WO2012004986A1 - 放射線撮影装置 - Google Patents

放射線撮影装置 Download PDF

Info

Publication number
WO2012004986A1
WO2012004986A1 PCT/JP2011/003856 JP2011003856W WO2012004986A1 WO 2012004986 A1 WO2012004986 A1 WO 2012004986A1 JP 2011003856 W JP2011003856 W JP 2011003856W WO 2012004986 A1 WO2012004986 A1 WO 2012004986A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
ray
detection surface
subject
horizontal direction
Prior art date
Application number
PCT/JP2011/003856
Other languages
English (en)
French (fr)
Inventor
高村 祥司
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201180033522.6A priority Critical patent/CN102970930B/zh
Priority to US13/808,898 priority patent/US9220465B2/en
Priority to JP2012523526A priority patent/JP5494806B2/ja
Publication of WO2012004986A1 publication Critical patent/WO2012004986A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone

Definitions

  • the present invention relates to a radiographic apparatus that acquires an image by irradiating a subject with radiation, and more particularly, to a radiographic apparatus that can perform an examination of side bay disease.
  • Medical institutions are equipped with a radiation imaging apparatus that captures an image of the subject M with radiation.
  • a radiation imaging apparatus 51 as shown in FIG. 15A, a radiation source 53 and a radiation detector 54 are provided at a position sandwiching a standing subject M.
  • the radiation source 53 irradiates radiation, irradiates the radiation in the horizontal direction along the floor surface of the examination room, and the radiation detector 54 is provided for the purpose of detecting the radiation transmitted through the subject M.
  • Patent Document 1 See Patent Document 1.
  • the radiation detector 54 has a detection surface for detecting square radiation, and is arranged so that the center axis of the radiation beam B emitted from the radiation source 53 and the detection surface are orthogonal to each other (as if the detection surface is leaned up). Has been.
  • the radiation detector 54 is supported by the support column 52, and can move in the vertical direction along the support column 52.
  • the size of the detection surface is usually such that the body-side width of the upright subject M can be accommodated.
  • the detection surface of the radiation detector 54 is not limited to a square, but may be a rectangle.
  • the range of the subject M to be photographed may be larger than the detection surface of the radiation detector 54.
  • imaging is performed a plurality of times while moving the radiation detector 54 in the vertical direction, and a plurality of images acquired at that time are connected to form one image.
  • Such an imaging method is often used when it is desired to image the body portion of the subject M.
  • the conventional radiographic apparatus has the following problems. That is, according to the conventional radiographic apparatus, it is unsuitable for the examination of the side bay disease.
  • Side bay disease refers to a symptom in which the spine is distorted in the body side direction of the subject M.
  • imaging is performed with the subject M bent in the body side direction as shown in FIG.
  • the range of the subject M to be imaged becomes larger than the detection surface of the radiation detector 54. It is necessary to generate a single image by connecting a plurality of images acquired while moving the radiation detector 54 in the vertical direction.
  • the radiation detector 54 moves only in the vertical direction. Since the subject M is bent in the body side direction (horizontal direction), the trunk of the subject M does not extend in the vertical direction, the direction in which the trunk of the subject M extends, and the radiation detector 54 The direction of movement does not match. Accordingly, a part of the body of the subject M protrudes from the imaging field of view of the radiation imaging apparatus 51.
  • the radiation imaging apparatus 51 cannot make the imaging range wider than the width W1 of the radiation detector 54, and thus the body of the bent subject M protrudes from the width W1.
  • the width W2 of the part cannot be photographed.
  • the portion of the subject M belonging to the width W2 cannot be imaged.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a radiation imaging apparatus capable of imaging in an appropriate imaging range even when the subject is bent in the body side direction. There is.
  • a radiographic apparatus includes a radiation source for irradiating radiation, a radiation detection means having a detection surface for detecting radiation, a vertically extending support that supports the radiation detection means, and (A1) a support Column moving means for moving the beam in the horizontal direction perpendicular to the direction from the radiation source to the radiation detecting means, (B1) column moving control means for controlling the column moving means, and moving the radiation detecting means in the vertical direction with respect to the column Detector vertical movement means, detector vertical movement control means for controlling the detector vertical movement means, image generation means for generating an image based on detection data output from the radiation detection means, and a plurality of continuous shots And a detecting means that is arranged along a plane formed by a vertical direction and a horizontal direction.
  • the control means moves the support column in the horizontal direction and the detector vertical movement means moves the radiation detection means in the vertical direction, thereby moving the detection surface along a trajectory inclined with respect to the
  • a plurality of continuously shot images can be connected to generate a single image.
  • a fluoroscopic image of the subject can be acquired.
  • the fluoroscopic image of the subject is continuously shot by moving the detection surface along a trajectory inclined with respect to the vertical direction. Therefore, since the fluoroscopic images are continuously taken along the bending of the subject, the whole image of the bent subject can be easily captured.
  • (A2) in the radiation imaging apparatus instead of the column moving means for moving the column in the horizontal direction perpendicular to the direction from the radiation source to the radiation detecting means, (A2) from the radiation source to the radiation detecting means.
  • (B1) column movement control unit that controls the column movement unit is replaced with (B2) detector horizontal movement control unit that controls the detector horizontal movement unit. That is, the movement of the radiation detection means in the horizontal direction may be realized by moving the support supporting the radiation detection means in the horizontal direction, or by moving the radiation detection means in the horizontal direction with respect to the support. You may do it.
  • the above-described radiographic apparatus further includes an input unit for inputting an operator's instruction, and the trajectory on which the detection surface moves during continuous shooting of images has two vertices on a diagonal line in the rectangular imaging range. It is more desirable if it is set by specifying.
  • the radiation imaging apparatus further includes a collimator that collimates the radiation emitted from the radiation source to form a cone-shaped radiation beam, and the horizontal direction of the cone-shaped radiation beam on the plane on which the detection surface of the radiation detection means exists.
  • the width is more preferably equal to the sum of the horizontal width of the detection surface and the movement width of the detection surface moving in the horizontal direction during continuous shooting of images.
  • the horizontal width of the cone-shaped radiation beam in the plane where the detection surface of the radiation detection means exists is the horizontal width of the detection surface and the movement width in which the detection surface moves in the horizontal direction during continuous shooting of images. Is consistent with the sum. That is, the horizontal width of the radiation beam reliably covers the entire area of the moving detection surface.
  • each fluoroscopic image is taken with a common irradiation focus, and each fluoroscopic image is taken with a common image distortion method. If these are joined together, there will be no step at the joined part, and ideal joining of images can be realized.
  • the radiation imaging apparatus further includes a radiation source moving unit that moves the radiation source in a horizontal direction when viewed from the radiation detecting unit, and a radiation source movement control unit that controls the radiation source moving unit. It is more desirable if the radiation source is moved in the horizontal direction in accordance with the horizontal movement of the support so that the relative positional relationship with the detection means in the horizontal direction is constant, and images are continuously shot.
  • the above-described configuration shows an aspect of a configuration in which continuous shooting is performed while the focal point where the radiation source emits radiation is moved in the horizontal direction.
  • the center axis of the radiation beam is set to the center of the detection surface of the radiation detection means in any imaging. Can be located. Therefore, a fluoroscopic image with little distortion at the center can be acquired.
  • the radiation imaging apparatus further includes a collimator that collimates the radiation emitted from the radiation source to form a cone-shaped radiation beam, and the horizontal direction of the cone-shaped radiation beam on the plane on which the detection surface of the radiation detection means exists. It is more desirable if the width matches the horizontal width of the detection surface.
  • the above-described configuration shows an aspect of a configuration in which continuous shooting is performed while the focal point where the radiation source emits radiation is moved in the horizontal direction. If the horizontal width of the cone-shaped radiation beam in the plane on which the detection surface of the radiation detection means exists coincides with the horizontal width of the detection surface, the radiation beam protrudes from the horizontal direction of the detection surface and the subject. Is not irradiated. Therefore, it is possible to provide a radiation imaging apparatus that can suppress exposure of the subject as much as possible.
  • a plurality of continuously shot images can be connected to generate a single image.
  • the fluoroscopic image of the subject is continuously shot by moving the detection surface along a trajectory inclined with respect to the vertical direction. Therefore, since the fluoroscopic images are continuously taken along the bending of the subject, the whole image of the bent subject can be easily captured.
  • FIG. 1 is a functional block diagram illustrating a configuration of an X-ray imaging apparatus according to Embodiment 1.
  • FIG. 1 is a perspective view illustrating a configuration of a collimator according to Embodiment 1.
  • FIG. It is a schematic diagram explaining the inclination of the X-ray tube which concerns on Example 1.
  • FIG. 3 is a flowchart for explaining the operation of the X-ray imaging apparatus according to Embodiment 1;
  • 6 is a schematic diagram illustrating movement of the FPD in upright shooting according to Embodiment 1.
  • FIG. FIG. 6 is a schematic diagram illustrating a method for specifying a start point and an end point prior to bending shooting according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a method for specifying a start point and an end point prior to bending shooting according to the first embodiment.
  • 6 is a schematic diagram illustrating movement of an FPD in bending shooting according to Embodiment 1.
  • FIG. 6 is a schematic diagram for explaining an irradiation range of an X-ray beam in bending imaging according to Embodiment 1.
  • FIG. 6 is a schematic diagram illustrating an X-ray fluoroscopic image acquired by three imaging operations in bending imaging according to Example 1.
  • FIG. FIG. 3 is a schematic diagram for explaining a joined X-ray fluoroscopic image according to the first embodiment.
  • 6 is a schematic diagram illustrating movement of an X-ray tube in bending imaging according to Example 2.
  • FIG. 6 is a schematic diagram for explaining an irradiation range of an X-ray beam in bending imaging according to Embodiment 2.
  • FIG. It is a functional block diagram explaining one modification concerning the present invention. It is a schematic diagram explaining the structure of the X-ray imaging apparatus of a conventional structure.
  • X-rays in the examples correspond to the radiation of the present invention.
  • FDP is an abbreviation for flat panel detector.
  • the X-ray imaging apparatus 1 is configured to image a subject M in a standing position.
  • a support column 2 extending in the vertical direction v from the floor surface, and X for irradiating X-rays It has a line tube 3, an FPD 4 supported by the support column 2, and a suspension support 7 that extends in the vertical direction v and is supported by the ceiling.
  • the suspension support 7 supports the X-ray tube 3 in a suspended manner.
  • the FPD 4 can slide in the vertical direction v with respect to the support column 2. Moreover, the suspension support body 7 is extendable in the vertical direction v, and the position of the X-ray tube 3 in the vertical direction v is changed as the suspension support body 7 expands and contracts.
  • the movement of the FPD 4 in the vertical direction v with respect to the column 2 is executed by an FPD vertical movement mechanism 15 provided between the two and 4. This is controlled by the FPD vertical movement control unit 16.
  • the movement of the support column 2 will be described.
  • the support column 2 extends in a direction from the X-ray tube 3 toward the FPD 4 and is movably disposed on a rail 2a fixed to the floor surface of the examination room.
  • the support column moving mechanism 17 moves the support column 2 to the X-ray tube. 3 is moved in the horizontal direction s orthogonal to the direction from the FPD 4 toward the FPD 4.
  • pillar movement control part 18 is provided in order to control this.
  • the movement of the X-ray tube 3 will be described.
  • the X-ray tube 3 is performed by an X-ray tube moving mechanism 11 provided on the suspension support 7.
  • the X-ray tube movement control unit 12 is provided for the purpose of controlling the X-ray tube movement mechanism 11.
