WO2012010732A1 - Composition and method for cross-linking an epoxy resin with an isocyanate, and cross-linked material thus obtained - Google Patents

Composition and method for cross-linking an epoxy resin with an isocyanate, and cross-linked material thus obtained Download PDF

Info

Publication number
WO2012010732A1
WO2012010732A1 PCT/ES2011/070511 ES2011070511W WO2012010732A1 WO 2012010732 A1 WO2012010732 A1 WO 2012010732A1 ES 2011070511 W ES2011070511 W ES 2011070511W WO 2012010732 A1 WO2012010732 A1 WO 2012010732A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
isocyanate
temperature
epoxy resin
triflate
Prior art date
Application number
PCT/ES2011/070511
Other languages
Spanish (es)
French (fr)
Inventor
Maria dels Àngels Serra Albet
Ana Mantecón Arranz
Marjorie Flores Guillén
Xavier Ramis Juan
Xavier Fernández Francos
Josep Maria Salla Tarragó
Original Assignee
Universitat Politècnica De Catalunya
Universitat Rovira I Virgili
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya, Universitat Rovira I Virgili filed Critical Universitat Politècnica De Catalunya
Publication of WO2012010732A1 publication Critical patent/WO2012010732A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/003Polymeric products of isocyanates or isothiocyanates with epoxy compounds having no active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur

Definitions

  • the present invention relates to a new composition for cross-linking an epoxy resin with an isocyanate, comprising an epoxy resin, a polyisocyanate, and a rare earth triflate, where the rare earth is selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, pledge, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, tulio, ytterbium and lutetium.
  • the invention also relates to a process for obtaining said composition and a process for cross-linking the epoxy resin with the polyisocyanate comprising contacting the components and heating.
  • Epoxy resins due to their high chemical and thermal resistance, are used in a wide range of industrial applications such as adhesives, matrices for composites, varnishes, surface coatings and encapsulation of electronic components.
  • the properties of these resins depend fundamentally on their chemical structure and the degree of crosslinking achieved after the cross-linking process, also known as curing.
  • the curing of the epoxy resins with isocyanates to produce structures containing isocyanurate and oxazolidone rings, in addition to the ether units characteristic of the homopolymerization of the epoxy groups, has been of increasing interest in recent years.
  • the structures formed are highly complex since multiple reactive processes compete during curing, such as 1) the formation of isocyanurate rings by reaction of three isocyanate units, 2) the formation of oxazolidone rings, by reaction of an epoxy group and an isocyanate group , 3) the formation of oxazolidone rings by the reaction of an isocyanurate ring with three epoxy groups and 4) the homopolymerization of the epoxy groups (secondary reaction). All these processes to take place require an initiator and a certain temperature.
  • reaction 1) takes place at low temperatures, in some cases close to the environment, and that reactions 2), 3) and 4) can only take place at temperatures above 110 ° C, being the reaction 3) the one that usually appears at a higher temperature Isocyanurate rings, due to their trifunctional nature, increase the cross-linking density and consequently the glass transition temperature (Tg) of the thermostable formed.
  • the bifunctional oxazolidone groups act as chain extenders and due to their high thermal stability they increase the thermal resistance of the material.
  • the content of isocyanurate and oxazolidone units determines the final properties of the material obtained and is influenced by many factors such as temperature, type and amount of initiator, stoichiometry of the formulation used (ratio between epoxy resin and isocyanate) and the structure of the resin and isocyanate. Together with the reactive processes described there are unwanted side reactions that reduce the quality of the material. Some of these reactions are: the formation of allophanate groups, uretidinona, uretonimine and carbodiimide with CO 2 release.
  • Oxazolidone-rich structures can be prepared using an excess of epoxy resin (epoxy / isocyanate molar ratio greater than 1) and isocyanate-rich structures using an excess of isocyanate (epoxy / isocyanate molar ratio less than 1) in the presence of a suitable initiator.
  • a wide variety of products have been described as effective initiators of these processes, ranging from neutral salts such as tetramethylammonium iodide and magnesium chloride to Lewis bases such as alkoxides, phosphines and tertiary amines, including: diazabicyclooctane, Benzyl dimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 2-ethyl-4-methylimidazole and 2-methylimidazole.
  • the stoichiometry of the formulation and the amount of initiator have an important influence on the Tg of the material formed. In general, it is accepted that as the isocyanate content increases, the Tg increases, forming more rigid materials.
  • An increase in the concentration of initiator can increase or decrease the Tg depending on the type and amount of active species formed and the functionality with which the initiator acted.
  • Some Lewis acids such as aluminum trichloride, lithium chloride and zinc iodide, have been described as initiators for oxazolidone formation from epoxy / isocyanate mixtures (Javni, I. et al. , J. Am Oil Chem. Soc . 80 , 595-600 (2003); US 4,066,628 to Mitsubishi Chemical Industries Ltd.). It is not described that these same types of initiator activate the formation of isocyanurate groups, so it is not evident that their use allows obtaining structures containing isocyanurate and oxazolidone rings.
  • the curing of epoxy / isocyanate systems is usually carried out in two or three isothermal stages in ascending order of temperatures.
  • the first stage is usually carried out at about 60-80 ° C and it contains mostly isocyanurate groups.
  • the second stage at about 150-200 ° C, the formation of oxazolidone groups occurs mainly by direct reaction between an isocyanate and an epoxy group.
  • the third stage consists of a post-cure at high temperatures between 250 and 300 ° C where the isocyanurates formed, if epoxy groups remain, are transformed into oxazolidones.
  • curing can be performed with temperature controlled ramps from room temperature to about 300 ° C.
  • isocyanurate groups at low temperature conditions the processing of these materials, since during the first stage the material gels ceasing to be processable.
  • the cross-linking process can be followed by infrared spectroscopy with fourier transform (FTIR) through the evolution of the following bands: 1705-1715 cm -1 (isocyanurate), 1750-1760 cm -1 (oxazolidone), 2260-2280 cm -1 (isocyanate) and epoxy groups through their voltage band that appears at different wavelengths depending on the structure of the resin.
  • FTIR Fourier transform
  • epoxy systems crosslinked with diisocyanates are usually resins derived from bisphenol A.
  • Rare earth triflates are Lewis acids that are recently gaining interest as cationic initiators for curing epoxy resins as an alternative to conventional boron / amine trifluoride initiators. Their interest resides fundamentally, among other aspects, in that they are stable to moisture and in that they are very versatile since changing the cation of the triflate can modify its Lewis acid character and therefore its activity. To date, rare earth triflates have not been described as initiators in epoxy / isocyanate systems.
  • rare earth triflates as initiators of epoxy resin curing see, for example: Castell, P. et al. , Polymer , 41 , 8465-8474 (2000); ES 2 154 165 A1 of Universitat Rovira i Virgili; Mas, C. et al. Macromol Chem. Phys. 202, 2554-2564 (2001); Lanthanides: Chemistry and Use in Organic Synthesis, Kobayashi, S., Ed .; Topics in Organometallic Chemistry; Springer-Verlag: Berlin (1999); Mas, C. et al., J. Polym.Sci, Part A: Polym. Chem. 42 , 3782-3791 (2004); Arasa, M. et al. Eur. Polym. J. , 45 , 1282-1292 (2009).
  • M is the cation derived from a rare earth selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, tulio, ytterbium and lutetium and n It represents the valence of the rare earth in the triflate.
  • the composition of the invention comprises a lanthanum, or scandium or ytterbium triflate.
  • scandium triflate is the most active and that of lanthanum is the least, according to Pearson's hardness of the cation.
  • the cross-linked products obtained have a glass transition temperature (Tg) that is slightly modified with the type of triflate used, with the highest Tgs being obtained with scandium triflate and the lowest ones with yttrium or lanthanum triflate (see examples 1, 5 and 6 , and examples 8, 9 and 10) also depending on the amount of triflate in the composition.
  • Tg glass transition temperature
  • the inventors have also observed that lanthanum triflate produces structures significantly richer in oxazolidone units than that of ytterbium (see examples 1 and 5, and examples 8 and 9).
  • the rare earth triflate (I) may be present in the composition of the invention in any amount. However, in a preferred embodiment of this invention, the rare earth triflate (I) is present in an amount between 1 and 3 phr (parts per cent of resin / isocyanate mixture). When 1 phr is used the composition takes longer to gel than when 3 phr is used. Although the Tg of the resulting crosslinked material is not greatly affected by the amount of triflate, depending on the triflate used, it may increase or decrease slightly as the triflate content increases.
  • any monomeric, dimeric, oligomeric or polymeric epoxy resin containing at least two epoxy functional groups can be used as epoxy resins of the composition [component a)].
  • the preferred diepoxide is an epoxy resin of diglycidyl ether of Bisphenol A (DGEBA).
  • Component b) of the composition is a polyisocyanate represented by the general formula (II)
  • R is a polyvalent, substituted or unsubstituted, aliphatic, cycloaliphatic, aromatic or heterocyclic group and m has a value greater than unity, preferably between 2 and 3.
  • the preferred polyisocyanate compounds of the present invention are diisocyanates such as 2 , 4-toluene diisocyanate (TDI) and 4,4'-methylene bis (phenyl isocyanate) (MDI).
  • compositions with very high amounts of isocyanate generally lead to materials that are too fragile, with Tgs above 250 ° C.
  • an increase in the isocyanate content in the composition of the invention leads to more crosslinked and higher Tg materials.
  • the epoxy / diisocyanate (E / I) molar ratio can vary between wide ranges.
  • Preferred compositions of the present invention contain epoxy / diisocyanate molar ratios (E / I ratio) between 2/1 and 1/1.
  • the Tgs of the crosslinked materials using 2/1 and 1/1 molar ratios, when 1 phr of ytterbium triflate is used are 125 ° C and 217 ° C respectively.
  • the material resulting from a composition with an E / I molar ratio of 2/1 has a structure rich in oxazolidone rings and the material obtained from an E / I ratio of 1/1 is rich in isocyanurate rings.
  • Compositions that have intermediate E / I ratios between 2/1 and 1/1 have intermediate structures and properties between both ends.
  • composition of the invention may optionally contain at least one common adjuvant additive in the epoxy and epoxy / isocyanate formulations, such as pigments, dyes, plasticizers, reinforcing and non-reinforcing fillers, etc.
  • at least one common adjuvant additive in the epoxy and epoxy / isocyanate formulations such as pigments, dyes, plasticizers, reinforcing and non-reinforcing fillers, etc.
  • composition of the present invention can be used in any application of the epoxy and epoxy / isocyanate formulations, such as adhesives, coatings, in the manufacture of laminates and laminates, especially when materials with high mechanical and thermal performance are required.
  • the present invention relates to a process for obtaining the composition of the invention comprising the steps of: (i) mixing an epoxy resin and a polyisocyanate;
  • step (iii) add the above-defined earth triflate onto the mixture resulting from step (ii), the triflate being dissolved or not dissolved in a solvent.
  • the isocyanate is preferably distilled before mixing with the epoxy resin. It is important to keep the mixture under vacuum in step (ii) to remove traces of moisture and homogenize the mixture well.
  • the triflate can be incorporated at room temperature and can be dispersed directly on the mixture resulting from step (ii) or previously dissolved in a minimum amount of a suitable organic solvent which can easily be determined by one skilled in the art. If an organic solvent is used, it must have a low boiling point typically below 65 ° C, for example acetone or methanol. The solvent is removed during curing with increasing temperature. In the case of using solid resins and isocyanates, these materials must be melted before the mixing process.
  • the invention relates to a process for cross-linking the epoxy resin and the isocyanate of the composition of the invention, hereinafter the method of the invention, which comprises the use of a rare earth triflate as defined above.
  • the process comprises curing said composition by heating from initial room temperature to a temperature between 250 ° C to 300 ° C.
  • the time required for curing is variable and varies depending on the formulation of the composition of the invention and the cure temperature. Depending on the temperature, curing time and formulation, post-curing is required in certain particular embodiments for a variable time interval at a temperature of at least 250 ° C to ensure full cure, with the disappearance of all epoxy and isocyanate groups. of the starting formulation.
  • the properties of the crosslinked product obtained will also depend on the formulation of the starting composition, on the curing conditions (time, temperature).
  • the process for cross-linking the composition is carried out by heating said composition at a heating rate between 0.5 ° C / min and 50 ° C / min. In a particular embodiment the heating rate is 5 ° C / min.
  • the method for cross-linking the composition of the invention comprises carrying out at least 2 isothermal curing steps:
  • the process may further comprise the realization of a first isothermal curing stage at a temperature equal to or greater than 120 ° C and below 180 ° C before steps a) and b).
  • the times of these stages are variable depending on, for example, the formulation of the starting composition and the temperature selected in each case.
  • the process comprises a first stage that is carried out at 150 ° C for 1 hour; the next stage a) at 200 ° C for 2 hours and the last stage b) at a temperature of 250 ° C for 1 hour.
  • the progressive heating either at a certain speed or by heating in different isothermal stages allows a progressive activation of the different reactive processes. Heating can be done on a micro scale in a differential scanning calorimeter or on a macro scale in a conventional oven or oven. In general, however, in conventional stoves or ovens, it is not usual to achieve heating rates greater than 10 ° C / min.
  • isocyanurates can be formed (identified with a band at 1710 cm -1 ), which can also be transformed into oxazolidones if there are free epoxy groups. At these temperatures, thermal homopolymerization of the epoxy resin can also take place.
  • the formation of isocyanurate groups at high temperatures is a surprising and unexpected result, since this has not been described to date, when Lewis acids are used as initiators. In addition to surprising this result solves the processing problems of conventional systems (under “pot-life”), allowing the compositions of the invention to be processed for longer and at higher temperatures. In this way it is possible to regulate and determine the properties of crosslinked materials that are obtained according to the needs and applications. In addition, the longer processing allows better control of the structure and homogeneity of the lattice.
  • the invention relates to a crosslinked epoxy resin obtainable according to the process of the invention.
  • rare earth triflates (I) can be used as effective initiators in crosslinking epoxy resins with isocyanates.
  • the structures formed are very versatile and contain oxazolidone and isocyanurate units.
  • Crosslinked products can be prepared with very differentiated properties depending on the amount and type of epoxy resin and isocyanate, but also on the type and amount of rare earth triflate (I). In general, the products obtained have lower thermal stability than similar formulations where a conventional initiator is used.
  • rare earth triflates are used instead of other conventional initiators, gelation takes place at higher temperatures, the starting compositions being able to be processed for a longer time and at a higher temperature.
  • the initial temperature in the process of the invention is room temperature while the initial temperature in the same procedure carried out with a conventional initiator should be approximately 0 ° C.
  • Triflates are not active at room temperature, as are common initiators.
  • a significant reduction in the type and number of unwanted reactions of other conventional processes has been seen.
  • the longer processing allows a better control of the structure and the homogeneity of the lattice. In this way it is possible to regulate and determine the properties of the crosslinked materials that are obtained according to the needs.
  • Another advantage of the present invention is the cross-linking process by controlled heating, where the different reactive processes are activated sequentially, thus being able to better control the final properties of the materials.
  • the crossings were performed on a Mettler DSC-822e calorimeter with a TS0801RO robot in aluminum capsules and under a nitrogen atmosphere.
  • the calorimeter was calibrated using indium for heat flow and indium / zinc / lead for temperature. Samples of approximately 10 mg were cured from room temperature to 300 ° C at a heating rate of 5 ° C / min. For comparison examples where benzyldimethylamine was used as initiator the heating was started at 0 ° C. The conversion was determined as the ratio between the heat released to a certain temperature and the total heat released until the end of curing.
  • the glass transition temperature (T g ) of the materials was determined by a second scan at 10 ° C / min after dynamic curing at 5 ° C / min, as the temperature of the midpoint of the heat capacity jump when the material changes from the vitreous state to the amorphous Cure start temperature was calculated as the temperature at which the heat release in the calorimeter begins.
  • the temperature at which the material gels was determined on a Mettler TMA40 thermomechanical analyzer.
  • the samples were impregnated with silanized fiberglass and placed between two rigid silicon oxide discs.
  • the material was cured as in the calorimeter by heating the sample at 5 ° C / min from room temperature to 300 ° C applying a variable force from 0.0025 to 0.01 N.
  • the temperature at which the material gains stability was taken as gelation temperature. mechanically and the amplitude of oscillations is sharply reduced.
  • the conversion in gelation (to gel ) was determined as the conversion achieved in the calorimeter at the temperature at which the material gelled in the thermomechanical analysis (TMA).
  • the thermal stability of the crosslinked materials was determined under a nitrogen atmosphere with a flow of 200 cm 3 / min (measured under normal conditions) in a Mettler TG50 thermobalance. Samples of approximately 10 mg were degraded between 30 and 700 ° C by heating at 10 ° C / min. The temperature at which the material had decomposed 5% was taken as the decomposition temperature.
  • the infrared spectra were made with a Brucker Vertex 70 spectrophotometer with an attenuated total reflectance accessory with thermal control and with a Specac-Teknokroma diamond crystal.
  • the formation of oxazolidone and isocyanurate rings was evaluated using the characteristic absorption bands of the carbonyl group at 1750 cm -1 (oxazolidone) and 1710 cm -1 (isocyanurate).
  • Example 1 (1/1 DGEBA / TDI resin molar ratio, 1 phr of ytterbium triflate)
  • the crosslinked material showed a glass transition temperature of 217 ° C, a cure start temperature of 43 ° C, a gelation temperature of 127 ° C, a conversion in gelation of 17% and a decomposition temperature of 346 ° C.
  • the spectrum of fourier transform infrared spectroscopy (FTIR) of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings at a content of 23% and 77% respectively.
  • the procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 1 phr of benzyldimethylamine and heating on the calorimeter was started at 0 ° C instead of at room temperature.
  • the crosslinked material showed a glass transition temperature of 191 ° C, a cure start temperature of 8 ° C, a gelation temperature of 67 ° C, a conversion in gelation of 14.8% and a decomposition temperature of 356 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 60% and 40% respectively.
  • the crosslinked material showed a glass transition temperature of 125 ° C, a cure start temperature of 40 ° C, a gelation temperature of 143 ° C, a conversion in gelation of 20% and a decomposition temperature of 346 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 73% and 27% respectively.
  • the procedure was as described in example 3, but 1 phr of ytterbium triflate was replaced by 1 phr of benzyldimethylamine and heating in the calorimeter was started at 0 ° C instead of at room temperature.
  • the crosslinked material showed a glass transition temperature of 145 ° C, a cure start temperature of 10 ° C, a gelation temperature of 70 ° C, a conversion in gelation of 14% and a decomposition temperature of 373 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 95% and 5% respectively.
  • the procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 1 phr of lanthanum triflate.
  • the crosslinked material showed a glass transition temperature of 196 ° C, a cure start temperature of 42 ° C, a gelation temperature of 150 ° C, a conversion in gelation of 22% and a decomposition temperature of 339 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 53% and 47% respectively.
  • the procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 1 phr of scandium triflate.
  • the crosslinked material showed a glass transition temperature greater than 220 ° C, a cure start temperature of 60 ° C, a gelation temperature of 124 ° C, a conversion in gelation of 16% and a decomposition temperature of 333 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups, but the formation of oxazolidone and isocyanurate rings could not be clearly evidenced due to the appearance of a broad absorption band at 1730 cm -1 associated with the group carbonyl and related to the polymerization of isocyanate.
  • Example 7 (1/1 DGEBA / MDI resin molar ratio, 1 phr ytterbium triflate)
  • the crosslinked material showed a glass transition temperature of 207 ° C, a cure start temperature of 49 ° C, a gelation temperature of 131 ° C, a conversion in gelation of 15% and a decomposition temperature of 351 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 34% and 66% respectively.
  • Example 8 (1/1 DGEBA / TDI resin molar ratio, 3 phr of ytterbium triflate)
  • the procedure was as described in example 1, but 1 phr of iterbium triflate was replaced by 3 phr of iterbium triflate.
  • the crosslinked material showed a glass transition temperature of 199 ° C, a cure start temperature of 43 ° C, a gelation temperature of 99 ° C, a conversion in gelation of 14% and a decomposition temperature of 330 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 34% and 66% respectively.
  • the procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 3 phr of lanthanum triflate.
  • the crosslinked material showed a glass transition temperature of 213 ° C, a cure start temperature of 41 ° C, a gelation temperature of 126 ° C, a conversion in gelation of 25% and a decomposition temperature of 339 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 51% and 49% respectively.
  • the procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 3 phr of scandium triflate.
  • the crosslinked material showed a glass transition temperature greater than 220 ° C, a cure start temperature of 40 ° C, a gelation temperature of 92 ° C, a conversion in gelation of 20% and a decomposition temperature of 339 ° C.
  • the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups, but the formation of oxazolidone and isocyanurate rings could not be clearly evidenced due to the appearance of a wide absorption band at 1730 cm -1 associated with the carbonyl group and related to the polymerization of isocyanate.
  • Examples 1, 3, 5, 6, 7, 8, 9 and 10 were repeated, but the rare earth triflate was dissolved, before being added to the DGEBA / TDI mixture, in the minimum amount of acetone for complete dissolution. . Although the processability and apparent homogeneity improved, the cure and final properties of the materials obtained were similar to the analogous examples cited above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The invention relates to a composition for cross-linking an epoxy resin with an isocyanate, which includes: an epoxy resin, a polyisocyanate, and a rare earth triflate, where the rare earth is chosen from the group consisting of Scandium, Yttrium, Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium and Lutetium. The invention further relates to a method for obtaining said composition, to a method for cross-linking the epoxy resin with the polyisocyanate, which includes putting the components in contact and heating same, and to the resulting cross-linked material.

