WO2012008384A1 - Duct structure, method for producing same, analysis chip, and analysis device - Google Patents

Duct structure, method for producing same, analysis chip, and analysis device Download PDF

Info

Publication number
WO2012008384A1
WO2012008384A1 PCT/JP2011/065724 JP2011065724W WO2012008384A1 WO 2012008384 A1 WO2012008384 A1 WO 2012008384A1 JP 2011065724 W JP2011065724 W JP 2011065724W WO 2012008384 A1 WO2012008384 A1 WO 2012008384A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
working electrode
substrate
hydrophobic
solution
Prior art date
Application number
PCT/JP2011/065724
Other languages
French (fr)
Japanese (ja)
Inventor
三枝 理伸
俊明 北川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012008384A1 publication Critical patent/WO2012008384A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/082Active control of flow resistance, e.g. flow controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/088Passive control of flow resistance by specific surface properties

Definitions

  • the present invention relates to a flow channel structure used for trace chemical analysis of biological substances and substances in the natural environment, a manufacturing method thereof, an analysis chip, and an analysis apparatus. More specifically, the present invention relates to a channel structure that can reliably move a solution stopped on a working electrode.
  • Immunoassay is known as an important analysis or measurement method in the medical field, biochemical field, and measurement fields such as allergens.
  • the conventional immunoassay has a problem that the operation is complicated and the analysis takes more than one day.
  • micro flow path a micrometer order flow path
  • antibody or the like is immobilized on the micro flow path. Therefore, there has been proposed a micro analysis chip (hereinafter, abbreviated as “analysis chip” as appropriate) for shortening the analysis time and simplifying the analysis operation.
  • a solution is introduced into the analysis chip through the liquid introduction hole, the solution is reacted inside the analysis chip, and the solution is discharged from the liquid discharge hole to the outside of the analysis chip.
  • an external power source such as a pump has been used to transfer (liquid feed) the solution on the analysis chip.
  • the pump is larger than the analysis chip, the entire analyzer including the analysis chip is small. There is a problem that it is difficult to realize.
  • FIG. 23 shows the basic structure of a conventional microchannel using such capillary force.
  • the micro flow path shown in FIG. 23 includes a second substrate 110 and a first substrate 111, and an injection hole 112, a discharge hole 113, and a flow path 114 are formed.
  • the solution is dropped into the injection hole 112, the solution moves through the flow path 114 by capillary force and moves toward the discharge hole 113. Therefore, the solution can be moved from the injection hole 112 side to the discharge hole 113 side without requiring an external power source such as a pump.
  • Patent Documents 1 and 2 propose a method using a valve (referred to as an electrowetting valve) using an electrowetting technique in order to control the flow of a solution in a minute microchannel. ing.
  • a valve referred to as an electrowetting valve
  • EW valve electrowetting valve
  • the surface tension acting on the solution in the periphery of the working electrode 132 and the flow resistance determined by the flow channel width, the flow channel height, and the like combine with each other, so that the solution cannot pass through the flow channel. That is, when no voltage is applied, the EW valve is closed.
  • Japanese Patent Publication “JP 2006-220606 A” (published August 24, 2006) Japanese Patent Publication “JP 2005-199231” (released July 28, 2005) Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-149252 (published May 21, 2003)”
  • Patent Document 3 is a conventional analysis chip using a plastic material as a substrate material, and does not describe any mechanism for controlling movement of a fluid flow path space.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a flow channel structure and the like that can reliably move a solution stopped on a working electrode.
  • the flow channel structure of the present invention generates a predetermined potential difference between a working electrode that generates a driving force for feeding a solution along the flow channel and the working electrode.
  • a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity are formed on the surface of the working electrode that contacts the solution. It is characterized by that.
  • the hydrophobic portion having high hydrophobicity and the hydrophilic portion having high hydrophilicity are formed on the surface of the working electrode that contacts the solution.
  • the solution on the working electrode is SA, the total area of the hydrophilic part is SB, the contact angle of the hydrophobic part is ⁇ A, and the contact angle of the hydrophilic part is ⁇ B, the solution on the working electrode
  • the driving force is correlated with ⁇ cos ( ⁇ A) ⁇ SA + ⁇ cos ( ⁇ B) ⁇ SB.
  • the applied voltage at which the driving force of the solution on the working electrode is positive depends on the ratio of the area SA and the area SB to the surface of the working electrode, and the applied voltage decreases as the area SA ratio decreases.
  • the hydrophobic portion and the hydrophilic portion are formed on the surface of the working electrode in contact with the solution.
  • the solution stopped on the working electrode can be reliably moved.
  • Patent Documents 1 and 2 and the micro-analysis chip of the present invention are both related to a mechanism for controlling the movement of a fluid flow path space. None is described about the wettability (hydrophilic / hydrophobic) of the surface of the working electrode.
  • Patent Document 3 does not describe any mechanism for controlling the movement of the fluid flow path space.
  • the number of reference electrodes may be two or more, and the number of working electrodes may be two or more.
  • one or more counter electrodes may be provided to suppress the flow of current to the reference electrode and stabilize the potential of the reference electrode.
  • the manufacturing method of the flow channel structure according to the present invention has a working electrode that generates a driving force for feeding a solution along the flow channel, and a predetermined gap between the working electrode and the working electrode.
  • a reference electrode that generates a potential difference and generates the driving force, a first substrate on which at least a flow path forming groove for forming the flow path is formed, and the flow formed on the first substrate.
  • a flow path structure manufacturing method comprising a second substrate for sealing a path forming groove, the flow path forming groove forming step for forming the flow path forming groove on the first substrate, and a hydrophilic
  • the working electrode is made of a conductive material, a part of the working electrode is subjected to a hydrophobic treatment, and a hydrophobic part having a high hydrophobicity and a hydrophilic part having a high hydrophilicity are formed on a surface that contacts the solution of the working electrode.
  • Hydrophobic treatment process to be formed and working electrode installation process for installing the working electrode on the second substrate Characterized in that it includes a flow path forming groove sealing step of sealing the first said passage forming grooves formed in the substrate at the second substrate.
  • the flow path forming groove is formed on the first substrate.
  • a working electrode is made of a hydrophilic conductive material, and a hydrophobic portion having a high hydrophobicity is formed on the surface of the working electrode which is hydrophobized to come into contact with the working electrode solution.
  • a hydrophilic part having high hydrophilicity is formed.
  • the working electrode installation step the working electrode is installed on the second substrate with a hydrophilic conductive material.
  • the flow path forming groove sealing step the flow path forming groove formed in the first substrate is sealed with the second substrate.
  • the manufacturing method of the flow channel structure according to the present invention has a working electrode that generates a driving force for feeding a solution along the flow channel, and a predetermined gap between the working electrode and the working electrode.
  • a reference electrode for generating a potential difference and generating the driving force is formed, and a flow path forming layer in which at least a flow path forming hole for forming the flow path is formed, and the flow path forming layer is formed.
  • a third substrate that seals the flow path forming hole from one side of the flow path forming layer and the flow path forming hole formed in the flow path forming layer are sealed from the other side of the flow path forming layer.
  • a flow path structure including a fourth substrate to stop, the flow path forming hole forming step of forming the flow path forming hole in the flow path forming layer, and a hydrophilic conductive material Create a working electrode, hydrophobize a portion of the working electrode, and on the surface in contact with the working electrode solution, A hydrophobic treatment process for forming a hydrophobic part with high aqueousity and a hydrophilic part with high hydrophilicity, a working electrode installation process for installing the working electrode on the fourth substrate, and the flow channel forming layer
  • the flow path forming hole is formed in the flow path forming layer.
  • a working electrode is made of a hydrophilic conductive material, and a hydrophobic portion having a high hydrophobicity is formed on the surface of the working electrode which is hydrophobized to come into contact with the working electrode solution.
  • a hydrophilic part having high hydrophilicity is formed.
  • the working electrode installation step the working electrode is installed on the fourth substrate.
  • the flow path forming hole formed in the flow path forming layer is sealed with the third substrate from one side of the flow path forming layer, and from the other side of the flow path forming layer. Seal with a fourth substrate.
  • the flow channel structure according to the present invention has a hydrophobic portion having a high hydrophobicity and a hydrophilic portion having a high hydrophilicity formed on the surface of the working electrode in contact with the solution.
  • the manufacturing method of the flow channel structure according to the present invention creates the flow channel forming groove forming step on the first substrate and the working electrode by using a hydrophilic conductive material.
  • the method includes a working electrode installation step of installing a working electrode thereon, and a flow path formation groove sealing step of sealing the flow path formation groove formed in the first substrate with the second substrate.
  • the manufacturing method of the flow channel structure according to the present invention creates a working electrode with a flow channel forming hole forming step of forming a flow channel forming hole in the flow channel forming layer and a hydrophilic conductive material.
  • a hydrophobic treatment step for forming a hydrophobic portion having a high hydrophobicity and a hydrophilic portion having a high hydrophilicity on a surface of the working electrode that is hydrophobized to contact the solution of the working electrode, and a fourth substrate The working electrode installation step for installing the working electrode thereon, and the flow path forming hole formed in the flow path forming layer are sealed with the third substrate from one side of the flow path forming layer, and the other of the flow path forming layers And a flow path forming hole sealing step for sealing with a fourth substrate from the side.
  • FIG. 2 is an (assembled) structural diagram illustrating a structure of an embodiment of a flow channel structure according to the present invention, where (a) illustrates the overall structure of the flow channel structure, and (b) illustrates the flow channel structure.
  • disassembled is shown, (c) shows the structure of a 1st board
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ shown in FIG. It is the elements on larger scale which expanded the vicinity of an example of a working electrode regarding the said flow-path structure.
  • (a) is a linear pattern arranged in parallel with the direction (up-down direction with respect to a paper surface) through which a solution flows.
  • (B) shows an example of a linear pattern (striped pattern) arranged along a direction orthogonal to the direction of flow of the solution, and (c) is orthogonal to the direction of flow of the solution.
  • Another example of the linear pattern (striped pattern) arranged along the direction is shown.
  • (D) is still another example of the linear pattern (striped pattern) arranged along the direction orthogonal to the direction in which the solution flows. An example is shown.
  • FIG. 7 is a cross-sectional view taken along the line B-B ′ shown in FIG. FIG.
  • FIG. 7 is an (assembly) structural diagram showing the structure of still another embodiment of the flow path structure according to the present invention, and (a) shows the overall structure of still another embodiment of the flow path structure; b) shows the configuration of the second substrate when the flow channel structure is disassembled, and (c) shows the configuration of the first substrate.
  • It is the elements on larger scale which expanded an example of the channel structure in the vicinity of a working electrode regarding the said channel structure.
  • FIG. 7 is an (assembly) structural diagram showing the structure of still another embodiment of the flow channel structure according to the present invention, and (a) shows the overall structure of still another embodiment of the flow channel structure; (B) shows the configuration of the second substrate when the flow path structure is disassembled, and (c) shows the configuration of the first substrate. It is a block diagram which shows the whole structure of one Embodiment of the analysis chip in this invention.
  • FIG. 4 is a conceptual diagram for explaining the relationship between the pressure acting on the solution in the flow channel and the interfacial tension affecting the pressure with respect to the flow channel structure, and FIG. The relationship between the acting pressure and the interfacial tension affecting the pressure is shown.
  • (B) shows the cut surface when the channel structure shown in (a) is cut along a plane parallel to the yz plane. Show. It is explanatory drawing for demonstrating the theoretical formula which calculates the said pressure. It is explanatory drawing for demonstrating the theoretical formula which calculates the said pressure. It is an assembly structure figure which shows the whole structure of the flow-path structure using the conventional capillary force.
  • FIGS. 1 to 23 An embodiment of the present invention will be described with reference to FIGS. 1 to 23 as follows. Descriptions of configurations other than those described in the following specific embodiments may be omitted as necessary, but are the same as those configurations when described in other embodiments. For convenience of explanation, members having the same functions as those shown in each embodiment are given the same reference numerals, and the explanation thereof is omitted as appropriate.
  • flow channel a micro flow channel (hereinafter simply referred to as “flow channel”) utilizing capillary force
  • the pressure (driving force) P acting on the solution due to the capillary force is greatly influenced by the contact angle between the inner surface of the flow path and the solution (see FIGS. 19 and 20 (a)).
  • Equation 1 when the inner surface of the channel is made of a uniform material and the shape of the channel cross section perpendicular to the direction in which the solution flows in the channel (the x-axis direction in FIG. 20A) is circular, the solution 21 is given by Equation 1 in FIG. 21, where ⁇ is the interfacial tension at the gas-liquid interface, ⁇ is the contact angle of the channel inner surface, and r is the radius of the channel cross section.
  • the channel cross section (the channel cross section parallel to the yz plane in FIG. 20 (a)) is a rectangular channel structure.
  • the channel height is h
  • the channel width is w
  • the contact angle of the first substrate 111 is ⁇ 1
  • the contact angle of the second substrate 110 is ⁇ 2
  • the interfacial tension at the gas-liquid interface is ⁇
  • the upper surface of the channel When the component of the interfacial tension ⁇ acting on the x-axis direction (hereinafter simply referred to as “component”) is F1
  • the component of the interfacial tension ⁇ acting on the lower surface is F2
  • the component of the interfacial tension ⁇ acting on both the left and right sides is F3 F1 to F3 are respectively given by Equation 2, Equation 3, and Equation 4 in FIG.
  • the pressure P due to the surface tension acting on the solution can be adjusted in the channel 114 in which the working electrode 132 is formed. .
  • the shape of the channel cross section parallel to the yz plane is rectangular has been described, but the shape of the channel cross section is not limited to this, and is circular, elliptical, semicircular, And an inverted triangular shape or the like. Even if the shape of the cross section of the flow path is other than a rectangle, the component of the interfacial tension for each divided area obtained by dividing the inner periphery (circumference on the inner surface of the flow path) of the flow path according to the value of the contact angle ⁇ The pressure P acting on the entire solution in the flow path can be obtained by accumulating (summing up) the components of the interfacial tension according to the composition ratio of each divided region (see Equation 5 in FIG. 21).
  • the pressure P acting on the solution on the working electrode 132 is set to 0 or negative in a state where no voltage is applied to both electrodes.
  • the voltage is applied to both electrodes, it is necessary to adjust appropriately so as to be positive.
  • the present invention has been found as a result of detailed examination of the problems of the conventional EW valve as described above.
  • embodiments of the present invention for solving such problems will be described in detail.
  • FIG. 1 is an (assembly) structure diagram showing the structure of the flow channel structure 10, (a) of FIG. 1 shows the overall structure of the flow channel structure 10, and (b) of FIG. The structure of the second substrate 110 when the structure 10 is disassembled is shown, and FIG. 1C shows the structure of the first substrate 111.
  • FIG. 2 is a cross-sectional view of the A-A ′ cross section shown in FIG.
  • FIG. 3 is a partially enlarged view in which the vicinity of an example of the working electrode 132 is enlarged.
  • the flow path structure 10 includes a first substrate 111 (polydimethylsiloxane (PDMS): contact angle 100 ° to 120 °) and a second substrate 110. (Glass: contact angle 5 ° to 30 °) is a superposed (joined) structure.
  • PDMS polydimethylsiloxane
  • Glass contact angle 5 ° to 30 °
  • the flow path structure 10 includes a first substrate 111 on which at least a flow path forming groove 114 a is formed, and a second substrate 110 that seals the flow path forming groove 114 a formed on the first substrate 111.
  • a capillary tube such as the channel 114
  • the creation is Easy. Therefore, the flow channel structure 10 can be easily manufactured.
  • PDMS described above is a hydrophobic material, and glass is a hydrophilic material. Therefore, it is possible to easily form the flow path forming groove 114a and bond the two first substrates 111 and the second substrate 110 together. Further, in each flow path, since the flow path inner surface of the flow path forming groove 114a of the first substrate 111 becomes hydrophobic, it is possible to prevent liquid leakage from the bonded portion of the first substrate 111 and the second substrate 110. it can.
  • the first substrate 111 has an injection hole (liquid introduction hole) 112 for injecting the solution into the flow path structure 10 and a discharge hole (liquid discharge) for discharging the solution to the outside of the flow path structure 10.
  • Hole) 113 and a flow path forming groove 114a for forming a flow path 114 connecting the injection hole 112 and the discharge hole 113 are formed (see FIG. 1C).
  • the second substrate 110 is provided with a reference electrode 131 and a working electrode 132 for the EW valve, an extraction electrode 133 extending each electrode, and an external connection terminal electrode (external connection terminal) 136.
  • the range occupied by the reference electrode 131 is included in the range occupied by the flow path 114 (flow path width w> reference electrode width), and the working electrode.
  • the range occupied by 132 has an intersection with the range occupied by the flow path 114 (flow path width w ⁇ working electrode width) (see FIG. 1A).
  • the flow path 114 has a constant flow path width w (groove width) and a flow path height h (groove height).
  • the arrangement direction in which a plurality of hydrophobic portions (hydrophobic portions, land portions) 135 and hydrophilic portions (hydrophilic portions, groove portions) 134 are arranged on the surface of the working electrode 132 is The direction is perpendicular to the direction in which the solution flows (the direction of pressure P).
  • the pressure P acting on the solution around the working electrode 132 in a state where no voltage is applied is set to 0 or negative, It must be designed to be positive when a voltage is applied.
  • the pressure P acting on the solution in the peripheral portion of the working electrode 132 in a state where no voltage is applied. May become positive and the solution may move without stopping.
  • the working electrode 132 includes a region having both the hydrophobic portion 135 and the hydrophilic portion 134 in a direction orthogonal to the direction in which the solution flows (see FIG. 3).
  • hydrophilic means a case where pure water (25 ° C.) having a specific resistance larger than 18 m ⁇ ⁇ cm is used and the contact angle measured at 1 atm and 25 ° C. is less than 90 °. “Performance” means that the contact angle of the pure water is 90 ° or more.
  • the hydrophobicity On the line segment along the arrangement direction in the flow path cross section (aa ′ cross section shown by the broken line in FIG.
  • the value of the ratio a is not particularly limited, but a range of 0.2 ⁇ a ⁇ 0.8 is preferable. If it is less than 0.2, the effect of reliably stopping the solution is reduced. If it exceeds 0.8, the applied voltage becomes high and there is a risk of bubbles being generated due to electrolysis of the solution.
  • the channel cross section having both the hydrophobic portion 135 and the hydrophilic portion 134 has the hydrophobic portion 135.
  • the flow path structure 10 even when the hydrophilic portion 134 is more hydrophilic than the design value in a state where no voltage is applied, the flow structure having both the hydrophobic portion 135 and the hydrophilic portion 134. In the path cross section, the pressure P acting on the solution is maintained at 0 or negative, and the solution can be stopped reliably.
  • the contact angle ⁇ of the solution with respect to the surface of the working electrode 132 is reduced, and the solution can pass over the working electrode 132. That is, the flow of the solution can be controlled by the presence or absence of voltage application.
  • the applied voltage at which the pressure P acting on the solution in the channel cross section having both the hydrophobic portion 135 and the hydrophilic portion 134 becomes positive is the area SA of the hydrophilic portion 134 on the surface of the working electrode 132 and the hydrophobic portion. Depending on the area ratio of the area SB of 135, the applied voltage decreases as the area of the hydrophobic portion 135 decreases. Therefore, according to the flow path structure 10, both the hydrophobic portion 135 and the hydrophilic portion 134 are provided by having the hydrophilic portion 134 as compared with the case where the entire working electrode 132 is covered with the hydrophobic film.
  • the applied voltage at which the pressure P acting on the solution in the channel cross section having a positive value can be reduced. Therefore, the generation of bubbles due to the electrolysis of the solution that occurs when the applied voltage is increased is suppressed, and the “movement” and “stop” of the solution are accurately controlled in the flow path structure 10 that does not have an external power source. It becomes possible.
  • the number of reference electrodes may be two or more, and the number of working electrodes may be two or more.
  • one or more counter electrodes may be provided to suppress the flow of current to the reference electrode and stabilize the potential of the reference electrode.
  • the thickness of the first substrate 111 is about 0.1 mm to 10 mm, and each of the injection hole 112 and the discharge hole 113 may be a through hole having a diameter of 10 ⁇ m or more.
  • the channel width w and the channel height h are 600 ⁇ m and 50 ⁇ m, respectively.
  • a hydrophobic PDMS substrate is used as the first substrate 111, and a hydrophilic glass substrate is used as the second substrate 110.
  • the present invention is not limited to this. What is necessary is just to select an appropriate material according to ten use uses.
  • the light emission from the excitation light is small as one or both of the first substrate 111 and the second substrate 110. It is desirable to use a transparent or translucent material.
  • the first substrate 111 and the second substrate 110 be a material capable of forming electrodes.
  • a material capable of forming an electrode glass, quartz, silicon and the like are preferable from the viewpoint of productivity and reproducibility.
  • the flow channel structure 10 has the hydrophobic part 135 and the hydrophilic part 134 on the surface of the working electrode 132 that contacts the solution.
  • the interfacial tension of the gas-liquid interface at an arbitrary point on the surface of the working electrode 132 is ⁇ and the contact angle of the solution is ⁇
  • the capillary force at an arbitrary point on the surface of the working electrode 132 is affected.
  • the component of the interfacial tension ⁇ in the direction of the pressure P is proportional to ⁇ cos ⁇ .
  • the total area of the hydrophobic portion 135 on the surface of the working electrode 132 is SA
  • the total area of the hydrophilic portion 134 is SB
  • the contact angle of the hydrophobic portion 135 is ⁇ A
  • the contact angle of the hydrophilic portion 134 is ⁇ B
  • the pressure P of the solution on the working electrode 132 is correlated with ⁇ cos ( ⁇ A) ⁇ SA + ⁇ cos ( ⁇ B) ⁇ SB.
  • the applied voltage at which the pressure P of the solution on the working electrode 132 becomes positive depends on the ratio of the area SA and the area SB to the surface of the working electrode 132.
  • the flow path structure 10 is configured to have the hydrophobic portion 135 on a part of the surface of the working electrode 132 and the hydrophilic portion 134 on the other part.
  • the working electrode 132 is compared with a conventional EW valve in which a hydrophobic film is formed on the entire surface of the working electrode 132.
  • the applied voltage at which the pressure P is positive can be reduced to an appropriate value. Therefore, the generation of bubbles due to the electrolysis of the solution that occurs when the applied voltage is increased is suppressed, and the movement of the solution stopped on the working electrode 132 is accurately performed in the flow path structure 10 that does not include an external power source. It becomes possible to control.
  • the solution stopped on the working electrode 132 can be reliably moved.
  • the manufacturing method of the flow path structure 10 may include at least the following steps (1) to (4).
  • the flow path forming groove 114a is formed on the first substrate 111 (flow path forming groove forming step).
  • the working electrode 132 is made of a hydrophilic conductive material, and a hydrophobic portion 135 and a hydrophilic portion 134 are formed on the surface of the working electrode 132 that is hydrophobized to come into contact with the working electrode 132 solution. Are formed (hydrophobization treatment step).
  • the working electrode 132 is placed on the second substrate 110 (working electrode placement step).
  • the flow path forming groove 114a formed on the first substrate 111 is sealed with the second substrate 110 (flow path forming groove sealing step). Note that the order of the steps (1) to (4) described above may be appropriately determined as necessary. Thereby, the flow path structure 10 mentioned above can be produced easily.
  • a part of the working electrode 132 is subjected to a hydrophobic treatment by using a hydrophobic treatment agent or forming a hydrophobic film having a hydrophobic functional group on the surface of the working electrode 132. May be.
  • a photoresist film is applied to the surface of the working electrode 132 to perform exposure / development / pattern formation, and then a hydrophobic treatment agent is applied to the exposed portion using the resist film as a mask, or a hydrophobic film is formed. It ’s fine.
  • a hydrophobic treatment agent may be applied to the entire surface of the working electrode 132 or a hydrophobic film may be formed, and then a part of the hydrophobic material may be removed by photolithography or etching.
  • the hydrophobicity may be further increased by adjusting the surface roughness of the hydrophobically treated portion of the working electrode 132 in the hydrophobic treatment process using the hydrophobic film or the hydrophobic treatment agent.
  • a photoresist film is applied to the surface of the working electrode 132 to perform exposure / development / pattern formation, and then the exposed portion is struck with gas using the photoresist film as a mask to adjust the surface roughness of the portion. Thereafter, a hydrophobic treatment agent may be applied or a hydrophobic film may be formed. By adjusting the surface roughness and increasing the surface area, the hydrophobicity of the hydrophobic treated part can be increased.
  • the hydrophobic case ( ⁇ > 90 °) is more hydrophobic ( ⁇ w> ⁇ ) and the hydrophilic case ( ⁇ ⁇ 90 °) is more hydrophilic ( ⁇ w ⁇ ).
  • hydrophobization process is not limited to the method described above.
  • FIG. 5 shows the flow of the solution in the flow channel 114 of the flow channel structure 10 according to the present exemplary embodiment.
  • FIG. 5A shows a state where the voltage application is OFF
  • FIG. 5B shows a state where the voltage application is ON.
  • the working electrode 132 for the EW valve is formed so as to cover the flow path portion of the hydrophilic second substrate 110 constituting one surface of the flow path inner surface (in the flow path forming groove 114a).
  • the hydrophobic portion 135 on the surface of the working electrode 132 is covered with a hydrophobic film (fluorocarbon film).
  • the solution injected (introduced) from the injection hole 112 flows through the flow channel 114 in contact with the reference electrode 131, and around the working electrode 132 provided in a specific region (region where the solution is to be stopped) of the flow channel 114.
  • the working electrode 132 is made of gold (contact angle: 60 ° to 85 °), and the hydrophobic portion 135 is covered with a hydrophobic film (contact angle: 95 to 120 °).
  • a region having both the hydrophobic portion 135 and the hydrophilic portion 134 is provided on the surface of the working electrode 132.
  • the contact angle of the hydrophilic portion 134 is ⁇ 2
  • the contact angle of the hydrophobic portion 135 is ⁇ 3
  • the height of the flow path is h
  • the width of the flow path is w
  • the contact angle of the first substrate 111 is ⁇ 1
  • the interfacial tension of the liquid interface is ⁇
  • the length of the hydrophobic portion 135 in the cross section of the flow path perpendicular to the direction of solution flow When the ratio of the total sum to the flow path width w is the ratio a, the pressure P acting on the solution in the region having both the hydrophobic portion 135 and the hydrophilic portion 134 is obtained by Equation 6 in FIG. . Therefore, in the channel cross section having both the hydrophobic portion 135 and the hydrophilic portion 134, the pressure P shifts to the negative side as compared with the case of only the hydrophilic portion 134.
  • the surface of the working electrode 132 is provided with a region in which both the hydrophobic portion 135 and the hydrophilic portion 134 are arranged in a direction orthogonal to the direction in which the solution flows. Even when the contact angle ⁇ of the portion 134 becomes smaller than the designed value, the solution stops in the flow channel region including the hydrophobic portion 135, and malfunction due to deviation from the design can be prevented.
  • the applied voltage at which the pressure P acting on the solution in the cross section of the flow path including the hydrophobic portion 135 is positive can be reduced as compared with the case where the entire working electrode 132 exhibits hydrophobicity. it can. Therefore, generation of bubbles due to electrolysis of the solution that occurs when the applied voltage is increased is suppressed, and the “movement” and “stop” of the solution are accurately controlled in the flow path structure 10 that does not have an external power source. Is possible.
  • the value of the ratio a is not particularly limited, but as described above, the range of 0.2 ⁇ a ⁇ 0.8 is preferable. Even when the flow path height h and the flow path width w are changed, the capillary force can be adjusted by changing the value of the ratio a.
  • the value of the ratio b is preferably 0.6 or less. When it exceeds 0.6, the applied voltage becomes high, approaching the voltage at which the solution is electrolyzed, and there is a risk of bubbles being generated by electrolysis.
  • a hydrophilic material is used as the constituent material of the working electrode 132, and the hydrophobic portion 135 is formed.
  • a technique of treating the region to be hydrophobic can be used.
  • conductive gold As a constituent material of the working electrode 132. Carbon or bismuth may be used in addition to gold. These materials have an advantage that, when a voltage is applied to the working electrode 132, generation of hydrogen or the like is small and the electrode is not easily deteriorated.
  • the hydrophobic film a fluorine-containing substance or a substance containing a thiol group is suitable. By using these substances, the contact angle can be made larger than 90 °, and it becomes easy to stop the solution with the EW valve in a state where no voltage is applied, so that the EW valve can be stably opened and closed. it can.
  • the hydrophobic film (thin film) is not limited to the above substances, and may be any film having a contact angle ⁇ larger than 90 °.
  • the thickness of the hydrophobic film is preferably 100 nm or less.
  • hydrophilic gold contact angle: 60 ° to 85 °
  • fluorocarbon film Contact angle: 100 ° to 120 °
  • each hydrophobic portion 135 may form a land portion, and the hydrophilic portion 134 may form a groove portion surrounding each hydrophobic portion 135.
  • the working electrode 132 having both the hydrophobic portion 135 and the hydrophilic portion 134 can be easily realized. Moreover, since it does not have a complicated pattern, the hydrophobic portion 135 can be easily formed.
  • a pattern is used in which hydrophobic portions 135 having a length of 50 ⁇ m and a width of 50 ⁇ m are arranged in a matrix at intervals of 50 ⁇ m.
  • a plurality of regions having both the hydrophobic portion 135 and the hydrophilic portion 134 are provided in a direction perpendicular to the direction in which the solution flows, and the solution is applied by the EW valve in a state where no voltage is applied. Therefore, the valve can be opened and closed stably.
  • a plurality of line segments drawn between both ends of the working electrode 132 are defined along the direction orthogonal to the direction in which the solution flows, and the total length of the hydrophobic portions 135 on each line segment is defined. Is the total length of the hydrophobic portion, on the working electrode 132, there is at least one set of line segments having different ratios (ratio a) of the total length of the hydrophobic portion to the channel width w.
  • a region where a line segment having a high ratio a can be drawn (a region where a line segment having a low ratio b can be drawn) and a region where a line segment having a low ratio a can be drawn (ratio b) can be drawn along a direction orthogonal to the direction in which the solution flows.
  • the above-described region where a line segment having a high ratio a can be drawn by alternately arranging a region where a line segment having a high ratio a can be drawn and a region where a line segment having a low ratio a can be drawn in the flowing direction of the solution Is provided, it is possible to accurately control the “movement” or “stop” of the solution.
  • the shape of the hydrophobic portion 135 is not limited to the island shape as described above.
  • the shape of the hydrophobic portion 135 is a straight line arranged in parallel with the solution flow direction.
  • the pattern stripe pattern may be formed.
  • the entire working electrode is provided with a region having both the hydrophobic portion 135 and the hydrophilic portion 134 in a direction orthogonal to the direction in which the solution flows. Since it is easy to stop the solution with the valve, the valve can be opened and closed stably. Further, since the shape is simple, there is an advantage that the manufacturing is easy.
  • the shape of the hydrophobic portion 135 is a linear pattern (striped pattern) arranged along the direction perpendicular to the direction in which the solution flows. It may be formed.
  • the total length of the hydrophobic portion 135 is smaller than that in FIG. 4B (ratio a ⁇ 1). Therefore, the applied voltage in the aa ′ cross section is unlikely to increase.
  • the channel width w and the channel height h in the channel 114 of the channel structure 10 shown in FIG. 1 are not particularly limited, but the solution can penetrate due to the wetness of the solution and the capillary force. It is preferable to set to a proper size.
  • the channel height h is preferably set to about 1 ⁇ m to 5 mm, and the channel width w is preferably set to about 1 ⁇ m to 5 mm.
  • the flow channel structure 10 uses, for example, an upstream region of the working electrode 132 as a region where the solution is mixed, immobilizes an antibody or the like in a region downstream of the working electrode 132, and an antigen in the downstream region.
  • An antigen-antibody reaction is performed by flowing a solution containing a fluorescent dye, and further an antigen-antibody reaction is performed by flowing a solution containing a labeled antibody to which a fluorescent dye has been attached. It can be used as a micro-analysis chip that measures
  • Hydrophilicity and “hydrophobic” of the inner surface of each flow path can be easily realized by using a hydrophilic substrate or a hydrophobic substrate as a substrate material.
  • the properties are not limited to those derived from the properties of the substrate material itself.
  • “hydrophilicity” can be realized by subjecting the substrate surface made of a hydrophobic material to hydrophilic treatment. Further, it may be made “hydrophobic” by applying a hydrophobic treatment such as formation of a hydrophobic film on the substrate surface made of a hydrophilic material.
  • hydrophilization treatment for example, oxygen plasma treatment or UV (Ultra Violet) treatment can be used.
  • hydrophilicity may be enhanced by applying a surfactant or a reagent having a hydrophilic functional group to the surface.
  • hydrophobizing treatment there are a hydrofluoric acid treatment and a method of forming a tetrafluoroethylene film.
  • FIG. 6 is an (assembly) structural diagram showing the structure of the flow channel structure 20, FIG. 6 (a) shows the overall structure of the flow channel structure 20, and FIG. 6 (b) shows the flow channel structure. 6 shows the configuration of the fourth substrate (second substrate) when the structure 20 is disassembled, FIG. 6C shows the configuration of the flow path forming layer (intermediate layer), and FIG. The structure of a 3rd board
  • FIG. 7 is a cross-sectional view of the B-B ′ cross section shown in FIG.
  • the second substrate (fourth substrate) 110 is the same as that in the first embodiment. For this reason, hereinafter, the structure of the third substrate 115 and the intermediate layer (flow path forming layer) 116 will be described in detail, and the description of the structure of the second substrate 110 will be omitted as appropriate.
  • the flow path structure 20 includes a second substrate 110 (glass: contact angle 5 ° to 30 °) and a third substrate 115 (polydimethylsiloxane (PDMS): contact angle 100 ° to 120 °) and intermediate layer 116 (film resist: contact angle 100 ° to 120 °) are superposed (bonded) structures.
  • a second substrate 110 glass: contact angle 5 ° to 30 °
  • a third substrate 115 polydimethylsiloxane (PDMS): contact angle 100 ° to 120 °
  • intermediate layer 116 film resist: contact angle 100 ° to 120 °
  • the flow path structure 20 seals the intermediate layer 116 having at least the flow path forming hole 114b and the flow path forming hole 114b formed in the intermediate layer 116 from one side of the intermediate layer 116.
  • the substrate 115 and the second substrate 110 that seals the flow path forming hole 114b formed in the intermediate layer 116 from the other side of the intermediate layer 116 are provided.
  • the flow path structure 20 can be easily manufactured.
  • the third substrate 115 is formed with an injection hole 112 for injecting (introducing) the solution into the flow path structure 20 and a discharge hole 113 for discharging the solution to the outside of the flow path structure 20 ( (See (d) of FIG. 6).
  • the injection hole 112 In the intermediate layer 116, the injection hole 112, the discharge hole 113, and the flow path forming hole 114b for forming the flow path 114 connecting the injection hole 112 and the discharge hole 113 are formed ((c in FIG. 6). )reference).
  • the second substrate 110 is provided with a reference electrode 131 and a working electrode 132 for the EW valve, a lead electrode 133 extending each electrode, and an external connection terminal electrode 136.
  • the range occupied by the reference electrode 131 is included in the range occupied by the flow path 114 (flow path width w> reference electrode width), and the working electrode.
  • the range occupied by 132 is arranged to intersect the range occupied by the flow path 114 (flow path width w ⁇ working electrode width) (see FIG. 6B).
  • the flow path 114 has a constant flow path width w (groove width) and flow path height h (groove height).
  • the surface of the working electrode 132 includes a region having both a hydrophobic portion 135 and a hydrophilic portion 134 in a direction orthogonal to the direction in which the solution flows.
  • the thickness of the third substrate 115 is about 0.1 mm to 10 mm, and the injection hole 112 and the discharge hole 113 may be through holes having a diameter of 10 ⁇ m or more.
  • the thickness of the intermediate layer 116 corresponds to the flow path height h, it is set to a dimension that allows the solution to penetrate due to the wetness of the solution and the capillary force. Preferably, it is set to about 1 ⁇ m to 5 mm.
  • the flow path height h is constant, and the capillary force can be adjusted only by the flow path width w.
  • the channel width w and the channel height h are 600 ⁇ m and 50 ⁇ m, respectively.
  • the intermediate layer 116 may be made of a hydrophobic material. Thereby, the flow path inner surface where both hydrophilic property and hydrophobic property exist can be formed easily. Further, since the wall surface of the flow path forming hole 114b formed in the intermediate layer 116 is hydrophobic, liquid leakage from the bonded portion of the substrates can be prevented.
  • a photoresist may be used as the intermediate layer 116.
  • the alignment accuracy can be improved as compared with the bonding method.
  • a hydrophobic PDMS substrate is used as the third substrate 115 and a hydrophilic glass substrate is used as the second substrate 110.
  • the present invention is not limited to this. It is preferable to select an appropriate material according to the use application of the flow channel structure 20.
  • the light emitted from the excitation light is small as one or both of the third substrate 115 and the second substrate 110. It is desirable to use a transparent or translucent material.
  • Such a transparent or translucent material is as described in the flow path structure 10.
  • the third substrate 115 and the second substrate 110 be a material capable of forming an electrode.
  • the material capable of forming an electrode is as described in the flow path structure 10.
  • Formation method of flow path formation hole 114b Examples of the method for forming the flow path forming hole 114b, the injection hole 112, and the discharge hole 113 (through hole) in the intermediate layer 116 include a machining method, a laser processing method, and a chemical or gas etching method. is there. Further, as described above, the pattern of the flow path formation hole 114b, the injection hole 112, and the discharge hole 113 may be formed in the photoresist by using a photolithography method.
  • the manufacturing method of the flow path structure 20 may include at least the following steps (1) to (4).
  • the flow path forming hole 114b is formed in the intermediate layer 116 (flow path forming hole forming step).
  • the working electrode 132 is made of a hydrophilic conductive material, and a hydrophobic portion 135 and a hydrophilic portion 134 are formed on the surface of the working electrode 132 that is hydrophobized to come into contact with the working electrode 132 solution. Are formed (hydrophobization treatment step).
  • the working electrode 132 is placed on the second substrate 110 (working electrode placement step).
  • the flow path forming hole 114b formed in the intermediate layer 116 is sealed with the third substrate 115 from one side of the intermediate layer 116 and with the second substrate 110 from the other side of the intermediate layer 116 ( (Flow path forming hole sealing step)
  • the order of the steps (1) to (4) described above may be appropriately determined as necessary. Thereby, the flow path structure 20 mentioned above can be produced easily.
  • hydrophobization process is the same as described in the method for manufacturing the flow path structure 10, and therefore the description thereof is omitted here.
  • the formation pattern of the hydrophobic portion 135 and the hydrophilic portion 134 on the working electrode 132 of the flow channel structure 20 is the same as that of the flow channel structure 10, and therefore the description thereof is omitted here (FIGS. 3 and 3). 4).
  • FIG. 8 is an (assembly) structural diagram showing the structure of the flow path structure 30.
  • FIG. 8A shows the overall structure of the flow path structure 30, and
  • FIG. 8B shows the flow path structure.
  • the structure of the second substrate 110 when the structure 30 is disassembled is shown, and
  • FIG. 8C shows the structure of the first substrate 111.
  • the flow path structure 30 of the present embodiment includes a first substrate 111 (polydimethylsiloxane (PDMS): hydrophobic) and a second substrate 110 (glass: hydrophilic). Is the same as that of the first embodiment described above in that they are superposed (joined) structures.
  • PDMS polydimethylsiloxane
  • the flow path width w ′ of the narrow path 114c in the peripheral part of the working electrode 132 is the same as that of the above embodiment except that the flow path width w of the other part is narrower. This is the same as the first embodiment. Therefore, the substrate configuration, the flow path, the injection hole, and the like are the same as those in the first embodiment, and the description thereof is omitted.
  • FIG. 9 is a partially enlarged view in which the peripheral portion of the working electrode 132 of the flow channel structure 30 is partially enlarged.
  • the channel height of the channel 114 is h.
  • the channel width w ′ of the narrow channel 114c is made narrower than the channel width w of other portions,
  • the ratio of the inner surface of the channel whose channel height h is kept constant is higher than the ratio of the inner surface of the channel whose channel width w is narrowed (of the channel width w ′).
  • the hydrophobicity around the working electrode 132 can be increased.
  • the hydrophilicity of the periphery of the working electrode 132 can be increased.
  • the flow channel width w is the working electrode. Since the narrow path 114c on the 132 is present, the ratio of the first substrate 111 in the narrow path 114c is higher than the ratio of the second substrate 110. Therefore, the hydrophobic area around the working electrode 132 is hydrophobic. Can increase the sex.
  • the channel height h, the channel width w, and the channel width w ′ which are variables of the equation 6 in FIG. 21, are set so that the capillary force does not act on the channel structure 30 in the state where the voltage application is OFF.
  • the design of making the pressure P due to the surface tension generated in the solution on the working electrode 132 zero or negative becomes easy.
  • FIG. 10 is a cross-sectional view showing the configuration of the flow path structure 30.
  • the channel width w of the channel 114 is constant, but the channel height h ′ is higher than the channel height h of other parts.
  • a stepped portion 114 d that is higher than that of the working electrode 132 is provided.
  • the flow path structure 40 has the same configuration as the flow path structure 10 except for the stepped portion 114d, and a description thereof will be omitted here.
  • the flow path height h ′ of the stepped portion 114d is made higher than the flow path height h of the other portion while the flow path width w is kept constant on the working electrode 132.
  • the ratio of the channel height h ′ occupied by the channel inner surface is higher than the ratio of the channel inner surface where the channel width w is kept constant.
  • the hydrophobicity around the working electrode 132 can be increased.
  • the hydrophilicity of the periphery of the working electrode 132 can be increased.
  • the flow path structure 40 includes the first substrate 111 made of a hydrophobic material and the second substrate 110 made of a hydrophilic material as described above, the stepped portion 114d exists.
  • the proportion of the second substrate 110 on the working electrode 132 in the stepped portion 114d is higher than the proportion of the second substrate 110, the hydrophobicity of the peripheral portion of the working electrode 132 can be increased.
  • the channel height h, the channel height h ′, and the channel width which are the variables of Equation 6 in FIG. 21, are set so that the capillary force does not act on the channel structure 40 in the state where the voltage application is OFF.
  • Set w Employing the above configuration facilitates a design in which the pressure P due to the surface tension generated in the solution on the working electrode 132 is zero or negative.
  • FIG. 11 is an assembly structure diagram illustrating an overall configuration of the flow path structure 50 according to the fourth embodiment.
  • the flow path structure 50 of the present embodiment is substantially the same as the flow path structure 10 of the first embodiment, except that two EW valves composed of the working electrode 132 and the reference electrode 131 are arranged in series. It is. Therefore, the explanation about each component and the design requirements for stopping the solution are omitted.
  • FIG. 12 is an assembly structure diagram showing the overall configuration of the flow path structure 60.
  • the flow path structure 60 is different from the flow path structure 50 of the fourth embodiment in that a bottleneck 114c shown in FIG. 9 is provided for every two EW valves arranged in series.
  • this flow channel structure 60 it is possible to control the stopping and movement of the solution in two stages by the flow channel 114 while making the hydrophobicity higher by the bottleneck 114c.
  • two EW valves are arranged in series, but three or more EW valves may be arranged as necessary.
  • FIG. 13 is an assembly structure diagram showing the overall configuration of the flow path structure 70 of the fifth embodiment.
  • the flow path structure 70 of the present embodiment includes two EW valves, an EW valve composed of the working electrode 132a and the working electrode 132a, and an EW valve composed of the working electrode 132b and the reference electrode 131b.
  • the structure other than the point arranged in parallel and the point where the flow path 114 is branched into the second flow path (flow path) 151a and the second flow path (flow path) 151b are the flow path structure of the first embodiment. It is almost the same as the body 10. Therefore, the explanation about each component and the design requirements for stopping the solution are omitted.
  • injection holes (liquid introduction holes) 112a and injection holes (liquid introduction holes) 112b In the flow channel structure 70, two injection holes (liquid introduction holes) 112a and injection holes (liquid introduction holes) 112b, and a second flow path 151a and a second flow path 151b continuous with the injection holes 112a and 112b, respectively. And a flow path 114 that is continuous with each of the second flow path 151a and the second flow path 151b, and a discharge hole 113 that is continuous with the flow path 114.
  • the working electrode 132a and the working electrode 132a are formed in the second flow path 151a
  • the working electrode 132b and the reference electrode 131b are formed in the second flow path 151b.
  • the flow path structure 70 of the present embodiment has a structure in which two EW valves are arranged in parallel, but three or more EW valves may be arranged as necessary.
  • FIG. 14 is an assembly structure diagram showing the overall configuration of the flow path structure 70.
  • a flow path 114 continuous to the flow path 152a and the third flow path 152b and a discharge hole 113 continuous to the flow path 114 are provided.
  • the reference electrodes 131a and 131b are formed inside the second flow paths 151a and 151b, respectively, and the working electrodes 132a and 132b are the second flow paths 151a and 151b and the third flow paths 152a and 152b, respectively. It is formed in the vicinity of the exit that switches to.
  • the substrate configuration is the same as in the third embodiment.
  • the flow path width on the working electrodes 132a and 132b is narrowed.
  • two EW valves according to the fifth embodiment are arranged in parallel to obtain the same effect as in the third embodiment.
  • FIG. 15 is an (assembly) structure diagram showing the structure of the flow channel structure 90.
  • FIG. 15 (a) shows the overall structure of the flow channel structure 90
  • FIG. 15 (b) shows the flow channel structure.
  • the structure of the second substrate 110 when the structure 90 is disassembled is shown
  • FIG. 15C shows the structure of the first substrate 111.
  • the flow path structure 90 of the sixth embodiment is the same as that of the first embodiment except that the counter electrode 137 is provided in order to stabilize the potential of the reference electrode 131.
  • the counter electrode 137 By providing the counter electrode 137, a current flow to the reference electrode 131 serving as a potential reference can be prevented, and the potential of the working electrode 132 can be stabilized. Due to this effect, the EW valve can be electrically driven with higher accuracy.
  • the first substrate 111 and the second substrate 110 are stacked in the same manner as in the first embodiment.
  • a third structure is used.
  • the substrate 115, the intermediate layer 116, and the second substrate 110 may be stacked. In this case, the same effect can be obtained.
  • the flow path structures 10 to 90 according to the first to sixth embodiments fix the antibody or the like in the flow path, provide electrodes, and perform antigen-antibody reaction, reaction between enzyme-labeled antibody and antigen-antibody complex, enzyme substrate It can be used as a microanalysis chip in which the reaction is performed and the amount of the electrode active substance generated by the enzyme substrate reaction is detected by the electrode.
  • the flow channel structures 10 to 90 according to the first to sixth embodiments are developed into micro analysis chips.
  • the micro analysis chip (analysis chip) 2302 of Embodiment 7 details of a specific configuration of the micro analysis chip (analysis chip) 2302 of Embodiment 7 will be sequentially described.
  • FIG. 16 is a configuration diagram showing the overall structure of the micro analysis chip 2302.
  • the micro analysis chip 2302 includes a first injection hole (liquid introduction hole) 2001, a second injection hole (liquid introduction hole) 2002, a first liquid reservoir (flow path) 2003, and a second liquid reservoir.
  • Part (flow path) 2004, injection path (flow path) 2005, injection path (flow path) 2006, mixer section (flow path) 2007, first flow path (flow path) 2008, first narrow path (flow path) 2009, A second flow path (flow path) 2010, a second narrow path (flow path) 2011, a third narrow path (flow path) 2013, a discharge hole (liquid discharge hole) 2014, and a third flow path (flow path) 2016 are provided.
  • the first solution and the second solution are injected (introduced) into the first injection hole 2001 and the second injection hole 2002, respectively.
  • Each of the first liquid reservoir 2003 and the second liquid reservoir 2004 is continuous with the first injection hole 2001 and the second injection hole 2002.
  • Each of the injection path 2005 and the injection path 2006 is continuous with the first liquid reservoir portion 2003 and the second liquid reservoir portion 2004.
  • the first flow path 2008 is provided with a reaction section (analysis section) 2017, and the second flow path 2010 is provided with a detection section (analysis section) 2012.
  • a working electrode (not shown) is formed, and in the first liquid reservoir 2003, a reference electrode (not shown) is formed and functions as a first opening / closing valve.
  • a working electrode (not shown) is formed in the injection path 2006, and a reference electrode (not shown) is formed in the second liquid reservoir 2004, and functions as a second opening / closing valve. That is, this embodiment uses the fifth embodiment. Further, an external connection terminal 2015 is provided at the end of the micro analysis chip 2302.
  • the first solution When the first solution is injected from the first injection hole 2001, the first solution is injected into the first liquid reservoir 2003. Similarly, when the second solution is injected into the second injection hole 2002, the second solution is injected into the second liquid reservoir 2004.
  • the inflow of the injected solution to the mixer unit 2007 can be stopped or started by the working electrode and the reference electrode.
  • the mixer unit 2007 has a structure capable of mixing the first solution and the second solution.
  • a first flow path 2008 is connected to the mixer unit 2007 via a first bottleneck 2009.
  • a substance that reacts with the substance to be detected contained in the solution is disposed.
  • the mixer unit 2007 and the reaction unit 2017 are connected via the first bottleneck 2009, but may be directly connected without passing through the first bottleneck 2009.
  • the second flow path 2010 is connected to the first flow path 2008 via the second narrow path 2011, and the second flow path 2010 is provided with a detection unit 2012.
  • the detection unit 2012 is configured to be able to detect a substance to be detected directly or indirectly.
  • it when it is the structure which can detect a to-be-detected substance directly, it can be set as the structure which does not have the 2nd flow path 2010.
  • the micro analysis chip 2302 has an external connection terminal 2015, and can be connected to an external power source, input an electrical control signal, output a detection signal, and the like via the external connection terminal 2015. .
  • a control circuit such as a power source or an IC (Integrated Circuit) can be externally attached, the micro analysis chip 2302 can be made compact accordingly.
  • the solution is introduced into the flow path through the first injection hole 2001 and the second injection hole 2002, and the characteristics of the solution introduced into the flow path are reacted and reacted by the reaction unit 2017 and the detection unit 2012.
  • a series of steps of detecting (analyzing) and discharging the solution introduced into the flow path from the discharge hole 2014 can be executed.
  • an antibody or the like is immobilized on the reaction unit 2017, and the antigen-antibody reaction, the reaction between the enzyme-labeled antibody and the antigen-antibody complex, and the enzyme-substrate reaction are performed, and the amount of the electrode active substance generated by the enzyme-substrate reaction is detected. It is possible to detect by the unit 2012, and the analysis by the micro analysis chip 2302 becomes easy.
  • analysis refers to the identification, detection, or chemical composition of a substance qualitatively or quantitatively.
  • the identification, detection, or chemistry of a substance caused by a chemical reaction is used. Including identification of specific composition. Therefore, the “analysis unit” may be configured by a combination of the reaction unit 2017 and the detection unit 2012 as in the present embodiment, or may be configured only by the detection unit 2012 that performs only detection.
  • the reaction unit 2017 and the detection unit 2012 may be integrated.
  • Each of the first injection hole 2001 and the second injection hole 2002 is a hole opened to the outside (atmosphere) and has a size (for example, 2 mm ⁇ ) to which capillary force does not work.
  • a size for example, 2 mm ⁇
  • the solution can be smoothly injected even if the injection hole is hydrophobic.
  • Each of the first injection hole 2001 and the second injection hole 2002 may have a size with which capillary force works. In this case, the injection hole is subjected to hydrophilic treatment so that the solution can be smoothly injected. There is a need to.
  • the solution can also be injected by connecting a cartridge filled with the solution to each of the first injection hole 2001 and the second injection hole 2002.
  • an air vent hole is provided in each of the first injection hole 2001 and the second injection hole 2002 so that the solution in the cartridge can sufficiently flow into the flow path system, or a separate air vent hole is provided. Is preferred.
  • 16 is a structure having two first injection holes 2001 and second injection holes 2002, but the number of injection holes is not limited to two, and may be three or more.
  • a sample containing a substance to be detected in the first injection hole 2001 for the first solution a reagent in the second injection hole 2002 for the second solution, and a third injection hole (not shown) for the third solution
  • a cleaning liquid may be injected into a fourth injection hole (not shown) for the fourth solution.
  • the cost performance of the analysis chip can be improved by repeatedly cleaning and using the inside of the analysis chip.
  • the contamination of the sample or the like can be reduced by injecting the cleaning liquid from the first injection hole 2001 for the first solution before and after the detection process to clean the inside of the flow path. Thereby, detection errors can be reduced.
  • the mixer unit 2007 is configured so that the first solution and the second solution can be sufficiently mixed.
  • a micro pillar structure may be provided in the mixer unit 2007 so that the solution flowing in from the first opening / closing valve and the second opening / closing valve is naturally mixed.
  • a T-shaped mixer, a Manz mixer, a mixer using a three-dimensional meandering channel, and the like can be provided.
  • FIG. 16 is a case where two types of solutions are mixed, but three or more types of solutions may be mixed.
  • the first flow path 2008 functions as a reaction region for performing a reaction.
  • the reaction unit 2017 provided in the first flow path 2008 may be the whole of the first flow path 2008 or a part thereof.
  • the reaction unit 2017, for example, molecules that specifically recognize and react with a substance to be detected contained in the sample solution are arranged.
  • the substance to be detected is an antigen
  • the antibody may be immobilized on the reaction unit 2017.
  • a sandwich method of enzyme immune reaction can be used. In this case, an antigen is reacted with an enzyme-labeled antibody (secondary antibody), and a complex in which the antigen and the enzyme-labeled antibody are bound to each other. To do.
  • This complex is immobilized in advance on the reaction unit 2017 and reacted with an antibody (primary antibody).
  • a substrate is introduced, reacted with an enzyme labeled with the secondary antibody, and an electrochemically active substance generated by the reaction is electrochemically detected on the electrode of the detection unit 2012.
  • an electrochemically active substance generated by the reaction is electrochemically detected on the electrode of the detection unit 2012.
  • a substance that can be detected by the detection unit 2012 is generated according to the amount of the substance to be detected.
  • the detection means in the reaction unit 2017 may be an optical means.
  • the external connection terminal 2015 is an interface for receiving driving power from an external driving power source to the micro analysis chip 2302, receiving a driving signal (control signal), and outputting a detection result and the like to the outside.
  • the external connection terminal 2015 can be formed in the same manner as the EW valve, the detection electrode, and the like, so that production efficiency is good.
  • other conductive materials such as copper, iron or aluminum may be used instead of gold.
  • the micro analysis chip according to the seventh embodiment has a two-layer structure in which a first substrate 2101 and a second substrate 2102 are overlapped. Each layer structure of the two-layer structure will be described with reference to FIG.
  • the first substrate 2101 preferably has high transparency and processability, and preferably has hydrophobicity in order to control the movement of the solution.
  • a substrate is preferably made of polydimethylsiloxane (PDMS).
  • the second substrate 2102 is preferably made of a material on which an electrode can be easily formed.
  • the first substrate 2101 is made hydrophobic, it needs to be hydrophilic.
  • a substrate made of any of glass, quartz, silicon and the like is preferable.
  • the first substrate 2101 and / or the second substrate 2102 has the above-mentioned hydrophilic or hydrophobic characteristics, and is transparent with little emission of excitation light in order to measure the detection target substance using fluorescence or UV light.
  • a translucent material As such a material, the material described in Embodiment 1 or the material proposed in Patent Document 3 can be used.
  • first injection hole 2001, the second injection hole 2002, and the discharge hole 2014 are opened upward at the upper part of the substrate (front side with respect to the paper surface of FIG. 17A).
  • first liquid reservoir 2003, the second liquid reservoir 2004, the injection path 2005, the injection path 2006, the mixer section 2007, the first flow path 2008, the first narrow path 2009, the second flow path 2010, the second narrow path 2011, Concave grooves (flow channel forming holes) for the third narrow channel 2013 and the third flow channel 2016 are formed.
  • an electrode 2105, an electrode 2106, and a detection electrode (analysis unit) 2112 are formed on the surface, and an external connection terminal 2015 is formed on the end of the second substrate 2102. Furthermore, a lead line for connecting each electrode to the external connection terminal 2015 is formed.
  • Each electrode may be formed using a known method.
  • the first substrate 2101 and the second substrate 2102 processed as described above are bonded to each other with the processing surface inside. Thereby, the micro analysis chip 2302 according to the sixth embodiment is completed.
  • the structure in which the first substrate 2101 and the second substrate 2102 are overlapped is described.
  • the third substrate, the intermediate layer (flow path forming layer), and the second substrate are used.
  • a structure in which (fourth substrate) is overlaid may be used.
  • FIG. 18 is a perspective view showing the appearance of the control handy device 2301 and the micro analysis chip 2302 before being mounted.
  • the control handy device 2301 functions as an analyzer when the micro analysis chip 2302 is loaded.
  • the micro analysis chip 2302 is the one described in the seventh embodiment. Therefore, detailed description of the micro analysis chip 2302 is omitted here.
  • a chip connection port 2303 into which the external connection terminal 2015 of the micro analysis chip 2302 is inserted is provided at the lower part of the control handy device 2301.
  • An external input / output terminal (not shown) that is electrically connected to the connection terminal 2015 is provided.
  • the external connection terminal 2015 of the micro analysis chip 2302 When the external connection terminal 2015 of the micro analysis chip 2302 is inserted into the chip connection port 2303, the external input / output terminal in the control handy device 2301 and the external connection terminal of the micro analysis chip 2302 are electrically connected.
  • the control handy device 2301 has a display unit 2304 that can display the measurement results (amount of the substance to be detected, etc.) of the micro analysis chip 2302, and various items for specifying measurement parameters.
  • An input unit 2305 capable of inputting various data is provided.
  • the input unit 2305 for example, a touch panel structure can be adopted.
  • control handy device 2301 includes an information processing unit such as a CPU (central processing unit) that can process data and an I / O logic circuit that processes input information and output information. It has been incorporated.
  • an information processing unit such as a CPU (central processing unit) that can process data
  • an I / O logic circuit that processes input information and output information. It has been incorporated.
  • ⁇ ⁇ Connect the micro analysis chip 2302 to the control handy device 2301, input various data, and press the measurement start button. Accordingly, a solution such as a reagent solution or a sample solution (test solution; solution) that is provided in the micro analysis chip 2302 in advance and has stopped flowing into the flow path by the first opening and closing valve and the second opening and closing valve. Enter the flow path sequentially. As a result, a predetermined reaction is performed in each flow path to become a detectable substance and reaches the detection unit 2012, where an electrical signal (analysis signal) corresponding to the amount of the substance to be detected is generated. This electrical signal is output from the external connection terminal 2015 to the outside.
  • a solution such as a reagent solution or a sample solution (test solution; solution) that is provided in the micro analysis chip 2302 in advance and has stopped flowing into the flow path by the first opening and closing valve and the second opening and closing valve. Enter the flow path sequentially.
  • a predetermined reaction is performed in each flow path to become a detectable substance and reaches
  • the electrical signal output from the external connection terminal 2015 is received by an external input / output terminal of a control handy device electrically connected to the external connection terminal 2015, and this electrical signal is stored in advance in software information stored in the control handy device. Analysis is performed based on (for example, information indicating the correspondence between the electrical signal and the analysis data). Thereby, the quantity or type of the substance to be detected can be specified.
  • control handy device 2301 for example, a mobile electronic device such as a mobile phone or a personal digital assistant (PDA) can be used.
  • a mobile phone will be described as an example.
  • the above-described chip connection port 2303 is provided in a mobile phone having a computer function, and analysis software (analysis program) for processing data transmitted (output) from the micro analysis chip 2302 is stored in this mobile phone.
  • This mobile phone normally functions as a mobile phone, and can function as a control handy device 2301 as necessary.
  • a micro analysis chip 2302 is connected to a mobile phone, and various data are input using buttons of the input unit 2305 of the mobile phone, and then a button set as a measurement start button is pressed.
  • a reagent solution or a test solution which has been prepared in advance in the microanalysis chip 2302 and has stopped flowing into the flow channel by the first open / close valve and the second open / close valve, advances into the flow channel.
  • the micro analysis chip 2302 operates in sequence to output an electric signal corresponding to the amount of the substance detected by the detection unit 2012 to the mobile phone.
  • the computer of the mobile phone analyzes this signal in software to identify the amount and type of the substance to be detected. This is displayed on the display unit 2304 of the mobile phone. Also, upon receiving an instruction from the operator, the analysis information is transmitted to a remote place using the transmission function.
  • control handy device 2301 which is excellent in cost performance and convenient and easy to use.
  • the signal transmission method between the micro analysis chip 2302 and the control handy device 2301 may be any method and form as long as an electric signal can be exchanged between the two, and is not necessarily connected via the chip connection port 2303 as described above. It doesn't have to be a method.
  • each component of the control handy device 2301 may be realized by hardware by a logic circuit formed on an integrated circuit (IC chip) or by software using a CPU. May be.
  • the control handy device 2301 includes a CPU that executes instructions of various control programs such as an analysis program that implements each function, a ROM (Read Only Memory) that stores the control program, and a RAM ( Random Access Memory), a storage device (recording medium) such as a memory for storing the various programs and various data, and the like.
  • An object of the present invention is a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of a control handy device 2301, which is software that realizes the above-described functions, is recorded in a computer-readable manner. Can also be achieved by reading the program code recorded on the recording medium and executing it by the computer (or CPU or MPU).
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • IC cards including memory cards
  • semiconductor memories such as mask ROM / EPROM / EEPROM / flash ROM, or PLD (Programmable logic device) or FPGA (Field Programmable Gate Array) Logic circuits can be used.
  • control handy device 2301 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited as long as it can transmit the program code.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network (Virtual Private Network), telephone line network, mobile communication network, satellite communication network, etc. can be used.
  • the transmission medium constituting the communication network may be any medium that can transmit the program code, and is not limited to a specific configuration or type.
  • wired lines such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), IEEE 802.11 wireless, HDR ( It can also be used by wireless such as High Data Rate, NFC (Near Field Communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, and terrestrial digital network.
  • wired lines such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), IEEE 802.11 wireless, HDR ( It can also be used by wireless such as High Data Rate, NFC (Near Field Communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, and terrestrial digital network.
  • wired lines such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line,
  • the flow path structure according to the present example has the same configuration as that of the first embodiment, and is configured by superimposing two substrates (first substrate 111 and second substrate 110).
  • a resin molding method using a mold was used for forming the flow path forming groove 114a for the flow path 114 on the first substrate 111.
  • the mold was manufactured by forming a resist pattern on a silicon substrate by a photolithography method and then performing an etching by a dry etching process method.
  • the produced mold form was placed, and silicon rubber (polydimethylsiloxane, Jill Pot 184 manufactured by Toray Dow Corning Co., Ltd.) was poured until the thickness became 2 mm, and heated at 100 ° C. for 15 minutes to be cured.
  • the mold and the cured silicon rubber were separated, and the silicon rubber was shaped into a length of 20 mm, a width of 10 mm, and a thickness of 2 mm to produce an upper substrate.
  • the channel width was 600 ⁇ m and the channel height was 50 ⁇ m.
  • the second substrate 110 was produced by cutting a quartz substrate having a thickness of 600 ⁇ m into a 25 mm length and a 15 mm width using a dicing saw.
  • the dimension of the reference electrode 131 was designed to be 800 ⁇ m ⁇ 300 ⁇ m
  • the dimension of the working electrode 132 was 1000 ⁇ m ⁇ 1000 ⁇ m
  • the dimension of the external connection terminal electrode 136 was 1000 mm ⁇ 1000 mm
  • the line width of the extraction electrode 133 was designed to be 200 ⁇ m.
  • the reference electrode 131 and the working electrode 132 were formed by patterning a resist by a photolithography method, forming a titanium layer (or chromium layer) of 50 nm and a gold layer of 100 nm by a sputtering method, and forming them on the resist and the resist by a lift-off method.
  • the titanium layer and the gold layer were removed to form an electrode patterned in a desired shape.
  • a pattern was formed inside the working electrode for the EW valve by photolithography, and then C4F8 (cyclobutane octafluoride) gas was introduced in the plasma to deposit a 50 nm fluorocarbon film.
  • An ICP apparatus (MUC-21) manufactured by Sumitomo Precision Industries was used for depositing the fluorocarbon film. After depositing the fluorocarbon film, the resist and the fluorocarbon film formed on the resist were removed by a lift-off method, and a hydrophobic portion 135 was formed on the working electrode 132.
  • the hydrophobic portion 135 is 50 ⁇ m in length and 50 ⁇ m in width, and a plurality of hydrophobic portions 135 are arranged in an island (land) shape at intervals of 50 ⁇ m.
  • the contact angle of the fluorocarbon film was 110 ° (at room temperature of 25 ° C., in pure water (specific resistance: 18 M ⁇ ⁇ cm)).
  • the first substrate 111 and the second substrate 110 were bonded together to produce a flow channel structure according to the example.
  • the test which flows a liquid through the flow-path structure concerning an Example, the comparative example 1, and the comparative example 2 was done.
  • a fluorescent dye fluorescein isocyanate: FITC
  • the solution entered the channel structure by capillary action. Thereafter, the flow of the solution stopped when the solution reached the working electrode of the EW valve.
  • a voltage of 1.5 V was applied to the working electrode and the reference electrode, the solution passed over the working electrode, and the solution could flow until there was no solution in the flow path.
  • the flow channel structure according to the present invention includes a first electrode (working electrode) formed in the flow channel and a second electrode formed on the upstream side of the region where the first electrode is formed. (Reference electrode), the liquid in contact with the first electrode and the second electrode, and stopped at the first electrode, the voltage applied to the first electrode and the second electrode.
  • a hydrophobic portion and a hydrophilic portion are arranged on the surface of the first electrode in a direction orthogonal to the liquid flowing direction. May be.
  • the flow channel structure of the present invention may include a region where the ratio of the hydrophobic portion and the hydrophilic portion is different.
  • the flow channel structure of the present invention includes a first substrate on which the channel groove is formed, and a second substrate on which the second electrode and the first electrode are formed, The first substrate and the second substrate may be overlapped.
  • the surface of the first substrate may be hydrophobic and the surface of the second substrate may be hydrophilic.
  • the first substrate may be made of polydimethylsiloxane
  • the second substrate may be made of glass
  • the flow channel structure of the present invention includes an intermediate layer in which a side wall portion of the groove for each flow channel is formed, and a second substrate and a third substrate that cover the groove portion of the intermediate layer from both sides.
  • the third substrate, the intermediate layer, and the second substrate may be overlapped.
  • the surface of the intermediate layer may be hydrophobic.
  • the hydrophobic portion of the first electrode may be arranged in a plurality of island shapes.
  • the hydrophobic portion of the first electrode may be arranged in a plurality of lines parallel to the liquid flow direction.
  • the constituent material of the first electrode may be hydrophilic, and a part of the first electrode may be subjected to a hydrophobic treatment.
  • the hydrophobic treatment may be a hydrophobic treatment agent treatment.
  • the hydrophobic treatment may be formation of a hydrophobic film.
  • the flow path structure of the present invention may be subjected to surface roughness adjustment after the hydrophobization treatment.
  • the flow channel structure of the present invention may have a flow channel part having a groove width smaller than the groove width of the flow channel before and after the flow direction on the first electrode.
  • the flow channel structure of the present invention may have a flow channel portion having a groove height larger than the groove height of the flow channel before and after the flow direction on the first electrode.
  • the analysis chip of the present invention is an analysis chip including the flow channel structure, and may include an injection hole, a discharge hole, a reaction unit and / or a detection unit, and an external connection terminal. .
  • the analyzer according to the present invention is an analyzer including the analysis chip, and may include a chip connection port, an external input / output terminal, a display unit, an input unit, and an information processing unit. .
  • the present invention can also be expressed as follows.
  • the arrangement direction in which the hydrophobic portion and the hydrophilic portion are arranged may be a direction orthogonal to the driving force.
  • the flow channel structure of the present invention defines a plurality of line segments drawn between both ends of the working electrode along a direction orthogonal to the driving force, and the length of the hydrophobic portion on each line segment Is the total length of the hydrophobic portion, on the working electrode, there may be at least one set of line segments having different ratios of the total length of the hydrophobic portion to the channel width of the channel.
  • a region where a line segment having a high hydrophobic portion ratio can be drawn (a region where a line segment having a low hydrophilic portion ratio can be drawn) and a ratio of the hydrophobic portion are low.
  • There are at least one set of regions on which the line segments can be drawn regions in which the ratio of the hydrophilic portion can be drawn) on the working electrode.
  • the effect of stopping the solution is increased in a region where a line segment having a high proportion of the hydrophobic portion can be drawn.
  • the proportion of the hydrophobic portion in the region is reduced as compared with the case where the entire surface of the working electrode is covered with the hydrophobic film. The applied voltage required to move the solution can be reduced.
  • the ratio of the hydrophobic portion can be increased. Since a plurality of high regions are provided, the solution can be stopped more reliably.
  • each hydrophobic portion forms a land portion on the surface of the working electrode, and the hydrophilic portion surrounds each hydrophobic portion. It may be formed.
  • a working electrode having both a hydrophobic portion and a hydrophilic portion can be easily realized. Moreover, since it does not have a complicated pattern, it is easy to form a hydrophobic portion.
  • each hydrophobic portion may form a striped pattern along the direction of the driving force.
  • a working electrode having both a hydrophobic portion and a hydrophilic portion can be easily realized. Moreover, since it does not have a complicated pattern, it is easy to form a hydrophobic portion.
  • the channel structure of the present invention may have a portion where the channel width of the channel is narrow on the working electrode.
  • the ratio of the channel inner surface where the channel height is kept constant by narrowing the channel width in a state where the channel height is kept constant on the working electrode The ratio is higher than the ratio occupied by the inner surface of the channel whose width is narrowed.
  • the hydrophobicity of the peripheral portion of the working electrode can be increased.
  • the hydrophilicity of the peripheral portion of the working electrode can be increased.
  • the flow channel width of the flow channel is narrow on the working electrode. Since the portion occupied by the first substrate on the working electrode in that portion is higher than the proportion occupied by the second substrate, the hydrophobicity of the peripheral portion of the working electrode is increased. Can do.
  • the flow channel structure includes a third substrate, a flow channel forming layer, and a fourth substrate, which will be described later, there is a portion where the flow channel width is narrow on the working electrode. Since the proportion of the flow path forming layer on the working electrode is higher than the proportion of the third substrate and the fourth substrate, the hydrophobicity of the peripheral portion of the working electrode can be increased.
  • the channel structure of the present invention there may be a portion where the channel height of the channel is higher on the working electrode.
  • the ratio of the channel inner surface having a high channel height to the channel height is increased by increasing the channel height while keeping the channel width constant on the working electrode. It becomes higher than the ratio occupied by the inner surface of the flow path kept constant.
  • the hydrophobicity of the peripheral portion of the working electrode can be increased.
  • the hydrophilicity of the peripheral portion of the working electrode can be increased.
  • the flow channel structure when the flow channel structure includes a first substrate made of a hydrophobic material, which will be described later, and a second substrate made of a hydrophilic material, the flow channel height becomes higher on the working electrode. Since the ratio of the first substrate on the working electrode in the portion is higher than the ratio of the second substrate, the hydrophobicity of the peripheral portion of the working electrode can be increased. .
  • the flow channel structure is composed of a third substrate, a flow channel forming layer, and a fourth substrate, which will be described later, there is a portion where the flow channel height is high on the working electrode.
  • the ratio of the flow path forming layer is higher than the ratio of the third substrate and the fourth substrate, so that the hydrophobicity of the peripheral portion of the working electrode can be increased.
  • the flow channel structure of the present invention seals the first substrate having at least a flow channel forming groove for forming the flow channel, and the flow channel forming groove formed in the first substrate.
  • a second substrate may be provided.
  • the first substrate may be made of a hydrophobic material
  • the second substrate may be made of a hydrophilic material
  • the hydrophobic material constituting the first substrate may be polydimethylsiloxane
  • the hydrophilic material constituting the second substrate may be glass
  • Polydimethylsiloxane is hydrophobic and glass is hydrophilic. Therefore, according to the said structure, it becomes possible to form a flow path formation groove
  • the flow channel structure of the present invention includes a flow channel forming layer in which at least a flow channel forming hole for configuring the flow channel is formed, and the flow channel forming hole formed in the flow channel forming layer.
  • the channel forming layer may be made of a hydrophobic material.
  • analysis chip of the present invention may be an analysis chip provided with the flow channel structure.
  • an analysis chip having the functions of the above-described channel structures can be realized.
  • the analysis device of the present invention may include the analysis chip.
  • a part of the working electrode may be hydrophobized by using a hydrophobizing agent in the hydrophobizing treatment step.
  • a part of the working electrode may be hydrophobized by forming a hydrophobic film on a part thereof.
  • the surface roughness of a part of the working electrode may be further adjusted after the hydrophobic treatment in the hydrophobic treatment step. Thereby, the hydrophobicity of a part of the working electrode after the hydrophobization treatment can be further increased.
  • a method of using gold (contact angle: 60 ° to 85 °) as a working electrode material and covering the surface of hydrophilic gold with a hydrophobic film can be exemplified as a simple method.
  • the flow channel structure of the present invention is a flow channel structure in which a working electrode and a reference electrode are formed that generate a predetermined potential difference and generate a driving force for feeding a solution along the flow channel. It may include that a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity are formed on the surface of the working electrode that contacts the solution.
  • a working electrode and a reference electrode that generate a predetermined potential difference and generate a driving force for feeding a solution along the flow channel are formed, and the flow channel is formed.
  • a flow path structure manufacturing method comprising: a first substrate on which at least a flow path forming groove is formed; and a second substrate that seals the flow path forming groove formed on the first substrate. Forming the working electrode with a hydrophilic conductive material and forming the working electrode with a hydrophilic conductive material, and hydrophobizing a part of the working electrode.
  • Hydrophobic treatment process for forming a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity on the surface of the working electrode in contact with the solution, and installation of the working electrode on the second substrate And sealing the flow path forming groove formed in the first substrate with the second substrate It may include a road forming groove sealing step.
  • the manufacturing method of the flow channel structure according to the present invention includes a working electrode and a reference electrode that generate a predetermined potential difference to generate a driving force for feeding a solution along the flow channel, and configure the flow channel.
  • a flow path structure manufacturing method comprising: a fourth substrate that seals the flow path forming hole formed in the flow path forming layer from the other side of the flow path forming layer.
  • a hydrophobic treatment process for forming a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity on a surface in contact with The working electrode installation step of installing the working electrode on the fourth substrate, and the flow path forming hole formed in the flow path forming layer are sealed with the third substrate from one side of the flow path forming layer.
  • a flow path forming hole sealing step of sealing with the fourth substrate from the other side of the flow path forming layer may be included.
  • the present invention relates to a flow channel structure in the medical field, biochemical field, measurement field such as allergen, a micro analysis chip used for analysis of an antigen having the flow channel structure, and an analysis apparatus including the micro analysis chip Can be widely applied. For this reason, the industrial utility value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

In the disclosed duct structure, a working electrode (132) that generates driving force that propels a solution along a duct (114) and a reference electrode (131) that generates driving force by generating a predetermined potential difference with respect to the working electrode (132) are formed, and on the surface of the working electrode (132) that contacts the solution, a hydrophobic portion (135) that is highly hydrophobic and a hydrophilic portion (134) that is highly hydrophilic are formed. As a result, solution that has been stopped on the working electrode is reliably moved.