  • the X-ray tube 3 is moved by the X-ray tube moving mechanism 11 (1) in the vertical direction v, (2) in the approaching / separating direction with respect to the FPD 4, and (3) in the horizontal direction s (see FIG. 1 in the paper surface penetrating direction in 1, the body side direction of the subject M).
  • the suspension support 7 expands and contracts.
  • the FPD 4 has a detection surface 4a (see FIG. 1) for detecting X-rays.
  • the detection surface 4a is arranged in the X-ray imaging apparatus 1 upright in the vertical direction v. Thereby, the standing subject M can be efficiently imaged.
  • the detection surface 4 a is disposed so as to face the X-ray irradiation port of the X-ray tube 3.
  • the detection surface 4a is arranged along a plane formed by two directions of the horizontal direction s and the vertical direction v. Further, the detection surface 4a is rectangular, and one side is in the horizontal direction s and the other side orthogonal to the one side is in the vertical direction v.
  • the X-ray grid 5 is provided so as to cover the detection surface 4a of the FPD 4.
  • elongated absorbing foils are arranged in the vertical direction in the horizontal direction s. X-rays scattered in the subject M and disturbed in the traveling direction are incident on the absorbing foil and absorbed, and do not reach the FPD 4. By doing so, the influence of scattered X-rays that obstruct the acquisition of the projection image of the subject M is removed, and a clear X-ray fluoroscopic image can be acquired.
  • the X-ray tube controller 6 controls the tube voltage, tube current, and X-ray irradiation time of the X-ray tube 3.
  • the X-ray tube control unit 6 controls the X-ray tube 3 so as to output radiation with a predetermined tube current, tube voltage, and pulse width. Parameters such as tube current are stored in the storage unit 24.
  • the collimator 3a provided in the X-ray imaging apparatus 1 will be described.
  • the collimator 3 a is attached to the X-ray tube 3, and collimates the X-rays emitted from the X-ray tube 3 to form a quadrangular pyramid (cone-shaped) X-ray beam B.
  • the collimator 3a has a pair of leaves 3b that move mirror-symmetrically with respect to the central axis C, and another pair of leaves 3b that similarly move mirror-symmetrically with respect to the central axis C. I have.
  • the collimator 3a can move the leaf 3b to irradiate the entire surface of the detection surface 4a of the FPD 4 with the cone-shaped X-ray beam B. For example, only the central portion of the FPD 4 has a fan-shaped X-ray beam. B can also be irradiated.
  • the central axis C is also an axis indicating the center of the X-ray beam B.
  • One of the pairs of leaves 3b is for adjusting the spread in the vertical direction v of the X-ray beam having a quadrangular pyramid shape, and the other pair of leaves 3b is arranged in the horizontal direction s of the X-ray beam. It adjusts the spread.
  • the collimator moving mechanism 15 changes the opening of the collimator 3a.
  • the collimator control unit 16 controls the collimator moving mechanism 15.
  • the pair of leaves 3b may be moved independently.
  • the irradiation position of the X-ray beam can be freely changed by moving the leaf 3b of the collimator 3a independently without moving the X-ray focal point in the vertical and horizontal directions.
  • the focal point of the X-ray tube 3 does not move, and the irradiation position of the X-ray beam is changed while the inclination of the X-ray tube 3 is changed by the X-ray inclination mechanism 13 described later.
  • the inclination of the X-ray tube 3 will be described.
  • the X-ray tube 3 can be tilted vertically upward from a state where the central axis C of the X-ray beam B is parallel to the floor of the examination room [see FIG. 3A] [FIG. b)], the central axis C can also be inclined vertically downward [see FIG. 3 (c)].
  • Such an inclination of the X-ray tube 3 is performed by the X-ray tube inclination mechanism 13.
  • the X-ray tube inclination control unit 14 is provided for the purpose of controlling this (see FIG. 1).
  • the visible light source 19 is attached to the X-ray tube 3 (see FIG. 1). Visible light emitted from the visible light source 19 is collimated by the collimator 3a and then travels toward the detection surface 4a of the FPD 4.
  • the subject M is interposed between the X-ray tube 3 and the FPD 4 and first irradiated with visible light using the visible light source 19, and then the leaf 3b of the collimator 3a is not moved.
  • X-rays are irradiated using The portion of the subject M illuminated by the visible light source 19 at this time coincides with the portion where the X-rays irradiated from the X-ray tube 3 enter the subject M. In this way, by irradiating the subject M with visible light before X-ray irradiation, it is possible to determine which part of the subject M is irradiated with X-rays.
  • the position / opening degree calculation unit 20 opens the collimator 3a, the position of the X-ray tube 3, the tilt angle of the X-ray tube 3, and the FPD 4 so that the region of the subject M set by irradiation with visible light can be imaged. Calculate the position.
  • Each control unit 12, 14, 16, 18 controls each mechanism using the calculation result of the position / opening calculation unit 20.
  • the image generation unit 21 assembles the detection data output from the FPD 4 and generates an X-ray fluoroscopic image in which the projection image of the subject M is reflected.
  • the joining unit 22 joins a plurality of X-ray fluoroscopic images at different positions where the subject M is reflected to form a single image. For example, if three X-ray fluoroscopic images in which each of the chest, abdomen, and lower back of the subject M are captured are captured by continuous shooting, the joining unit 22 displays these three X-ray fluoroscopic images. Connect to create a single vertical image.
  • the stitched image is an X-ray fluoroscopic image displayed on the display unit 26.
  • the console 27 is provided for the purpose of inputting each instruction of the surgeon, and the storage unit 24 stores control information of the X-ray tube 3, position information of the X-ray tube 3, opening of the collimator 3a, X-ray tube. 3, all the various parameters used for X-ray imaging such as the position information in the vertical direction v of the FPD 4 and the position information in the horizontal direction s of the support column are stored.
  • the X-ray imaging apparatus 1 includes a main control unit 25 that comprehensively controls the units 6, 12, 14, 16, 18, 20, 21, 22, and 24.
  • the main control unit 25 is constituted by a CPU, and realizes each unit by executing various programs. Further, each of the above-described units may be divided and executed by an arithmetic device that takes charge of them.
  • the subject M is instructed to bend (subject bending step S2), and a start point and an end point are set in order to set a range to be imaged (start point / end point setting step S3).
  • the opening of the collimator 3a at the time of shooting and the positions of the members 2, 3, and 4 are calculated (opening and position calculation step S4), and actual bending shooting is performed based on the calculated positions.
  • Start bending photographing step S5).
  • ⁇ Upright shooting step S1> First, the subject M stands upright between the X-ray tube 3 and the FPD 4. In the upright imaging, since the spine of the subject M needs to be imaged, the range in which the imaging is desired cannot be accommodated on the detection surface 4a of the FPD 4. Therefore, actual X-ray imaging is performed by dividing the imaging of the subject M into three times of upper side, center, and lower side.
  • the FPD 4 moves vertically upward as shown in FIG. 5 and stops at the position indicated by the solid line in FIG.
  • the X-ray tube 3 is inclined upward and stops at the position of the solid line.
  • X-ray imaging is performed in this state, and an X-ray fluoroscopic image of the chest of the subject M is acquired.
  • the FPD 4 moves vertically downward and stops at the position of the broken line in FIG.
  • the X-ray tube 3 tilts downward and stops at the position of the broken line.
  • X-ray imaging is performed again in this state, and an X-ray fluoroscopic image of the abdomen of the subject M is acquired.
  • the FPD 4 moves vertically downward and stops at the position of the one-dot chain line in FIG.
  • the X-ray tube 3 is inclined downward and stops at the position of the alternate long and short dash line. Imaging is performed in this state, and an X-ray fluoroscopic image of the waist of the subject M is acquired.
  • the acquired three X-ray fluoroscopic images are sent to the joining unit 22 to acquire a single vertically long image in which the spine is reflected.
  • the specific configuration of the joining unit 22 will be described later.
  • X-ray fluoroscopic images can be ideally stitched together by performing imaging with the X-ray irradiation focus being matched.
  • a region R1 in FIG. 5 is a so-called image stitching area that is shot in both the first shooting and the second shooting.
  • the X-ray beam indicated by B1 in FIG. 5 is incident on the FPD 4 and photographed. This is because, in any imaging, as a result of X-rays emitted from the common focal point f reaching the region R1, the portion R1 is imaged.
  • the region R1 is captured with the common X-ray beam B1 in both the first and second X-ray fluoroscopic images. Accordingly, the region R1 is distorted in the same manner in both X-ray fluoroscopic images, and therefore, when the X-ray fluoroscopic images are connected, the region R1 is naturally combined without causing a step at the joint.
  • the imaging target range R represents a range in which X-rays are irradiated during X-ray imaging at the time of bending imaging performed with the subject bent, and the width of the subject M in the horizontal direction s in the imaging target range R. Is wider than the width of the detection surface 4a of the FPD 4 indicated by the dotted line in FIG. Similarly, the width of the subject M in the body axis direction in the imaging target range R is also wider than the width of the detection surface 4a.
  • the surgeon causes the X-ray imaging apparatus 1 to recognize the position of the imaging target range R by designating the start point S and the end point E.
  • the start point S and the end point E are two vertices on the diagonal line of the shooting target range R which is a rectangle.
  • the start point S is positioned vertically upward from the end point E.
  • a trajectory in which the detection surface 4a moves during three X-rays is set, and the movement range in the vertical direction v of the FPD 4 and the movement range in the horizontal direction s of the column 2 are determined. Will do.
  • the operator moves the X-ray tube 3 in the vertical direction v, the horizontal direction s, and the body axis direction while irradiating the subject M with visible light.
  • the position of the X-ray tube 3 when X-ray imaging is performed is determined.
  • the range Ra is adjusted such that one vertex of the range Ra in which the subject M is illuminated with visible light becomes the start point S of the imaging target range R. Is done.
  • the height H of the range Ra matches the height of the FPD 4 in the vertical direction v.
  • the visible light spreads radially, if the visible light passes through the subject M and reaches the detection surface 4a of the FPD 4, the visible light beam protrudes from the detection surface 4a in the vertical direction v. It is more desirable to set so as not to illuminate.
  • the operator operates the console 27 at the stage where the range Ra matches the start point S, and registers the start point S in the X-ray imaging apparatus 1.
  • the range Ra is moved to the lower left, and the subject is visible with visible light as shown in FIG. 7B.
  • the range Ra is adjusted such that one vertex of the range Ra illuminated by M is the end point E of the shooting target range R.
  • the operator operates the console 27 at the stage where the range Ra matches the end point E, and registers the end point E in the X-ray imaging apparatus 1.
  • the opening degree of the collimator 3a when the start point S and the end point E are registered, the inclination angle of the X-ray tube 3, and the position of the focal point of the X-ray tube 3, respectively, are collimator control unit 16, X-ray tube inclination control unit 14, It is sent out from the X-ray tube movement control unit 12 and stored in the storage unit 24. Thereby, the start point / end point setting step S3 ends.
  • the start point S and the end point E may be registered at a time by sufficiently separating the X-ray tube 3 from the subject M [see FIG. 7 (c)]. ].
  • the imaging target range R irradiated with X-rays coincides with the range Ra illuminated by visible light.
  • the X-ray tube 3 is brought close to the FPD 4 to perform actual X-ray imaging.
  • the position / inclination angle of the X-ray tube 3 and the opening degree of the collimator 3 a are calculated by the position / opening degree calculation unit 20. Since the shooting target range R is wider than the FPD 4, it is not possible to capture at a time. Therefore, actual X-ray imaging is performed by dividing the imaging of the imaging target range R into three times, upper side, center, and lower side.
  • the position / opening degree calculation unit 20 performs geometric calculation for the three X-ray imagings.
  • the position / opening degree calculation unit 20 is sent with the position of the X-ray irradiation focal point of the X-ray tube 3, the opening degree of the collimator 3a, and the inclination angle of the X-ray tube 3 when the start point S and end point E are registered. .
  • the position / opening degree calculation unit 20 obtains the positions of the start point S and the end point E with respect to the focus of X-ray irradiation by geometric calculation from the opening degree of the collimator 3a and the inclination angle of the X-ray tube 3.
  • the position / opening degree calculation unit 20 is appropriate so that X-rays are irradiated to the upper part of the imaging target range R including the start point S when the focal point is at the X-ray irradiation position.
  • the opening degree of the collimator 3a and the inclination angle of the X-ray tube 3 are determined.
  • a preset value may be read from the storage unit 24 and used, or may be specified by an operator. .
  • the position / opening degree calculation unit 20 appropriately collimates so that X-rays are emitted to the central portion of the imaging target range R in the vertical direction when the focal point is at the X-ray irradiation position.
  • the opening degree of 3a and the inclination angle of the X-ray tube 3 are determined.
