WO2012008816A2 - 무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치 Download PDF

Info

Publication number
WO2012008816A2
WO2012008816A2 PCT/KR2011/005273 KR2011005273W WO2012008816A2 WO 2012008816 A2 WO2012008816 A2 WO 2012008816A2 KR 2011005273 W KR2011005273 W KR 2011005273W WO 2012008816 A2 WO2012008816 A2 WO 2012008816A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
prs
muting sequence
reference cell
sfn
Prior art date
Application number
PCT/KR2011/005273
Other languages
English (en)
French (fr)
Other versions
WO2012008816A3 (ko
Inventor
우경수
임수환
안치준
이대원
윤석현
한승희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/808,880 priority Critical patent/US9100781B2/en
Publication of WO2012008816A2 publication Critical patent/WO2012008816A2/ko
Publication of WO2012008816A3 publication Critical patent/WO2012008816A3/ko
Priority to US14/751,533 priority patent/US9736629B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a message for position estimation in a wireless communication system.
  • Terminal positioning for estimating the position of a user equipment has recently been used for various purposes in real life, and thus a more precise terminal positioning method is required.
  • the terminal positioning technique can be largely classified into four methods.
  • GPS Global Positioning System
  • Terrestrial positioning based method estimate the position of the terminal using the timing difference of the signal transmitted from the base stations. Signals must be received from at least three base stations, and the performance of location estimation is lower than that of the GPS-based method, but can be used in almost all environments.
  • a synchronization signal or a reference signal is mainly used as a signal received from a base station, and according to a wireless communication system to be applied, an OTDOA (Observed Time Difference Of Arrival) in a UMTS Terrestrial Radio Access Network (UTRAN) In the GSM / EDGE Radio Access Network (GERAN), it may be defined in various terms such as Enhanced Observed Time Difference (E-OTD) in CRAN2000 and Advanced Forward Link Trilateration (AFLT) in CDMA2000.
  • E-OTD Enhanced Observed Time Difference
  • AFLT Advanced Forward Link Trilateration
  • the reference signal may be used to estimate the position of the terminal.
  • the reference signal may include a synchronization signal.
  • the UE may receive reference signals transmitted from a plurality of cells and use a difference in delay of each signal.
  • the terminal may report the difference of the corresponding delay time to the base station so that the base station can calculate the position of the terminal or calculate the position by itself.
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) TS36.355 V9.0.0 (2009-12)
  • LTE Long Term Evolution
  • RSTD Measured values such as Reference Signal Time Difference
  • LTP LTE Positioning Protocol
  • the LPP uses point-to-point between a location server, such as an E-SMLC, and a target device, such as a terminal, to estimate the location of the target device using location relationship measurements from one or more reference signals.
  • a location server such as an E-SMLC
  • a target device such as a terminal
  • point-to-point can be defined as point-to-point.
  • transmission of a reference signal for position estimation of the terminal may be muted. That is, in certain situations, the cell may not transmit a reference signal.
  • the strength of the reference signal received from the reference cell is too large than that of the reference signal received from the neighbor cell, so that the terminal cannot properly decode the reference signal received from the neighbor cell. Because it can.
  • the terminal needs to know exactly the muting pattern of the reference signal transmitted from the plurality of cells.
  • the terminal may recognize the muting pattern of the reference signal of each cell based on at least one cell. However, there is a possibility that an ambiguity may occur in which the UE does not accurately recognize a muting pattern of a reference signal transmitted by each cell due to a handover of the UE or an asynchronous network.
  • An object of the present invention is to provide a message transmission method and apparatus for position estimation in a wireless communication system.
  • the present invention provides a message construction method and a transmission method for solving a system frame number (SFN) unknown problem in estimating the position of a terminal in a wireless communication system.
  • SFN system frame number
  • a method for transmitting a message by a terminal in a wireless communication system is provided.
  • a positioning reference signal (PRS) is received from a reference cell and at least one neighbor cell, respectively, and a muting pattern of a PRS transmitted by the reference cell.
  • a supplementary data providing message including a reference cell PRS muting sequence indicating) and an adjacent cell PRS muting sequence indicating a muting pattern of the PRS transmitted by the at least one neighboring cell, from the Enhanced Serving Mobile Location Center (E-SMLC).
  • E-SMLC Enhanced Serving Mobile Location Center
  • RSTD reference signal time difference
  • the reference cell muting sequence and the neighbor cell muting sequence may be set based on the SFN of a cell from which the terminal may obtain a system frame number (SFN) at the time when the auxiliary data providing message is received. .
  • SFN system frame number
  • the cell in which the terminal may acquire the SFN may be a serving cell serving the terminal.
  • the first bit of the reference cell muting sequence and the adjacent cell muting sequence may correspond to a first PRS occasion after the SFN of the cell capable of acquiring the SFN becomes zero.
  • the reference cell muting sequence and the neighbor cell muting sequence may be set based on a time point at which the auxiliary data providing message is received.
  • the first bit of the reference cell muting sequence and the neighbor cell muting sequence may correspond to a first PRS transmission opportunity after the auxiliary data providing message is received.
  • the reference cell muting sequence and the neighbor cell muting sequence may be set based on the SFN of the reference cell obtained by decoding a physical broadcast channel (PBCH) transmitted from the reference cell.
  • PBCH physical broadcast channel
  • Bits constituting the reference cell muting sequence or the adjacent cell muting sequence may be all 1s or all 0s.
  • the RSTD may be a relative time difference between a reference subframe including a PRS received from the reference cell and a neighboring subframe including the PRS received from the at least one neighboring cell and corresponding to the reference subframe.
  • the message transmission method may further include transmitting an auxiliary data request message for requesting the auxiliary data providing message to the E-SMLC.
  • a terminal in a wireless communication system.
  • the terminal includes a radio frequency (RF) unit for transmitting or receiving a radio signal, and a processor connected to the RF unit, wherein the processor receives a PRS from a reference cell and at least one adjacent cell, respectively, and the reference cell Receiving an auxiliary data providing message including a reference cell PRS muting sequence indicating a muting pattern of the transmitting PRS and a neighbor cell PRS muting sequence indicating a muting pattern of the PRS transmitted by the at least one neighboring cell, from the E-SMLC
  • the RSTD measured based on the PRS received from the reference cell and at least one neighboring cell is transmitted to the E-SMLC.
  • the UE can accurately recognize a muting pattern of a positioning reference signal (PRS) transmitted by each cell.
  • PRS positioning reference signal
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • 6 and 7 illustrate an example of a PRS pattern mapped to a resource block.
  • FIG. 8 illustrates an example of an operation of a downlink Observed Time Difference Of Arrival (OTDOA) method among ground location based methods.
  • OTDOA Observed Time Difference Of Arrival
  • FIG. 10 shows an example of a secondary data exchange process between the UE and the E-SMLC through LPP.
  • FIG. 11 shows an example of a data exchange process between an E-SMLC and a base station through LPPa.
  • 15 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using Evolved-UMTS Terrestrial Radio Access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A Advanced
  • 3GPP LTE Advanced
  • 1 is a wireless communication system.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (Personal Digital Assistant), a wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • a terminal typically belongs to one cell, and a cell to which the terminal belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are relatively determined based on the terminal.
  • downlink means communication from the base station 11 to the terminal 12
  • uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • the wireless communication system is any one of a multiple-input multiple-output (MIMO) system, a multiple-input single-output (MIS) system, a single-input single-output (SISO) system, and a single-input multiple-output (SIMO) system.
  • MIMO multiple-input multiple-output
  • MIS multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • a transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • a receive antenna means a physical or logical antenna used to receive one signal or stream.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a Transmission Time Interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of subcarriers in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme.
  • SC-FDMA when SC-FDMA is used as an uplink multiple access scheme, it may be referred to as an SC-FDMA symbol.
  • a resource block (RB) includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is merely an example. Accordingly, the number of subframes included in the radio frame, the number of slots included in the subframe, or the number of OFDM symbols included in the slot may be variously changed.
  • 3GPP LTE defines that one slot includes 7 OFDM symbols in a normal cyclic prefix (CP), and one slot includes 6 OFDM symbols in an extended CP. .
  • CP normal cyclic prefix
  • a wireless communication system can be largely divided into a frequency division duplex (FDD) system and a time division duplex (TDD) system.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the uplink transmission and the downlink transmission are time-divided in the entire frequency band, and thus the downlink transmission by the base station and the uplink transmission by the terminal cannot be simultaneously performed.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and N RB resource blocks in the frequency domain.
  • the number N RB of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell. For example, in the LTE system, N RB may be any one of 60 to 110.
  • One resource block includes a plurality of subcarriers in the frequency domain.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element (RE).
  • an exemplary resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of OFDM symbols and the number of subcarriers in the resource block is equal to this. It is not limited. The number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP. The number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP.
  • the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated, and the remaining OFDM symbols are the PDSCH (Physical Downlink Shared Channel). Becomes the data area to be allocated.
  • PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access transmitted on PDSCH Resource allocation of upper layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of Voice over Internet Protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • a unique identifier (RNTI: Radio Network Temporary Identifier) is masked according to an owner or a purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is for a specific terminal, a unique identifier of the terminal, for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information identifier and the System Information-RNTI may be masked to the CRC.
  • SI-RNTI System Information-RNTI
  • a random access-RNTI RA-RNTI
  • RA-RNTI may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the UE.
  • 5 shows a structure of an uplink subframe.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a Physical Uplink Control Channel (PUCCH) for transmitting uplink control information.
  • the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
  • the terminal may support simultaneous transmission of the PUSCH and the PUCCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of the first slot and the second slot.
  • the frequency occupied by the resource block belonging to the resource block pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the terminal may obtain a frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an SR that is an uplink radio resource allocation request.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • SR scheduling request
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include CQI, PMI (Precoding Matrix Indicator), HARQ, RI (Rank Indicator), and the like.
  • the uplink data may consist of control information only.
  • the reference signal will be described below.
  • Reference signals are generally transmitted in sequence.
  • the reference signal sequence may use a PSK-based computer generated sequence.
  • PSKs include binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK).
  • the reference signal sequence may use a constant amplitude zero auto-correlation (CAZAC) sequence.
  • CAZAC sequences are ZC-based sequences, ZC sequences with cyclic extensions, ZC sequences with truncation, etc. There is this.
  • the reference signal sequence may use a pseudo-random (PN) sequence.
  • PN sequences include m-sequences, computer generated sequences, Gold sequences, and Kasami sequences.
  • the reference signal sequence may use a cyclically shifted sequence.
  • the downlink reference signal refers to a cell-specific RS (CRS), an MBSFN reference signal, a UE-specific RS, a positioning reference signal (PRS), and a channel state information (CSI) reference. It may be divided into a signal (CSI-RS).
  • the CRS is a reference signal transmitted to all terminals in the cell and may be used for both data demodulation or channel estimation.
  • the CRS may be transmitted in all downlink subframes in a cell supporting PDSCH transmission.
  • the MBSFN reference signal is a reference signal for providing a multimedia broadcast multicast service (MBMS) and may be transmitted in a subframe allocated for MBSFN transmission.
  • the MBSFN reference signal may be defined only in the extended CP structure.
  • the UE-specific reference signal is a reference signal received by a specific terminal or a specific group of terminals in a cell and may be referred to as a dedicated RS (DRS).
  • DRS dedicated RS
  • the UE specific reference signal is mainly used for data demodulation of a specific UE or a specific UE group, it may be called a DMRS.
  • CSI-RS may be used for estimation of channel state information in 3GPP LTE-A system.
  • the CSI-RS may be relatively sparse in the frequency domain or the time domain and may be punctured in the data region of a general subframe or a multimedia broadcast and multicast single frequency network (MBSFN) subframe.
  • MBSFN multimedia broadcast and multicast single frequency network
  • CSI-RS When necessary through the estimation of the CSI, a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator (RI) may be reported from the terminal.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • the CSI-RS may be transmitted through one, two, four or eight antenna ports.
  • the PRS is a reference signal defined for position estimation of the UE and may be transmitted in a resource block in a downlink subframe configured for transmission of the PRS.
  • the downlink subframe configured for the transmission of the PRS may be referred to as a positioning subframe. If both the normal subframe and the MBSFN subframe are configured in the positioning subframe in the cell, the OFDM symbol set to transmit the PRS in the MBSFN subframe uses the same CP structure that the first subframe of the radio frame uses. If only the MBSFN subframe is configured as a positioning subframe in the cell, the OFDM symbol set to transmit the PRS uses an extended CP structure.
  • the PRS is not mapped to a resource element to which a Physical Broadcast Channel (PBCH), a Primary Synchronization Signal (PSS), or a Secondary Synchronization Signal (SSS) is mapped.
  • PBCH Physical Broadcast Channel
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PRS sequence may be defined by Equation 1.
  • Equation 1 n s denotes a slot number in a radio frame, and l denotes an OFDM symbol number in a slot.
  • m is 0,1, ..., 2N RB max, DL -1.
  • 2N RB max, DL is the number of resource blocks corresponding to the maximum bandwidth in downlink.
  • 2N RB max, DL is 110 in 3GPP LTE.
  • c (i) is a pseudo random sequence in a PN sequence and may be defined by a Gold sequence of length-31. Equation 2 shows an example of the gold sequence c (n).
  • Nc 1600
  • x 1 (i) is the first m-sequence
  • x 2 (i) is the second m-sequence.
  • the first m-sequence or the second m-sequence may be initialized for each OFDM symbol according to a cell ID, a slot number in one radio frame, an OFDM symbol index in a slot, a type of CP, and the like.
  • N CP is 1 in the normal CP structure and 0 in the extended CP structure.
  • the PRS sequence r l, ns (m) may be mapped by Equation 3 to the complex modulation symbol a k, l (p) in the slot n s .
  • Equation 3 In the case of a normal CP, k, l, m, m 'in Equation 3 may be determined by Equation 4.
  • Equation 3 In the case of the extended CP, k, l, m, m 'in Equation 3 may be determined by Equation 5.
  • 6 and 7 illustrate an example of a PRS pattern mapped to a resource block.
  • 6 illustrates a case in which a PRS is mapped to a resource block in the case of a normal CP.
  • 6- (a) shows a PRS pattern when the number of PBCH antenna ports is one or two
  • FIG. 6- (b) shows a PRS pattern when the number of PBCH antenna ports is four.
  • 7 illustrates a case in which a PRS is mapped to a resource block in case of an extended CP.
  • 7- (a) shows the PRS pattern when the number of PBCH antenna ports is one or two
  • FIG. 7- (b) shows the PRS pattern when the number of PBCH antenna ports is four.