Description

流路構造体及びその製造方法、並びに、分析チップ及び分析装置Channel structure, method for manufacturing the same, analysis chip, and analysis apparatus
 本発明は、生体物質及び自然環境における物質等の微量化学分析に用いる流路構造体及びその製造方法、分析チップ、並びに、分析装置に関する。より詳細には、作用電極上に停止させた溶液を確実に移動させることができる流路構造体などに関する。 The present invention relates to a flow channel structure used for trace chemical analysis of biological substances and substances in the natural environment, a manufacturing method thereof, an analysis chip, and an analysis apparatus. More specifically, the present invention relates to a channel structure that can reliably move a solution stopped on a working electrode.
 免疫分析法は、医療分野、生化学分野、及びアレルゲンなどの測定分野等において、重要な分析若しくは計測方法として知られている。しかし、従来の免疫分析法は、操作が煩雑である上に、分析に一日以上の時間を要するといった問題点があった。 Immunoassay is known as an important analysis or measurement method in the medical field, biochemical field, and measurement fields such as allergens. However, the conventional immunoassay has a problem that the operation is complicated and the analysis takes more than one day.
 このような中、基板にマイクロメートルオーダーの流路(以下、適宜「マイクロ流路」、又は、単に「流路」と略称する)を形成し、このマイクロ流路に抗体等を固定化することにより、分析時間の短縮化や分析操作の簡略化を図るマイクロ分析チップ(以下、適宜「分析チップ」と略称する)が提案されている。 Under such circumstances, a micrometer order flow path (hereinafter referred to as “micro flow path” or simply “flow path”) is formed on the substrate, and an antibody or the like is immobilized on the micro flow path. Therefore, there has been proposed a micro analysis chip (hereinafter, abbreviated as “analysis chip” as appropriate) for shortening the analysis time and simplifying the analysis operation.
 このような分析チップを用いて分析を行う場合、液導入孔から分析チップ内に溶液を導入し、該溶液を分析チップの内部で反応させ、液排出孔から分析チップの外部に溶液を排出する必要がある。従来、分析チップにおける溶液の移送(送液)には、ポンプなどの外部の動力源を用いていたが、ポンプは、分析チップに比べて大型であるため、分析チップを備える分析装置全体の小型化が図りがたいという問題点がある。 When performing analysis using such an analysis chip, a solution is introduced into the analysis chip through the liquid introduction hole, the solution is reacted inside the analysis chip, and the solution is discharged from the liquid discharge hole to the outside of the analysis chip. There is a need. Conventionally, an external power source such as a pump has been used to transfer (liquid feed) the solution on the analysis chip. However, since the pump is larger than the analysis chip, the entire analyzer including the analysis chip is small. There is a problem that it is difficult to realize.
 このため、分析装置に微細加工技術を用いてマイクロポンプを組み込む技術が提案されているが、マイクロポンプの組み込みには複雑で高度な加工技術を必要とする。また、マイクロポンプの容積に加え、マイクロポンプを駆動するための周辺要素の組み込み容積が必要となるので、分析装置の十分なコンパクト化が、図り難いという問題点がある。 For this reason, a technique for incorporating a micropump into the analyzer using a microfabrication technique has been proposed, but the incorporation of a micropump requires a complex and advanced machining technique. In addition to the volume of the micropump, a built-in volume of peripheral elements for driving the micropump is required, so that there is a problem that it is difficult to make the analyzer sufficiently compact.
 他方、マイクロポンプを用いない溶液の送液方法として、親水性のマイクロ流路の毛細管力を利用する送液方法が提案されている(例えば、特許文献1参照)。このような、毛細管力を利用した従来のマイクロ流路の基本構造を図23に示す。図23に示すマイクロ流路は、第2基板110と第1基板111とから構成され、注入孔112、排出孔113、及び流路114が形成されている。注入孔112に溶液を滴下すると、毛細管力によって溶液が流路114を移動し、排出孔113側に移動する。よってポンプ等の外部の動力源を必要とせずに溶液を注入孔112側から排出孔113側に移動させることができる。 On the other hand, as a solution feeding method without using a micropump, a solution feeding method using the capillary force of a hydrophilic microchannel has been proposed (see, for example, Patent Document 1). FIG. 23 shows the basic structure of a conventional microchannel using such capillary force. The micro flow path shown in FIG. 23 includes a second substrate 110 and a first substrate 111, and an injection hole 112, a discharge hole 113, and a flow path 114 are formed. When the solution is dropped into the injection hole 112, the solution moves through the flow path 114 by capillary force and moves toward the discharge hole 113. Therefore, the solution can be moved from the injection hole 112 side to the discharge hole 113 side without requiring an external power source such as a pump.
 また、特許文献1及び2には、微小なマイクロ流路において、溶液の流れを制御するために、エレクトロウェッティング技術を用いたバルブ(エレクトロウェッティングバルブと称される)を用いる方法が提案されている。 Patent Documents 1 and 2 propose a method using a valve (referred to as an electrowetting valve) using an electrowetting technique in order to control the flow of a solution in a minute microchannel. ing.
 このエレクトロウェッティングバルブ(以下、単に「EWバルブ」と略称する)の原理を、図15を用いて説明する。溶液を分析チップに導入すると、溶液は毛細管力によって流路114を流れ、参照電極(reference electrode)131を超えて流れて作用電極(working electrode)132上に達するが、作用電極132の表面は、ほぼ全面に亘って疎水性膜で被覆されており、その疎水性により、電圧が印加されていない場合は、溶液との接触角が大きくなる。 The principle of this electrowetting valve (hereinafter simply referred to as “EW valve”) will be described with reference to FIG. When the solution is introduced into the analysis chip, the solution flows through the flow channel 114 by capillary force and flows over the reference electrode 131 and reaches the working electrode 132. The surface of the working electrode 132 is The entire surface is covered with a hydrophobic film, and the contact angle with the solution increases when no voltage is applied due to the hydrophobicity.
 このため、作用電極132の周辺部の溶液に作用する表面張力と、流路幅及び流路高さなどで決まる流れ抵抗とが相まって、溶液は、流路を通過することができない。すなわち、電圧が印加されていないときは、EWバルブが閉じた状態となる。 For this reason, the surface tension acting on the solution in the periphery of the working electrode 132 and the flow resistance determined by the flow channel width, the flow channel height, and the like combine with each other, so that the solution cannot pass through the flow channel. That is, when no voltage is applied, the EW valve is closed.
 一方、電圧が印加されているときは、作用電極132において、作用電極132と溶液との間で仮想的なキャパシタを形成するようになり、作用電極132に溶液が引き寄せられる効果が小さくなる。つまり、見かけ上、作用電極132表面の親水性が強くなる。これにより、溶液が作用電極132の周辺部を通過することができるようになる。すなわち、電圧が印加されているときは、EWバルブが開放された状態となる。 On the other hand, when a voltage is applied, in the working electrode 132, a virtual capacitor is formed between the working electrode 132 and the solution, and the effect of attracting the solution to the working electrode 132 is reduced. That is, apparently the hydrophilicity of the surface of the working electrode 132 is increased. As a result, the solution can pass through the periphery of the working electrode 132. That is, when a voltage is applied, the EW valve is opened.
日本国公開特許公報「特開2006-220606号公報(2006年8月24日公開)Japanese Patent Publication “JP 2006-220606 A” (published August 24, 2006) 日本国公開特許公報「特開2005-199231号公報(2005年7月28日公開)Japanese Patent Publication “JP 2005-199231” (released July 28, 2005) 日本国公開特許公報「特開2003-149252号公報(2003年5月21日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-149252 (published May 21, 2003)”
 しかしながら、上記特許文献1及び2に記載のマイクロ流路及びEWバルブを用いた技術では、単純に作用電極の表面全体を疎水性膜で被覆しているだけなので、作用電極周辺部の疎水性が高くなりすぎ、停止させた溶液を再度移動させるために参照電極及び作用電極間に印加する電圧が高くなりすぎるという問題点がある。 However, in the technique using the microchannel and the EW valve described in Patent Documents 1 and 2, the entire surface of the working electrode is simply covered with a hydrophobic film, so that the hydrophobicity around the working electrode is low. There is a problem that the voltage applied between the reference electrode and the working electrode becomes too high in order to move the stopped solution again because it becomes too high.
 例えば、このように印加電圧が高くなりすぎた場合、溶液が電気分解され、気泡が発生することにより、作用電極上に停止させた溶液を毛細管力によって再度移動させることができなくなる可能性がある。 For example, when the applied voltage becomes too high in this way, the solution is electrolyzed and bubbles are generated, which may make it impossible to move the solution stopped on the working electrode again by capillary force. .
 なお、以上のような問題点について上記特許文献1及び2には、何ら記載されていないし、また、そのような示唆もない。一方、上記特許文献3に記載の技術は、基板材料にプラスチック材料を用いた従来の分析チップであり、流体の流路空間の移動制御の機構に関しては、一切記載されていない。 Note that the above-mentioned problems are not described in Patent Documents 1 and 2 and there is no such suggestion. On the other hand, the technique described in Patent Document 3 is a conventional analysis chip using a plastic material as a substrate material, and does not describe any mechanism for controlling movement of a fluid flow path space.
 本発明は、前記問題点に鑑みなされたものであって、作用電極上に停止させた溶液を確実に移動させることができる流路構造体などを提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a flow channel structure and the like that can reliably move a solution stopped on a working electrode.
 本発明の流路構造体は、前記課題を解決するために、流路に沿って溶液を送液する駆動力を生じさせる作用電極と、該作用電極との間に所定の電位差を生じさせて前記駆動力を生じさせる参照電極とが形成された流路構造体において、前記作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とが形成されていることを特徴とする。 In order to solve the above problems, the flow channel structure of the present invention generates a predetermined potential difference between a working electrode that generates a driving force for feeding a solution along the flow channel and the working electrode. In the flow channel structure in which the reference electrode for generating the driving force is formed, a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity are formed on the surface of the working electrode that contacts the solution. It is characterized by that.
 前記構成によれば、作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とが形成されている。 According to the above configuration, the hydrophobic portion having high hydrophobicity and the hydrophilic portion having high hydrophilicity are formed on the surface of the working electrode that contacts the solution.
 作用電極の表面上の任意の一点における、気液界面の界面張力をσ、溶液の接触角をθとすると、作用電極の表面上の任意の一点における毛細管力に影響する界面張力の駆動力方向の成分は、σcosθに比例する。 The direction of the driving force of the interfacial tension that affects the capillary force at any one point on the surface of the working electrode, where σ is the interfacial tension at the gas-liquid interface at any point on the surface of the working electrode, and θ is the contact angle of the solution Is proportional to σ cos θ.
 このため、作用電極の表面上の疎水部の総面積をSA、親水部の総面積をSB、疎水部の接触角をθA、親水部の接触角をθB、とすると、作用電極上における溶液の駆動力は、σcos(θA)×SA+σcos(θB)×SBと相関がある。 Therefore, if the total area of the hydrophobic part on the surface of the working electrode is SA, the total area of the hydrophilic part is SB, the contact angle of the hydrophobic part is θA, and the contact angle of the hydrophilic part is θB, the solution on the working electrode The driving force is correlated with σcos (θA) × SA + σcos (θB) × SB.
 ここで、cos(θA)<0(なお、疎水部の一部の領域は=0でも良い)、cos(θB)>0であるから、作用電極上の溶液の駆動力は、作用電極の表面の全面が親水性材料で構成されている場合と比較して、負側にシフトする。 Here, since cos (θA) <0 (a part of the hydrophobic portion may be = 0) and cos (θB)> 0, the driving force of the solution on the working electrode is the surface of the working electrode. Compared with the case where the entire surface is made of a hydrophilic material, it shifts to the negative side.
 また、作用電極上における溶液の駆動力が正となる印加電圧は、作用電極の表面に対する面積SAと面積SBとの割合に依存し、面積SAの割合が小さい程、印加電圧は小さくなる。 Also, the applied voltage at which the driving force of the solution on the working electrode is positive depends on the ratio of the area SA and the area SB to the surface of the working electrode, and the applied voltage decreases as the area SA ratio decreases.
 そこで、上述したように、本発明の流路構造体では、作用電極の溶液と接触する表面上に、疎水部と親水部とを形成している。 Therefore, as described above, in the flow channel structure of the present invention, the hydrophobic portion and the hydrophilic portion are formed on the surface of the working electrode in contact with the solution.
 これにより、作用電極の周辺部の親水性又は疎水性の微妙な調整が可能となるので、作用電極の全面に疎水性膜を形成した従来のEWバルブと比べて、作用電極上における溶液の駆動力が正となる印加電圧をより小さくして適切な値とすることができる。このため、印加電圧を高くした場合に生じる溶液の電気分解による気泡発生が抑えられ、外部の動力源を備えない流路構造体において、作用電極上に停止させた溶液の移動を的確に制御することが可能となる。 As a result, it is possible to finely adjust the hydrophilicity or hydrophobicity of the peripheral portion of the working electrode, so that the driving of the solution on the working electrode is compared with a conventional EW valve in which a hydrophobic film is formed on the entire surface of the working electrode. The applied voltage at which the force is positive can be reduced to an appropriate value. For this reason, the generation of bubbles due to the electrolysis of the solution that occurs when the applied voltage is increased is suppressed, and the movement of the solution stopped on the working electrode is accurately controlled in the channel structure that does not have an external power source. It becomes possible.
 以上より、本発明の流路構造体によれば、作用電極上に停止させた溶液を確実に移動させることができる。 As described above, according to the flow channel structure of the present invention, the solution stopped on the working electrode can be reliably moved.
 また、上記特許文献1及び2に記載の技術、並びに、本発明のマイクロ分析チップは、共に流体の流路空間の移動制御の機構に関する技術であるが、上記特許文献1に記載の技術には、作用電極の表面の濡れ性(親水性/疎水性)に関しては何も記載されていない。 The techniques described in Patent Documents 1 and 2 and the micro-analysis chip of the present invention are both related to a mechanism for controlling the movement of a fluid flow path space. Nothing is described about the wettability (hydrophilic / hydrophobic) of the surface of the working electrode.
 一方、上記特許文献3には、そもそも流体の流路空間の移動制御の機構に関しては、一切記載されていない。 On the other hand, Patent Document 3 does not describe any mechanism for controlling the movement of the fluid flow path space.
 なお、流路内において参照電極及び作用電極は、少なくとも1つずつ存在していれば良い。よって、参照電極が2つ以上であっても良く、作用電極が2つ以上であっても良い。また、作用電極及び参照電極に加えて、参照電極への電流の流れを抑制し、参照電極の電位を安定させるために1つ以上の対向電極を設けてもよい。 Note that at least one reference electrode and one working electrode may exist in the flow path. Therefore, the number of reference electrodes may be two or more, and the number of working electrodes may be two or more. In addition to the working electrode and the reference electrode, one or more counter electrodes may be provided to suppress the flow of current to the reference electrode and stabilize the potential of the reference electrode.
 また、本発明の流路構造体の製造方法は、前記課題を解決するために、流路に沿って溶液を送液する駆動力を生じさせる作用電極と、該作用電極との間に所定の電位差を生じさせて前記駆動力を生じさせる参照電極とが形成され、前記流路を形成するための流路形成溝が少なくとも形成された第1基板と、前記第1基板に形成された前記流路形成溝を封止する第2基板とを備えた流路構造体の製造方法であって、前記第1基板上に前記流路形成溝を形成する流路形成溝形成工程と、親水性の導電性材料で前記作用電極を作成し、該作用電極の一部を疎水化処理して該作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、前記第2基板上に前記作用電極を設置する作用電極設置工程と、前記第1基板に形成された前記流路形成溝を前記第2基板で封止する流路形成溝封止工程とを含んでいることを特徴とする。 In addition, in order to solve the above-described problem, the manufacturing method of the flow channel structure according to the present invention has a working electrode that generates a driving force for feeding a solution along the flow channel, and a predetermined gap between the working electrode and the working electrode. A reference electrode that generates a potential difference and generates the driving force, a first substrate on which at least a flow path forming groove for forming the flow path is formed, and the flow formed on the first substrate. A flow path structure manufacturing method comprising a second substrate for sealing a path forming groove, the flow path forming groove forming step for forming the flow path forming groove on the first substrate, and a hydrophilic The working electrode is made of a conductive material, a part of the working electrode is subjected to a hydrophobic treatment, and a hydrophobic part having a high hydrophobicity and a hydrophilic part having a high hydrophilicity are formed on a surface that contacts the solution of the working electrode. Hydrophobic treatment process to be formed and working electrode installation process for installing the working electrode on the second substrate , Characterized in that it includes a flow path forming groove sealing step of sealing the first said passage forming grooves formed in the substrate at the second substrate.
 前記方法によれば、流路形成溝形成工程では、第1基板上に流路形成溝を形成する。また、疎水化処理工程では、親水性の導電性材料で作用電極を作成し、作用電極の一部を疎水化処理して作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する。また、作用電極設置工程では、親水性の導電性材料で、第2基板上に作用電極を設置する。また、流路形成溝封止工程では、第1基板に形成された流路形成溝を第2基板で封止する。 According to the method, in the flow path forming groove forming step, the flow path forming groove is formed on the first substrate. In the hydrophobizing step, a working electrode is made of a hydrophilic conductive material, and a hydrophobic portion having a high hydrophobicity is formed on the surface of the working electrode which is hydrophobized to come into contact with the working electrode solution. A hydrophilic part having high hydrophilicity is formed. In the working electrode installation step, the working electrode is installed on the second substrate with a hydrophilic conductive material. In the flow path forming groove sealing step, the flow path forming groove formed in the first substrate is sealed with the second substrate.
 これにより、上述した流路構造体を容易に作成することができる。 Thereby, the above-described flow channel structure can be easily created.
 また、本発明の流路構造体の製造方法は、前記課題を解決するために、流路に沿って溶液を送液する駆動力を生じさせる作用電極と、該作用電極との間に所定の電位差を生じさせて前記駆動力を生じさせる参照電極とが形成され、前記流路を構成するための流路形成孔が少なくとも形成された流路形成層と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から封止する第3基板と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の他方側から封止する第4基板とを備えた流路構造体の製造方法であって、前記流路形成層に前記流路形成孔を形成する流路形成孔形成工程と、親水性の導電性材料で前記作用電極を作成し、該作用電極の一部を疎水化処理して該作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、前記第4基板上に前記作用電極を設置する作用電極設置工程と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から前記第3基板で封止すると共に、前記流路形成層の他方側から前記第4基板で封止する流路形成孔封止工程とを含んでいることを特徴とする。 In addition, in order to solve the above-described problem, the manufacturing method of the flow channel structure according to the present invention has a working electrode that generates a driving force for feeding a solution along the flow channel, and a predetermined gap between the working electrode and the working electrode. A reference electrode for generating a potential difference and generating the driving force is formed, and a flow path forming layer in which at least a flow path forming hole for forming the flow path is formed, and the flow path forming layer is formed. A third substrate that seals the flow path forming hole from one side of the flow path forming layer and the flow path forming hole formed in the flow path forming layer are sealed from the other side of the flow path forming layer. A flow path structure including a fourth substrate to stop, the flow path forming hole forming step of forming the flow path forming hole in the flow path forming layer, and a hydrophilic conductive material Create a working electrode, hydrophobize a portion of the working electrode, and on the surface in contact with the working electrode solution, A hydrophobic treatment process for forming a hydrophobic part with high aqueousity and a hydrophilic part with high hydrophilicity, a working electrode installation process for installing the working electrode on the fourth substrate, and the flow channel forming layer A flow path forming hole sealing step of sealing the flow path forming hole with the third substrate from one side of the flow path forming layer and sealing with the fourth substrate from the other side of the flow path forming layer; It is characterized by including.
 前記方法によれば、流路形成孔形成工程では、流路形成層に流路形成孔を形成する。また、疎水化処理工程では、親水性の導電性材料で作用電極を作成し、作用電極の一部を疎水化処理して作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する。また、作用電極設置工程では、第4基板上に作用電極を設置する。また、流路形成孔封止工程では、流路形成層に形成された流路形成孔を、流路形成層の一方側から第3基板で封止すると共に、流路形成層の他方側から第4基板で封止する。 According to the method, in the flow path forming hole forming step, the flow path forming hole is formed in the flow path forming layer. In the hydrophobizing step, a working electrode is made of a hydrophilic conductive material, and a hydrophobic portion having a high hydrophobicity is formed on the surface of the working electrode which is hydrophobized to come into contact with the working electrode solution. A hydrophilic part having high hydrophilicity is formed. In the working electrode installation step, the working electrode is installed on the fourth substrate. Further, in the flow path forming hole sealing step, the flow path forming hole formed in the flow path forming layer is sealed with the third substrate from one side of the flow path forming layer, and from the other side of the flow path forming layer. Seal with a fourth substrate.
 これにより、上述した流路構造体を容易に作成することができる。 Thereby, the above-described flow channel structure can be easily created.
 本発明の流路構造体は、以上のように、作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とが形成されているものである。 As described above, the flow channel structure according to the present invention has a hydrophobic portion having a high hydrophobicity and a hydrophilic portion having a high hydrophilicity formed on the surface of the working electrode in contact with the solution.
 また、本発明の流路構造体の製造方法は、以上のように、第1基板上に流路形成溝を形成する流路形成溝形成工程と、親水性の導電性材料で作用電極を作成し、作用電極の一部を疎水化処理して作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、第2基板上に作用電極を設置する作用電極設置工程と、第1基板に形成された流路形成溝を第2基板で封止する流路形成溝封止工程とを含んでいる方法である。 In addition, as described above, the manufacturing method of the flow channel structure according to the present invention creates the flow channel forming groove forming step on the first substrate and the working electrode by using a hydrophilic conductive material. A hydrophobic treatment step of forming a hydrophobic portion having a high hydrophobicity and a hydrophilic portion having a high hydrophilicity on a surface of the working electrode that is subjected to a hydrophobic treatment to contact the solution of the working electrode; The method includes a working electrode installation step of installing a working electrode thereon, and a flow path formation groove sealing step of sealing the flow path formation groove formed in the first substrate with the second substrate.
 また、本発明の流路構造体の製造方法は、以上のように、流路形成層に流路形成孔を形成する流路形成孔形成工程と、親水性の導電性材料で作用電極を作成し、作用電極の一部を疎水化処理して作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、第4基板上に作用電極を設置する作用電極設置工程と、流路形成層に形成された流路形成孔を、流路形成層の一方側から第3基板で封止すると共に、流路形成層の他方側から第4基板で封止する流路形成孔封止工程とを含んでいる方法である。 In addition, as described above, the manufacturing method of the flow channel structure according to the present invention creates a working electrode with a flow channel forming hole forming step of forming a flow channel forming hole in the flow channel forming layer and a hydrophilic conductive material. A hydrophobic treatment step for forming a hydrophobic portion having a high hydrophobicity and a hydrophilic portion having a high hydrophilicity on a surface of the working electrode that is hydrophobized to contact the solution of the working electrode, and a fourth substrate The working electrode installation step for installing the working electrode thereon, and the flow path forming hole formed in the flow path forming layer are sealed with the third substrate from one side of the flow path forming layer, and the other of the flow path forming layers And a flow path forming hole sealing step for sealing with a fourth substrate from the side.
 それゆえ、作用電極上に停止させた溶液を確実に移動させることができるという効果を奏する。 Therefore, there is an effect that the solution stopped on the working electrode can be surely moved.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
本発明における流路構造体の実施の一形態の構造を示す(組立)構造図であり、(a)は、前記流路構造体の全体構造を示し、(b)は、前記流路構造体を分解したときの第2基板の構成を示し、(c)は、第1基板の構成を示す。FIG. 2 is an (assembled) structural diagram illustrating a structure of an embodiment of a flow channel structure according to the present invention, where (a) illustrates the overall structure of the flow channel structure, and (b) illustrates the flow channel structure. The structure of the 2nd board | substrate when having decomposed | disassembled is shown, (c) shows the structure of a 1st board | substrate. 前記流路構造体に関し、図1の(a)に示すA-A’断面の断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ shown in FIG. 前記流路構造体に関し、作用電極の一例の近傍を拡大した部分拡大図である。It is the elements on larger scale which expanded the vicinity of an example of a working electrode regarding the said flow-path structure. 前記流路構造体に関し、作用電極の他の一例の近傍を拡大した部分拡大図であり、(a)は、溶液の流れる方向(紙面に対して上下方向)に平行に配列する直線状のパターン(縞模様)を示し、(b)は、溶液の流れる方向に直交する方向に沿って配列する直線状のパターン(縞模様)の一例を示し、(c)は、溶液の流れる方向に直交する方向に沿って配列する直線状のパターン(縞模様)の他の一例を示し、(d)は、溶液の流れる方向に直交する方向に沿って配列する直線状のパターン(縞模様)のさらに他の一例を示す。It is the elements on larger scale which expanded the vicinity of the other example of a working electrode regarding the said flow-path structure, (a) is a linear pattern arranged in parallel with the direction (up-down direction with respect to a paper surface) through which a solution flows. (B) shows an example of a linear pattern (striped pattern) arranged along a direction orthogonal to the direction of flow of the solution, and (c) is orthogonal to the direction of flow of the solution. Another example of the linear pattern (striped pattern) arranged along the direction is shown. (D) is still another example of the linear pattern (striped pattern) arranged along the direction orthogonal to the direction in which the solution flows. An example is shown. 前記流路構造体に関し、EWバルブの動作原理を説明するための概念図であり、(a)は、電圧印加OFFの状態、(b)は、電圧印加ONの状態を示す。It is a conceptual diagram for demonstrating the operation principle of an EW valve regarding the said flow-path structure, (a) shows the state of voltage application OFF, (b) shows the state of voltage application ON. 本発明における流路構造体の他の実施の形態の構造を示す(組立)構造図であり、(a)は、前記流路構造体の他の実施の形態の全体構造を示し、(b)は、前記流路構造体を分解したときの第4基板(第2基板)の構成を示し、(c)は、流路形成層(中間層)の構成を示し、(d)は、第3基板の構成を示す。It is a (assembly) structure figure showing the structure of other embodiments of a channel structure in the present invention, (a) shows the whole structure of other embodiments of the channel structure, (b) Shows the configuration of the fourth substrate (second substrate) when the flow channel structure is disassembled, (c) shows the configuration of the flow channel forming layer (intermediate layer), and (d) shows the third The structure of a board | substrate is shown. 前記流路構造体に関し、図6の(a)に示すB-B’断面の断面図である。FIG. 7 is a cross-sectional view taken along the line B-B ′ shown in FIG. 本発明における流路構造体のさらに他の実施の形態の構造を示す(組立)構造図であり、 (a)は、前記流路構造体のさらに他の実施の形態の全体構造を示し、(b)は、前記流路構造体を分解したときの第2基板の構成を示し、(c)は、第1基板の構成を示す。FIG. 7 is an (assembly) structural diagram showing the structure of still another embodiment of the flow path structure according to the present invention, and (a) shows the overall structure of still another embodiment of the flow path structure; b) shows the configuration of the second substrate when the flow channel structure is disassembled, and (c) shows the configuration of the first substrate. 前記流路構造体に関し、作用電極の近傍における流路構造の一例を拡大した部分拡大図である。It is the elements on larger scale which expanded an example of the channel structure in the vicinity of a working electrode regarding the said channel structure. 前記流路構造体に関し、作用電極の近傍における流路構造の他の一例を示す断面図である。It is sectional drawing which shows another example of the flow path structure in the vicinity of a working electrode regarding the said flow path structure. 本発明における流路構造体のさらに他の実施の形態の全体構造を示す組立構造図である。It is an assembly structure figure which shows the whole structure of other embodiment of the flow-path structure in this invention. 本発明における流路構造体のさらに他の実施の形態の全体構造を示す組立構造図である。It is an assembly structure figure which shows the whole structure of other embodiment of the flow-path structure in this invention. 本発明における流路構造体のさらに他の実施の形態の全体構造を示す組立構造図である。It is an assembly structure figure which shows the whole structure of other embodiment of the flow-path structure in this invention. 本発明における流路構造体のさらに他の実施の形態の全体構造を示す組立構造図である。It is an assembly structure figure which shows the whole structure of other embodiment of the flow-path structure in this invention. 本発明における流路構造体のさらに他の実施の形態の構造を示す(組立)構造図であり、(a)は、前記流路構造体のさらに他の実施の一形態の全体構造を示し、(b)は、前記流路構造体を分解したときの第2基板の構成を示し、(c)は、第1基板の構成を示す。FIG. 7 is an (assembly) structural diagram showing the structure of still another embodiment of the flow channel structure according to the present invention, and (a) shows the overall structure of still another embodiment of the flow channel structure; (B) shows the configuration of the second substrate when the flow path structure is disassembled, and (c) shows the configuration of the first substrate. 本発明における分析チップの実施の一形態の全体構造を示す構成図である。It is a block diagram which shows the whole structure of one Embodiment of the analysis chip in this invention. 前記分析チップを分解したときの各基板の構成を示す構成図であり、(a)は、第1基板の構成を示し、(b)は、第2基板の構成を示す。It is a block diagram which shows the structure of each board | substrate when the said analysis chip | tip is decomposed | disassembled, (a) shows the structure of a 1st board | substrate, (b) shows the structure of a 2nd board | substrate. 本発明における分析装置の実施の一形態及び装着前の前記分析チップの外観を示す斜視図である。It is a perspective view which shows the external appearance of one Embodiment of the analyzer in this invention, and the said analysis chip before mounting | wearing. 接触角を説明するための概念図である。It is a conceptual diagram for demonstrating a contact angle. 前記流路構造体に関し、流路内の溶液に作用する圧力と、前記圧力に影響を及ぼす界面張力との関係を説明するための概念図であり、(a)は、流路内の溶液に作用する圧力と、前記圧力に影響を及ぼす界面張力との関係を示し、(b)は、(a)に示す流路構造体をy-z平面に平行な平面で切断したときの切断面を示す。FIG. 4 is a conceptual diagram for explaining the relationship between the pressure acting on the solution in the flow channel and the interfacial tension affecting the pressure with respect to the flow channel structure, and FIG. The relationship between the acting pressure and the interfacial tension affecting the pressure is shown. (B) shows the cut surface when the channel structure shown in (a) is cut along a plane parallel to the yz plane. Show. 前記圧力を算出する理論式を説明するための説明図である。It is explanatory drawing for demonstrating the theoretical formula which calculates the said pressure. 前記圧力を算出する理論式を説明するための説明図である。It is explanatory drawing for demonstrating the theoretical formula which calculates the said pressure. 従来の毛細管力を利用した流路構造体の全体構造を示す組立構造図である。It is an assembly structure figure which shows the whole structure of the flow-path structure using the conventional capillary force.
 本発明の一実施形態について図1~図23に基づいて説明すれば、次の通りである。以下の特定の実施形態で説明する構成以外の構成については、必要に応じて説明を省略する場合があるが、他の実施形態で説明されている場合は、その構成と同じである。また、説明の便宜上、各実施形態に示した部材と同一の機能を有する部材については、同一の符号を付し、適宜その説明を省略する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 23 as follows. Descriptions of configurations other than those described in the following specific embodiments may be omitted as necessary, but are the same as those configurations when described in other embodiments. For convenience of explanation, members having the same functions as those shown in each embodiment are given the same reference numerals, and the explanation thereof is omitted as appropriate.
 〔1.従来のEWバルブの課題の詳細な検討〕
 まず、図19~21に基づき、毛細管力を利用したマイクロ流路(以下、単に「流路」と称する)における溶液の流れについて説明する。毛細管力による溶液に作用する圧力(駆動力)Pは、流路内面と溶液との接触角(図19及び図20の(a)参照)に大きく影響される。
[1. Detailed examination of problems of conventional EW valve]
First, the flow of a solution in a micro flow channel (hereinafter simply referred to as “flow channel”) utilizing capillary force will be described with reference to FIGS. The pressure (driving force) P acting on the solution due to the capillary force is greatly influenced by the contact angle between the inner surface of the flow path and the solution (see FIGS. 19 and 20 (a)).
 例えば、流路内面が均一の材料で構成され、流路内を溶液が流れる方向(図20の(a)のx軸方向)に対して垂直な流路断面の形状が円形である場合、溶液に作用する圧力Pは、気液界面の界面張力をσ、流路内面の接触角をθ、流路断面の半径をrとするとき、図21の式1で与えられる。 For example, when the inner surface of the channel is made of a uniform material and the shape of the channel cross section perpendicular to the direction in which the solution flows in the channel (the x-axis direction in FIG. 20A) is circular, the solution 21 is given by Equation 1 in FIG. 21, where σ is the interfacial tension at the gas-liquid interface, θ is the contact angle of the channel inner surface, and r is the radius of the channel cross section.
 つまり、cosθが正である場合には、溶液は、流路内を移動することができ、他方、cosθが0又は負である場合には、溶液は、流路内を移動することができずに停止する。すなわち、毛細管力を利用して溶液を移動させるためには、cosθが正(親水性)である材料を用いることが必要となる。 That is, when cos θ is positive, the solution can move in the flow path, while when cos θ is 0 or negative, the solution cannot move in the flow path. To stop. That is, in order to move the solution using the capillary force, it is necessary to use a material whose cos θ is positive (hydrophilic).
 一方、流路内面が疎水性の場合は、cosθが0又は負であり、溶液を流さない方向に作用する圧力Pが生じる。よって、親水性材料で構成される親水性壁面と疎水性材料で構成される疎水性壁面との両方が存在する流路内面においては、親水性壁面の割合と、疎水性壁面の割合とを調整することにより、原理的には、毛細管現象が生じる状態と毛細管現象が生じない状態とを実現できる。 On the other hand, when the inner surface of the flow path is hydrophobic, cos θ is 0 or negative, and a pressure P acting in a direction not to flow the solution is generated. Therefore, adjust the ratio of the hydrophilic wall surface and the ratio of the hydrophobic wall surface on the inner surface of the flow path where both the hydrophilic wall surface composed of the hydrophilic material and the hydrophobic wall surface composed of the hydrophobic material exist. Thus, in principle, it is possible to realize a state in which a capillary phenomenon occurs and a state in which a capillary phenomenon does not occur.
 次に、図20の(a)及び図20の(b)に示すように、流路断面(図20の(a)のy-z平面に平行な流路断面)が矩形形状の流路構造の場合、流路高さをh、流路幅をw、第1基板111の接触角をθ1、第2基板110の接触角をθ2、気液界面の界面張力をσとし、流路の上面で働く界面張力σのx軸方向成分(以下、単に「成分」という)をF1、下面で働く界面張力σの成分をF2、左右両側面で働く界面張力σの成分をF3とするとき、成分F1~F3は、それぞれ、図21の式2、式3、及び式4で与えられる。 Next, as shown in FIGS. 20 (a) and 20 (b), the channel cross section (the channel cross section parallel to the yz plane in FIG. 20 (a)) is a rectangular channel structure. In this case, the channel height is h, the channel width is w, the contact angle of the first substrate 111 is θ1, the contact angle of the second substrate 110 is θ2, the interfacial tension at the gas-liquid interface is σ, and the upper surface of the channel When the component of the interfacial tension σ acting on the x-axis direction (hereinafter simply referred to as “component”) is F1, the component of the interfacial tension σ acting on the lower surface is F2, and the component of the interfacial tension σ acting on both the left and right sides is F3 F1 to F3 are respectively given by Equation 2, Equation 3, and Equation 4 in FIG.
 流路内の溶液に作用する圧力Pは、成分F1~F3の和を断面積whで割ったものであるので、この場合の流路内の溶液に作用する圧力Pは、図21の式5で与えられる。 Since the pressure P acting on the solution in the flow path is obtained by dividing the sum of the components F1 to F3 by the cross-sectional area wh, the pressure P acting on the solution in the flow path in this case is expressed by Equation 5 in FIG. Given in.
 圧力Pが正の値になる場合は、毛細管現象が生じ溶液が移動し、圧力Pが負の値になる場合は毛細管現象が生じず、溶液の動きが停止する。この関係と、作用電極132と第2基板110との親水性の程度の差を利用し、作用電極132が形成された流路114で溶液に作用する表面張力による圧力Pを調整することができる。 When the pressure P becomes a positive value, a capillary phenomenon occurs and the solution moves. When the pressure P becomes a negative value, the capillary phenomenon does not occur and the movement of the solution stops. Using this relationship and the difference in the degree of hydrophilicity between the working electrode 132 and the second substrate 110, the pressure P due to the surface tension acting on the solution can be adjusted in the channel 114 in which the working electrode 132 is formed. .
 次に、作用電極132及び参照電極131の両電極に電圧を印加すると溶液に電圧が印加されてキャパシタ効果が生じる。このキャパシタ効果により作用電極132の表面に対する溶液の接触角θが小さくなり、溶液は作用電極132上を通過できるようになる。つまり、電圧印加の有無により溶液の流れを制御することができる。 Next, when a voltage is applied to both the working electrode 132 and the reference electrode 131, a voltage is applied to the solution to produce a capacitor effect. Due to this capacitor effect, the contact angle θ of the solution with respect to the surface of the working electrode 132 is reduced, and the solution can pass over the working electrode 132. That is, the flow of the solution can be controlled by the presence or absence of voltage application.