  • the position / opening degree calculation unit 20 applies X to the lower part of the imaging target range R including the vertical end point E of the imaging target range R when the focus position is the position at the time of X-ray irradiation.
  • An appropriate opening of the collimator 3a and an inclination angle of the X-ray tube 3 are determined so that the line is irradiated.
  • the position / opening degree calculation unit 20 may determine the opening degree and the inclination angle by first determining the inclination angle and then the opening degree, or vice versa.
  • the start point S / end point E When the registration of the start point S / end point E is determined as shown in FIGS. 7A and 7B, the start point S / end point is set for the shooting of the upper region and the lower region of the shooting target range R.
  • the same geometric conditions as when determining E can be used. Therefore, in this case, the position / opening degree calculation unit 20 only needs to calculate the geometric condition for the imaging in which the X-ray is irradiated to the central portion in the vertical direction of the imaging target range R.
  • the position / opening degree calculation unit 20 calculates the opening degree and the inclination angle for three X-ray imagings. Each parameter obtained at this time is stored in the storage unit 24. Further, the position / opening degree calculation unit 20 calculates not only the imaging conditions regarding the position of the X-ray tube 3 but also the position of the support column 2 for the imaging for three times. The calculation of the position of the column 2 will be described later.
  • the movement range of the support column 2 is determined by the distance in the horizontal direction s of the start point S / end point E and the width of the FPD 4 in the horizontal direction s, and the movement range of the FPD 4 is vertical to the start point S / end point E. It is determined by the distance in the direction v and the height of the FPD 4 in the vertical direction v.
  • FIG. 8A shows the position of the detection surface 4a at the time of the first X-ray imaging. At this time, one vertex of the detection surface 4a coincides with the start point S, and the entire area of the detection surface 4a is the same. It is included in the shooting target range R.
  • FIG. 8B shows the position of the detection surface 4a during the second X-ray imaging.
  • the detection surface 4a is positioned at the center of the imaging target range R in the vertical direction v and the horizontal direction s. ing.
  • FIG. 8C shows the position of the detection surface 4a at the time of the third X-ray imaging.
  • one vertex of the detection surface 4a coincides with the end point E, and the entire area of the detection surface 4a is the same. It is included in the shooting target range R.
  • the position of the detection surface 4a at the first and second X-ray imaging partially overlaps in the vertical direction v, and the position of the detection surface 4a at the second and third X-ray imaging is in the vertical direction. Partly overlaps v.
  • Such movement of the FPD 4 is realized by the support 2 moving in the horizontal direction s.
  • the position / opening degree calculation unit 20 calculates the position of the FPD 4 at the time of photographing three times from the position of the start point S and the end point E, and this is stored in the storage unit 24.
  • pillar movement control part 18 moves the support
  • the X-ray imaging apparatus 1 of Example 1 tilts the detection surface 4a of the FPD 4 with respect to the vertical direction v by moving the support column 2 in the horizontal direction s and moving the FPD 4 in the vertical direction v.
  • X-ray fluoroscopic images are taken continuously by moving along the locus F (see FIG. 8).
  • the trajectory F is a straight line inclined with respect to the vertical direction v connecting the midpoint at the initial position of the detection surface of the FPD 4 and the midpoint at the final position.
  • X-rays are irradiated once each.
  • the range of X-ray irradiation during each imaging will be described.
  • X-ray irradiation in three times of X-ray imaging is performed while moving the irradiation range in the vertical direction v. That is, the rectangular region Rb in FIG. 9A shows the X-ray irradiation range at the first X-ray imaging, and at this time, the vertical upper end of the region Rb coincides with the start point S. ing.
  • a rectangular area Rb in FIG. 9B shows an X-ray irradiation range at the time of the second X-ray imaging.
  • the area Rb is in the center of the imaging target range R in the vertical direction v. positioned.
  • a rectangular region Rb in FIG. 9C indicates the X-ray irradiation range at the time of the third X-ray imaging, and at this time, the vertical lower end and the end point E of the region Rb are equal to each other. I'm doing it.
  • the width in the horizontal direction s of the region Rb matches the width of the shooting target range R in the same direction.
  • the position of the region Rb at the first and second X-ray imaging partially overlaps in the vertical direction v, and the position of the region Rb at the second and third X-ray imaging is in the vertical direction v. Some overlap.
  • the X-ray irradiation focus of the X-ray tube 3 is the same in any imaging.
  • the detection surface 4a and the spread of the X-ray beam will be described.
  • the width of the imaging target range R in the horizontal direction s can be understood by referring to FIG. 8C, and the detection surface 4a between the width S1 of the detection surface 4a in the horizontal direction s and the continuous shooting of X-ray fluoroscopic images. Is the sum of the movement width S2 that moves in the horizontal direction s.
  • the spread of the X-ray beam in the horizontal direction s is the width of the imaging target range R in the horizontal direction s, as can be seen from FIG. Therefore, the sum of the width S1 and the movement width S2 matches the width in the horizontal direction s of the cone-shaped X-ray beam on the plane where the detection surface 4a exists.
  • the FPD 4 detects X-rays that have passed through the subject M, and sends detection data to the image generation unit 21.
  • the X-ray fluoroscopic image acquired in this way includes, for example, the head and chest of the subject M as shown in FIG. 10A in the first imaging and FIG. 10 in the second imaging. As shown in FIG. 10B, the abdomen of the subject M is reflected, and in the third imaging, the waist of the subject M is reflected as shown in FIG.
  • Each X-ray fluoroscopic image is sent to the joining unit 22.
  • the joining unit 22 joins the X-ray fluoroscopic images by superimposing overlapping portions of the X-ray fluoroscopic images, and generates a single image as shown in FIG.
  • the position information of each X-ray fluoroscopic image calculated by the position / opening degree calculation unit 20 by geometric calculation is linked by the image generating unit 21 to each X-ray fluoroscopic image.
  • the X-ray fluoroscopic images may be configured so that the X-ray fluoroscopic images are superposed on the X-ray fluoroscopic images. May be extracted, and the respective fluoroscopic images may be connected so as to overlap the same portion.
  • the operation of the joining unit 22 in the upright photographing step S1 is the same as described above.
  • the joined single X-ray fluoroscopic image is displayed on the display unit 26, and the inspection is completed.
  • a single X-ray fluoroscopic image can be generated by connecting a plurality of continuously shot X-ray fluoroscopic images.
  • an X-ray fluoroscopic image of the subject M can be acquired even when the imaging target range R cannot fully enter the detection surface 4a of the FPD 4 by one imaging.
  • the subject M bent in the body side direction is photographed in order to perform a side bay examination, the subject M protrudes in the horizontal direction s from the detection surface 4a of the FPD 4, and the subject It is difficult to capture the whole image of M.
  • X-ray fluoroscopic images of the subject M are continuously shot by moving the detection surface 4a along the trajectory F inclined with respect to the vertical direction v. Accordingly, since the fluoroscopic images are continuously taken along the bending of the subject M, it is possible to easily capture the entire image of the subject M that is bent.
  • the trajectory F on which the detection surface 4a moves is determined by the operator specifying the start point S and the end point E that are two vertices on the diagonal line in the rectangular imaging target range R. .
  • the detection surface 4a of the FPD 4 moves as the operator thinks, and an X-ray imaging apparatus that can be more easily inspected can be provided.
  • the width of the cone-shaped X-ray beam in the horizontal direction s on the plane where the detection surface 4a of the FPD 4 exists is the same as the width of the detection surface 4a in the horizontal direction s and the continuous detection of the fluoroscopic images. This coincides with the sum of the movement widths moving in the horizontal direction s. That is, the width of the X-ray beam in the horizontal direction s reliably covers the entire area of the moving detection surface 4a. With this configuration, it is possible to perform continuous shooting of X-ray fluoroscopic images without moving the X-ray tube 3 in the horizontal direction s. In other words, continuous shooting is performed while the focal point where the X-ray tube 3 irradiates X-rays does not move.
  • each X-ray fluoroscopic image is taken by a common irradiation focus, and each X-ray fluoroscopic image is taken by the method of distortion of the common X-ray fluoroscopic image. It has become. If these are joined together, there will be no step at the joined part, and ideal joining of X-ray fluoroscopic images can be realized.
  • the configuration of the second embodiment will be described. Since the entire configuration of the X-ray imaging apparatus 1 of the second embodiment is the same as that of the first embodiment, description thereof is omitted.
  • the unique point of the second embodiment is that the X-ray tube 3 moves in the horizontal direction s during three X-ray imaging. On the other hand, during X-ray imaging, the X-ray tube 3 does not move in the vertical direction v.
  • FIG. 12 is a conceptual diagram when the state in which the subject M is imaged is looked down from the vertical direction v.
  • the solid lines in FIG. 12 represent the positions of the members 2, 3, and 4 at the time of the first shooting, and the broken lines in FIG. 12 represent the positions of the members 2, 3, and 4 at the time of the second shooting. Yes.
  • the dashed-dotted line of FIG. 12 represents the position of each member 2, 3, 4 at the time of the 3rd imaging
  • the X-ray tube 3 moves in the horizontal direction s following the movement of the FPD 4. Specifically, the X-ray tube 3 is moved in the horizontal direction s in accordance with the movement of the column 2 so that the relative positional relationship between the X-ray tube 3 and the FPD 4 in the horizontal direction s is constant.
  • each X-ray irradiation in the three imaging operations related to the bending imaging of Example 2 will be described. That is, X-ray irradiation in three X-ray imaging is performed while moving the irradiation range in the vertical direction v. That is, as shown in FIGS. 13A to 13C, the rectangular region R2 irradiated with X-rays in each X-ray imaging coincides with the position of the detection surface 4a shown in FIG. Yes. The position of the region R2 at the first and second X-ray imaging partially overlaps in the vertical direction v, and the position of the region R2 at the second and third X-ray imaging is in the vertical direction. Partly overlaps v.
  • the X-ray tube 3 is moved in the horizontal direction s in accordance with the movement of the support column 2 in the horizontal direction s, and X-ray fluoroscopic images are continuously shot.
  • the detection surface 4a and the spread of the X-ray beam will be described. As shown in FIGS. 13 and 8, since the region R2 coincides with the detection surface 4a, the width in the horizontal direction s of the cone-shaped X-ray beam in the plane where the detection surface 4a exists is the horizontal of the detection surface 4a. It coincides with the width in the direction s.
  • continuous shooting is performed while moving the focal point where the X-ray tube 3 emits X-rays in the horizontal direction s.
  • the center axis of the X-ray beam is set on the detection surface 4a of the FPD 4 in any imaging. Can be centered. Therefore, it is possible to obtain an X-ray fluoroscopic image with little distortion at the center portion.
  • continuous shooting is performed while moving the focal point where the X-ray tube 3 emits X-rays in the horizontal direction s. If the width in the horizontal direction s of the cone-shaped X-ray beam on the plane on which the detection surface 4a of the FPD 4 exists coincides with the width in the horizontal direction s of the detection surface 4a, X-rays from the horizontal direction s of the detection surface 4a. The beam does not protrude and irradiate the subject M. Therefore, an X-ray imaging apparatus that can suppress exposure of the subject M as much as possible can be provided.
  • the present invention is not limited to the configuration of each of the embodiments described above, and can be modified as follows.
  • the horizontal movement of the FPD 4 in each embodiment was realized by moving the support 2 supporting the FPD 4 in the horizontal direction.
  • the FPD 4 is moved in parallel with the support 2.
  • the horizontal movement of the FPD 4 may be realized.
  • the column 2 does not necessarily have to move horizontally, so the column moving mechanism 17 and the column movement control unit 18 in FIG. 1 are not required.
  • the configuration of this modification includes an FPD horizontal movement mechanism 17a that changes the position of the FPD 4 with respect to the column 2 in the horizontal direction.
  • An FPD horizontal movement control unit 18a to be controlled is provided.
  • the X-ray referred to in each of the above-described embodiments is an example of radiation in the present invention. Therefore, the present invention can be applied to radiation other than X-rays.
  • the top plate is not provided, but the present invention is not limited to this configuration. You may adapt to the radiography apparatus which image
  • the present invention is suitable for a medical radiography apparatus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

