WO2012003661A1 - 具有电阻正温度系数的导电复合材料及过电流保护元件 - Google Patents

具有电阻正温度系数的导电复合材料及过电流保护元件 Download PDF

Info

Publication number
WO2012003661A1
WO2012003661A1 PCT/CN2010/076822 CN2010076822W WO2012003661A1 WO 2012003661 A1 WO2012003661 A1 WO 2012003661A1 CN 2010076822 W CN2010076822 W CN 2010076822W WO 2012003661 A1 WO2012003661 A1 WO 2012003661A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
conductive composite
composite material
temperature coefficient
carbide
Prior art date
Application number
PCT/CN2010/076822
Other languages
English (en)
French (fr)
Inventor
杨铨铨
刘正平
刘玉堂
高道华
王军
李丛武
Original Assignee
上海长园维安电子线路保护股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海长园维安电子线路保护股份有限公司 filed Critical 上海长园维安电子线路保护股份有限公司
Priority to JP2013516959A priority Critical patent/JP5711365B2/ja
Priority to US13/574,712 priority patent/US8653932B2/en
Priority to EP10854320.8A priority patent/EP2592628B1/en
Publication of WO2012003661A1 publication Critical patent/WO2012003661A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/026Current limitation using PTC resistors, i.e. resistors with a large positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/13Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material current responsive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a surface mount overcurrent protection component having positive temperature coefficient (PTC) characteristics, particularly a conductive composite material having a positive temperature coefficient of resistance and an overcurrent protection component prepared therefrom.
  • PTC positive temperature coefficient
  • the conductive composite material with positive temperature coefficient of resistance can maintain extremely low resistance value under normal temperature, and has the characteristic of being sensitive to temperature change, that is, when overcurrent or overheating occurs in the circuit, its resistance will instantaneously increase to A high resistance value keeps the circuit in an open state for the purpose of protecting circuit components. Therefore, a conductive composite material having a positive temperature coefficient of resistance can be connected to the circuit as a material of the current sensing element. Such materials have been widely used in electronic circuit protection components.
  • the conductive composite material having a positive temperature coefficient of resistance is generally composed of at least one crystalline polymer and a conductive filler, and the conductive filler is macroscopically uniformly distributed in the crystalline polymer.
  • the polymer is generally a polyolefin and a copolymer thereof, for example, polyethylene or an ethylene-vinyl acetate copolymer
  • the conductive filler is generally carbon black, metal powder or conductive ceramic powder.
  • a conductive composite material having a positive temperature coefficient of resistance with metal powder as a conductive filler has extremely low electrical resistance, but since the metal powder is easily oxidized, it is required to encapsulate the conductive composite material to prevent oxidation of the metal powder in the air. The resistance increases, and the volume of the encapsulated overcurrent protection component cannot be effectively reduced, and it is difficult to meet the requirements for miniaturization of electronic components.
  • metal carbide ceramic powders such as titanium carbide
  • Conductive composite materials with positive temperature coefficient of resistance have difficulty in controlling the reproducibility of electrical resistance. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a conductive composite material having a positive temperature coefficient of resistance.
  • Another technical problem to be solved by the present invention is to provide an overcurrent protection element prepared from the above conductive composite material, which has low room temperature resistivity, excellent resistance reproducibility, and PTC strength.
  • a conductive composite material having a positive temperature coefficient of resistance comprising:
  • a conductive filler which accounts for 30% to 80% of the volume fraction of the conductive composite having a positive temperature coefficient of resistance, and has a particle diameter of 0. ⁇ ⁇ ⁇ !
  • the conductive filler is dispersed in the crystalline polymer substrate, wherein the conductive filler is a solid solution.
  • the volume fraction of the crystalline polymer substrate may be 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or 70%; the volume fraction of the conductive filler may be 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 or 80%.
  • the volume fraction of the crystalline polymer substrate in the conductive composite material is preferably between 25% and 65%, more preferably between 30% and 60%.
  • the volume fraction of the conductive filler in the conductive composite material is preferably between 35% and 75%, more preferably between 40% and 70%.