Description

ComposiciComposition óor n y procedimiento para el entrecruzamiento de una resina n and procedure for crosslinking a resin epoxi con un isocianato, y material entrecruzado obtenido epoxy with an isocyanate, and crosslinked material obtained
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se refiere a una nueva composición para el entrecruzamiento de una resina epoxi con un isocianato, que comprende una resina epoxi, un poliisocianato, y un triflato de tierra rara, donde la tierra rara se selecciona del grupo formado por escandio, itrio, lantano, cerio, praseodimio, neodimio, prometio, samario, europio, gadolinio, terbio, disprosio, holmio, erbio, tulio, iterbio y lutecio. Asimismo la invención se refiere a un procedimiento para obtener dicha composición y un procedimiento para el entrecruzamiento de la resina epoxi con el poliisocianato que comprende poner en contacto los componentes y calentar.The present invention relates to a new composition for cross-linking an epoxy resin with an isocyanate, comprising an epoxy resin, a polyisocyanate, and a rare earth triflate, where the rare earth is selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, pledge, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, tulio, ytterbium and lutetium. The invention also relates to a process for obtaining said composition and a process for cross-linking the epoxy resin with the polyisocyanate comprising contacting the components and heating.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Las resinas epoxi, por su elevada resistencia química y térmica, son utilizadas en un amplia gama de aplicaciones industriales tales como adhesivos, matrices para “composites”, barnices, recubrimientos de superficies y encapsulado de componentes electrónicos. Las propiedades de estas resinas dependen fundamentalmente de su estructura química y del grado de entrecruzamiento alcanzado tras el proceso de reticulación, también conocido como curado. Epoxy resins, due to their high chemical and thermal resistance, are used in a wide range of industrial applications such as adhesives, matrices for composites, varnishes, surface coatings and encapsulation of electronic components. The properties of these resins depend fundamentally on their chemical structure and the degree of crosslinking achieved after the cross-linking process, also known as curing.
El curado de las resinas epoxi con isocianatos para producir estructuras que contengan anillos isocianurato y oxazolidona, además de las unidades éter características de la homopolimerización de los grupos epóxido, ha tenido un creciente interés en los últimos años. Las estructuras formadas son altamente complejas ya que durante el curado compiten múltiples procesos reactivos, como son 1) la formación de anillos isocianurato por reacción de tres unidades isocianato, 2) la formación de anillos oxazolidona, mediante reacción de un grupo epoxi y un grupo isocianato, 3) la formación de anillos oxazolidona mediante la reacción de un anillo isocianurato con tres grupos epoxi y 4) la homopolimerización de los grupos epoxi (reacción secundaria). Todos estos procesos para que tengan lugar requieren de un iniciador y de una cierta temperatura. En general, está aceptado que la reacción 1) tiene lugar a temperaturas bajas, en algunos casos cercanas a la ambiente, y que las reacciones 2), 3) y 4) sólo pueden tener lugar a temperaturas por encima de los 110ºC, siendo la reacción 3) la que suele aparecer a mayor temperatura Los anillos isocianurato, por su carácter trifuncional, aumentan la densidad de entrecruzamiento y consecuentemente la temperatura de transición vítrea (Tg) del termoestable formado. Los grupos oxazolidona, bifuncionales, actúan como extendedores de cadena y por su elevada estabilidad térmica aumentan la resistencia térmica del material. El contenido de unidades isocianurato y oxazolidona determina las propiedades finales del material obtenido y viene influido por muchos factores tales como la temperatura, el tipo y cantidad de iniciador, la estequiometría de la formulación utilizada (relación entre resina epoxi e isocianato) y la estructura de la resina y del isocianato. Junto con los procesos reactivos descritos existen reacciones colaterales indeseadas que reducen la calidad del material. Algunas de estas reacciones son: la formación de grupos alofanato, uretidinona, uretonimina y carbodiimida con liberación de CO2. The curing of the epoxy resins with isocyanates to produce structures containing isocyanurate and oxazolidone rings, in addition to the ether units characteristic of the homopolymerization of the epoxy groups, has been of increasing interest in recent years. The structures formed are highly complex since multiple reactive processes compete during curing, such as 1) the formation of isocyanurate rings by reaction of three isocyanate units, 2) the formation of oxazolidone rings, by reaction of an epoxy group and an isocyanate group , 3) the formation of oxazolidone rings by the reaction of an isocyanurate ring with three epoxy groups and 4) the homopolymerization of the epoxy groups (secondary reaction). All these processes to take place require an initiator and a certain temperature. In general, it is accepted that reaction 1) takes place at low temperatures, in some cases close to the environment, and that reactions 2), 3) and 4) can only take place at temperatures above 110 ° C, being the reaction 3) the one that usually appears at a higher temperature Isocyanurate rings, due to their trifunctional nature, increase the cross-linking density and consequently the glass transition temperature (Tg) of the thermostable formed. The bifunctional oxazolidone groups act as chain extenders and due to their high thermal stability they increase the thermal resistance of the material. The content of isocyanurate and oxazolidone units determines the final properties of the material obtained and is influenced by many factors such as temperature, type and amount of initiator, stoichiometry of the formulation used (ratio between epoxy resin and isocyanate) and the structure of the resin and isocyanate. Together with the reactive processes described there are unwanted side reactions that reduce the quality of the material. Some of these reactions are: the formation of allophanate groups, uretidinona, uretonimine and carbodiimide with CO 2 release.
Pueden prepararse estructuras ricas en oxazolidonas utilizando un exceso de resina epoxi (relación molar epoxi/isocianato mayor que 1) y estructuras ricas en isocianuratos utilizando un exceso de isocianato (relación molar epoxi/isocianato menor que 1) en presencia de un iniciador adecuado. Se han descrito una gran variedad de productos como iniciadores efectivos de estos procesos, que van desde sales neutras como el yoduro de tetrametilamonio y el cloruro de magnesio hasta bases de Lewis como alcóxidos, fosfinas y aminas terciarias, entre las que se incluyen: diazabiciclooctano, bencildimetilamina, 2,4,6-tris(dimetilaminometil)fenol, 2-etil-4-metilimidazol y 2-metilimidazol. La estequiometría de la formulación y la cantidad de iniciador influyen de forma importante en la Tg del material formado. En general, está aceptado que al aumentar el contenido de isocianato la Tg aumenta, formándose materiales más rígidos. Un aumento en la concentración de iniciador puede aumentar o disminuir la Tg en función del tipo y cantidad de especie activa formada y de la funcionalidad con que actué el iniciador. Oxazolidone-rich structures can be prepared using an excess of epoxy resin (epoxy / isocyanate molar ratio greater than 1) and isocyanate-rich structures using an excess of isocyanate (epoxy / isocyanate molar ratio less than 1) in the presence of a suitable initiator. A wide variety of products have been described as effective initiators of these processes, ranging from neutral salts such as tetramethylammonium iodide and magnesium chloride to Lewis bases such as alkoxides, phosphines and tertiary amines, including: diazabicyclooctane, Benzyl dimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 2-ethyl-4-methylimidazole and 2-methylimidazole. The stoichiometry of the formulation and the amount of initiator have an important influence on the Tg of the material formed. In general, it is accepted that as the isocyanate content increases, the Tg increases, forming more rigid materials. An increase in the concentration of initiator can increase or decrease the Tg depending on the type and amount of active species formed and the functionality with which the initiator acted.
Algunos ácidos de Lewis, como el tricloruro de aluminio, el cloruro de litio y el yoduro de cinc, han sido descritos como iniciadores para la formación de oxazolidonas a partir de mezclas epoxi/isocianato (Javni, I. et al., J. Am. Oil Chem. Soc. 80, 595-600 (2003); US 4.066.628 de Mitsubishi Chemical Industries Ltd.). No está descrito, que estos mismos tipos de iniciador activen la formación de grupos isocianuratos, por lo que no es evidente que su utilización permita obtener estructuras que contengan anillos isocianurato y oxazolidona.Some Lewis acids, such as aluminum trichloride, lithium chloride and zinc iodide, have been described as initiators for oxazolidone formation from epoxy / isocyanate mixtures (Javni, I. et al. , J. Am Oil Chem. Soc . 80 , 595-600 (2003); US 4,066,628 to Mitsubishi Chemical Industries Ltd.). It is not described that these same types of initiator activate the formation of isocyanurate groups, so it is not evident that their use allows obtaining structures containing isocyanurate and oxazolidone rings.
Debido a la activación de los diferentes procesos reactivos a diferentes temperaturas, los curados de sistemas epoxi/isocianato suelen realizarse en dos o tres etapas isotérmicas en orden ascendente de temperaturas. La primera etapa suele realizarse a unos 60-80ºC y en ella se forman mayoritariamente los grupos isocianuratos. En la segunda etapa, a unos 150-200ºC, tiene lugar mayoritariamente la formación de grupos oxazolidona por reacción directa entre un isocianato y un grupo epoxi. La tercera etapa consiste en un postcurado a altas temperaturas entre 250 y 300ºC donde los isocianuratos formados, si quedan grupos epoxi, se transforman en oxazolidonas. Alternativamente, el curado puede realizarse con rampas de temperatura controlada desde temperatura ambiente hasta unos 300ºC. La formación de grupos isocianurato a baja temperatura condiciona el procesado de estos materiales, ya que durante la primera etapa el material gelifica dejando de ser procesable. El proceso de entrecruzamiento puede seguirse mediante espectroscopia infrarroja con transformada de fourier (FTIR) a través de la evolución de las siguientes bandas: 1705-1715 cm-1 (isocianurato), 1750-1760 cm-1 (oxazolidona), 2260-2280 cm-1 (isocianato) y los grupos epoxi a través de su banda de tensión que aparece a diferentes longitudes de onda en función de la estructura de la resina. En general los sistemas epoxídicos entrecruzados con diisocianatos suelen ser resinas derivadas del bisfenol A.Due to the activation of the different reactive processes at different temperatures, the curing of epoxy / isocyanate systems is usually carried out in two or three isothermal stages in ascending order of temperatures. The first stage is usually carried out at about 60-80 ° C and it contains mostly isocyanurate groups. In the second stage, at about 150-200 ° C, the formation of oxazolidone groups occurs mainly by direct reaction between an isocyanate and an epoxy group. The third stage consists of a post-cure at high temperatures between 250 and 300 ° C where the isocyanurates formed, if epoxy groups remain, are transformed into oxazolidones. Alternatively, curing can be performed with temperature controlled ramps from room temperature to about 300 ° C. The formation of isocyanurate groups at low temperature conditions the processing of these materials, since during the first stage the material gels ceasing to be processable. The cross-linking process can be followed by infrared spectroscopy with fourier transform (FTIR) through the evolution of the following bands: 1705-1715 cm -1 (isocyanurate), 1750-1760 cm -1 (oxazolidone), 2260-2280 cm -1 (isocyanate) and epoxy groups through their voltage band that appears at different wavelengths depending on the structure of the resin. In general, epoxy systems crosslinked with diisocyanates are usually resins derived from bisphenol A.
Para una revisión de sistemas epoxi/isocianato (formulaciones, iniciadores, propiedades,…) véanse, por ejemplo, Sandler, S.R. et al., J. Appl. Polym. Sci. 9, 1984, (1965); Senger, J.S. et al., J. Appl. Polym. Sci. 38, 373-382, (1989); Galante, M.J., Williams, R.J.J., J. Appl. Polym. Sci. 55, 89-98, (1995); Caille, D. et al., Polym. Bull., 24, 23-30 (1990); Lee, Y.S.K. et al., British Polymer Journal, 22, 97-105 (1990); WO 90/15089 de Dow Chemical Company; Chian, K.S., Yi, S., J. Appl. Polym. Sci. 82, 879-888, (2001); WO 94/02524 de Siemens Aktiengesellsschaft; Chian, K.S., Yi, S., J. Appl. Polym. Sci. 82, 879-888, (2001).For a review of epoxy / isocyanate systems (formulations, initiators, properties, ...) see, for example, Sandler, SR et al. , J. Appl. Polym Sci. 9 , 1984, (1965); Senger, JS et al. , J. Appl. Polym Sci. 38 , 373-382, (1989); Galante, MJ, Williams, RJJ, J. Appl. Polym Sci. 55 , 89-98, (1995); Caille, D. et al. , Polym. Bull. , 24 , 23-30 (1990); Lee, YSK et al. , British Polymer Journal , 22 , 97-105 (1990); WO 90/15089 from Dow Chemical Company; Chian, KS, Yi, S., J. Appl. Polym Sci. 82 , 879-888, (2001); WO 94/02524 from Siemens Aktiengesellsschaft; Chian, KS, Yi, S., J. Appl. Polym Sci. 82 , 879-888, (2001).