  • PRSs are mapped in a diagonal pattern within a resource block.
  • Table 1 shows a cell specific subframe configuration period T PRS and a cell specific subframe offset ⁇ PRS .
  • PRS configuration index I PRS may be given by a higher layer.
  • the PRS may be transmitted only within a downlink subframe configured to transmit the PRS.
  • the PRS may not be transmitted in a special subframe of the TDD system.
  • the PRS may be transmitted in N PRS consecutive downlink subframes, and the N PRS may be given by an upper layer. In addition, with respect to the first subframe of the N PRS consecutive downlink subframes Can be satisfied.
  • the method of estimating the position of the terminal may be classified into a global positioning system (GPS) based method and a terrestrial positioning based method.
  • the terrestrial location-based method estimates the location of a terminal by using timing differences of signals transmitted from base stations. Signals must be received from at least three base stations, and the performance of location estimation is lower than that of the GPS-based method, but can be used in almost all environments.
  • a signal received from the base station a synchronization signal or a reference signal may be mainly used.
  • the terminal measures a reference clock based on a subframe transmitted from a serving cell currently receiving a service.
  • a subframe is received from a second neighbor cell 2 at a time that is equal to TDOA 2 from the reference time.
  • a subframe is received from a first neighbor cell 1 at a time elapsed by TDOA 1 longer than the TDOA 2 from the reference time.
  • Each subframe transmitted by the plurality of cells may include a PRS.
  • the UE can estimate the position of the UE by the difference in the reception time of the PRS transmitted from the serving cell and the neighbor cell.
  • Reference Signal Time Difference (RSTD) between neighbor cell j and reference cell i may be defined as T subframeRxj -T subframeRxi , which is 3GPP TS 36.214 V9.1.0 (2010-03) 5.1. See section 12.
  • T subframeRxj represents the time when the terminal receives the start of one subframe from cell j
  • T subframeRxi represents one of the corresponding ones from cell i, which is closest in time to the subframe received by the terminal from cell j. Indicates the time when the start of the subframe is received.
  • a reference point for measuring the RSTD may be an antenna connector of the terminal.
  • FIG. 9 shows another example of an operation of a downlink OTDOA method among ground location based methods.
  • the position of the terminal can be estimated by solving a linearized equation using Taylor series expansion. This is [Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Processing, vol. 42, pp. 1905-1915, Aug. 1994].
  • the UE and the Enhanced Serving Mobile Location Center may exchange information with each other by LTE Positioning Protocol (LPP).
  • LPP LTE Positioning Protocol
  • the UE measures the OTDOA of reference signals transmitted by a plurality of base stations and transmits the measurement result to the E-SMLC through the LPP, and the E-SMLC also transmits assistance data necessary for the UE to measure through the LPP. It can be transmitted to the terminal.
  • FIG. 10 shows an example of a secondary data exchange process between the UE and the E-SMLC through LPP.
  • the UE may request auxiliary data necessary for position estimation from the E-SMLC and receive auxiliary data from the E-SMLC. This may be referred to Section 5.2.1 of 3GPP TS36.355 V9.2.1 (2010-06).
  • step S50 the terminal transmits an assistance data request message to the E-SMLC.
  • step S51 the E-SMLC transmits an assistance data provide message including assistance data to the terminal.
  • the transmitted auxiliary data may match or be a subset of the auxiliary data request message requested by the terminal.
  • step S52 the E-SMLC may transmit one or more additional auxiliary data providing messages including additional auxiliary data to the terminal.
  • the additional auxiliary data may match or be a subset of the auxiliary data request message requested by the terminal.
  • the auxiliary data providing message that is transmitted last may include information indicating the end of the auxiliary data exchange.
  • an auxiliary data providing message may be transmitted by an OTDOA auxiliary data providing IE (OTDOA-ProvideAssistanceData).
  • OTDOA auxiliary data providing IE OTDOA auxiliary data providing IE
  • Table 2 shows an example of the OTDOA auxiliary data providing IE. This may be referred to Section 6.5.1 of 3GPP TS36.355 V9.4.0 (2010-12).
  • OTDOA-ProvideAssistanceData SEQUENCE ⁇ otdoa-ReferenceCellInfo OTDOA-ReferenceCellInfo OPTIONAL, otdoa-NeighbourCellInfo OTDOA-NeighbourCellInfoList OPTIONAL, otdoa-Error OTDOA-Error OPTIONAL, ... ⁇ -ASN1STOP
  • the OTDOA auxiliary data providing IE includes an OTDOA reference cell information IE (OTDOA-ReferenceCellInfo) and an OTDOA neighbor cell information list IE (OTDOA-NeighbourCellInfoList).
  • OTDOA-ReferenceCellInfo OTDOA reference cell information IE
  • OTDOA-NeighbourCellInfoList OTDOA neighbor cell information list IE
  • the terminal can propose a solution to the problem by defining at least one cell that can obtain the SFN as a reference cell or included in the neighbor cell list.
  • Table 3 shows an example of the OTDOA reference cell information IE.
  • the E-SMLC may transmit information of a reference cell, which is a reference for OTDOA measurement, to the terminal by the OTDOA reference cell information IE.
  • OTDOA-ReferenceCellInfo SEQUENCE ⁇ physCellId INTEGER (0..503), cellGlobalId ECGI OPTIONAL,-Need ON earfcnRef ARFCN-ValueEUTRAOPTIONAL,-Cond NotSameAsServ0 antennaPortConfigENUMERATED ⁇ ports1-or-2, ports4, ... ⁇ OPTIONAL,-Cond NotSameAsServ1 cpLength ENUMERATED ⁇ normal, extended, ... ⁇ , prsInfo PRS-Info OPTIONAL,-Cond PRS ... ⁇ -ASN1STOP
  • the PRS information IE (PRS-Info) indicates PRS configuration of a reference cell.
  • Table 4 shows an example of the PRS information IE.
  • PRS-Info :: SEQUENCE ⁇ prs-Bandwidth ENUMERATED ⁇ n6, n15, n25, n50, n75, n100, ... ⁇ , prs-ConfigurationIndex INTEGER (0..4095), numDL-Frames ENUMERATED ⁇ sf-1, sf-2, sf-4, sf-6, ... ⁇ , ..., prs-MutingInfo-r9 CHOICE ⁇ po2-r9 BIT STRING (SIZE (2)), po4-r9 BIT STRING (SIZE (4)), po8-r9 BIT STRING (SIZE (8)), po16-r9 BIT STRING (SIZE (16)), ... ⁇ OPTIONAL-Need OP ⁇ -ASN1STOP
  • the PRS bandwidth (prs-Bandwidth) field indicates a bandwidth used for PRS transmission.
  • the PRS bandwidth field may indicate the number of resource blocks on which the PRS is transmitted.
  • the PRS configuration index (prs-ConfigurationIndex) field indicates the PRS configuration index I PRS of Table 1.
  • the numDL-Frames field indicates the number N PRS of consecutive downlink subframes in which the PRS is transmitted. The value of the numDL-Frames field may be any one of 1, 2, 4, or 6.
  • the PRS muting information (prs-MutingInfo) field indicates a PRS muting configuration of a reference cell.
  • the PRS muting setup can be defined by a periodic PRS muting sequence with a period T REP .
  • T REP may be defined as the number of PRS positioning occasions and may have a value of 2, 4, 8, or 16.
  • Each PRS positioning opportunity may be defined as N PRS consecutive downlink subframes in which the PRS is transmitted.
  • the PRS muting pattern by the PRS muting sequence may be set based on when the system frame number (SFN) of the reference cell is zero. That is, the first bit of the PRS muting sequence may correspond to the first PRS positioning opportunity started after the SFN of the reference cell becomes zero.
  • the PRS muting sequence is valid for all subframes after the UE receives the PRS muting information field. If the PRS muting information field is not provided, the UE may assume that PRS muting is not applied to the reference cell.
  • Table 5 shows an example of the OTDOA neighbor cell information list IE.
  • the E-SMLC may transmit information of neighbor cells necessary for OTDOA measurement to the terminal by the OTDOA neighbor cell information IE.
  • information about each neighbor cell may be sorted in descending order in the order of importance among neighbor cells measured by the terminal. That is, in the OTDOA measurement, the neighboring cell having the highest priority may be the first cell.
  • the terminal measures the OTDOA according to the order of cells in the OTDOA neighbor cell information list IE provided by the E-SMLC. Meanwhile, the slot number offset field (slotNumberOffset) and the expected RSTD field (expectedRSTD) in the OTDOA neighbor cell information list IE may be defined relative to each neighbor cell based on the reference cell.
  • OTDOA-NeighbourCellInfoList :: SEQUENCE (SIZE (1..maxFreqLayers)) OF OTDOA-NeighbourFreqInfo
  • OTDOA-NeighborFreqInfo :: SEQUENCE (SIZE (1..24)) OF OTDOA-NeighbourCellInfoElement
  • OTDOA-NeighbourCellInfoElement :: SEQUENCE ⁇ physCellId INTEGER (0..503), cellGlobalId ECGI OPTIONAL,-Need ON earfcn ARFCN-ValueEUTRAOPTIONAL,-Cond NotSameAsRef0 cpLength ENUMERATED ⁇ normal, extended, ... ⁇ OPTIONAL,-Cond NotSameAsRef1 prsInfo PRS-Info OPTIONAL,-Cond NotSameAsRef2 antennaPortConfig ENUMERATED ⁇ ports
  • the OTDOA neighbor cell information of each neighbor cell includes a PRS information IE similarly to the OTDOA reference cell information IE of Table 3. Accordingly, PRS muting may be configured for each neighbor cell as shown in Table 4.
  • LPPa provides a control plane radio network layer signaling process between a base station and an E-SMLC.
  • FIG. 11 shows an example of a data exchange process between an E-SMLC and a base station through LPPa. This may be referred to Section 8.2.5 of 3GPP TS36.455 V9.2.0 (2010-06).
  • step S60 the E-SMLC transmits an OTDOA information request message to the base station.
  • the E-SMLC initiates an information exchange process between the E-SMLC and the base station by sending an OTDOA information request message.
  • step S61 the base station transmits an OTDOA information response message to the E-SMLC.
  • the OTDOA information response message includes OTDOA cell information of cells related to estimating the position of the terminal.
  • the base station may operate by parameters such as a PRS configuration index, an SFN initialization time, a PRS muting configuration, and the like configured for each base station.
  • Table 6 shows an example of OTDOA cell information of each cell transmitted by the UE.
  • PRS Bandwidth M ENUMERATED (bw6, bw15, bw25, bw50, bw75, bw100, ...) Transmission bandwidth of PRS >> PRS Configuration Index M INTEGER (0..4095) PRS Configuration Index, ref [6] >> CP Length M ENUMERATED (Normal, Extended, 7) Cyclic prefix length of the PRS >> Number of DL Frames M ENUMERATED (sf1, sf2, sf4, sf6,...) Number of consecutive downlink subframes N PRS with PRS, ref [6] >> Number of Antenna Ports M ENUMERATED (n1-or-n2, n4,...) Number of used antenna ports, where n1-or-n2 corresponds to 1 or 2 ports, n4 corresponds to 4 ports >> SFN Initialization Time M BIT STRING (64) Time in seconds relative to 00:00:00 on 1 January 1900 where the integer part is in the first 32 bits and the fraction part in the last 32
  • an SFN unknown problem may occur.
  • the PRS muting pattern may be set from the time when the SFN of the reference cell becomes 0. If the UE does not know the SFN of the reference cell, it is not known whether the next PRS positioning opportunity is muted. In general, the UE knows only the SFN of the serving cell serving itself. Since the reference cell and the serving cell may not coincide with each other in the process of the UE performing handover, the SFN unknown problem may frequently occur.
  • the serving cell is included in the OTDOA neighbor cell list. In other words, the serving cell is not the same as the reference cell. In addition, there is no propagation delay, and it is assumed that the UE knows only the SFN of the serving cell. The UE infers the PRS positioning opportunity using the SFN and the slot number offset of the serving cell, which is one of the neighbor cells, and can measure the RSTD through this. However, since the UE does not know the time point when the SFN of the reference cell becomes 0, it cannot know whether the next PRS positioning opportunity is muted or not, and thus cannot properly measure the RSTD.
  • the PRS configuration index I PRS of the serving cell and the reference cell are both zero.
  • the SFN offset of the serving cell and the reference cell is 320 ms.
  • the muting sequence of the serving cell is 10 (2) and the muting sequence of the reference cell is 01 (2) . Since the UE does not know the time point when the SFN of the reference cell becomes 0, the UE cannot know whether the PRS positioning opportunity after measuring the RSTD is muted.
  • the PRS configuration index I PRS of the serving cell is 0 and the PRS configuration index I PRS of the reference cell is 130.
  • the SFN offset of the serving cell and the reference cell is 30 ms.
  • the muting sequence of the serving cell is 10 (2) and the muting sequence of the reference cell is 01 (2) . Also, since the UE does not know the time point when the SFN of the reference cell becomes 0, the UE cannot know whether the PRS positioning opportunity after measuring the RSTD is muted.
  • the terminal may predict the SFN of the reference cell based on the serving cell that receives the service, and thus may know the muting pattern of the PRS transmitted by each cell.
  • the terminal cannot recognize the SFN of the reference cell, so that the terminal cannot know when the PRS transmitted from each cell is muted.
  • the UE needs to decode the PBCH to obtain SFN information of the reference cell. Therefore, the complexity of the terminal increases, and when the signal to interference noise ratio (SINR) of the signal received from the reference cell is small, the decoding performance of the PBCH may be lowered, so that SFN information of the reference cell may not be properly obtained.
  • SINR signal to interference noise ratio
  • the PRS muting sequence and the PRS muting pattern may be set based on the SFN of the cell in which the terminal may obtain the SFN.
  • the UE may recognize the PRS muting pattern of each cell based on the SFN of the cell capable of acquiring the SFN at the time when the PRS muting information is received.
  • a cell capable of acquiring the SFN by the UE may be a serving cell.
  • the PRS muting pattern by the PRS muting sequence may be set based on when the SFN of the cell in which the UE may acquire the SFN is 0.
  • the first bit of the PRS muting sequence may correspond to the first PRS positioning opportunity started after the SFN of the cell in which the UE may acquire the SFN becomes 0.
  • the first bit of the PRS muting sequence may correspond to the first PRS positioning opportunity that starts after the SFN of the serving cell becomes 0 when the UE receives the PRS muting information. Accordingly, the SFN unknown problem may be solved except when the terminal performs the handover.
  • a PRS muting sequence and a PRS muting pattern may be configured based on the first PRS positioning opportunity received by the UE. That is, the UE does not need the SFN of any cell transmitting the PRS, and may recognize the PRS muting sequence and the PRS muting pattern based on the time point at which the PRS muting information is received. Accordingly, the first bit of the PRS muting sequence may correspond to the first PRS positioning opportunity received after the UE receives the PRS muting information. Alternatively, the first bit of the PRS muting sequence may correspond to the first PRS positioning opportunity received after the OTDOA assistance data is delivered to the terminal by the OTDOA assistance data providing IE.
  • the PRS muting sequence and the PRS muting pattern are set based on the SFN of the reference cell, and the UE can obtain the SFN by decoding the PBCH transmitted from the reference cell.
  • the SFN offset field or the SFN itself is additionally included in the PRS information IE, and the UE may infer the PRS muting sequence and the PRS muting pattern by acquiring the SFN of the reference cell therefrom.
  • the SFN offset field or SFN value may be added to the PRS information IE for the serving cell or the reference cell.
  • the UE obtains the SFN of the reference cell from the SFN of the cell in which the UE may acquire the SFN and the SFN offset field or SFN of the reference cell, and may infer the PRS muting sequence and the PRS muting pattern therefrom.
  • All bits constituting the PRS muting sequence may be configured as 0 or 1. If the PRS muting sequence is '11 ... ', the PRS is always transmitted at all PRS positioning opportunities, and if the PRS muting sequence is '00 ...', the transmission of the PRS is always muted at all PRS positioning opportunities. Accordingly, the UE can solve the SFN unknown problem without having to distinguish the SFN of the reference cell in order to know the PRS muting pattern.
  • step S100 the terminal receives the PRS from the reference cell and at least one neighbor cell, respectively.
  • the UE includes auxiliary data including a reference cell PRS muting sequence indicating a muting pattern of the PRS transmitted by the reference cell and a neighbor cell PRS muting sequence indicating the muting pattern of the PRS transmitted by the at least one adjacent cell.
  • Receive the offer message from the E-SMLC the UE transmits the measured RSTD to the E-SMLC based on the PRS received from the reference cell and at least one neighbor cell.
  • the reference cell muting sequence and the adjacent cell muting sequence may be set by the various methods described above.
  • 15 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 800 includes a processor 810, a memory 820, and a radio frequency unit (RF) 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 830 and 930 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 820, 920 and executed by the processor 810, 910.
  • the memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말에 의한 메시지 전송 방법 및 장치가 제공된다. 단말은 기준 셀(reference cell) 및 적어도 하나의 인접 셀(neighbor cell)로부터 각각 포지셔닝 참조 신호(PRS; Positioning Reference Signal)를 수신하고, 상기 기준 셀이 전송하는 PRS의 뮤팅 패턴(muting pattern)을 지시하는 기준 셀 PRS 뮤팅 시퀀스 및 상기 적어도 하나의 인접 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 인접 셀 PRS 뮤팅 시퀀스를 포함하는 보조 데이터 제공 메시지를 E-SMLC(Enhanced Serving Mobile Location Center)로부터 수신하고, 상기 기준 셀 및 적어도 하나의 인접 셀로부터 수신한 PRS를 기반으로 측정된 참조 신호 시간 차이(RSTD; Reference Signal Time difference)를 상기 E-SMLC로 전송한다.