被検体を体側方向に屈曲させた状態においても適切な撮影範囲で撮影することができる放射線撮影装置を提供する。本発明によれば、連写された複数枚のX線透視画像をつなぎ合わせて単一のX線透視画像を生成するようになっている。従来構成によれば、体側方向に屈曲した被検体Mを撮影すると、被検体MがFPD4の検出面4aより体側方向にはみ出してしまい、被検体Mの全体像を撮影することは困難である。そこで、本発明によれば、検出面4aを鉛直方向に対して傾斜した軌跡Fに沿って移動させて被検体MのX線透視画像を連写するようになっている。したがって被検体Mの屈曲に沿ってX線透視画像が連写されるので、容易に屈曲した被検体Mの全体像を撮影することができる。

Description

放射線撮影装置
 この発明は、被検体に放射線を照射することで画像を取得する放射線撮影装置に係り、特に、側湾症の検査を行うことができる放射線撮影装置に関する。
 医療機関には、放射線で被検体Mの画像を撮影する放射線撮影装置が備えられている。この様な放射線撮影装置51は、図15(a)に示すように立位の被検体Mを挟む位置に放射線源53と放射線検出器54とが設けられている。放射線源53は、放射線を照射するものであり、検査室の床面に沿った水平方向に放射線を照射し、放射線検出器54は、被検体Mを透過してきた放射線を検出する目的で設けられている(特許文献1参照)。
 放射線検出器54は、正方形の放射線を検出する検出面を有し、その放射線源53の発する放射線ビームBの中心軸と検出面とが直交するように(検出面を立て掛けるかのように)配置されている。放射線検出器54は、支柱52に支持されており、支柱52に沿って鉛直方向に移動することができるようになっている。検出面の大きさとしては、直立した被検体Mの体側方向の幅が収まる程度が通常である。なお、放射線検出器54の検出面は正方形に限られず、長方形であってもよい。
 実際の検査において、撮影しようとする被検体Mの範囲が放射線検出器54の検出面よりも大きい場合がある。このようなときには、放射線検出器54を鉛直方向に移動させながら複数回に亘って撮影を行い、そのとき取得される複数の画像をつなぎ合わせて一つの画像とする。この様な撮影方法は、被検体Mの胴体部分を撮影したい場合によく用いられる。
実用新案登録第3118190号公報
 しかしながら、従来の放射線撮影装置によれば、次のような問題点がある。
 すなわち、従来の放射線撮影装置によれば、側湾症の検査に不向きである。側湾症とは、背骨が被検体Mの体側方向に歪む症状を言う。側湾症を診断するには、図15(b)のように被検体Mを体側方向に屈曲させて撮影を行う。
 このように、被検体Mを屈曲させた状態で背骨の様子を観察しようとすると、撮影しようとする被検体Mの範囲(撮影対象範囲)が放射線検出器54の検出面よりも大きくなるので、放射線検出器54を鉛直方向に移動させながら取得される複数の画像をつなぎ合わせて単一の画像を生成する必要がある。しかし、従来装置によれば、放射線検出器54は、鉛直方向にしか移動しない。被検体Mは、体側方向(水平方向)に屈曲しているのであるから、被検体Mの胴体は、鉛直方向に伸びておらず、被検体Mの胴体の伸びる方向と、放射線検出器54との移動の方向が一致しない。従って、被検体Mの胴体の一部が放射線撮影装置51の撮影視野からはみ出してしまう。
 つまり放射線撮影装置51は、図15(b)に示すように、放射線検出器54の幅W1よりも撮影範囲を広くすることができないので、屈曲した被検体Mの胴体が幅W1からはみ出している部分の幅W2については、撮影することができない。従来の構成によれば、幅W2に被検体Mが存しているにも関わらず、この幅W2に属する被検体Mの部分を撮影することができない。
 本発明は、この様な事情に鑑みてなされたものであって、その目的は、被検体を体側方向に屈曲させた状態においても適切な撮影範囲で撮影することができる放射線撮影装置を提供することにある。
 本発明は上述の課題を解決するために次のような構成をとる。
 すなわち、本発明に係る放射線撮影装置は、放射線を照射する放射線源と、放射線を検出する検出面を有する放射線検出手段と、放射線検出手段を支持する鉛直方向に伸びた支柱と、(A1)支柱を放射線源から放射線検出手段に向かう方向と直交する水平方向に移動させる支柱移動手段と、(B1)支柱移動手段を制御する支柱移動制御手段と、放射線検出手段を支柱に対して鉛直方向に移動させる検出器鉛直移動手段と、検出器鉛直移動手段を制御する検出器鉛直移動制御手段と、放射線検出手段が出力する検出データを基に、画像を生成する画像生成手段と、連写された複数枚の画像をつなぎ合わせて単一の画像を生成するつなぎ合わせ手段とを備え、検出面は、鉛直方向、および水平方向のなす平面に沿って配置されており、支柱移動制御手段が支柱を水平方向に移動させるとともに検出器鉛直移動手段が放射線検出手段を鉛直方向に移動させることにより、検出面を鉛直方向に対して傾斜した軌跡に沿って移動させて画像を連写することを特徴とするものである。
 [作用・効果]本発明によれば、連写された複数枚の画像をつなぎ合わせて単一の画像を生成できるようになっている。これにより、撮影範囲が一度の撮影では放射線検出手段の検出面に入りきれない場合であっても、被検体の透視画像を取得することができる。しかし、従来構成によれば、側湾症の検査を行おうとして、体側方向に屈曲した被検体を撮影すると、被検体が放射線検出手段の検出面より体側方向にはみ出してしまい、被検体の全体像を撮影することは困難である。そこで、本発明によれば、検出面を鉛直方向に対して傾斜した軌跡に沿って移動させて被検体の透視画像を連写するようになっている。したがって被検体の屈曲に沿って透視画像が連写されるので、容易に屈曲した被検体の全体像を撮影することができる。
 また、本発明に係る放射線撮影装置における(A1)支柱を放射線源から放射線検出手段に向かう方向と直交する水平方向に移動させる支柱移動手段に代えて、(A2)放射線源から放射線検出手段に向かう方向と直交する水平方向に放射線検出手段を支柱に対して移動させる検出器水平移動手段を設けるようにしてもよい。この態様の変更により、上述の(B1)支柱移動手段を制御する支柱移動制御手段は、(B2)検出器水平移動手段を制御する検出器水平移動制御手段に代えられる。すなわち、放射線検出手段の水平方向の移動は、放射線検出手段を支持する支柱が水平方向に移動することによって実現しても良いし、放射線検出手段を支柱に対して水平方向に移動することによって実現しても良い。
 また、上述の放射線撮影装置において、術者の指示を入力させる入力手段を更に備え、画像の連写時における検出面の移動する軌跡は、術者が矩形状の撮影範囲における対角線上の2頂点を指定することにより設定されればより望ましい。
 [作用・効果]上述の構成は、本発明の一態様を示している。すなわち、術者が矩形状の撮影範囲における対角線上の2頂点を指定することにより、検出面の移動する軌跡が決定される。これにより、術者の思惑通りに放射線検出手段の検出面が移動することになり、より検査が容易な放射線撮影装置が提供できる。
 また、上述の放射線撮影装置において、放射線源が照射する放射線をコリメートしてコーン状の放射線ビームとするコリメータを更に備え、放射線検出手段の検出面が存する平面におけるコーン状の放射線ビームの水平方向の幅は、検出面の水平方向の幅と、画像の連写の間に検出面が水平方向に移動する移動幅との和と一致していればより望ましい。
 [作用・効果]上述の構成は、本発明の一態様を示している。すなわち、放射線検出手段の検出面が存する平面におけるコーン状の放射線ビームの水平方向の幅は、検出面の水平方向の幅と、画像の連写の間に検出面が水平方向に移動する移動幅との和と一致している。つまり、放射線ビームの水平方向の幅は、移動する検出面の全域を確実にカバーする。この様に構成することにより、放射線源を水平方向に移動させずに透視画像の連写を行うことができる。いいかえれば、放射線源が放射線を照射する焦点が不動のまま連写が行われるのである。従って、各透視画像に写り込む被検体の像は、共通の照射焦点によって撮影されたものであり、各透視画像は、共通の画像のゆがみ方で撮影されたものとなっている。これらをつなぎ合わせれば、つなぎ合わせ部分で段差が生じず、理想的な画像のつなぎ合わせが実現できる。
 また、上述の放射線撮影装置において、放射線源を放射線検出手段から見て水平方向に移動させる放射線源移動手段と、放射線源移動手段を制御する放射線源移動制御手段とを更に備え、放射線源と放射線検出手段との水平方向における相対的な位置関係が一定となるように支柱の水平方向の移動に合わせて放射線源が水平方向に移動されて画像が連写されればより望ましい。
 [作用・効果]上述の構成は、放射線源が放射線を照射する焦点を水平方向に移動させながら連写が行われる構成についての態様を示している。この様な構成とすると、放射線源と放射線検出手段との水平方向における相対的な位置関係が一定となっているので、いずれの撮影においても放射線ビームの中心軸を放射線検出手段の検出面の中心に位置させることができる。したがって、中心部分の歪みが少ない透視画像が取得できる。
 また、上述の放射線撮影装置において、放射線源が照射する放射線をコリメートしてコーン状の放射線ビームとするコリメータを更に備え、放射線検出手段の検出面が存する平面におけるコーン状の放射線ビームの水平方向の幅は、検出面の水平方向の幅と一致していればより望ましい。
 [作用・効果]上述の構成は、放射線源が放射線を照射する焦点を水平方向に移動させながら連写が行われる構成についての態様を示している。放射線検出手段の検出面が存する平面におけるコーン状の放射線ビームの水平方向の幅は、検出面の水平方向の幅と一致するようにすれば、検出面の水平方向から放射線ビームがはみ出して被検体に照射されることがない。したがって、被検体の被曝を極力抑制することができる放射線撮影装置が提供できる。
 本発明によれば、連写された複数枚の画像をつなぎ合わせて単一の画像を生成できるようになっている。従来構成によれば、側湾症の検査を行おうとして、体側方向に屈曲した被検体を撮影すると、被検体が放射線検出手段の検出面より体側方向にはみ出してしまい、被検体の全体像を撮影することは困難である。そこで、本発明によれば、検出面を鉛直方向に対して傾斜した軌跡に沿って移動させて被検体の透視画像を連写するようになっている。したがって被検体の屈曲に沿って透視画像が連写されるので、容易に屈曲した被検体の全体像を撮影することができる。