Los triflatos de tierras raras son ácidos de Lewis que recientemente están ganando interés como iniciadores catiónicos para el curado de resinas epoxi como alternativa a los iniciadores convencionales tipo trifluoruro de boro/amina. Su interés reside fundamentalmente, entre otros aspectos, en que son estables a la humedad y en que son muy versátiles ya que cambiando el catión del triflato puede modificarse su carácter ácido de Lewis y por tanto su actividad. Hasta la fecha los triflatos de tierras raras no han sido descritos como iniciadores en sistema epoxi/isocianato.Rare earth triflates are Lewis acids that are recently gaining interest as cationic initiators for curing epoxy resins as an alternative to conventional boron / amine trifluoride initiators. Their interest resides fundamentally, among other aspects, in that they are stable to moisture and in that they are very versatile since changing the cation of the triflate can modify its Lewis acid character and therefore its activity. To date, rare earth triflates have not been described as initiators in epoxy / isocyanate systems.
Para una revisión de la utilización de triflatos de tierras raras como iniciadores del curado de resinas epoxi véanse, por ejemplo: Castell, P. et al., Polymer, 41, 8465-8474 (2000); ES 2 154 165 A1 de Universitat Rovira i Virgili; Mas, C. et al. Macromol. Chem. Phys. 202, 2554-2564 (2001); Lanthanides: Chemistry and Use in Organic Synthesis, Kobayashi, S., Ed.; Topics in Organometallic Chemistry; Springer-Verlag: Berlin (1999); Mas, C. et al., J. Polym.Sci, Part A: Polym. Chem. 42, 3782-3791 (2004); Arasa, M. et al. Eur. Polym. J., 45, 1282-1292 (2009).For a review of the use of rare earth triflates as initiators of epoxy resin curing see, for example: Castell, P. et al. , Polymer , 41 , 8465-8474 (2000); ES 2 154 165 A1 of Universitat Rovira i Virgili; Mas, C. et al. Macromol Chem. Phys. 202, 2554-2564 (2001); Lanthanides: Chemistry and Use in Organic Synthesis, Kobayashi, S., Ed .; Topics in Organometallic Chemistry; Springer-Verlag: Berlin (1999); Mas, C. et al., J. Polym.Sci, Part A: Polym. Chem. 42 , 3782-3791 (2004); Arasa, M. et al. Eur. Polym. J. , 45 , 1282-1292 (2009).
Por tanto, a la vista de lo expuesto, existe la necesidad en el estado de la técnica de proporcionar un nuevo procedimiento alternativo para el entrecruzamiento de resinas epoxi que superen al menos en parte las desventajas mencionadas relativas a los cortos tiempos de procesado que se obtienen con los iniciadores utilizados actualmente y que permita obtener materiales con propiedades hechas a medida. Therefore, in view of the above, there is a need in the state of the art to provide a new alternative method for cross-linking epoxy resins that at least partially overcome the aforementioned disadvantages related to the short processing times that are obtained. with the initiators currently used and that allows to obtain materials with custom-made properties.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La invención se refiere en un aspecto a una composición, en adelante composición de la invención, para el entrecruzamiento de una resina epoxi con un isocianato, que comprende:
  1. una resina epoxi,
  2. un poliisocianato, y
  3. un triflato de tierra rara, de fórmula general (I)
The invention relates in one aspect to a composition, hereinafter composition of the invention, for the cross-linking of an epoxy resin with an isocyanate, comprising:
  1. an epoxy resin,
  2. a polyisocyanate, and
  3. a rare earth triflate, of general formula (I)
M(OSO2CF3) n (I)M (BEAR 2 CF 3 ) n (I)
donde M es el catión derivado de una tierra rara seleccionada del grupo formado por escandio, itrio, lantano, cerio, praseodimio, neodimio, prometio, samario, europio, gadolinio, terbio, disprosio, holmio, erbio, tulio, iterbio y lutecio y n representa la valencia de la tierra rara en el triflato. where M is the cation derived from a rare earth selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, tulio, ytterbium and lutetium and n It represents the valence of the rare earth in the triflate.
Aunque todos los triflatos de tierras raras son iniciadores activos del curado de sistemas epoxi/isocianato y funcionan de forma similar, debido a un complejo mecanismo reactivo (con varias reacciones competitivas), conducen a materiales entrecruzados algo diferentes. En una realización particular la composición de la invención comprende un triflato de lantano, o de escandio o de iterbio. De entre ellos, los inventores han observado que el triflato de escandio es el más activo y el de lantano el que menos, de acuerdo con la dureza de Pearson del catión. Los productos entrecruzados obtenidos presentan una temperatura de transición vítrea (Tg) que se modifica ligeramente con el tipo de triflato utilizado, obteniéndose las mayores Tgs con triflato de escandio y las menores con triflato de iterbio o de lantano (ver ejemplos 1, 5 y 6, y ejemplos 8, 9 y 10) en función asimismo de la cantidad de triflato de la composición. Asimismo los inventores han observado que el triflato de lantano produce estructuras significativamente más ricas en unidades oxazolidona que el de iterbio (ver ejemplos 1 y 5, y ejemplos 8 y 9).Although all rare earth triflates are active initiators of epoxy / isocyanate system curing and work similarly, due to a complex reactive mechanism (with several competitive reactions), they lead to somewhat different crosslinked materials. In a particular embodiment the composition of the invention comprises a lanthanum, or scandium or ytterbium triflate. Among them, the inventors have observed that scandium triflate is the most active and that of lanthanum is the least, according to Pearson's hardness of the cation. The cross-linked products obtained have a glass transition temperature (Tg) that is slightly modified with the type of triflate used, with the highest Tgs being obtained with scandium triflate and the lowest ones with yttrium or lanthanum triflate (see examples 1, 5 and 6 , and examples 8, 9 and 10) also depending on the amount of triflate in the composition. The inventors have also observed that lanthanum triflate produces structures significantly richer in oxazolidone units than that of ytterbium (see examples 1 and 5, and examples 8 and 9).
El triflato de tierra rara (I) puede estar presente en la composición de invención en cualquier cantidad. No obstante, en una realización preferida de esta invención, el triflato de tierra rara (I) está presente en una cantidad comprendida entre 1 y 3 phr (partes por cien de mezcla resina/isocianato). Cuando se utiliza 1 phr la composición tarda más tiempo en gelificar que cuando se utilizan 3 phr. Aunque la Tg del material entrecruzado resultante no se ve muy afectada por la cantidad de triflato, dependiendo del triflato utilizado, ésta puede aumentar o disminuir ligeramente al aumentar el contenido de triflato. Mientras que con triflato de lantano la Tg es mayor cuando se utilizan 3 phr que cuando se utiliza 1 phr (ejemplos 5 y 9), con triflato de iterbio sucede lo contrario (ejemplos 1 y 8). En cualquier caso ambas composiciones con 1 phr y con 3 phr pueden ser útiles en función de la aplicación que se quiera dar al material entrecruzado. En general se ha observado que cantidades más bajas de triflato en la composición pueden conducir a materiales que no están completamente entrecruzados, mientras que cantidades más altas pueden llevar a un “pot-life” muy bajo y a una elevada exotermicidad en el procedimiento de entrecruzamiento. The rare earth triflate (I) may be present in the composition of the invention in any amount. However, in a preferred embodiment of this invention, the rare earth triflate (I) is present in an amount between 1 and 3 phr (parts per cent of resin / isocyanate mixture). When 1 phr is used the composition takes longer to gel than when 3 phr is used. Although the Tg of the resulting crosslinked material is not greatly affected by the amount of triflate, depending on the triflate used, it may increase or decrease slightly as the triflate content increases. While with lanthanum triflate the Tg is higher when 3 phr is used than when 1 phr is used (examples 5 and 9), the opposite occurs with ytterbium triflate (examples 1 and 8). In any case, both compositions with 1 phr and 3 phr can be useful depending on the application you want to give the crosslinked material. In general it has been observed that lower amounts of triflate in the composition can lead to materials that are not completely crosslinked, while higher amounts can lead to a very low pot-life and high exothermicity in the cross-linking process.
En la presente invención pueden ser utilizados como resinas epoxi de la composición [componente a)] cualquier resina epoxi monomérica, dimérica, oligomérica o polimérica, que contenga como mínimo dos grupos funcionales epoxi. El diepóxido preferido es una resina epoxídica de diglicidiléter de Bisfenol A (DGEBA).In the present invention, any monomeric, dimeric, oligomeric or polymeric epoxy resin containing at least two epoxy functional groups can be used as epoxy resins of the composition [component a)]. The preferred diepoxide is an epoxy resin of diglycidyl ether of Bisphenol A (DGEBA).
El componente b) de la composición es un poliisocianato representado por la fórmula general (II)Component b) of the composition is a polyisocyanate represented by the general formula (II)
(O=C=N) m -R (II)(O = C = N) m -R (II)
en la que R es un grupo polivalente, sustituido o sin sustituir, alifático, cicloalifático, aromático o heterocíclico y m tiene un valor superior a la unidad, preferiblemente entre 2 y 3. Los compuestos poliisocianato preferidos de la presente invención son diisocianatos como el 2,4-tolueno diisocianato (TDI) y el 4,4’-metileno bis(fenil-isocianato) (MDI).wherein R is a polyvalent, substituted or unsubstituted, aliphatic, cycloaliphatic, aromatic or heterocyclic group and m has a value greater than unity, preferably between 2 and 3. The preferred polyisocyanate compounds of the present invention are diisocyanates such as 2 , 4-toluene diisocyanate (TDI) and 4,4'-methylene bis (phenyl isocyanate) (MDI).
En la práctica de la presente invención se ha descubierto sorprendentemente la formación de grupos oxazolidona y isocianurato cuando se utiliza un triflato de tierra rara como iniciador del curado y que la cantidad de estos grupos y la Tg final del material entrecruzado puede ser regulada en función de la formulación de la composición de partida. Aunque la composición de la invención puede ser cualquiera en principio, conteniendo desde un exceso de isocianato hasta un exceso de resina epoxi, en función de las propiedades deseadas, las composiciones con cantidades muy elevadas de isocianato conducen en general a materiales demasiado frágiles, con Tgs por encima de los 250ºC. En general, un aumento del contenido de isocianato en la composición de la invención conduce a materiales más entrecruzados y con mayor Tg. In the practice of the present invention, the formation of oxazolidone and isocyanurate groups has surprisingly been discovered when a rare earth triflate is used as a cure initiator and that the amount of these groups and the final Tg of the crosslinked material can be regulated as a function of The formulation of the starting composition. Although the composition of the invention can be any one in principle, containing from an excess of isocyanate to an excess of epoxy resin, depending on the desired properties, compositions with very high amounts of isocyanate generally lead to materials that are too fragile, with Tgs above 250 ° C. In general, an increase in the isocyanate content in the composition of the invention leads to more crosslinked and higher Tg materials.
La relación molar epoxi/diisocianato (E/I) puede variar entre amplios márgenes. Las composiciones preferidas de la presente invención contienen relaciones molares epoxi/diisocianato (relación E/I) comprendidas entre 2/1 y 1/1. Las Tgs de los materiales entrecruzados utilizando relaciones molares 2/1 y 1/1, cuando se utiliza 1 phr de triflato de iterbio son 125ºC y 217ºC respectivamente. El material resultante de una composición con relación molar E/I de 2/1 posee una estructura rica en anillos oxazolidona y el material obtenido a partir de una relación E/I de 1/1 es rico en anillos isocianurato. Las composiciones que presentan relaciones E/I intermedias entre la 2/1 y la 1/1 presentan estructuras y propiedades intermedias entre ambos extremos. The epoxy / diisocyanate (E / I) molar ratio can vary between wide ranges. Preferred compositions of the present invention contain epoxy / diisocyanate molar ratios (E / I ratio) between 2/1 and 1/1. The Tgs of the crosslinked materials using 2/1 and 1/1 molar ratios, when 1 phr of ytterbium triflate is used are 125 ° C and 217 ° C respectively. The material resulting from a composition with an E / I molar ratio of 2/1 has a structure rich in oxazolidone rings and the material obtained from an E / I ratio of 1/1 is rich in isocyanurate rings. Compositions that have intermediate E / I ratios between 2/1 and 1/1 have intermediate structures and properties between both ends.
