WO2012008447A1 - Green molded body, and manufacturing method for aluminium titanate sintered body - Google Patents

Green molded body, and manufacturing method for aluminium titanate sintered body Download PDF

Info

Publication number
WO2012008447A1
WO2012008447A1 PCT/JP2011/065882 JP2011065882W WO2012008447A1 WO 2012008447 A1 WO2012008447 A1 WO 2012008447A1 JP 2011065882 W JP2011065882 W JP 2011065882W WO 2012008447 A1 WO2012008447 A1 WO 2012008447A1
Authority
WO
WIPO (PCT)
Prior art keywords
source powder
aluminum
molded body
green molded
source
Prior art date
Application number
PCT/JP2011/065882
Other languages
French (fr)
Japanese (ja)
Inventor
康輔 魚江
朝 吉野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012008447A1 publication Critical patent/WO2012008447A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Definitions

  • the present invention relates to a green molded body and a method for producing an aluminum titanate fired body.
  • Aluminum titanate ceramics are known as ceramics that contain titanium and aluminum as constituent elements and have a crystal pattern of aluminum titanate in the X-ray diffraction spectrum, and have excellent heat resistance.
  • Aluminum titanate ceramics have been conventionally used as a sintering jig such as a crucible, but in recent years, fine carbon particles contained in exhaust gas discharged from an internal combustion engine such as a diesel engine are collected.
  • a material constituting a ceramic filter industrial utility value is increasing.
  • Patent Document 1 As a method for producing aluminum titanate ceramics, a method is known in which a raw material mixture containing an aluminum source powder and a titanium source powder is formed and fired (Patent Document 1).
  • the raw material mixture further contains organic additives such as an organic binder and pore former, and the green additive of this raw material mixture is heated to 150 to 900 ° C. in an oxygen-containing atmosphere to remove the organic additives.
  • a method of firing at 1300 ° C. or higher is also known (paragraphs 0031 to 0032 of Patent Document 1).
  • the strength (shape retention) of the green molded body is not sufficient, and the green molded body may not be able to maintain its shape when it is put into a firing furnace. As a result, the dimensional accuracy of the obtained aluminum titanate fired body was not sufficient.
  • An object of the present invention is to provide a green molded body capable of maintaining its shape and a method for producing an aluminum titanate fired body using the green molded body.
  • the inorganic compound source powder includes an aluminum source powder and a titanium source powder,
  • the green molded object whose viscosity in 20 degreeC of a plasticizer is 1000 mPa * s or more.
  • the inorganic compound source powder includes an aluminum source powder and a titanium source powder, The manufacturing method of the aluminum titanate sintered body whose viscosity in 20 degreeC of a plasticizer is 1000 mPa * s or more.
  • the amount of the plasticizer is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the green molded body.
  • the inorganic compound source powder preferably further contains a silicon source powder.
  • the inorganic compound source powder preferably further contains a magnesium source powder.
  • the molar ratio of the aluminum source powder in terms of Al 2 O 3 and the titanium source powder in terms of TiO 2 in the raw material mixture is preferably 35:65 to 45:55.
  • the green molded body preferably has a honeycomb shape.
  • the green molded object of this invention is excellent in shape retention property by including the plasticizer whose viscosity in 20 degreeC is 1000 mPa * s or more. Further, according to the method for producing an aluminum titanate fired body of the present invention, a green molded body having excellent shape retention can be obtained by using a plasticizer having a viscosity at 20 ° C. of 1000 mPa ⁇ s or more as a raw material. An aluminum titanate fired body with high dimensional accuracy can be produced efficiently.
  • FIG. 1A and FIG. 1B are schematic diagrams showing how to investigate shape retention in the embodiment.
  • the green molded body of the present invention includes an inorganic compound source powder, an organic binder, and a plasticizer.
  • the inorganic compound source powder includes an aluminum source powder and a titanium source powder.
  • the inorganic compound source powder can further include a magnesium source powder and / or a silicon source powder.
  • the aluminum source is a compound that becomes an aluminum component constituting the aluminum titanate fired body.
  • the aluminum source include alumina (aluminum oxide).
  • the crystal type of alumina include ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type, and may be indefinite (amorphous). Of these, ⁇ -type alumina is preferably used.
  • the aluminum source may be a compound that becomes alumina by firing alone in air.
  • Examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, metal aluminum and the like.
  • the aluminum salt may be an inorganic salt with an inorganic acid or an organic salt with an organic acid.
  • the inorganic aluminum salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate; and aluminum carbonates such as ammonium aluminum carbonate.
  • the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
  • aluminum alkoxide examples include aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide, and the like.
  • Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous).
  • Examples of amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
  • an aluminum source only 1 type may be used and 2 or more types may be used together.
  • the aluminum source alumina is preferably used, and ⁇ -type alumina is more preferable.
  • the aluminum source may contain trace components derived from the raw materials or inevitably contained in the production process.
  • the particle size of the aluminum source powder is not particularly limited, but the particle size corresponding to a volume-based cumulative percentage of 50% (which may be referred to as D50 or average particle size) measured by a laser diffraction method is in the range of 20 to 60 ⁇ m. Preferably there is. From the viewpoint of reducing shrinkage during firing, it is more preferable to use an aluminum source powder having a D50 in the range of 30 to 60 ⁇ m.
  • titanium source powder The titanium source is a compound that becomes a titanium component constituting the aluminum titanate fired body, and examples of such a compound include titanium oxide.
  • examples of titanium oxide include titanium (IV) oxide, titanium (III) oxide, and titanium (II) oxide.
  • titanium (IV) oxide is preferably used.
  • Examples of the crystal type of titanium oxide (IV) include anatase type, rutile type, brookite type, and the like, and may be amorphous (amorphous). More preferably, it is anatase type or rutile type titanium (IV) oxide.
  • the titanium source may be a compound that becomes titania (titanium oxide) by firing alone in air.
  • examples of such compounds include titanium salts, titanium alkoxides, titanium hydroxide, titanium nitride, titanium sulfide, and titanium metal.
  • titanium salt examples include titanium trichloride, titanium tetrachloride, and titanium (IV) sulfate.
  • titanium alkoxide examples include titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) tert-butoxide, titanium (IV) n-butoxide, titanium (IV) isobutoxide, and titanium (IV) n-propoxy.
  • titanium sulfide examples include titanium sulfide (IV) and titanium sulfide (VI).
  • titanium source only 1 type may be used and 2 or more types may be used together.
  • titanium oxide is preferably used as the titanium source, and more preferably titanium (IV) oxide.
  • the titanium source may contain a trace component derived from the raw material or inevitably contained in the production process.
  • the particle size of the titanium source powder is not particularly limited, but a particle size corresponding to a volume-based cumulative percentage of 50% (D50 or an average particle size) measured by a laser diffraction method is in the range of 0.1 to 25 ⁇ m. In order to sufficiently reduce the shrinkage ratio during firing, it is more preferable to use a titanium source powder having a D50 in the range of 0.5 to 20 ⁇ m.
  • the titanium source powder may show a bimodal particle size distribution. When using a titanium source powder showing such a bimodal particle size distribution, the particle size distribution measured by the laser diffraction method is used.
  • the particle diameter of the peak having the larger particle diameter is preferably in the range of 20 to 50 ⁇ m.
  • the mode diameter of the titanium source powder measured by the laser diffraction method is not particularly limited, but a titanium source powder in the range of 0.3 to 60 ⁇ m can be used.
  • the molar ratio of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania) in the green molded body is preferably 35:65 to 45:55, and more It is preferably 40:60 to 45:55. Within such a range, it becomes possible to reduce the shrinkage rate during firing by using the titanium source excessively relative to the aluminum source.
  • the green molded body may contain a magnesium source powder.
  • the obtained aluminum titanate fired body is a fired body containing aluminum magnesium titanate crystals.
  • magnesia manganesium oxide
  • a compound that becomes magnesia by firing alone in air can be used.
  • examples of the latter include magnesium salt, magnesium alkoxide, magnesium hydroxide, magnesium nitride, metal magnesium and the like.
  • magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate.
  • magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate.
  • magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate.
  • magnesium alkoxide examples include magnesium methoxide and magnesium ethoxide.
  • a magnesium source can contain the trace component contained unavoidable in the raw material origin or manufacturing process.
  • a compound serving both as a magnesium source and an aluminum source can also be used.
  • An example of such a compound is magnesia spinel (MgAl 2 O 4 ).
  • MgAl 2 O 4 magnesia spinel
  • As magnesium source when using a compound serving both as a magnesium source and an aluminum source, Al 2 O 3 (alumina) equivalent amount of the aluminum source, and, Al component contained in the compound serving both as a magnesium source and an aluminum source.
  • the molar ratio of the total amount of Al 2 O 3 (alumina) converted to the TiO 2 (titania) converted amount of the titanium source is adjusted to be within the above range in the raw material mixture.
  • magnesium source only 1 type may be used and 2 or more types may be used together.
  • the particle size of the magnesium source powder is not particularly limited, but the particle size corresponding to a volume-based cumulative percentage of 50% (D50 or an average particle size) measured by a laser diffraction method is in the range of 0.5 to 30 ⁇ m. It is preferable to use a magnesium source having a D50 of 3 to 20 ⁇ m from the viewpoint of reducing shrinkage during firing.
  • the content of the magnesium source in terms of MgO (magnesia) in the green molded body is set to 1 as the total amount of the aluminum source in terms of Al 2 O 3 (alumina) and the titanium source in terms of TiO 2 (titania).
  • the molar ratio is preferably 0.03 to 0.15, more preferably 0.03 to 0.12.
  • the green molded body may further contain a silicon source powder.
  • the silicon source is a compound that becomes a silicon component and is contained in the aluminum titanate fired body. By using the silicon source in combination, it is possible to obtain an aluminum titanate fired body with improved heat resistance.
  • Examples of the silicon source include silicon oxide (silica) such as silicon dioxide and silicon monoxide.
  • the silicon source may be a compound that becomes silica by firing alone in air.
  • examples of such compounds include silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, glass frit and the like.
  • feldspar, glass frit and the like are preferably used, and glass frit and the like are more preferably used in terms of industrial availability and stable composition.
  • Glass frit means flakes or powdery glass obtained by pulverizing glass.
  • As the silicon source a powder containing a mixture of feldspar and glass frit can also be used.
  • the silicon source is glass frit
  • the yield point of a glass frit is defined as the temperature (° C.) at which the expansion stops and the shrinkage starts when the glass frit is heated from a low temperature, measured using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis).
  • a general silicate glass containing silicate [SiO 2 ] as a main component (0% by weight or more in all components) can be used.
  • the glass constituting the glass frit includes, as other components, alumina [Al 2 O 3 ], sodium oxide [Na 2 O], potassium oxide [K 2 O], calcium oxide [ CaO], magnesia [MgO] and the like may be included.
  • the glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself.
  • the molar ratio of the Al 2 O 3 (alumina) equivalent amount of the aluminum source and the total amount of alumina in the glass frit and the TiO 2 (titania) equivalent amount of the titanium source is: It adjusts so that it may become in the said range in a raw material mixture.
  • silicon source only 1 type may be used and 2 or more types may be used together.
  • the particle size of the silicon source is not particularly limited, but the particle size corresponding to a volume-based cumulative percentage of 50% (which may be referred to as D50 or average particle size) measured by a laser diffraction method is in the range of 0.5 to 30 ⁇ m.
  • the green molded body comprising a silicon source
  • the amount is preferably 0.1 to 10 parts by weight, more preferably 5 parts by weight or less, in terms of SiO 2 (silica) with respect to parts by weight.
  • the content of the silicon source in the green molded body is more preferably 2 wt% or more and 5 wt% or less in the inorganic compound source contained in the green molded body.