  • the particle size of the conductive filler is preferably 0. 01 ⁇ m ⁇ 50 ⁇ m, more preferably 0. 1 ⁇ ⁇ ! ⁇ 10 ⁇ m.
  • the volume resistivity of the conductive filler is generally not more than 500 ⁇ ⁇ - cm , more preferably not more than 300 ⁇ ⁇ ⁇ cm, optimally no more than 100 ⁇ ⁇ ⁇ cm .
  • the above conductive composite material may further contain other components such as an antioxidant, a radiation crosslinking agent (often referred to as an irradiation accelerator, a crosslinking agent or a crosslinking accelerator such as triallyl isocyanurate), Coupling agents, dispersants, stabilizers, non-conductive fillers (such as magnesium hydroxide), flame retardants, arc inhibitors or other components.
  • a radiation crosslinking agent often referred to as an irradiation accelerator, a crosslinking agent or a crosslinking accelerator such as triallyl isocyanurate
  • Coupling agents such as dispersants, stabilizers, non-conductive fillers (such as magnesium hydroxide), flame retardants, arc inhibitors or other components.
  • These components typically comprise up to 15% of the total volume of the electrically conductive composite, such as 3, 5, 10 or 12% by volume.
  • the crystalline polymer substrate is epoxy resin, polyethylene, polypropylene, polyvinylidene fluoride, ethylene-vinyl acetate copolymer, polymethyl methacrylate, ethylene-acrylic acid copolymerization.
  • polyethylene includes: high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene and the like.
  • the solid solution is a solid solution of a metal carbide, and the composition thereof comprises: niobium carbide, vanadium carbide, zirconium carbide, titanium carbide, niobium carbide, molybdenum carbide, niobium carbide, chromium carbide, tungsten carbide, boron carbide. , a mixture of two or more of strontium carbide.
  • tantalum carbide-carbonized niobium solid solution chromium-containing tungsten carbide-titanium carbide-tantalum carbide solid solution, titanium carbide-tungsten carbide-tantalum carbide solid solution, titanium carbide-tungsten carbide-tantalum carbide solid solution, titanium carbide-tungsten carbide solid solution, titanium carbide - Tungsten Carbide - Tantalum Carbide - Tantalum Carbide Solid Solution, Tungsten Carbide - Tantalum Carbide Solid Solution and Titanium Carbide - Tantalum Carbide Solid Solution.
  • the overcurrent protection element prepared by using the above conductive composite material having a positive temperature coefficient of resistance is composed of a conductive composite material layer having a positive temperature coefficient of resistance sandwiched between two metal foils.
  • the two metal foils have a rough surface.
  • the rough surface of the metal foil is in direct physical contact with the conductive composite material layer having a positive temperature coefficient of resistance.
  • the overcurrent protection element has a volume resistivity of less than 0.1 ⁇ ⁇ cm at 25 ° C, and has good resistance reproducibility and PTC strength.
  • the conductive composite material having the positive temperature coefficient of resistance of the present invention and the overcurrent protection member prepared from the conductive composite material can be prepared as follows: At least one of the crystalline polymer and the electrically conductive filler are introduced into the mixing apparatus, and kneading is performed at a temperature higher than the melting temperature of the crystalline polymer.
  • the mixing equipment can be an internal mixer, an open mill, a single screw extruder or a twin screw extruder.
  • the melt-mixed polymer is then processed into a sheet which can be achieved by extrusion molding, compression molding or a thin pass of the machine. ⁇
  • the thickness of the polymer sheet is 0. 01 2. 0mm, preferably 0. 05 1. 0mm, for the convenience of processing is better 0. 1 0. 5mm
  • the composite article is formed by pressing a metal foil on both sides of a polymer sheet.
  • the metal foil functions as an electrode.
  • the method of dividing a composite article into individual components includes any method of separating individual components from a composite article, such as die cutting, etching, dicing, and laser cutting.
  • the single element has a planar shape, that is, there are two surfaces that are perpendicular to the direction in which the current flows, and the distance between the two surfaces is relatively thin, that is, at most 3.0 mm, preferably at most 2.0 mm, particularly preferably Up to 0.5. For example, 0.
  • the single element may be of any shape such as a square, a triangle, a circle, a rectangle, a ring, a polygon or other irregular shape.