La composición de la invención puede contener opcionalmente al menos un aditivo coadyuvante habitual en las formulaciones epoxi y epoxi/isocianato, tales como pigmentos, colorantes, plastificantes, cargas reforzantes y no reforzantes, etc.The composition of the invention may optionally contain at least one common adjuvant additive in the epoxy and epoxy / isocyanate formulations, such as pigments, dyes, plasticizers, reinforcing and non-reinforcing fillers, etc.
La composición de la presente invención puede utilizarse en cualquier aplicación propia de las formulaciones epoxi y epoxi/isocianato, tales como adhesivos, recubrimientos, en la fabricación de laminados y estratificados, especialmente cuando se requieran materiales con altas prestaciones mecánicas y térmicas.The composition of the present invention can be used in any application of the epoxy and epoxy / isocyanate formulations, such as adhesives, coatings, in the manufacture of laminates and laminates, especially when materials with high mechanical and thermal performance are required.
En otro aspecto la presente invención se relaciona con un procedimiento para la obtención de la composición de la invención que comprende las etapas de:
(i) mezclar una resina epoxi y un poliisocianato;
In another aspect the present invention relates to a process for obtaining the composition of the invention comprising the steps of:
(i) mixing an epoxy resin and a polyisocyanate;
(ii) mantener la mezcla a vacío por lo menos durante una hora a una temperatura entre 80 y 120ºC; y (ii) keep the mixture under vacuum for at least one hour at a temperature between 80 and 120 ° C; Y
(iii) añadir el triflato de tierra anteriormente definido sobre la mezcla resultante de la etapa (ii), pudiendo añadirse el triflato disuelto o no en un disolvente. (iii) add the above-defined earth triflate onto the mixture resulting from step (ii), the triflate being dissolved or not dissolved in a solvent.
En este procedimiento de obtención preferiblemente se destila el isocianato antes de mezclarlo con la resina epoxi. Es importante mantener la mezcla a vacío en la etapa (ii) para eliminar trazas de humedad y homogeneizar bien la mezcla. El triflato se puede incorporar a temperatura ambiente y puede ser dispersado directamente sobre la mezcla resultante de la etapa (ii) o disolverlo previamente en una mínima cantidad de un disolvente orgánico adecuado el cual puede ser fácilmente determinado por un experto en la materia. En caso de utilizarse un disolvente orgánico éste debe presentar un punto bajo de ebullición típicamente inferior a 65ºC, por ejemplo acetona o metanol. El disolvente se elimina durante el curado al aumentar la temperatura. En el caso de utilizarse resinas e isocianatos sólidos estos materiales deben ser fundidos antes del proceso de mezcla.In this process, the isocyanate is preferably distilled before mixing with the epoxy resin. It is important to keep the mixture under vacuum in step (ii) to remove traces of moisture and homogenize the mixture well. The triflate can be incorporated at room temperature and can be dispersed directly on the mixture resulting from step (ii) or previously dissolved in a minimum amount of a suitable organic solvent which can easily be determined by one skilled in the art. If an organic solvent is used, it must have a low boiling point typically below 65 ° C, for example acetone or methanol. The solvent is removed during curing with increasing temperature. In the case of using solid resins and isocyanates, these materials must be melted before the mixing process.
En otro aspecto la invención se relaciona con un procedimiento para entrecruzar la resina epoxi y el isocianato de la composición de la invención, en adelante procedimiento de la invención, que comprende el empleo de un triflato de tierra rara según se ha definido anteriormente.In another aspect the invention relates to a process for cross-linking the epoxy resin and the isocyanate of the composition of the invention, hereinafter the method of the invention, which comprises the use of a rare earth triflate as defined above.
El procedimiento comprende el curado de dicha composición mediante calentamiento desde temperatura ambiente inicial hasta una temperatura comprendida entre 250ºC a 300ºC. El tiempo necesario para el curado es variable y varía en función de la formulación de la composición de la invención y de la temperatura de curado. Dependiendo de la temperatura, del tiempo de curado y de la formulación se requiere en determinadas realizaciones particulares un postcurado durante un intervalo de tiempo variable a una temperatura de cómo mínimo 250ºC para asegurar un curado total, con la desaparición de todos los grupos epoxi e isocianato de la formulación de partida. Las propiedades del producto entrecruzado obtenido dependerán además de la formulación de la composición de partida, de las condiciones de curado (tiempo, temperatura).The process comprises curing said composition by heating from initial room temperature to a temperature between 250 ° C to 300 ° C. The time required for curing is variable and varies depending on the formulation of the composition of the invention and the cure temperature. Depending on the temperature, curing time and formulation, post-curing is required in certain particular embodiments for a variable time interval at a temperature of at least 250 ° C to ensure full cure, with the disappearance of all epoxy and isocyanate groups. of the starting formulation. The properties of the crosslinked product obtained will also depend on the formulation of the starting composition, on the curing conditions (time, temperature).
En una realización particular el procedimiento para entrecruzar la composición se lleva a cabo mediante calentamiento de dicha composición a una velocidad de calentamiento comprendida entre 0,5ºC/min y 50ºC/min. En una realización particular la velocidad de calentamiento es de 5ºC/min. In a particular embodiment the process for cross-linking the composition is carried out by heating said composition at a heating rate between 0.5 ° C / min and 50 ° C / min. In a particular embodiment the heating rate is 5 ° C / min.
En otra realización particular el procedimiento para entrecruzar la composición de la invención comprende llevar a cabo al menos 2 etapas isotérmicas de curado: In another particular embodiment the method for cross-linking the composition of the invention comprises carrying out at least 2 isothermal curing steps:
a) una etapa a una temperatura comprendida entre 180ºC y 220ºC y a) a stage at a temperature between 180 ° C and 220 ° C and
b) una etapa a una temperatura comprendida entre 250ºC y 300ºC.b) a stage at a temperature between 250 ° C and 300 ° C.
Alternativamente el procedimiento puede comprende además la realización de una primera etapa isotérmica de curado a una temperatura igual o superior a 120ºC e inferior a 180ºC antes de las etapas a) y b). Los tiempos de estas etapas son variables en función por ejemplo de la formulación de la composición de partida y de la temperatura seleccionada en cada caso.Alternatively, the process may further comprise the realization of a first isothermal curing stage at a temperature equal to or greater than 120 ° C and below 180 ° C before steps a) and b). The times of these stages are variable depending on, for example, the formulation of the starting composition and the temperature selected in each case.
En otra realización particular el procedimiento comprende una primera etapa que se lleva a cabo a 150ºC durante 1 hora; la siguiente etapa a) a 200ºC durante 2 horas y la última etapa b) a una temperatura de 250ºC durante 1 hora.In another particular embodiment the process comprises a first stage that is carried out at 150 ° C for 1 hour; the next stage a) at 200 ° C for 2 hours and the last stage b) at a temperature of 250 ° C for 1 hour.
El calentamiento progresivo bien a una determinada velocidad o bien calentando en distintas etapas isotérmicas permite una activación progresiva de los diferentes procesos reactivos. El calentamiento puede realizarse a escala micro en un calorímetro diferencial de barrido o a escala macro en una estufa u horno convencional. En general no obstante en estufas u hornos convencionales no es habitual conseguir velocidades de calentamiento superiores a 10ºC/min.The progressive heating either at a certain speed or by heating in different isothermal stages allows a progressive activation of the different reactive processes. Heating can be done on a micro scale in a differential scanning calorimeter or on a macro scale in a conventional oven or oven. In general, however, in conventional stoves or ovens, it is not usual to achieve heating rates greater than 10 ° C / min.
En la presente invención la desaparición de los grupos epoxi e isocianato, así como la formación de grupos oxazolidona e isocianurato es confirmada mediante espectroscopia infrarroja FTIR. Las conversiones en tanto por ciento de grupos isocianato en anillos de oxazolidona e isocianurato se calculan a partir de las intensidades relativas de las bandas de absorción en el FTIR de oxazolidona e isocianurato. In the present invention the disappearance of the epoxy and isocyanate groups, as well as the formation of oxazolidone and isocyanurate groups is confirmed by FTIR infrared spectroscopy. Conversions in percent of isocyanate groups in oxazolidone and isocyanurate rings are calculated from the relative intensities of the absorption bands in the FTIR of oxazolidone and isocyanurate.
En la presente invención se han establecido aproximadamente los intervalos de temperatura en que los diferentes procesos reactivos tienen lugar. Por debajo de los 120ºC, apenas tiene lugar ningún proceso reactivo y solamente en caso de existir humedad o grupos hidroxilos, provenientes de la resina epoxi, pueden formarse grupos uretano (identificados en FTIR por una banda de absorción cercana a los 1730 cm-1). Después, estos grupos desaparecen a altas temperaturas para dar grupos oxazolidona o isocianurato. Entre 120ºC y 200ºC mayoritariamente tiene lugar la formación de oxazolidonas (identificadas con una banda a 1750 cm-1) por reacción entre un grupo epoxi y otro isocianato y la homopolimerización de los grupos epoxi. A temperaturas entre 200ºC y 300ºC pueden formarse isocianuratos (identificados con una banda a 1710 cm-1), que además pueden transformarse en oxazolidonas en caso de existir grupos epoxi libres. A estas temperaturas también puede tener lugar la homopolimerización térmica de la resina epoxi. La formación de grupos isocianuratos a altas temperaturas es un resultado sorprendente y no esperado, ya que esto no ha sido descrito hasta la fecha, cuando se utilizan ácidos de Lewis como iniciadores. Además de sorprendente este resultado resuelve los problemas de procesado de los sistemas convencionales (bajo “pot-life”), permitiendo que las composiciones de la invención puedan ser procesadas durante más tiempo y a temperaturas más altas. De este modo es posible regular y determinar las propiedades de los materiales entrecruzados que se obtienen en función de las necesidades y las aplicaciones. Además el procesado más largo permite un mejor control de la estructura y de la homogeneidad del retículo.In the present invention approximately the temperature ranges at which different reactive processes take place have been established. Below 120ºC, hardly any reactive process takes place and only if there is moisture or hydroxyl groups, coming from the epoxy resin, can urethane groups be formed (identified in FTIR by an absorption band close to 1730 cm -1 ) . Then, these groups disappear at high temperatures to give oxazolidone or isocyanurate groups. The formation of oxazolidones (identified with a band at 1750 cm -1 ) mostly takes place between 120 ° C and 200 ° C by reaction between an epoxy group and another isocyanate and homopolymerization of the epoxy groups. At temperatures between 200 ° C and 300 ° C, isocyanurates can be formed (identified with a band at 1710 cm -1 ), which can also be transformed into oxazolidones if there are free epoxy groups. At these temperatures, thermal homopolymerization of the epoxy resin can also take place. The formation of isocyanurate groups at high temperatures is a surprising and unexpected result, since this has not been described to date, when Lewis acids are used as initiators. In addition to surprising this result solves the processing problems of conventional systems (under “pot-life”), allowing the compositions of the invention to be processed for longer and at higher temperatures. In this way it is possible to regulate and determine the properties of crosslinked materials that are obtained according to the needs and applications. In addition, the longer processing allows better control of the structure and homogeneity of the lattice.