  • the silicon source may contain trace components that are derived from the raw materials or inevitably contained in the production process.
  • a compound containing two or more metal elements among titanium, aluminum, silicon, and magnesium can be used as a raw material.
  • a compound containing two or more metal elements among titanium, aluminum, silicon, and magnesium can be used as a raw material.
  • such a compound can be considered to be the same as a mixture of the respective metal source compounds, and based on such an idea, an aluminum source, a titanium source, a magnesium source and silicon in the green molded body The amount of source is adjusted within the above range.
  • the green molded body can contain aluminum titanate or aluminum magnesium titanate.
  • the aluminum magnesium titanate when aluminum magnesium titanate is used as a component of the green molded body, the aluminum magnesium titanate contains a titanium source, an aluminum source, and magnesium. It corresponds to the raw material which has a source.
  • the green molded body contains a plasticizer.
  • This plasticizer is usually a liquid and has a viscosity at 20 ° C. of 1000 mPa ⁇ s or more, preferably 2000 mPa ⁇ s or more, and preferably 4000 mPa ⁇ s or less. If it exceeds 4000 mPa ⁇ s, it may be difficult to measure.
  • plasticizers examples include polyoxyalkylene alkyl ethers.
  • Commercially available products include, for example, “UNILUB 50MB-72” (polyoxyethylene polyoxypropylene butyl ether, viscosity at 20 ° C. of 1020 mPa ⁇ s) manufactured by NOF Corporation, “UNILUB 50MB-168” (poly Oxyethylene polyoxypropylene butyl ether and a viscosity at 20 ° C. of 2880 mPa ⁇ s).
  • the amount of the plasticizer is preferably 0.1 to 20 parts by weight with respect to the total amount of the aluminum source, the titanium source, the magnesium source and the silicon source, that is, 100 parts by weight of the inorganic compound source powder.
  • the amount is more preferably 1 to 10 parts by weight, still more preferably 0.1 to 6 parts by weight.
  • the green molded body contains an organic binder.
  • This organic binder is preferably water-soluble.
  • the viscosity of a 2% by weight aqueous solution of the organic binder is preferably 5000 mPa ⁇ s or more, and more preferably 10,000 mPa ⁇ s or more.
  • the viscosity is a viscosity when the aqueous solution is 20 ° C.
  • the organic binder examples include celluloses such as methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate.
  • the amount of the organic binder is preferably 20 parts by weight or less, more preferably 15 parts by weight with respect to 100 parts by weight of the total amount of the aluminum source, the titanium source, the magnesium source and the silicon source, that is, the inorganic compound source powder. Or less, more preferably 6 parts by weight.
  • an organic binder is 0.1 weight part or more, More preferably, it is 3 weight part or more.
  • the green molded body can contain other additives.
  • Other additives are, for example, pore formers, lubricants, dispersants, and solvents.
  • the pore-forming agent examples include carbon materials such as graphite; resins such as polyethylene, polypropylene, and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells, and corn; ice; and dry ice.
  • the amount of pore-forming agent added is preferably 0 to 40 parts by weight, more preferably the total amount of aluminum source, titanium source, magnesium source and silicon source, that is, 100 parts by weight of the inorganic compound source powder. Is 0 to 25 parts by weight.
  • Lubricants include alcohols such as glycerine; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; and stearic acid metal salts such as aluminum stearate.
  • the addition amount of the lubricant is preferably 0 to 10 parts by weight, more preferably 100 parts by weight of the total amount of the aluminum source, titanium source, magnesium source and silicon source, that is, 100 parts by weight of the inorganic compound source powder. 0.1 to 5 parts by weight.
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate; Surfactants such as oxyalkylene alkyl ethers are listed.
  • the addition amount of the dispersant is preferably 0 to 20 parts by weight, more preferably the total amount of the aluminum source, the titanium source, the magnesium source and the silicon source, that is, 100 parts by weight of the inorganic compound source powder. 2 to 8 parts by weight.
  • the solvent for example, alcohols such as methanol, ethanol, butanol and propanol; glycols such as propylene glycol, polypropylene glycol and ethylene glycol; and water can be used. Of these, water is preferable, and ion-exchanged water is more preferably used from the viewpoint of few impurities.
  • the amount of the solvent used is preferably 10 to 100 parts by weight, more preferably the total amount of the aluminum source, titanium source, magnesium source and silicon source, that is, 100 parts by weight of the inorganic compound source powder. Is 20 to 80 parts by weight.
  • the shape of the green molded body is not particularly limited, and can take any shape depending on the application, and examples thereof include a rod shape, a tube shape, a plate shape, and a crucible shape.
  • a so-called honeycomb shape that is, a shape having a large number of through holes extending in the same direction and a large number of flow paths formed by the large number of through holes separated by partition walls.
  • a so-called honeycomb shape that is, a shape having a large number of through holes extending in the same direction and a large number of flow paths formed by the large number of through holes separated by partition walls.
  • honeycomb shape that is, a shape having a large number of through holes extending in the same direction and a large number of flow paths formed by the large number of through holes separated by partition walls.
  • a green molded object can be manufactured as follows, for example. First, an inorganic compound source powder, an organic binder, a plasticizer, and additives such as a solvent added as necessary are prepared.
  • the inorganic compound source powder includes an aluminum source powder, a titanium source powder, and a magnesium source powder and a silicon source powder blended as necessary. And these are mixed with a kneader etc. by the above-mentioned ratio, a raw material mixture is obtained, and the green molded object of a desired shape can be obtained by shape
  • molding method is not specifically limited, For example, the method of using a uniaxial press machine, an extrusion molding machine, a tableting machine, a granulator etc. is mentioned.
  • An aluminum titanate fired body can be obtained by calcining (degreasing) and firing the green molded body described above.
  • the obtained aluminum titanate fired body is a fired body containing aluminum titanate crystals.
  • shrinkage during firing can be suppressed, and cracking of the obtained aluminum titanate fired body is effective.
  • cracking of the obtained aluminum titanate fired body is effective.
  • the pore shape of the porous aluminum titanate crystal produced by firing can be maintained.
  • Calcination is a process for removing the organic binder in the green molded body and additives blended as necessary by burning, decomposition, etc., typically until reaching the firing temperature.
  • the temperature rising stage for example, a temperature range of 150 to 900 ° C.
  • the calcination (degreasing) step it is preferable to suppress the temperature increase rate as much as possible.
  • the firing temperature in firing the green molded body is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, it is preferable that a calcination temperature is 1650 degrees C or less, More preferably, it is 1550 degrees C or less.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 ° C./hour to 500 ° C./hour.
  • the green molded body contains the silicon source powder, it is preferable to provide a step of holding at a temperature range of 1100 to 1300 ° C. for 3 hours or more before the firing step. Thereby, melting and diffusion of the silicon source powder can be promoted.
  • Firing is usually carried out in the atmosphere, but depending on the type and usage ratio of the raw material powder used, that is, aluminum source powder, titanium source powder, magnesium source powder and silicon source powder, an inert gas such as nitrogen gas or argon gas.
  • the firing may be performed in a reducing gas such as carbon monoxide gas or hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • Calcination is usually performed using a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously.
  • a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously.
  • the time required for firing may be sufficient time for the green molded body to transition to the aluminum titanate crystal, and varies depending on the amount of the green molded body, the type of the firing furnace, the firing temperature, the firing atmosphere, etc. Preferably it is ⁇ 24 hours.
  • a desired aluminum titanate fired body can be obtained.
  • Such an aluminum titanate fired body has a shape that substantially maintains the shape of the green molded body immediately after molding.
  • the obtained aluminum titanate fired body can be processed into a desired shape by grinding or the like.
  • the aluminum titanate fired body obtained by the above-described method is used for, for example, firing furnace jigs such as crucibles, setters, mortars, and furnace materials; catalyst carriers; exhaust gas purification of internal combustion engines such as diesel engines and gasoline engines. Ceramic filters such as exhaust gas filters, filtration filters used for filtering food and drink such as beer, selective permeation filters for selectively permeating gas components generated during petroleum refining, such as carbon monoxide, carbon dioxide, nitrogen, oxygen, etc. It can be suitably applied to electronic components such as substrates and capacitors. Among these, when used as a ceramic filter, the aluminum titanate fired body has a high pore volume and an open porosity, so that good filter performance can be maintained over a long period of time.
  • the aluminum titanate fired body may contain a crystal pattern of alumina, titania or the like in addition to the crystal pattern of aluminum titanate or aluminum magnesium titanate.
  • the aluminum titanate fired body contains aluminum magnesium titanate crystals, it can be expressed by a composition formula: Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is 0.03 or more Preferably, it is 0.03 or more and 0.15 or less, More preferably, it is 0.03 or more and 0.12 or less.
  • the aluminum titanate fired body obtained by the present invention can contain trace components that are derived from the raw materials or are unavoidably included in the production process.
  • (1) Shape retention of green molded body As shown to (a) of FIG. 1, the test piece 10 of the magnitude
  • the vertical displacement X of the lower surface of the portion 10b on the other end side of the test piece 10 60 seconds after removing the support was measured.
  • the vertical displacement X was measured at a position 25 mm away from the end surface 5 b of the pedestal 5 in the horizontal direction.
  • the displacement was measured for a total of three test pieces, and the average value was obtained.
  • Viscosity of plasticizer at 20 ° C. The viscosity of the plasticizer before mixing was measured under the condition of 20 ° C. using a B-type viscometer.
  • Example 1 A green molded body was obtained using the following as the inorganic compound source powder.
  • Mixing composition of the inorganic compound source powder, alumina [Al 2 O 3], titania [TiO 2], magnesia [MgO] and silica in a molar percentage of [SiO 2] terms, [Al 2 O 3] / [TiO 2] / [MgO] / [SiO 2 ] 35.1% / 51.3% / 9.6% / 4.0%.
  • the content of the silicon source powder in the total amount of the aluminum source powder, the titanium source powder, the magnesium source powder and the silicon source powder was 4.0% by weight.
  • Aluminum source powder ⁇ -alumina powder having an average particle diameter shown in Table 1 24.6 parts by weight
  • Magnesium source powder 15.7 parts by weight of magnesia spinel powder having an average particle size shown in Table 1 (4) Silicon source powder Glass frit having an average particle size shown in Table 1 (“CK0832” manufactured by Takara Standard) 3.4 parts by weight
  • the green molded body is quickly heated in a microwave dryer, then dried by holding at 100 ° C. for 5 hours, and then calcined (degreasing) to remove the binder in an air atmosphere and fired.
  • a porous sintered body of aluminum magnesium titanate was obtained.
  • the maximum temperature during firing was 1450 ° C., and the holding time at the maximum temperature was 5 hours.
  • Example 2 As a plasticizer, instead of 4.6 parts by weight of polyoxyethylene polyoxypropylene butyl ether (trade name: UNILOVE 50MB-72) having a viscosity of 1020 mPa ⁇ s at 20 ° C., polyoxyethylene having a viscosity of 2880 mPa ⁇ s at 20 ° C. Except for using 4.6 parts by weight of polyoxypropylene butyl ether (trade name: Unilube 50MB-168), the same operation as in Example 1 was performed to obtain a green molded body and a porous sintered body of aluminum magnesium titanate. . The green molded body had a shape retention (displacement X) of 5.0 mm.
  • ⁇ Comparative Example 1> As a plasticizer, instead of 4.6 parts by weight of polyoxyethylene polyoxypropylene butyl ether (trade name: UNILOVE 50MB-72) having a viscosity of 1020 mPa ⁇ s at 20 ° C., polyoxyethylene having a viscosity of 326 mPa ⁇ s at 20 ° C. Except for using 4.6 parts by weight of polyoxypropylene butyl ether (trade name: Unilube 50MB-26), the same operation as in Example 1 was performed to obtain a green molded body and a porous sintered body of aluminum magnesium titanate. . The green molded body had a shape retention (displacement X) of 10.5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Filtering Materials (AREA)