実施例1に係るX線撮影装置の構成を説明する機能ブロック図である。 実施例1に係るコリメータの構成を説明する斜視図である。 実施例1に係るX線管の傾斜について説明する模式図である。 実施例1に係るX線撮影装置の動作を説明するフローチャートである。 実施例1に係る直立撮影におけるFPDの移動を説明する模式図である。 実施例1に係る屈曲撮影に先立ってされる始点・終点の指定方法を説明する模式図である。 実施例1に係る屈曲撮影に先立ってされる始点・終点の指定方法を説明する模式図である。 実施例1に係る屈曲撮影におけるFPDの移動を説明する模式図である。 実施例1に係る屈曲撮影におけるX線ビームの照射範囲を説明する模式図である。 実施例1に係る屈曲撮影における3回の撮影により取得されるX線透視画像を説明する模式図である。 実施例1に係るつなぎ合わせられたX線透視画像を説明する模式図である。 実施例2に係る屈曲撮影におけるX線管の移動を説明する模式図である。 実施例2に係る屈曲撮影におけるX線ビームの照射範囲を説明する模式図である。 本発明に係る1変形例を説明する機能ブロック図である。 従来構成のX線撮影装置の構成を説明する模式図である。
 以降、本発明を実施するための最良の形態について説明する。
 以降、本発明の実施例を説明する。実施例におけるX線は、本発明の放射線に相当する。また、FDPは、フラット・パネル・ディテクタの略である。
 <X線撮影装置の全体構成>
 まず、実施例1に係るX線撮影装置1の構成について説明する。X線撮影装置1は、立位の被検体Mの撮影を行うように構成されており、図1に示すように、床面から鉛直方向vに伸びた支柱2と、X線を照射するX線管3と、支柱2に支持されるFPD4と、鉛直方向vに伸びるとともに天井に支持されている懸垂支持体7を有している。懸垂支持体7は、X線管3を懸垂支持するものである。
 FPD4は、支柱2に対し鉛直方向vにスライドすることができる。また、懸垂支持体7は、鉛直方向vに伸縮自在となっており、懸垂支持体7の伸縮に伴ってX線管3の鉛直方向vにおける位置が変更される。FPD4の支柱2に対する鉛直方向vの移動は、両者2,4の間に設けられたFPD鉛直移動機構15により実行される。これは、FPD鉛直移動制御部16により制御される。
 支柱2の移動について説明する。支柱2は、X線管3からFPD4に向かう方向に伸びるとともに検査室の床面に固定されたレール2aの上に移動可能に配置されており、支柱移動機構17は、支柱2をX線管3からFPD4に向かう方向に直交する水平方向sに移動させる。支柱移動制御部18は、これを制御する目的で設けられている。
 X線管3の移動について説明する。X線管3は、懸垂支持体7に設けられたX線管移動機構11により行われる。X線管移動制御部12は、X線管移動機構11を制御する目的で設けられている。X線管3は、X線管移動機構11により(1)鉛直方向v,(2)FPD4に対する接近・離反方向、(3)X線管3からFPD4に向かう方向と直交する水平方向s(図1における紙面貫通方向、被検体Mの体側方向)に移動する。X線管3が鉛直方向vに移動する場合、懸垂支持体7は、伸縮することになる。
 FPD4は、X線を検出する検出面4a(図1参照)を有している。検出面4aは、鉛直方向vに起立してX線撮影装置1に配置されている。これにより、起立した被検体Mを効率的に撮影できるようになっている。検出面4aは、X線管3のX線照射口に面するように配置されている。いいかえれば、検出面4aは、水平方向s,鉛直方向vの2方向がなす平面に沿って配置されている。また、検出面4aは、矩形となっており、1辺が水平方向sに、その1辺と直交する他の1辺が鉛直方向vに一致している。
 X線グリッド5は、FPD4の検出面4aを覆うように設けられている。このX線グリッド5は、縦方向に細長状の吸収箔が水平方向sに配列されている。被検体Mの中で散乱して進行方向が乱されたX線は、この吸収箔に入射して吸収され、FPD4に届くことがない。この様にすることで、被検体Mの投影像の取得の邪魔となる散乱X線の影響が除去されて鮮明なX線透視画像が取得できるようになっている。
 X線管制御部6は、X線管3の管電圧、管電流やX線の照射時間を制御するものである。X線管制御部6は、所定の管電流・管電圧・パルス幅で放射線を出力するようにX線管3を制御する。管電流等のパラメータは、記憶部24に記憶されている。
 X線撮影装置1に設けられるコリメータ3aについて説明する。コリメータ3aは、X線管3に付設されており、X線管3から照射されるX線をコリメートして、4角錐形状(コーン状)のX線ビームBとするものである。
 このコリメータ3aの詳細について説明する。コリメータ3aは、図2に示すように、中心軸Cを基準として鏡像対称に移動する1対のリーフ3bを有し、同じく中心軸Cを基準として鏡像対称に移動するもう1対のリーフ3bを備えている。このコリメータ3aは、リーフ3bを移動させることで、FPD4が有する検出面4aの全面にコーン状のX線ビームBを照射させることもできれば、たとえば、FPD4の中心部分だけにファン状のX線ビームBを照射させることもできる。なお、中心軸Cは、X線ビームBの中心を示す軸ともなっている。なお、リーフ3bの対の一方は、4角錐形状となっているX線ビームの鉛直方向vの広がりを調整するものであり、もう一方のリーフ3bの対は、X線ビームの水平方向sの広がりを調整するものである。コリメータ3aの開度の変更は、コリメータ移動機構15が行う。コリメータ制御部16は、コリメータ移動機構15を制御するものである。
 また、コリメータ3aを鏡像対称に移動させる構成とせずに、一対のリーフ3bが独立に移動する構成としてもよい。このような単動型のコリメータ3aの場合、X線焦点を鉛直方向、水平方向に移動させずに、コリメータ3aのリーフ3bを独立に移動させるだけでX線ビームの照射位置を自由に変更できる。なお、この場合、X線管3の焦点は移動せず、X線管3の傾斜が後述のX線傾斜機構13によって変更されながらX線ビームの照射位置が変更されることになる。
 X線管3の傾斜について説明する。X線管3は、X線ビームBの中心軸Cが検査室の床面と水平となっている状態[図3(a)参照]から、鉛直上側に傾斜されることもできれば[図3(b)参照]、中心軸Cが鉛直下向側に傾斜させることもできる[図3(c)参照]。この様なX線管3の傾斜は、X線管傾斜機構13が行う。X線管傾斜制御部14は、これを制御する目的で設けられている(図1参照)。
 可視光源19は、X線管3に付設して設けられている(図1参照)。可視光源19から照射された可視光線は、コリメータ3aでコリメートされた後、FPD4の検出面4a側に向かう。検査においては、被検体MをX線管3とFPD4との間に介在させて、まずは可視光源19を用いて可視光線を照射した後、コリメータ3aのリーフ3bを動かさない状態でX線管3を用いてX線を照射する。このときの可視光源19で照らされる被検体Mの部分と、X線管3から照射されるX線が被検体Mに入射する部分とは一致する。このように、X線照射の前に被検体Mに可視光線を照射することで、被検体Mのどの部分にX線が照射されるのかが判別できるようになっている。
 位置・開度算出部20は、可視光線の照射によって設定された被検体Mの領域を撮影できるようにコリメータ3aの開度、X線管3の位置、X線管3の傾斜角度、FPD4の位置を算出する。各制御部12,14,16,18は、位置・開度算出部20の算出結果を用いて各機構を制御する。
 画像生成部21は、FPD4から出力された検出データを組み立てて、被検体Mの投影像が写りこんでいるX線透視画像を生成する。つなぎ合わせ部22は、被検体Mの写り込んでいる位置の異なる複数のX線透視画像をつなぎ合わせて単一の画像とするものである。例えば、被検体Mの胸部、腹部、腰部のそれぞれが写り込んでいる3枚のX線透視画像が連写により撮影されたとすると、つなぎ合わせ部22は、これらの3枚のX線透視画像をつなぎ合わせて縦長の単一の画像を生成する。つなぎ合わされた画像はX線透視画像は、表示部26に表示される。
 操作卓27は、術者の各指示を入力させる目的で設けられており、記憶部24は、X線管3の制御情報、X線管3の位置情報、コリメータ3aの開度、X線管3の傾斜情報、FPD4の鉛直方向vの位置情報、および支柱の水平方向sの位置情報などのX線撮影に用いられる各種パラメータの一切を記憶する。なお、X線撮影装置1は、図1に示すように、各部6,12,14,16,18,20,21,22,24を統括的に制御する主制御部25を備えている。この主制御部25は、CPUによって構成され、種々のプログラムを実行することにより、各部を実現している。また、上述の各部は、それらを担当する演算装置に分割されて実行されてもよい。
 <X線撮影装置の動作>
 次に、X線撮影装置1の動作について説明する。具体的には、発明の特徴を最も効果的に表す目的で、側湾症の検査を例にとって説明する。側湾症の検査は、被検体Mを直立させた状態で撮影を行い、続いて被検体Mを水平方向sに屈曲させた状態で撮影を行う。より具体的には、まず、図4に示すように、被検体MをX線管3とFPD4との間に直立させた状態で被検体MのX線透視画像を取得する(直立撮影ステップS1)。そして、被検体Mに屈曲するように指示を与え(被検体屈曲ステップS2),撮影を行いたい範囲を設定するべく始点と終点を設定する(始点・終点設定ステップS3)。続いて、撮影を行う際のコリメータ3aの開度と、各部材2,3,4の位置が算出され(開度・位置算出ステップS4),この算出された位置を基に実際の屈曲撮影が開始される(屈曲撮影ステップS5)。以降、これらの各ステップについて順を追って説明する。
 <直立撮影ステップS1>
 まず、被検体MをX線管3とFPD4との間に直立して起立させる。直立撮影は、被検体Mの背骨を撮影する必要があるので、撮影を行いたい範囲がFPD4の検出面4aに収まりきれない。そこで、実際のX線撮影は、被検体Mの撮影を上側、中央、下側の3回分に分けて行われる。
 術者が操作卓27を通じて撮影開始の指示を行うと、図5に示すように、FPD4が鉛直上向きに移動して、図5の実線の位置で停止する。と同時に、X線管3は、上向きに傾斜して実線の位置で停止する。この状態でX線撮影が行われ、被検体Mの胸部のX線透視画像が取得される。そして、FPD4は、鉛直下向きに移動して図5の破線の位置で停止する。と同時に、X線管3は、下向きに傾斜して破線の位置で停止する。この状態で再びX線撮影が行われ、被検体Mの腹部のX線透視画像が取得される。