En la presente invención se ha establecido también (a modo de comparación), que utilizando aminas terciarias como iniciadores, la formación de grupos isocianurato tiene lugar a temperaturas entre los 0ºC y los 100ºC. Más concretamente, se ha determinado, para una formulación resina/epoxi 1/1, que utilizando 1 phr de bencildimetilamina (iniciador convencional) el material gelifica a 67ºC mientras que con 1 phr de triflato de iterbio (iniciador de la presente invención) lo hace a la temperatura de 127ºC. Ambas determinaciones se han hecho mediante análisis termomecánico calentando las formulaciones a 5ºC/min, tal como se explica en la metodología utilizada en las medidas de los ejemplos.In the present invention it has also been established (by way of comparison), that using tertiary amines as initiators, the formation of isocyanurate groups takes place at temperatures between 0 ° C and 100 ° C. More specifically, it has been determined, for a 1/1 resin / epoxy formulation, that using 1 phr of benzyldimethylamine (conventional initiator) the material gels at 67 ° C while with 1 phr of ytterbium triflate (initiator of the present invention) it does so at the temperature of 127 ° C. Both determinations have been made by thermomechanical analysis by heating the formulations at 5 ° C / min, as explained in the methodology used in the measurements of the examples.
Por último en otro aspecto adicional la invención se relaciona con una resina epoxi entrecruzada obtenible según el procedimiento de la invención.Finally, in a further aspect, the invention relates to a crosslinked epoxy resin obtainable according to the process of the invention.
Los inventores de la presente invención han puesto de manifiesto que los triflatos de tierras raras (I) pueden ser utilizados como iniciadores efectivos en el entrecruzamiento de resinas epoxi con isocianatos. Las estructuras formadas son muy versátiles y contienen unidades oxazolidona e isocianurato. Pueden preparase productos entrecruzados con propiedades muy diferenciadas en función de la cantidad y tipo de resina epoxi y isocianato, pero también del tipo y cantidad de triflato de tierra rara (I). En general los productos obtenidos poseen menor estabilidad térmica que las formulaciones análogas donde se utiliza un iniciador convencional. Cuando se utilizan triflatos de tierras raras en lugar de otros iniciadores convencionales la gelificación tiene lugar a temperaturas más elevadas, pudiéndose procesar las composiciones de partida durante más tiempo y a mayor temperatura. Es por ello que la temperatura inicial en el procedimiento de la invención es temperatura ambiente mientras que la temperatura inicial en el mismo procedimiento llevado a cabo con un iniciador convencional debe ser de 0ºC aproximadamente. Los triflatos no son activos a temperatura ambiente, como lo son los iniciadores comunes. Además se ha visto una reducción significativa en el tipo y número de reacciones indeseadas de otros procesos convencionales.The inventors of the present invention have shown that rare earth triflates (I) can be used as effective initiators in crosslinking epoxy resins with isocyanates. The structures formed are very versatile and contain oxazolidone and isocyanurate units. Crosslinked products can be prepared with very differentiated properties depending on the amount and type of epoxy resin and isocyanate, but also on the type and amount of rare earth triflate (I). In general, the products obtained have lower thermal stability than similar formulations where a conventional initiator is used. When rare earth triflates are used instead of other conventional initiators, gelation takes place at higher temperatures, the starting compositions being able to be processed for a longer time and at a higher temperature. That is why the initial temperature in the process of the invention is room temperature while the initial temperature in the same procedure carried out with a conventional initiator should be approximately 0 ° C. Triflates are not active at room temperature, as are common initiators. In addition, a significant reduction in the type and number of unwanted reactions of other conventional processes has been seen.
El procesado más largo permite un mejor control de la estructura y de la homogeneidad del retículo. De este modo es posible regular y determinar las propiedades de los materiales entrecruzados que se obtienen en función de las necesidades.The longer processing allows a better control of the structure and the homogeneity of the lattice. In this way it is possible to regulate and determine the properties of the crosslinked materials that are obtained according to the needs.
Otra ventaja de la presente invención es el procedimiento de entrecruzamiento mediante calentamiento controlado, donde los diferentes procesos reactivos se activan de forma secuenciada, pudiéndose controlar de este modo mejor las propiedades finales de los materiales. Another advantage of the present invention is the cross-linking process by controlled heating, where the different reactive processes are activated sequentially, thus being able to better control the final properties of the materials.
Todas estas características indican que la presente invención puede tener un interés potencial en cualquier aplicación propia de una resina epoxi o de un sistemas resina epoxi/isocianato, especialmente cuando se deseen obtener materiales entrecruzados con una composición y unas propiedades controladas y con unos tiempos y temperaturas de proceso elevados.All these characteristics indicate that the present invention may have a potential interest in any application of an epoxy resin or epoxy resin / isocyanate systems, especially when it is desired to obtain crosslinked materials with a controlled composition and properties and with times and temperatures high process.
A continuación se presentan ejemplos ilustrativos de la invención que se exponen para una mejor comprensión de la misma y en ningún caso deben considerarse una limitación del alcance de la misma.Below are illustrative examples of the invention that are set forth for a better understanding thereof and in no case should they be considered a limitation of the scope thereof.
EJEMPLOSEXAMPLES
Los siguientes métodos y aparatos se emplean para diversas determinaciones en los ejemplos.The following methods and apparatus are used for various determinations in the examples.
Los entrecruzamientos se realizaron en un calorímetro Mettler DSC-822e con un robot TS0801RO en cápsulas de aluminio y en atmósfera de nitrógeno. El calorímetro fue calibrado utilizando indio para el flujo de calor y indio/zinc/plomo para la temperatura. Se curaron muestras de aproximadamente 10 mg desde temperatura ambiente hasta 300ºC a una velocidad de calentamiento de 5ºC/min. Para los ejemplos de comparación donde se utilizó bencildimetilamina como iniciador el calentamiento se inició a 0ºC. La conversión se determinó como el cociente entre el calor liberado hasta una cierta temperatura y el calor total liberado hasta el final del curado. La temperatura de transición vítrea (Tg) de los materiales se determinó mediante un segundo barrido a 10ºC/min después del curado dinámico a 5ºC/min, como la temperatura del punto medio del salto de la capacidad calorífica cuando el material cambia del estado vítreo al amorfo. Se calculó la temperatura de inicio del curado como la temperatura a la que se inicia la liberación del calor en el calorímetro. The crossings were performed on a Mettler DSC-822e calorimeter with a TS0801RO robot in aluminum capsules and under a nitrogen atmosphere. The calorimeter was calibrated using indium for heat flow and indium / zinc / lead for temperature. Samples of approximately 10 mg were cured from room temperature to 300 ° C at a heating rate of 5 ° C / min. For comparison examples where benzyldimethylamine was used as initiator the heating was started at 0 ° C. The conversion was determined as the ratio between the heat released to a certain temperature and the total heat released until the end of curing. The glass transition temperature (T g ) of the materials was determined by a second scan at 10 ° C / min after dynamic curing at 5 ° C / min, as the temperature of the midpoint of the heat capacity jump when the material changes from the vitreous state to the amorphous Cure start temperature was calculated as the temperature at which the heat release in the calorimeter begins.
La temperatura a la que gelifica el material se determinó en un analizador termomecánico Mettler TMA40. Las muestras se impregnaron en fibra de vidrio silanizada y se colocaron entre dos discos rígidos de óxido de silicio. Se curó el material igual que en el calorímetro calentando la muestra a 5ºC/min desde temperatura ambiente hasta 300ºC aplicando un fuerza variable desde 0,0025 hasta 0,01 N. Se tomó como temperatura de gelificación la temperatura a la cual el material gana estabilidad mecánica y se reduce bruscamente la amplitud de las oscilaciones. La conversión en la gelificación (agel) se determinó como la conversión alcanzada en el calorímetro a la temperatura en que el material gelificó en el análisis termomecánico (TMA).The temperature at which the material gels was determined on a Mettler TMA40 thermomechanical analyzer. The samples were impregnated with silanized fiberglass and placed between two rigid silicon oxide discs. The material was cured as in the calorimeter by heating the sample at 5 ° C / min from room temperature to 300 ° C applying a variable force from 0.0025 to 0.01 N. The temperature at which the material gains stability was taken as gelation temperature. mechanically and the amplitude of oscillations is sharply reduced. The conversion in gelation (to gel ) was determined as the conversion achieved in the calorimeter at the temperature at which the material gelled in the thermomechanical analysis (TMA).
La estabilidad térmica de los materiales entrecruzados se determinó en atmósfera de nitrógeno con un flujo de 200 cm3/min (medido en condiciones normales) en una termobalanza Mettler TG50. Las muestras de aproximadamente 10 mg fueron degradadas entre 30 y 700ºC mediante un calentamiento a 10ºC/min. Se ha tomado como temperatura de descomposición la temperatura a la cual el material había descompuesto un 5%.The thermal stability of the crosslinked materials was determined under a nitrogen atmosphere with a flow of 200 cm 3 / min (measured under normal conditions) in a Mettler TG50 thermobalance. Samples of approximately 10 mg were degraded between 30 and 700 ° C by heating at 10 ° C / min. The temperature at which the material had decomposed 5% was taken as the decomposition temperature.
Los espectros de infrarrojo se realizaron con un espectrofotómetro Brucker Vertex 70 con un accesorio de reflectancia total atenuada con control térmico y con un cristal de diamante de Specac-Teknokroma. La desaparición de los grupos isocianatos se siguió mediante el pico de absorbancia a 2270 cm-1 (O=C=N) y la de los grupos epoxi utilizando el pico de deformación del grupo oxirano a 915 cm-1. La formación de anillos oxazolidona e isocianurato se evaluó utilizando las bandas características de absorción del grupo carbonilo a 1750 cm-1 (oxazolidona) y 1710 cm-1 (isocianurato). The infrared spectra were made with a Brucker Vertex 70 spectrophotometer with an attenuated total reflectance accessory with thermal control and with a Specac-Teknokroma diamond crystal. The disappearance of the isocyanate groups was followed by the absorbance peak at 2270 cm -1 (O = C = N) and that of the epoxy groups using the deformation peak of the oxirane group at 915 cm -1 . The formation of oxazolidone and isocyanurate rings was evaluated using the characteristic absorption bands of the carbonyl group at 1750 cm -1 (oxazolidone) and 1710 cm -1 (isocyanurate).
Ejemplo 1 (relación molar resina DGEBA/TDI 1/1, 1 phr de triflato de iterbio) Example 1 (1/1 DGEBA / TDI resin molar ratio, 1 phr of ytterbium triflate)
Se preparó una composición de entrecruzamiento de una resina epoxi con un isocianato, mezclando homogéneamente 5 gramos de DGEBA y 2,328 gramos TDI (relación molar E/I=1/1) y se mantuvo durante dos horas en la estufa a vacío y a la temperatura de 80ºC. Con la muestra a temperatura ambiente se añadió 1 phr de triflato de iterbio. 10 mg de esta formulación se calentaron en un calorímetro desde temperatura ambiente hasta la temperatura de 300ºC a una velocidad de calentamiento de 5ºC/min. El material entrecruzado mostró una temperatura de transición vítrea de 217ºC, una temperatura de inicio de curado de 43ºC, una temperatura de gelificación de 127ºC, una conversión en la gelificación del 17% y una temperatura de descomposición de 346ºC. El espectro de espectroscopia infrarroja por transformada de fourier (FTIR) del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 23% y 77% respectivamente. A cross-linking composition of an epoxy resin with an isocyanate was prepared, homogeneously mixing 5 grams of DGEBA and 2,328 grams TDI (molar ratio E / I = 1/1) and kept for two hours in the vacuum oven at the temperature of 80 ° C With the sample at room temperature 1 phr of ytterbium triflate was added. 10 mg of this formulation was heated in a calorimeter from room temperature to a temperature of 300 ° C at a heating rate of 5 ° C / min. The crosslinked material showed a glass transition temperature of 217 ° C, a cure start temperature of 43 ° C, a gelation temperature of 127 ° C, a conversion in gelation of 17% and a decomposition temperature of 346 ° C. The spectrum of fourier transform infrared spectroscopy (FTIR) of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings at a content of 23% and 77% respectively.