 以上では、y-z平面に平行な流路断面の形状が矩形である場合について説明したが、流路断面の形状はこれに限定されるものではなく、円形状、楕円形状、半円状、及び逆三角形状等のいずれであってもよい。流路断面の形状が矩形以外の場合であっても、流路断面の内周(流路内面側の周)を接触角θの値に応じて分割した分割領域ごとの界面張力の成分を求め、各分割領域の構成比率に応じて界面張力の成分を積算して(和分をとって)流路内の溶液全体に働く圧力Pを求めることができる(図21の式5参照)。 In the above, the case where the shape of the channel cross section parallel to the yz plane is rectangular has been described, but the shape of the channel cross section is not limited to this, and is circular, elliptical, semicircular, And an inverted triangular shape or the like. Even if the shape of the cross section of the flow path is other than a rectangle, the component of the interfacial tension for each divided area obtained by dividing the inner periphery (circumference on the inner surface of the flow path) of the flow path according to the value of the contact angle θ The pressure P acting on the entire solution in the flow path can be obtained by accumulating (summing up) the components of the interfacial tension according to the composition ratio of each divided region (see Equation 5 in FIG. 21).
 この原理から、EWバルブにより溶液の流れ(「移動」又は「停止」)を制御するには、両電極に電圧をかけない状態において作用電極132上で溶液に作用する圧力Pを0又は負とし、両電極に電圧をかけた状態においては正となるように適切に調整する必要がある。 From this principle, in order to control the flow of the solution (“movement” or “stop”) by the EW valve, the pressure P acting on the solution on the working electrode 132 is set to 0 or negative in a state where no voltage is applied to both electrodes. When the voltage is applied to both electrodes, it is necessary to adjust appropriately so as to be positive.
 しかし、毛細管力を利用して溶液を送液する送液方法において、溶液の流れを円滑にするために作用電極132の周辺部の流路内面の親水性を高くしすぎると、溶液の流れを停止させることが困難になる。その一方、溶液の流れを停止させ易くするために、作用電極132の周辺部の流路内面の疎水性を高くしすぎると、参照電極131及び作用電極132間に印加する電圧が高くなりすぎてしまう可能性がある。このように印加電圧が高くなりすぎた場合、溶液が電気分解され、気泡が発生することにより、毛細管力によって溶液を移動させることができなくなる可能性がある。 However, in the liquid feeding method in which the solution is fed using the capillary force, if the hydrophilicity of the inner surface of the flow path around the working electrode 132 is made too high in order to make the flow of the solution smooth, the flow of the solution is reduced. It becomes difficult to stop. On the other hand, if the hydrophobicity of the inner surface of the flow path around the working electrode 132 is made too high in order to easily stop the flow of the solution, the voltage applied between the reference electrode 131 and the working electrode 132 becomes too high. There is a possibility. When the applied voltage becomes too high in this way, the solution is electrolyzed and bubbles are generated, which may make it impossible to move the solution by capillary force.
 次に、作用電極132の周辺部の流路内面の親水性又は疎水性を調整する手法の一つとしては、流路内面の構成材料の選択が考えられるが、構成材料は、固有の親水性又は疎水性を有するので、単に流路内面の構成材料を選択するのみでは、親水性又は疎水性の微妙な調整は困難である。 Next, as one of the methods for adjusting the hydrophilicity or hydrophobicity of the inner surface of the flow channel in the peripheral portion of the working electrode 132, selection of the constituent material of the inner surface of the flow channel can be considered. Alternatively, since it has hydrophobicity, it is difficult to finely adjust hydrophilicity or hydrophobicity simply by selecting a constituent material of the inner surface of the flow path.
 また、親水性又は疎水性を調整するもう1つの手法としては、流路幅w及び流路高さhの調整が考えられるが、分析のためにある程度の溶液量を確保する必要があるという制約と、流路の微小性により、流路幅w及び流路高さhの微妙な調整は困難であり、親水性又は疎水性の微妙な調整は現実的には困難である。 Further, as another method for adjusting hydrophilicity or hydrophobicity, adjustment of the channel width w and the channel height h can be considered. However, it is necessary to secure a certain amount of solution for analysis. Further, due to the minuteness of the flow path, it is difficult to finely adjust the flow path width w and the flow path height h, and it is practically difficult to finely adjust the hydrophilicity or hydrophobicity.
 それゆえ、従来のEWバルブのように、作用電極132の表面全体に亘って単純に疎水性膜を形成するだけでは、上述した流路内面の構成材料の選択、並びに、流路幅w及び流路高さhの調整を用いる手法とあまり変わらないので、外部の動力源を備えない流路構造体において、溶液の「移動」と「停止」とを確実に制御することは現実的には非常に難しい。 Therefore, simply by forming a hydrophobic film over the entire surface of the working electrode 132 as in the conventional EW valve, the selection of the constituent material of the inner surface of the flow path, the flow path width w and the flow Since it is not much different from the method using the adjustment of the path height h, it is practically very difficult to reliably control the “movement” and “stop” of the solution in the flow path structure having no external power source. It is difficult.
 本発明は、以上のような従来のEWバルブが有する課題を詳細に検討した結果見出されたものである。以下、このような課題を解決する本願発明の実施の形態について詳細に説明する。 The present invention has been found as a result of detailed examination of the problems of the conventional EW valve as described above. Hereinafter, embodiments of the present invention for solving such problems will be described in detail.
 〔2.実施の形態1〕
 図1~3に基づき、本発明の実施の形態1に関する流路構造体10について説明する。図1は、流路構造体10の構造を示す(組立)構造図であり、図1の(a)は、流路構造体10の全体構造を示し、図1の(b)は、流路構造体10を分解したときの第2基板110の構成を示し、図1の(c)は、第1基板111の構成を示す。
[2. Embodiment 1]
A flow path structure 10 according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is an (assembly) structure diagram showing the structure of the flow channel structure 10, (a) of FIG. 1 shows the overall structure of the flow channel structure 10, and (b) of FIG. The structure of the second substrate 110 when the structure 10 is disassembled is shown, and FIG. 1C shows the structure of the first substrate 111.
 また、図2は、図1の(a)に示すA-A’断面の断面図である。さらに、図3は、作用電極132の一例の近傍を拡大した部分拡大図である。 FIG. 2 is a cross-sectional view of the A-A ′ cross section shown in FIG. FIG. 3 is a partially enlarged view in which the vicinity of an example of the working electrode 132 is enlarged.
 図1の(a)に示すように、本実施の形態にかかる流路構造体10は、第1基板111(ポリジメチルシロキサン(PDMS):接触角100°~120°)と、第2基板110(ガラス:接触角5°~30°)とが、重ね合わされた(接合された)構造である。 As shown in FIG. 1A, the flow path structure 10 according to the present exemplary embodiment includes a first substrate 111 (polydimethylsiloxane (PDMS): contact angle 100 ° to 120 °) and a second substrate 110. (Glass: contact angle 5 ° to 30 °) is a superposed (joined) structure.
 すなわち、流路構造体10は、流路形成溝114aが少なくとも形成された第1基板111と、第1基板111に形成された流路形成溝114aを封止する第2基板110とを備える。 That is, the flow path structure 10 includes a first substrate 111 on which at least a flow path forming groove 114 a is formed, and a second substrate 110 that seals the flow path forming groove 114 a formed on the first substrate 111.
 ところで、複雑な流路を毛細管のように細い管によって形成することは一般的に困難である。しかし、流路構造体10のように、第1基板111に形成した流路形成溝114aを、第2基板110によって封止することで毛細管(流路114など)を形成すれば、その作成は容易である。よって流路構造体10を容易に製造することが可能となる。 Incidentally, it is generally difficult to form a complicated flow path by a thin tube such as a capillary tube. However, if a capillary tube (such as the channel 114) is formed by sealing the channel forming groove 114a formed in the first substrate 111 with the second substrate 110 as in the channel structure 10, the creation is Easy. Therefore, the flow channel structure 10 can be easily manufactured.
 次に、上述したPDMSは疎水性材料であり、ガラスは親水性材料である。よって、流路形成溝114aを形成すること、及び2つの第1基板111及び第2基板110の貼り合せを容易に行うことが可能となる。また、各流路において、第1基板111の流路形成溝114aの流路内面が疎水性となるため、第1基板111及び第2基板110の貼り合わせ部分からの液漏れを防止することができる。 Next, PDMS described above is a hydrophobic material, and glass is a hydrophilic material. Therefore, it is possible to easily form the flow path forming groove 114a and bond the two first substrates 111 and the second substrate 110 together. Further, in each flow path, since the flow path inner surface of the flow path forming groove 114a of the first substrate 111 becomes hydrophobic, it is possible to prevent liquid leakage from the bonded portion of the first substrate 111 and the second substrate 110. it can.
 次に、第1基板111には、溶液を流路構造体10の内部に注入するする注入孔(液導入孔)112と、溶液を流路構造体10の外部に排出する排出孔(液排出孔)113と、注入孔112と排出孔113とを繋ぐ流路114を形成するための流路形成溝114aと、が形成されている(図1の(c)参照)。 Next, the first substrate 111 has an injection hole (liquid introduction hole) 112 for injecting the solution into the flow path structure 10 and a discharge hole (liquid discharge) for discharging the solution to the outside of the flow path structure 10. Hole) 113 and a flow path forming groove 114a for forming a flow path 114 connecting the injection hole 112 and the discharge hole 113 are formed (see FIG. 1C).
 第2基板110には、EWバルブ用の参照電極131及び作用電極132と、各電極を延長する引き出し電極133と、外部接続端子用電極(外部接続端子)136と、が形成されている。ここで、流路構造体10の全体を紙面に対して手前から俯瞰すると、参照電極131が占める範囲は、流路114が占める範囲に含まれ(流路幅w>参照電極幅)、作用電極132が占める範囲は、流路114が占める範囲と交わりをもつ(流路幅w<作用電極幅)ように配置されている(図1の(a)参照)。 The second substrate 110 is provided with a reference electrode 131 and a working electrode 132 for the EW valve, an extraction electrode 133 extending each electrode, and an external connection terminal electrode (external connection terminal) 136. Here, when the whole flow path structure 10 is viewed from the front with respect to the paper surface, the range occupied by the reference electrode 131 is included in the range occupied by the flow path 114 (flow path width w> reference electrode width), and the working electrode. The range occupied by 132 has an intersection with the range occupied by the flow path 114 (flow path width w <working electrode width) (see FIG. 1A).
 図1、図2からわかるように、流路114は、流路幅w(溝幅)、流路高さh(溝高さ)ともに一定である。 As can be seen from FIGS. 1 and 2, the flow path 114 has a constant flow path width w (groove width) and a flow path height h (groove height).
 また、図3に示す例では、作用電極132の表面上で、複数の疎水性部分(疎水部,ランド部)135と、親水性部分(親水部,グルーブ部)134とが配列する配列方向は、溶液が流れる方向(圧力Pの方向)に対して直交する方向となっている。 In the example shown in FIG. 3, the arrangement direction in which a plurality of hydrophobic portions (hydrophobic portions, land portions) 135 and hydrophilic portions (hydrophilic portions, groove portions) 134 are arranged on the surface of the working electrode 132 is The direction is perpendicular to the direction in which the solution flows (the direction of pressure P).
 以上より、疎水性部分135と親水性部分134とが配列する配列方向に沿って作用電極132の両端間に引いた線分上のすべての点が疎水性部分135となっているような領域が存在しないため、このような領域において部分的に圧力Pが正となる印加電圧が高くなってしまうことを抑制することができる。 As described above, there is a region in which all the points on the line segment drawn between both ends of the working electrode 132 along the arrangement direction in which the hydrophobic portion 135 and the hydrophilic portion 134 are arranged are the hydrophobic portions 135. Since it does not exist, it is possible to suppress an increase in applied voltage at which the pressure P is partially positive in such a region.
 上述のとおり、EWバルブにより溶液の流れ(「移動」又は「停止」)を制御するには、電圧をかけない状態において作用電極132の周辺部における溶液に作用する圧力Pを0又は負とし、電圧をかけた状態においては正となるように設計する必要がある。 As described above, in order to control the flow of the solution (“movement” or “stop”) by the EW valve, the pressure P acting on the solution around the working electrode 132 in a state where no voltage is applied is set to 0 or negative, It must be designed to be positive when a voltage is applied.
 作用電極132の表面の全体が親水性であると、作用電極132の表面の親水性が設計値より強くなった場合、電圧をかけない状態において作用電極132の周辺部における溶液に作用する圧力Pが正となり、溶液が停止せずにそのまま移動するおそれがある。 When the entire surface of the working electrode 132 is hydrophilic, when the hydrophilicity of the surface of the working electrode 132 becomes stronger than the design value, the pressure P acting on the solution in the peripheral portion of the working electrode 132 in a state where no voltage is applied. May become positive and the solution may move without stopping.
 そこで本実施の形態では、作用電極132が、溶液の流れる方向に対して直交する方向で、疎水性部分135と親水性部分134との両方を有する領域を備える構成としている(図3参照)。 Therefore, in this embodiment, the working electrode 132 includes a region having both the hydrophobic portion 135 and the hydrophilic portion 134 in a direction orthogonal to the direction in which the solution flows (see FIG. 3).
 ここで、「親水性」とは、比抵抗が18mΩ・cmよりも大きい純水(25℃)を用い、1気圧、25℃で測定した接触角が90°未満である場合をいい、「疎水性」とは、上記純水の接触角が90°以上である場合をいう。 Here, “hydrophilic” means a case where pure water (25 ° C.) having a specific resistance larger than 18 mΩ · cm is used and the contact angle measured at 1 atm and 25 ° C. is less than 90 °. “Performance” means that the contact angle of the pure water is 90 ° or more.
 上述のとおり、図20の(a)及び図20の(b)に示すような流路構造の場合、流路114内の作用電極132上の溶液に作用する圧力Pは、図21の式5で与えられる。 As described above, in the case of the channel structure as shown in FIGS. 20A and 20B, the pressure P acting on the solution on the working electrode 132 in the channel 114 is expressed by the equation 5 in FIG. Given in.
 一方、本実施の形態のように、作用電極132が、溶液の流れる方向に対して直交する方向で、疎水性部分135と親水性部分134との両方を有する領域を備える構成の場合は、疎水性部分135の接触角をθ3、疎水性部分135と親水性部分134との両方を有する流路断面(図3の破線で示すa-a’断面)での、配列方向に沿う線分上における疎水性部分135の全長の総和(疎水部全長)の、流路幅wに対する割合を比(疎水部全長/流路幅)aとするとき、この断面部分に働く圧力Pは図21の式6に示す関係となる。 On the other hand, in the case where the working electrode 132 includes a region having both the hydrophobic portion 135 and the hydrophilic portion 134 in the direction perpendicular to the direction in which the solution flows, as in the present embodiment, the hydrophobicity On the line segment along the arrangement direction in the flow path cross section (aa ′ cross section shown by the broken line in FIG. 3) having the contact angle of the conductive portion 135 of θ3 and both the hydrophobic portion 135 and the hydrophilic portion 134 When the ratio of the sum of the total length of the hydrophobic portion 135 (total length of the hydrophobic portion) to the channel width w is a ratio (total length of the hydrophobic portion / channel width) a, the pressure P acting on this cross-sectional portion is expressed by the equation 6 in FIG. The relationship shown in
 なお、比aの値は、特に限定されるものではないが、0.2≦a≦0.8の範囲が好ましい。0.2より小さい場合は、溶液を確実に停止させる効果が小さくなる。0.8より大きくなると、印加電圧が高くなり、溶液の電気分解による気泡発生の恐れがある。 Note that the value of the ratio a is not particularly limited, but a range of 0.2 ≦ a ≦ 0.8 is preferable. If it is less than 0.2, the effect of reliably stopping the solution is reduced. If it exceeds 0.8, the applied voltage becomes high and there is a risk of bubbles being generated due to electrolysis of the solution.
 ここで、比a>0、cos(θ2)>0、cos(θ3)<0であるから、疎水性部分135と親水性部分134との両方を有する流路断面では、疎水性部分135を有さない流路断面(比a=0)に比べ、圧力Pが負側にシフトする。 Here, since the ratio a> 0, cos (θ2)> 0, and cos (θ3) <0, the channel cross section having both the hydrophobic portion 135 and the hydrophilic portion 134 has the hydrophobic portion 135. The pressure P shifts to the negative side compared to the channel cross section (ratio a = 0) that is not.
 したがって、流路構造体10によれば、電圧無印加の状態において、親水性部分134が設計値よりも親水性が強くなった場合でも、疎水性部分135と親水性部分134の両方を有する流路断面では、溶液に作用する圧力Pが0又は負に保たれ、溶液を確実に停止させることができる。 Therefore, according to the flow path structure 10, even when the hydrophilic portion 134 is more hydrophilic than the design value in a state where no voltage is applied, the flow structure having both the hydrophobic portion 135 and the hydrophilic portion 134. In the path cross section, the pressure P acting on the solution is maintained at 0 or negative, and the solution can be stopped reliably.
 また、作用電極132及び参照電極131の両電極間に電圧を印加すると溶液に電圧が印加されてキャパシタ効果が生じる。このキャパシタ効果により作用電極132の表面に対する溶液の接触角θが小さくなり、溶液は作用電極132上を通過できるようになる。つまり、電圧印加の有無により溶液の流れを制御することができる。 Further, when a voltage is applied between the working electrode 132 and the reference electrode 131, a voltage is applied to the solution, and a capacitor effect is generated. Due to this capacitor effect, the contact angle θ of the solution with respect to the surface of the working electrode 132 is reduced, and the solution can pass over the working electrode 132. That is, the flow of the solution can be controlled by the presence or absence of voltage application.
 また、疎水性部分135と親水性部分134の両方を有する流路断面における溶液に作用する圧力Pが正となる印加電圧は、作用電極132の表面の親水性部分134の面積SAと疎水性部分135の面積SBとの面積比に依存し、疎水性部分135の面積が小さい程、印加電圧は小さくなる。したがって、流路構造体10によれば、親水性部分134を有することにより、作用電極132の全体が疎水性膜で被覆されている場合に比べて、疎水性部分135と親水性部分134の両方を有する流路断面における溶液に作用する圧力Pが正となる印加電圧を小さくすることができる。そのため、印加電圧を高くした場合に生じる溶液の電気分解による気泡発生が抑えられ、外部の動力源を備えない流路構造体10において、溶液の「移動」と「停止」とを的確に制御することが可能となる。 The applied voltage at which the pressure P acting on the solution in the channel cross section having both the hydrophobic portion 135 and the hydrophilic portion 134 becomes positive is the area SA of the hydrophilic portion 134 on the surface of the working electrode 132 and the hydrophobic portion. Depending on the area ratio of the area SB of 135, the applied voltage decreases as the area of the hydrophobic portion 135 decreases. Therefore, according to the flow path structure 10, both the hydrophobic portion 135 and the hydrophilic portion 134 are provided by having the hydrophilic portion 134 as compared with the case where the entire working electrode 132 is covered with the hydrophobic film. The applied voltage at which the pressure P acting on the solution in the channel cross section having a positive value can be reduced. Therefore, the generation of bubbles due to the electrolysis of the solution that occurs when the applied voltage is increased is suppressed, and the “movement” and “stop” of the solution are accurately controlled in the flow path structure 10 that does not have an external power source. It becomes possible.
 ここで、EWバルブの電極構成としては、少なくとも1つの参照電極と、少なくとも1つの作用電極とを有していればよい。よって、参照電極が2つ以上であってもよく、作用電極が2つ以上であってもよい。また、作用電極、参照電極に加えて、参照電極への電流の流れを抑制し、参照電極の電位を安定させるために1つ以上の対向電極を設けてもよい。 Here, as an electrode configuration of the EW valve, it is only necessary to have at least one reference electrode and at least one working electrode. Therefore, the number of reference electrodes may be two or more, and the number of working electrodes may be two or more. In addition to the working electrode and the reference electrode, one or more counter electrodes may be provided to suppress the flow of current to the reference electrode and stabilize the potential of the reference electrode.
 次に、第1基板111の厚みは0.1mm~10mm程度あり、注入孔112及び排出孔113のそれぞれは、直径10μm以上の貫通孔でよい。流路幅w、流路高さhは、本実施の形態では、それぞれ600μm、50μmとしている。 Next, the thickness of the first substrate 111 is about 0.1 mm to 10 mm, and each of the injection hole 112 and the discharge hole 113 may be a through hole having a diameter of 10 μm or more. In the present embodiment, the channel width w and the channel height h are 600 μm and 50 μm, respectively.
 また、本実施の形態では、第1基板111として疎水性のPDMS基板を用い、第2基板110として親水性のガラス基板を用いているが、これに限定されるものではなく、流路構造体10の利用用途に応じて適切な素材を選択すれば良い。 In this embodiment, a hydrophobic PDMS substrate is used as the first substrate 111, and a hydrophilic glass substrate is used as the second substrate 110. However, the present invention is not limited to this. What is necessary is just to select an appropriate material according to ten use uses.
 例えば、流路構造体10に光学的検出を行う検出部(分析部)を組み込む場合には、第1基板111及び第2基板110の何れか一方又は双方の材料として、励起光による発光が少ない透明又は半透明の材質の材料を用いることが望ましい。 For example, in the case where a detection unit (analysis unit) that performs optical detection is incorporated in the flow channel structure 10, the light emission from the excitation light is small as one or both of the first substrate 111 and the second substrate 110. It is desirable to use a transparent or translucent material.
 このような透明又は半透明な材料としては、ガラス、石英、熱硬化性樹脂、熱可塑性樹脂、及びフィルム等が挙げられる。なかでも、シリコン系樹脂、アクリル系樹脂、及びスチレン系樹脂は、透明性及び成型性の観点から好ましい。励起光による発光が少ないプラスチック材料としては、例えば、ポリメチルメタクリレートの水素原子をフッ素原子に置換したフッ化ポリメチルメタクリレート等のフッ素系のプラスチック材料や、触媒や安定剤等の添加剤に蛍光を発しない部材を用いたポリメチルメタクリレート等が挙げられる。 Examples of such transparent or translucent materials include glass, quartz, thermosetting resin, thermoplastic resin, and film. Of these, silicone resins, acrylic resins, and styrene resins are preferable from the viewpoints of transparency and moldability. Examples of plastic materials that emit less light by excitation light include fluorescence of fluorine-based plastic materials such as fluorinated polymethyl methacrylate in which hydrogen atoms of polymethyl methacrylate are replaced with fluorine atoms, and additives such as catalysts and stabilizers. Examples thereof include polymethyl methacrylate using a member that does not emit.
 他方、流路構造体10の流路内で電気的な制御や電気的な測定を行うためには、第2基板110及び/又は第1基板111の表面に電極を形成する必要がある。このため、第1基板111若しくは第2基板110の一方、又は、両方が電極形成可能な材料であることが好ましい。電極形成可能な材料としては、生産性及び再現性の観点からガラス、石英、及びシリコン等が好ましい。 On the other hand, in order to perform electrical control and electrical measurement in the flow path of the flow path structure 10, it is necessary to form electrodes on the surface of the second substrate 110 and / or the first substrate 111. For this reason, it is preferable that one or both of the first substrate 111 and the second substrate 110 be a material capable of forming electrodes. As a material capable of forming an electrode, glass, quartz, silicon and the like are preferable from the viewpoint of productivity and reproducibility.
 なお、凹凸のある部分に電極を形成することは難しいので、流路形成溝114aによる凹凸のある第1基板111ではなく、平坦な第2基板110に電極を形成することが好ましい。 In addition, since it is difficult to form an electrode in an uneven part, it is preferable to form an electrode on the flat 2nd substrate 110 instead of the uneven | corrugated 1st board | substrate 111 by the flow-path formation groove | channel 114a.
 以上で説明したように、流路構造体10は、作用電極132の溶液に接触する表面上に、疎水性部分135と親水性部分134とを有する構成である。 As described above, the flow channel structure 10 has the hydrophobic part 135 and the hydrophilic part 134 on the surface of the working electrode 132 that contacts the solution.
 上述したように、作用電極132の表面上の任意の一点における、気液界面の界面張力をσ、溶液の接触角をθとすると、作用電極132の表面上の任意の一点における毛細管力に影響する界面張力σの圧力Pの方向の成分は、σcosθに比例する。 As described above, if the interfacial tension of the gas-liquid interface at an arbitrary point on the surface of the working electrode 132 is σ and the contact angle of the solution is θ, the capillary force at an arbitrary point on the surface of the working electrode 132 is affected. The component of the interfacial tension σ in the direction of the pressure P is proportional to σ cos θ.
 このため、作用電極132の表面上の疎水性部分135の総面積をSA、親水性部分134の総面積をSB、疎水性部分135の接触角をθA、親水性部分134の接触角をθB、とすると、作用電極132上における溶液の圧力Pは、σcos(θA)×SA+σcos(θB)×SBと相関がある。 Therefore, the total area of the hydrophobic portion 135 on the surface of the working electrode 132 is SA, the total area of the hydrophilic portion 134 is SB, the contact angle of the hydrophobic portion 135 is θA, the contact angle of the hydrophilic portion 134 is θB, Then, the pressure P of the solution on the working electrode 132 is correlated with σcos (θA) × SA + σcos (θB) × SB.
 ここで、cos(θA)<0(なお、疎水性部分135の一部の領域は=0でも良い)、cos(θB)>0であるから、作用電極132上の溶液の圧力Pは、作用電極132の表面の全面が親水性材料で構成されている場合と比較して、負側にシフトする。 Here, since cos (θA) <0 (a part of the hydrophobic portion 135 may be = 0) and cos (θB)> 0, the pressure P of the solution on the working electrode 132 is Compared with the case where the entire surface of the electrode 132 is made of a hydrophilic material, the electrode 132 shifts to the negative side.
 また、作用電極132上における溶液の圧力Pが正となる印加電圧は、作用電極132の表面に対する面積SAと面積SBとの割合に依存し、面積SAの割合が小さい程、印加電圧は小さくなる。 The applied voltage at which the pressure P of the solution on the working electrode 132 becomes positive depends on the ratio of the area SA and the area SB to the surface of the working electrode 132. The smaller the area SA ratio, the smaller the applied voltage. .
 そこで、上述したように、流路構造体10では、作用電極132の表面の一部に疎水性部分135を有し、かつ他の一部に親水性部分134を有する構成としている。 Therefore, as described above, the flow path structure 10 is configured to have the hydrophobic portion 135 on a part of the surface of the working electrode 132 and the hydrophilic portion 134 on the other part.
 これにより、作用電極132の周辺部の親水性又は疎水性の微妙な調整が可能となるので、作用電極132の表面の全面に疎水性膜を形成した従来のEWバルブと比べて、作用電極132上における圧力Pが正となる印加電圧をより小さくして適切な値とすることができる。このため、印加電圧を高くした場合に生じる溶液の電気分解による気泡発生が抑えられ、外部の動力源を備えない流路構造体10において、作用電極132上に停止させた溶液の移動を的確に制御することが可能となる。 As a result, it is possible to finely adjust the hydrophilicity or hydrophobicity of the peripheral portion of the working electrode 132, so that the working electrode 132 is compared with a conventional EW valve in which a hydrophobic film is formed on the entire surface of the working electrode 132. The applied voltage at which the pressure P is positive can be reduced to an appropriate value. Therefore, the generation of bubbles due to the electrolysis of the solution that occurs when the applied voltage is increased is suppressed, and the movement of the solution stopped on the working electrode 132 is accurately performed in the flow path structure 10 that does not include an external power source. It becomes possible to control.
 以上より、流路構造体10によれば、作用電極132上に停止させた溶液を確実に移動させることができる。 As described above, according to the flow path structure 10, the solution stopped on the working electrode 132 can be reliably moved.
  (流路構造体10の製造方法)
 次に、流路構造体10の製造方法は、以下の(1)~(4)の各工程を少なくとも含んでいれば良い。
(1)第1基板111上に流路形成溝114aを形成する(流路形成溝形成工程)。
(2)親水性の導電性材料で作用電極132を作成し、作用電極132の一部を疎水化処理して作用電極132の溶液と接触する表面上に、疎水性部分135と親水性部分134とを形成する(疎水化処理工程)。
(3)第2基板110上に作用電極132を設置する(作用電極設置工程)。
(4)第1基板111に形成された流路形成溝114aを第2基板110で封止する(流路形成溝封止工程)。なお、上述した(1)~(4)の各工程の順序は、必要に応じて適宜決定すれば良い。これにより、上述した流路構造体10を容易に作成することができる。
(Manufacturing method of flow path structure 10)
Next, the manufacturing method of the flow path structure 10 may include at least the following steps (1) to (4).
(1) The flow path forming groove 114a is formed on the first substrate 111 (flow path forming groove forming step).
(2) The working electrode 132 is made of a hydrophilic conductive material, and a hydrophobic portion 135 and a hydrophilic portion 134 are formed on the surface of the working electrode 132 that is hydrophobized to come into contact with the working electrode 132 solution. Are formed (hydrophobization treatment step).
(3) The working electrode 132 is placed on the second substrate 110 (working electrode placement step).
(4) The flow path forming groove 114a formed on the first substrate 111 is sealed with the second substrate 110 (flow path forming groove sealing step). Note that the order of the steps (1) to (4) described above may be appropriately determined as necessary. Thereby, the flow path structure 10 mentioned above can be produced easily.
 また、上述した疎水化処理工程では、疎水処理剤を用いたり、疎水性の官能基を有する疎水性膜を作用電極132の表面に形成したりして作用電極132の一部を疎水化処理しても良い。 Further, in the above-described hydrophobic treatment process, a part of the working electrode 132 is subjected to a hydrophobic treatment by using a hydrophobic treatment agent or forming a hydrophobic film having a hydrophobic functional group on the surface of the working electrode 132. May be.
 例えば、作用電極132の表面にフォトレジスト膜を塗布して露光・現像・パターン形成を行い、その後、このレジスト膜をマスクとして露出した部分に疎水処理剤を塗布するか、疎水性膜を形成すれば良い。また、作用電極132の表面の全面に疎水処理剤を塗布するか、疎水性膜を形成し、その後、フォトリソグラフィやエッチングを行って疎水性材料の一部を除去しても良い。 For example, a photoresist film is applied to the surface of the working electrode 132 to perform exposure / development / pattern formation, and then a hydrophobic treatment agent is applied to the exposed portion using the resist film as a mask, or a hydrophobic film is formed. It ’s fine. Alternatively, a hydrophobic treatment agent may be applied to the entire surface of the working electrode 132 or a hydrophobic film may be formed, and then a part of the hydrophobic material may be removed by photolithography or etching.
 また、上記の疎水性膜もしくは疎水処理剤を用いた疎水化処理工程で、作用電極132の疎水処理された部分の表面粗さを調整することで、疎水性をさらに高くしても良い。 Alternatively, the hydrophobicity may be further increased by adjusting the surface roughness of the hydrophobically treated portion of the working electrode 132 in the hydrophobic treatment process using the hydrophobic film or the hydrophobic treatment agent.
 例えば、作用電極132の表面にフォトレジスト膜を塗布して露光・現像・パターン形成を行い、その後、このフォトレジスト膜をマスクとして露出した部分をガスで叩いてその部分の表面粗さを調整した後、疎水処理剤を塗布するか、疎水性膜を形成しても良い。表面粗さを調整し、表面積を増大させることにより、疎水処理部分の疎水性を高くすることができる。 For example, a photoresist film is applied to the surface of the working electrode 132 to perform exposure / development / pattern formation, and then the exposed portion is struck with gas using the photoresist film as a mask to adjust the surface roughness of the portion. Thereafter, a hydrophobic treatment agent may be applied or a hydrophobic film may be formed. By adjusting the surface roughness and increasing the surface area, the hydrophobicity of the hydrophobic treated part can be increased.
 なお、Wenzelが提案する理論によれば、平面の面積1cmに対する実際の面積がScmであるとき、平面での接触角θと見かけ上の接触角θwは、
cosθw=S×cosθとなる。
According to the theory proposed by Wenzel, when the actual area with respect to the area 1 cm 2 of the plane is S r cm 2 , the contact angle θ on the plane and the apparent contact angle θw are
cos θw = S r × cos θ.
 よって、表面積が増加する(S>1)と、疎水性の場合(θ>90°)はより疎水性(θw>θ)に、親水性の場合(θ<90°)はより親水性(θw<θ)になる。 Thus, as the surface area increases (S r > 1), the hydrophobic case (θ> 90 °) is more hydrophobic (θw> θ) and the hydrophilic case (θ <90 °) is more hydrophilic ( θw <θ).
 なお、疎水化処理工程は、以上で説明した手法に限られない。 It should be noted that the hydrophobization process is not limited to the method described above.
  (EWバルブの動作原理)
 図5に本実施の形態にかかる流路構造体10の流路114における溶液の流れを示す。図5の(a)は、電圧印加OFFの状態、図5の(b)は、電圧印加ONの状態を示している。
(Operational principle of EW valve)
FIG. 5 shows the flow of the solution in the flow channel 114 of the flow channel structure 10 according to the present exemplary embodiment. FIG. 5A shows a state where the voltage application is OFF, and FIG. 5B shows a state where the voltage application is ON.
 図3及び図5に示すように、EWバルブ用の作用電極132は、流路内面の一面を構成する親水性の第2基板110の流路部分を覆うように形成(流路形成溝114aに対向する位置に形成)されており、作用電極132の表面の疎水性部分135は、疎水性膜(フッ化炭素膜)で被覆されている。 As shown in FIGS. 3 and 5, the working electrode 132 for the EW valve is formed so as to cover the flow path portion of the hydrophilic second substrate 110 constituting one surface of the flow path inner surface (in the flow path forming groove 114a). The hydrophobic portion 135 on the surface of the working electrode 132 is covered with a hydrophobic film (fluorocarbon film).
 電圧印加がOFFの状態においては、溶液は、作用電極132を通過することができない(図5の(a)参照)。他方、作用電極132とEWバルブ用の参照電極131との間に電圧が印加(0.8V~1.5V程度)されると、作用電極132上を溶液が通過することができるようになる(図5の(b)参照)。 When the voltage application is OFF, the solution cannot pass through the working electrode 132 (see (a) of FIG. 5). On the other hand, when a voltage is applied between the working electrode 132 and the reference electrode 131 for the EW valve (about 0.8 V to 1.5 V), the solution can pass over the working electrode 132 ( (See (b) of FIG. 5).
 このことを、図5を参照しつつ説明する。注入孔112から注液(導入)された溶液は、参照電極131上に接しながら流路114を流れ、流路114の特定領域(溶液を停止させたい領域)に設けられた作用電極132の周辺部に達する。なお、ここでは、作用電極132は金(接触角:60°~85°)で構成されており、かつ、疎水性部分135は疎水性膜(接触角:95~120°)で被覆されているものとする。 This will be described with reference to FIG. The solution injected (introduced) from the injection hole 112 flows through the flow channel 114 in contact with the reference electrode 131, and around the working electrode 132 provided in a specific region (region where the solution is to be stopped) of the flow channel 114. Reach the department. Here, the working electrode 132 is made of gold (contact angle: 60 ° to 85 °), and the hydrophobic portion 135 is covered with a hydrophobic film (contact angle: 95 to 120 °). Shall.
 電圧を印加していない場合は、表面張力により発生する圧力Pが0又は負となり、溶液の流れが停止させられる(図5の(a)参照)。すなわち、電圧印加がOFFのとき、バルブは閉じた状態となる。 When no voltage is applied, the pressure P generated by the surface tension becomes 0 or negative, and the flow of the solution is stopped (see FIG. 5A). That is, when voltage application is OFF, the valve is closed.
 他方、引き出し電極133に電圧が印加されると、参照電極131上を通過した溶液が帯電して、作用電極132と溶液の間で仮想的なキャパシタが形成され、溶液が作用電極132に引き寄せられる。この結果、溶液の作用電極132に対する接触角θが小さくなる。つまり、見掛け上、作用電極132の表面全体にわたって親水性が強くなり、親水性の影響が大きくなるので、表面張力により発生する圧力P(毛細管力)が正となる。これにより、溶液が作用電極132を通過することができることになる(図5の(b)参照)。すなわち、電圧印加がONのとき、バルブは開放された状態となる。 On the other hand, when a voltage is applied to the extraction electrode 133, the solution that has passed over the reference electrode 131 is charged, a virtual capacitor is formed between the working electrode 132 and the solution, and the solution is attracted to the working electrode 132. . As a result, the contact angle θ of the solution with respect to the working electrode 132 is reduced. That is, apparently, the hydrophilicity of the entire surface of the working electrode 132 becomes stronger and the influence of the hydrophilicity becomes larger, so that the pressure P (capillary force) generated by the surface tension becomes positive. As a result, the solution can pass through the working electrode 132 (see FIG. 5B). That is, when voltage application is ON, the valve is opened.
 このように、EWバルブを確実に動作させるためには、電圧印加がOFFのとき、溶液が停止するように設計する必要がある。 Thus, in order to reliably operate the EW valve, it is necessary to design the solution to stop when the voltage application is OFF.
 本実施の形態では、このような条件を満たすため、図3に示すように、作用電極132の表面に、疎水性部分135と親水性部分134の両方を有する領域を設けている。ここで、親水性部分134の接触角をθ2、疎水性部分135の接触角をθ3としたとすると、θ2<90°≦θ3の関係がある。 In this embodiment, in order to satisfy such a condition, as shown in FIG. 3, a region having both the hydrophobic portion 135 and the hydrophilic portion 134 is provided on the surface of the working electrode 132. Here, assuming that the contact angle of the hydrophilic portion 134 is θ2, and the contact angle of the hydrophobic portion 135 is θ3, there is a relationship of θ2 <90 ° ≦ θ3.
 流路高さをh、流路幅をwとし、第1基板111の接触角をθ1、液界面の界面張力をσ、溶液の流れる方向に垂直な流路断面での疎水性部分135の長さの総和の、流路幅wに対する割合を比aとするとき、疎水性部分135と親水性部分134との両方を有する領域における溶液に作用する圧力Pは、図21の式6で求められる。したがって、疎水性部分135と親水性部分134との両方を有する流路断面では、親水性部分134のみの場合に比べ、圧力Pが負側にシフトする。 The height of the flow path is h, the width of the flow path is w, the contact angle of the first substrate 111 is θ1, the interfacial tension of the liquid interface is σ, and the length of the hydrophobic portion 135 in the cross section of the flow path perpendicular to the direction of solution flow When the ratio of the total sum to the flow path width w is the ratio a, the pressure P acting on the solution in the region having both the hydrophobic portion 135 and the hydrophilic portion 134 is obtained by Equation 6 in FIG. . Therefore, in the channel cross section having both the hydrophobic portion 135 and the hydrophilic portion 134, the pressure P shifts to the negative side as compared with the case of only the hydrophilic portion 134.
 作用電極132の表面の全面が親水性の場合は、親水性部分134の接触角θが設計した値より小さくなった場合、毛細管力が働き、溶液が停止しなくなる場合が生じる。本実施の形態では、作用電極132の表面に、溶液の流れる方向に対して直交する方向で、疎水性部分135と親水性部分134との両方が配列する領域を備えていることにより、親水性部分134の接触角θが設計した値より小さくなった場合でも、疎水性部分135を含む流路領域で溶液が停止し、設計からのずれによる誤動作を防止することができる。 When the entire surface of the working electrode 132 is hydrophilic, when the contact angle θ of the hydrophilic portion 134 is smaller than the designed value, the capillary force works and the solution may not stop. In the present embodiment, the surface of the working electrode 132 is provided with a region in which both the hydrophobic portion 135 and the hydrophilic portion 134 are arranged in a direction orthogonal to the direction in which the solution flows. Even when the contact angle θ of the portion 134 becomes smaller than the designed value, the solution stops in the flow channel region including the hydrophobic portion 135, and malfunction due to deviation from the design can be prevented.
 また、本実施の形態では、作用電極132の全体が疎水性を示す場合に比べて、疎水性部分135を含む流路断面における溶液に作用する圧力Pが正となる印加電圧を小さくすることができる。そのため、印加電圧を高くした場合に生じる溶液の電気分解による気泡発生が抑えられ、外部の動力源を備えない流路構造体10において、溶液の「移動」と「停止」を的確に制御することが可能となる。 In the present embodiment, the applied voltage at which the pressure P acting on the solution in the cross section of the flow path including the hydrophobic portion 135 is positive can be reduced as compared with the case where the entire working electrode 132 exhibits hydrophobicity. it can. Therefore, generation of bubbles due to electrolysis of the solution that occurs when the applied voltage is increased is suppressed, and the “movement” and “stop” of the solution are accurately controlled in the flow path structure 10 that does not have an external power source. Is possible.