Description

무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치에 관한 것이다.
단말(UE; User Equipment)의 위치를 추정하는 단말 포지셔닝(positioning)은 최근 실생활에서 다양한 용도로 사용되고 있으며, 이에 따라 보다 정밀한 단말 포지셔닝 방법이 요구된다. 단말 포지셔닝 기법은 크게 4가지 방법으로 구분될 수 있다.
1) GPS(Global Positioning System) 기반 방법: 위성을 이용하여 단말의 위치를 추정하는 방법이다. 최소 4개의 위성으로부터 정보를 수신하여야 하며, 실내에서는 사용하지 못한다는 단점이 있다.
2) 지상 위치(terrestrial positioning) 기반 방법: 기지국들로부터 전송되는 신호의 타이밍 차이를 이용하여 단말의 위치를 추정한다. 최소 3개의 기지국으로부터 신호를 수신하여야 하며, GPS 기반 방법에 비해 위치 추정의 성능은 떨어지나 거의 모든 환경에서 사용할 수 있다. 기지국으로부터 수신하는 신호로 주로 동기화 신호(synchronization signal) 또는 참조 신호(RS; Reference Signal)가 이용되며, 적용되는 무선 통신 시스템에 따라서 UTRAN(UMTS Terrestrial Radio Access Network)에서는 OTDOA(Observed Time Difference Of Arrival), GERAN(GSM/EDGE Radio Access Network)에서는 E-OTD(Enhanced Observed Time Difference), CDMA2000에서는 AFLT(Advanced Forward Link Trilateration) 등의 다양한 용어로 정의될 수 있다.
단말의 위치를 추정하기 위하여 참조 신호가 이용될 수 있다. 참조 신호는 동기화 신호(synchronization signal)를 포함할 수 있다. 단말은 복수의 셀로부터 전송된 참조 신호를 수신하고 각 신호의 지연 시간(delay)의 차이를 이용할 수 있다. 단말은 해당 지연 시간의 차이를 기지국으로 보고하여 기지국에서 단말의 위치를 계산할 수 있게 하거나, 또는 스스로 그 위치를 계산할 수 있다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) TS36.355 V9.0.0(2009-12) 4.1.1절을 참조하면, 각 셀로부터 전송된 참조 신호의 단말이 측정한 지연 시간의 차이(RSTD; Reference Signal Time Difference) 등의 측정 값들은 LPP(LTE Positioning Protocol)를 통해 E-SMLC(Enhanced Serving Mobile Location Center)가 제어할 수 있다. LPP는 하나 이상의 기준 신호로부터 얻은 위치 관계 측정값을 사용하여 목적 장치의 위치를 추정할 수 있도록, E-SMLC 등의 위치 서버(location server)와 단말 등의 목적 장치(target device) 간에 점 대 점(point-to-point)으로 정의될 수 있다.
한편, 단말의 위치 추정을 위한 참조 신호의 전송은 뮤팅(muting)될 수 있다. 즉, 특정한 상황에서 셀은 참조 신호를 전송하지 않을 수 있다. 이는 단말이 기준 셀 및 인접 셀로부터 참조 신호를 수신할 때, 기준 셀로부터 수신되는 참조 신호의 세기가 인접 셀로부터 수신되는 참조 신호의 세기보다 지나치게 커서 인접 셀로부터 수신되는 참조 신호를 제대로 디코딩하지 못할 수 있기 때문이다. 단말은 복수의 셀로부터 전송 되는 참조 신호의 뮤팅 패턴을 정확하게 알 필요가 있다. 단말은 적어도 하나의 셀을 기준으로 하여 각 셀의 참조 신호의 뮤팅 패턴을 인지할 수 있다. 그러나 단말의 핸드오버(handover) 수행 또는 비동기 네트워크(asynchronous network) 등의 이유로 인하여 단말이 각 셀이 전송하는 참조 신호의 뮤팅 패턴을 정확하게 인지하지 못하는 모호성(ambiguity)이 발생할 가능성이 있다.
이에 따라 단말이 참조 신호의 뮤팅 패턴을 인지하기 위한 메시지 구성 방법 및 전송 방법이 요구된다.
본 발명의 기술적 과제는 무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치를 제공하는 데에 있다. 본 발명은 무선 통신 시스템에서 단말의 위치를 추정하는 데에 있어서, 시스템 프레임 번호(SFN; System Frame Number) 미지 문제(unknown problem)을 해결하기 위한 메시지 구성 방법 및 전송 방법을 제공한다.
일 양태에 있어서, 무선 통신 시스템에서 단말에 의한 메시지 전송 방법이 제공된다. 상기 메시지 전송 방법은 기준 셀(reference cell) 및 적어도 하나의 인접 셀(neighbor cell)로부터 각각 포지셔닝 참조 신호(PRS; Positioning Reference Signal)를 수신하고, 상기 기준 셀이 전송하는 PRS의 뮤팅 패턴(muting pattern)을 지시하는 기준 셀 PRS 뮤팅 시퀀스 및 상기 적어도 하나의 인접 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 인접 셀 PRS 뮤팅 시퀀스를 포함하는 보조 데이터 제공 메시지를 E-SMLC(Enhanced Serving Mobile Location Center)로부터 수신하고, 상기 기준 셀 및 적어도 하나의 인접 셀로부터 수신한 PRS를 기반으로 측정된 참조 신호 시간 차이(RSTD; Reference Signal Time difference)를 상기 E-SMLC로 전송하는 것을 포함한다.
상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지를 수신한 시점에 상기 단말이 시스템 프레임 번호(SFN; System Frame Number)를 획득할 수 있는 셀의 SFN을 기반으로 설정될 수 있다.
상기 단말이 SFN을 획득할 수 있는 셀은 상기 단말을 서비스하는 서빙 셀(serving cell)일 수 있다.
상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스의 첫 번째 비트는 상기 SFN을 획득할 수 있는 셀의 SFN이 0이 된 이후의 첫 번째 PRS 전송 기회(PRS occasion)에 대응될 수 있다.
상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지가 수신된 시점을 기반으로 설정될 수 있다.
상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스의 첫 번째 비트는 상기 보조 데이터 제공 메시지가 수신된 이후의 첫 번째 PRS 전송 기회에 대응될 수 있다.
상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 기준 셀로부터 전송되는 PBCH(Physical Broadcast Channel)을 디코딩 하여 획득한 상기 기준 셀의 SFN을 기반으로 설정될 수 있다.
상기 기준 셀 뮤팅 시퀀스 또는 상기 인접 셀 뮤팅 시퀀스를 구성하는 비트는 모두 1이거나 모두 0일 수 있다.
상기 RSTD는 상기 기준 셀로부터 수신한 PRS를 포함하는 기준 서브프레임과 상기 적어도 하나의 인접 셀로부터 수신한 PRS를 포함하며 상기 기준 서브프레임에 대응되는 인접 서브프레임의 상대적인 시간 차이일 수 있다.
상기 메시지 전송 방법은 상기 보조 데이터 제공 메시지를 요청하는 보조 데이터 요청 메시지를 상기 E-SMLC로 전송하는 것을 더 포함할 수 있다.
다른 양태에 있어서, 무선 통신 시스템에서 단말이 제공된다. 상기 단말은 무선 신호를 전송 또는 수신하는 RF(Radio Frequency)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 기준 셀 및 적어도 하나의 인접 셀로부터 각각 PRS를 수신하고, 상기 기준 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 기준 셀 PRS 뮤팅 시퀀스 및 상기 적어도 하나의 인접 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 인접 셀 PRS 뮤팅 시퀀스를 포함하는 보조 데이터 제공 메시지를 E-SMLC로부터 수신하고, 상기 기준 셀 및 적어도 하나의 인접 셀로부터 수신한 PRS를 기반으로 측정된 RSTD를 상기 E-SMLC로 전송하도록 구성된다.
단말이 각 셀이 전송하는 포지셔닝 참조 신호(PRS; Positioning Reference Signal)의 뮤팅 패턴(muting pattern)을 정확하게 인지할 수 있다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 6 및 도 7은 자원 블록에 맵핑되는 PRS 패턴의 일 예를 나타낸다.
도 8은 지상 위치 기반 방법 중 하향링크 OTDOA(Observed Time Difference Of Arrival) 방법의 동작의 일 예를 나타낸다.
도 9는 지상 위치 기반 방법 중 하향링크 OTDOA 방법의 동작의 또 다른 예를 나타낸다.
도 10은 LPP를 통한 단말과 E-SMLC 간의 보조 데이터 교환 과정의 일 예를 나타낸다.
도 11은 LPPa를 통한 기지국과 E-SMLC 간의 데이터 교환 과정의 일 예를 나타낸다.
도 12 및 도 13은 SFN 미지 문제가 발생하는 경우의 일 예를 나타낸다.
도 14는 제안된 위치 추정을 위한 메시지 전송 방법의 일 실시예를 나타낸다.
도 15는 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA (Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA(Evolved-UMTS Terrestrial Radio Access)를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선 통신 시스템이다.
무선 통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
단말은 통상적으로 하나의 셀에 속하는데, 단말이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 단말을 기준으로 상대적으로 결정된다.
이 기술은 하향링크(downlink) 또는 상향링크(uplink)에 사용될 수 있다. 일반적으로 하향링크는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분이고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분이고, 수신기는 기지국(11)의 일부분일 수 있다.
무선 통신 시스템은 MIMO(Multiple-Input Multiple-Output) 시스템, MISO(Multiple-Input Single-Output) 시스템, SISO(Single-Input Single-Output) 시스템 및 SIMO(Single-Input Multiple-Output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. 이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
이는 3GPP(3rd Generation Partnership Project) TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)"의 5절을 참조할 수 있다. 도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(Transmission Time Interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 부반송파를 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 자원블록(RB; Resource Block)는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다. 상기 무선 프레임의 구조는 일 예에 불과한 것이다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수, 또는 슬롯에 포함되는 OFDM 심벌의 개수는 다양하게 변경될 수 있다.
3GPP LTE는 노멀(normal) 사이클릭 프리픽스(CP; Cyclic Prefix)에서 하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 확장(extended) CP에서 하나의 슬롯은 6개의 OFDM 심벌을 포함하는 것으로 정의하고 있다.
무선 통신 시스템은 크게 FDD(Frequency Division Duplex) 방식과 TDD(Time Division Duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 단말에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
하향링크 슬롯은 시간 영역에서 복수의 OFDM 심벌을 포함하고, 주파수 영역에서 NRB개의 자원 블록을 포함한다. 하향링크 슬롯에 포함되는 자원 블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 60 내지 110 중 어느 하나일 수 있다. 하나의 자원 블록은 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(RE; Resource Element)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
여기서, 하나의 자원 블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원 블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀 CP의 경우 OFDM 심벌의 수는 7이고, 확장된 CP의 경우 OFDM 심벌의 수는 6이다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