Ejemplo 2 de comparación (relación molar resina DGEBA/TDI 1/1, 1 phr bencildimetilamina)Comparison example 2 (1/1 DGEBA / TDI resin molar ratio, 1 phr benzyldimethylamine)
Se procedió como se describe en el ejemplo 1, pero se sustituyó 1 phr de triflato de iterbio por 1 phr de bencildimetilamina y el calentamiento en el calorímetro se inició a 0ºC en lugar de a temperatura ambiente. El material entrecruzado mostró una temperatura de transición vítrea de 191ºC, una temperatura de inicio de curado de 8ºC, una temperatura de gelificación de 67ºC, una conversión en la gelificación del 14,8% y una temperatura de descomposición de 356ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 60% y 40% respectivamente.The procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 1 phr of benzyldimethylamine and heating on the calorimeter was started at 0 ° C instead of at room temperature. The crosslinked material showed a glass transition temperature of 191 ° C, a cure start temperature of 8 ° C, a gelation temperature of 67 ° C, a conversion in gelation of 14.8% and a decomposition temperature of 356 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 60% and 40% respectively.
Ejemplo 3 (relación molar resina DGEBA/TDI 2/1, 1 phr de triflato de iterbio) Example 3 (DGEBA / TDI 2/1 resin molar ratio, 1 phr of ytterbium triflate)
Se preparó una composición de entrecruzamiento de una resina epoxi con un isocianato, mezclando homogéneamente 5 gramos de DGEBA y 1,164 gramos de TDI (relación molar E/I=2/1) y se mantuvo durante dos horas en la estufa a vacío y a la temperatura de 80ºC. Con la muestra a temperatura ambiente se añadió 1 phr de triflato de iterbio. 10 mg de esta formulación se calentaron en un calorímetro desde temperatura ambiente hasta la temperatura de 300ºC a una velocidad de calentamiento de 5ºC/min. El material entrecruzado mostró una temperatura de transición vítrea de 125ºC, una temperatura de inicio de curado de 40ºC, una temperatura de gelificación de 143ºC, una conversión en la gelificación del 20% y una temperatura de descomposición de 346ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 73% y 27% respectivamente.A cross-linking composition of an epoxy resin with an isocyanate was prepared, homogeneously mixing 5 grams of DGEBA and 1,164 grams of TDI (molar ratio E / I = 2/1) and kept for two hours in the oven at vacuum and at the temperature of 80ºC. With the sample at room temperature 1 phr of ytterbium triflate was added. 10 mg of this formulation was heated in a calorimeter from room temperature to a temperature of 300 ° C at a heating rate of 5 ° C / min. The crosslinked material showed a glass transition temperature of 125 ° C, a cure start temperature of 40 ° C, a gelation temperature of 143 ° C, a conversion in gelation of 20% and a decomposition temperature of 346 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 73% and 27% respectively.
Ejemplo 4 de comparación (relación molar resina DGEBA/TDI 2/1, 1 phr bencildimetilamina)Comparison example 4 (DGEBA / TDI 2/1 resin molar ratio, 1 phr benzyldimethylamine)
Se procedió como se describe en el ejemplo 3, pero se sustituyó 1 phr de triflato de iterbio por 1 phr de bencildimetilamina y el calentamiento en el calorímetro se inició a 0ºC en lugar de a temperatura ambiente. El material entrecruzado mostró una temperatura de transición vítrea de 145ºC, una temperatura de inicio de curado de 10ºC, una temperatura de gelificación de 70ºC, una conversión en la gelificación del 14% y una temperatura de descomposición de 373ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 95% y 5% respectivamente.The procedure was as described in example 3, but 1 phr of ytterbium triflate was replaced by 1 phr of benzyldimethylamine and heating in the calorimeter was started at 0 ° C instead of at room temperature. The crosslinked material showed a glass transition temperature of 145 ° C, a cure start temperature of 10 ° C, a gelation temperature of 70 ° C, a conversion in gelation of 14% and a decomposition temperature of 373 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 95% and 5% respectively.
Ejemplo 5 (relación molar resina DGEBA/TDI 1/1, 1 phr de triflato de lantano) Example 5 (1/1 DGEBA / TDI resin molar ratio, 1 phr of lanthanum triflate)
Se procedió como se describe en el ejemplo 1, pero se sustituyó 1 phr de triflato de iterbio por 1 phr de triflato de lantano. El material entrecruzado mostró una temperatura de transición vítrea de 196ºC, una temperatura de inicio de curado de 42ºC, una temperatura de gelificación de 150ºC, una conversión en la gelificación del 22% y una temperatura de descomposición de 339ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 53% y 47% respectivamente. The procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 1 phr of lanthanum triflate. The crosslinked material showed a glass transition temperature of 196 ° C, a cure start temperature of 42 ° C, a gelation temperature of 150 ° C, a conversion in gelation of 22% and a decomposition temperature of 339 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 53% and 47% respectively.
Ejemplo 6 (relación molar resina DGEBA/TDI 1/1, 1 phr de triflato de escandio) Example 6 (1/1 DGEBA / TDI resin molar ratio, 1 phr of scandium triflate)
Se procedió como se describe en el ejemplo 1, pero se sustituyó 1 phr de triflato de iterbio por 1 phr de triflato de escandio. El material entrecruzado mostró una temperatura de transición vítrea superior a 220ºC, una temperatura de inicio de curado de 60ºC, una temperatura de gelificación de 124ºC, una conversión en la gelificación del 16% y una temperatura de descomposición de 333ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi, pero no se pudo evidenciar con claridad la formación de anillos oxazolidona e isocianurato debido a la aparición de una ancha banda de absorción a 1730 cm-1 asociada al grupo carbonilo y relacionada con la polimerización del isocianato. The procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 1 phr of scandium triflate. The crosslinked material showed a glass transition temperature greater than 220 ° C, a cure start temperature of 60 ° C, a gelation temperature of 124 ° C, a conversion in gelation of 16% and a decomposition temperature of 333 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups, but the formation of oxazolidone and isocyanurate rings could not be clearly evidenced due to the appearance of a broad absorption band at 1730 cm -1 associated with the group carbonyl and related to the polymerization of isocyanate.
Ejemplo 7 (relación molar resina DGEBA/MDI 1/1, 1 phr triflato de iterbio) Example 7 (1/1 DGEBA / MDI resin molar ratio, 1 phr ytterbium triflate)
Se preparó una composición de entrecruzamiento de una resina epoxi con un isocianato, mezclando homogéneamente 5 gramos de DGEBA y 3,345 gramos MDI (relación molar E/I=1/1) y se mantuvo durante dos horas en la estufa a vacío y a la temperatura de 100ºC. Con la muestra a temperatura ambiente se añadió 1 phr de triflato de iterbio. 10 mg de esta formulación se calentaron en un calorímetro desde temperatura ambiente hasta la temperatura de 300ºC a una velocidad de calentamiento de 5ºC/min. El material entrecruzado mostró una temperatura de transición vítrea de 207ºC, una temperatura de inicio de curado de 49ºC, una temperatura de gelificación de 131ºC, una conversión en la gelificación del 15% y una temperatura de descomposición de 351ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 34% y 66% respectivamente. A cross-linking composition of an epoxy resin with an isocyanate was prepared, homogeneously mixing 5 grams of DGEBA and 3,345 grams MDI (molar ratio E / I = 1/1) and kept for two hours in the vacuum oven at the temperature of 100 ° C With the sample at room temperature 1 phr of ytterbium triflate was added. 10 mg of this formulation was heated in a calorimeter from room temperature to a temperature of 300 ° C at a heating rate of 5 ° C / min. The crosslinked material showed a glass transition temperature of 207 ° C, a cure start temperature of 49 ° C, a gelation temperature of 131 ° C, a conversion in gelation of 15% and a decomposition temperature of 351 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 34% and 66% respectively.
Ejemplo 8 (relación molar resina DGEBA/TDI 1/1, 3 phr de triflato de iterbio) Example 8 (1/1 DGEBA / TDI resin molar ratio, 3 phr of ytterbium triflate)
Se procedió como se describe en el ejemplo 1, pero se sustituyó 1 phr de triflato de iterbio por 3 phr de triflato de iterbio. El material entrecruzado mostró una temperatura de transición vítrea de 199ºC, una temperatura de inicio de curado de 43ºC, una temperatura de gelificación de 99ºC, una conversión en la gelificación del 14% y una temperatura de descomposición de 330ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 34% y 66% respectivamente. The procedure was as described in example 1, but 1 phr of iterbium triflate was replaced by 3 phr of iterbium triflate. The crosslinked material showed a glass transition temperature of 199 ° C, a cure start temperature of 43 ° C, a gelation temperature of 99 ° C, a conversion in gelation of 14% and a decomposition temperature of 330 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 34% and 66% respectively.
Ejemplo 9 (relación molar resina DGEBA/TDI 1/1, 3 phr de triflato de lantano) Example 9 (1/1 DGEBA / TDI resin molar ratio, 3 phr of lanthanum triflate)
Se procedió como se describe en el ejemplo 1, pero se sustituyó 1 phr de triflato de iterbio por 3 phr de triflato de lantano. El material entrecruzado mostró una temperatura de transición vítrea de 213ºC, una temperatura de inicio de curado de 41ºC, una temperatura de gelificación de 126ºC, una conversión en la gelificación del 25% y una temperatura de descomposición de 339ºC. El espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi y la formación de anillos oxazolidona e isocianurato en un contenido del 51% y 49% respectivamente.The procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 3 phr of lanthanum triflate. The crosslinked material showed a glass transition temperature of 213 ° C, a cure start temperature of 41 ° C, a gelation temperature of 126 ° C, a conversion in gelation of 25% and a decomposition temperature of 339 ° C. The FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups and the formation of oxazolidone and isocyanurate rings in a content of 51% and 49% respectively.
Ejemplo 10 (relación molar resina DGEBA/TDI 1/1, 3 phr de triflato de escandio) Example 10 (1/1 DGEBA / TDI resin molar ratio, 3 phr of scandium triflate)
Se procedió como se describe en el ejemplo 1, pero se sustituyó 1 phr de triflato de iterbio por 3 phr de triflato de escandio. El material entrecruzado mostró una temperatura de transición vítrea superior a los 220ºC, una temperatura de inicio de curado de 40ºC, una temperatura de gelificación de 92ºC, una conversión en la gelificación del 20% y una temperatura de descomposición de 339ºC. Como en el ejemplo 6 el espectro de FTIR del material curado mostró la desaparición total de los grupos isocianato y epoxi, pero no se pudo evidenciar con claridad la formación de anillos oxazolidona e isocianurato debido a la aparición de una ancha banda de absorción a 1730 cm-1 asociada al grupo carbonilo y relacionada con la polimerización del isocianato. The procedure was as described in example 1, but 1 phr of ytterbium triflate was replaced by 3 phr of scandium triflate. The crosslinked material showed a glass transition temperature greater than 220 ° C, a cure start temperature of 40 ° C, a gelation temperature of 92 ° C, a conversion in gelation of 20% and a decomposition temperature of 339 ° C. As in example 6, the FTIR spectrum of the cured material showed the total disappearance of the isocyanate and epoxy groups, but the formation of oxazolidone and isocyanurate rings could not be clearly evidenced due to the appearance of a wide absorption band at 1730 cm -1 associated with the carbonyl group and related to the polymerization of isocyanate.
Ejemplo 11Example 11
Se repitieron los ejemplos 1, 3, 5, 6, 7, 8, 9 y 10, pero el triflato de tierra rara se disolvió, antes de ser agregado a la mezcla DGEBA/TDI, en la cantidad mínima de acetona para su completa disolución. Aunque la procesabilidad y aparente homogeneidad mejoraron, el curado y las propiedades finales de los materiales obtenidos fueron similares a los ejemplos análogos antes citados.Examples 1, 3, 5, 6, 7, 8, 9 and 10 were repeated, but the rare earth triflate was dissolved, before being added to the DGEBA / TDI mixture, in the minimum amount of acetone for complete dissolution. . Although the processability and apparent homogeneity improved, the cure and final properties of the materials obtained were similar to the analogous examples cited above.