  • the metal foil comprises at least one rough surface and the rough surface is in direct physical contact with the polymer sheet.
  • the thickness of the metal foil is generally at most 0. lmm, preferably at most 0. 07 especially at most 0. 05
  • 0. 035 Applicable metal foils include nickel, copper, aluminum, zinc and alloys thereof.
  • metal wires can be attached to the circuit by spot welding, reflow soldering or conductive adhesive bonding to the metal foil.
  • metal wire includes any structural member that is capable of conducting with a metal foil, and may be of any shape, for example, a dot shape, a wire shape, a ribbon shape, a sheet shape, a column shape, other irregular shapes, and combinations thereof.
  • the substrate of the "metal wire” may be any electrically conductive metal and alloy thereof such as nickel, copper, aluminum, zinc, tin and alloys thereof.
  • the stability of the performance of the overcurrent protection element can generally be improved by means of crosslinking and/or heat treatment.
  • Crosslinking can be chemical crosslinking or irradiation crosslinking, for example, by crosslinking accelerator, electron beam irradiation or Co 6 ° irradiation.
  • the irradiation dose required for the overcurrent protection element is generally less than 100 Mrad, preferably 1 50 Mrad, more preferably l 20 Mrad.
  • the heat treatment may be annealing, thermal cycling, high and low temperature alternating, such as high and low temperature alternating at 80 ° C / -40 ° C.
  • the annealing temperature environment may be below the decomposition temperature of the PTC material layer substrate Any temperature, such as a high temperature anneal above the melting temperature of the electrically conductive composite substrate and a low temperature anneal below the melting temperature of the electrically conductive composite substrate.
  • the overcurrent protection element of the present invention has a resistivity at 25 ° C of less than 0.5 ⁇ - cm, preferably less than 0.1 ⁇ - cm, and most preferably less than 0.05 ⁇ - cm, so that the overcurrent protection element of the present invention is at 25
  • the resistance of °C is very low, for example 1. ⁇ 20 ⁇ .
  • the conductive composite material having the positive temperature coefficient of resistance of the invention has low resistivity, and the overcurrent protection component prepared from the conductive composite material has superior resistance reproducibility and good PTC strength, even if the conductive composite material substrate is filled with a large amount of A good PTC strength is also ensured when the conductive filler is used. Therefore, the overcurrent protection element of the present invention has excellent PTC strength while having extremely low resistivity.
  • FIG. 1 is a schematic structural view of an overcurrent protection element of the present invention.
  • FIG. 2 is a schematic structural view of a leaded overcurrent protection component of the present invention.
  • Fig. 3 is a graph showing the resistance-temperature of the overcurrent protection element of the first embodiment of the present invention. detailed description
  • composition of the conductive composite of the overcurrent protection element is shown in Table 1.
  • the crystalline polymer ⁇ is a high-density polyethylene having a melting temperature of 135 ° C and a density of 0.952 g / cm 3 ;
  • the crystalline polymer B has a melting temperature of 134 ° C and a density of 0.954 g / cm 3 Density polyethylene;
  • Conductive filler A is titanium carbide, its particle size is less than 3 ⁇ m, total carbon content is 19.4%, density is 4.93 g/cm 3 ;
  • conductive filler B is titanium carbide-carbonium carbide-tungsten carbide solid solution, Its particle size is less than 10 ⁇ ⁇ .
  • the preparation process of the circuit protection component is as follows: The batch mixer temperature is set at 180 ° C, and the rotation speed is 30 rpm, first add the crystalline polymer for 3 minutes, add 1/4 weight of conductive filler, then add 1/4 weight of conductive filler every 2 minutes, after the last addition, continue to mix 15 Minutes, a conductive composite with a positive temperature coefficient of resistance is obtained.
  • the conductive composite material having a thickness of 0. 20 ⁇ 0. 25mm is obtained by a conductive composite material having a thickness of 0. 20 ⁇ 0.
  • FIG. 1 is a schematic structural view of an overcurrent protection device of the present invention, wherein a layer 11 of a conductive composite material is placed between two metal foil sheets 12 that are vertically symmetric, the metal foil sheet 12 has at least one rough surface, and the roughness is The surface is in direct physical contact with the PTC material layer 11.