PDCCH는 DL-SCH(Downlink-Shared Channel)의 자원 할당 및 전송 포맷, UL-SCH(Uplink Shared Channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(Control Channel Elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(RNTI; Radio Network Temporary Identifier)가 마스킹된다. 특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보(SIB; System Information Block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(System Information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(Random Access-RNTI)가 CRC에 마스킹될 수 있다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 상기 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)이 할당된다. 상기 데이터 영역은 데이터가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)이 할당된다. 상위 계층에서 지시되는 경우, 단말은 PUSCH와 PUCCH의 동시 전송을 지원할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원 블록 쌍(RB pair)으로 할당된다. 자원 블록 쌍에 속하는 자원 블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원 블록 쌍에 속하는 자원 블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(Hybrid Automatic Repeat reQuest) ACK(Acknowledgement)/NACK(Non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), 상향링크 무선 자원 할당 요청인 SR(Scheduling Request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(Precoding Matrix Indicator), HARQ, RI(Rank Indicator) 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
이하, 참조 신호에 대해서 설명한다.
참조 신호는 일반적으로 시퀀스로 전송된다. 참조 신호 시퀀스는 특별한 제한 없이 임의의 시퀀스가 사용될 수 있다. 참조 신호 시퀀스는 PSK(Phase Shift Keying) 기반의 컴퓨터를 통해 생성된 시퀀스(PSK-based computer generated sequence)를 사용할 수 있다. PSK의 예로는 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying) 등이 있다. 또는, 참조 신호 시퀀스는 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스를 사용할 수 있다. CAZAC 시퀀스의 예로는 ZC(Zadoff-Chu) 기반 시퀀스(ZC-based sequence), 순환 확장(cyclic extension)된 ZC 시퀀스(ZC sequence with cyclic extension), 절단(truncation) ZC 시퀀스(ZC sequence with truncation) 등이 있다. 또는, 참조 신호 시퀀스는 PN(pseudo-random) 시퀀스를 사용할 수 있다. PN 시퀀스의 예로는 m-시퀀스, 컴퓨터를 통해 생성된 시퀀스, 골드(Gold) 시퀀스, 카사미(Kasami) 시퀀스 등이 있다. 또, 참조 신호 시퀀스는 순환 쉬프트된 시퀀스(cyclically shifted sequence)를 이용할 수 있다.
하향링크 참조 신호는 셀 특정 참조 신호(CRS; cell-specific RS), MBSFN 참조 신호, 단말 특정 참조 신호(UE-specific RS), 포지셔닝 참조 신호(PRS; Positioning RS) 및 CSI(Channel State Information) 참조 신호(CSI-RS)로 구분될 수 있다. CRS는 셀 내 모든 단말에게 전송되는 참조 신호로 데이터 복조(demodulation) 또는 채널 추정에 모두 사용될 수 있다. CRS는 PDSCH 전송을 지원하는 셀 내의 모든 하향링크 서브프레임에서 전송될 수 있다. MBSFN 참조 신호는 MBMS(Multimedia Broadcast Multicast Service)를 제공하기 위한 참조 신호로, MBSFN 전송을 위해 할당된 서브프레임에서 전송될 수 있다. MBSFN 참조 신호는 확장 CP 구조에서만 정의될 수 있다. 단말 특정 참조 신호는 셀 내 특정 단말 또는 특정 단말 그룹이 수신하는 참조 신호로, 전용 참조 신호(DRS; Dedicated RS)로 불릴 수 있다. 또는, 단말 특정 참조 신호는 특정 단말 또는 특정 단말 그룹의 데이터 복조(demodulation)에 주로 사용되므로 DMRS(Demodulation RS)로 불릴 수 있다. CSI-RS는 3GPP LTE-A 시스템에서 채널 상태 정보의 추정을 위해 사용될 수 있다. CSI-RS는 주파수 영역 또는 시간 영역에서 비교적 드물게(sparse) 배치되며, 일반 서브프레임 또는 MBSFN(Multimedia Broadcast and multicast Single Frequency Network) 서브프레임의 데이터 영역에서는 생략(punctured)될 수 있다. CSI의 추정을 통해 필요한 경우에 채널 품질 지시자(CQI; Channel Quality Indicator), 프리코딩 행렬 지시자(PMI; Precoding Matrix Indicator) 및 랭크 지시자(RI; Rank Indicator) 등이 단말로부터 보고될 수 있다. CSI-RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통해 전송될 수 있다.
PRS는 단말의 위치 추정을 위하여 정의된 참조 신호로, PRS의 전송을 위하여 설정된(configured) 하향링크 서브프레임 내의 자원 블록에서 전송될 수 있다. PRS의 전송을 위하여 설정된 하향링크 서브프레임은 포지셔닝 서브프레임이라 할 수 있다. 일반 서브프레임과 MBSFN 서브프레임이 모두 셀 내의 포지셔닝 서브프레임 설정되는 경우, MBSFN 서브프레임 내에 PRS를 전송하기로 설정된 OFDM 심벌은 무선 프레임의 첫 번째 서브프레임이 사용하는 것과 동일한 CP 구조를 사용한다. MBSFN 서브프레임만이 셀 내의 포지셔닝 서브프레임으로 설정되는 경우, PRS를 전송하기로 설정된 OFDM 심벌은 확장 CP 구조를 사용한다. PRS는 PBCH(Physical Broadcast Channel), PSS(Primary Synchronization Signal) 또는 SSS(Secondary Synchronization Signal)가 맵핑된 자원 요소에는 맵핑되지 않는다. 또한, PRS는 Δf=15kHz에 대해서 정의될 수 있다.
PRS 시퀀스는 수학식 1에 의해서 정의될 수 있다.
<수학식 1>
Figure PCTKR2011005273-appb-I000001
수학식 1에서 ns는 무선 프레임 내에서의 슬롯 번호, ℓ은 슬롯 내에서의 OFDM 심벌 번호를 나타낸다. m은 0,1,...,2NRB max,DL-1이다. 2NRB max,DL은 하향링크에서 최대 대역폭에 해당하는 자원 블록의 개수이다. 예를 들어, 3GPP LTE에서 2NRB max,DL은 110이다. c(i)는 PN 시퀀스로 모조 임의 시퀀스로, 길이-31의 골드(Gold) 시퀀스에 의해 정의될 수 있다. 수학식 2는 골드 시퀀스 c(n)의 일 예를 나타낸다.
<수학식 2>
Figure PCTKR2011005273-appb-I000002
여기서, Nc=1600이고, x1(i)은 제1 m-시퀀스이고, x2(i)는 제2 m-시퀀스이다. 예를 들어, 제1 m-시퀀스 또는 제2 m-시퀀스는 매 OFDM 심벌마다 셀 ID, 하나의 무선 프레임 내 슬롯 번호, 슬롯 내 OFDM 심벌 인덱스, CP의 종류 등에 따라 초기화(initialization)될 수 있다. 모조 임의 시퀀스 생성기는 각 무선 프레임의 처음에서 cinit=210·(7·(ns+1)+ℓ+1)·(2·NID cell+1)+2·NID cell+NCP로 초기화될 수 있다. 이때 NCP는 노멀 CP 구조에서는 1, 확장 CP 구조에서는 0이다.
PRS 시퀀스 rℓ,ns(m)은 슬롯 ns 내에서 복소 변조 심벌 ak,ℓ (p)로 수학식 3에 의해서 맵핑될 수 있다.
<수학식 3>
Figure PCTKR2011005273-appb-I000003
노멀 CP의 경우, 수학식 3에서 k,ℓ,m,m’는 수학식 4에 의해서 결정될 수 있다.
<수학식 4>
Figure PCTKR2011005273-appb-I000004
확장 CP의 경우, 수학식 3에서 k,ℓ,m,m’는 수학식 5에 의해서 결정될 수 있다.
<수학식 5>
Figure PCTKR2011005273-appb-I000005
수학식 4 또는 수학식 5에서 NRB PRS는 상위 계층(higher layers)에 의해서 설정될 수 있으며, 셀 특정 주파수 쉬프트(cell-specific frequency shift) νshift는 νshift=NCell IDmod6으로 주어질 수 있다.
도 6 및 도 7은 자원 블록에 맵핑되는 PRS 패턴의 일 예를 나타낸다.
도 6은 노멀 CP의 경우 PRS가 자원 블록에 맵핑되는 경우를 나타낸다. 도 6-(a)는 PBCH 안테나 포트의 개수가 1개 또는 2개일 때, 도 6-(b)는 PBCH 안테나 포트의 개수가 4개일 때의 PRS 패턴을 나타낸다. 도 7은 확장 CP의 경우 PRS가 자원 블록에 맵핑되는 경우를 나타낸다. 도 7-(a)는 PBCH 안테나 포트의 개수가 1개 또는 2개일 때, 도 7-(b)는 PBCH 안테나 포트의 개수가 4개일 때의 PRS 패턴을 나타낸다. PRS는 자원 블록 내에서 대각선(diagonal) 패턴으로 맵핑된다.
표 1은 셀 특정 서브프레임 설정 주기(subframe configuration period) TPRS와 셀 특정 서브프레임 오프셋(subframe offset) ΔPRS를 나타낸다. PRS 설정 인덱스(configuration index) IPRS는 상위 계층에 의해서 주어질 수 있다. PRS는 PRS를 전송하기로 설정된 하향링크 서브프레임 내에서만 전송될 수 있다. PRS는 TDD 시스템의 특별 서브프레임(special subframe)에서는 전송될 수 없다. PRS는 NPRS개의 연속한 하향링크 서브프레임에서 전송될 수 있으며, NPRS는 상위 계층에 의해서 주어질 수 있다. 또한, NPRS개의 연속한 하향링크 서브프레임 중 첫 번째 서브프레임에 대하여
Figure PCTKR2011005273-appb-I000006
를 만족할 수 있다.
PRS configuration Index IPRS PRS periodicity TPRS (subframes) PRS subframe offset ΔPRS (subframes)
0 - 159 160 IPRS
160 - 479 320 IPRS-160
480 - 1119 640 IPRS-480
1120 - 2399 1280 IPRS-1120
2400 - 4095 Reserved
단말의 위치를 추정하는 방법은 GPS(Global Positioning System) 기반 방법과 지상 위치(terrestrial positioning) 기반 방법으로 구분될 수 있다. 지상 위치 기반 방법은 기지국들로부터 전송되는 신호의 타이밍 차이를 이용하여 단말의 위치를 추정한다. 최소 3개의 기지국으로부터 신호를 수신하여야 하며, GPS 기반 방법에 비해 위치 추정의 성능은 떨어지나 거의 모든 환경에서 사용할 수 있다. 기지국으로부터 수신하는 신호로 주로 동기화 신호(synchronization signal) 또는 참조 신호가 이용될 수 있다.
도 8은 지상 위치 기반 방법 중 하향링크 OTDOA(Observed Time Difference Of Arrival) 방법의 동작의 일 예를 나타낸다. 단말은 현재 서비스를 받는 서빙 셀에서 전송되는 서브프레임을 기준으로 기준 시각(reference clock)을 측정한다. 상기 기준 시각으로부터 TDOA 2만큼 지난 시각에 제2 인접 셀(Neighbor Cell 2)로부터 서브프레임이 수신된다. 상기 기준 시각으로부터 상기 TDOA 2보다 긴 TDOA 1만큼 지난 시각에 제1 인접 셀(Neighbor Cell 1)로부터 서브프레임이 수신된다. 복수의 셀에서 전송하는 각 서브프레임에는 PRS가 포함될 수 있다.
단말은 서빙 셀과 인접 셀에서 전송되는 PRS의 수신 시간의 차이에 의해서 단말의 위치를 추정할 수 있다. 인접 셀 j와 기준 셀(reference cell) i 간의 참조 신호 시간 차이(RSTD; Reference Signal Time Difference)는 TsubframeRxj-TsubframeRxi로 정의될 수 있으며, 이는 3GPP TS 36.214 V9.1.0 (2010-03) 5.1.12절을 참조할 수 있다. TsubframeRxj는 단말이 셀 j로부터 하나의 서브프레임의 시작 부분을 수신했을 때의 시간을 나타내며, TsubframeRxi는 단말이 상기 셀 j로부터 수신한 서브프레임과 시간적으로 가장 가까운, 셀 i로부터 대응하는 하나의 서브프레임의 시작 부분을 수신했을 때의 시간을 나타낸다. RSTD를 측정하는 기준점(reference point)은 단말의 안테나 연결부(antenna connector)일 수 있다.
도 9는 지상 위치 기반 방법 중 하향링크 OTDOA 방법의 동작의 또 다른 예를 나타낸다. 단말의 위치는 테일러 급수 전개(Taylor series expansion)을 이용하여 선형화된 방정식(linearlized equation)을 풀어 추정할 수 있다. 이는 [Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Processing, vol. 42, pp. 1905-1915, Aug. 1994]를 참조할 수 있다.
하향링크 OTDOA 방법에 의하여 단말의 위치를 추정하는 경우, 단말과 E-SMLC(Enhanced Serving Mobile Location Center)는 LPP(LTE Positioning Protocol)에 의해서 서로 정보를 교환할 수 있다. 단말은 복수의 기지국이 전송하는 참조 신호들의 OTDOA를 측정하여 측정 결과를 LPP를 통해 E-SMLC로 전송하며, E-SMLC는 단말이 측정하는 데에 필요한 보조 데이터(assistance data)를 역시 LPP를 통해 단말로 전송할 수 있다.
도 10은 LPP를 통한 단말과 E-SMLC 간의 보조 데이터 교환 과정의 일 예를 나타낸다. 보조 데이터 교환 과정을 통하여 단말은 E-SMLC에 위치 추정에 필요한 보조 데이터를 요청할 수 있고, E-SMLC로부터 보조 데이터를 수신할 수 있다. 이는 3GPP TS36.355 V9.2.1(2010-06) 5.2.1절을 참조할 수 있다.
단계 S50에서 단말은 보조 데이터 요청 메시지(assistance data request message)를 E-SMLC로 전송한다. 단계 S51에서 E-SMLC는 보조 데이터를 포함하는 보조 데이터 제공 메시지(assistance data provide message)를 단말로 전송한다. 전송되는 보조 데이터는 단말이 요청하는 보조 데이터 요청 메시지와 매칭되거나 그의 부분 집합(subset)일 수 있다. 단계 S52에서 E-SMLC는 추가적인 보조 데이터를 포함하는 하나 이상의 추가적인 보조 데이터 제공 메시지를 단말로 전송할 수 있다. 이때도 추가적인 보조 데이터는 단말이 요청하는 보조 데이터 요청 메시지와 매칭되거나 그의 부분 집합일 수 있다. 한편, 마지막으로 전송되는 보조 데이터 제공 메시지는 보조 데이터 교환의 종료를 지시하는 정보를 포함할 수 있다.
하향링크 OTDOA 방법에서 보조 데이터 제공 메시지는 OTDOA 보조 데이터 제공 IE(OTDOA-ProvideAssistanceData)에 의해서 전송될 수 있다. 표 2는 OTDOA 보조 데이터 제공 IE의 일 예를 나타낸다. 이는 3GPP TS36.355 V9.4.0(2010-12) 6.5.1절을 참조할 수 있다.
-- ASN1START