Claims (18)

  1. Una composición para el entrecruzamiento de una resina epoxi con un isocianato, que comprende: una resina epoxi, un poliisocianato, y un triflato de tierra rara, de fórmula general (I) M(OSO2CF3) n (I) donde M es el catión derivado de una tierra rara seleccionada del grupo formado por escandio, itrio, lantano, cerio, praseodimio, neodimio, prometio, samario, europio, gadolinio, terbio, disprosio, holmio, erbio, tulio, iterbio y lutecio y n representa la valencia de la tierra rara en el triflato. A composition for crosslinking an epoxy resin with an isocyanate, comprising: an epoxy resin, a polyisocyanate, and a rare earth triflate, of general formula (I) M (OSO 2 CF 3 ) n (I) where M is the cation derived from a rare earth selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, tulio, ytterbium and lutetium and n represents valence of the rare earth in the triflate.
  2. Composición según la reivindicación 1, caracterizada porque la resina epoxi es una resina epoxi monomérica, dimérica, oligomérica o polimérica que contiene al menos dos grupos funcionales epoxi.Composition according to claim 1, characterized in that the epoxy resin is a monomeric, dimeric, oligomeric or polymeric epoxy resin containing at least two epoxy functional groups.
  3. Composición según la reivindicación 2, caracterizada porque la resina epoxi es diglicidiléter de Bisfenol A.Composition according to claim 2, characterized in that the epoxy resin is diglycidyl ether of Bisphenol A.
  4. Composición según una cualquiera de las reivindicaciones 1 a 3, caracterizada porque el poliisocianato presenta la fórmula general (II) (O=C=N) m -R (II) en la que R es un grupo polivalente, sustituido o sin sustituir, alifático, cicloalifático, aromático o heterocíclico y m tiene un valor superior a la unidad, preferiblemente entre 2 y 3. Composition according to any one of claims 1 to 3, characterized in that the polyisocyanate has the general formula (II) (O = C = N) m -R (II) in which R is a polyvalent, substituted or unsubstituted, aliphatic group , cycloaliphatic, aromatic or heterocyclic and m has a value greater than unity, preferably between 2 and 3.
  5. Composición según la reivindicación 4, caracterizada porque el poliisocianato es el 2,4-tolueno diisocianato.Composition according to claim 4, characterized in that the polyisocyanate is 2,4-toluene diisocyanate.
  6. Composición según la reivindicación 4, caracterizada porque el poliisocianato es 4’-metileno bis (fenilisocianato).Composition according to claim 4, characterized in that the polyisocyanate is 4'-methylene bis (phenylisocyanate).
  7. Composición según una cualquiera de las reivindicaciones 1 a 6, caracterizada por contener una relación molar epoxi/isocianato comprendida entre 2 a 1 y 1 a 1.Composition according to any one of claims 1 to 6, characterized in that it contains an epoxy / isocyanate molar ratio between 2 to 1 and 1 to 1.
  8. Composición según una cualquiera de las reivindicaciones 1 a 7, caracterizada por contener un triflato de tierra rara presente en una cantidad comprendida entre 1 y 3 partes por cien de mezcla resina/isocianato (phr).Composition according to any one of claims 1 to 7, characterized in that it contains a rare earth triflate present in an amount comprised between 1 and 3 parts per cent of resin / isocyanate (phr) mixture.
  9. Composición según una cualquiera de las reivindicaciones 1 a 8, caracterizada por comprender, además, al menos un aditivo coadyuvante habitual en formulaciones epoxi y epoxi/isocianato.Composition according to any one of claims 1 to 8, characterized in that it also comprises at least one common adjuvant additive in epoxy and epoxy / isocyanate formulations.
  10. Un procedimiento para la obtención de una composición para el entrecruzamiento de una resina epoxi con un isocianato, según cualquiera de las reivindicaciones 1 a 9, que comprende las etapas de: (i) mezclar una resina epoxi y un poliisocianato; (ii) mantener la mezcla a vacío por lo menos durante una hora a una temperatura entre 80 y 120ºC; y (iii) añadir el triflato de tierra rara según se define en la reivindicación 1 sobre la mezcla resultante de la etapa (ii), pudiendo estar el triflato añadido disuelto o no en un disolvente orgánico.A process for obtaining a composition for crosslinking an epoxy resin with an isocyanate, according to any one of claims 1 to 9, comprising the steps of: (i) mixing an epoxy resin and a polyisocyanate; (ii) keep the mixture under vacuum for at least one hour at a temperature between 80 and 120 ° C; and (iii) adding the rare earth triflate as defined in claim 1 on the mixture resulting from step (ii), the added triflate may be dissolved or not dissolved in an organic solvent.
  11. Un procedimiento para entrecruzar una composición según una cualquiera de las reivindicaciones 1 a 9, que comprende el empleo de un triflato de tierra rara según se define en la reivindicación 1 para entrecruzar una resina epoxi y un isocianato.A method of cross-linking a composition according to any one of claims 1 to 9, comprising the use of a rare earth triflate as defined in claim 1 to cross-link an epoxy resin and an isocyanate.
  12. Procedimiento para entrecruzar una composición según la reivindicación 11, que comprende el curado de dicha composición mediante calentamiento desde temperatura ambiente hasta una temperatura comprendida entre 250ºC y 300ºC. Process for crosslinking a composition according to claim 11, comprising curing said composition by heating from room temperature to a temperature between 250 ° C and 300 ° C.
  13. Un procedimiento para entrecruzar una composición según la reivindicación 12, en el que el calentamiento se lleva a cabo a una velocidad de calentamiento comprendida entre 0,5ºC/min y 50ºC/min.A process for crosslinking a composition according to claim 12, wherein the heating is carried out at a heating rate between 0.5 ° C / min and 50 ° C / min.
  14. Un procedimiento para entrecruzar una composición según la reivindicación 13, en el que el calentamiento se lleva a cabo a una velocidad de calentamiento de 5ºC/min.A process for crosslinking a composition according to claim 13, wherein the heating is carried out at a heating rate of 5 ° C / min.
  15. Procedimiento para entrecruzar una composición según la reivindicación 12, que comprende llevar a cabo al menos 2 etapas isotérmicas de curado: una etapa a una temperatura comprendida entre 180ºC y 220ºC y una etapa a una temperatura comprendida entre 250ºC y 300ºC.Method for cross-linking a composition according to claim 12, comprising carrying out at least 2 isothermal curing stages: a stage at a temperature between 180 ° C and 220 ° C and a stage at a temperature between 250 ° C and 300 ° C.
  16. Procedimiento para entrecruzar una composición según la reivindicación 15, que comprende además la realización de una primera etapa isotérmica de curado a una temperatura igual o superior a 120ºC e inferior a 180ºC.Method for crosslinking a composition according to claim 15, further comprising performing a first isothermal curing stage at a temperature equal to or greater than 120 ° C and less than 180 ° C.
  17. Procedimiento para entrecruzar una composición según la reivindicación 16, en el que la primera etapa se lleva a cabo a 150ºC durante 1 hora; la siguiente etapa a 200ºC durante 2 horas y otra etapa a una temperatura de 250ºC durante 1 hora.Process for crosslinking a composition according to claim 16, wherein the first stage is carried out at 150 ° C for 1 hour; the next stage at 200 ° C for 2 hours and another stage at a temperature of 250 ° C for 1 hour.
  18. Resina epoxi entrecruzada obtenible según el procedimiento de una cualquiera de las reivindicaciones 11 – 17.Crosslinked epoxy resin obtainable according to the method of any one of claims 11-17.
PCT/ES2011/070511 2010-07-20 2011-07-11 Composition and method for cross-linking an epoxy resin with an isocyanate, and cross-linked material thus obtained WO2012010732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000968 2010-07-20
ES201000968A ES2373276B1 (en) 2010-07-20 2010-07-20 COMPOSITION AND PROCEDURE FOR THE CROSSING OF AN EPOXY RESIN WITH AN ISOCIANATE, AND CROSSED MATERIAL OBTAINED.

