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062662 WO2012011322A1 (en) 2010-07-22 2011-06-02 Apparatus for cutting cylindrical work and method for manufacturing metal ring

Country Status (2)

Country Link
JP (1) JPWO2012011322A1 (en)
WO (1) WO2012011322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024094A (en) * 2012-07-27 2014-02-06 Honda Motor Co Ltd Apparatus for cutting cylindrical work and method for cleaning the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157083A (en) * 1990-10-16 1992-05-29 Mitsubishi Electric Corp Laser beam machining method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177896A (en) * 1981-04-27 1982-11-01 Toshiba Corp Cutter for tubular body by laser beam
JPH035381Y2 (en) * 1984-11-14 1991-02-12
EP1334788B1 (en) * 2000-10-05 2012-08-01 Honda Giken Kogyo Kabushiki Kaisha Cutting device for sheet metal drum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157083A (en) * 1990-10-16 1992-05-29 Mitsubishi Electric Corp Laser beam machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024094A (en) * 2012-07-27 2014-02-06 Honda Motor Co Ltd Apparatus for cutting cylindrical work and method for cleaning the same

Also Published As

Publication number Publication date
JPWO2012011322A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
EP2923791B1 (en) Laser machining method
JP6322014B2 (en) Clamping device
US10052718B2 (en) Cylindrical workpiece cutting apparatus
JP2008036663A (en) Laser beam cutting device
JP2015085466A (en) Flange mechanism
JP2004223836A (en) Method and apparatus for manufacturing pattern roll and method for making optical sheet
JP5764344B2 (en) Cylindrical workpiece cutting device
JP2020069602A (en) Work-piece machining device
JP5519316B2 (en) Cylindrical workpiece cutting device
WO2012011322A1 (en) Apparatus for cutting cylindrical work and method for manufacturing metal ring
US9884395B2 (en) Machine tool provided with clamping jig for rotationally-symmetrical body
JP5101215B2 (en) Cutting jig
JP5513923B2 (en) Metal ring manufacturing method
JP2011167701A5 (en)
CN111390397A (en) Method and device for cutting pipe body of vacuum cup
WO2012056631A1 (en) Turning apparatus and turning method
JP2014100720A (en) Manufacturing method of metal ring and device therefor
JP5981155B2 (en) Metal ring manufacturing method and manufacturing apparatus thereof
JP5764343B2 (en) Cylindrical workpiece cutting device
JP5272755B2 (en) Wire cutting device
JP2008137036A (en) Laser cutting apparatus
JP5766458B2 (en) Metal sheet drum cutting device
JP2009090405A (en) Gripping tool, gripping method, and machining device
KR102279726B1 (en) Wafer Lens Array Dicing Apparatus Including Dicing Blade for Cutting Wafer Lens Array and Method Using the Same
JP2005212015A (en) Cutting tool

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011552248

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809496

Country of ref document: EP

Kind code of ref document: A1