Abstract

The disclosed green molded body contains inorganic compound source powder, an organic binder, and a plasticiser; the inorganic compound source powder contains aluminium source powder and titanium source powder; and the viscosity of the plasticiser at 20˚C is at least 1000mPa·s.

Description

グリーン成形体、および、チタン酸アルミニウム焼成体の製造方法Green molded body and method for producing aluminum titanate fired body
 本発明は、グリーン成形体、チタン酸アルミニウム焼成体の製造方法に関する。 The present invention relates to a green molded body and a method for producing an aluminum titanate fired body.
 チタン酸アルミニウムセラミックスは、構成元素としてチタンおよびアルミニウムを含み、X線回折スペクトルにおいて、チタン酸アルミニウムの結晶パターンを有するセラミックスであって、耐熱性に優れたセラミックスとして知られている。チタン酸アルミニウムセラミックスは、従来からルツボのような焼結用の冶具等として用いられてきたが、近年では、ディーゼルエンジン等の内燃機関から排出される排ガスに含まれる微細なカーボン粒子を捕集するためのセラミックスフィルターを構成する材料として、産業上の利用価値が高まっている。 Aluminum titanate ceramics are known as ceramics that contain titanium and aluminum as constituent elements and have a crystal pattern of aluminum titanate in the X-ray diffraction spectrum, and have excellent heat resistance. Aluminum titanate ceramics have been conventionally used as a sintering jig such as a crucible, but in recent years, fine carbon particles contained in exhaust gas discharged from an internal combustion engine such as a diesel engine are collected. As a material constituting a ceramic filter, industrial utility value is increasing.
 チタン酸アルミニウムセラミックスの製造方法としては、アルミニウム源粉末およびチタニウム源粉末を含む原料混合物を成形し、焼成する方法が知られている(特許文献1)。また、原料混合物として更に有機バインダ、造孔材等の有機添加物を含むものを用い、この原料混合物のグリーン成形体を酸素含有雰囲気下に150~900℃に加熱することにより有機添加物を除去した後、1300℃以上で焼成する方法も知られている(特許文献1の段落0031~0032)。 As a method for producing aluminum titanate ceramics, a method is known in which a raw material mixture containing an aluminum source powder and a titanium source powder is formed and fired (Patent Document 1). In addition, the raw material mixture further contains organic additives such as an organic binder and pore former, and the green additive of this raw material mixture is heated to 150 to 900 ° C. in an oxygen-containing atmosphere to remove the organic additives. Thereafter, a method of firing at 1300 ° C. or higher is also known (paragraphs 0031 to 0032 of Patent Document 1).
国際公開第05/105704号パンフレットWO05 / 105704 pamphlet
 しかしながら、従来の方法では、グリーン成形体の強度(保形性)が十分ではなく、焼成炉への投入時等においてグリーン成形体がその形状を保てないことがあった。その結果、得られるチタン酸アルミニウム焼成体の寸法精度が十分ではなかった。 However, in the conventional method, the strength (shape retention) of the green molded body is not sufficient, and the green molded body may not be able to maintain its shape when it is put into a firing furnace. As a result, the dimensional accuracy of the obtained aluminum titanate fired body was not sufficient.
 本発明は、その形状を保ち得るグリーン成形体、およびそれを用いるチタン酸アルミニウム焼成体の製造方法を提供することを目的とする。 An object of the present invention is to provide a green molded body capable of maintaining its shape and a method for producing an aluminum titanate fired body using the green molded body.
 本発明者らは上記課題を解決するため鋭意検討した結果、以下の発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have completed the following invention.
(1)無機化合物源粉末と、有機バインダと、可塑剤と、を含み、
 無機化合物源粉末は、アルミニウム源粉末およびチタニウム源粉末を含み、
 可塑剤の20℃における粘度は1000mPa・s以上である、グリーン成形体。
(1) an inorganic compound source powder, an organic binder, and a plasticizer,
The inorganic compound source powder includes an aluminum source powder and a titanium source powder,
The green molded object whose viscosity in 20 degreeC of a plasticizer is 1000 mPa * s or more.
(2)無機化合物源粉末と、有機バインダと、可塑剤と、を含む原料混合物を成形してグリーン成形体を得る工程と、
 グリーン成形体を150~900℃に加熱してグリーン成形体から有機バインダおよび可塑剤を除去する工程と、
 有機バインダおよび可塑剤が除去されたグリーン成形体を1300℃以上で焼成する工程とを備え、
 無機化合物源粉末は、アルミニウム源粉末およびチタニウム源粉末を含み、
 可塑剤の20℃における粘度が1000mPa・s以上である、チタン酸アルミニウム焼成体の製造方法。
(2) forming a raw material mixture containing an inorganic compound source powder, an organic binder, and a plasticizer to obtain a green molded body;
Heating the green molded body to 150 to 900 ° C. to remove the organic binder and plasticizer from the green molded body;
Firing the green molded body from which the organic binder and plasticizer have been removed at 1300 ° C. or higher,
The inorganic compound source powder includes an aluminum source powder and a titanium source powder,
The manufacturing method of the aluminum titanate sintered body whose viscosity in 20 degreeC of a plasticizer is 1000 mPa * s or more.
 ここで、可塑剤の量は、グリーン成形体100重量部に対し0.1~20重量部であることが好ましい。 Here, the amount of the plasticizer is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the green molded body.
 また、無機化合物源粉末は、さらにケイ素源粉末を含むことが好ましい。 The inorganic compound source powder preferably further contains a silicon source powder.
 また、無機化合物源粉末は、さらにマグネシウム源粉末を含むことが好ましい。 The inorganic compound source powder preferably further contains a magnesium source powder.
 また、原料混合物中における、Al換算でのアルミニウム源粉末とTiO換算でのチタニウム源粉末とのモル比は、35:65~45:55であることが好ましい。 The molar ratio of the aluminum source powder in terms of Al 2 O 3 and the titanium source powder in terms of TiO 2 in the raw material mixture is preferably 35:65 to 45:55.
 さらに、グリーン成形体は、ハニカム形状を有することが好ましい。 Furthermore, the green molded body preferably has a honeycomb shape.
 本発明のグリーン成形体は、20℃における粘度が1000mPa・s以上である可塑剤を含むことにより保形性に優れる。
 また、本発明のチタン酸アルミニウム焼成体の製造方法によれば、原料として20℃における粘度が1000mPa・s以上である可塑剤を使用することにより保形性に優れるグリーン成形体が得られ、また寸法精度の高いチタン酸アルミニウム焼成体を効率的に製造することができる。
The green molded object of this invention is excellent in shape retention property by including the plasticizer whose viscosity in 20 degreeC is 1000 mPa * s or more.
Further, according to the method for producing an aluminum titanate fired body of the present invention, a green molded body having excellent shape retention can be obtained by using a plasticizer having a viscosity at 20 ° C. of 1000 mPa · s or more as a raw material. An aluminum titanate fired body with high dimensional accuracy can be produced efficiently.
図1の(a)および図1の(b)は、実施形態において保形性の調べ方を示す概略図である。FIG. 1A and FIG. 1B are schematic diagrams showing how to investigate shape retention in the embodiment.
<グリーン成形体>
 本発明のグリーン成形体は、無機化合物源粉末、有機バインダ、および、可塑剤を含む。
 無機化合物源粉末は、アルミニウム源粉末、および、チタニウム源粉末を含む。無機化合物源粉末は、さらに、マグネシウム源粉末および/またはケイ素源粉末を含むことができる。
<Green molded body>
The green molded body of the present invention includes an inorganic compound source powder, an organic binder, and a plasticizer.
The inorganic compound source powder includes an aluminum source powder and a titanium source powder. The inorganic compound source powder can further include a magnesium source powder and / or a silicon source powder.
(アルミニウム源粉末)
 アルミニウム源は、チタン酸アルミニウム焼成体を構成するアルミニウム成分となる化合物である。アルミニウム源としては、例えば、アルミナ(酸化アルミニウム)が挙げられる。アルミナの結晶型としては、γ型、δ型、θ型、α型等が挙げられ、不定形(アモルファス)であってもよい。なかでも、α型のアルミナが好ましく用いられる。
(Aluminum source powder)
The aluminum source is a compound that becomes an aluminum component constituting the aluminum titanate fired body. Examples of the aluminum source include alumina (aluminum oxide). Examples of the crystal type of alumina include γ-type, δ-type, θ-type, and α-type, and may be indefinite (amorphous). Of these, α-type alumina is preferably used.
 アルミニウム源は、単独で空気中で焼成することによりアルミナとなる化合物であってもよい。かかる化合物としては、例えばアルミニウム塩、アルミニウムアルコキシド、水酸化アルミニウム、金属アルミニウム等が挙げられる。 The aluminum source may be a compound that becomes alumina by firing alone in air. Examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, metal aluminum and the like.
 アルミニウム塩は、無機酸との無機塩であってもよいし、有機酸との有機塩であってもよい。アルミニウム無機塩として具体的には、例えば、硝酸アルミニウム、硝酸アンモニウムアルミニウム等のアルミニウム硝酸塩;炭酸アンモニウムアルミニウム等のアルミニウム炭酸塩等が挙げられる。アルミニウム有機塩としては、例えば、シュウ酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウム等が挙げられる。 The aluminum salt may be an inorganic salt with an inorganic acid or an organic salt with an organic acid. Specific examples of the inorganic aluminum salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate; and aluminum carbonates such as ammonium aluminum carbonate. Examples of the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
 アルミニウムアルコキシドとして具体的には、例えば、アルミニウムイソプロポキシド、アルミニウムエトキシド、アルミニウムsec-ブトキシド、アルミニウムtert-ブトキシド等が挙げられる。 Specific examples of the aluminum alkoxide include aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide, and the like.
 水酸化アルミニウムの結晶型としては、例えば、ギブサイト型、バイヤライト型、ノロソトランダイト型、ベーマイト型、擬ベーマイト型等が挙げられ、不定形(アモルファス)であってもよい。アモルファスの水酸化アルミニウムとしては、例えば、アルミニウム塩、アルミニウムアルコキシド等のような水溶性アルミニウム化合物の水溶液を加水分解して得られるアルミニウム加水分解物が挙げられる。 Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous). Examples of amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
 アルミニウム源としては、1種のみが用いられてもよいし、2種以上が併用されてもよい。 As an aluminum source, only 1 type may be used and 2 or more types may be used together.
 上記のなかでも、アルミニウム源としては、アルミナが好ましく用いられ、より好ましくは、α型のアルミナである。なお、アルミニウム源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 Among the above, as the aluminum source, alumina is preferably used, and α-type alumina is more preferable. The aluminum source may contain trace components derived from the raw materials or inevitably contained in the production process.
 アルミニウム源粉末の粒径は、特に限定されないが、レーザ回折法により測定される、体積基準の累積百分率50%相当粒子径(D50または平均粒子径ということがある)が20~60μmの範囲内であることが好ましい。焼成時の収縮率低減の観点からは、D50が30~60μmの範囲内であるアルミニウム源粉末を用いることがより好ましい。 The particle size of the aluminum source powder is not particularly limited, but the particle size corresponding to a volume-based cumulative percentage of 50% (which may be referred to as D50 or average particle size) measured by a laser diffraction method is in the range of 20 to 60 μm. Preferably there is. From the viewpoint of reducing shrinkage during firing, it is more preferable to use an aluminum source powder having a D50 in the range of 30 to 60 μm.
(チタニウム源粉末)
 チタニウム源は、チタン酸アルミニウム焼成体を構成するチタン成分となる化合物であり、かかる化合物としては、例えば酸化チタンが挙げられる。酸化チタンとしては、例えば、酸化チタン(IV)、酸化チタン(III)、酸化チタン(II)等が挙げられ、なかでも酸化チタン(IV)が好ましく用いられる。酸化チタン(IV)の結晶型としては、アナターゼ型、ルチル型、ブルッカイト型等が挙げられ、不定形(アモルファス)であってもよい。より好ましくは、アナターゼ型、ルチル型の酸化チタン(IV)である。
(Titanium source powder)
The titanium source is a compound that becomes a titanium component constituting the aluminum titanate fired body, and examples of such a compound include titanium oxide. Examples of titanium oxide include titanium (IV) oxide, titanium (III) oxide, and titanium (II) oxide. Among these, titanium (IV) oxide is preferably used. Examples of the crystal type of titanium oxide (IV) include anatase type, rutile type, brookite type, and the like, and may be amorphous (amorphous). More preferably, it is anatase type or rutile type titanium (IV) oxide.
 チタニウム源は、単独で空気中で焼成することによりチタニア(酸化チタン)となる化合物であってもよい。かかる化合物としては、例えば、チタニウム塩、チタニウムアルコキシド、水酸化チタニウム、窒化チタン、硫化チタン、チタン金属等が挙げられる。 The titanium source may be a compound that becomes titania (titanium oxide) by firing alone in air. Examples of such compounds include titanium salts, titanium alkoxides, titanium hydroxide, titanium nitride, titanium sulfide, and titanium metal.
 チタニウム塩として具体的には、三塩化チタン、四塩化チタン、硫酸チタン(IV)等が挙げられる。チタニウムアルコキシドとして具体的には、チタン(IV)エトキシド、チタン(IV)メトキシド、チタン(IV)tert-ブトキシド、チタン(IV)n-ブトキシド、チタン(IV)イソブトキシド、チタン(IV)n-プロポキシド、チタン(IV)テトライソプロポキシド、および、これらのキレート化物等が挙げられる。硫化チタンとして具体的には、硫化チタン(IV)、硫化チタン(VI)等が挙げられる。 Specific examples of the titanium salt include titanium trichloride, titanium tetrachloride, and titanium (IV) sulfate. Specific examples of the titanium alkoxide include titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) tert-butoxide, titanium (IV) n-butoxide, titanium (IV) isobutoxide, and titanium (IV) n-propoxy. , Titanium (IV) tetraisopropoxide, and chelates thereof. Specific examples of titanium sulfide include titanium sulfide (IV) and titanium sulfide (VI).
