WO2012010052A1 - 基于mmc的无变压器风力发电并网拓扑结构 - Google Patents

基于mmc的无变压器风力发电并网拓扑结构 Download PDF

Info

Publication number
WO2012010052A1
WO2012010052A1 PCT/CN2011/076845 CN2011076845W WO2012010052A1 WO 2012010052 A1 WO2012010052 A1 WO 2012010052A1 CN 2011076845 W CN2011076845 W CN 2011076845W WO 2012010052 A1 WO2012010052 A1 WO 2012010052A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
power
power grid
wind power
Prior art date
Application number
PCT/CN2011/076845
Other languages
English (en)
French (fr)
Inventor
张跃平
李太峰
魏西平
杨洋
赵淑玉
张坤
胡涛
王振
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2012010052A1 publication Critical patent/WO2012010052A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a wind turbine grid-connecting technology, in particular to a transformerless wind power grid-connected topology based on an MMC modular multilevel converter (Modular Multilevel Converter). Background technique
  • China's wind energy resources are very rich. According to the National Meteorological Administration, the surface wind power energy that can be developed and utilized within 10 m in China is about 1 billion kW, of which 250 million kW is land and 750 million kW is sea. If it is extended to 50 ⁇ 60 m or more. Height, wind resources will be expected to expand to 20 to 2.5 billion kW. Therefore, wind power generation is a realistic and important choice for the sustainable development of China's energy.
  • Wind turbines basically use a common frequency converter to make their phase the same as the grid.
  • the step-up transformer is used to connect to the grid. This results in the need for a step-up transformer for each wind turbine.
  • the step-up transformer is bulky, heavy in weight, high in cost, and complicated in structure.
  • each wind turbine has only 3 levels, the harmonic content is very large, and the multi-grid pollution is serious.
  • the control is difficult, the control is cumbersome, and it is difficult to form a large-scale, super-large wind farm control.
  • Wind power output is two-level or three-level, and the harmonic content is large. After boosting, it cannot be directly integrated into the power grid, and an output filtering device is needed. Summary of the invention
  • the object of the present invention is to provide an MMC-based transformerless wind power grid-connected topology, which outputs a high voltage through a series connection of power units; and saves a step-up transformer when a general wind power is connected to the grid, which saves a lot of cost.
  • the multi-level waveform can be output through the modulation algorithm to reduce the output harmonic content and reduce the pollution of the power grid to the power grid.
  • the MMC-based transformerless wind power grid-connected topology includes a wind turbine, a rectifier module, and an inverter module.
  • the wind turbine generates low-voltage alternating current, and is rectified by a rectifier module to obtain a DC voltage, which is used as a power unit of the inverter module.
  • the DC side voltage supply power supply; the inverter module inverts the AC voltage after the DC voltage is inverted through the power unit in series to form an AC high voltage from the AC side through the buffered inductor output, and is integrated into the power grid.
  • the inverter module is three-phase, each phase is formed by connecting even number of n power units in series, and is divided into two groups, the number of power units in each group is n/2, and the output phase voltage level step number is n. /2+l, the line voltage level is n+1; the output of each phase is at the midpoint of the two sets of cells, and the output is connected with each group of cells with a coupled or uncoupled buffer inductor; The AC high voltage is output at the midpoint of the two sets of cells.
  • the power unit is a half bridge structure, and the switching device IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel. And the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D1, D2; the common ends of IGBT1 and IGBT2, the common ends of capacitors C and IGBT2 are used as the output ends of each unit, and are connected to other units.
  • the rectifier module is composed of a diode uncontrollable full bridge.
  • the wind turbine generates low-voltage alternating current, which is rectified by the rectifier module to obtain a DC voltage.
  • the DC voltage is used as the DC-side voltage supply power of the inverter module power unit; the inverter module converts the DC voltage after the DC voltage is inverted into a DC through the power unit.
  • the high voltage is output from the DC side and integrated into the grid.
  • the modulation method adopts the carrier phase shifting method to generate a multi-step sine wave and obtain a better output voltage waveform with a smaller switching frequency
  • the entire wind farm can be connected in series to an AC high voltage, which is directly output from the AC side;
  • the entire wind farm can be connected in series to a DC high voltage, which is directly output from the DC side;
  • Figure 1 is a schematic diagram of a grid-connected topology of a transformerless wind power generation based on MMC;
  • Figure 2 is a basic power unit structure diagram of a grid-connected topology of a transformerless wind power generation based on MMC;
  • Figure 3-1 is a current flow diagram of the power unit output state being 0 state
  • Figure 3-2 is a current flow diagram of the power unit output state being 0 state
  • Figure 3-3 is a current flow diagram of the power unit output state being 1 state
  • Figure 3-4 shows the current flow diagram for the power unit output state.
  • MMC-based transformerless wind power grid-connected topology including wind turbine, rectifier module, inverter module, wind turbine generating low-voltage alternating current, rectified by rectifier module to obtain DC voltage, the DC voltage as an inverter
  • the DC side voltage supply power of the module power unit the inverter module converts the AC voltage after the DC voltage is inverted into an AC high voltage through the power unit, and is output from the U, V, W sides of the AC via the buffer inductor L, and is integrated into the grid.
  • the inverter module can also convert the DC voltage after the DC voltage is inverted into a DC high voltage directly from the DC unit.
  • the A and B sides output DC high voltage and are integrated into the grid.
  • the topology inverter module is a three-phase, each phase is composed of an even number of n power units connected in series, comprising a total of 3 ⁇ power units, each power unit is powered by a wind turbine and passed through a three-phase uncontrollable full-bridge rectification to the power unit. Capacitor C is powered.
  • Each phase of the inverter module is formed by connecting even numbers of n power units in series, and is divided into two groups.
  • the number of power units in each group is ⁇ /2, and the number of output phase voltage levels is ⁇ /2+1.
  • the number of line voltage levels is ⁇ +1 ;
  • the output of each phase is two sets of units At the midpoint, and the output is connected to each group of cells with a coupled or uncoupled buffer inductor; at the output, the AC high voltage is output at the midpoint of the two sets of cells.
  • the inverter side of the power unit is a half-bridge structure, the switching devices IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel, and the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D11 and D22; the common ends of IGBT1 and IGBT2, capacitor
  • the common end of C and IGBT 2 serves as the output of each unit and is connected to other units.
  • the rectifier side consists of diodes Dl, D2, D3, D4, D5, and D6 that form an uncontrollable full bridge.
  • the topology utilizes a wind turbine as an energy relay pool to power the unit DC bus and combines certain modulation methods to produce the required multi-level variable sine wave.
  • the inverter module consists of three phases, each phase consisting of an even number of n power units connected in series. The number of series units is called the unit level.
  • the DC high voltage can be directly output on the B side, or the AC high voltage can be output on the U, V, and w sides.
  • the AC high voltage contains less harmonics and less pollution to the grid.
  • Controlling the gate voltage of the IGBT to turn it on or off allows the cell to have different circuit states.
  • the current flows from A to B via IGBT2, and the power unit output level of the half-bridge inverter circuit is "0".
  • the current flows through the freewheeling diode D2 from B to A, and the power unit output level of the half-bridge inverter circuit is "0".
  • the current flows through the freewheeling diode D1, and then flows from A to B through the DC-side capacitor C.
  • the power unit output level of the half-bridge inverter circuit is "1".
  • the current flows through IGBT1 and then through DC-side capacitor C, from B to A.
  • the power unit output level of the half-bridge inverter circuit is "1".
  • the output voltage can reach the grid level, and the voltage waveform synchronized with the grid can be issued according to the grid voltage, and the output harmonics can meet the requirements, and then the grid can be directly connected to generate electricity.
  • n (n is an even number) is determined by the voltage level required to be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)