 なお、比aの値は、特に限定されないが、上述のように、0.2≦a≦0.8の範囲が好ましい。また、流路高さh、流路幅wが変わった場合でも、比aの値を変えることで毛細管力を調整することができる。 Note that the value of the ratio a is not particularly limited, but as described above, the range of 0.2 ≦ a ≦ 0.8 is preferable. Even when the flow path height h and the flow path width w are changed, the capillary force can be adjusted by changing the value of the ratio a.
 また、作用電極132の全体に対する疎水性部分135の面積の総和の作用電極132全体に対する割合を比bとした場合、比bの値は、0.6以下であることが好ましい。0.6よりも大きくなると、印加電圧が高くなり、溶液が電気分解する電圧に近づき、電気分解による気泡発生の恐れがある。 Further, when the ratio of the total area of the hydrophobic portion 135 to the whole working electrode 132 to the whole working electrode 132 is a ratio b, the value of the ratio b is preferably 0.6 or less. When it exceeds 0.6, the applied voltage becomes high, approaching the voltage at which the solution is electrolyzed, and there is a risk of bubbles being generated by electrolysis.
 流路構造体10のように、第2基板110に親水性基板(ガラス基板)を用い、流路形成溝114aを形成する第1基板111に疎水性基板(PDMS基板)を用いる場合においては、流路幅wを狭くすることにより疎水性の影響を大きくできるので(毛細管力が小さくなる方向に働く)、これと作用電極132の表面に対する接触角θの変化をバランスさせることにより、溶液の流れを的確に制御することができる。 In the case where a hydrophilic substrate (glass substrate) is used for the second substrate 110 and a hydrophobic substrate (PDMS substrate) is used for the first substrate 111 for forming the flow path forming groove 114a as in the channel structure 10, Since the influence of hydrophobicity can be increased by narrowing the flow path width w (acts in a direction in which the capillary force decreases), the flow of the solution is balanced by balancing the change of the contact angle θ with the surface of the working electrode 132. Can be accurately controlled.
 ここで、作用電極132の表面に親水性部分134と疎水性部分135とを設ける方法としては、上述したように、作用電極132の構成材料として親水性材料を用い、かつ疎水性部分135が形成される領域を疎水性となるように処理するという手法を用いることができる。 Here, as a method of providing the hydrophilic portion 134 and the hydrophobic portion 135 on the surface of the working electrode 132, as described above, a hydrophilic material is used as the constituent material of the working electrode 132, and the hydrophobic portion 135 is formed. A technique of treating the region to be hydrophobic can be used.
 作用電極132の構成材料として導電性の金を用いることが好ましい。金以外にカーボンやビスマスを用いても良い。これらの材料は、作用電極132に電圧を印加した状態において、水素等の発生が少なく電極が劣化しにくいという利点がある。 It is preferable to use conductive gold as a constituent material of the working electrode 132. Carbon or bismuth may be used in addition to gold. These materials have an advantage that, when a voltage is applied to the working electrode 132, generation of hydrogen or the like is small and the electrode is not easily deteriorated.
 疎水性膜としては、フッ素含有物質若しくはチオール基を含む物質が適している。これらの物質を用いることにより、接触角を90°よりも大きくすることができ、電圧を印加しない状態で、EWバルブで溶液を停止しやすくなるので、EWバルブの開閉動作を安定に行うことができる。疎水性膜(薄膜)は、上記物質に限定されるものではなく、接触角θが90°より大きなものであればよい。 As the hydrophobic film, a fluorine-containing substance or a substance containing a thiol group is suitable. By using these substances, the contact angle can be made larger than 90 °, and it becomes easy to stop the solution with the EW valve in a state where no voltage is applied, so that the EW valve can be stably opened and closed. it can. The hydrophobic film (thin film) is not limited to the above substances, and may be any film having a contact angle θ larger than 90 °.
 また、疎水性膜の厚みは、100nm以下であることが好ましい。これにより、EWバルブの開閉動作に必要な電圧を低減することができ、分析装置等の分析システム全体の小型が可能となる。 The thickness of the hydrophobic film is preferably 100 nm or less. Thereby, the voltage required for the opening / closing operation of the EW valve can be reduced, and the entire analysis system such as the analyzer can be miniaturized.
 本実施の形態の流路構造体10では、作用電極132自体に親水性の金(接触角:60°~85°)を用い、疎水性部分135を疎水性となるようにフッ化炭素膜(接触角:100°~120°)を形成している。 In the channel structure 10 of the present embodiment, hydrophilic gold (contact angle: 60 ° to 85 °) is used for the working electrode 132 itself, and the fluorocarbon film ( Contact angle: 100 ° to 120 °).
 次に、作用電極132の表面に形成した親水性部分134及び疎水性部分135の形状としては、例えば、図3に示すように、複数の疎水性部分135が、島状に配列するパターンが好ましい。すなわち、作用電極132の表面上で、各疎水性部分135がランド部を形成し、親水性部分134が各疎水性部分135を取り囲むグルーブ部を形成していても良い。 Next, as the shape of the hydrophilic portion 134 and the hydrophobic portion 135 formed on the surface of the working electrode 132, for example, as shown in FIG. 3, a pattern in which a plurality of hydrophobic portions 135 are arranged in an island shape is preferable. . That is, on the surface of the working electrode 132, each hydrophobic portion 135 may form a land portion, and the hydrophilic portion 134 may form a groove portion surrounding each hydrophobic portion 135.
 これにより、疎水性部分135と親水性部分134との両方を有する作用電極132を容易に実現することができる。また、複雑なパターンを有していないため、疎水性部分135の形成が容易である。 Thereby, the working electrode 132 having both the hydrophobic portion 135 and the hydrophilic portion 134 can be easily realized. Moreover, since it does not have a complicated pattern, the hydrophobic portion 135 can be easily formed.
 なお、本実施の形態では、縦50μm、横50μmの疎水性部分135が50μm間隔でマトリクス状に配列されたパターンを用いている。 In this embodiment, a pattern is used in which hydrophobic portions 135 having a length of 50 μm and a width of 50 μm are arranged in a matrix at intervals of 50 μm.
 以上の構成では、溶液の流れる方向に対して直交する方向で、疎水性部分135と親水性部分134との両方を有する領域が複数備えられており、電圧を印加しない状態で、EWバルブで溶液を停止しやすくなるので、バルブの開閉動作を安定に行うことができる。 In the above configuration, a plurality of regions having both the hydrophobic portion 135 and the hydrophilic portion 134 are provided in a direction perpendicular to the direction in which the solution flows, and the solution is applied by the EW valve in a state where no voltage is applied. Therefore, the valve can be opened and closed stably.
 また、以上の構成では、溶液の流れる方向に対して直交する方向に沿って作用電極132の両端間に引かれる複数の線分を定義し、各線分上における疎水性部分135の長さの総和を疎水部全長とするとき、作用電極132上において、流路幅wに対する疎水部全長の割合(比a)が互いに異なる線分の組みが少なくとも1組存在している。 In the above configuration, a plurality of line segments drawn between both ends of the working electrode 132 are defined along the direction orthogonal to the direction in which the solution flows, and the total length of the hydrophobic portions 135 on each line segment is defined. Is the total length of the hydrophobic portion, on the working electrode 132, there is at least one set of line segments having different ratios (ratio a) of the total length of the hydrophobic portion to the channel width w.
 よって、溶液の流れる方向に対して直交する方向に沿って、比aが高い線分が引ける領域(比bが低い線分が引ける領域)と、比aが低い線分が引ける領域(比bが高い線分が引ける領域)とが、作用電極132上に少なくとも1組存在する。 Therefore, a region where a line segment having a high ratio a can be drawn (a region where a line segment having a low ratio b can be drawn) and a region where a line segment having a low ratio a can be drawn (ratio b) can be drawn along a direction orthogonal to the direction in which the solution flows. At least one set exists on the working electrode 132.
 よって、比aが高い線分が引ける領域(疎水性部分の割合が高い領域)では、溶液を停止させる効果が大きくなる。また、比aが低い線分が引ける領域(親水性部分の割合が高い領域)も存在しているので、作用電極132の表面の全面が疎水膜で被覆されている場合と比較して、その領域において疎水性部分135の割合を小さくすることができ、溶液を移動させるのに必要な印加電圧を小さくすることができる。 Therefore, in a region where a line segment having a high ratio a can be drawn (a region where the ratio of the hydrophobic portion is high), the effect of stopping the solution is increased. In addition, since there is a region where a line segment having a low ratio a can be drawn (a region where the ratio of the hydrophilic portion is high), compared to the case where the entire surface of the working electrode 132 is covered with a hydrophobic film, The ratio of the hydrophobic portion 135 in the region can be reduced, and the applied voltage required to move the solution can be reduced.
 さらに、例えば、上述した比aが高い線分が引ける領域と、比aが低い線分が引ける領域とを、溶液の流れる方向に交互に配列することで、比aが高い線分が引ける領域が複数個設けられるため、溶液の「移動」又は「停止」を的確に制御することが可能となる。 Furthermore, for example, the above-described region where a line segment having a high ratio a can be drawn by alternately arranging a region where a line segment having a high ratio a can be drawn and a region where a line segment having a low ratio a can be drawn in the flowing direction of the solution Is provided, it is possible to accurately control the “movement” or “stop” of the solution.
 なお、疎水性部分135の形状は、以上のような島状の形状に限定されるものではなく、例えば、図4の(a)に示すように、溶液の流れる方向に平行に配列する直線状のパターン(縞模様)を形成していても良い。 The shape of the hydrophobic portion 135 is not limited to the island shape as described above. For example, as shown in FIG. 4A, the shape of the hydrophobic portion 135 is a straight line arranged in parallel with the solution flow direction. The pattern (stripe pattern) may be formed.
 以上の構成では、溶液の流れる方向に対して直交する方向で、疎水性部分135と親水性部分134との両方を有する領域が作用電極全体に備えられており、電圧を印加しない状態で、EWバルブで溶液を停止しやすくなるので、バルブの開閉動作を安定に行うことができる。また、形状が単純なため、作製が容易となる利点がある。 In the above configuration, the entire working electrode is provided with a region having both the hydrophobic portion 135 and the hydrophilic portion 134 in a direction orthogonal to the direction in which the solution flows. Since it is easy to stop the solution with the valve, the valve can be opened and closed stably. Further, since the shape is simple, there is an advantage that the manufacturing is easy.
 また、疎水性部分135の形状は、図4の(b)~図4の(c)に示すように、溶液の流れる方向に直交する方向に沿って配列する直線状のパターン(縞模様)を形成していても良い。 Further, as shown in FIGS. 4B to 4C, the shape of the hydrophobic portion 135 is a linear pattern (striped pattern) arranged along the direction perpendicular to the direction in which the solution flows. It may be formed.
 なお、図4の(b)に示す疎水性部分135のパターンでは、疎水性部分135の疎水部全長は、流路幅wと同じ長さ(比a=1)なので、溶液を「停止」させる効果が高いものの、a-a’断面における印加電圧が高くなり易い。 In the pattern of the hydrophobic portion 135 shown in FIG. 4B, the total length of the hydrophobic portion 135 of the hydrophobic portion 135 is the same as the channel width w (ratio a = 1), so that the solution is “stopped”. Although effective, the applied voltage in the aa ′ cross section tends to be high.
 一方、図4の(c)及び図4の(d)に示す疎水性部分135のパターンでは、疎水性部分135の疎水部全長は、図4の(b)よりも小さい(比a<1)ので、a-a’断面における印加電圧が高くなりにくい。 On the other hand, in the pattern of the hydrophobic portion 135 shown in FIGS. 4C and 4D, the total length of the hydrophobic portion 135 is smaller than that in FIG. 4B (ratio a <1). Therefore, the applied voltage in the aa ′ cross section is unlikely to increase.
 また、図1に示す流路構造体10の流路114における流路幅wと流路高さhは、特に限定はしないが、溶液の濡れと毛細管力よって溶液が浸透していくことが可能な寸法に設定することが好ましい。流路高さhは、好ましくは、1μm~5mm程度に設定し、流路幅wは、好ましくは1μm~5mm程度に設定する。 Further, the channel width w and the channel height h in the channel 114 of the channel structure 10 shown in FIG. 1 are not particularly limited, but the solution can penetrate due to the wetness of the solution and the capillary force. It is preferable to set to a proper size. The channel height h is preferably set to about 1 μm to 5 mm, and the channel width w is preferably set to about 1 μm to 5 mm.
 この流路構造体10は、例えば作用電極132の上流側の領域を、溶液を混合する領域として用い、作用電極132よりも下流側の領域に抗体等を固定化し、この下流側の領域で抗原を含む溶液を流して抗原抗体反応させ、さらに蛍光色素を付けた標識抗体を含む溶液を流して抗原抗体反応させ、当該下流側の領域に励起光を照射してその蛍光の量により抗原の量を測定するというマイクロ分析チップとして利用できる。 The flow channel structure 10 uses, for example, an upstream region of the working electrode 132 as a region where the solution is mixed, immobilizes an antibody or the like in a region downstream of the working electrode 132, and an antigen in the downstream region. An antigen-antibody reaction is performed by flowing a solution containing a fluorescent dye, and further an antigen-antibody reaction is performed by flowing a solution containing a labeled antibody to which a fluorescent dye has been attached. It can be used as a micro-analysis chip that measures
 各流路の流路内面の「親水性」や「疎水性」は、基板材料が親水性の基板又は疎水性の基板を用いることにより容易に実現できるが、本明細書では、親水性や疎水性は基板材料自身の持つ性質に由来するものに限定されない。例えば、疎水性材料からなる基板表面に親水性処理を施すことにより、「親水性」を実現することができる。また、親水性材料からなる基板表面の疎水膜の形成等の疎水処理を施すことにより「疎水性」としてもよい。 “Hydrophilicity” and “hydrophobic” of the inner surface of each flow path can be easily realized by using a hydrophilic substrate or a hydrophobic substrate as a substrate material. The properties are not limited to those derived from the properties of the substrate material itself. For example, “hydrophilicity” can be realized by subjecting the substrate surface made of a hydrophobic material to hydrophilic treatment. Further, it may be made “hydrophobic” by applying a hydrophobic treatment such as formation of a hydrophobic film on the substrate surface made of a hydrophilic material.
 親水化処理としては、例えば酸素プラズマ処理やUV(Ultra Violet)処理などを用いることができる。また、界面活性剤や親水性の官能基を持つ試薬を表面に塗布することによって親水性を高めてもよい。他方、疎水化処理としては、フッ酸処理や、テトラフルオロエチレン被膜を形成する等の方法がある。 As the hydrophilization treatment, for example, oxygen plasma treatment or UV (Ultra Violet) treatment can be used. Alternatively, hydrophilicity may be enhanced by applying a surfactant or a reagent having a hydrophilic functional group to the surface. On the other hand, as the hydrophobizing treatment, there are a hydrofluoric acid treatment and a method of forming a tetrafluoroethylene film.
 〔3.実施の形態2〕
 次に、上記実施の形態1とは異なる構造の流路構造体20について、図6~図7を用いて詳細に説明する。
[3. Second Embodiment]
Next, the flow path structure 20 having a structure different from that of the first embodiment will be described in detail with reference to FIGS.
 図6は、流路構造体20の構造を示す(組立)構造図であり、図6の(a)は、流路構造体20の全体構造を示し、図6の(b)は、流路構造体20を分解したときの第4基板(第2基板)の構成を示し、図6の(c)は、流路形成層(中間層)の構成を示し、図6の(d)は、第3基板の構成を示す。図7は、図6の(a)に示すB-B’断面の断面図である。 FIG. 6 is an (assembly) structural diagram showing the structure of the flow channel structure 20, FIG. 6 (a) shows the overall structure of the flow channel structure 20, and FIG. 6 (b) shows the flow channel structure. 6 shows the configuration of the fourth substrate (second substrate) when the structure 20 is disassembled, FIG. 6C shows the configuration of the flow path forming layer (intermediate layer), and FIG. The structure of a 3rd board | substrate is shown. FIG. 7 is a cross-sectional view of the B-B ′ cross section shown in FIG.
 なお、第2基板(第4基板)110は、上記実施の形態1と同様である。このため、以下、第3基板115及び中間層(流路形成層)116について、構造を詳細に説明し、第2基板110の構造に関する説明は適宜省略する。 The second substrate (fourth substrate) 110 is the same as that in the first embodiment. For this reason, hereinafter, the structure of the third substrate 115 and the intermediate layer (flow path forming layer) 116 will be described in detail, and the description of the structure of the second substrate 110 will be omitted as appropriate.
 図6の(a)に示すように、本実施の形態にかかる流路構造体20は、第2基板110(ガラス:接触角5°~30°)と、第3基板115(ポリジメチルシロキサン(PDMS):接触角100°~120°)と、中間層116(フィルムレジスト:接触角100°~120°)とが、重ね合わされた(接合された)構造である。 As shown in FIG. 6A, the flow path structure 20 according to the present embodiment includes a second substrate 110 (glass: contact angle 5 ° to 30 °) and a third substrate 115 (polydimethylsiloxane ( PDMS): contact angle 100 ° to 120 °) and intermediate layer 116 (film resist: contact angle 100 ° to 120 °) are superposed (bonded) structures.
 すなわち、流路構造体20は、流路形成孔114bが少なくとも形成された中間層116と、中間層116に形成された流路形成孔114bを、中間層116の一方側から封止する第3基板115と、中間層116に形成された流路形成孔114bを、中間層116の他方側から封止する第2基板110とを備えている。 In other words, the flow path structure 20 seals the intermediate layer 116 having at least the flow path forming hole 114b and the flow path forming hole 114b formed in the intermediate layer 116 from one side of the intermediate layer 116. The substrate 115 and the second substrate 110 that seals the flow path forming hole 114b formed in the intermediate layer 116 from the other side of the intermediate layer 116 are provided.
 これにより、中間層116に流路形成孔114bを設けて両側から基板で挟むことは、容易に実行できる。よって、流路構造体20を容易に製造することが可能となる。 Thereby, it is possible to easily execute the formation of the flow path forming hole 114b in the intermediate layer 116 and sandwiching it between the substrates from both sides. Therefore, the flow path structure 20 can be easily manufactured.
 第3基板115には、溶液を流路構造体20の内部に注入(導入)する注入孔112と、溶液を流路構造体20の外部に排出する排出孔113と、が形成されている(図6の(d)参照)。 The third substrate 115 is formed with an injection hole 112 for injecting (introducing) the solution into the flow path structure 20 and a discharge hole 113 for discharging the solution to the outside of the flow path structure 20 ( (See (d) of FIG. 6).
 中間層116には、注入孔112、排出孔113、及び、注入孔112と排出孔113とを繋ぐ流路114を形成するための流路形成孔114bが形成されている(図6の(c)参照)。 In the intermediate layer 116, the injection hole 112, the discharge hole 113, and the flow path forming hole 114b for forming the flow path 114 connecting the injection hole 112 and the discharge hole 113 are formed ((c in FIG. 6). )reference).
 第2基板110には、EWバルブ用の参照電極131及び作用電極132と、各電極を延長する引き出し電極133と、外部接続端子用電極136と、が形成されている。ここで、流路構造体20の全体を紙面に対して手前から俯瞰すると、参照電極131が占める範囲は、流路114が占める範囲に含まれ(流路幅w>参照電極幅)、作用電極132が占める範囲は、流路114が占める範囲と交わりをもつ(流路幅w<作用電極幅)ように配置されている(図6の(b)参照)。 The second substrate 110 is provided with a reference electrode 131 and a working electrode 132 for the EW valve, a lead electrode 133 extending each electrode, and an external connection terminal electrode 136. Here, when the entire flow path structure 20 is viewed from the front with respect to the paper surface, the range occupied by the reference electrode 131 is included in the range occupied by the flow path 114 (flow path width w> reference electrode width), and the working electrode. The range occupied by 132 is arranged to intersect the range occupied by the flow path 114 (flow path width w <working electrode width) (see FIG. 6B).
 図6及び図7からわかるように、流路114は、流路幅w(溝幅)、流路高さh(溝高さ)ともに一定である。 6 and 7, the flow path 114 has a constant flow path width w (groove width) and flow path height h (groove height).
 また、作用電極132の表面は、図3に示すように、溶液の流れる方向に対して直交する方向で、疎水性部分135と親水性部分134との両方を有する領域を備えている。 Further, as shown in FIG. 3, the surface of the working electrode 132 includes a region having both a hydrophobic portion 135 and a hydrophilic portion 134 in a direction orthogonal to the direction in which the solution flows.
 第3基板115の厚みは0.1mm~10mm程度あり、注入孔112及び排出孔113は、直径10μm以上の貫通孔でよい。 The thickness of the third substrate 115 is about 0.1 mm to 10 mm, and the injection hole 112 and the discharge hole 113 may be through holes having a diameter of 10 μm or more.
 中間層116の厚みは、流路高さhに相当するため、溶液の濡れと毛細管力によって溶液が浸透していくことが可能な寸法に設定される。好ましくは、1μm~5mm程度に設定され、この場合、流路高さhが一定となり、流路幅wのみで毛細管力を調整することが可能である。流路幅w、流路高さhは、本実施の形態では、それぞれ600μm、50μmとしている。 Since the thickness of the intermediate layer 116 corresponds to the flow path height h, it is set to a dimension that allows the solution to penetrate due to the wetness of the solution and the capillary force. Preferably, it is set to about 1 μm to 5 mm. In this case, the flow path height h is constant, and the capillary force can be adjusted only by the flow path width w. In the present embodiment, the channel width w and the channel height h are 600 μm and 50 μm, respectively.
 なお、中間層116は、疎水性材料で構成されていても良い。これにより、親水性と疎水性の両方が存在する流路内面を容易に形成することができる。また、中間層116に形成された流路形成孔114bの壁面が疎水性となるため、基板の貼り合わせ部分からの液漏れを防止することができる。 Note that the intermediate layer 116 may be made of a hydrophobic material. Thereby, the flow path inner surface where both hydrophilic property and hydrophobic property exist can be formed easily. Further, since the wall surface of the flow path forming hole 114b formed in the intermediate layer 116 is hydrophobic, liquid leakage from the bonded portion of the substrates can be prevented.
 また、中間層116として、フォトレジストを用いてもよい。この場合は、第2基板110上に、フォトリソグラフィ法により、中間層116を直接形成することにより、貼りあわせる方法に比べて、位置合せの精度を上げることができる。 Further, a photoresist may be used as the intermediate layer 116. In this case, by directly forming the intermediate layer 116 on the second substrate 110 by a photolithography method, the alignment accuracy can be improved as compared with the bonding method.
 また、本実施の形態の流路構造体20では、第3基板115として疎水性のPDMS基板を用い、第2基板110として親水性のガラス基板を用いているが、これに限定されるものではなく、流路構造体20の利用用途に応じて適切な素材を選択するのがよい。 Further, in the flow path structure 20 of the present embodiment, a hydrophobic PDMS substrate is used as the third substrate 115 and a hydrophilic glass substrate is used as the second substrate 110. However, the present invention is not limited to this. It is preferable to select an appropriate material according to the use application of the flow channel structure 20.
 例えば、流路構造体20に光学的検出を行う検出部(分析部)を組み込む場合には、第3基板115及び第2基板110の何れか一方又は双方の材料として、励起光による発光が少ない透明又は半透明の材質の材料を用いることが望ましい。 For example, in the case where a detection unit (analysis unit) that performs optical detection is incorporated in the flow path structure 20, the light emitted from the excitation light is small as one or both of the third substrate 115 and the second substrate 110. It is desirable to use a transparent or translucent material.
 このような透明又は半透明な材料としては、流路構造体10で説明したとおりである。 Such a transparent or translucent material is as described in the flow path structure 10.
 他方、流路構造体20の流路114の内部で電気的な制御や電気的な測定を行うためには、第2基板110及び/又は第3基板115の表面に電極を形成する必要がある。このため、第3基板115又は第2基板110の一方又は両方が電極形成可能な材料であることが好ましい。電極形成可能な材料としては、流路構造体10で説明したとおりである。 On the other hand, in order to perform electrical control and electrical measurement inside the flow path 114 of the flow path structure 20, it is necessary to form electrodes on the surface of the second substrate 110 and / or the third substrate 115. . For this reason, it is preferable that one or both of the third substrate 115 and the second substrate 110 be a material capable of forming an electrode. The material capable of forming an electrode is as described in the flow path structure 10.
  (流路形成孔114bの形成方法)
 中間層116の流路形成孔114b、並びに、注入孔112及び排出孔113(貫通孔)の形成方法としては、例えば、機械加工による方法、レーザー加工による方法、薬品やガスによるエッチングによる方法等がある。また、上述のとおり、フォトリソグラフィ法を用いてフォトレジストに流路形成孔114b、注入孔112、及び排出孔113のパターンを形成してもよい。
(Formation method of flow path formation hole 114b)
Examples of the method for forming the flow path forming hole 114b, the injection hole 112, and the discharge hole 113 (through hole) in the intermediate layer 116 include a machining method, a laser processing method, and a chemical or gas etching method. is there. Further, as described above, the pattern of the flow path formation hole 114b, the injection hole 112, and the discharge hole 113 may be formed in the photoresist by using a photolithography method.
  (流路構造体20の製造方法)
 次に、流路構造体20の製造方法は、以下の(1)~(4)の各工程を少なくとも含んでいれば良い。
(1)中間層116に流路形成孔114bを形成する(流路形成孔形成工程)。
(2)親水性の導電性材料で作用電極132を作成し、作用電極132の一部を疎水化処理して作用電極132の溶液と接触する表面上に、疎水性部分135と親水性部分134とを形成する(疎水化処理工程)。
(3)第2基板110上に作用電極132を設置する(作用電極設置工程)。
(4)中間層116に形成された流路形成孔114bを、中間層116の一方側から第3基板115で封止すると共に、中間層116の他方側から第2基板110で封止する(流路形成孔封止工程)なお、上述した(1)~(4)の各工程の順序は、必要に応じて適宜決定すれば良い。これにより、上述した流路構造体20を容易に作成することができる。
(Manufacturing method of flow path structure 20)
Next, the manufacturing method of the flow path structure 20 may include at least the following steps (1) to (4).
(1) The flow path forming hole 114b is formed in the intermediate layer 116 (flow path forming hole forming step).
(2) The working electrode 132 is made of a hydrophilic conductive material, and a hydrophobic portion 135 and a hydrophilic portion 134 are formed on the surface of the working electrode 132 that is hydrophobized to come into contact with the working electrode 132 solution. Are formed (hydrophobization treatment step).
(3) The working electrode 132 is placed on the second substrate 110 (working electrode placement step).
(4) The flow path forming hole 114b formed in the intermediate layer 116 is sealed with the third substrate 115 from one side of the intermediate layer 116 and with the second substrate 110 from the other side of the intermediate layer 116 ( (Flow path forming hole sealing step) The order of the steps (1) to (4) described above may be appropriately determined as necessary. Thereby, the flow path structure 20 mentioned above can be produced easily.
 なお、疎水化処理工程については、流路構造体10の製造方法で説明したとおりであるので、ここでは、説明を省略する。 Note that the hydrophobization process is the same as described in the method for manufacturing the flow path structure 10, and therefore the description thereof is omitted here.
 また、流路構造体20の作用電極132上の疎水性部分135及び親水性部分134の形成パターンは、流路構造体10と同様であるので、ここでは、説明を省略する(図3,図4参照)。 Further, the formation pattern of the hydrophobic portion 135 and the hydrophilic portion 134 on the working electrode 132 of the flow channel structure 20 is the same as that of the flow channel structure 10, and therefore the description thereof is omitted here (FIGS. 3 and 3). 4).
 〔4.実施の形態3〕
 次に、本実施の形態にかかる流路構造体30を、図8に示す。
[4. Embodiment 3]
Next, the flow path structure 30 according to the present embodiment is shown in FIG.
 図8は、流路構造体30の構造を示す(組立)構造図であり、図8の(a)は、流路構造体30の全体構造を示し、図8の(b)は、流路構造体30を分解したときの第2基板110の構成を示し、図8の(c)は、第1基板111の構成を示す。 8 is an (assembly) structural diagram showing the structure of the flow path structure 30. FIG. 8A shows the overall structure of the flow path structure 30, and FIG. 8B shows the flow path structure. The structure of the second substrate 110 when the structure 30 is disassembled is shown, and FIG. 8C shows the structure of the first substrate 111.
 本実施の形態の流路構造体30は、図8の(a)に示すように、第1基板111(ポリジメチルシロキサン(PDMS):疎水性)と、第2基板110(ガラス:親水性)とが、重ね合わせられた(接合された)構造である点は、上記実施の形態1と同様である。 As shown in FIG. 8A, the flow path structure 30 of the present embodiment includes a first substrate 111 (polydimethylsiloxane (PDMS): hydrophobic) and a second substrate 110 (glass: hydrophilic). Is the same as that of the first embodiment described above in that they are superposed (joined) structures.
 また、本実施の形態の流路構造体30では、作用電極132の周辺部における隘路114cの流路幅w’を、他の部分の流路幅wよりも狭くしたこと以外は、上記実施の形態1と同様である。よって、基板構成、流路、注入孔等は、上記実施の形態1と同様であり、その説明を省略する。 Further, in the flow path structure 30 of the present embodiment, the flow path width w ′ of the narrow path 114c in the peripheral part of the working electrode 132 is the same as that of the above embodiment except that the flow path width w of the other part is narrower. This is the same as the first embodiment. Therefore, the substrate configuration, the flow path, the injection hole, and the like are the same as those in the first embodiment, and the description thereof is omitted.
 図9は、流路構造体30の作用電極132の周辺部を部分的に拡大した部分拡大図である。なお、流路114の流路高さは、hとする。 FIG. 9 is a partially enlarged view in which the peripheral portion of the working electrode 132 of the flow channel structure 30 is partially enlarged. The channel height of the channel 114 is h.
 同図に示すように、作用電極132上で、流路高さhを一定に保った状態で、隘路114cの流路幅w’を他の部分の流路幅wよりも狭くすることで、流路高さhが一定に保たれた流路内面が占める割合が、流路幅wを狭くされた(流路幅w’の)流路内面が占める割合よりも高くなる。 As shown in the figure, on the working electrode 132, with the channel height h kept constant, the channel width w ′ of the narrow channel 114c is made narrower than the channel width w of other portions, The ratio of the inner surface of the channel whose channel height h is kept constant is higher than the ratio of the inner surface of the channel whose channel width w is narrowed (of the channel width w ′).
 よって、第1基板111を疎水性材料で構成すれば、作用電極132の周辺部の疎水性を高めることができる。 Therefore, if the first substrate 111 is made of a hydrophobic material, the hydrophobicity around the working electrode 132 can be increased.
 一方、第1基板111を親水性材料で構成すれば、作用電極132の周辺部の親水性を高めることができる。 On the other hand, if the first substrate 111 is made of a hydrophilic material, the hydrophilicity of the periphery of the working electrode 132 can be increased.
 例えば、本実施の形態の流路構造体30のように、疎水性材料から第1基板111と、親水性材料で構成された第2基板110とからなる場合、流路幅wが、作用電極132上で狭くなっている隘路114cが存在することで、隘路114cでの、第1基板111が占める割合が、第2基板110が占める割合よりも高くなるので、作用電極132の周辺部の疎水性を高めることができる。 For example, in the case where the first substrate 111 is made of a hydrophobic material and the second substrate 110 is made of a hydrophilic material as in the flow channel structure 30 of the present embodiment, the flow channel width w is the working electrode. Since the narrow path 114c on the 132 is present, the ratio of the first substrate 111 in the narrow path 114c is higher than the ratio of the second substrate 110. Therefore, the hydrophobic area around the working electrode 132 is hydrophobic. Can increase the sex.
 なお、上述した流路構造体20の流路114に隘路114cを設けても、流路構造体30とほぼ同様の効果を得られる。 It should be noted that even if the narrow channel 114 c is provided in the flow channel 114 of the above-described flow channel structure 20, substantially the same effect as the flow channel structure 30 can be obtained.
 よって、電圧印加がOFFの状態において、流路構造体30において毛細管力が働かないように、図21の式6の変数となる流路高さh、流路幅w、及び流路幅w’のそれぞれを適切に設定すると、作用電極132上の溶液に発生する表面張力による圧力Pを0又は負にする設計が容易となる。 Therefore, the channel height h, the channel width w, and the channel width w ′, which are variables of the equation 6 in FIG. 21, are set so that the capillary force does not act on the channel structure 30 in the state where the voltage application is OFF. When each of these is appropriately set, the design of making the pressure P due to the surface tension generated in the solution on the working electrode 132 zero or negative becomes easy.
  (実施の形態3の変形例)
 次に、図10に基づき、実施の形態3の流路構造体30の変形例である流路構造体40について説明する。図10は、流路構造体30の構成を示す断面図である。
(Modification of Embodiment 3)
Next, a flow path structure 40 that is a modification of the flow path structure 30 of the third embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view showing the configuration of the flow path structure 30.
 図10に示す流路構造体40では、流路構造体30と異なり、流路114の流路幅wは一定であるが、流路高さh’が他の部分の流路高さhよりも高くなっている段差部114dを作用電極132の周辺部に設けている。 In the channel structure 40 shown in FIG. 10, unlike the channel structure 30, the channel width w of the channel 114 is constant, but the channel height h ′ is higher than the channel height h of other parts. A stepped portion 114 d that is higher than that of the working electrode 132 is provided.
 なお、流路構造体40は、段差部114d以外の構成は、流路構造体10と同じであるので、ここでは説明を省略する。 Note that the flow path structure 40 has the same configuration as the flow path structure 10 except for the stepped portion 114d, and a description thereof will be omitted here.
 上記の構成では、作用電極132上で、流路幅wを一定に保った状態で、段差部114dの流路高さh’他の部分の流路高さhよりも高くすることで、流路高さh’の流路内面が占める割合が、流路幅wが一定に保たれた流路内面が占める割合よりも高くなる。 In the configuration described above, the flow path height h ′ of the stepped portion 114d is made higher than the flow path height h of the other portion while the flow path width w is kept constant on the working electrode 132. The ratio of the channel height h ′ occupied by the channel inner surface is higher than the ratio of the channel inner surface where the channel width w is kept constant.
 よって、第1基板111を疎水性材料で構成すれば、作用電極132の周辺部の疎水性を高めることができる。 Therefore, if the first substrate 111 is made of a hydrophobic material, the hydrophobicity around the working electrode 132 can be increased.
 一方、第1基板111を親水性材料で構成すれば、作用電極132の周辺部の親水性を高めることができる。 On the other hand, if the first substrate 111 is made of a hydrophilic material, the hydrophilicity of the periphery of the working electrode 132 can be increased.
 例えば、流路構造体40が、上述のように、疎水性材料で構成された第1基板111と、親水性材料で構成された第2基板110とからなる場合、段差部114dが存在することで、段差部114dでの、作用電極132上で第2基板110が占める割合が、第2基板110が占める割合よりも高くなるので、作用電極132の周辺部の疎水性を高めることができる。 For example, when the flow path structure 40 includes the first substrate 111 made of a hydrophobic material and the second substrate 110 made of a hydrophilic material as described above, the stepped portion 114d exists. Thus, since the proportion of the second substrate 110 on the working electrode 132 in the stepped portion 114d is higher than the proportion of the second substrate 110, the hydrophobicity of the peripheral portion of the working electrode 132 can be increased.
 なお、上述した流路構造体20の流路114に段差部114dを設けても、流路構造体40とほぼ同様の効果を得られる。 Note that even if the step 114 d is provided in the flow path 114 of the flow path structure 20 described above, substantially the same effect as the flow path structure 40 can be obtained.
 よって、電圧印加がOFFの状態において、流路構造体40において毛細管力が働かないように、図21の式6の変数となる流路高さh、流路高さh’、及び流路幅wを設定する。上記構成を採用すると、作用電極132上の溶液に発生する表面張力による圧力Pを0又は負にする設計が容易となる。 Therefore, the channel height h, the channel height h ′, and the channel width, which are the variables of Equation 6 in FIG. 21, are set so that the capillary force does not act on the channel structure 40 in the state where the voltage application is OFF. Set w. Employing the above configuration facilitates a design in which the pressure P due to the surface tension generated in the solution on the working electrode 132 is zero or negative.
 〔5.実施の形態4〕
 次に、図11に基づき、実施の形態4の流路構造体50について説明する。図11は、実施の形態4の流路構造体50の全体構成を示す組立構造図である。
[5. Embodiment 4]
Next, the flow path structure 50 according to the fourth embodiment will be described with reference to FIG. FIG. 11 is an assembly structure diagram illustrating an overall configuration of the flow path structure 50 according to the fourth embodiment.
 本実施の形態の流路構造体50は、作用電極132及び参照電極131からなるEWバルブを2つ直列に配置した点以外の構成は、上記実施の形態1の流路構造体10とほぼ同様である。よって、各構成要素に関する説明や溶液を停止させるための設計要件等の説明は省略する。 The flow path structure 50 of the present embodiment is substantially the same as the flow path structure 10 of the first embodiment, except that two EW valves composed of the working electrode 132 and the reference electrode 131 are arranged in series. It is. Therefore, the explanation about each component and the design requirements for stopping the solution are omitted.
 この流路構造体50では、流路114で2段階に溶液の停止と移動を制御することが可能となる。なお、本実施形態では、EWバルブを直列に2つ配置しているが、EWバルブは、必要に応じて3つ以上配置してもよい。 In this flow channel structure 50, it is possible to control the stop and movement of the solution in two stages by the flow channel 114. In the present embodiment, two EW valves are arranged in series, but three or more EW valves may be arranged as necessary.
  (実施の形態4の変形例)
 次に、図12に基づき、実施の形態4の流路構造体50の変形例である流路構造体60について説明する。図12は、流路構造体60の全体構成を示す組立構造図である。
(Modification of Embodiment 4)
Next, a flow path structure 60 that is a modification of the flow path structure 50 of the fourth embodiment will be described with reference to FIG. FIG. 12 is an assembly structure diagram showing the overall configuration of the flow path structure 60.
 流路構造体60は、2つの直列に配置されたEWバルブ毎に、図9に示す隘路114cを設けている点で、実施の形態4の流路構造体50と異なる。 The flow path structure 60 is different from the flow path structure 50 of the fourth embodiment in that a bottleneck 114c shown in FIG. 9 is provided for every two EW valves arranged in series.
 この流路構造体60では、隘路114cで疎水性をより高くしつつ、流路114で2段階に溶液の停止と移動を制御することが可能となる。なお、本実施形態では、EWバルブを直列に2つ配置しているが、EWバルブは、必要に応じて3つ以上配置してもよい。 In this flow channel structure 60, it is possible to control the stopping and movement of the solution in two stages by the flow channel 114 while making the hydrophobicity higher by the bottleneck 114c. In the present embodiment, two EW valves are arranged in series, but three or more EW valves may be arranged as necessary.
 〔6.実施の形態5〕
 次に、図13に基づき、実施の形態5の流路構造体70について説明する。図13は、実施の形態5の流路構造体70の全体構成を示す組立構造図である。
[6. Embodiment 5]
Next, the flow path structure 70 of Embodiment 5 will be described based on FIG. FIG. 13 is an assembly structure diagram showing the overall configuration of the flow path structure 70 of the fifth embodiment.
 本実施の形態の流路構造体70は、図13に示すように、作用電極132a及び作用電極132aからなるEWバルブと、作用電極132b及び参照電極131bからなるEWバルブとの2つのEWバルブを並列に配置した点、及び流路114が第2流路(流路)151a及び第2流路(流路)151bに分岐している点以外の構成は、上記実施の形態1の流路構造体10とほぼ同様である。よって、各構成要素に関する説明や溶液を停止させるための設計要件等の説明は省略する。 As shown in FIG. 13, the flow path structure 70 of the present embodiment includes two EW valves, an EW valve composed of the working electrode 132a and the working electrode 132a, and an EW valve composed of the working electrode 132b and the reference electrode 131b. The structure other than the point arranged in parallel and the point where the flow path 114 is branched into the second flow path (flow path) 151a and the second flow path (flow path) 151b are the flow path structure of the first embodiment. It is almost the same as the body 10. Therefore, the explanation about each component and the design requirements for stopping the solution are omitted.
 流路構造体70では、2つの注入孔(液導入孔)112a及び注入孔(液導入孔)112bと、注入孔112a及び注入孔112bにそれぞれ連続する第2流路151a及び第2流路151bと、第2流路151a及び第2流路151bのそれぞれに連続する流路114と、流路114に連続する排出孔113と、を有している。 In the flow channel structure 70, two injection holes (liquid introduction holes) 112a and injection holes (liquid introduction holes) 112b, and a second flow path 151a and a second flow path 151b continuous with the injection holes 112a and 112b, respectively. And a flow path 114 that is continuous with each of the second flow path 151a and the second flow path 151b, and a discharge hole 113 that is continuous with the flow path 114.