 チタニウム源としては、1種のみが用いられてもよいし、2種以上が併用されてもよい。 As a titanium source, only 1 type may be used and 2 or more types may be used together.
 上記のなかでも、チタニウム源としては、酸化チタンが好ましく用いられ、より好ましくは、酸化チタン(IV)である。なお、チタニウム源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 Of the above, titanium oxide is preferably used as the titanium source, and more preferably titanium (IV) oxide. The titanium source may contain a trace component derived from the raw material or inevitably contained in the production process.
 チタニウム源粉末の粒径は、特に限定されないが、レーザ回折法により測定される、体積基準の累積百分率50%相当粒子径(D50または平均粒子径ということがある)が0.1~25μmの範囲内であるものを用いることが好ましく、焼成時の収縮率を十分に低くするためには、D50が0.5~20μmの範囲内であるチタニウム源粉末を用いることがより好ましい。なお、チタニウム源粉末は、バイモーダルな粒径分布を示すことがあるが、このようなバイモーダルな粒径分布を示すチタニウム源粉末を用いる場合においては、レーザ回折法により測定される粒径分布における、粒径が大きい方のピークの粒径が、好ましくは20~50μmの範囲内である。 The particle size of the titanium source powder is not particularly limited, but a particle size corresponding to a volume-based cumulative percentage of 50% (D50 or an average particle size) measured by a laser diffraction method is in the range of 0.1 to 25 μm. In order to sufficiently reduce the shrinkage ratio during firing, it is more preferable to use a titanium source powder having a D50 in the range of 0.5 to 20 μm. The titanium source powder may show a bimodal particle size distribution. When using a titanium source powder showing such a bimodal particle size distribution, the particle size distribution measured by the laser diffraction method is used. The particle diameter of the peak having the larger particle diameter is preferably in the range of 20 to 50 μm.
 レーザ回折法により測定されるチタニウム源粉末のモード径は、特に限定されないが、0.3~60μmの範囲内であるチタニウム源粉末を用いることができる。 The mode diameter of the titanium source powder measured by the laser diffraction method is not particularly limited, but a titanium source powder in the range of 0.3 to 60 μm can be used.
 グリーン成形体中におけるAl(アルミナ)換算でのアルミニウム源粉末とTiO(チタニア)換算でのチタニウム源粉末とのモル比は、35:65~45:55とすることが好ましく、より好ましくは40:60~45:55である。このような範囲内で、チタニウム源をアルミニウム源に対して過剰に用いることにより、焼成時の収縮率を低減させることが可能となる。 The molar ratio of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania) in the green molded body is preferably 35:65 to 45:55, and more It is preferably 40:60 to 45:55. Within such a range, it becomes possible to reduce the shrinkage rate during firing by using the titanium source excessively relative to the aluminum source.
(マグネシウム源粉末)
 グリーン成形体は、マグネシウム源粉末を含有していてもよい。グリーン成形体がマグネシウム源粉末を含む場合、得られるチタン酸アルミニウム焼成体は、チタン酸アルミニウムマグネシウム結晶を含む焼成体である。
(Magnesium source powder)
The green molded body may contain a magnesium source powder. When the green molded body contains a magnesium source powder, the obtained aluminum titanate fired body is a fired body containing aluminum magnesium titanate crystals.
 マグネシウム源としては、マグネシア(酸化マグネシウム)のほか、単独で空気中で焼成することによりマグネシアとなる化合物が挙げられる。後者の例としては、例えば、マグネシウム塩、マグネシウムアルコキシド、水酸化マグネシウム、窒化マグネシウム、金属マグネシウム等が挙げられる。 As a magnesium source, in addition to magnesia (magnesium oxide), a compound that becomes magnesia by firing alone in air can be used. Examples of the latter include magnesium salt, magnesium alkoxide, magnesium hydroxide, magnesium nitride, metal magnesium and the like.
 マグネシウム塩として具体的には、塩化マグネシウム、過塩素酸マグネシウム、リン酸マグネシウム、ピロリン酸マグネシウム、シュウ酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、クエン酸マグネシウム、乳酸マグネシウム、ステアリン酸マグネシウム、サリチル酸マグネシウム、ミリスチン酸マグネシウム、グルコン酸マグネシウム、ジメタクリル酸マグネシウム、安息香酸マグネシウム等が挙げられる。 Specific examples of magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate. , Magnesium salicylate, magnesium myristate, magnesium gluconate, magnesium dimethacrylate, magnesium benzoate and the like.
 マグネシウムアルコキシドとして具体的には、マグネシウムメトキシド、マグネシウムエトキシド等が挙げられる。なお、マグネシウム源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 Specific examples of the magnesium alkoxide include magnesium methoxide and magnesium ethoxide. In addition, a magnesium source can contain the trace component contained unavoidable in the raw material origin or manufacturing process.
 マグネシウム源として、マグネシウム源とアルミニウム源とを兼ねた化合物を用いることもできる。このような化合物としては、例えば、マグネシアスピネル(MgAl)が挙げられる。なお、マグネシウム源として、マグネシウム源とアルミニウム源とを兼ねた化合物を用いる場合、アルミニウム源のAl(アルミナ)換算量、および、マグネシウム源とアルミニウム源とを兼ねた化合物に含まれるAl成分のAl(アルミナ)換算量の合計量と、チタニウム源のTiO(チタニア)換算量とのモル比が、原料混合物中において上記範囲内となるように調整される。 As the magnesium source, a compound serving both as a magnesium source and an aluminum source can also be used. An example of such a compound is magnesia spinel (MgAl 2 O 4 ). As magnesium source, when using a compound serving both as a magnesium source and an aluminum source, Al 2 O 3 (alumina) equivalent amount of the aluminum source, and, Al component contained in the compound serving both as a magnesium source and an aluminum source The molar ratio of the total amount of Al 2 O 3 (alumina) converted to the TiO 2 (titania) converted amount of the titanium source is adjusted to be within the above range in the raw material mixture.
 マグネシウム源としては、1種のみが用いられてもよいし、2種以上が併用されてもよい。 As a magnesium source, only 1 type may be used and 2 or more types may be used together.
 マグネシウム源粉末の粒径は、特に限定されないが、レーザ回折法により測定される、体積基準の累積百分率50%相当粒子径(D50または平均粒子径ということがある)が0.5~30μmの範囲内であるものを用いることが好ましく、焼成時の収縮率低減の観点からは、D50が3~20μmの範囲内であるマグネシウム源を用いることが好ましい。 The particle size of the magnesium source powder is not particularly limited, but the particle size corresponding to a volume-based cumulative percentage of 50% (D50 or an average particle size) measured by a laser diffraction method is in the range of 0.5 to 30 μm. It is preferable to use a magnesium source having a D50 of 3 to 20 μm from the viewpoint of reducing shrinkage during firing.
 グリーン成形体中におけるMgO(マグネシア)換算でのマグネシウム源の含有量は、Al(アルミナ)換算でのアルミニウム源とTiO(チタニア)換算でのチタニウム源との合計量を1としたときに、モル比で、0.03~0.15とすることが好ましく、より好ましくは0.03~0.12である。マグネシウム源の含有量をこの範囲内に調整することにより、耐熱性がより向上された、大きい細孔径および開気孔率を有するチタン酸アルミニウム焼成体を比較的容易に得ることができる。 The content of the magnesium source in terms of MgO (magnesia) in the green molded body is set to 1 as the total amount of the aluminum source in terms of Al 2 O 3 (alumina) and the titanium source in terms of TiO 2 (titania). Sometimes, the molar ratio is preferably 0.03 to 0.15, more preferably 0.03 to 0.12. By adjusting the content of the magnesium source within this range, it is possible to relatively easily obtain an aluminum titanate fired body having a large pore diameter and an open porosity with improved heat resistance.
(ケイ素源粉末)
 グリーン成形体は、ケイ素源粉末をさらに含有していてもよい。ケイ素源は、シリコン成分となってチタン酸アルミニウム焼成体に含まれる化合物であり、ケイ素源の併用により、耐熱性がより向上されたチタン酸アルミニウム焼成体を得ることが可能となる。ケイ素源としては、例えば、二酸化ケイ素、一酸化ケイ素等の酸化ケイ素(シリカ)が挙げられる。
(Silicon source powder)
The green molded body may further contain a silicon source powder. The silicon source is a compound that becomes a silicon component and is contained in the aluminum titanate fired body. By using the silicon source in combination, it is possible to obtain an aluminum titanate fired body with improved heat resistance. Examples of the silicon source include silicon oxide (silica) such as silicon dioxide and silicon monoxide.
 ケイ素源は、単独で空気中で焼成することによりシリカとなる化合物であってもよい。かかる化合物としては、例えば、ケイ酸、炭化ケイ素、窒化ケイ素、硫化ケイ素、四塩化ケイ素、酢酸ケイ素、ケイ酸ナトリウム、オルトケイ酸ナトリウム、長石、ガラスフリット等が挙げられる。なかでも、長石、ガラスフリット等が好ましく用いられ、工業的に入手が容易であり、組成が安定している点で、ガラスフリット等がより好ましく用いられる。なお、ガラスフリットとは、ガラスを粉砕して得られるフレークまたは粉末状のガラスをいう。ケイ素源として、長石とガラスフリットとの混合物を含む粉末を用いることもできる。 The silicon source may be a compound that becomes silica by firing alone in air. Examples of such compounds include silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, glass frit and the like. Of these, feldspar, glass frit and the like are preferably used, and glass frit and the like are more preferably used in terms of industrial availability and stable composition. Glass frit means flakes or powdery glass obtained by pulverizing glass. As the silicon source, a powder containing a mixture of feldspar and glass frit can also be used.
 ケイ素源がガラスフリットである場合、得られるチタン酸アルミニウム焼成体の耐熱分解性をより向上させるという観点から、屈伏点が700℃以上のものを用いることが好ましい。ガラスフリットの屈伏点は、熱機械分析装置(TMA:Thermo Mechanical Analyisis)を用いて測定される、ガラスフリットを低温から昇温した際の、膨張が止まり、収縮が始まる温度(℃)と定義される。 When the silicon source is glass frit, it is preferable to use one having a yield point of 700 ° C. or higher from the viewpoint of further improving the heat decomposition resistance of the obtained aluminum titanate fired body. The yield point of a glass frit is defined as the temperature (° C.) at which the expansion stops and the shrinkage starts when the glass frit is heated from a low temperature, measured using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis). The
 ガラスフリットを構成するガラスには、ケイ酸〔SiO〕を主成分(全成分中50重量%以上)とする一般的なケイ酸ガラスを用いることができる。ガラスフリットを構成するガラスは、その他の含有成分として、一般的なケイ酸ガラスと同様、アルミナ〔Al〕、酸化ナトリウム〔NaO〕、酸化カリウム〔KO〕、酸化カルシウム〔CaO〕、マグネシア〔MgO〕等を含んでいてもよい。また、ガラスフリットを構成するガラスは、ガラス自体の耐熱水性を向上させるために、ZrOを含有していてもよい。ガラスフリットがアルミナを含有する場合、アルミニウム源のAl(アルミナ)換算量、および、ガラスフリット中のアルミナの合計量と、チタニウム源のTiO(チタニア)換算量とのモル比が、原料混合物中において上記範囲内となるように調整される。 As the glass constituting the glass frit, a general silicate glass containing silicate [SiO 2 ] as a main component (50% by weight or more in all components) can be used. The glass constituting the glass frit includes, as other components, alumina [Al 2 O 3 ], sodium oxide [Na 2 O], potassium oxide [K 2 O], calcium oxide [ CaO], magnesia [MgO] and the like may be included. The glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself. When the glass frit contains alumina, the molar ratio of the Al 2 O 3 (alumina) equivalent amount of the aluminum source and the total amount of alumina in the glass frit and the TiO 2 (titania) equivalent amount of the titanium source is: It adjusts so that it may become in the said range in a raw material mixture.
 ケイ素源としては、1種のみが用いられてもよいし、2種以上が併用されてもよい。 As a silicon source, only 1 type may be used and 2 or more types may be used together.
 ケイ素源の粒径は、特に限定されないが、レーザ回折法により測定される、体積基準の累積百分率50%相当粒子径(D50または平均粒子径ということがある)が0.5~30μmの範囲内であるものを用いることが好ましく、原料混合物のグリーン成形体への充填率をより向上させ、機械的強度のより高い焼成体を得るためには、D50が1~20μmの範囲内であるケイ素源を用いることが好ましい。 The particle size of the silicon source is not particularly limited, but the particle size corresponding to a volume-based cumulative percentage of 50% (which may be referred to as D50 or average particle size) measured by a laser diffraction method is in the range of 0.5 to 30 μm. In order to improve the filling rate of the raw material mixture into the green molded body and to obtain a fired body with higher mechanical strength, a silicon source having a D50 in the range of 1 to 20 μm Is preferably used.
 グリーン成形体がケイ素源を含む場合、グリーン成形体中におけるケイ素源の含有量は、Al(アルミナ)換算でのアルミニウム源とTiO(チタニア)換算でのチタニウム源との合計量100重量部に対して、SiO(シリカ)換算で、0.1重量部~10重量部であることが好ましく、より好ましくは5重量部以下である。また、グリーン成形体中におけるケイ素源の含有量は、グリーン成形体中に含まれる無機化合物源中、2重量%以上5重量%以下とすることがより好ましい。ケイ素源は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 If the green molded body comprising a silicon source, the content of the silicon source in the green molded bodies, the total amount of Al 2 O 3 (alumina) aluminum source and TiO 2 (titania) titanium source in terms of in terms of 100 The amount is preferably 0.1 to 10 parts by weight, more preferably 5 parts by weight or less, in terms of SiO 2 (silica) with respect to parts by weight. Further, the content of the silicon source in the green molded body is more preferably 2 wt% or more and 5 wt% or less in the inorganic compound source contained in the green molded body. The silicon source may contain trace components that are derived from the raw materials or inevitably contained in the production process.