 その後、FPD4は、鉛直下向きに移動して図5の一点鎖線の位置で停止する。と同時に、X線管3は、下向きに傾斜して一点鎖線の位置で停止する。この状態で撮影が行われ、被検体Mの腰部のX線透視画像が取得される。
 取得された3枚のX線透視画像は、つなぎ合わせ部22に送出され、背骨が写り込んだ縦長の単一の画像が取得される。つなぎ合わせ部22の具体的な構成は、後述のものとする。
 X線管3が傾斜される意味について説明する。X線管3を傾斜させるとX線管3が回転することになる。ここで注目すべきは、その回転中心は、X線管3が有するX線照射の焦点fとなっていることである。細長状の画像を複数回に分けて撮影しようとする場合、X線照射の焦点を一致させて撮影を行えば、X線透視画像を理想的につなぎ合わせることができる。
 X線管3が傾斜されることによりX線透視画像を理想的につなぎ合わせられる点は、実施例の構成において重要となる。そこで、焦点fを一致させた撮影方法と、X線透視画像つなぎ合わせとの関係について説明する。例えば、図5における領域R1は、1回目の撮影と、2回目の撮影との両方で撮影される、いわゆる画像つなぎ合わせののりしろ部である。この領域R1の撮影するにあたり、いずれの撮影においても、図5のB1で示すX線ビームがFPD4に入射して撮影されたものとなる。いずれの撮影においても共通の焦点fから発したX線が領域R1に到達した結果、R1の部分が撮影されているからである。
 X線ビームは焦点fを中心に放射状に広がるので、これを被検体Mに投影して得られた像はゆがむ。具体的には、被検体MにX線が斜めに入射するほど、ゆがみが顕著になる。図5のように焦点fを共通させて撮影を行えば、1回目、2回目いずれのX線透視画像においても、領域R1は、共通のX線ビームB1で撮影されたものとなる。従って、領域R1は、両X線透視画像で同じゆがみ方をしているので、両X線透視画像をつなぎ合わせると、つなぎ目で段差が生じたりせずに自然に結合される。
 この様な関係は、2回目の撮影と3回目の撮影とで重複する部分である領域R2についても同様である。いずれの撮影においても共通の焦点fから発したX線が領域R2に到達した結果、R2の部分が撮影されているからである。
 <被検体屈曲ステップS2,始点・終点設定ステップS3>
 次に、術者は、図6に示すように、被検体Mに体軸方向に屈曲するように指示を与える(被検体屈曲ステップS2)。そして、術者は、操作卓27を通じて、可視光源19をオンさせ、屈曲している被検体Mに可視光線を照射する。この可視光線は、X線ビームの幅を決めるコリメータ3aによりコリメートされているので、術者は、可視光により被検体Mが照らされる部分を観察することでX線の照射領域をX線撮影の前に知ることができる。
 そして、術者は、図6に示す撮影対象範囲Rを決定する。撮影対象範囲Rは、被検体が屈曲した状態で行われる屈曲撮影時のX線撮影時においてX線が照射される範囲を表しており、撮影対象範囲Rにおける被検体Mの水平方向sの幅は、図6の点線で示すFPD4の検出面4aの幅よりも広くなっている。また、撮影対象範囲Rにおける被検体Mの体軸方向の幅も同様に、検出面4aの幅よりも広くなっている。
 術者は、始点Sと終点Eとを指定することにより撮影対象範囲Rの位置をX線撮影装置1に認識させる。始点Sと終点Eは、長方形となっている撮影対象範囲Rの対角線上の2頂点となっており、実施例1の説明においては、始点Sは終点Eよりも鉛直上向きに位置しているものとする。この始点S・終点Eの指定により3回のX線撮影の間に検出面4aが移動する軌跡が設定され、FPD4の鉛直方向vの移動範囲、および支柱2の水平方向sの移動範囲を決定することになる。
 始点S・終点Eの具体的な設定方法としては、術者が可視光線を被検体Mに照射させながらX線管3を鉛直方向v,および水平方向s,体軸方向に移動させておいて、X線撮影を行うときのX線管3の位置を決定する。そして、コリメータ3aを調節することで、図7(a)に示すように、可視光線で被検体Mが照らされる範囲Raの1頂点が撮影対象範囲Rの始点Sとなるように範囲Raの調節が行われる。このとき、範囲Raの高さHは、FPD4の鉛直方向vの高さと一致していることが望ましい。より厳密には、可視光線は放射状に広がるので、仮に可視光線が被検体Mを透過してFPD4の検出面4aまで到達したとすると、可視光線ビームは、検出面4aを鉛直方向vにはみ出さないように照らすように設定されることがより望ましい。術者は、範囲Raを始点Sに一致させた段階で、操作卓27を操作し、始点SをX線撮影装置1に登録させる。
 次に、X線管3の位置を変更させずして、X線管3を傾斜させることにより、範囲Raを左下に移動させて、図7(b)に示すように、可視光線で被検体Mが照らされる範囲Raの1頂点が撮影対象範囲Rの終点Eとなるように範囲Raの調節が行われる。術者は、範囲Raを終点Eに一致させた段階で、操作卓27を操作し、終点EをX線撮影装置1に登録させる。始点S,終点Eを登録したときのコリメータ3aの開度、X線管3の傾斜角度、およびX線管3の焦点の位置のそれぞれは、コリメータ制御部16,X線管傾斜制御部14,X線管移動制御部12から送出され、記憶部24に記憶される。これにより、始点・終点設定ステップS3は終了となる。
 始点・終点設定ステップS3の別な態様として、X線管3を被検体Mから十分に離すことにより、始点Sと終点Eとを一度に登録するようにしてもよい[図7(c)参照]。この場合、X線を照射する撮影対象範囲Rと可視光線が照らしている範囲Raとが一致する。始点・終点設定ステップS3の後、X線管3をFPD4に対して接近させて実際のX線撮影が行われることになる。
 <開度・位置算出ステップS4>
 図7(c)のように、可視光線によるX線照射範囲決定時のX線管3の位置と、X線照射時のX線管3の位置とが異なっている場合、X線撮影を行う場合のコリメータ3aの開度、およびX線管3の傾斜角度は、同一ではない。そこで、X線撮影に先立って、この様な幾何学的な撮影条件を予め決定しておく必要がある。実施例1に係るX線撮影装置1においては、X線管3の位置・傾斜角度、およびコリメータ3aの開度は、位置・開度算出部20により算出される。撮影対象範囲Rは、FPD4よりも広い範囲であるので一度に撮影することができない。そこで、実際のX線撮影は、撮影対象範囲Rの撮影を上側、中央、下側の3回分に分けて行われる。位置・開度算出部20は、このX線撮影3回分について幾何学的な算出を行う。
 位置・開度算出部20には、始点S・終点Eの登録時におけるX線管3のX線照射の焦点の位置、コリメータ3aの開度、およびX線管3の傾斜角度が送出される。位置・開度算出部20は、X線照射の焦点に対する始点S・終点Eの位置をコリメータ3aの開度、およびX線管3の傾斜角度より幾何学的な計算により求める。
 そして、位置・開度算出部20は、焦点の位置がX線照射時の位置となったときに、始点Sを含んだ撮影対象範囲Rの上側部分にX線が照射されるように適切なコリメータ3aの開度とX線管3の傾斜角度とを決定する。位置・開度算出部20が算出に用いるX線照射時の焦点の位置は、予め設定された値を記憶部24より読み出して使用してもよいし、術者に指定させるようにしてもよい。
 続いて、位置・開度算出部20は、焦点の位置がX線照射時の位置となったときに、撮影対象範囲Rの鉛直方向の中央部分にX線が照射されるように適切なコリメータ3aの開度とX線管3の傾斜角度とを決定する。その後、位置・開度算出部20は、焦点の位置がX線照射時の位置となったときに、撮影対象範囲Rの鉛直方向の終点Eを含んだ撮影対象範囲Rの下側部分にX線が照射されるように適切なコリメータ3aの開度とX線管3の傾斜角度とを決定する。位置・開度算出部20の開度、傾斜角度の決定は、まず傾斜角度を決めてから開度を決めてもよいし、その逆の順番で決めてもよい。
 始点S・終点Eの登録が、図7(a),図7(b)のようにして決定された場合は、撮影対象範囲Rの上側領域と下側領域の撮影については、始点S・終点Eの決定時と同じ幾何学的条件を使用することができる。したがって、この場合、位置・開度算出部20は、撮影対象範囲Rの鉛直方向の中央部分にX線が照射される撮影についてのみ幾何学的条件を算出すればよい。
 この様にして、位置・開度算出部20は、X線撮影3回分の開度、傾斜角度の算出を行う。このとき求められた各パラメータは記憶部24で記憶される。また、位置・開度算出部20は、X線管3の位置に関する撮影条件だけでなく、支柱2の位置も3回分の撮影について算出する。この支柱2の位置の算出については後述のものとする。
 いずれの場合においても、支柱2の移動範囲は、始点S・終点Eの水平方向sの距離とFPD4の水平方向sの幅とによって決定され、FPD4の移動範囲は、始点S・終点Eの鉛直方向vの距離とFPD4の鉛直方向vの高さによって決定される。
 <屈曲撮影ステップS5>
 術者が、操作卓27を通じて、屈曲した被検体Mの撮影を行うようにX線撮影装置1に指示を行うと、X線撮影装置1は、記憶部24に記憶されたX線管3の位置・傾斜角度、およびコリメータ3aの開度を読み出して、3回のX線撮影を行う。この各撮影は、FPD4が鉛直方向、および、水平方向sに移動させながら行われる。すなわち、図8(a)が1回目のX線撮影時における検出面4aの位置を示しており、この時点で、検出面4aの1頂点と始点Sとが一致し、検出面4aの全域が撮影対象範囲Rに含まれている。図8(b)が2回目のX線撮影時における検出面4aの位置を示しており、この時点で、検出面4aが鉛直方向vおよび水平方向sについて、撮影対象範囲Rの中央に位置している。そして、図8(c)が3回目のX線撮影時における検出面4aの位置を示しており、この時点で、検出面4aの1頂点と終点Eとが一致し、検出面4aの全域が撮影対象範囲Rに含まれている。1回目、2回目のX線撮影時における検出面4aの位置は、鉛直方向vに一部オーバーラップしており、2回目、3回目のX線撮影時における検出面4aの位置は、鉛直方向vに一部オーバーラップしている。