Abstract

一种基于MMC的无变压器风力发电并网拓扑结构,包括风力发电机组、整流模块和逆变模块,风力发电机组产生低压交流电,经整流模块整流后得到直流电压,该直流电压作为逆变模块功率单元的直流侧电压供电电源;逆变模块将直流电压逆变后的交流电压经功率单元串联成交流高压从交流侧经缓冲电感(L)输出,并入电网。优点是:通过功率单元串联的方法,输出高压;省去了通用风力发电并网时的升压变压器,节约了大量成本。另外,由于采用多单元串联功率单元输出高压,可以通过调制算法输出多电平波形,减少输出谐波含量,减少风力发电对电网的污染。

Description

基于 MMC的无变压器风力发电并网拓扑结构
技术领域
本发明涉及风力发电机并网技术, 特别是一种基于 MMC 模块化多电平逆变器 (Modular Multilevel Converter) 的无变压器的风力发电并网拓扑结构。 背景技术
我国的风能资源十分丰富,根据国家气象局估计,我国 10 m高度以内可开发利用的地表 风电能源约为 10 亿 kW,其中陆地 2.5亿 kW,海上 7.5亿 kW,如果扩展到 50〜60 m 以上高 度,风力资源将有望扩展到 20〜25 亿 kW。因此,风力发电是我国能源可持续发展的现实而重 要的选择。
风力发电机基本上都是通过通用变频器,使本身相位与电网相同。最后再用升压变压器 与电网并网。这样导致每个风力发电机都需要一个升压变压器,升压变压器体积大,质量重, 成本高, 结构复杂化。并且使每个风力发电机只有 3电平, 谐波含量很大, 多电网污染严重。 而且对于每个风力发电机需要单独控制, 控制难度大, 控制繁琐, 不易形成大型、 超大型风 力电场控制。
风力发电输出的都是两电平或三电平, 谐波含量大, 升压后不能直接并入电网, 需要加 输出滤波装置。 发明内容
本发明的目的是提供一种基于 MMC的无变压器风力发电并网拓扑结构, 通过功率单元 串联的方法, 输出高压; 省去了通用风力发电并网时的升压变压器, 节约了大量成本。另外, 由于采用多单元串联功率单元输出高压, 可以通过调制算法输出多电平波形, 减少输出谐波 含量, 减少风力发电对电网的污染。
为实现上述目的, 本发明通过以下技术方案实现:
基于 MMC的无变压器风力发电并网拓扑结构, 包括风力发电机组、 整流模块、 逆变模 块, 风力发电机组产生低压交流电, 经整流模块整流后得到直流电压, 该直流电压作为逆变 模块功率单元的直流侧电压供电电源;逆变模块将直流电压逆变后的交流电压经功率单元串 联成交流高压从交流侧经缓冲电感输出, 并入电网。
所述的逆变模块为三相, 每相由偶数 n个功率单元串联而成, 分为上下两组, 每组的功 率单元个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压电平数为 n+1 ; 每相的输出端 为两组单元的中点处, 且输出端与每组单元之间以耦合或非耦合缓冲电感连接; 在输出端为 两组单元的中点处输出交流高压。
所述的功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流电容 C, 并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2的公共端, 电 容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
所述的整流模块由二极管不可控全桥组成。
风力发电机组产生低压交流电, 经整流模块整流后得到直流电压, 该直流电压作为逆变 模块功率单元的直流侧电压供电电源;逆变模块将直流电压逆变后的直流电压经功率单元串 联成直流高压从直流侧输出, 并入电网。
与现有技术相比, 本发明的有益效果是:
1 ) 输入端无变压器, 进而使风电并网拓扑体积减小, 占地减少, 重量减轻, 成本降低; 同时可以降低变压器能耗, 使制造工艺简单化, 生产周期减少;
2) 风力发电机直接连接到功率单元整流侧, 对风力发电机无特殊要求, 减少电机成本;