OTDOA-ProvideAssistanceData ::= SEQUENCE {
otdoa-ReferenceCellInfo OTDOA-ReferenceCellInfo OPTIONAL,
otdoa-NeighbourCellInfo OTDOA-NeighbourCellInfoList OPTIONAL,
otdoa-Error OTDOA-Error OPTIONAL,
...
}

-- ASN1STOP
표 2를 참조하면, OTDOA 보조 데이터 제공 IE는 OTDOA 기준 셀 정보 IE(OTDOA-ReferenceCellInfo)와 OTDOA 인접 셀 정보 리스트 IE(OTDOA-NeighbourCellInfoList)를 포함한다. 이때 단말이 어떠한 셀로부터도 SFN을 얻지 못하는 경우 OTDOA 측정을 위한 기준을 잡을 수 없고, 이에 따라 OTDOA 측정을 수행할 수 없어 단말의 위치를 추정할 수 없다. 따라서, 단말이 SFN을 얻을 수 있는 적어도 하나의 셀을 기준 셀로 정의하거나 인접 셀 리스트에 포함시킴으로써 문제점의 해결 방안을 제안할 수 있다.
표 3은 OTDOA 기준 셀 정보 IE의 일 예를 나타낸다. E-SMLC는 OTDOA 기준 셀 정보 IE에 의하여 OTDOA 측정의 기준이 되는 기준 셀의 정보를 단말로 전송할 수 있다.
-- ASN1START

OTDOA-ReferenceCellInfo ::= SEQUENCE {
physCellId INTEGER (0..503),
cellGlobalId ECGI OPTIONAL,-- Need ON
earfcnRef ARFCN-ValueEUTRAOPTIONAL,--Cond NotSameAsServ0
antennaPortConfigENUMERATED {ports1-or-2, ports4, ... } OPTIONAL, -- Cond NotSameAsServ1
cpLength ENUMERATED { normal, extended, ... },
prsInfo PRS-Info OPTIONAL,-- Cond PRS
...
}

-- ASN1STOP
표 3에서 PRS 정보 IE(PRS-Info)는 기준 셀의 PRS 설정을 지시한다. 표 4는 PRS 정보 IE의 일 예를 나타낸다.
-- ASN1START