 マグネシアスピネル(MgAl)等の複合酸化物のように、チタニウム、アルミニウム、ケイ素およびマグネシウムのうち、2つ以上の金属元素を成分とする化合物を原料として用いることができる。この場合、そのような化合物は、それぞれの金属源化合物を混合したものと同じであると考えることができ、このような考えに基づき、グリーン成形体中におけるアルミニウム源、チタニウム源、マグネシウム源およびケイ素源の量が上記範囲内に調整される。 As a composite oxide such as magnesia spinel (MgAl 2 O 4 ), a compound containing two or more metal elements among titanium, aluminum, silicon, and magnesium can be used as a raw material. In this case, such a compound can be considered to be the same as a mixture of the respective metal source compounds, and based on such an idea, an aluminum source, a titanium source, a magnesium source and silicon in the green molded body The amount of source is adjusted within the above range.
 グリーン成形体は、チタン酸アルミニウムやチタン酸アルミニウムマグネシウムを含むことができ、例えば、グリーン成形体の構成成分としてチタン酸アルミニウムマグネシウムを使用する場合、チタン酸アルミニウムマグネシウムは、チタニウム源、アルミニウム源およびマグネシウム源を兼ね備えた原料に相当する。 The green molded body can contain aluminum titanate or aluminum magnesium titanate. For example, when aluminum magnesium titanate is used as a component of the green molded body, the aluminum magnesium titanate contains a titanium source, an aluminum source, and magnesium. It corresponds to the raw material which has a source.
(可塑剤)
 グリーン成形体は、可塑剤を含む。この可塑剤は、通常液体であり、20℃における粘度が1000mPa・s以上であり、好ましくは2000mPa・s以上であり、好ましくは4000mPa・s以下である。4000mPa・sを超えると、計量等が困難となることがある。
(Plasticizer)
The green molded body contains a plasticizer. This plasticizer is usually a liquid and has a viscosity at 20 ° C. of 1000 mPa · s or more, preferably 2000 mPa · s or more, and preferably 4000 mPa · s or less. If it exceeds 4000 mPa · s, it may be difficult to measure.
 このような可塑剤としては、例えば、ポリオキシアルキレンアルキルエーテルが挙げられる。市販品としては、例えば、日油株式会社製「ユニルーブ50MB-72」(ポリオキシエチレンポリオキシプロピレンブチルエーテル、20℃における粘度が1020mPa・s)、日油株式会社製「ユニルーブ50MB-168」(ポリオキシエチレンポリオキシプロピレンブチルエーテル、20℃における粘度が2880mPa・s)が挙げられる。 Examples of such plasticizers include polyoxyalkylene alkyl ethers. Commercially available products include, for example, “UNILUB 50MB-72” (polyoxyethylene polyoxypropylene butyl ether, viscosity at 20 ° C. of 1020 mPa · s) manufactured by NOF Corporation, “UNILUB 50MB-168” (poly Oxyethylene polyoxypropylene butyl ether and a viscosity at 20 ° C. of 2880 mPa · s).
 可塑剤の量は、アルミニウム源、チタニウム源、マグネシウム源およびケイ素源の合計量、すなわち、無機化合物源粉末の100重量部に対して、0.1~20重量部であることが好ましく、0.1~10重量部であることがより好ましく、さらに好ましくは0.1~6重量部である。 The amount of the plasticizer is preferably 0.1 to 20 parts by weight with respect to the total amount of the aluminum source, the titanium source, the magnesium source and the silicon source, that is, 100 parts by weight of the inorganic compound source powder. The amount is more preferably 1 to 10 parts by weight, still more preferably 0.1 to 6 parts by weight.
(有機バインダ)
 グリーン成形体は有機バインダを含む。この有機バインダは水溶性であることが好ましい。また、この有機バインダの2重量%水溶液の粘度が5000mPa・s以上であることが好ましく、10000mPa・s以上であることがより好ましい。好ましくは、上記粘度は、上記水溶液が20℃のときの粘度である。
(Organic binder)
The green molded body contains an organic binder. This organic binder is preferably water-soluble. The viscosity of a 2% by weight aqueous solution of the organic binder is preferably 5000 mPa · s or more, and more preferably 10,000 mPa · s or more. Preferably, the viscosity is a viscosity when the aqueous solution is 20 ° C.
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ナトリウムカルボキシルメチルセルロース等のセルロース類;ポリビニルアルコール等のアルコール類;リグニンスルホン酸塩等の塩等が挙げられる。有機バインダの量は、アルミニウム源、チタニウム源、マグネシウム源およびケイ素源の合計量、すなわち、無機化合物源粉末の100重量部に対して、20重量部以下であることが好ましく、より好ましくは15重量部以下、さらに好ましくは6重量部である。また、有機バインダは、0.1重量部以上であることが好ましく、より好ましくは3重量部以上である。 Examples of the organic binder include celluloses such as methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate. The amount of the organic binder is preferably 20 parts by weight or less, more preferably 15 parts by weight with respect to 100 parts by weight of the total amount of the aluminum source, the titanium source, the magnesium source and the silicon source, that is, the inorganic compound source powder. Or less, more preferably 6 parts by weight. Moreover, it is preferable that an organic binder is 0.1 weight part or more, More preferably, it is 3 weight part or more.
(その他の添加物)
 グリーン成形体は、その他の添加物を含むことができる。その他の添加物は、例えば、造孔剤、潤滑剤、分散剤、溶媒である。
(Other additives)
The green molded body can contain other additives. Other additives are, for example, pore formers, lubricants, dispersants, and solvents.
 造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーン等の植物材料;氷;およびドライアイス等が挙げられる。造孔剤の添加量は、アルミニウム源、チタニウム源、マグネシウム源およびケイ素源の合計量、すなわち、無機化合物源粉末の100重量部に対して、0~40重量部であることが好ましく、より好ましくは0~25重量部である。 Examples of the pore-forming agent include carbon materials such as graphite; resins such as polyethylene, polypropylene, and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells, and corn; ice; and dry ice. The amount of pore-forming agent added is preferably 0 to 40 parts by weight, more preferably the total amount of aluminum source, titanium source, magnesium source and silicon source, that is, 100 parts by weight of the inorganic compound source powder. Is 0 to 25 parts by weight.
 潤滑剤としては、グリセリン等のアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸等の高級脂肪酸;ステアリン酸アルミニウム等のステアリン酸金属塩等が挙げられる。潤滑剤の添加量は、アルミニウム源、チタニウム源、マグネシウム源およびケイ素源の合計量、すなわち、無機化合物源粉末の100重量部に対して、0~10重量部であることが好ましく、より好ましくは0.1~5重量部である。 Lubricants include alcohols such as glycerine; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; and stearic acid metal salts such as aluminum stearate. The addition amount of the lubricant is preferably 0 to 10 parts by weight, more preferably 100 parts by weight of the total amount of the aluminum source, titanium source, magnesium source and silicon source, that is, 100 parts by weight of the inorganic compound source powder. 0.1 to 5 parts by weight.
 分散剤としては、例えば、硝酸、塩酸、硫酸等の無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸;メタノール、エタノール、プロパノール等のアルコール類;ポリカルボン酸アンモニウム、ポリオキシアルキレンアルキルエーテル等の界面活性剤等が挙げられる。分散剤の添加量は、アルミニウム源、チタニウム源、マグネシウム源およびケイ素源の合計量、すなわち、無機化合物源粉末の100重量部に対して、0~20重量部であることが好ましく、より好ましくは2~8重量部である。 Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate; Surfactants such as oxyalkylene alkyl ethers are listed. The addition amount of the dispersant is preferably 0 to 20 parts by weight, more preferably the total amount of the aluminum source, the titanium source, the magnesium source and the silicon source, that is, 100 parts by weight of the inorganic compound source powder. 2 to 8 parts by weight.
 溶媒としては、例えば、メタノール、エタノール、ブタノール、プロパノール等のアルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコール等のグリコール類;および水等を用いることができる。なかでも、水が好ましく、不純物が少ない点で、より好ましくはイオン交換水が用いられる。溶媒の使用量は、アルミニウム源、チタニウム源、マグネシウム源およびケイ素源の合計量、すなわち、無機化合物源粉末の100重量部に対して、10重量部~100重量部であることが好ましく、より好ましくは20重量部~80重量部である。 As the solvent, for example, alcohols such as methanol, ethanol, butanol and propanol; glycols such as propylene glycol, polypropylene glycol and ethylene glycol; and water can be used. Of these, water is preferable, and ion-exchanged water is more preferably used from the viewpoint of few impurities. The amount of the solvent used is preferably 10 to 100 parts by weight, more preferably the total amount of the aluminum source, titanium source, magnesium source and silicon source, that is, 100 parts by weight of the inorganic compound source powder. Is 20 to 80 parts by weight.
 (グリーン成形体の形状)
 グリーン成形体の形状は特に限定されず、用途に応じて任意の形状を取ることができ、棒状、チューブ状、板状、るつぼ形状等が挙げられる。例えば、DPFフィルター用のグリーン成形体の場合、いわゆるハニカム形状、すなわち、同一方向に延びる多数の貫通孔を有し、多数の貫通孔により形成される多数の流路が隔壁によって分離された形状であることが好ましい。
(Green molded body shape)
The shape of the green molded body is not particularly limited, and can take any shape depending on the application, and examples thereof include a rod shape, a tube shape, a plate shape, and a crucible shape. For example, in the case of a green molded body for a DPF filter, a so-called honeycomb shape, that is, a shape having a large number of through holes extending in the same direction and a large number of flow paths formed by the large number of through holes separated by partition walls. Preferably there is.
 (グリーン成形体の製造方法)
 グリーン成形体は例えば以下のようにして製造することができる。
 まず、無機化合物源粉末と、有機バインダと、可塑剤と、必要に応じて添加される溶媒等の添加物と、を用意する。無機化合物源粉末は、アルミニウム源粉末、チタニウム源粉末、および、必要に応じて配合されるマグネシウム源粉末およびケイ素源粉末を含む。
 そして、これらを上述の比率で混練機等により混合して原料混合物を得、得られた原料混合物を成形することにより、所望の形状のグリーン成形体を得ることができる。ここで、成形法は特に限定されず、例えば、一軸プレス機、押出成形機、打錠機、造粒機等を使用する方法が挙げられる。
(Method for producing green molded body)
A green molded object can be manufactured as follows, for example.
First, an inorganic compound source powder, an organic binder, a plasticizer, and additives such as a solvent added as necessary are prepared. The inorganic compound source powder includes an aluminum source powder, a titanium source powder, and a magnesium source powder and a silicon source powder blended as necessary.
And these are mixed with a kneader etc. by the above-mentioned ratio, a raw material mixture is obtained, and the green molded object of a desired shape can be obtained by shape | molding the obtained raw material mixture. Here, a shaping | molding method is not specifically limited, For example, the method of using a uniaxial press machine, an extrusion molding machine, a tableting machine, a granulator etc. is mentioned.
 (チタン酸アルミニウム焼成体の製造方法)
 上述のグリーン成形体を仮焼(脱脂)および焼成することにより、チタン酸アルミニウム焼成体を得ることができる。得られるチタン酸アルミニウム焼成体は、チタン酸アルミニウム結晶を含む焼成体である。成形してから、仮焼を行い、焼成を行なうことにより、原料混合物を直接焼成する場合と比較して、焼成中の収縮を抑えることができ、得られるチタン酸アルミニウム焼成体の割れを効果的に抑制できる。また、焼成により生成した、多孔質性のチタン酸アルミニウム結晶の細孔形状を維持することができる。
(Method for producing an aluminum titanate fired body)
An aluminum titanate fired body can be obtained by calcining (degreasing) and firing the green molded body described above. The obtained aluminum titanate fired body is a fired body containing aluminum titanate crystals. Compared to the case of directly firing the raw material mixture by performing calcining and firing after molding, shrinkage during firing can be suppressed, and cracking of the obtained aluminum titanate fired body is effective. Can be suppressed. Moreover, the pore shape of the porous aluminum titanate crystal produced by firing can be maintained.
 仮焼(脱脂)は、グリーン成形体中の有機バインダや、必要に応じて配合される添加物を、焼失、分解等により除去するための工程であり、典型的には、焼成温度に至るまでの昇温段階(例えば、150~900℃の温度範囲)になされる。仮焼(脱脂)工程おいては、昇温速度を極力おさえることが好ましい。 Calcination (degreasing) is a process for removing the organic binder in the green molded body and additives blended as necessary by burning, decomposition, etc., typically until reaching the firing temperature. In the temperature rising stage (for example, a temperature range of 150 to 900 ° C.). In the calcination (degreasing) step, it is preferable to suppress the temperature increase rate as much as possible.
 グリーン成形体の焼成における焼成温度は、通常、1300℃以上、好ましくは1400℃以上である。また、焼成温度は、1650℃以下であることが好ましく、より好ましくは1550℃以下である。焼成温度までの昇温速度は特に限定されるものではないが、通常、1℃/時間~500℃/時間である。グリーン成形体がケイ素源粉末を含む場合には、焼成工程の前に、1100~1300℃の温度範囲で3時間以上保持する工程を設けることが好ましい。これにより、ケイ素源粉末の融解、拡散を促進させることができる。 The firing temperature in firing the green molded body is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, it is preferable that a calcination temperature is 1650 degrees C or less, More preferably, it is 1550 degrees C or less. The rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 ° C./hour to 500 ° C./hour. When the green molded body contains the silicon source powder, it is preferable to provide a step of holding at a temperature range of 1100 to 1300 ° C. for 3 hours or more before the firing step. Thereby, melting and diffusion of the silicon source powder can be promoted.