3 ) 调制方法采用载波移相的方法, 可以产生多阶梯正弦波, 以较小的开关频率获得较 好的输出电压波形;
4) 可以把整个风力发电场串联成交流高压, 直接从交流侧输出;
5 ) 可以把整个风力发电场串联成直流高压, 直接从直流侧输出;
6) 在大功率、 多电机***中应用前景广泛。 附图说明
图 1是基于 MMC的无变压器风力发电并网拓扑结构图;
图 2基于 MMC的无变压器风力发电并网拓扑结构的基本功率单元结构图;
图 3-1是功率单元输出状态为 0状态的电流流向图;
图 3-2是功率单元输出状态为 0状态的电流流向图;
图 3-3是功率单元输出状态为 1状态的电流流向图;
图 3-4是功率单元输出状态为 1状态的电流流向图。 具体实施方式
见图 1, 基于 MMC的无变压器风力发电并网拓扑结构,包括风力发电机组、整流模块、 逆变模块, 风力发电机组产生低压交流电, 经整流模块整流后得到直流电压, 该直流电压作 为逆变模块功率单元的直流侧电压供电电源;逆变模块将直流电压逆变后的交流电压经功率 单元串联成交流高压, 从交流 U、 V、 W侧经缓冲电感 L输出, 并入电网。
逆变模块也可以将直流电压逆变后的直流电压经功率单元串联成直流高压直接从直流
A、 B侧输出直流高压, 并入电网。
该拓扑结构逆变模块为三相,每相由偶数 n个功率单元串联而成,共包括 3η个功率单元, 每个功率单元由一个风力发电机 Μ通过三相不可控全桥整流给功率单元电容 C供电。
逆变模块的每一相由偶数 η个功率单元串联而成, 分为上下两组, 每组的功率单元个数 为 η/2个, 输出相电压电平阶梯数为 η/2+1, 线电压电平数为 η+1 ; 每相的输出端为两组单元 的中点处, 且输出端与每组单元之间以耦合或非耦合缓冲电感连接; 在输出端为两组单元的 中点处输出交流高压。
见图 2, 功率单元逆变侧为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流电 容 C, 并且开关器件 IGBT1和 IGBT2分别反并联二极管 Dll、 D22; IGBT1与 IGBT2的公 共端, 电容 C与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。 整流侧由二极 管 Dl、 D2、 D3、 D4、 D5、 D6组成不可控全桥。
该拓扑利用风力发电机作为能源中继池, 给单元直流母线供电, 结合一定的调制方法, 产生需要的多电平可变正弦波。 逆变模块由三相组成, 每相由偶数 n个功率单元串联而成。 串联单元个数称为单元级数。 串联可以直接在 、 B侧直接输出直流高压, 也可以在 U、 V、 w侧输出交流高压。对从交流 u、 V、 W侧输出的交流高压来说, 交流高压含有更少的谐波, 对电网污染更小。
控制 IGBT的栅极电压使其导通或者关断, 可以使单元具有不同的电路状态。
见图 3-1, 电流经 IGBT2从 A流向 B, 采用半桥式逆变电路的功率单元输出电平 "0"。 见图 3-2, 电流经续流二极管 D2从 B流向 A,采用半桥式逆变电路的功率单元输出电平 "0"。
见图 3-3, 电流经续流二极管 Dl, 再通过直流侧电容 C, 从 A流向 B, 采用半桥式逆变 电路的功率单元输出电平 " 1 "。
见图 3-4, 电流经 IGBT1 , 再通过直流侧电容 C, 从 B流向 A, 采用半桥式逆变电路的 功率单元输出电平 " 1 "。
若功率单元级数选择适当, 输出电压可达到电网级别, 可根据电网电压发出与电网同步 的电压波形, 并且输出谐波满足要求, 则可以直接并网发电。
所述的 n (n为偶数) 是由要求输出的电压等级决定的。 输出 3kV的电网电压, 对应的 n=6;输出 6kV的电网电压,对应的 n=12或 14;输出 10kV的电网电压,对应的 n=20或 22; 输出 20kV的电网电压, 对应的 n=40或 48; 输出 35kV的电网电压, 对应的 n=72或 80。