PRS-Info ::= SEQUENCE {
prs-Bandwidth ENUMERATED { n6, n15, n25, n50, n75, n100, ... },
prs-ConfigurationIndex INTEGER (0..4095),
numDL-Frames ENUMERATED {sf-1, sf-2, sf-4, sf-6, ...},
...,
prs-MutingInfo-r9 CHOICE {
po2-r9 BIT STRING (SIZE(2)),
po4-r9 BIT STRING (SIZE(4)),
po8-r9 BIT STRING (SIZE(8)),
po16-r9 BIT STRING (SIZE(16)),
...
} OPTIONAL -- Need OP
}

-- ASN1STOP
표 4에서 PRS 대역폭(prs-Bandwidth) 필드는 PRS 전송을 위하여 사용되는 대역폭을 지시한다. PRS 대역폭 필드는 PRS가 전송되는 자원 블록의 개수를 지시할 수 있다. PRS 설정 인덱스(prs-ConfigurationIndex) 필드는 표 1의 PRS 설정 인덱스 IPRS를 지시한다. numDL-Frames 필드는 PRS가 전송되는 연속한 하향링크 서브프레임 의 개수 NPRS를 지시한다. numDL-Frames 필드의 값은 1, 2, 4 또는 6 중 어느 하나일 수 있다.
표 4에서 PRS 뮤팅 정보(prs-MutingInfo) 필드는 기준 셀의 PRS 뮤팅 설정(muting configuration)을 지시한다. PRS 뮤팅 설정은 주기 TREP를 가지는 주기적인 PRS 뮤팅 시퀀스(muting sequence)에 의해서 정의될 수 있다. TREP는 PRS 포지셔닝 기회(positioning occasion)의 개수로 정의될 수 있으며, 2, 4, 8 또는 16 중 어느 하나의 값을 가질 수 있다. 각 PRS 포지셔닝 기회는 PRS가 전송되는 NPRS개의 연속한 하향링크 서브프레임으로 정의될 수 있다. TREP는 또한 PRS 뮤팅 시퀀스를 지시하는 선택된 비트 스트링(bit string)의 길이와 같다. 예를 들어, TREP=2인 경우 비트 스트링의 길이도 2이다. PRS 뮤팅 시퀀스에서 비트의 값이 0인 경우 대응되는 PRS 포지셔닝 기회에서 PRS 의 전송이 뮤팅된다. PRS 뮤팅 시퀀스에 의한 PRS 뮤팅 패턴은 기준 셀의 시스템 프레임 번호(SFN; System Frame Number)가 0일 때를 기준으로 설정될 수 있다. 즉, PRS 뮤팅 시퀀스의 첫 번째 비트는 기준 셀의 SFN가 0이 된 이후에 시작되는 첫 번째 PRS 포지셔닝 기회에 대응될 수 있다. PRS 뮤팅 시퀀스는 단말이 상기 PRS 뮤팅 정보 필드를 수신한 이후에 모든 서브프레임에 대해서 유효(valid)하다. 상기 PRS 뮤팅 정보 필드가 제공되지 않는 경우, 단말은 기준 셀에 PRS 뮤팅이 적용되지 않는 것으로 가정할 수 있다.
표 5는 OTDOA 인접 셀 정보 리스트 IE의 일 예를 나타낸다. E-SMLC는 OTDOA 인접 셀 정보 IE에 의하여 OTDOA 측정에 필요한 인접 셀들의 정보를 단말로 전송할 수 있다. OTDOA 인접 셀 정보 리스트 IE 내에서 각 인접 셀에 대한 정보는 단말에 의해 측정되는 인접 셀들 중 중요한 순서대로 내림차순으로 정렬될 수 있다. 즉, OTDOA 측정에 있어서 가장 높은 우선권(highest priority)을 가진 인접 셀이 제1 셀이 될 수 있다. 단말은 E-SMLC에 의해서 제공되는 OTDOA 인접 셀 정보 리스트 IE 내의 셀의 순서에 따라 OTDOA를 측정한다. 한편, OTDOA 인접 셀 정보 리스트 IE 내의 슬롯 번호 오프셋 필드(slotNumberOffset)와 기대 RSTD 필드(expectedRSTD)는 기준 셀을 기준으로 하여 각 인접 셀에 대하여 상대적으로 정의될 수 있다.
-- ASN1START

OTDOA-NeighbourCellInfoList ::= SEQUENCE (SIZE (1..maxFreqLayers)) OF OTDOA-NeighbourFreqInfo
OTDOA-NeighbourFreqInfo ::= SEQUENCE (SIZE (1..24)) OF OTDOA-NeighbourCellInfoElement

OTDOA-NeighbourCellInfoElement ::= SEQUENCE {
physCellId INTEGER (0..503),
cellGlobalId ECGI OPTIONAL,-- Need ON
earfcn ARFCN-ValueEUTRAOPTIONAL,-- Cond NotSameAsRef0
cpLength ENUMERATED {normal, extended, ...} OPTIONAL, -- Cond NotSameAsRef1
prsInfo PRS-Info OPTIONAL, -- Cond NotSameAsRef2
antennaPortConfig ENUMERATED {ports-1-or-2, ports-4, ...} OPTIONAL, -- Cond NotsameAsRef3
slotNumberOffset INTEGER(0..31) OPTIONAL,-- Cond NotSameAsRef4
prs-SubframeOffset INTEGER (0..1279)OPTIONAL,-- Cond InterFreq
expectedRSTD INTEGER (0..16383),
expectedRSTD-UncertaintyINTEGER (0..1023),
...
}

maxFreqLayersINTEGER ::= 3

-- ASN1STOP
표 5를 참조하면, 각 인접 셀의 OTDOA 인접 셀 정보는 표 3의 OTDOA 기준 셀 정보 IE와 마찬가지로 PRS 정보 IE를 포함한다. 이에 따라 각 인접 셀에 대하여 표 4와 같이 PRS 뮤팅이 설정될 수 있다.
한편, 하향링크 OTDOA 방법에 의하여 단말의 위치를 추정하는 경우, 기지국과 E-SMLC는 LPPa(LPP Annex)에 의해서 서로 정보를 교환할 수 있다. LPPa는 기지국과 E-SMLC 사이의 제어 평면 무선 네트워크 레이어 시그널링(control plane radio network layer signaling) 과정을 제공한다.
도 11은 LPPa를 통한 기지국과 E-SMLC 간의 데이터 교환 과정의 일 예를 나타낸다. 이는 3GPP TS36.455 V9.2.0(2010-06) 8.2.5절을 참조할 수 있다.
단계 S60에서 E-SMLC는 OTDOA 정보 요청 메시지를 기지국으로 전송한다. E-SMLC는 OTDOA 정보 요청 메시지를 전송함으로써 E-SMLC와 기지국 간의 정보 교환 과정을 초기화한다. 단계 S61에서 기지국은 OTDOA 정보 응답 메시지를 E-SMLC로 전송한다. OTDOA 정보 응답 메시지는 단말의 위치를 추정하는 데에 관계되는 셀들의 OTDOA 셀 정보를 포함한다.
기지국은 기지국 별로 설정된 PRS 설정 인덱스, SFN 초기화 시간(initialization time), PRS 뮤팅 설정 등의 파라미터들에 의해서 동작할 수 있다. 표 6은 단말이 전송하는 각 셀의 OTDOA 셀 정보의 일 예를 나타낸다.
IE/Group Name Presence Range IE type and reference Semantics description
OTDOA Cell Information 1 to <maxnoOTDOAtypes>
>CHOICE OTDOA Cell Information Item M
>>PCI M INTEGER (0..503, …) Physical Cell ID
>>Cell ID M ECGI
9.2.6
>>TAC M OCTET STRING(2) Tracking Area Code
>>EARFCN M INTEGER (0..65535) Corresponds to NDL for FDD and NDL/UL for TDD in ref. [5]
>>PRS Bandwidth M ENUMERATED (bw6, bw15, bw25, bw50, bw75, bw100, ...) Transmission bandwidth of PRS
>>PRS Configuration Index M INTEGER (0..4095) PRS Configuration Index, ref [6]
>>CP Length M ENUMERATED (Normal, Extended,...) Cyclic prefix length of the PRS
>>Number of DL Frames M ENUMERATED (sf1, sf2, sf4, sf6,…) Number of consecutive downlink subframes NPRS with PRS, ref [6]
>>Number of Antenna Ports M ENUMERATED(n1-or-n2, n4,…) Number of used antenna ports, where n1-or-n2 corresponds to 1 or 2 ports, n4 corresponds to 4 ports
>>SFN Initialisation Time M BIT STRING (64) Time in seconds relative to 00:00:00 on 1 January 1900 where the integer
part is in the first 32 bits and the fraction part in the last 32 bits
>>E-UTRAN Access Point Position M 9.2.8 The configured estimated geographical position of the antenna of the cell.
>>PRS Muting Configuration M 9.2.9 The configuration of positioning reference signals muting pattern, when applicable
한편, 단말이 각 셀의 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴을 인지할 때 SFN 미지 문제(unknown problem)가 발생할 수 있다. 단말이 기준 셀의 SFN을 기반으로 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴을 인지하나 기준 셀의 SFN을 알지 못하는 때에 SFN 미지 문제가 발생할 수 있다. 예를 들어 기준 셀의 SFN이 0이 되는 시점부터 PRS 뮤팅 패턴이 설정될 수 있는데, 단말이 기준 셀의 SFN을 알지 못하는 경우 다음 PRS 포지셔닝 기회가 뮤팅되는지 아닌지를 알 수 없다. 일반적으로 단말은 자신을 서비스하는 서빙 셀의 SFN만을 알고 있다. 단말이 핸드오버(handover) 등을 수행하는 과정에서 기준 셀과 서빙 셀이 일치하지 않을 수 있으므로, SFN 미지 문제가 빈번하게 발생할 수 있다.
도 12 및 도 13은 SFN 미지 문제가 발생하는 경우의 일 예를 나타낸다.
도 12 및 도 13에서 서빙 셀은 OTDOA 인접 셀 리스트에 포함되는 것으로 가정한다. 즉, 서빙 셀은 기준 셀과 동일하지 않다. 또한, 전파 지연(propagation delay)은 없으며, 단말은 서빙 셀의 SFN만을 알고 있는 것으로 가정한다. 단말은 인접 셀 중 하나인 서빙 셀의 SFN 및 슬롯 번호 오프셋을 사용하여 PRS 포지셔닝 기회를 유추하며, 이를 통해 RSTD를 측정할 수 있다. 그러나 단말은 기준 셀의 SFN이 0이 되는 시점을 알지 못하기 때문에 다음 PRS 포지셔닝 기회가 뮤팅되는지 아닌지를 알 수 없고, 이에 따라 제대로 RSTD를 측정할 수 없다.
도 12에서 서빙 셀과 기준 셀의 PRS 설정 인덱스 IPRS는 모두 0이다. 서빙 셀과 기준 셀의 SFN 오프셋은 320 ms이다. 서빙 셀의 뮤팅 시퀀스는 10(2), 기준 셀의 뮤팅 시퀀스는 01(2)이다. 단말은 기준 셀의 SFN이 0이 되는 시점을 알지 못하므로, RSTD를 측정한 이후의 PRS 포지셔닝 기회가 뮤팅되는지 아닌지를 알 수 없다.
도 13에서 서빙 셀의 PRS 설정 인덱스 IPRS는 0이며, 기준 셀의 PRS 설정 인덱스 IPRS는 130이다. 서빙 셀과 기준 셀의 SFN 오프셋은 30 ms이다. 서빙 셀의 뮤팅 시퀀스는 10(2), 기준 셀의 뮤팅 시퀀스는 01(2)이다. 역시 단말은 기준 셀의 SFN이 0이 되는 시점을 알지 못하므로, RSTD를 측정한 이후의 PRS 포지셔닝 기회가 뮤팅되는지 아닌지를 알 수 없다.
한편, 복수의 셀의 동기가 서로 맞지 않는 비동기 네트워크(asynchronous network)인 경우에도 SFN 미지 문제가 발생할 수 있다. 복수의 셀의 동기가 서로 맞는 동기 네트워크(synchronous network)의 경우, 단말은 서비스를 받는 서빙 셀을 기준으로 기준 셀의 SFN을 예측할 수 있으므로 각 셀이 전송하는 PRS의 뮤팅 패턴을 알 수 있다. 그러나 비동기 네트워크인 경우, 단말이 기준 셀의 SFN을 인지할 수 없을 가능성이 있고, 이에 따라 단말은 각 셀에서 전송되는 PRS가 뮤팅되는 시점을 알 수 없게 된다. 이러한 경우 단말은 PBCH를 디코딩하여 기준 셀의 SFN 정보를 획득하여야 한다. 따라서 단말의 복잡도가 증가하며, 기준 셀로부터 수신되는 신호의 SINR(Signal to Interference Noise Ratio)가 작은 경우에는 PBCH의 디코딩 성능이 낮아져 기준 셀의 SFN 정보를 제대로 획득하지 못할 수 있다.
따라서 SFN 미지 문제를 해결하기 위한 방법이 요구된다.
1) 단말이 PRS 뮤팅 정보를 수신한 시점에, 단말이 SFN을 획득할 수 있는 셀의 SFN을 기준으로 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴이 설정될 수 있다. 단말은 PRS 뮤팅 정보를 수신한 시점에서 SFN을 획득할 수 있는 셀의 SFN을 기준으로 각 셀의 PRS 뮤팅 패턴을 인지할 수 있다. 이때 단말이 SFN을 획득할 수 있는 셀은 서빙 셀일 수 있다. PRS 뮤팅 시퀀스에 의한 PRS 뮤팅 패턴은 단말이 SFN을 획득할 수 있는 셀의 SFN이 0일 때를 기준으로 설정될 수 있다. 즉, PRS 뮤팅 시퀀스의 첫 번째 비트는 단말이 SFN을 획득할 수 있는 셀의 SFN이 0이 된 이후에 시작되는 첫 번째 PRS 포지셔닝 기회에 대응될 수 있다. 또는 PRS 뮤팅 시퀀스의 첫 번째 비트는 단말이 PRS 뮤팅 정보를 수신했을 때 서빙 셀의 SFN이 0이 된 이후에 시작되는 첫 번째 PRS 포지셔닝 기회에 대응될 수 있다. 이에 따라 단말이 핸드오버를 수행하는 경우를 제외하고 SFN 미지 문제를 해결할 수 있다.
2) 단말이 수신하는 첫 번째 PRS 포지셔닝 기회를 기준으로 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴이 설정될 수 있다. 즉, 단말은 PRS를 전송하는 어느 하나의 셀의 SFN을 필요로 하지 않으며, PRS 뮤팅 정보를 수신한 시점을 기준으로 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴을 인지할 수 있다. 이에 따라 PRS 뮤팅 시퀀스의 첫 번째 비트는 단말이 PRS 뮤팅 정보를 수신한 이후에 첫 번째로 수신되는 PRS 포지셔닝 기회에 대응될 수 있다. 또는 PRS 뮤팅 시퀀스의 첫 번째 비트는 OTDOA 보조 데이터가 OTDOA 보조 데이터 제공 IE에 의해서 단말로 전달된 이후에 첫 번째로 수신되는 PRS 포지셔닝 기회에 대응될 수 있다.
3) 기준 셀의 SFN을 기준으로 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴이 설정되며, 단말은 기준 셀로부터 전송되는 PBCH를 디코딩하여 SFN을 획득할 수 있다. 또는, PRS 정보 IE에 SFN 오프셋 필드 또는 SFN 자체가 추가로 포함되며, 단말은 이로부터 기준 셀의 SFN을 획득하여 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴을 유추할 수 있다. 서빙 셀 또는 기준 셀에 대한 PRS 정보 IE에 SFN 오프셋 필드 또는 SFN 값이 추가될 수 있다. 또는 단말이 SFN을 획득할 수 있는 셀의 SFN과 기준 셀의 SFN 오프셋 필드 또는 SFN으로부터 단말은 기준 셀의 SFN을 획득하며, 이로부터 PRS 뮤팅 시퀀스 및 PRS 뮤팅 패턴을 유추할 수 있다.
4) PRS 뮤팅 시퀀스를 구성하는 비트들을 모두 0 또는 1로 구성할 수 있다. PRS 뮤팅 시퀀스가 ‘11...’인 경우 PRS는 모든 PRS 포지셔닝 기회에서 항상 전송되며, PRS 뮤팅 시퀀스가 ’00...’인 경우 PRS의 전송은 모든 PRS 포지셔닝 기회에서 항상 뮤팅된다. 이에 따라 단말이 PRS 뮤팅 패턴을 알기 위하여 기준 셀의 SFN을 구분할 필요 없이 SFN 미지 문제를 해결할 수 있다.
도 14는 제안된 위치 추정을 위한 메시지 전송 방법의 일 실시예를 나타낸다.
단계 S100에서 단말은 기준 셀 및 적어도 하나의 인접 셀로부터 각각 PRS를 수신한다. 단계 S110에서 단말은 상기 기준 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 기준 셀 PRS 뮤팅 시퀀스 및 상기 적어도 하나의 인접 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 인접 셀 PRS 뮤팅 시퀀스를 포함하는 보조 데이터 제공 메시지를 E-SMLC로부터 수신한다. 단계 S120에서 단말은 상기 기준 셀 및 적어도 하나의 인접 셀로부터 수신한 PRS를 기반으로 측정된 RSTD를 상기 E-SMLC로 전송한다. 이때 상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 앞에서 설명한 다양한 방법에 의해서 설정될 수 있다.
도 15는 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; Radio Frequency unit)을 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다. 프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(810, 910)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(820, 920)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(830, 930)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(820, 920)에 저장되고, 프로세서(810, 910)에 의해 실행될 수 있다. 메모리(820, 920)는 프로세서(810, 910) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(810, 910)와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.