 焼成は通常、大気中で行なわれるが、用いる原料粉末、すなわちアルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末の種類や使用量比によっては、窒素ガス、アルゴンガス等の不活性ガス中で焼成してもよいし、一酸化炭素ガス、水素ガス等のような還元性ガス中で焼成してもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。 Firing is usually carried out in the atmosphere, but depending on the type and usage ratio of the raw material powder used, that is, aluminum source powder, titanium source powder, magnesium source powder and silicon source powder, an inert gas such as nitrogen gas or argon gas. The firing may be performed in a reducing gas such as carbon monoxide gas or hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ローラーハース炉等の通常の焼成炉を用いて行なわれる。焼成は回分式で行なってもよいし、連続式で行なってもよい。 Calcination is usually performed using a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously.
 焼成に要する時間は、グリーン成形体がチタン酸アルミニウム結晶に遷移するのに十分な時間であればよく、グリーン成形体の量、焼成炉の形式、焼成温度、焼成雰囲気等により異なるが、10分~24時間であることが好ましい。 The time required for firing may be sufficient time for the green molded body to transition to the aluminum titanate crystal, and varies depending on the amount of the green molded body, the type of the firing furnace, the firing temperature, the firing atmosphere, etc. Preferably it is ˜24 hours.
 以上のようにして、目的のチタン酸アルミニウム焼成体を得ることができる。このようなチタン酸アルミニウム焼成体は、成形直後のグリーン成形体の形状をほぼ維持した形状を有する。得られたチタン酸アルミニウム焼成体は、研削加工等により、所望の形状に加工することもできる。 As described above, a desired aluminum titanate fired body can be obtained. Such an aluminum titanate fired body has a shape that substantially maintains the shape of the green molded body immediately after molding. The obtained aluminum titanate fired body can be processed into a desired shape by grinding or the like.
 上述の方法により得られるチタン酸アルミニウム焼成体は、例えば、ルツボ、セッター、コウ鉢、炉材等の焼成炉用冶具;触媒担体;ディーゼルエンジン、ガソリンエンジン等の内燃機関の排気ガス浄化に用いられる排ガスフィルター、ビール等の飲食物の濾過に用いる濾過フィルター、石油精製時に生じるガス成分、例えば一酸化炭素、二酸化炭素、窒素、酸素等を選択的に透過させるための選択透過フィルター、等のセラミックスフィルター;基板、コンデンサー等の電子部品等に好適に適用することができる。なかでも、セラミックスフィルターとして用いる場合、チタン酸アルミニウム焼成体は、高い細孔容積および開気孔率を有することから、良好なフィルター性能を長期にわたって維持することができる。 The aluminum titanate fired body obtained by the above-described method is used for, for example, firing furnace jigs such as crucibles, setters, mortars, and furnace materials; catalyst carriers; exhaust gas purification of internal combustion engines such as diesel engines and gasoline engines. Ceramic filters such as exhaust gas filters, filtration filters used for filtering food and drink such as beer, selective permeation filters for selectively permeating gas components generated during petroleum refining, such as carbon monoxide, carbon dioxide, nitrogen, oxygen, etc. It can be suitably applied to electronic components such as substrates and capacitors. Among these, when used as a ceramic filter, the aluminum titanate fired body has a high pore volume and an open porosity, so that good filter performance can be maintained over a long period of time.
 チタン酸アルミニウム焼成体は、X線回折スペクトルにおいて、チタン酸アルミニウムまたはチタン酸アルミニウムマグネシウムの結晶パターンのほか、アルミナ、チタニアなどの結晶パターンを含んでいてもよい。なお、チタン酸アルミニウム焼成体は、チタン酸アルミニウムマグネシウム結晶を含む場合、組成式:Al2(1-x)MgTi(1+x)で表すことができ、xの値は0.03以上であり、好ましくは0.03以上0.15以下、より好ましくは0.03以上0.12以下である。また、本発明により得られるチタン酸アルミニウム焼成体は、原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 In the X-ray diffraction spectrum, the aluminum titanate fired body may contain a crystal pattern of alumina, titania or the like in addition to the crystal pattern of aluminum titanate or aluminum magnesium titanate. When the aluminum titanate fired body contains aluminum magnesium titanate crystals, it can be expressed by a composition formula: Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is 0.03 or more Preferably, it is 0.03 or more and 0.15 or less, More preferably, it is 0.03 or more and 0.12 or less. Moreover, the aluminum titanate fired body obtained by the present invention can contain trace components that are derived from the raw materials or are unavoidably included in the production process.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。保形性、および粘度は下記方法により測定した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The shape retention and viscosity were measured by the following methods.
(1)グリーン成形体の保形性
 1.図1の(a)に示すように、グリーン成形体から、水平長さ100mm×幅20mm×高さ20mmの大きさの試験片10を切り出した。
 2.試験片10の長手方向の一端(左端)から0~40mmの部分10aを台座5の水平面5a上に固定した。固定操作の間に試験片10の他端(右端)側(40~100mm)の部分10bが変形しないように、試験片10の他端側の部分10bの下面を図示しない支持台により保持した。
 3.支持台を外し、図1の(b)に示すように試験片10の他端側の部分10bの変形を観察した。支持台を外してから60秒後の試験片10の他端側の部分10bの下面の鉛直方向の変位Xを測定した。ここで、鉛直方向の変位Xは、台座5の端面5bから25mm水平方向にはなれた位置で測定した。合計3つの試験片について変位を測定し、その平均値を求めた。
(1) Shape retention of green molded body As shown to (a) of FIG. 1, the test piece 10 of the magnitude | size of horizontal length 100mm x width 20mm x height 20mm was cut out from the green molded object.
2. A portion 10 a of 0 to 40 mm from one end (left end) in the longitudinal direction of the test piece 10 was fixed on the horizontal surface 5 a of the pedestal 5. The lower surface of the portion 10b on the other end side of the test piece 10 was held by a support base (not shown) so that the portion 10b on the other end (right end) side (40 to 100 mm) of the test piece 10 was not deformed during the fixing operation.
3. The support was removed, and the deformation of the portion 10b on the other end side of the test piece 10 was observed as shown in FIG. The vertical displacement X of the lower surface of the portion 10b on the other end side of the test piece 10 60 seconds after removing the support was measured. Here, the vertical displacement X was measured at a position 25 mm away from the end surface 5 b of the pedestal 5 in the horizontal direction. The displacement was measured for a total of three test pieces, and the average value was obtained.
(2)可塑剤の20℃における粘度
 混合前の可塑剤の粘度を、B型粘度計を用い、20℃の条件下で測定した。
(2) Viscosity of plasticizer at 20 ° C. The viscosity of the plasticizer before mixing was measured under the condition of 20 ° C. using a B-type viscometer.
 <実施例1>
 無機化合物源粉末として以下のものを用いて、グリーン成形体を得た。無機化合物源粉末の仕込み組成は、アルミナ〔Al〕、チタニア〔TiO〕、マグネシア〔MgO〕およびシリカ〔SiO〕換算のモル百分率で、〔Al〕/〔TiO〕/〔MgO〕/〔SiO〕=35.1%/51.3%/9.6%/4.0%であった。アルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末の合計量中のケイ素源粉末の含有率は、4.0重量%であった。
(1)アルミニウム源粉末
 表1に示される平均粒子径を有するα-アルミナ粉末 24.6重量部
(2)チタニウム源粉末
 表1に示される平均粒子径を有するルチル型チタニア粉末 42.0重量部
(3)マグネシウム源粉末
 表1に示される平均粒子径を有するマグネシアスピネル粉末 15.7重量部
(4)ケイ素源粉末
 表1に示される平均粒子径を有するガラスフリット(タカラスタンダード社製「CK0832」) 3.4重量部
<Example 1>
A green molded body was obtained using the following as the inorganic compound source powder. Mixing composition of the inorganic compound source powder, alumina [Al 2 O 3], titania [TiO 2], magnesia [MgO] and silica in a molar percentage of [SiO 2] terms, [Al 2 O 3] / [TiO 2] / [MgO] / [SiO 2 ] = 35.1% / 51.3% / 9.6% / 4.0%. The content of the silicon source powder in the total amount of the aluminum source powder, the titanium source powder, the magnesium source powder and the silicon source powder was 4.0% by weight.
(1) Aluminum source powder α-alumina powder having an average particle diameter shown in Table 1 24.6 parts by weight (2) Titanium source powder 42.0 parts by weight of a rutile type titania powder having an average particle diameter shown in Table 1 (3) Magnesium source powder 15.7 parts by weight of magnesia spinel powder having an average particle size shown in Table 1 (4) Silicon source powder Glass frit having an average particle size shown in Table 1 (“CK0832” manufactured by Takara Standard) 3.4 parts by weight
 アルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末を含む混合物に、造孔剤として表1に示される平均粒子径を有するコーンスターチを14.3重量部、有機バインダとしてメチルセルロース(商品名:メトローズ 90SH-30000)5.5重量部、可塑剤としてポリオキシエチレンポリオキシプロピレンブチルエーテル(商品名:ユニルーブ50MB-72、20℃における粘度が1020mPa・s)4.6重量部、ならびに、潤滑剤としてグリセリン0.3重量部を加え、さらに、分散媒(溶媒)として水27重量部を加えた後、混練機を用いて25℃で混練することにより、坏土(成形用原料混合物)を調製した。ついで、この坏土を押出成形することにより、グリーン成形体を作製した。グリーン成形体は、保形性(変位X)が6.0mmであった。 In a mixture containing an aluminum source powder, a titanium source powder, a magnesium source powder, and a silicon source powder, 14.3 parts by weight of corn starch having an average particle diameter shown in Table 1 as a pore-forming agent and methyl cellulose as an organic binder (trade name: 5.5 parts by weight of Metroze 90SH-30000), 4.6 parts by weight of polyoxyethylene polyoxypropylene butyl ether (trade name: Unilube 50MB-72, viscosity at 20 ° C. of 1020 mPa · s) as a plasticizer, and as a lubricant After adding 0.3 part by weight of glycerin, and further adding 27 parts by weight of water as a dispersion medium (solvent), kneading was performed at 25 ° C. using a kneader to prepare a clay (molding raw material mixture). . Next, a green molded body was produced by extruding this clay. The green molded body had a shape retention (displacement X) of 6.0 mm.
 グリーン成形体をマイクロ波乾燥機にて速やかに加熱させた後、100℃で5時間保持して乾燥し、次いで、大気雰囲気下でバインダを除去する仮焼(脱脂)を行い、焼成を行ってチタン酸アルミニウムマグネシウム多孔質焼成体を得た。焼成時の最高温度は、1450℃とし、最高温度での保持時間は5時間とした。 The green molded body is quickly heated in a microwave dryer, then dried by holding at 100 ° C. for 5 hours, and then calcined (degreasing) to remove the binder in an air atmosphere and fired. A porous sintered body of aluminum magnesium titanate was obtained. The maximum temperature during firing was 1450 ° C., and the holding time at the maximum temperature was 5 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 可塑剤として、20℃における粘度が1020mPa・sのポリオキシエチレンポリオキシプロピレンブチルエーテル(商品名:ユニルーブ50MB-72)4.6重量部に代えて、20℃における粘度が2880mPa・sのポリオキシエチレンポリオキシプロピレンブチルエーテル(商品名:ユニルーブ50MB-168)4.6重量部を使用した以外は、実施例1と同様な操作を行って、グリーン成形体およびチタン酸アルミニウムマグネシウム多孔質焼成体を得た。グリーン成形体は、保形性(変位X)が5.0mmであった。
<Example 2>
As a plasticizer, instead of 4.6 parts by weight of polyoxyethylene polyoxypropylene butyl ether (trade name: UNILOVE 50MB-72) having a viscosity of 1020 mPa · s at 20 ° C., polyoxyethylene having a viscosity of 2880 mPa · s at 20 ° C. Except for using 4.6 parts by weight of polyoxypropylene butyl ether (trade name: Unilube 50MB-168), the same operation as in Example 1 was performed to obtain a green molded body and a porous sintered body of aluminum magnesium titanate. . The green molded body had a shape retention (displacement X) of 5.0 mm.
<比較例1>
 可塑剤として、20℃における粘度が1020mPa・sのポリオキシエチレンポリオキシプロピレンブチルエーテル(商品名:ユニルーブ50MB-72)4.6重量部に代えて、20℃における粘度が326mPa・sのポリオキシエチレンポリオキシプロピレンブチルエーテル(商品名:ユニルーブ50MB-26)4.6重量部を使用した以外は、実施例1と同様な操作を行って、グリーン成形体およびチタン酸アルミニウムマグネシウム多孔質焼成体を得た。グリーン成形体は、保形性(変位X)が10.5mmであった。
<Comparative Example 1>
As a plasticizer, instead of 4.6 parts by weight of polyoxyethylene polyoxypropylene butyl ether (trade name: UNILOVE 50MB-72) having a viscosity of 1020 mPa · s at 20 ° C., polyoxyethylene having a viscosity of 326 mPa · s at 20 ° C. Except for using 4.6 parts by weight of polyoxypropylene butyl ether (trade name: Unilube 50MB-26), the same operation as in Example 1 was performed to obtain a green molded body and a porous sintered body of aluminum magnesium titanate. . The green molded body had a shape retention (displacement X) of 10.5 mm.