Claims

权 利 要 求 书
1、 基于 MMC的无变压器风力发电并网拓扑结构, 其特征在于, 包括风力发电机组、 整流模块、 逆变模块, 风力发电机组产生低压交流电, 经整流模块整流后得到直流电压, 该 直流电压作为逆变模块功率单元的直流侧电压供电电源;逆变模块将直流电压逆变后的交流 电压经功率单元串联成交流高压从交流侧经缓冲电感输出, 并入电网。
2、根据权利要求 1所述的基于 MMC的无变压器风力发电并网拓扑结构,其特征在于, 所述的逆变模块为三相, 每相由偶数 n个功率单元串联而成, 分为上下两组, 每组的功率单 元个数为 n/2个, 输出相电压电平阶梯数为 n/2+l, 线电压电平数为 n+1 ; 每相的输出端为两 组单元的中点处, 且输出端与每组单元之间以耦合或非耦合缓冲电感连接; 在输出端为两组 单元的中点处输出交流高压。
3、根据权利要求 2所述的基于 MMC的无变压器风力发电并网拓扑结构,其特征在于, 所述的功率单元为半桥结构, 开关器件 IGBT1和 IGBT2相串联, 再并联直流电容 C, 并且 开关器件 IGBT1和 IGBT2分别反并联二极管 Dl、 D2; IGBT1与 IGBT2的公共端, 电容 C 与 IGBT2的公共端作为每个单元的输出端, 与其他单元相连。
4、根据权利要求 1所述的基于 MMC的无变压器风力发电并网拓扑结构,其特征在于, 所述的整流模块由二极管不可控全桥组成。
5、根据权利要求 1所述的基于 MMC的无变压器风力发电并网拓扑结构,其特征在于, 风力发电机组产生低压交流电, 经整流模块整流后得到直流电压, 该直流电压作为逆变模块 功率单元的直流侧电压供电电源;逆变模块将直流电压逆变后的直流电压经功率单元串联成 直流高压从直流侧输出, 并入电网。
PCT/CN2011/076845 2010-07-22 2011-07-05 基于mmc的无变压器风力发电并网拓扑结构 WO2012010052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102336998A CN102013694A (zh) 2010-07-22 2010-07-22 基于mmc的无变压器风力发电并网拓扑结构
CN201010233699.8 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012010052A1 true WO2012010052A1 (zh) 2012-01-26