 この様なFPD4の移動は、支柱2が水平方向sに移動することで実現される。位置・開度算出部20は、前ステップにおいて、始点Sと終点Eの位置から3回の撮影時におけるFPD4の位置を算出しており、これが記憶部24に記憶されている。支柱移動制御部18は、撮影の度に検出面4aが図8に示す位置となるように支柱2を水平方向sに移動させる。このように、実施例1のX線撮影装置1は、支柱2を水平方向sに移動させるとともにFPD4を鉛直方向vに移動させることにより、FPD4の検出面4aを鉛直方向vに対して傾斜した軌跡F(図8参照)に沿って移動させてX線透視画像を連写する。なお、この軌跡Fは、FPD4が有する検出面の初期位置における中点と最終位置における中点とを結んだ鉛直方向vに対して傾斜した直線となっている。
 また、各撮影においては、各1回ずつX線が照射される。この各撮影時におけるX線の照射の範囲について説明する。3回のX線撮影におけるX線の照射は、照射範囲を鉛直方向vに移動させながら行われる。すなわち、図9(a)における矩形状の領域Rbが1回目のX線撮影時におけるX線の照射範囲を示しており、この時点で、領域Rbの鉛直上側の端と始点Sとが一致している。図9(b)における矩形状の領域Rbが2回目のX線撮影時におけるX線の照射範囲を示しており、この時点で、領域Rbは、鉛直方向vについて、撮影対象範囲Rの中央に位置している。そして、図9(c)における矩形状の領域Rbが3回目のX線撮影時におけるX線の照射範囲を示しており、この時点で、領域Rbの鉛直下側の端と終点Eとが一致している。また、いずれの撮影においても、領域Rbの水平方向sの幅は同方向における撮影対象範囲Rの幅と一致している。1回目、2回目のX線撮影時における領域Rbの位置は、鉛直方向vに一部オーバーラップしており、2回目、3回目のX線撮影時における領域Rbの位置は、鉛直方向vに一部オーバーラップしている。しかも、いずれの撮影においても、X線管3のX線照射の焦点は一致している。
 検出面4aとX線ビームの広がりについて説明する。撮影対象範囲Rの水平方向sの幅は、図8(c)を参照すれば分かるように、検出面4aの水平方向sの幅S1と、X線透視画像の連写の間に検出面4aが水平方向sに移動する移動幅S2との和となっている。一方、X線ビームの水平方向sの広がりは、図9を参照すれば分かるように、撮影対象範囲Rの水平方向sの幅となっている。したがって、幅S1と移動幅S2との和は、検出面4aが存する平面におけるコーン状のX線ビームの水平方向sの幅と一致する。
 各撮影の度に、FPD4は、被検体Mを透過してきたX線を検出し、検出データを画像生成部21に送出する。この様にして取得されたX線透視画像は、例えば、1回目の撮影においては図10(a)に示すように被検体Mの頭部・胸部が写り込み、2回目の撮影においては図10(b)に示すように被検体Mの腹部が写り込み、3回目の撮影においては図10(c)に示すように被検体Mの腰部が写り込んでいる。各X線透視画像は、つなぎ合わせ部22に送出される。
 つなぎ合わせ部22では、各X線透視画像のオーバーラップ部分を重ね合わせて各X線透視画像をつなぎ合わせ、図11に示すような単一の画像を生成する。つなぎ合わせ部22の具体的な構成としては、位置・開度算出部20が幾何学演算により算出した各X線透視画像の位置情報を画像生成部21が各X線透視画像に関連させてつなぎ合わせ部22に送出し、これを基につなぎ合わせ部22が各X線透視画像を重ね合わせるように構成してもよいし、つなぎ合わせ部22が画像解析により、各X線透視画像の同一部分を抽出し、この同一部分を重ね合わせるように各X線透視画像をつなぎ合わせるように構成してもよい。なお、直立撮影ステップS1におけるつなぎ合わせ部22の動作も上述と同様である。つなぎ合わせられた単一のX線透視画像が表示部26に表示されて検査は終了となる。
 以上のように、実施例1によれば、連写された複数枚のX線透視画像をつなぎ合わせて単一のX線透視画像を生成できるようになっている。これにより、撮影対象範囲Rが一度の撮影ではFPD4の検出面4aに入りきれない場合であっても、被検体MのX線透視画像を取得することができる。しかし、従来構成によれば、側湾症の検査を行おうとして、体側方向に屈曲した被検体Mを撮影すると、被検体MがFPD4の検出面4aより水平方向sにはみ出してしまい、被検体Mの全体像を撮影することは困難である。そこで、実施例1によれば、検出面4aを鉛直方向vに対して傾斜した軌跡Fに沿って移動させて被検体MのX線透視画像を連写するようになっている。したがって被検体Mの屈曲に沿ってX線透視画像が連写されるので、容易に屈曲した被検体Mの全体像を撮影することができる。
 また、実施例1の構成は、術者が矩形状の撮影対象範囲Rにおける対角線上の2頂点である始点S・終点Eを指定することにより、検出面4aの移動する軌跡Fが決定される。これにより、術者の思惑通りにFPD4の検出面4aが移動することになり、より検査が容易なX線撮影装置が提供できる。
 そして、FPD4の検出面4aが存する平面におけるコーン状のX線ビームの水平方向sの幅は、検出面4aの水平方向sの幅と、X線透視画像の連写の間に検出面4aが水平方向sに移動する移動幅との和と一致している。つまり、X線ビームの水平方向sの幅は、移動する検出面4aの全域を確実にカバーする。この様に構成することにより、X線管3を水平方向sに移動させずにX線透視画像の連写を行うことができる。いいかえれば、X線管3がX線を照射する焦点が不動のまま連写が行われるのである。従って、各X線透視画像に写り込む被検体Mの像は、共通の照射焦点によって撮影されたものであり、各X線透視画像は、共通のX線透視画像のゆがみ方で撮影されたものとなっている。これらをつなぎ合わせれば、つなぎ合わせ部分で段差が生じず、理想的なX線透視画像のつなぎ合わせが実現できる。
 次に、実施例2の構成について説明する。実施例2のX線撮影装置1の全体構成は実施例1のものと同様であるので説明を省略する。実施例2独自の点は、3回のX線撮影中にX線管3が水平方向sに移動することにある。一方、X線撮影中、X線管3は鉛直方向vには移動しない。
 実施例2に係るX線管3の移動について具体的に説明する。図12は、被検体Mが撮影されている様子を鉛直方向vから見下ろした時の概念図である。図12の実線は、1回目の撮影時における各部材2,3,4の位置を表しており、図12の破線は、2回目の撮影時における各部材2,3,4の位置を表している。そして、図12の一点鎖線は、3回目の撮影時における各部材2,3,4の位置を表している。このように、実施例2の構成によれば、FPD4の移動に追従して、X線管3が水平方向sに移動する。具体的には、X線管3とFPD4との水平方向sにおける相対的な位置関係が一定となるように支柱2の移動に合わせてX線管3が水平方向sに移動される。
 実施例2の屈曲撮影に係る3回の撮影において、それぞれのX線の照射の範囲について説明する。すなわち、3回のX線撮影におけるX線の照射は、照射範囲を鉛直方向vに移動させながら行われる。すなわち、図13(a)~図13(c)に示すように、各X線撮影におけるX線が照射される矩形状の領域R2は、図8で示した検出面4aの位置と一致している。また、1回目、2回目のX線撮影時における領域R2の位置は、鉛直方向vに一部オーバーラップしており、2回目、3回目のX線撮影時における領域R2の位置は、鉛直方向vに一部オーバーラップしている。
 このように、実施例2の構成によれば、支柱2の水平方向sの移動に合わせてX線管3が水平方向sに移動されてX線透視画像が連写される。
 検出面4aとX線ビームの広がりについて説明する。図13,図8に示すように、領域R2は、検出面4aに一致するのであるから、検出面4aが存する平面におけるコーン状のX線ビームの水平方向sの幅は、検出面4aの水平方向sの幅と一致している。
 以上のように、実施例2の構成によれば、X線管3がX線を照射する焦点を水平方向sに移動させながら連写が行われる。この様な構成とすると、X線管3とFPD4との水平方向sにおける相対的な位置関係が一定となっているので、いずれの撮影においてもX線ビームの中心軸をFPD4の検出面4aの中心に位置させることができる。したがって、中心部分の歪みが少ないX線透視画像が取得できる。
 また、実施例2の構成は、X線管3がX線を照射する焦点を水平方向sに移動させながら連写が行われる。FPD4の検出面4aが存する平面におけるコーン状のX線ビームの水平方向sの幅は、検出面4aの水平方向sの幅と一致するようにすれば、検出面4aの水平方向sからX線ビームがはみ出して被検体Mに照射されることがない。したがって、被検体Mの被曝を極力抑制することができるX線撮影装置が提供できる。
 本発明は、上述の各実施例の構成に限られず、下記のように変形実施することができる。
 (1)各実施例におけるFPD4の水平移動は、FPD4を支持する支柱2が水平方向に移動することで実現していたが、この構成に代えてFPD4が支柱2に対して平行移動することでFPD4の水平移動を実現しても良い。この変形例によれば支柱2は、必ずしも水平移動できなくてもよいので、図1における支柱移動機構17および支柱移動制御部18は必要とはされない。本変形例の構成は、図14に示すように、FPD鉛直移動機構15およびFPD鉛直移動制御部16に加えて、支柱2に対するFPD4の位置を水平方向に変更するFPD水平移動機構17aとこれを制御するFPD水平移動制御部18aとが備えられている。
 (2)上述した各実施例は、医用の装置であったが、本発明は、工業用や、原子力用の装置に適用することもできる。
 (3)上述した各実施例のいうX線は、本発明における放射線の一例である。したがって、本発明は、X線以外の放射線にも適応できる。
 (4)上述した各実施例においては、天板を有さない構成となっていたが、本発明はこの構成に限られない。天板を有する仰臥位の被検体Mを撮影する放射線撮影装置に適応してもよい。
 本発明は医用の放射線撮影装置に適している。
F     軌跡
2     支柱
3     X線管(放射線源)
4     FPD(放射線検出手段)
4a   検出面
15   FPD鉛直移動機構(検出器鉛直移動手段)
16   FPD鉛直移動制御部(検出器鉛直移動制御手段)
17   支柱移動機構(支柱移動手段)
18   支柱移動制御部(支柱移動制御手段)
21   画像生成部(画像生成手段)
22   つなぎ合わせ部(つなぎ合わせ手段)
27   操作卓(入力手段)