Publications (1)

Publication Number Publication Date
WO2012010732A1 true WO2012010732A1 (en) 2012-01-26

Family

ID=45491977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070511 WO2012010732A1 (en) 2010-07-20 2011-07-11 Composition and method for cross-linking an epoxy resin with an isocyanate, and cross-linked material thus obtained

Country Status (2)

Country Link
ES (1) ES2373276B1 (en)
WO (1) WO2012010732A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1447500A (en) * 1972-11-29 1976-08-25 Hitachi Ltd Thermosetting resin and a process for producing same
EP0113575A1 (en) * 1982-12-30 1984-07-18 Mobil Oil Corporation Polyoxazolidone powder coating compositions
US4564651A (en) * 1983-06-27 1986-01-14 Siemens Aktiengesellschaft Method for the manufacture of reaction resin molding materials
EP0598433A2 (en) * 1992-11-09 1994-05-25 ENICHEM S.p.A. Process for curing polymerizable liquid compositions based on polyisocyanates and epoxides
WO2009058715A2 (en) * 2007-10-31 2009-05-07 Dow Global Technology Inc. Non-sintering isocyanate modified epoxy resin for fusion bonded epoxy applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1447500A (en) * 1972-11-29 1976-08-25 Hitachi Ltd Thermosetting resin and a process for producing same
EP0113575A1 (en) * 1982-12-30 1984-07-18 Mobil Oil Corporation Polyoxazolidone powder coating compositions
US4564651A (en) * 1983-06-27 1986-01-14 Siemens Aktiengesellschaft Method for the manufacture of reaction resin molding materials
EP0598433A2 (en) * 1992-11-09 1994-05-25 ENICHEM S.p.A. Process for curing polymerizable liquid compositions based on polyisocyanates and epoxides
WO2009058715A2 (en) * 2007-10-31 2009-05-07 Dow Global Technology Inc. Non-sintering isocyanate modified epoxy resin for fusion bonded epoxy applications

Also Published As

Publication number Publication date
ES2373276B1 (en) 2012-12-20
ES2373276A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US11674055B2 (en) RMA crosslinkable compositions and RMA crosslinkable resins for easy to clean coatings
JP6698095B2 (en) Method for synthesizing polyoxazolidinone compound having high stability
Yu et al. Catalyzed non-isocyanate polyurethane (NIPU) coatings from bio-based poly (cyclic carbonates)
Flores et al. Ytterbium triflate as a new catalyst on the curing of epoxy–isocyanate based thermosets
CN110418824B (en) Polyaspartic acid coating composition, coating film, and coated article
ES2914223T3 (en) Blocked polyisocyanate composition based on 1,5-pentamethylene diisocyanate
KR20140004622A (en) Process for the preparation of multifunctional polycarbodiimides which are used as crosslinking agents
KR20170139021A (en) Method for producing polyisocyanurate plastic
CN113906075A (en) Method for producing polyoxazolidinones blocked with isocyanate groups
EP3357949A1 (en) Method for the production of polyoxazolidinone polymer compounds
EP0952146A2 (en) Hydrophilic Dicyclohexylmethanecarbodiimide
Senger et al. Isocyanate–epoxy reactions in bulk and solution
JPH04342713A (en) Curable composition
WO2012010732A1 (en) Composition and method for cross-linking an epoxy resin with an isocyanate, and cross-linked material thus obtained
Jana et al. Effect of branching in hyperbranched alkyd on the performance of alkyd polyurethane coating
US20160264709A1 (en) Polyurea prepolymers made from primary and secondary diamines
ES2285467T3 (en) PROCEDURE FOR THE PREPARATION OF PREPOLIMEROS BASED ON POLYSULFURES AND POLYEPOXIDS.
EP0450093A1 (en) Aminated silicate composition and dehydrating agent containing the same
Fatona et al. Rapid, catalyst‐free crosslinking of silicones using triazines
EP3960785A1 (en) Method for the production of thermoplastic polyoxazolidinone polymers
US20160229947A1 (en) Polyurea prepolymers
CN115028802A (en) Polyaspartic acid acrylic resin, preparation method thereof and UV material
Natour et al. Aspartate-based polyurea coatings: Ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties
SU604853A1 (en) Epoxyisocyanuric oligomer for obtaining heat-resistant polymers
JP2003081956A (en) Curable carbamate and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809315

Country of ref document: EP

Kind code of ref document: A1