Family

ID=43843761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076845 WO2012010052A1 (zh) 2010-07-22 2011-07-05 基于mmc的无变压器风力发电并网拓扑结构

Country Status (2)

Country Link
CN (1) CN102013694A (zh)
WO (1) WO2012010052A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762870A (zh) * 2014-01-28 2014-04-30 华南理工大学 双输入单相六开关组mmc整流器及其控制方法
CN103762861A (zh) * 2014-01-28 2014-04-30 华南理工大学 N输入单相2n+2开关组mmc整流器及其控制方法
CN104753082A (zh) * 2015-03-12 2015-07-01 华南理工大学 一种用于风电场并网的柔性直流输电换流器拓扑
US10411469B2 (en) 2017-12-07 2019-09-10 Inventus Holdings, Llc Reactive power control integrated with renewable energy power invertor
CN113489333A (zh) * 2021-07-08 2021-10-08 国网辽宁省电力有限公司营口供电公司 一种基于串联数字化稳压器的电能路由器交流侧调制方法
US11159354B2 (en) * 2017-05-12 2021-10-26 Qualcomm Incorporated Increasing reference signal density in wireless communications
CN113949088A (zh) * 2021-10-14 2022-01-18 西安热工研究院有限公司 一种电厂厂用交流及厂用直流换流***
CN114362208A (zh) * 2022-01-07 2022-04-15 阳光电源股份有限公司 一种储能风电变流器及其控制方法
CN115001027A (zh) * 2022-07-19 2022-09-02 东南大学溧阳研究院 一种基于混合子模块串联升压的海上风电直流汇集***