 ここで、作用電極132a及び作用電極132aは、第2流路151aの内部に、作用電極132b及び参照電極131bは、第2流路151bの内部に形成されている。 Here, the working electrode 132a and the working electrode 132a are formed in the second flow path 151a, and the working electrode 132b and the reference electrode 131b are formed in the second flow path 151b.
 上記構成では、異なる溶液を順次、流路114に送り込むことが可能となる。なお、本実施の形態の流路構造体70では、EWバルブを並列に2つ配置した構造となっているが、必要に応じてEWバルブを3つ以上配置しても良く、上記実施の形態4のようにEWバルブを2つ以上直列させる構成を組合せても良い。 In the above configuration, different solutions can be sequentially fed into the flow path 114. The flow path structure 70 of the present embodiment has a structure in which two EW valves are arranged in parallel, but three or more EW valves may be arranged as necessary. A configuration in which two or more EW valves are connected in series as shown in FIG.
  (実施の形態5の変形例)
 次に、図14に基づき、実施の形態5の流路構造体70の変形例である流路構造体80について説明する。図14は、流路構造体70の全体構成を示す組立構造図である。
(Modification of Embodiment 5)
Next, a flow path structure 80 that is a modification of the flow path structure 70 of the fifth embodiment will be described with reference to FIG. FIG. 14 is an assembly structure diagram showing the overall configuration of the flow path structure 70.
 図14に示すように、流路構造体70では、2つの注入孔112a及び注入孔112bと、注入孔112a及び注入孔112bにそれぞれ連続する第2流路151a及び第2流路151bと、第2流路151a及び第2流路151bにそれぞれ連続する、第2流路151a及び第2流路151bよりも流路幅の狭い第3流路152a及び第3流路152bと、2つの第3流路152a及び第3流路152bに連続する流路114と、流路114に連続する排出孔113と、を有している。 As shown in FIG. 14, in the flow channel structure 70, two injection holes 112a and 112b, a second flow channel 151a and a second flow channel 151b that are continuous with the injection holes 112a and 112b, respectively, The third channel 152a and the third channel 152b, which are continuous with the second channel 151a and the second channel 151b, respectively, and are narrower than the second channel 151a and the second channel 151b, and two third channels A flow path 114 continuous to the flow path 152a and the third flow path 152b and a discharge hole 113 continuous to the flow path 114 are provided.
 ここで、参照電極131a及び131bは、それぞれ第2流路151a及び151bの内部に形成されており、作用電極132a及び132bは、それぞれ第2流路151a及び151bが、第3流路152a及び152bに切り替わる出口近傍に形成されている。 Here, the reference electrodes 131a and 131b are formed inside the second flow paths 151a and 151b, respectively, and the working electrodes 132a and 132b are the second flow paths 151a and 151b and the third flow paths 152a and 152b, respectively. It is formed in the vicinity of the exit that switches to.
 基板構成は、上記実施の形態3と同様である。すなわち、作用電極132a及び132b上のそれぞれの流路幅を狭くした構造になっている。このため、実施の形態5にかかるEWバルブは、上記実施の形態3と同様の効果が得られるものが2つ並列に配置されたものである。 The substrate configuration is the same as in the third embodiment. In other words, the flow path width on the working electrodes 132a and 132b is narrowed. For this reason, two EW valves according to the fifth embodiment are arranged in parallel to obtain the same effect as in the third embodiment.
 この構成では、作用電極132a及び132bの周辺部の疎水性を高めつつ、異なる溶液を順次流路114に送り込むことが可能となる。なお、本実施の形態の流路構造体80では、EWバルブを並列に2つ配置した構造となっているが、必要に応じてEWバルブを3つ以上配置しても良く、上記実施の形態4のようにEWバルブを2つ以上直列させる構成を組合せても良い。 In this configuration, different solutions can be sequentially fed into the flow path 114 while increasing the hydrophobicity of the periphery of the working electrodes 132a and 132b. In the flow path structure 80 of the present embodiment, two EW valves are arranged in parallel, but three or more EW valves may be arranged as necessary. A configuration in which two or more EW valves are connected in series as shown in FIG.
 〔7.実施の形態6〕
 次に、図15に基づき、実施の形態6の流路構造体90について説明する。図15は、流路構造体90の構造を示す(組立)構造図であり、図15の(a)は、流路構造体90の全体構造を示し、図15の(b)は、流路構造体90を分解したときの第2基板110の構成を示し、図15の(c)は、第1基板111の構成を示す。
[7. Embodiment 6]
Next, the flow path structure 90 according to the sixth embodiment will be described with reference to FIG. 15 is an (assembly) structure diagram showing the structure of the flow channel structure 90. FIG. 15 (a) shows the overall structure of the flow channel structure 90, and FIG. 15 (b) shows the flow channel structure. The structure of the second substrate 110 when the structure 90 is disassembled is shown, and FIG. 15C shows the structure of the first substrate 111.
 実施の形態6の流路構造体90は、参照電極131の電位を安定にするため、対向電極137を設置したこと以外は、上記実施の形態1と同様である。対向電極137を設置することで、電位の基準になる参照電極131への電流の流れを防止することができ、作用電極132の電位を安定させることができる。この効果により、より高精度にEWバルブを電気的に駆動することが可能となる。 The flow path structure 90 of the sixth embodiment is the same as that of the first embodiment except that the counter electrode 137 is provided in order to stabilize the potential of the reference electrode 131. By providing the counter electrode 137, a current flow to the reference electrode 131 serving as a potential reference can be prevented, and the potential of the working electrode 132 can be stabilized. Due to this effect, the EW valve can be electrically driven with higher accuracy.
 なお、以上で説明した実施の形態3~6では、実施の形態1と同様に、第1基板111と第2基板110を重ね合わせた構造としたが、実施の形態2と同様に、第3基板115、中間層116及び第2基板110を重ね合わせた構造であっても良い。この場合も同様の効果を得ることができる。 In the third to sixth embodiments described above, the first substrate 111 and the second substrate 110 are stacked in the same manner as in the first embodiment. However, in the same manner as in the second embodiment, a third structure is used. The substrate 115, the intermediate layer 116, and the second substrate 110 may be stacked. In this case, the same effect can be obtained.
 〔8.実施の形態7〕
 実施の形態1~6にかかる流路構造体10~90は、流路に抗体等を固定化し、電極を設け、抗原抗体反応、酵素標識付き抗体と抗原-抗体複合体との反応、酵素基質反応を行わせ、酵素基質反応により生じた電極活性物質の量を電極で検出するというマイクロ分析チップとして利用できる。
[8. Embodiment 7]
The flow path structures 10 to 90 according to the first to sixth embodiments fix the antibody or the like in the flow path, provide electrodes, and perform antigen-antibody reaction, reaction between enzyme-labeled antibody and antigen-antibody complex, enzyme substrate It can be used as a microanalysis chip in which the reaction is performed and the amount of the electrode active substance generated by the enzyme substrate reaction is detected by the electrode.
 実施の形態7は、実施の形態1~6にかかる流路構造体10~90をマイクロ分析チップに発展させたものである。以下、実施の形態7のマイクロ分析チップ(分析チップ)2302の具体的構成の詳細を順次説明する。 In the seventh embodiment, the flow channel structures 10 to 90 according to the first to sixth embodiments are developed into micro analysis chips. Hereinafter, details of a specific configuration of the micro analysis chip (analysis chip) 2302 of Embodiment 7 will be sequentially described.
  (全体構造)
 次に、図16に基づき、実施の形態7のマイクロ分析チップ(分析チップ)2302の全体構造について説明する。図16は、マイクロ分析チップ2302の全体構造を示す構成図である。
(Overall structure)
Next, the overall structure of the micro analysis chip (analysis chip) 2302 of Embodiment 7 will be described with reference to FIG. FIG. 16 is a configuration diagram showing the overall structure of the micro analysis chip 2302.
 図16に示すように、マイクロ分析チップ2302は、第1注入孔(液導入孔)2001、第2注入孔(液導入孔)2002、第1液溜め部(流路)2003、第2液溜め部(流路)2004、注入路(流路)2005、注入路(流路)2006、ミキサー部(流路)2007、第1流路(流路)2008、第1隘路(流路)2009、第2流路(流路)2010、第2隘路(流路)2011、第3隘路(流路)2013、排出孔(液排出孔)2014、及び第3流路(流路)2016を備える。 As shown in FIG. 16, the micro analysis chip 2302 includes a first injection hole (liquid introduction hole) 2001, a second injection hole (liquid introduction hole) 2002, a first liquid reservoir (flow path) 2003, and a second liquid reservoir. Part (flow path) 2004, injection path (flow path) 2005, injection path (flow path) 2006, mixer section (flow path) 2007, first flow path (flow path) 2008, first narrow path (flow path) 2009, A second flow path (flow path) 2010, a second narrow path (flow path) 2011, a third narrow path (flow path) 2013, a discharge hole (liquid discharge hole) 2014, and a third flow path (flow path) 2016 are provided.
 第1注入孔2001及び第2注入孔2002のそれぞれには、第1の溶液及び第2の溶液が注入(導入)される。 The first solution and the second solution are injected (introduced) into the first injection hole 2001 and the second injection hole 2002, respectively.
 第1液溜め部2003及び第2液溜め部2004のそれぞれは、第1注入孔2001及び第2注入孔2002に連続している。 Each of the first liquid reservoir 2003 and the second liquid reservoir 2004 is continuous with the first injection hole 2001 and the second injection hole 2002.
 注入路2005及び注入路2006のそれぞれは、第1液溜め部2003及び第2液溜め部2004に連続している。 Each of the injection path 2005 and the injection path 2006 is continuous with the first liquid reservoir portion 2003 and the second liquid reservoir portion 2004.
 第1流路2008には、反応部(分析部)2017が設けられ、第2流路2010には、検出部(分析部)2012が設けられている。 The first flow path 2008 is provided with a reaction section (analysis section) 2017, and the second flow path 2010 is provided with a detection section (analysis section) 2012.
 注入路2005には、作用電極(不図示)が形成され、更に、第1液溜め部2003には、参照電極(不図示)が形成され、第1開閉バルブとして機能する。 In the injection path 2005, a working electrode (not shown) is formed, and in the first liquid reservoir 2003, a reference electrode (not shown) is formed and functions as a first opening / closing valve.
 一方、注入路2006には、作用電極(不図示)が形成され、更に、第2液溜め部2004には、参照電極(不図示)が形成され、第2開閉バルブとして機能する。すなわち、この実施の形態は、上記実施の形態5を利用したものである。さらに、マイクロ分析チップ2302の端部に、外部接続端子2015が設けられている。 On the other hand, a working electrode (not shown) is formed in the injection path 2006, and a reference electrode (not shown) is formed in the second liquid reservoir 2004, and functions as a second opening / closing valve. That is, this embodiment uses the fifth embodiment. Further, an external connection terminal 2015 is provided at the end of the micro analysis chip 2302.
 第1注入孔2001から第1の溶液が注入されると、第1液溜め部2003に第1の溶液が注入される。第2注入孔2002も同様に、第2の溶液が注入されると第2液溜め部2004に第2の溶液が注入される。 When the first solution is injected from the first injection hole 2001, the first solution is injected into the first liquid reservoir 2003. Similarly, when the second solution is injected into the second injection hole 2002, the second solution is injected into the second liquid reservoir 2004.
 上記作用電極と参照電極とにより、注入された溶液のミキサー部2007への流入を停止又は開始することができる。ミキサー部2007は第1の溶液と第2の溶液を混合できる構造としている。 The inflow of the injected solution to the mixer unit 2007 can be stopped or started by the working electrode and the reference electrode. The mixer unit 2007 has a structure capable of mixing the first solution and the second solution.
 ミキサー部2007には、第1流路2008が第1隘路2009を介して接続されている。第1流路2008に設けられた反応部2017には、溶液に含まれる被検出物質と反応する物質が配置されている。 A first flow path 2008 is connected to the mixer unit 2007 via a first bottleneck 2009. In the reaction section 2017 provided in the first flow path 2008, a substance that reacts with the substance to be detected contained in the solution is disposed.
 なお、図16に示す例では、ミキサー部2007と反応部2017とは第1隘路2009を介して接続されているが、第1隘路2009を介すことなく直接接続されていてもよい。 In the example shown in FIG. 16, the mixer unit 2007 and the reaction unit 2017 are connected via the first bottleneck 2009, but may be directly connected without passing through the first bottleneck 2009.
 第2流路2010は、第2隘路2011を介して第1流路2008と接続されており、第2流路2010には検出部2012が設けられている。検出部2012は、被検出物質を直接又は間接的に検出することができるよう構成されている。なお、被検出物質を直接検出できる構成である場合には、第2流路2010を有さない構成とすることができる。 The second flow path 2010 is connected to the first flow path 2008 via the second narrow path 2011, and the second flow path 2010 is provided with a detection unit 2012. The detection unit 2012 is configured to be able to detect a substance to be detected directly or indirectly. In addition, when it is the structure which can detect a to-be-detected substance directly, it can be set as the structure which does not have the 2nd flow path 2010. FIG.
 また、マイクロ分析チップ2302は、外部接続端子2015を有しており、外部接続端子2015を介して外部電源への接続、電気的制御信号の入力、検出信号の出力などを行えるようになっている。これにより、電源やIC(Integrated circuit)などの制御回路を外付けとすることができるので、その分、マイクロ分析チップ2302のコンパクト化を図れる。 Further, the micro analysis chip 2302 has an external connection terminal 2015, and can be connected to an external power source, input an electrical control signal, output a detection signal, and the like via the external connection terminal 2015. . As a result, since a control circuit such as a power source or an IC (Integrated Circuit) can be externally attached, the micro analysis chip 2302 can be made compact accordingly.
 すなわち、外部接続端子2015外部接続端子を介して作用電極及び参照電極間に電位差を生じさせることで、作用電極上で停止した溶液を移動させるための駆動力を生じさせることができる。また、反応部2017及び検出部2012での検出結果(分析結果)を、外部接続端子2015を介して出力できる。 That is, by generating a potential difference between the working electrode and the reference electrode via the external connection terminal 2015 external connection terminal, a driving force for moving the solution stopped on the working electrode can be generated. In addition, detection results (analysis results) in the reaction unit 2017 and the detection unit 2012 can be output via the external connection terminal 2015.
 これにより、第1注入孔2001及び第2注入孔2002を介して溶液を流路の内部に導入し、流路の内部に導入された溶液の特性を、反応部2017及び検出部2012で反応・検出(分析)し、流路の内部に導入された溶液を排出孔2014から排出する一連の工程を実行することができる。 As a result, the solution is introduced into the flow path through the first injection hole 2001 and the second injection hole 2002, and the characteristics of the solution introduced into the flow path are reacted and reacted by the reaction unit 2017 and the detection unit 2012. A series of steps of detecting (analyzing) and discharging the solution introduced into the flow path from the discharge hole 2014 can be executed.
 また、反応部2017に抗体等を固定化し、抗原抗体反応、酵素標識付き抗体と抗原-抗体複合体との反応、酵素基質反応を行わせ、酵素基質反応により生じた電極活性物質の量を検出部2012で検出することが可能となり、マイクロ分析チップ2302による分析が容易となる。 In addition, an antibody or the like is immobilized on the reaction unit 2017, and the antigen-antibody reaction, the reaction between the enzyme-labeled antibody and the antigen-antibody complex, and the enzyme-substrate reaction are performed, and the amount of the electrode active substance generated by the enzyme-substrate reaction is detected. It is possible to detect by the unit 2012, and the analysis by the micro analysis chip 2302 becomes easy.
 ここで、「分析」とは、物質の鑑識、検出、又は、化学的組成を定性的若しくは定量的に識別することであり、本明細書では、化学反応によって生じる物質の鑑識、検出、又は化学的組成の識別を含むものとする。よって、「分析部」は、本実施形態のように、反応部2017と検出部2012との組合せで構成されていても良いし、検出のみを行う検出部2012のみで構成されていても良いし、反応部2017及び検出部2012が一体化されていても良い。 Here, “analysis” refers to the identification, detection, or chemical composition of a substance qualitatively or quantitatively. In this specification, the identification, detection, or chemistry of a substance caused by a chemical reaction is used. Including identification of specific composition. Therefore, the “analysis unit” may be configured by a combination of the reaction unit 2017 and the detection unit 2012 as in the present embodiment, or may be configured only by the detection unit 2012 that performs only detection. The reaction unit 2017 and the detection unit 2012 may be integrated.
 次に、マイクロ分析チップ2302の各構成要素について詳細に説明する。 Next, each component of the micro analysis chip 2302 will be described in detail.
  (溶液の注入)
 第1の溶液用の第1注入孔2001及び第2の溶液用の第2注入孔2002より、それぞれ第1の溶液及び第2の溶液を注入する。これにより、第1液溜め部2003及び第2液溜め部2004にそれぞれの溶液を注入できる。
(Solution injection)
The first solution and the second solution are respectively injected from the first injection hole 2001 for the first solution and the second injection hole 2002 for the second solution. Thereby, each solution can be inject | poured into the 1st liquid reservoir part 2003 and the 2nd liquid reservoir part 2004. FIG.
 第1注入孔2001及び第2注入孔2002のそれぞれは、外部(大気)に開放された孔であって毛細管力が働かない程度の大きさ(例えば2mmΦ)としてある。毛細管力が働かない大きさである場合には、注入孔が疎水性であっても溶液を円滑に注入することができる。第1注入孔2001及び第2注入孔2002のそれぞれは、毛細管力の働く大きさであってもよいが、この場合には溶液を円滑に注入できるように、注入孔に親水性処理を施す等する必要がある。 Each of the first injection hole 2001 and the second injection hole 2002 is a hole opened to the outside (atmosphere) and has a size (for example, 2 mmΦ) to which capillary force does not work. When the size is such that the capillary force does not work, the solution can be smoothly injected even if the injection hole is hydrophobic. Each of the first injection hole 2001 and the second injection hole 2002 may have a size with which capillary force works. In this case, the injection hole is subjected to hydrophilic treatment so that the solution can be smoothly injected. There is a need to.
 なお、第1注入孔2001及び第2注入孔2002のそれぞれに溶液を充填したカートリッジを接続する方法で溶液を注入させることもできる。この場合にはカートリッジ内の溶液が流路系に充分に流れ込むよう、第1注入孔2001及び第2注入孔2002のそれぞれに空気抜き用の隙間が確保できるようにするか、又は別途空気抜き孔を設けるのが好ましい。 The solution can also be injected by connecting a cartridge filled with the solution to each of the first injection hole 2001 and the second injection hole 2002. In this case, an air vent hole is provided in each of the first injection hole 2001 and the second injection hole 2002 so that the solution in the cartridge can sufficiently flow into the flow path system, or a separate air vent hole is provided. Is preferred.
 図16の例は、2つの第1注入孔2001及び第2注入孔2002を有する構造であるが、注入孔は2つに限られず、3つ以上とすることもできる。例えば、第1の溶液用の第1注入孔2001に被検出物質を含む試料を、第2の溶液用の第2注入孔2002に試薬を、第3の溶液用の第3注入孔(不図示)に標準試料を、第4の溶液用の第4注入孔(不図示)に洗浄液を注入する等とすることができる。 16 is a structure having two first injection holes 2001 and second injection holes 2002, but the number of injection holes is not limited to two, and may be three or more. For example, a sample containing a substance to be detected in the first injection hole 2001 for the first solution, a reagent in the second injection hole 2002 for the second solution, and a third injection hole (not shown) for the third solution ), And a cleaning liquid may be injected into a fourth injection hole (not shown) for the fourth solution.
 洗浄液を注入する第4注入孔を設けた構造であると、分析チップ内を洗浄し繰り返し使用することによって、分析チップのコストパフォーマンスを高めることができる。なお、検出処理前後に第1の溶液用の第1注入孔2001等から洗浄液を注入して流路内を洗浄することにより、試料等の汚染を低減することもできる。これにより検出誤差を少なくすることができる。 If the structure is provided with the fourth injection hole for injecting the cleaning liquid, the cost performance of the analysis chip can be improved by repeatedly cleaning and using the inside of the analysis chip. In addition, the contamination of the sample or the like can be reduced by injecting the cleaning liquid from the first injection hole 2001 for the first solution before and after the detection process to clean the inside of the flow path. Thereby, detection errors can be reduced.
  (ミキサー部)
 ミキサー部2007は第1の溶液と第2の溶液を充分混合できるように構成する。例えば、ミキサー部2007に、第1開閉バルブ及び第2開閉バルブから流入して来た溶液が自然混合されるように、マイクロピラー構造設けるのもよい。また、T字型ミキサー、Manzミキサー、3次元蛇行流路を用いたミキサーなどを設けることもできる。
(Mixer part)
The mixer unit 2007 is configured so that the first solution and the second solution can be sufficiently mixed. For example, a micro pillar structure may be provided in the mixer unit 2007 so that the solution flowing in from the first opening / closing valve and the second opening / closing valve is naturally mixed. Also, a T-shaped mixer, a Manz mixer, a mixer using a three-dimensional meandering channel, and the like can be provided.
 図16の例は2種類の溶液を混合する場合であるが、3種類以上の溶液を混合するように構成してもよい。この場合、第3の溶液の注入と、流入タイミングを制御するために、他の液溜め部、注入路と同様に電極を形成することが好ましい。 The example of FIG. 16 is a case where two types of solutions are mixed, but three or more types of solutions may be mixed. In this case, in order to control the injection of the third solution and the inflow timing, it is preferable to form electrodes similarly to the other liquid reservoirs and injection paths.
  (第1流路)
 第1流路2008は、反応を行う反応領域として機能する。第1流路2008に設けられる反応部2017は、第1流路2008の全部であってもよいし、その一部であってもよい。反応部2017には、例えば、サンプル溶液に含まれる被検出物質を特異的に認識し反応する分子が配置される。被検出物質が抗原である場合は、抗体を反応部2017に固定化するとよい。被検出物質を検出するためには、酵素免疫反応のサンドイッチ法を用いることができ、この場合、抗原を酵素標識抗体(二次抗体)と反応させ、抗原と酵素標識抗体が結合した複合体とする。この複合体を反応部2017に予め固定化しておき抗体(一次抗体)と反応させる。次に基質を導入し、二次抗体に標識されている酵素と反応させ、反応により生成された電気化学的に活性のある物質を検出部2012の電極上で電気化学的に検出を行う。反応部2017では、検出部2012にて検出できる物質が被検出物質の量に応じて生成される。なお、反応部2017における検出手段が光学的な手段であってもよい。
(First flow path)
The first flow path 2008 functions as a reaction region for performing a reaction. The reaction unit 2017 provided in the first flow path 2008 may be the whole of the first flow path 2008 or a part thereof. In the reaction unit 2017, for example, molecules that specifically recognize and react with a substance to be detected contained in the sample solution are arranged. When the substance to be detected is an antigen, the antibody may be immobilized on the reaction unit 2017. In order to detect a substance to be detected, a sandwich method of enzyme immune reaction can be used. In this case, an antigen is reacted with an enzyme-labeled antibody (secondary antibody), and a complex in which the antigen and the enzyme-labeled antibody are bound to each other. To do. This complex is immobilized in advance on the reaction unit 2017 and reacted with an antibody (primary antibody). Next, a substrate is introduced, reacted with an enzyme labeled with the secondary antibody, and an electrochemically active substance generated by the reaction is electrochemically detected on the electrode of the detection unit 2012. In the reaction unit 2017, a substance that can be detected by the detection unit 2012 is generated according to the amount of the substance to be detected. Note that the detection means in the reaction unit 2017 may be an optical means.
  (外部接続端子)
 外部接続端子2015は、外部の駆動電源からマイクロ分析チップ2302への駆動電力を受け取ったり、駆動信号(制御信号)を受け取ったり、外部に検出結果等を出力するためのインターフェイスである。
(External connection terminal)
The external connection terminal 2015 is an interface for receiving driving power from an external driving power source to the micro analysis chip 2302, receiving a driving signal (control signal), and outputting a detection result and the like to the outside.
 この外部接続端子2015の形成に金薄膜を用いると、外部接続端子2015の形成をEWバルブや検出電極などと同様に行うことができるので生産効率がよい。なお、金に代えて、銅や鉄又はアルミニウムなどの他の導電性材料を用いても良いことは勿論である。 If a gold thin film is used to form the external connection terminal 2015, the external connection terminal 2015 can be formed in the same manner as the EW valve, the detection electrode, and the like, so that production efficiency is good. Of course, other conductive materials such as copper, iron or aluminum may be used instead of gold.
  (構造体)
 実施の形態7にかかるマイクロ分析チップは第1基板2101と第2基板2102を重ね合わせた2層構造になっている。2層構造の各々の層構造について図17を用いて説明する。
(Structure)
The micro analysis chip according to the seventh embodiment has a two-layer structure in which a first substrate 2101 and a second substrate 2102 are overlapped. Each layer structure of the two-layer structure will be described with reference to FIG.
 第1基板2101は、透明性及び加工性が高いものが良く、また溶液の移動の制御を行うために疎水性を有するものがよい。このような基板としては、ポリジメチルシロキサン(PDMS)からなるものがよい。他方、第2基板2102は、電極が形成し易い材料が良く、第1基板2101を疎水性とした場合においては親水性とする必要がある。このような基板として、ガラス、石英、及びシリコン等のいずれかからなる基板が好適である。 The first substrate 2101 preferably has high transparency and processability, and preferably has hydrophobicity in order to control the movement of the solution. Such a substrate is preferably made of polydimethylsiloxane (PDMS). On the other hand, the second substrate 2102 is preferably made of a material on which an electrode can be easily formed. When the first substrate 2101 is made hydrophobic, it needs to be hydrophilic. As such a substrate, a substrate made of any of glass, quartz, silicon and the like is preferable.
 第1基板2101及び/又は第2基板2102は、上記親水性又は疎水性の特性を有することに加え、蛍光やUV光を用いて検出目的物質を測定するために、励起光による発光が少ない透明又は半透明の材質を用いることが望ましい。このような材質としては、実施の形態1に記載したものや、特許文献3で提案される材質を用いることができる。 The first substrate 2101 and / or the second substrate 2102 has the above-mentioned hydrophilic or hydrophobic characteristics, and is transparent with little emission of excitation light in order to measure the detection target substance using fluorescence or UV light. Alternatively, it is desirable to use a translucent material. As such a material, the material described in Embodiment 1 or the material proposed in Patent Document 3 can be used.
 各基板に対し次のような加工を行う。第1基板2101に対しては、基板上部(図17の(a)の紙面に対して手前側)に第1注入孔2001、第2注入孔2002、排出孔2014を上向きに開口する。また、第1液溜め部2003、第2液溜め部2004、注入路2005、注入路2006、ミキサー部2007、第1流路2008、第1隘路2009、第2流路2010、第2隘路2011、第3隘路2013、及び第3流路2016用の凹状溝(流路形成孔)を形成する。 The following processing is performed on each substrate. For the first substrate 2101, the first injection hole 2001, the second injection hole 2002, and the discharge hole 2014 are opened upward at the upper part of the substrate (front side with respect to the paper surface of FIG. 17A). In addition, the first liquid reservoir 2003, the second liquid reservoir 2004, the injection path 2005, the injection path 2006, the mixer section 2007, the first flow path 2008, the first narrow path 2009, the second flow path 2010, the second narrow path 2011, Concave grooves (flow channel forming holes) for the third narrow channel 2013 and the third flow channel 2016 are formed.
 第2基板2102に対しては、その表面に電極2105及び電極2106、検出用電極(分析部)2112を形成し、また、第2基板2102の端部に外部接続端子2015を形成する。更に各電極を外部接続端子2015に接続する引き出し線を形成する。各電極の形成は、公知の方法を用いればよい。 For the second substrate 2102, an electrode 2105, an electrode 2106, and a detection electrode (analysis unit) 2112 are formed on the surface, and an external connection terminal 2015 is formed on the end of the second substrate 2102. Furthermore, a lead line for connecting each electrode to the external connection terminal 2015 is formed. Each electrode may be formed using a known method.
 上記のように加工した第1基板2101及び第2基板2102を、加工面を内側にして張り合わせる。これにより実施の形態6にかかるマイクロ分析チップ2302が完成する。 The first substrate 2101 and the second substrate 2102 processed as described above are bonded to each other with the processing surface inside. Thereby, the micro analysis chip 2302 according to the sixth embodiment is completed.
 本実施の形態では、第1基板2101と第2基板2102とを重ね合わせた構造について説明したが、実施の形態2と同様に、第3基板、中間層(流路形成層)、第2基板(第4基板)を重ね合わせた構造であっても良い。 In this embodiment, the structure in which the first substrate 2101 and the second substrate 2102 are overlapped is described. However, as in the second embodiment, the third substrate, the intermediate layer (flow path forming layer), and the second substrate are used. A structure in which (fourth substrate) is overlaid may be used.
 〔9.実施の形態8〕
 次に、図18に基づき、実施の形態8の携帯可能なハンディ型の制御用ハンディ機器(分析装置)2301について説明する。図18は、制御用ハンディ機器2301及び装着前のマイクロ分析チップ2302の外観を示す斜視図である。
[9. Embodiment 8]
Next, a portable handy control handy device (analyzer) 2301 according to the eighth embodiment will be described with reference to FIG. FIG. 18 is a perspective view showing the appearance of the control handy device 2301 and the micro analysis chip 2302 before being mounted.
 制御用ハンディ機器2301は、マイクロ分析チップ2302が装填されることにより分析装置として機能する。マイクロ分析チップ2302は、上記実施の形態7で説明したものである。よって、ここでは、マイクロ分析チップ2302の詳細な説明は省略する。 The control handy device 2301 functions as an analyzer when the micro analysis chip 2302 is loaded. The micro analysis chip 2302 is the one described in the seventh embodiment. Therefore, detailed description of the micro analysis chip 2302 is omitted here.
 図18に示すように、制御用ハンディ機器2301の下部には、マイクロ分析チップ2302の外部接続端子2015を挿入するチップ接続口2303が設けられており、このチップ接続口2303の奥には、外部接続端子2015と電気的に接続する外部入出力端子(不図示)が設けられている。 As shown in FIG. 18, a chip connection port 2303 into which the external connection terminal 2015 of the micro analysis chip 2302 is inserted is provided at the lower part of the control handy device 2301. An external input / output terminal (not shown) that is electrically connected to the connection terminal 2015 is provided.
 マイクロ分析チップ2302の外部接続端子2015をチップ接続口2303に挿入すると、制御用ハンディ機器2301内の外部入出力端子とマイクロ分析チップ2302の外部接続端子とが電気的に接続される。 When the external connection terminal 2015 of the micro analysis chip 2302 is inserted into the chip connection port 2303, the external input / output terminal in the control handy device 2301 and the external connection terminal of the micro analysis chip 2302 are electrically connected.
 制御用ハンディ機器2301には、マイクロ分析チップ2302の測定結果(被検出物質の量など)を表示することができる表示部2304、及び、測定の開始、停止や、測定パラメータを特定するための様々なデータを入力することのできる入力部2305が設けられている。入力部2305としては、例えばタッチパネル構造が採用できる。 The control handy device 2301 has a display unit 2304 that can display the measurement results (amount of the substance to be detected, etc.) of the micro analysis chip 2302, and various items for specifying measurement parameters. An input unit 2305 capable of inputting various data is provided. As the input unit 2305, for example, a touch panel structure can be adopted.
 更に制御用ハンディ機器2301には、図示しないが、データを処理することのできるCPU(central processing unit:情報処理部)や入力情報及び出力情報を処理するI/O論理回路などの情報処理部が組み込まれている。 Further, although not shown, the control handy device 2301 includes an information processing unit such as a CPU (central processing unit) that can process data and an I / O logic circuit that processes input information and output information. It has been incorporated.
 マイクロ分析チップ2302を制御用ハンディ機器2301に接続し、各種データを入力し、測定開始ボタンを押す。これにより、予めマイクロ分析チップ2302に備えられ、且つ第1開閉バルブ及び第2開閉バルブにより流路内への流入が停止されていた試薬液や試料液(被検液;溶液)などの溶液が流路内に順次進入する。これにより各流路内で所定の反応が行われて検出可能物質になり検出部2012に至り、ここで被検出物質の量に応じた電気信号(分析信号)が発せられる。この電気信号は外部接続端子2015から外部に出力される。 接 続 Connect the micro analysis chip 2302 to the control handy device 2301, input various data, and press the measurement start button. Accordingly, a solution such as a reagent solution or a sample solution (test solution; solution) that is provided in the micro analysis chip 2302 in advance and has stopped flowing into the flow path by the first opening and closing valve and the second opening and closing valve. Enter the flow path sequentially. As a result, a predetermined reaction is performed in each flow path to become a detectable substance and reaches the detection unit 2012, where an electrical signal (analysis signal) corresponding to the amount of the substance to be detected is generated. This electrical signal is output from the external connection terminal 2015 to the outside.
 外部接続端子2015から出力された電気信号は、外部接続端子2015と電気的に接続された制御用ハンディ機器の外部入出力端子が受け取り、この電気信号を制御用ハンディ機器に予め格納されたソフト情報(例えば、電気信号と分析データとの対応関係を示す情報など)に基づいて分析する。これにより、被検出物質の量又は種類などを特定することができる。 The electrical signal output from the external connection terminal 2015 is received by an external input / output terminal of a control handy device electrically connected to the external connection terminal 2015, and this electrical signal is stored in advance in software information stored in the control handy device. Analysis is performed based on (for example, information indicating the correspondence between the electrical signal and the analysis data). Thereby, the quantity or type of the substance to be detected can be specified.
 制御用ハンディ機器2301としては、例えば、携帯電話やPDA(personal digital assistance)などの携帯電子機器を活用することができる。ここでは携帯電話を例に挙げて説明する。例えばコンピュータ機能を備えた携帯電話に、上記したチップ接続口2303を設け、この携帯電話にマイクロ分析チップ2302から発信(出力)されたデータを処理する分析ソフト(分析プログラム)を格納する。この携帯電話は通常は携帯電話として機能し、必要に応じて制御用ハンディ機器2301として機能させることができる。 As the control handy device 2301, for example, a mobile electronic device such as a mobile phone or a personal digital assistant (PDA) can be used. Here, a mobile phone will be described as an example. For example, the above-described chip connection port 2303 is provided in a mobile phone having a computer function, and analysis software (analysis program) for processing data transmitted (output) from the micro analysis chip 2302 is stored in this mobile phone. This mobile phone normally functions as a mobile phone, and can function as a control handy device 2301 as necessary.
 次に、制御用ハンディ機器2301の操作方法を例示する。携帯電話にマイクロ分析チップ2302を接続し、携帯電話の入力部2305のボタンにより各種データを入力した後、測定開始ボタンとして設定されたボタンを押す。これにより、あらかじめマイクロ分析チップ2302に準備され、かつ第1開閉バルブ及び第2開閉バルブにより流路内への流入が停止されていた試薬液や被検液などが流路内へ進行する。この後、マイクロ分析チップ2302が順次動作して検出部2012において検出された被検出物質量に応じた電気信号を携帯電話に出力する。携帯電話のコンピュータがこの信号をソフト的に解析し被検出物質の量や種類などを特定する。これを携帯電話の表示部2304に表示する。また、オペレータの指示を受け、その電送機能を利用して解析情報を離れた場所にまで電送する。 Next, a method for operating the control handy device 2301 will be exemplified. A micro analysis chip 2302 is connected to a mobile phone, and various data are input using buttons of the input unit 2305 of the mobile phone, and then a button set as a measurement start button is pressed. As a result, a reagent solution or a test solution, which has been prepared in advance in the microanalysis chip 2302 and has stopped flowing into the flow channel by the first open / close valve and the second open / close valve, advances into the flow channel. Thereafter, the micro analysis chip 2302 operates in sequence to output an electric signal corresponding to the amount of the substance detected by the detection unit 2012 to the mobile phone. The computer of the mobile phone analyzes this signal in software to identify the amount and type of the substance to be detected. This is displayed on the display unit 2304 of the mobile phone. Also, upon receiving an instruction from the operator, the analysis information is transmitted to a remote place using the transmission function.
 このように、携帯機器を利用することにより、コストパフォーマンスに優れ、かつ利便性・使い勝って性に優れた制御用ハンディ機器2301を実現することができる。 As described above, by using the portable device, it is possible to realize the control handy device 2301 which is excellent in cost performance and convenient and easy to use.
 なお、マイクロ分析チップ2302と制御用ハンディ機器2301との間の信号伝達方式は、両者間で電気信号がやり取りできる限りどのような方式・形態でもよく、必ずしも上記のようなチップ接続口2303を介する方式である必要はない。 Note that the signal transmission method between the micro analysis chip 2302 and the control handy device 2301 may be any method and form as long as an electric signal can be exchanged between the two, and is not necessarily connected via the chip connection port 2303 as described above. It doesn't have to be a method.
 より詳細には、制御用ハンディ機器2301の各構成要素は、集積回路(ICチップ)上に形成された論理回路によってハードウェア的に実現してもよいし、CPUを用いてソフトウェア的に実現してもよい。 More specifically, each component of the control handy device 2301 may be realized by hardware by a logic circuit formed on an integrated circuit (IC chip) or by software using a CPU. May be.
 後者の場合、制御用ハンディ機器2301は、各機能を実現する分析プログラムなどの各種制御プログラムの命令を実行するCPU、上記制御プログラムを格納したROM(Read Only Memory)、上記プログラムを展開するRAM(Random Access Memory)、上記各種プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである制御用ハンディ機器2301の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記制御用ハンディ機器2301に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。 In the latter case, the control handy device 2301 includes a CPU that executes instructions of various control programs such as an analysis program that implements each function, a ROM (Read Only Memory) that stores the control program, and a RAM ( Random Access Memory), a storage device (recording medium) such as a memory for storing the various programs and various data, and the like. An object of the present invention is a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of a control handy device 2301, which is software that realizes the above-described functions, is recorded in a computer-readable manner. Can also be achieved by reading the program code recorded on the recording medium and executing it by the computer (or CPU or MPU).
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ類、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク類、ICカード(メモリカードを含む)/光カード等のカード類、マスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ類、あるいはPLD(Programmable logic device)やFPGA(Field Programmable Gate Array)等の論理回路類などを用いることができる。 Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R. IC cards (including memory cards) / optical cards, semiconductor memories such as mask ROM / EPROM / EEPROM / flash ROM, or PLD (Programmable logic device) or FPGA (Field Programmable Gate Array) Logic circuits can be used.