Claims (15)

  1. 무선 통신 시스템에서 단말에 의한 메시지 전송 방법에 있어서,
    기준 셀(reference cell) 및 적어도 하나의 인접 셀(neighbor cell)로부터 각각 포지셔닝 참조 신호(PRS; Positioning Reference Signal)를 수신하고,
    상기 기준 셀이 전송하는 PRS의 뮤팅 패턴(muting pattern)을 지시하는 기준 셀 PRS 뮤팅 시퀀스 및 상기 적어도 하나의 인접 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 인접 셀 PRS 뮤팅 시퀀스를 포함하는 보조 데이터 제공 메시지를 E-SMLC(Enhanced Serving Mobile Location Center)로부터 수신하고,
    상기 기준 셀 및 적어도 하나의 인접 셀로부터 수신한 PRS를 기반으로 측정된 참조 신호 시간 차이(RSTD; Reference Signal Time difference)를 상기 E-SMLC로 전송하는 것을 포함하는 메시지 전송 방법.
  2. 제 1 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지를 수신한 시점에 상기 단말이 시스템 프레임 번호(SFN; System Frame Number)를 획득할 수 있는 셀의 SFN을 기반으로 설정되는 것을 특징으로 하는 메시지 전송 방법.
  3. 제 2 항에 있어서,
    상기 단말이 SFN을 획득할 수 있는 셀은 상기 단말을 서비스하는 서빙 셀(serving cell)인 것을 특징으로 하는 메시지 전송 방법.
  4. 제 2 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스의 첫 번째 비트는 상기 SFN을 획득할 수 있는 셀의 SFN이 0이 된 이후의 첫 번째 PRS 전송 기회(PRS occasion)에 대응되는 것을 특징으로 하는 메시지 전송 방법.
  5. 제 1 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지가 수신된 시점을 기반으로 설정되는 것을 특징으로 하는 메시지 전송 방법.
  6. 제 5 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스의 첫 번째 비트는 상기 보조 데이터 제공 메시지가 수신된 이후의 첫 번째 PRS 전송 기회에 대응되는 것을 특징으로 하는 메시지 전송 방법.
  7. 제 1 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 기준 셀로부터 전송되는 PBCH(Physical Broadcast Channel)을 디코딩 하여 획득한 상기 기준 셀의 SFN을 기반으로 설정되는 것을 특징으로 하는 메시지 전송 방법.
  8. 제 1 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 또는 상기 인접 셀 뮤팅 시퀀스를 구성하는 비트는 모두 1이거나 모두 0인 것을 특징으로 하는 메시지 전송 방법.
  9. 제 1 항에 있어서,
    상기 RSTD는 상기 기준 셀로부터 수신한 PRS를 포함하는 기준 서브프레임과 상기 적어도 하나의 인접 셀로부터 수신한 PRS를 포함하며 상기 기준 서브프레임에 대응되는 인접 서브프레임의 상대적인 시간 차이인 것을 특징으로 하는 메시지 전송 방법.
  10. 제 1 항에 있어서,
    상기 보조 데이터 제공 메시지를 요청하는 보조 데이터 요청 메시지를 상기 E-SMLC로 전송하는 것을 더 포함하는 것을 특징으로 하는 메시지 전송 방법.
  11. 무선 통신 시스템에서,
    무선 신호를 전송 또는 수신하는 RF(Radio Frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되,
    상기 프로세서는,
    기준 셀(reference cell) 및 적어도 하나의 인접 셀(neighbor cell)로부터 각각 포지셔닝 참조 신호(PRS; Positioning Reference Signal)를 수신하고,
    상기 기준 셀이 전송하는 PRS의 뮤팅 패턴(muting pattern)을 지시하는 기준 셀 PRS 뮤팅 시퀀스 및 상기 적어도 하나의 인접 셀이 전송하는 PRS의 뮤팅 패턴을 지시하는 인접 셀 PRS 뮤팅 시퀀스를 포함하는 보조 데이터 제공 메시지를 E-SMLC(Enhanced Serving Mobile Location Center)로부터 수신하고,
    상기 기준 셀 및 적어도 하나의 인접 셀로부터 수신한 PRS를 기반으로 측정된 참조 신호 시간 차이(RSTD; Reference Signal Time difference)를 상기 E-SMLC로 전송하도록 구성되는 것을 특징으로 하는 단말.
  12. 제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지를 수신한 시점에 상기 단말이 시스템 프레임 번호(SFN; System Frame Number)를 획득할 수 있는 셀의 SFN을 기반으로 설정되는 것을 특징으로 하는 단말.
    제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지를 수신한 시점에 상기 단말이 시스템 프레임 번호(SFN; System Frame Number)를 획득할 수 있는 셀의 SFN을 기반으로 설정되는 것을 특징으로 하는 단말.
  13. 제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지가 수신된 시점을 기반으로 설정되는 것을 특징으로 하는 단말.
    제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 보조 데이터 제공 메시지가 수신된 시점을 기반으로 설정되는 것을 특징으로 하는 단말.
  14. 제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 기준 셀로부터 전송되는 PBCH(Physical Broadcast Channel)을 디코딩 하여 획득한 상기 기준 셀의 SFN을 기반으로 설정되는 것을 특징으로 하는 단말.
    제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 및 상기 인접 셀 뮤팅 시퀀스는 상기 기준 셀로부터 전송되는 PBCH(Physical Broadcast Channel)을 디코딩 하여 획득한 상기 기준 셀의 SFN을 기반으로 설정되는 것을 특징으로 하는 단말.
  15. 제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 또는 상기 인접 셀 뮤팅 시퀀스를 구성하는 비트는 모두 1이거나 모두 0인 것을 특징으로 하는 단말.