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013694A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构
CN102136729B (zh) * 2011-02-22 2014-08-06 西安交通大学 一种基于移相多绕组整流变压器的串联多电平svg拓扑结构及其控制方法
CN102663174B (zh) * 2012-03-23 2014-01-01 浙江大学 一种mmc的仿真方法及应用
DE102012216469A1 (de) 2012-09-14 2014-03-20 Robert Bosch Gmbh Energieversorgungssystem und Verfahren zum Ansteuern von Koppeleinrichtungen einer Energiespeichereinrichtung
CN103427657B (zh) * 2013-08-01 2015-11-18 南京南瑞继保电气有限公司 一种高压直流-直流变换设备
CN103780113B (zh) * 2014-01-28 2017-01-18 华南理工大学 N输出三相3n+3开关组mmc逆变器及其控制方法
CN103762874B (zh) * 2014-01-28 2017-01-11 华南理工大学 双负载三相九开关组mmc逆变器及其控制方法
CN103825488B (zh) * 2014-01-28 2016-06-22 华南理工大学 双输出单相六开关组mmc逆变器及其控制方法
CN103904910B (zh) * 2014-03-27 2016-09-21 华南理工大学 单相六开关组mmc ac-ac变换器及其控制方法
CN107404233B (zh) * 2017-07-24 2021-04-16 中国电力科学研究院 一种直流传输***
ES2824579A1 (es) * 2019-11-12 2021-05-12 Univ Valladolid Estructura de conexion de aerogeneradores
CN113809768A (zh) * 2020-06-11 2021-12-17 新疆金风科技股份有限公司 直流风力发电机组以及直流风电***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291071A (zh) * 2008-06-18 2008-10-22 张皓 一种风力发电直接并网电力变换装置
CN101548458A (zh) * 2006-12-08 2009-09-30 西门子公司 具有分布式储能器的模块化变流器的控制
WO2009135728A2 (de) * 2008-05-07 2009-11-12 Siemens Aktiengesellschaft Windenergiepark mit einer vielzahl von windenergieanlagen
CN201774271U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构
CN102013694A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075350A (en) * 1998-04-24 2000-06-13 Lockheed Martin Energy Research Corporation Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548458A (zh) * 2006-12-08 2009-09-30 西门子公司 具有分布式储能器的模块化变流器的控制
WO2009135728A2 (de) * 2008-05-07 2009-11-12 Siemens Aktiengesellschaft Windenergiepark mit einer vielzahl von windenergieanlagen
CN101291071A (zh) * 2008-06-18 2008-10-22 张皓 一种风力发电直接并网电力变换装置
CN201774271U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构
CN102013694A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762870A (zh) * 2014-01-28 2014-04-30 华南理工大学 双输入单相六开关组mmc整流器及其控制方法
CN103762861A (zh) * 2014-01-28 2014-04-30 华南理工大学 N输入单相2n+2开关组mmc整流器及其控制方法
CN104753082A (zh) * 2015-03-12 2015-07-01 华南理工大学 一种用于风电场并网的柔性直流输电换流器拓扑
US11159354B2 (en) * 2017-05-12 2021-10-26 Qualcomm Incorporated Increasing reference signal density in wireless communications
US10411469B2 (en) 2017-12-07 2019-09-10 Inventus Holdings, Llc Reactive power control integrated with renewable energy power invertor
CN113489333A (zh) * 2021-07-08 2021-10-08 国网辽宁省电力有限公司营口供电公司 一种基于串联数字化稳压器的电能路由器交流侧调制方法
CN113949088A (zh) * 2021-10-14 2022-01-18 西安热工研究院有限公司 一种电厂厂用交流及厂用直流换流***
CN114362208A (zh) * 2022-01-07 2022-04-15 阳光电源股份有限公司 一种储能风电变流器及其控制方法
CN115001027A (zh) * 2022-07-19 2022-09-02 东南大学溧阳研究院 一种基于混合子模块串联升压的海上风电直流汇集***

Also Published As

Publication number Publication date
CN102013694A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012010052A1 (zh) 基于mmc的无变压器风力发电并网拓扑结构
CN110149065B (zh) 一种升降压开关电容多电平逆变器及其调制方法
WO2012010063A1 (zh) 基于h桥的无变压器风力发电并网拓扑结构
CN101980409B (zh) 一种光伏并网逆变器
CN106451532B (zh) 一种多相直驱永磁风力发电变流一体化***及其控制方法
CN101291071A (zh) 一种风力发电直接并网电力变换装置
WO2012010064A1 (zh) 基于mmc无变压器的四象限高压变频电源拓扑结构
CN101345423B (zh) 用于风力发电***的五电平h桥级联背靠背变流器
Nayanasiri et al. Half-wave cycloconverter-based photovoltaic microinverter topology with phase-shift power modulation
WO2012024984A1 (zh) 基于模块化多电平变换器的无变压器电池储能拓扑结构
CN102856916A (zh) 一种单相光伏逆变器无功控制方法及电路
WO2017197629A1 (zh) 一种电流源逆变器***及逆变装置
CN102522910B (zh) 用于三相并网逆变器的混合式svpwm控制方法
CN106877371B (zh) 一种具有储能功能的模块化多电平变流器的控制方法
WO2012010054A1 (zh) 基于模块化多电平变换器的无变压器太阳能逆变器拓扑结构
WO2012010068A1 (zh) 一种无变压器水轮发电机发电并网拓扑结构
CN103337962B (zh) 海上风电场直流汇聚用三电平变换器及其控制方法
CN104242341A (zh) 基于mmc和双极式直流传输结构的直驱风电变流结构
WO2012010055A1 (zh) 基于模块化多电平变换器的无变压器电感储能拓扑结构
CN201774271U (zh) 基于mmc的无变压器风力发电并网拓扑结构
CN102857132A (zh) 交错并联反激光伏逆变装置
CN102957167A (zh) 基于模块化多电平变流器的风力发电与并网***
CN102738825A (zh) 基于模块化多电平变流器的新型光伏并网***
CN201515320U (zh) 一种并网逆变器
Das et al. Development of one-kilowatt capacity single phase pure sine wave off-grid PV inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809240

Country of ref document: EP

Kind code of ref document: A1