 また、制御用ハンディ機器2301を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークは、プログラムコードを伝送可能であればよく、特に限定されない。例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、この通信ネットワークを構成する伝送媒体も、プログラムコードを伝送可能な媒体であればよく、特定の構成または種類のものに限定されない。例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(Asymmetric Digital Subscriber Line)回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、IEEE802.11無線、HDR(High Data Rate)、NFC(Near Field Communication)、DLNA(Digital Living Network Alliance)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。 Also, the control handy device 2301 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited as long as it can transmit the program code. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network (Virtual Private Network), telephone line network, mobile communication network, satellite communication network, etc. can be used. The transmission medium constituting the communication network may be any medium that can transmit the program code, and is not limited to a specific configuration or type. For example, even in the case of wired lines such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), IEEE 802.11 wireless, HDR ( It can also be used by wireless such as High Data Rate, NFC (Near Field Communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, and terrestrial digital network.
  (実施例)
 次に、実施例により本発明の説明を行うが、本発明の範囲は実施例に限定されるものではない。
(Example)
Next, the present invention will be described with reference to examples, but the scope of the present invention is not limited to the examples.
 本実施例にかかる流路構造体は、上記実施の形態1と同様の構成であり、2つの基板(第1基板111と第2基板110)が重ね合わされて構成されている。 The flow path structure according to the present example has the same configuration as that of the first embodiment, and is configured by superimposing two substrates (first substrate 111 and second substrate 110).
 第1基板111への流路114形用の流路形成溝114aの形成には、金型による樹脂成型方法を用いた。金型は、シリコン基板にフォトリソ法でレジストパターンを形成後、ドライエッチングプロセス法によりエッチングを行って作製した。作製された金型型枠を設置し、シリコンゴム(ポリジメチルシロキサン、東レダウコーニング社製 ジルポット184)を厚みが2mmになるまで流し込み、100℃、15分の加熱を行い、硬化させた。硬化後、金型と硬化したシリコンゴムを分離させ、シリコンゴムを縦20mm、横10mm、厚み2mmに整形し、上部基板を作製した。流路幅を600μm、流路高さを50μmとした。 For forming the flow path forming groove 114a for the flow path 114 on the first substrate 111, a resin molding method using a mold was used. The mold was manufactured by forming a resist pattern on a silicon substrate by a photolithography method and then performing an etching by a dry etching process method. The produced mold form was placed, and silicon rubber (polydimethylsiloxane, Jill Pot 184 manufactured by Toray Dow Corning Co., Ltd.) was poured until the thickness became 2 mm, and heated at 100 ° C. for 15 minutes to be cured. After curing, the mold and the cured silicon rubber were separated, and the silicon rubber was shaped into a length of 20 mm, a width of 10 mm, and a thickness of 2 mm to produce an upper substrate. The channel width was 600 μm and the channel height was 50 μm.
 第2基板110は、厚み600μmの石英基板をダイシングソーで縦25mm、横15mmに切断して作製した。参照電極131の寸法を800μm×300μm、作用電極132の寸法を1000μm×1000μm、外部接続端子用電極136の寸法を1000mm×1000mm、引き出し電極133のライン幅を200μmに設計した。参照電極131、作用電極132の作製には、フォトリソ法によりレジストをパターニング後、スパッタ法によってチタン層(又はクロム層)50nm、金層100nmを形成し、リフトオフ法によってレジスト及びレジスト上に形成されたチタン層及び金層を除去し、所望の形にパターニングされた電極を形成した。 The second substrate 110 was produced by cutting a quartz substrate having a thickness of 600 μm into a 25 mm length and a 15 mm width using a dicing saw. The dimension of the reference electrode 131 was designed to be 800 μm × 300 μm, the dimension of the working electrode 132 was 1000 μm × 1000 μm, the dimension of the external connection terminal electrode 136 was 1000 mm × 1000 mm, and the line width of the extraction electrode 133 was designed to be 200 μm. The reference electrode 131 and the working electrode 132 were formed by patterning a resist by a photolithography method, forming a titanium layer (or chromium layer) of 50 nm and a gold layer of 100 nm by a sputtering method, and forming them on the resist and the resist by a lift-off method. The titanium layer and the gold layer were removed to form an electrode patterned in a desired shape.
 電極作製後、フォトリソ法によって、EWバルブ用作用電極の内側に抜きパターンを形成後、プラズマ中でC4F8(八フッ化シクロブタン)ガスを導入し、フッ化炭素膜を50nm堆積させた。フッ化炭素膜の堆積には住友精密工業製のICP装置(MUC-21)を用いた。フッ化炭素膜を堆積後、リフトオフ法によってレジスト及びレジスト上に形成されたフッ化炭素膜を除去し、作用電極132上に疎水性部分135を形成した。疎水性部分135は、形状が縦50μm、横50μmで、50μm間隔で島(ランド部)状に複数個配置させた。フッ化炭素膜の接触角は、110°(室温25℃、純水(比抵抗 18MΩ・cm)における)であった。 After forming the electrode, a pattern was formed inside the working electrode for the EW valve by photolithography, and then C4F8 (cyclobutane octafluoride) gas was introduced in the plasma to deposit a 50 nm fluorocarbon film. An ICP apparatus (MUC-21) manufactured by Sumitomo Precision Industries was used for depositing the fluorocarbon film. After depositing the fluorocarbon film, the resist and the fluorocarbon film formed on the resist were removed by a lift-off method, and a hydrophobic portion 135 was formed on the working electrode 132. The hydrophobic portion 135 is 50 μm in length and 50 μm in width, and a plurality of hydrophobic portions 135 are arranged in an island (land) shape at intervals of 50 μm. The contact angle of the fluorocarbon film was 110 ° (at room temperature of 25 ° C., in pure water (specific resistance: 18 MΩ · cm)).
 上記第1基板111及び第2基板110を張り合わせ、実施例にかかる流路構造体を作製した。 The first substrate 111 and the second substrate 110 were bonded together to produce a flow channel structure according to the example.
  (比較例1)
 作用電極に疎水性膜の形成を行わない以外は、上記実施例と同様にして流路構造体を作製した。
(Comparative Example 1)
A channel structure was prepared in the same manner as in the above example except that the hydrophobic film was not formed on the working electrode.
  (比較例2)
 フッ化炭素膜を作用電極全面に形成したこと以外は、上記実施例と同様にして流路構造体を作製した。
(Comparative Example 2)
A flow channel structure was produced in the same manner as in the above example except that a fluorocarbon film was formed on the entire surface of the working electrode.
 実施例、比較例1、比較例2にかかる流路構造体に液を流す試験を行った。実施例では、注入孔に蛍光色素(フルオレセインイソシアネート:FITC)溶液を滴下すると、毛細管現象により流路構造体内に溶液が入った。この後、EWバルブの作用電極に溶液が達した時点で溶液の流れが停止した。作用電極及び参照電極に1.5Vの電圧を印加すると、作用電極上を溶液が通過し、流路内の溶液が無くなるまで溶液を流すことができた。 The test which flows a liquid through the flow-path structure concerning an Example, the comparative example 1, and the comparative example 2 was done. In the examples, when a fluorescent dye (fluorescein isocyanate: FITC) solution was dropped into the injection hole, the solution entered the channel structure by capillary action. Thereafter, the flow of the solution stopped when the solution reached the working electrode of the EW valve. When a voltage of 1.5 V was applied to the working electrode and the reference electrode, the solution passed over the working electrode, and the solution could flow until there was no solution in the flow path.
 他方、比較例1では、作用電極に溶液が達した時点で溶液の流れが停止せず、ゆっくりと作用電極上を移動し通過する場合が発生した。 On the other hand, in Comparative Example 1, when the solution reached the working electrode, the flow of the solution did not stop, and the case where it slowly moved and passed over the working electrode occurred.
 比較例2では、作用電極に溶液が達した時点で溶液の流れが停止し、1.5V電圧を印加したときには溶液の流れが再開しなかった。さらに、印加電圧を大きくすることにより、作用電極上を溶液が通過することができるが、印加電圧を大きくすると、溶液の電気分解により気泡が発生し、途中で溶液が停止する場合が発生した。 In Comparative Example 2, the solution flow stopped when the solution reached the working electrode, and the solution flow did not resume when 1.5 V voltage was applied. Furthermore, by increasing the applied voltage, the solution can pass over the working electrode. However, when the applied voltage is increased, bubbles may be generated due to electrolysis of the solution, and the solution may stop in the middle.
 以上により、実施例の流路構造体では、溶液の流れを確実に制御できることがわかる。 From the above, it can be seen that the flow of the solution can be reliably controlled in the channel structure of the example.
 また、本発明は、以下のように表現することもできる。 Further, the present invention can also be expressed as follows.
 すなわち、本発明の流路構造体は、流路内に形成された第1の電極(作用電極)と、前記第1の電極の形成された領域よりも上流側に形成された第2の電極(参照電極)とを有し、前記第1の電極と前記第2の電極に接し、前記第1の電極で停止している液を、前記第1の電極と前記第2の電極に電圧を印加することにより、前進させる送液バルブが配置された流路構造体において、前記第1の電極表面に、液の流れる方向に対して直交方向において、疎水性部分と親水性部分が配置されていても良い。 That is, the flow channel structure according to the present invention includes a first electrode (working electrode) formed in the flow channel and a second electrode formed on the upstream side of the region where the first electrode is formed. (Reference electrode), the liquid in contact with the first electrode and the second electrode, and stopped at the first electrode, the voltage applied to the first electrode and the second electrode. In the flow channel structure in which the liquid feeding valve to be moved forward by application is arranged, a hydrophobic portion and a hydrophilic portion are arranged on the surface of the first electrode in a direction orthogonal to the liquid flowing direction. May be.
 また、本発明の流路構造体は、前記疎水性部分と前記親水性部分の割合が異なる領域を備えていても良い。 Further, the flow channel structure of the present invention may include a region where the ratio of the hydrophobic portion and the hydrophilic portion is different.
 また、本発明の流路構造体は、前記流路用の溝が形成された第1基板と、前記第2の電極と前記第1の電極が形成された第2基板と、を有し、前記第1基板と前記第2基板とが重ね合わされてなるものであっても良い。 Further, the flow channel structure of the present invention includes a first substrate on which the channel groove is formed, and a second substrate on which the second electrode and the first electrode are formed, The first substrate and the second substrate may be overlapped.
 また、本発明の流路構造体は、前記第1基板の表面が疎水性であり、前記第2基板の表面が親水性であっても良い。 In the channel structure according to the present invention, the surface of the first substrate may be hydrophobic and the surface of the second substrate may be hydrophilic.
 また、本発明の流路構造体は、前記第1基板はポリジメチルシロキサンからなり、前記第2基板はガラスからなっていても良い。 In the flow channel structure according to the present invention, the first substrate may be made of polydimethylsiloxane, and the second substrate may be made of glass.
 また、本発明の流路構造体は、前記各流路用の溝の側壁部が形成された中間層と、前記中間層の溝部を両面から蓋する第2基板及び第3基板と、を有し、前記第3基板と前記中間層と前記第2基板が重ね合わされてなるものであっても良い。 In addition, the flow channel structure of the present invention includes an intermediate layer in which a side wall portion of the groove for each flow channel is formed, and a second substrate and a third substrate that cover the groove portion of the intermediate layer from both sides. In addition, the third substrate, the intermediate layer, and the second substrate may be overlapped.
 また、本発明の流路構造体は、前記中間層の表面が疎水性であっても良い。 In the flow channel structure of the present invention, the surface of the intermediate layer may be hydrophobic.
 また、本発明の流路構造体は、前記第1の電極の疎水性部分が複数の島状に配置されていても良い。 In the channel structure of the present invention, the hydrophobic portion of the first electrode may be arranged in a plurality of island shapes.
 また、本発明の流路構造体は、前記第1の電極の疎水性部分が液の流れる方向に対して平行な複数のライン状に配置されていても良い。 In the flow channel structure of the present invention, the hydrophobic portion of the first electrode may be arranged in a plurality of lines parallel to the liquid flow direction.
 また、本発明の流路構造体は、前記第1の電極の構成材料が親水性であり、前記第1の電極の一部に疎水化処理されていても良い。 In the channel structure of the present invention, the constituent material of the first electrode may be hydrophilic, and a part of the first electrode may be subjected to a hydrophobic treatment.
 また、本発明の流路構造体は、前記疎水化処理が、疎水処理剤処理であっても良い。 In the channel structure of the present invention, the hydrophobic treatment may be a hydrophobic treatment agent treatment.
 また、本発明の流路構造体は、前記疎水化処理が、疎水性膜の形成であっても良い。 In the flow channel structure of the present invention, the hydrophobic treatment may be formation of a hydrophobic film.
 また、本発明の流路構造体は、前記疎水化処理の後、表面粗さの調整が行われても良い。 Moreover, the flow path structure of the present invention may be subjected to surface roughness adjustment after the hydrophobization treatment.
 また、本発明の流路構造体は、前記第1の電極上に、流れの方向の前後の流路の溝幅よりも、溝幅が小さい流路部を有していても良い。 Further, the flow channel structure of the present invention may have a flow channel part having a groove width smaller than the groove width of the flow channel before and after the flow direction on the first electrode.
 また、本発明の流路構造体は、前記第1の電極上に、流れの方向の前後の流路の溝高さよりも、溝高さが大きい流路部を有していても良い。 Further, the flow channel structure of the present invention may have a flow channel portion having a groove height larger than the groove height of the flow channel before and after the flow direction on the first electrode.
 また、本発明の分析チップは、前記流路構造体を備えた分析チップであって、注入孔と、排出孔と、反応部及び/又は検出部と、外部接続端子とを備えていても良い。 Moreover, the analysis chip of the present invention is an analysis chip including the flow channel structure, and may include an injection hole, a discharge hole, a reaction unit and / or a detection unit, and an external connection terminal. .
 また、本発明の分析装置は、前記分析チップを備えた分析装置であって、チップ接続口と、外部入出力端子と、表示部と、入力部と、情報処理部とを備えていても良い。 The analyzer according to the present invention is an analyzer including the analysis chip, and may include a chip connection port, an external input / output terminal, a display unit, an input unit, and an information processing unit. .
 また、本発明は、以下のようにも表現できる。 The present invention can also be expressed as follows.
 また、本発明の流路構造体は、前記疎水部と前記親水部とが配列する配列方向が、前記駆動力に対して直交する方向であっても良い。 In the flow channel structure of the present invention, the arrangement direction in which the hydrophobic portion and the hydrophilic portion are arranged may be a direction orthogonal to the driving force.
 前記構成によれば、疎水部と親水部とが配列する配列方向に沿って作用電極の両端間に引いた線分上のすべての点が疎水部となっているような領域が存在しないため、このような領域において部分的に溶液の駆動力が正となる印加電圧が高くなってしまうことを抑制することができる。 According to the above configuration, since there is no region in which all points on the line drawn between both ends of the working electrode along the arrangement direction in which the hydrophobic portion and the hydrophilic portion are arranged are hydrophobic portions, In such a region, it is possible to suppress an increase in applied voltage at which the driving force of the solution is partially positive.
 また、本発明の流路構造体は、前記駆動力に対して直交する方向に沿って前記作用電極の両端間に引かれる複数の線分を定義し、各線分上における前記疎水部の長さの総和を疎水部全長とするとき、前記作用電極上において、前記流路の流路幅に対する前記疎水部全長の割合が互いに異なる線分の組みが少なくとも1組存在しても良い。 Further, the flow channel structure of the present invention defines a plurality of line segments drawn between both ends of the working electrode along a direction orthogonal to the driving force, and the length of the hydrophobic portion on each line segment Is the total length of the hydrophobic portion, on the working electrode, there may be at least one set of line segments having different ratios of the total length of the hydrophobic portion to the channel width of the channel.
 前記構成によれば、駆動力に対して直交する方向に沿って、疎水部の割合が高い線分が引ける領域(親水部の割合が低い線分が引ける領域)と、疎水部の割合が低い線分が引ける領域(親水部の割合が高い線分が引ける領域)とが、作用電極上に少なくとも1組存在する。 According to the above configuration, along the direction orthogonal to the driving force, a region where a line segment having a high hydrophobic portion ratio can be drawn (a region where a line segment having a low hydrophilic portion ratio can be drawn) and a ratio of the hydrophobic portion are low. There are at least one set of regions on which the line segments can be drawn (regions in which the ratio of the hydrophilic portion can be drawn) on the working electrode.
 よって、疎水部の割合が高い線分が引ける領域では、溶液を停止させる効果が大きくなる。また、疎水部の割合が低い線分が引ける領域も存在しているので、作用電極の表面の全面が疎水膜で被覆されている場合と比較して、その領域において疎水部の割合を小さくすることができ、溶液を移動させるのに必要な印加電圧を小さくすることができる。 Therefore, the effect of stopping the solution is increased in a region where a line segment having a high proportion of the hydrophobic portion can be drawn. In addition, since there is a region where a line segment with a low proportion of the hydrophobic portion can be drawn, the proportion of the hydrophobic portion in the region is reduced as compared with the case where the entire surface of the working electrode is covered with the hydrophobic film. The applied voltage required to move the solution can be reduced.
 さらに、例えば、上述した疎水部の割合が高い線分が引ける領域と、疎水部の割合が低い線分が引ける領域とを、駆動力の方向に交互に配列することで、疎水部の割合が高い領域が複数個設けられるため、溶液の停止をより確実に行うことが可能となる。 Furthermore, for example, by alternately arranging the above-described regions where the line segment having a high hydrophobic portion ratio can be drawn and the regions where the line segment having a low hydrophobic portion ratio can be drawn in the direction of the driving force, the ratio of the hydrophobic portion can be increased. Since a plurality of high regions are provided, the solution can be stopped more reliably.
 また、本発明の流路構造体は、前記疎水部が複数存在し、前記作用電極の表面上で、各疎水部がランド部を形成し、前記親水部が前記各疎水部を取り囲むグルーブ部を形成していても良い。 In the flow channel structure of the present invention, a plurality of the hydrophobic portions are present, and each hydrophobic portion forms a land portion on the surface of the working electrode, and the hydrophilic portion surrounds each hydrophobic portion. It may be formed.
 前記構成によれば、疎水部と親水部との両方を有する作用電極を容易に実現することができる。また、複雑なパターンを有していないため、疎水部の形成が容易である。 According to the above configuration, a working electrode having both a hydrophobic portion and a hydrophilic portion can be easily realized. Moreover, since it does not have a complicated pattern, it is easy to form a hydrophobic portion.
 また、本発明の流路構造体は、前記疎水部が複数存在し、各疎水部が、前記駆動力の方向に沿って縞模様を形成していても良い。 Further, in the flow channel structure of the present invention, a plurality of the hydrophobic portions may exist, and each hydrophobic portion may form a striped pattern along the direction of the driving force.
 前記構成によれば、疎水部と親水部との両方を有する作用電極を容易に実現することができる。また、複雑なパターンを有していないため、疎水部の形成が容易である。 According to the above configuration, a working electrode having both a hydrophobic portion and a hydrophilic portion can be easily realized. Moreover, since it does not have a complicated pattern, it is easy to form a hydrophobic portion.
 また、本発明の流路構造体は、前記流路の流路幅が、前記作用電極上で狭くなっている部分が存在していても良い。 Further, the channel structure of the present invention may have a portion where the channel width of the channel is narrow on the working electrode.
 前記構成によれば、作用電極上で、流路高さを一定に保った状態で、流路幅を狭くすることで、流路高さが一定に保たれた流路内面が占める割合が、流路幅を狭くされた流路内面が占める割合よりも高くなる。 According to the above configuration, the ratio of the channel inner surface where the channel height is kept constant by narrowing the channel width in a state where the channel height is kept constant on the working electrode, The ratio is higher than the ratio occupied by the inner surface of the channel whose width is narrowed.
 よって、流路高さが一定に保たれた流路内面を疎水性材料で構成すれば、作用電極の周辺部の疎水性を高めることができる。 Therefore, if the inner surface of the flow path whose flow path height is kept constant is made of a hydrophobic material, the hydrophobicity of the peripheral portion of the working electrode can be increased.
 一方、流路高さが一定に保たれた流路内面を親水性材料で構成すれば、作用電極の周辺部の親水性を高めることができる。 On the other hand, if the inner surface of the flow channel with the flow channel height kept constant is made of a hydrophilic material, the hydrophilicity of the peripheral portion of the working electrode can be increased.
 例えば、流路構造体が、後述する疎水性材料から構成された第1基板と、親水性材料で構成された第2基板とからなる場合、流路の流路幅が、作用電極上で狭くなっている部分が存在することで、その部分での、作用電極上で第1基板が占める割合が、第2基板が占める割合よりも高くなるので、作用電極の周辺部の疎水性を高めることができる。 For example, when the flow channel structure includes a first substrate made of a hydrophobic material described later and a second substrate made of a hydrophilic material, the flow channel width of the flow channel is narrow on the working electrode. Since the portion occupied by the first substrate on the working electrode in that portion is higher than the proportion occupied by the second substrate, the hydrophobicity of the peripheral portion of the working electrode is increased. Can do.
 一方、流路構造体が、後述する第3基板、流路形成層、及び第4基板からなる場合、流路幅が、作用電極上で狭くなっている部分が存在することで、その部分での、作用電極上で流路形成層が占める割合が、第3基板及び第4基板が占める割合よりも高くなるので、作用電極の周辺部の疎水性を高めることができる。 On the other hand, when the flow channel structure includes a third substrate, a flow channel forming layer, and a fourth substrate, which will be described later, there is a portion where the flow channel width is narrow on the working electrode. Since the proportion of the flow path forming layer on the working electrode is higher than the proportion of the third substrate and the fourth substrate, the hydrophobicity of the peripheral portion of the working electrode can be increased.
 これにより、電圧無印加の状態における作用電極上の流路において溶液に発生する駆動力を0又は負にすることが容易に実現できる。 Thereby, it is possible to easily realize the driving force generated in the solution in the flow path on the working electrode in a state where no voltage is applied to 0 or negative.
 また、本発明の流路構造体は、前記流路の流路高さが、前記作用電極上で高くなっている部分が存在していても良い。 In the channel structure of the present invention, there may be a portion where the channel height of the channel is higher on the working electrode.
 前記構成によれば、作用電極上で、流路幅を一定に保った状態で、流路高さを高くすることで、流路高さが高い流路内面が占める割合が、流路幅が一定に保たれた流路内面が占める割合よりも高くなる。 According to the above configuration, the ratio of the channel inner surface having a high channel height to the channel height is increased by increasing the channel height while keeping the channel width constant on the working electrode. It becomes higher than the ratio occupied by the inner surface of the flow path kept constant.
 よって、流路高さが高い流路内面を疎水性材料で構成すれば、作用電極の周辺部の疎水性を高めることができる。 Therefore, if the inner surface of the channel having a high channel height is made of a hydrophobic material, the hydrophobicity of the peripheral portion of the working electrode can be increased.
 一方、流路高さが高い流路内面を親水性材料で構成すれば、作用電極の周辺部の親水性を高めることができる。 On the other hand, if the inner surface of the channel having a high channel height is made of a hydrophilic material, the hydrophilicity of the peripheral portion of the working electrode can be increased.
 例えば、流路構造体が、後述する疎水性材料から構成された第1基板と、親水性材料で構成された第2基板とからなる場合、流路高さが、作用電極上で高くなっている部分が存在することで、その部分での、作用電極上で第1基板が占める割合が、第2基板が占める割合よりも高くなるので、作用電極の周辺部の疎水性を高めることができる。 For example, when the flow channel structure includes a first substrate made of a hydrophobic material, which will be described later, and a second substrate made of a hydrophilic material, the flow channel height becomes higher on the working electrode. Since the ratio of the first substrate on the working electrode in the portion is higher than the ratio of the second substrate, the hydrophobicity of the peripheral portion of the working electrode can be increased. .
 一方、流路構造体が、後述する第3基板、流路形成層、及び第4基板からなる場合、流路高さが、作用電極上で高くなっている部分が存在することで、その部分での流路形成層が占める割合が、第3基板及び第4基板が占める割合よりも高くなるので、作用電極の周辺部の疎水性を高めることができる。 On the other hand, when the flow channel structure is composed of a third substrate, a flow channel forming layer, and a fourth substrate, which will be described later, there is a portion where the flow channel height is high on the working electrode. In this case, the ratio of the flow path forming layer is higher than the ratio of the third substrate and the fourth substrate, so that the hydrophobicity of the peripheral portion of the working electrode can be increased.
 これにより、電圧無印加の状態における作用電極上の流路において溶液に発生する駆動力を0又は負にすることが容易に実現できる。 Thereby, it is possible to easily realize the driving force generated in the solution in the flow path on the working electrode in a state where no voltage is applied to 0 or negative.
 また、本発明の流路構造体は、前記流路を形成するための流路形成溝が少なくとも形成された第1基板と、前記第1基板に形成された前記流路形成溝を封止する第2基板とを備えていても良い。 Further, the flow channel structure of the present invention seals the first substrate having at least a flow channel forming groove for forming the flow channel, and the flow channel forming groove formed in the first substrate. A second substrate may be provided.
 ところで、複雑な流路を毛細管のように細い管によって形成することは一般的に困難である。しかし、前記構成のように、第1基板に形成した溝部を、第2基板によって封止することで毛細管(各流路)を形成すれば、その作成は容易である。よって流路構造体を容易に製造することが可能となる。 Incidentally, it is generally difficult to form a complicated flow path by a thin tube such as a capillary tube. However, if the capillaries (each channel) are formed by sealing the groove formed in the first substrate with the second substrate as in the above-described configuration, the creation is easy. Therefore, the flow path structure can be easily manufactured.
 また、本発明の流路構造体は、前記第1基板は、疎水性材料で構成されており、前記第2基板は、親水性材料で構成されていても良い。 In the channel structure according to the present invention, the first substrate may be made of a hydrophobic material, and the second substrate may be made of a hydrophilic material.
 前記構成によれば、親水性と疎水性の両方が存在する流路内面を容易に形成することができる。また、各流路において、第1基板の溝の流路内面が疎水性となるため、第1基板及び第2基板の貼り合わせ部分からの液漏れを防止することができる。 According to the above configuration, it is possible to easily form the inner surface of the flow path where both hydrophilicity and hydrophobicity exist. Moreover, in each flow path, since the flow path inner surface of the groove of the first substrate becomes hydrophobic, liquid leakage from the bonded portion of the first substrate and the second substrate can be prevented.
 また、本発明の流路構造体は、前記第1基板を構成する疎水性材料は、ポリジメチルシロキサンであり、前記第2基板を構成する親水性材料は、ガラスであっても良い。 In the channel structure of the present invention, the hydrophobic material constituting the first substrate may be polydimethylsiloxane, and the hydrophilic material constituting the second substrate may be glass.
 ポリジメチルシロキサンは疎水性であり、ガラスは親水性である。よって、前記構成によれば、流路形成溝を形成すること、及び2つの基板の貼り合せを容易に行うことが可能となる。また、各流路において、第1基板の溝の流路内面が疎水性となるため、第1基板及び第2基板の貼り合わせ部分からの液漏れを防止することができる。 Polydimethylsiloxane is hydrophobic and glass is hydrophilic. Therefore, according to the said structure, it becomes possible to form a flow path formation groove | channel and to bond two board | substrates easily. Moreover, in each flow path, since the flow path inner surface of the groove of the first substrate becomes hydrophobic, liquid leakage from the bonded portion of the first substrate and the second substrate can be prevented.
 また、本発明の流路構造体は、前記流路を構成するための流路形成孔が少なくとも形成された流路形成層と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から封止する第3基板と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の他方側から封止する第4基板とを備えていても良い。 Further, the flow channel structure of the present invention includes a flow channel forming layer in which at least a flow channel forming hole for configuring the flow channel is formed, and the flow channel forming hole formed in the flow channel forming layer. A third substrate for sealing from one side of the flow path forming layer; and a fourth substrate for sealing the flow path forming hole formed in the flow path forming layer from the other side of the flow path forming layer. You may have.
 前記構成のように、流路形成層に流路形成孔を設けて両側から基板で挟むことは、容易に実行できる。よって、流路構造体を容易に製造することが可能となる。 As in the above-described configuration, it is easy to provide a flow path forming hole in the flow path forming layer and sandwich it between the substrates from both sides. Therefore, the flow channel structure can be easily manufactured.
 また、本発明の流路構造体は、前記流路形成層は、疎水性材料で構成されていても良い。 In the channel structure of the present invention, the channel forming layer may be made of a hydrophobic material.
 前記構成によれば、親水性と疎水性の両方が存在する流路内面を容易に形成することができる。また、流路形成層に形成された孔の壁面が疎水性となるため、基板の貼り合わせ部分からの液漏れを防止することができる。 According to the above configuration, it is possible to easily form the inner surface of the flow path where both hydrophilicity and hydrophobicity exist. Moreover, since the wall surface of the hole formed in the flow path formation layer becomes hydrophobic, liquid leakage from the bonded portion of the substrates can be prevented.
 また、本発明の分析チップは、前記流路構造体を備えた分析チップであっても良い。 Further, the analysis chip of the present invention may be an analysis chip provided with the flow channel structure.
 前記構成によれば、上述した各流路構造体の機能を有する分析チップを実現できる。 According to the above configuration, an analysis chip having the functions of the above-described channel structures can be realized.
 また、本発明の分析装置は、前記分析チップを備えていても良い。 Further, the analysis device of the present invention may include the analysis chip.
 前記構成によれば、上述した各流路構造体の機能を有する分析チップを利用することができる分析装置を実現できる。 According to the above configuration, it is possible to realize an analyzer that can use the analysis chip having the function of each flow path structure described above.
 また、本発明の流路構造体の製造方法は、前記疎水化処理工程で、疎水処理剤を使用することで、前記作用電極の一部を疎水化処理しても良いし、前記作用電極の一部に疎水性膜を形成することで、前記作用電極の一部を疎水化処理しても良い。 In the method for producing a flow channel structure according to the present invention, a part of the working electrode may be hydrophobized by using a hydrophobizing agent in the hydrophobizing treatment step. A part of the working electrode may be hydrophobized by forming a hydrophobic film on a part thereof.
 また、本発明の流路構造体の製造方法は、前記疎水化処理工程で、前記疎水化処理の後に、さらに前記作用電極の一部の表面粗さを調整しても良い。これにより、疎水化処理後の作用電極の一部の疎水性をさらに高くすることができる。 In the method for manufacturing a flow channel structure according to the present invention, the surface roughness of a part of the working electrode may be further adjusted after the hydrophobic treatment in the hydrophobic treatment step. Thereby, the hydrophobicity of a part of the working electrode after the hydrophobization treatment can be further increased.
 特に、作用電極の材料として金(接触角:60°~85°)を用い、親水性の金の表面を疎水性膜で被覆する方法を簡便な方法として例示できる。 Particularly, a method of using gold (contact angle: 60 ° to 85 °) as a working electrode material and covering the surface of hydrophilic gold with a hydrophobic film can be exemplified as a simple method.
 また、本発明の流路構造体は、所定の電位差を生じさせて流路に沿って溶液を送液する駆動力を生じさせる作用電極および参照電極が形成された流路構造体において、
 前記作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とが形成されていることを含んでいても良い。
Further, the flow channel structure of the present invention is a flow channel structure in which a working electrode and a reference electrode are formed that generate a predetermined potential difference and generate a driving force for feeding a solution along the flow channel.
It may include that a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity are formed on the surface of the working electrode that contacts the solution.
 また、本発明の流路構造体の製造方法は、所定の電位差を生じさせて流路に沿って溶液を送液する駆動力を生じさせる作用電極および参照電極が形成され、前記流路を形成するための流路形成溝が少なくとも形成された第1基板と、前記第1基板に形成された前記流路形成溝を封止する第2基板とを備えた流路構造体の製造方法であって、前記第1基板上に前記流路形成溝を形成する流路形成溝形成工程と、親水性の導電性材料で前記作用電極を作成し、該作用電極の一部を疎水化処理して該作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、前記第2基板上に前記作用電極を設置する作用電極設置工程と、前記第1基板に形成された前記流路形成溝を前記第2基板で封止する流路形成溝封止工程とを含んでいても良い。 Further, in the method for manufacturing a flow channel structure according to the present invention, a working electrode and a reference electrode that generate a predetermined potential difference and generate a driving force for feeding a solution along the flow channel are formed, and the flow channel is formed. A flow path structure manufacturing method comprising: a first substrate on which at least a flow path forming groove is formed; and a second substrate that seals the flow path forming groove formed on the first substrate. Forming the working electrode with a hydrophilic conductive material and forming the working electrode with a hydrophilic conductive material, and hydrophobizing a part of the working electrode. Hydrophobic treatment process for forming a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity on the surface of the working electrode in contact with the solution, and installation of the working electrode on the second substrate And sealing the flow path forming groove formed in the first substrate with the second substrate It may include a road forming groove sealing step.
 また、本発明の流路構造体の製造方法は、所定の電位差を生じさせて流路に沿って溶液を送液する駆動力を生じさせる作用電極および参照電極が形成され、前記流路を構成するための流路形成孔が少なくとも形成された流路形成層と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から封止する第3基板と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の他方側から封止する第4基板とを備えた流路構造体の製造方法であって、前記流路形成層に前記流路形成孔を形成する流路形成孔形成工程と、親水性の導電性材料で前記作用電極を作成し、該作用電極の一部を疎水化処理して該作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、前記第4基板上に前記作用電極を設置する作用電極設置工程と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から前記第3基板で封止すると共に、前記流路形成層の他方側から前記第4基板で封止する流路形成孔封止工程とを含んでいても良い。 In addition, the manufacturing method of the flow channel structure according to the present invention includes a working electrode and a reference electrode that generate a predetermined potential difference to generate a driving force for feeding a solution along the flow channel, and configure the flow channel. A flow path forming layer in which at least a flow path forming hole is formed, and a third substrate that seals the flow path forming hole formed in the flow path forming layer from one side of the flow path forming layer; A flow path structure manufacturing method comprising: a fourth substrate that seals the flow path forming hole formed in the flow path forming layer from the other side of the flow path forming layer. A flow path forming hole forming step for forming the flow path forming hole in the forming layer; and the working electrode is made of a hydrophilic conductive material, and a part of the working electrode is hydrophobized to obtain a solution of the working electrode A hydrophobic treatment process for forming a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity on a surface in contact with The working electrode installation step of installing the working electrode on the fourth substrate, and the flow path forming hole formed in the flow path forming layer are sealed with the third substrate from one side of the flow path forming layer In addition, a flow path forming hole sealing step of sealing with the fourth substrate from the other side of the flow path forming layer may be included.
 〔付記事項〕
 なお、本発明は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組合せて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
Note that the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
 本発明は、医療分野、生化学分野、アレルゲンなどの測定分野等における流路構造体、該流路構造体を備えた抗原の分析などに用いるマイクロ分析チップ、該マイクロ分析チップを備えた分析装置などに広く適用することができる。このため、その産業上の利用価値は大きい。 The present invention relates to a flow channel structure in the medical field, biochemical field, measurement field such as allergen, a micro analysis chip used for analysis of an antigen having the flow channel structure, and an analysis apparatus including the micro analysis chip Can be widely applied. For this reason, the industrial utility value is great.
10~90 流路構造体(分析チップ)
110 第2基板(第4基板)
111 第1基板
112,112a,112b 注入孔(液導入孔)
113 排出孔(液排出孔)
114 流路
114a 流路形成溝
114b 流路形成孔
114c 隘路(流路)
114d 段差部(流路)
115 第3基板
116 中間層(流路形成層)
131,131a,131b 参照電極
132,132a,132b 作用電極
134 親水性部分(親水部,グルーブ部)
135 疎水性部分(疎水部,ランド部)
136 外部接続端子用電極(外部接続端子)
137 対向電極
151a,151b 第2流路(流路)
152a,152b 第3流路(流路)
2001 第1注入孔(液導入孔)
2002 第2注入孔(液導入孔)
2003 第1液溜め部(流路)
2004 第2液溜め部(流路)
2005,2006 注入路(流路)
2007 ミキサー部(流路)
2008 第1流路(流路)
2009 第1隘路(流路)
2010 第2流路(流路)
2011 第2隘路(流路)
2012 検出部(分析部)
2013 第3隘路(流路)
2014 排出孔(液排出孔)
2015 外部接続端子
2016 第3流路(流路)
2017 反応部(分析部)
2101 第1基板
2102 第2基板
2112 検出用電極(分析部)
2301 制御用ハンディ機器(分析装置)
2302 マイクロ分析チップ(分析チップ)
a 比(疎水部全長/流路幅)
h,h’ 流路高さ
P 圧力(駆動力)
w,w’ 流路幅
10-90 channel structure (analysis chip)
110 Second substrate (fourth substrate)
111 First substrate 112, 112a, 112b Injection hole (liquid introduction hole)
113 discharge hole (liquid discharge hole)
114 channel 114a channel forming groove 114b channel forming hole 114c bottleneck (channel)
114d Step part (flow path)
115 Third substrate 116 Intermediate layer (flow path forming layer)
131, 131a, 131b Reference electrodes 132, 132a, 132b Working electrode 134 Hydrophilic part (hydrophilic part, groove part)
135 Hydrophobic part (hydrophobic part, land part)
136 External connection terminal electrode (external connection terminal)
137 Counter electrode 151a, 151b 2nd flow path (flow path)
152a, 152b Third flow path (flow path)
2001 First injection hole (liquid introduction hole)
2002 Second injection hole (liquid introduction hole)
2003 First liquid reservoir (flow path)
2004 Second liquid reservoir (flow path)
2005, 2006 Injection channel (flow channel)
2007 Mixer section (flow path)
2008 First channel (channel)
2009 First Kushiro (flow path)
2010 Second channel (channel)
2011 2nd Kushiro (flow path)
2012 detector (analyzer)
2013 3rd Kushiro (flow path)
2014 discharge hole (liquid discharge hole)
2015 External connection terminal 2016 Third flow path (flow path)
2017 reaction part (analysis part)
2101 1st board | substrate 2102 2nd board | substrate 2112 Detection electrode (analysis part)
2301 Handy device for control (analyzer)
2302 Micro analysis chip (analysis chip)
a Ratio (Total length of hydrophobic part / channel width)
h, h 'Channel height P Pressure (driving force)
w, w 'Channel width