Claims (6)

  1.  放射線を照射する放射線源と、
     放射線を検出する検出面を有する放射線検出手段と、
     前記放射線検出手段を支持する鉛直方向に伸びた支柱と、
     (A1)前記支柱を前記放射線源から前記放射線検出手段に向かう方向と直交する水平方向に移動させる支柱移動手段と、
     (B1)前記支柱移動手段を制御する支柱移動制御手段と、
     前記放射線検出手段を前記支柱に対して鉛直方向に移動させる検出器鉛直移動手段と、
     前記検出器鉛直移動手段を制御する検出器鉛直移動制御手段と、
     前記放射線検出手段が出力する検出データを基に、画像を生成する画像生成手段と、
     連写された複数枚の画像をつなぎ合わせて単一の画像を生成するつなぎ合わせ手段とを備え、
     前記検出面は、鉛直方向、および前記水平方向のなす平面に沿って配置されており、
     前記支柱移動制御手段が前記支柱を前記水平方向に移動させるとともに前記検出器鉛直移動手段が前記放射線検出手段を鉛直方向に移動させることにより、前記検出面を鉛直方向に対して傾斜した軌跡に沿って移動させて画像を連写することを特徴とする放射線撮影装置。
  2.  請求項1に記載の放射線撮影装置において、
     術者の指示を入力させる入力手段を更に備え、
     画像の連写時における前記検出面の移動する軌跡は、術者が矩形状の撮影範囲における対角線上の2頂点を指定することにより設定されることを特徴とする放射線撮影装置。
  3.  請求項1または請求項2に記載の放射線撮影装置において、
     前記放射線源が照射する放射線をコリメートしてコーン状の放射線ビームとするコリメータを更に備え、
     前記放射線検出手段の前記検出面が存する平面におけるコーン状の放射線ビームの水平方向の幅は、前記検出面の水平方向の幅と、画像の連写の間に前記検出面が水平方向に移動する移動幅との和と一致していることを特徴とする放射線撮影装置。
  4.  請求項1または請求項2に記載の放射線撮影装置において、
     前記放射線源を前記水平方向に移動させる放射線源移動手段と、
     前記放射線源移動手段を制御する放射線源移動制御手段とを更に備え、
     前記放射線源と前記放射線検出手段との前記水平方向における相対的な位置関係が一定となるように前記支柱の水平方向の移動に合わせて前記放射線源が水平方向に移動されて画像が連写されることを特徴とする放射線撮影装置。
  5.  請求項4に記載の放射線撮影装置において、
     前記放射線源が照射する放射線をコリメートしてコーン状の放射線ビームとするコリメータを更に備え、
     前記放射線検出手段の前記検出面が存する平面におけるコーン状の放射線ビームの水平方向の幅は、前記検出面の水平方向の幅と一致していることを特徴とする放射線撮影装置。
  6.  放射線を照射する放射線源と、
     放射線を検出する検出面を有する放射線検出手段と、
     前記放射線検出手段を支持する鉛直方向に伸びた支柱と、
     (A2)前記放射線源から前記放射線検出手段に向かう方向と直交する水平方向に前記放射線検出手段を前記支柱に対して移動させる検出器水平移動手段と、
     (B2)前記検出器水平移動手段を制御する検出器水平移動制御手段と、
     前記放射線検出手段を前記支柱に対して鉛直方向に移動させる検出器鉛直移動手段と、
     前記検出器鉛直移動手段を制御する検出器鉛直移動制御手段と、
     前記放射線検出手段が出力する検出データを基に、画像を生成する画像生成手段と、
     連写された複数枚の画像をつなぎ合わせて単一の画像を生成するつなぎ合わせ手段とを備え、
     前記検出面は、鉛直方向、および前記水平方向のなす平面に沿って配置されており、
     前記支柱移動制御手段が前記支柱を前記水平方向に移動させるとともに前記検出器鉛直移動手段が前記放射線検出手段を鉛直方向に移動させることにより、前記検出面を鉛直方向に対して傾斜した軌跡に沿って移動させて画像を連写することを特徴とする放射線撮影装置。
PCT/JP2011/003856 2010-07-06 2011-07-06 放射線撮影装置 WO2012004986A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180033522.6A CN102970930B (zh) 2010-07-06 2011-07-06 放射线摄影装置
US13/808,898 US9220465B2 (en) 2010-07-06 2011-07-06 Radiographic apparatus
JP2012523526A JP5494806B2 (ja) 2010-07-06 2011-07-06 放射線撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010154047 2010-07-06
JP2010-154047 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012004986A1 true WO2012004986A1 (ja) 2012-01-12

Family

ID=45440975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003856 WO2012004986A1 (ja) 2010-07-06 2011-07-06 放射線撮影装置

Country Status (4)

Country Link
US (1) US9220465B2 (ja)
JP (1) JP5494806B2 (ja)
CN (1) CN102970930B (ja)
WO (1) WO2012004986A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179097A (ja) * 2015-03-24 2016-10-13 キヤノン株式会社 放射線撮像システム及び放射線撮影システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020209714A1 (de) * 2020-07-31 2022-02-03 Siemens Healthcare Gmbh Verfahren zur abschnittsweisen Aufnahme einer Röntgenaufnahme

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358255A (ja) * 2003-06-03 2004-12-24 Ge Medical Systems Global Technology Co Llc ディジタル検出器での多数枚画像取得の方法及び装置
JP2007068578A (ja) * 2005-09-02 2007-03-22 Shimadzu Corp X線検出器保持装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127090B2 (en) * 2001-07-30 2006-10-24 Accuimage Diagnostics Corp Methods and systems for combining a plurality of radiographic images
JP4070493B2 (ja) * 2002-04-03 2008-04-02 株式会社東芝 X線診断装置および医用画像解析装置
JP2003339686A (ja) * 2002-05-29 2003-12-02 Shimadzu Corp X線撮影装置
US20050135560A1 (en) * 2003-12-17 2005-06-23 Ehud Dafni Portable computed tomography scanner and methods thereof
DE102004051170B4 (de) * 2004-10-20 2015-03-05 Siemens Aktiengesellschaft Computertomographiegerät mit gleichzeitiger kontaktloser elektrischer Übertragung von Versorgungsspannung und Mess- und Steuerdaten
GB0500535D0 (en) * 2005-01-12 2005-02-16 Koninkl Philips Electronics Nv Computer tomography apparatus
JP3118190U (ja) 2005-10-31 2006-01-26 株式会社島津製作所 医用x線撮影スタンド
US7613275B2 (en) * 2005-12-19 2009-11-03 General Electric Company Method and apparatus for reducing cone beam artifacts using spatially varying weighting functions
JP4495109B2 (ja) * 2006-04-06 2010-06-30 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
US7940887B2 (en) * 2006-08-08 2011-05-10 Shimadzu Corporation Radiographic apparatus
US20080219567A1 (en) * 2007-03-07 2008-09-11 General Electric Company Tomosynthesis imaging data compression system and method
WO2009004677A1 (ja) * 2007-06-29 2009-01-08 Shimadzu Corporation 放射線撮像装置
US8385623B2 (en) * 2007-07-11 2013-02-26 Shimadzu Corporation Radiographic apparatus
DE102007045521A1 (de) * 2007-09-24 2009-04-23 Siemens Ag Röntgendetektor in einer Bauform eines Raster-Wand-Geräts
JP5274098B2 (ja) * 2008-04-30 2013-08-28 キヤノン株式会社 撮像装置、放射線撮像システム、その制御方法及びプログラム
JP5195910B2 (ja) * 2008-06-17 2013-05-15 株式会社島津製作所 放射線断層撮影装置
JP4748282B2 (ja) * 2008-08-11 2011-08-17 株式会社島津製作所 放射線グリッドおよびそれを備えた放射線撮影装置
CN102076261B (zh) * 2008-10-30 2013-06-05 株式会社岛津制作所 放射线摄影装置
JP2011255020A (ja) * 2010-06-10 2011-12-22 Fujifilm Corp 放射線撮影装置及び方法
US8929512B2 (en) * 2010-09-10 2015-01-06 Shimadzu Corporation Mobile type radiographic apparatus
JP5238787B2 (ja) * 2010-10-27 2013-07-17 富士フイルム株式会社 放射線撮影装置及び放射線撮影システム
JP2012135612A (ja) * 2010-12-07 2012-07-19 Fujifilm Corp 放射線位相画像撮影方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358255A (ja) * 2003-06-03 2004-12-24 Ge Medical Systems Global Technology Co Llc ディジタル検出器での多数枚画像取得の方法及び装置
JP2007068578A (ja) * 2005-09-02 2007-03-22 Shimadzu Corp X線検出器保持装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179097A (ja) * 2015-03-24 2016-10-13 キヤノン株式会社 放射線撮像システム及び放射線撮影システム

Also Published As

Publication number Publication date
JP5494806B2 (ja) 2014-05-21
CN102970930A (zh) 2013-03-13
CN102970930B (zh) 2015-01-21
US20130108018A1 (en) 2013-05-02
JPWO2012004986A1 (ja) 2013-09-02
US9220465B2 (en) 2015-12-29

Similar Documents

Publication Publication Date Title
JP5549595B2 (ja) 放射線撮影装置
JP5333164B2 (ja) 放射線撮影装置
JP5675117B2 (ja) X線ct装置及びx線ct装置の制御プログラム
JP7342990B2 (ja) X線撮影装置
JP2013158532A (ja) 放射線撮影装置
JP5494806B2 (ja) 放射線撮影装置
JP5776520B2 (ja) 放射線撮影装置
JP2020156620A (ja) X線撮影装置
JP5387829B2 (ja) X線撮影装置
JP2011072404A (ja) 放射線撮影システム
JP6687036B2 (ja) X線撮影装置
JP6459627B2 (ja) 放射線撮影装置
JP2012100738A (ja) 放射線断層撮影装置
JP2004180847A (ja) 断層撮影装置
JP5559648B2 (ja) 放射線撮影装置、方法およびプログラム
WO2016016979A1 (ja) X線透視撮影装置
JP5428882B2 (ja) 放射線撮影装置
JP2011010992A (ja) X線撮影装置
JP2013106884A (ja) 放射線撮影装置
JP6384399B2 (ja) X線透視撮影装置
WO2013076938A1 (ja) 放射線撮影装置
JP6164293B2 (ja) 放射線撮影装置
JP5966647B2 (ja) X線撮影装置
JP2013027476A (ja) 放射線撮影装置
JP2019034023A (ja) 放射線画像撮影システム及び放射線長尺画像撮影範囲の設定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033522.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523526

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13808898

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11803323

Country of ref document: EP

Kind code of ref document: A1