Claims (12)

  1.  無機化合物源粉末と、有機バインダと、可塑剤と、を含み、
     前記無機化合物源粉末は、アルミニウム源粉末およびチタニウム源粉末を含み、
     前記可塑剤の20℃における粘度は1000mPa・s以上である、グリーン成形体。
    An inorganic compound source powder, an organic binder, and a plasticizer,
    The inorganic compound source powder includes an aluminum source powder and a titanium source powder,
    The green molded object whose viscosity in 20 degreeC of the said plasticizer is 1000 mPa * s or more.
  2.  前記可塑剤の量は、前記無機化合物源粉末100重量部に対し0.1~20重量部である、請求項1記載のグリーン成形体。 The green molded body according to claim 1, wherein the amount of the plasticizer is 0.1 to 20 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  3.  前記無機化合物源粉末は、さらにケイ素源粉末を含む、請求項1または2記載のグリーン成形体。 The green molded body according to claim 1 or 2, wherein the inorganic compound source powder further contains a silicon source powder.
  4.  前記無機化合物源粉末は、さらにマグネシウム源粉末を含む、請求項1~3のいずれか一項記載のグリーン成形体。 The green molded body according to any one of claims 1 to 3, wherein the inorganic compound source powder further includes a magnesium source powder.
  5.  Al換算での前記アルミニウム源粉末とTiO換算での前記チタニウム源粉末とのモル比は、35:65~45:55である、請求項1~4のいずれか一項記載のグリーン成形体。 The green ratio according to any one of claims 1 to 4, wherein a molar ratio of the aluminum source powder in terms of Al 2 O 3 and the titanium source powder in terms of TiO 2 is 35:65 to 45:55. Molded body.
  6.  ハニカム形状を有する、請求項1~5のいずれか一項記載のグリーン成形体。 The green molded body according to any one of claims 1 to 5, which has a honeycomb shape.
  7.  無機化合物源粉末と、有機バインダと、可塑剤と、を含む原料混合物を成形してグリーン成形体を得る工程と、
     前記グリーン成形体を150~900℃に加熱して前記グリーン成形体から前記有機バインダおよび前記可塑剤を除去する工程と、
     前記有機バインダおよび前記可塑剤が除去された前記グリーン成形体を1300℃以上で焼成する工程とを備え、
     前記無機化合物源粉末は、アルミニウム源粉末およびチタニウム源粉末を含み、
     前記可塑剤の20℃における粘度が1000mPa・s以上である、チタン酸アルミニウム焼成体の製造方法。
    Forming a green mixture by molding a raw material mixture containing an inorganic compound source powder, an organic binder, and a plasticizer;
    Heating the green molded body to 150 to 900 ° C. to remove the organic binder and the plasticizer from the green molded body;
    Firing the green molded body from which the organic binder and the plasticizer have been removed at 1300 ° C. or higher,
    The inorganic compound source powder includes an aluminum source powder and a titanium source powder,
    The manufacturing method of the aluminum titanate sintered body whose viscosity in 20 degreeC of the said plasticizer is 1000 mPa * s or more.
  8.  前記可塑剤の量は、前記無機化合物源粉末100重量部に対し0.1~20重量部である、請求項7記載の方法。 The method according to claim 7, wherein the amount of the plasticizer is 0.1 to 20 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  9.  前記無機化合物源粉末は、さらにケイ素源粉末を含む、請求項7または8記載の方法。 The method according to claim 7 or 8, wherein the inorganic compound source powder further contains a silicon source powder.
  10.  前記無機化合物源粉末は、さらにマグネシウム源粉末を含む、請求項7~9のいずれか一項記載の方法。 The method according to any one of claims 7 to 9, wherein the inorganic compound source powder further contains a magnesium source powder.
  11.  前記原料混合物中における、Al換算でのアルミニウム源粉末とTiO換算でのチタニウム源粉末とのモル比は、35:65~45:55である、請求項7~10のいずれか一項記載の方法。 The molar ratio of the aluminum source powder in terms of Al 2 O 3 and the titanium source powder in terms of TiO 2 in the raw material mixture is 35:65 to 45:55. The method described in the paragraph.
  12.  前記グリーン成形体は、ハニカム形状を有する請求項7~11いずれか一項記載の方法。 The method according to any one of claims 7 to 11, wherein the green molded body has a honeycomb shape.
PCT/JP2011/065882 2010-07-14 2011-07-12 Green molded body, and manufacturing method for aluminium titanate sintered body WO2012008447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-159869 2010-07-14
JP2010159869 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008447A1 true WO2012008447A1 (en) 2012-01-19