Claims (19)

  1.  流路に沿って溶液を送液する駆動力を生じさせる作用電極と、該作用電極との間に所定の電位差を生じさせて前記駆動力を生じさせる参照電極とが形成された流路構造体において、
     前記作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とが形成されていることを特徴とする流路構造体。
    A flow channel structure in which a working electrode for generating a driving force for feeding a solution along a flow channel and a reference electrode for generating a predetermined potential difference between the working electrode and the driving force are formed. In
    A flow channel structure, wherein a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity are formed on a surface of the working electrode that contacts the solution.
  2.  前記疎水部と前記親水部とが配列する配列方向が、前記駆動力に対して直交する方向であることを特徴とする請求項1に記載の流路構造体。 The flow path structure according to claim 1, wherein an arrangement direction in which the hydrophobic part and the hydrophilic part are arranged is a direction orthogonal to the driving force.
  3.  前記駆動力に対して直交する方向に沿って前記作用電極の両端間に引かれる複数の線分を定義し、各線分上における前記疎水部の長さの総和を疎水部全長とするとき、
     前記作用電極上において、前記流路の流路幅に対する前記疎水部全長の割合が互いに異なる線分の組みが少なくとも1組存在することを特徴とする請求項1又は2に記載の流路構造体。
    When defining a plurality of line segments drawn between both ends of the working electrode along the direction orthogonal to the driving force, and the total length of the hydrophobic part on each line segment as the total length of the hydrophobic part,
    3. The flow path structure according to claim 1, wherein at least one set of line segments having different ratios of the total length of the hydrophobic portion to the flow path width of the flow path exists on the working electrode. .
  4.  前記疎水部が複数存在し、
     前記作用電極の表面上で、各疎水部がランド部を形成し、前記親水部が前記各疎水部を取り囲むグルーブ部を形成していることを特徴とする請求項1から3までのいずれか1項に記載の流路構造体。
    A plurality of the hydrophobic portions,
    4. The method according to claim 1, wherein each hydrophobic portion forms a land portion on the surface of the working electrode, and the hydrophilic portion forms a groove portion surrounding each hydrophobic portion. Item 4. The channel structure according to item.
  5.  前記疎水部が複数存在し、
     各疎水部が、前記駆動力の方向に沿って縞模様を形成していることを特徴とする請求項1から4までのいずれか1項に記載の流路構造体。
    A plurality of the hydrophobic portions,
    5. The channel structure according to claim 1, wherein each hydrophobic portion forms a striped pattern along the direction of the driving force. 6.
  6.  前記流路の流路幅が、前記作用電極上で狭くなっている部分が存在していることを特徴とする請求項1から5までのいずれか1項に記載の流路構造体。 The channel structure according to any one of claims 1 to 5, wherein a portion where the channel width of the channel is narrow on the working electrode exists.
  7.  前記流路の流路高さが、前記作用電極上で高くなっている部分が存在していることを特徴とする請求項1から6までのいずれか1項に記載の流路構造体。 The channel structure according to any one of claims 1 to 6, wherein a portion where the channel height of the channel is higher on the working electrode exists.
  8.  前記流路を形成するための流路形成溝が少なくとも形成された第1基板と、
     前記第1基板に形成された前記流路形成溝を封止する第2基板とを備えていることを特徴とする請求項1から7までのいずれか1項に記載の流路構造体。
    A first substrate formed with at least a flow path forming groove for forming the flow path;
    The flow path structure according to any one of claims 1 to 7, further comprising a second substrate that seals the flow path forming groove formed in the first substrate.
  9.  前記第1基板は、疎水性材料で構成されており、
     前記第2基板は、親水性材料で構成されていることを特徴とする請求項8に記載の流路構造体。
    The first substrate is made of a hydrophobic material,
    The flow path structure according to claim 8, wherein the second substrate is made of a hydrophilic material.
  10.  前記第1基板を構成する疎水性材料は、ポリジメチルシロキサンであり、
     前記第2基板を構成する親水性材料は、ガラスであることを特徴とする請求項9に記載の流路構造体。
    The hydrophobic material constituting the first substrate is polydimethylsiloxane,
    The flow path structure according to claim 9, wherein the hydrophilic material constituting the second substrate is glass.
  11.  前記流路を構成するための流路形成孔が少なくとも形成された流路形成層と、
     前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から封止する第3基板と、
     前記流路形成層に形成された前記流路形成孔を、前記流路形成層の他方側から封止する第4基板とを備えていることを特徴とする請求項1から7までのいずれか1項に記載の流路構造体。
    A flow path forming layer in which at least flow path forming holes for forming the flow path are formed;
    A third substrate that seals the flow path forming hole formed in the flow path forming layer from one side of the flow path forming layer;
    8. The apparatus according to claim 1, further comprising: a fourth substrate that seals the flow path forming hole formed in the flow path forming layer from the other side of the flow path forming layer. 2. The flow path structure according to item 1.
  12.  前記流路形成層は、疎水性材料で構成されていることを特徴とする請求項11に記載の流路構造体。 The flow path structure according to claim 11, wherein the flow path forming layer is made of a hydrophobic material.
  13.  請求項1から12までのいずれか1項に記載の流路構造体を備えた分析チップ。 An analysis chip comprising the flow channel structure according to any one of claims 1 to 12.
  14.  請求項13に記載の分析チップを備えた分析装置。 An analyzer comprising the analysis chip according to claim 13.
  15.  流路に沿って溶液を送液する駆動力を生じさせる作用電極と、該作用電極との間に所定の電位差を生じさせて前記駆動力を生じさせる参照電極とが形成され、前記流路を形成するための流路形成溝が少なくとも形成された第1基板と、前記第1基板に形成された前記流路形成溝を封止する第2基板とを備えた流路構造体の製造方法であって、
     前記第1基板上に前記流路形成溝を形成する流路形成溝形成工程と、
     親水性の導電性材料で前記作用電極を作成し、該作用電極の一部を疎水化処理して該作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、
     前記第2基板上に前記作用電極を設置する作用電極設置工程と、
     前記第1基板に形成された前記流路形成溝を前記第2基板で封止する流路形成溝封止工程とを含んでいることを特徴とする流路構造体の製造方法。
    A working electrode for generating a driving force for feeding the solution along the flow path and a reference electrode for generating a predetermined potential difference between the working electrode and the driving force are formed. A flow path structure manufacturing method comprising: a first substrate on which at least a flow path forming groove for forming is formed; and a second substrate that seals the flow path forming groove formed on the first substrate. There,
    A flow path forming groove forming step of forming the flow path forming groove on the first substrate;
    The working electrode is made of a hydrophilic conductive material, a part of the working electrode is subjected to a hydrophobic treatment, and a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity are formed on a surface that comes into contact with the working electrode solution. A hydrophobizing treatment step to form a part;
    A working electrode installation step of installing the working electrode on the second substrate;
    A flow path forming groove sealing step for sealing the flow path forming groove formed on the first substrate with the second substrate.
  16.  流路に沿って溶液を送液する駆動力を生じさせる作用電極と、該作用電極との間に所定の電位差を生じさせて前記駆動力を生じさせる参照電極とが形成され、前記流路を構成するための流路形成孔が少なくとも形成された流路形成層と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から封止する第3基板と、前記流路形成層に形成された前記流路形成孔を、前記流路形成層の他方側から封止する第4基板とを備えた流路構造体の製造方法であって、
     前記流路形成層に前記流路形成孔を形成する流路形成孔形成工程と、
     親水性の導電性材料で前記作用電極を作成し、該作用電極の一部を疎水化処理して該作用電極の溶液と接触する表面上に、疎水性の高い疎水部と親水性の高い親水部とを形成する疎水化処理工程と、
     前記第4基板上に前記作用電極を設置する作用電極設置工程と、
     前記流路形成層に形成された前記流路形成孔を、前記流路形成層の一方側から前記第3基板で封止すると共に、前記流路形成層の他方側から前記第4基板で封止する流路形成孔封止工程とを含んでいることを特徴とする流路構造体の製造方法。
    A working electrode for generating a driving force for feeding the solution along the flow path and a reference electrode for generating a predetermined potential difference between the working electrode and the driving force are formed. A flow path forming layer having at least a flow path forming hole for configuring, and a third substrate for sealing the flow path forming hole formed in the flow path forming layer from one side of the flow path forming layer And a fourth substrate for sealing the flow path forming hole formed in the flow path forming layer from the other side of the flow path forming layer,
    A flow path forming hole forming step of forming the flow path forming hole in the flow path forming layer;
    The working electrode is made of a hydrophilic conductive material, a part of the working electrode is subjected to a hydrophobic treatment, and a hydrophobic portion having high hydrophobicity and a hydrophilic portion having high hydrophilicity are formed on a surface that comes into contact with the working electrode solution. A hydrophobizing treatment step to form a part;
    A working electrode installation step of installing the working electrode on the fourth substrate;
    The flow path forming hole formed in the flow path forming layer is sealed with the third substrate from one side of the flow path forming layer and sealed with the fourth substrate from the other side of the flow path forming layer. A flow path structure manufacturing method comprising: a flow path forming hole sealing step for stopping.
  17.  前記疎水化処理工程で、疎水処理剤を使用することで、前記作用電極の一部を疎水化処理することを特徴とする請求項15又は16に記載の流路構造体の製造方法。 The method for producing a flow channel structure according to claim 15 or 16, wherein a part of the working electrode is subjected to a hydrophobic treatment by using a hydrophobic treatment agent in the hydrophobic treatment step.
  18.  前記疎水化処理工程で、前記作用電極の一部に疎水性膜を形成することで、前記作用電極の一部を疎水化処理することを特徴とする請求項15又は16に記載の流路構造体の製造方法。 The flow path structure according to claim 15 or 16, wherein in the hydrophobic treatment step, a part of the working electrode is subjected to a hydrophobic treatment by forming a hydrophobic film on the part of the working electrode. Body manufacturing method.
  19.  前記疎水化処理工程で、前記疎水化処理の後に、さらに前記作用電極の一部の表面粗さを調整することを特徴とする請求項17又は18に記載の流路構造体の製造方法。 The method for manufacturing a flow path structure according to claim 17 or 18, wherein in the hydrophobic treatment step, a surface roughness of a part of the working electrode is further adjusted after the hydrophobic treatment.
PCT/JP2011/065724 2010-07-16 2011-07-08 Duct structure, method for producing same, analysis chip, and analysis device WO2012008384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-162157 2010-07-16
JP2010162157A JP4949506B2 (en) 2010-07-16 2010-07-16 Channel structure, method for manufacturing the same, analysis chip, and analysis apparatus