    제 11 항에 있어서,
    상기 기준 셀 뮤팅 시퀀스 또는 상기 인접 셀 뮤팅 시퀀스를 구성하는 비트는 모두 1이거나 모두 0인 것을 특징으로 하는 단말.
PCT/KR2011/005273 2010-07-16 2011-07-18 무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치 WO2012008816A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/808,880 US9100781B2 (en) 2010-07-16 2011-07-18 Method and apparatus for transmitting location estimation message in wireless communication system
US14/751,533 US9736629B2 (en) 2010-07-16 2015-06-26 Method and apparatus for transmitting location estimation message in wireless communication system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US36481810P 2010-07-16 2010-07-16
US61/364,818 2010-07-16
US201161440837P 2011-02-08 2011-02-08
US61/440,837 2011-02-08
US201161444122P 2011-02-17 2011-02-17
US61/444,122 2011-02-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/808,880 A-371-Of-International US9100781B2 (en) 2010-07-16 2011-07-18 Method and apparatus for transmitting location estimation message in wireless communication system
US14/751,533 Continuation US9736629B2 (en) 2010-07-16 2015-06-26 Method and apparatus for transmitting location estimation message in wireless communication system

Publications (2)

Publication Number Publication Date
WO2012008816A2 true WO2012008816A2 (ko) 2012-01-19
WO2012008816A3 WO2012008816A3 (ko) 2012-05-31

Family

ID=45469971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005273 WO2012008816A2 (ko) 2010-07-16 2011-07-18 무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치

Country Status (2)

Country Link
US (2) US9100781B2 (ko)
WO (1) WO2012008816A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172585A1 (ko) * 2012-05-16 2013-11-21 엘지전자 주식회사 감소된 전송 리소스 블록과 전력으로 상향링크 신호를 송신하는 무신 기기 및 기지국
WO2016032265A1 (ko) * 2014-08-29 2016-03-03 엘지전자 주식회사 포지셔닝 지원을 위한 측정을 수행하는 방법 및 사용자기기와, 포지셔닝을 지원하는 방법 및 위치 서버와 포지셔닝을 지원하는 기지국
WO2016036154A1 (ko) * 2014-09-04 2016-03-10 엘지전자(주) 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치
WO2016032200A3 (ko) * 2014-08-28 2016-04-14 엘지전자(주) 무선 통신 시스템에서 포지셔닝(positioning)을 수행하기 위한 방법 및 이를 위한 장치
WO2020069314A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Inter-rat (radio access technology) rstd (reference signal time difference) measurement enhancement
CN111586554A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 生成prs序列的方法、终端设备和定位设备

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119165B2 (en) 2009-09-10 2015-08-25 Nextnav, Llc Coding in a wide area positioning system (WAPS)
US9035829B2 (en) 2008-09-10 2015-05-19 Nextnav, Llc Wide area positioning systems and methods
KR101630890B1 (ko) 2008-09-10 2016-06-15 콤랩스. 인크. 광역 위치 결정 시스템
US9057606B2 (en) 2009-09-10 2015-06-16 Nextnav, Llc Wide area positioning system
US9291712B2 (en) 2009-09-10 2016-03-22 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
US9372266B2 (en) 2009-09-10 2016-06-21 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
EP2604079A2 (en) * 2010-08-11 2013-06-19 Telefonaktiebolaget LM Ericsson (publ) Methods of providing cell grouping for positioning and related networks and devices
CN102594756B (zh) * 2011-01-07 2016-09-07 中兴通讯股份有限公司 定位参考信号子帧的传输方法及***
US9176217B2 (en) 2011-08-02 2015-11-03 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
EP3139193A1 (en) 2012-06-05 2017-03-08 NextNav, LLC Systems and methods for location positioning of user device
US9390279B2 (en) 2012-09-11 2016-07-12 Nextnav, Llc Systems and methods for providing conditional access to transmitted information
US9286490B2 (en) 2013-09-10 2016-03-15 Nextnav, Llc Systems and methods for providing conditional access to transmitted information
US9432809B2 (en) 2013-07-12 2016-08-30 Qualcomm Incorporated Providing OTDOA PRS assistance data
US9516541B2 (en) * 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
US9467966B2 (en) * 2014-04-15 2016-10-11 Qualcomm Incorporated Method and/or system for positioning from a reference signal
US10231207B2 (en) * 2014-08-27 2019-03-12 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and apparatus therefor
WO2016032308A1 (ko) * 2014-08-29 2016-03-03 엘지전자 주식회사 무선 통신 시스템에서 otdoa 관련 동작 수행 방법
US9641371B2 (en) * 2014-12-31 2017-05-02 Motorola Solutions, Inc Methods and systems for dynamic single-frequency-network-multicast symbol synchronization
KR102541174B1 (ko) * 2015-03-26 2023-06-08 엘지전자 주식회사 무선 통신 시스템에서 위치 결정을 위한 측정 결과 보고 방법 및 이를 위한 장치
US9733337B2 (en) * 2015-08-28 2017-08-15 Qualcomm Incorporated Support of downlink positioning using coherent and non-coherent signal acquisition
KR102284044B1 (ko) * 2015-09-10 2021-07-30 삼성전자주식회사 무선 통신 시스템에서 위치 추정 방법 및 장치
US20170134128A1 (en) * 2015-11-05 2017-05-11 Qualcomm Incorporated Support of otdoa positioning using mixed transmission port antenna configurations
US10091609B2 (en) 2016-03-28 2018-10-02 Qualcomm Incorporated Enhancing PRS searches via runtime conditions
US10045325B2 (en) 2016-08-12 2018-08-07 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
EP3282784B1 (en) * 2016-08-12 2019-12-18 Nokia Technologies Oy Position detection of user equipment within a wireless telecommunication network
CN108811007B (zh) * 2017-05-05 2022-04-26 中兴通讯股份有限公司 Otdoa定位的辅助数据配置方法、装置及***
US10082559B1 (en) * 2017-09-22 2018-09-25 Nokia Technologies Oy PCI cell restriction and coarse geometry
US11320511B2 (en) 2017-09-29 2022-05-03 Futurewei Technologies, Inc. Observed time difference of arrival (OTDOA) positioning in wireless communication networks
JP7289189B2 (ja) * 2018-06-28 2023-06-09 シャープ株式会社 端末装置、ロケーションサーバー及び方法
CN110972054B (zh) * 2018-09-27 2021-04-09 电信科学技术研究院有限公司 定位方法及装置
GB2591690B (en) * 2018-11-02 2022-06-22 Samsung Electronics Co Ltd Improvements in and relating to reference feature sets in a telecommunication network
CN113748722B (zh) * 2019-02-15 2024-03-01 Lg电子株式会社 用于在无线通信***中定位的方法及用于支持其的装置
CN111586746B (zh) * 2019-02-15 2022-01-14 华为技术有限公司 配置信息的方法和装置
CN111867050B (zh) * 2019-04-29 2023-03-14 中兴通讯股份有限公司 一种信息传输的方法、装置、节点和服务器
US11395301B2 (en) * 2019-08-12 2022-07-19 Qualcomm Incorporated Muting pattern configuration options for downlink positioning reference signals (PRS)
US11451928B2 (en) 2019-08-14 2022-09-20 Qualcomm Incorporated Hierarchical reporting of location assistance information for positioning reference signal (PRS) resources in a multi-beam user equipment-based positioning scenario
CN113810094B (zh) * 2020-06-11 2022-11-25 华为技术有限公司 一种信号传输的方法和通信装置
CN113965873B (zh) * 2020-07-03 2023-03-24 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备
US11445470B2 (en) * 2021-02-02 2022-09-13 Qualcomm Incorporated Position measurement in presence of MBSFN signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090071009A (ko) * 2007-12-27 2009-07-01 (주)케이티에프테크놀로지스 라우팅 영역 및 위치등록 영역 업데이트 제어 방법 및시스템
KR20090085937A (ko) * 2008-02-05 2009-08-10 에스케이 텔레콤주식회사 유피셀 데이터베이스를 이용한 단말 기반의 위치 측정방법, 장치 및 시스템
KR20100025845A (ko) * 2008-08-28 2010-03-10 에스케이 텔레콤주식회사 셀 경계에 위치한 이동단말의 호 접속을 위한 시스템 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8965395B2 (en) * 2009-06-05 2015-02-24 Qualcomm Incorporated Positioning of user equipment in a wireless communication network
EP2477349A2 (en) * 2009-09-09 2012-07-18 Pantech Co., Ltd. Method and apparatus for transceiving a signal in a communication system
US20110230144A1 (en) * 2010-03-17 2011-09-22 Iana Siomina Method and Apparatus for Muting Signaling in a Wireless Communication Network
DK2564228T3 (da) * 2010-04-28 2014-06-02 Ericsson Telefon Ab L M Fremgangsmåde og apparat til opsamling af referencetider tilpositionering af referencesignaler i et trådløst kommunikationsnetværk
PT2606372T (pt) * 2010-08-16 2018-05-08 Ericsson Telefon Ab L M Nós e métodos para melhorar posicionamento

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090071009A (ko) * 2007-12-27 2009-07-01 (주)케이티에프테크놀로지스 라우팅 영역 및 위치등록 영역 업데이트 제어 방법 및시스템
KR20090085937A (ko) * 2008-02-05 2009-08-10 에스케이 텔레콤주식회사 유피셀 데이터베이스를 이용한 단말 기반의 위치 측정방법, 장치 및 시스템
KR20100025845A (ko) * 2008-08-28 2010-03-10 에스케이 텔레콤주식회사 셀 경계에 위치한 이동단말의 호 접속을 위한 시스템 및 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172585A1 (ko) * 2012-05-16 2013-11-21 엘지전자 주식회사 감소된 전송 리소스 블록과 전력으로 상향링크 신호를 송신하는 무신 기기 및 기지국
US9736851B2 (en) 2012-05-16 2017-08-15 Lg Electronics Inc. Wireless equipment for transmitting uplink signal through reduced transmission resource block and power, and enodeb
WO2016032200A3 (ko) * 2014-08-28 2016-04-14 엘지전자(주) 무선 통신 시스템에서 포지셔닝(positioning)을 수행하기 위한 방법 및 이를 위한 장치
US10178571B2 (en) 2014-08-28 2019-01-08 Lg Electronics Inc. Method for performing positioning in wireless communication system and device therefor
WO2016032265A1 (ko) * 2014-08-29 2016-03-03 엘지전자 주식회사 포지셔닝 지원을 위한 측정을 수행하는 방법 및 사용자기기와, 포지셔닝을 지원하는 방법 및 위치 서버와 포지셔닝을 지원하는 기지국
WO2016036154A1 (ko) * 2014-09-04 2016-03-10 엘지전자(주) 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치
US10514438B2 (en) 2014-09-04 2019-12-24 Lg Electronics Inc. Method for performing positioning in wireless communication system and device therefor
WO2020069314A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Inter-rat (radio access technology) rstd (reference signal time difference) measurement enhancement
CN111586554A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 生成prs序列的方法、终端设备和定位设备

Also Published As

Publication number Publication date
US20130122930A1 (en) 2013-05-16
US9100781B2 (en) 2015-08-04
US9736629B2 (en) 2017-08-15
US20150296339A1 (en) 2015-10-15
WO2012008816A3 (ko) 2012-05-31

Similar Documents

Publication Publication Date Title
US9736629B2 (en) Method and apparatus for transmitting location estimation message in wireless communication system
US9313765B2 (en) Method for measuring position in wireless communication system
US10411930B2 (en) Method and apparatus for transmitting positioning reference signal in wireless communication system
KR102364694B1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 포지셔닝 정보를 전송하는 방법 및 이를 위한 장치
US10420062B2 (en) Method of performing location tracking using drone and apparatus therefor
US10004057B2 (en) Method for performing OTDOA-related operation in wireless communication system
WO2016032200A2 (ko) 무선 통신 시스템에서 포지셔닝(positioning)을 수행하기 위한 방법 및 이를 위한 장치
US10935629B2 (en) Method for performing OTDOA-related operations in wireless communication system
US10834534B2 (en) Method and device for performing location measurement on basis of PDOA
WO2015199392A1 (ko) 무선 통신 시스템에서 포지셔닝(Positioning)을 수행하기 위한 방법 및 이를 위한 장치
US11109193B2 (en) Method and device for performing positioning using drone
US10470147B2 (en) Method for executing RSTD measurement-related operation in wireless communication system
KR20170040770A (ko) 무선 통신 시스템에서의 위치 참조 신호 송수신 방법 및 그 장치
KR101651685B1 (ko) 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
US10506379B2 (en) Method and device for transmitting/receiving information related to barometer in wireless communication system
US20210014821A1 (en) Method and device for measuring position

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11807100

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13808880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11807100

Country of ref document: EP

Kind code of ref document: A2