Family

ID=45469444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065882 WO2012008447A1 (en) 2010-07-14 2011-07-12 Green molded body, and manufacturing method for aluminium titanate sintered body

Country Status (2)

Country Link
JP (1) JP5771085B2 (en)
WO (1) WO2012008447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3990127A4 (en) * 2019-06-29 2023-07-19 Aquaguidance Technologies, Ltd. Process for forming porous filter media

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108209A (en) * 2014-12-10 2016-06-20 住友電気工業株式会社 Method for producing ceramic molded body, and method for producing the ceramic molded body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616870A (en) * 1990-11-27 1994-01-25 Hoechst Ag Injection molding composition comprising plasticizer, metal,and powdered ceramic material
JPH07197071A (en) * 1993-12-29 1995-08-01 Mitsubishi Cable Ind Ltd Lubricant composition
JP2007022870A (en) * 2005-07-19 2007-02-01 Nippon Shokubai Co Ltd Mixture for manufacturing ceramic green molding
WO2009122538A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Honeycomb structure
WO2010067859A1 (en) * 2008-12-11 2010-06-17 住友化学株式会社 Process for producing aluminum titanate-based fired product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089215A (en) * 1999-09-24 2001-04-03 Dainippon Ink & Chem Inc Ceramic molding material composition and method for manufacturing ceramic molding
JP2007230855A (en) * 2005-12-26 2007-09-13 Ibiden Co Ltd Method for producing honeycomb structure, and honeycomb structure
JPWO2009122535A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
KR20110053313A (en) * 2008-09-04 2011-05-20 스미또모 가가꾸 가부시끼가이샤 Aluminum titanate ceramic manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616870A (en) * 1990-11-27 1994-01-25 Hoechst Ag Injection molding composition comprising plasticizer, metal,and powdered ceramic material
JPH07197071A (en) * 1993-12-29 1995-08-01 Mitsubishi Cable Ind Ltd Lubricant composition
JP2007022870A (en) * 2005-07-19 2007-02-01 Nippon Shokubai Co Ltd Mixture for manufacturing ceramic green molding
WO2009122538A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Honeycomb structure
WO2010067859A1 (en) * 2008-12-11 2010-06-17 住友化学株式会社 Process for producing aluminum titanate-based fired product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3990127A4 (en) * 2019-06-29 2023-07-19 Aquaguidance Technologies, Ltd. Process for forming porous filter media

Also Published As

Publication number Publication date
JP2012036079A (en) 2012-02-23
JP5771085B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP4844770B2 (en) Method for producing aluminum titanate-based fired body
US9272957B2 (en) Process for producing aluminum titanate-based ceramics fired body
WO2011037177A1 (en) Method for producing ceramic fired article
WO2011111666A1 (en) Green compact and method for producing aluminum titanate sintered body.
JP5685458B2 (en) Method for producing porous aluminum magnesium titanate and porous aluminum magnesium titanate
JP5368081B2 (en) Method for producing aluminum titanate-based fired body
WO2011027783A1 (en) Method for producing fired ceramic body
WO2011027904A1 (en) Method for producing aluminum titanate baked body and aluminum titanate baked body
JP2010189204A (en) Method for manufacturing aluminum titanate-based granular sintered compact and method for manufacturing aluminum titanate-based sintered compact
JP5535505B2 (en) Method for producing porous ceramic molded body and porous ceramic molded body
JP5771085B2 (en) Green molded body and method for producing aluminum titanate fired body
JP2010111547A (en) Method of manufacturing aluminum titanate-based porous fired body
JP2010138035A (en) Method for producing aluminum titanate-based sintered body
JP5391246B2 (en) Method for producing aluminum titanate-based fired body
JP2010235333A (en) Method for producing aluminum titanate-based ceramic sintered compact and aluminum titanate-based ceramic sintered compact
WO2012176888A1 (en) Aluminum titanate ceramic and molded body
JP2012001413A (en) Method for manufacturing green mold and honeycomb fired body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806777

Country of ref document: EP

Kind code of ref document: A1