Publications (1)

Publication Number Publication Date
WO2012008384A1 true WO2012008384A1 (en) 2012-01-19

Family

ID=45469385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065724 WO2012008384A1 (en) 2010-07-16 2011-07-08 Duct structure, method for producing same, analysis chip, and analysis device

Country Status (2)

Country Link
JP (1) JP4949506B2 (en)
WO (1) WO2012008384A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129639A (en) * 2013-12-31 2015-07-16 株式会社ティー・ティー・エム Analysis system, auxiliary device for analysis constituting analysis system, portable communication terminal, and program for controlling portable communication terminal
JP6310327B2 (en) * 2014-05-27 2018-04-11 株式会社エンプラス Fluid handling equipment
JP2019032233A (en) * 2017-08-08 2019-02-28 株式会社エンプラス Microchannel chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267801A (en) * 1997-03-24 1998-10-09 Advance Co Ltd Handling apparatus for liqiud fine particle
JPH1183784A (en) * 1997-09-03 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Microquantity online biosensor and manufacture thereof
JP2008502882A (en) * 2004-06-04 2008-01-31 ユニベールシテ・デ・スジャンス・エ・テクノロジー・ドゥ・リル Apparatus for handling droplets for biochemical analysis, method for manufacturing said apparatus and microfluidic analysis
JP2009204339A (en) * 2008-02-26 2009-09-10 Sharp Corp Liquid feeding structure and microanalyzing chip using the same
JP2010085334A (en) * 2008-10-01 2010-04-15 Sharp Corp Liquid feeding structure with electrowetting valve, microanalyzing chip using the same and analysis device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256270B2 (en) * 2004-01-19 2009-04-22 国立大学法人 筑波大学 Liquid feeding device and driving method thereof
JP4632300B2 (en) * 2005-02-14 2011-02-16 国立大学法人 筑波大学 Liquid feeding device
JP5103614B2 (en) * 2006-11-27 2012-12-19 国立大学法人九州工業大学 Trace liquid sorting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267801A (en) * 1997-03-24 1998-10-09 Advance Co Ltd Handling apparatus for liqiud fine particle
JPH1183784A (en) * 1997-09-03 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Microquantity online biosensor and manufacture thereof
JP2008502882A (en) * 2004-06-04 2008-01-31 ユニベールシテ・デ・スジャンス・エ・テクノロジー・ドゥ・リル Apparatus for handling droplets for biochemical analysis, method for manufacturing said apparatus and microfluidic analysis
JP2009204339A (en) * 2008-02-26 2009-09-10 Sharp Corp Liquid feeding structure and microanalyzing chip using the same
JP2010085334A (en) * 2008-10-01 2010-04-15 Sharp Corp Liquid feeding structure with electrowetting valve, microanalyzing chip using the same and analysis device

Also Published As

Publication number Publication date
JP4949506B2 (en) 2012-06-13
JP2012021956A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4927197B2 (en) Micro-analysis chip, analyzer using the micro-analysis chip, and liquid feeding method
JP5429774B2 (en) Liquid feeding structure, micro-analysis chip and analyzer using the same
JP7311156B2 (en) Microfluidic valves and microfluidic devices
JP5383138B2 (en) Liquid feeding structure with electrowetting valve, microanalysis chip and analyzer using the same
JP5902426B2 (en) Liquid feeding device and liquid feeding method
WO2009107608A1 (en) Liquid supply structure and micro-analysis chip using the same
JP4632300B2 (en) Liquid feeding device
JP4754394B2 (en) Microchip
US8945484B2 (en) Microfluidic device including microvalve
US20130121893A1 (en) Microfluidic device with deformable valve
JP5677414B2 (en) Apparatus and method for controlling fluid flow in a love-on-a-chip system and method for manufacturing the same
JP2011169695A (en) Liquid feeder
JP5156839B2 (en) Microfluidic cartridge with solution reservoir-pump chamber
WO2006123578A1 (en) Testing chip for analyzing target substance contained in analyte, and microscopic comprehensive analytical system
JP5246167B2 (en) Microchip and liquid feeding method of microchip
US20150050172A1 (en) Microfluidic pump
TW201016591A (en) Biosensor package structure with micro-fluidic channel
JP2012112724A (en) Liquid feeder
JP4949506B2 (en) Channel structure, method for manufacturing the same, analysis chip, and analysis apparatus
JP4256270B2 (en) Liquid feeding device and driving method thereof
JP6133298B2 (en) Fluid handling apparatus and fluid handling method
Park et al. Fabrication and testing of a PDMS multi-stacked hand-operated LOC for use in portable immunosensing systems
US8486352B2 (en) Micro-valve structure including polymer actuator and lab-on-a-chip module
JP2011145309A (en) Channel reaction method and channel reactor
JP2017072259A (en) Fluid handling device and fluid handling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806714

Country of ref document: EP

Kind code of ref document: A1