  • the electrically conductive composite material 11 and the metal foil 12 are tightly bonded together by a thermocompression bonding method.
  • the temperature of the thermocompression bonding is 180 ° C, preheating for 5 minutes, then micro pressing for 5 minutes at a pressure of 5 MPa, and then hot pressing at a pressure of 12 MPa for 10 minutes, and then cold pressing on a cold press for 8 minutes, in a mold It is die-cut into a single component of 3 X 4mm.
  • FIG. 2 the structure diagram of the leaded overcurrent protection component of the present invention is shown.
  • the two metal pins 13 are connected to the two metal foils by reflow soldering.
  • the surface of the sheet 12 forms
  • the overcurrent protection component has a very low resistance value at 25 ° C. As the temperature increases, the resistance slowly rises. When the temperature is increased to about 13 CTC, the resistance of the overcurrent protection element is abruptly increased by about 10 orders of magnitude. At this time, the overcurrent protection element is changed from a conductor to an insulator, and the circuit is in an open state to achieve the purpose of protecting the circuit component.
  • the steps of preparing the conductive composite material having the positive temperature coefficient of resistance and the overcurrent protection member are the same as in Embodiment 1, but reducing the volume fraction of the crystalline polymer A from 34% to 20%, and the volume fraction of the crystalline polymer B. Increased from 6% to 20%.
  • the formulation of the conductive composite of Example 2 and the electrical characteristics of the overcurrent protection component are shown in Table 1.
  • the procedure for preparing the conductive composite material having the positive temperature coefficient of resistance and the overcurrent protection member is the same as in Embodiment 1, but the volume fraction of the crystalline polymer A is reduced from 34% to 28%, and the crystalline polymer B is The volume fraction increased from 6% to 12%.
  • the electrical characteristics of the formulation of the electrically conductive composite of Example 3 and the overcurrent protection component are shown in Table 1.
  • the steps of preparing the conductive composite material having the positive temperature coefficient of resistance and the overcurrent protection member are the same as in Embodiment 1, but reducing the volume fraction of the crystalline polymer A from 34% to 12%, and the volume fraction of the crystalline polymer B. Increased from 6% to 28%.
  • the formulation of the electrically conductive composite of Example 4 and the electrical characteristics of the overcurrent protection component are shown in Table 1.
  • the procedure for preparing the electrically conductive composite material having the positive temperature coefficient of resistance and the overcurrent protection member was the same as in the first embodiment except that the electrically conductive filler was changed to titanium carbide.
  • the formulation of the electrically conductive composite of Comparative Example 1 and the electrical characteristics of the overcurrent protection member are shown in Table 1.
  • the steps of preparing the conductive composite material having the positive temperature coefficient of resistance and the overcurrent protection element are the same as in the first embodiment, but changing the conductive filler to titanium carbide, the volume fraction of the crystalline polymer A is increased from 34% to 37%, crystallinity The volume fraction of polymer B was reduced from 6% to 3%.
  • the formulation of the conductive composite of Comparative Example 2 and the electrical characteristics of the overcurrent protection element are shown in Table 1.
  • the steps of preparing the conductive composite material having the positive temperature coefficient of resistance and the overcurrent protection element are the same as in the first embodiment, but changing the conductive filler to titanium carbide, the volume fraction of the crystalline polymer A is reduced from 34% to 24%, crystallinity The volume fraction of polymer B increased from 6% to 16%.
  • the formulation of the conductive composite of Comparative Example 3 and the electrical characteristics of the overcurrent protection component are shown in Table 1.
  • the resistance value of the overcurrent protection element is measured by a four-electrode method.
  • Table 1 shows the resistance test data after the overcurrent protection element prepared by the conductive composite material having the positive temperature coefficient of resistance of the present invention was triggered under the condition of 6 V/50 A and placed in a temperature environment of 25 ° C for 1 hour.
  • R in Table 1 indicates soldering on the surfaces of the two metal foils 12 of the overcurrent protection element by reflow soldering. The resistance of the two metal pins 13 before the overcurrent protection component; R.
  • overcurrent protection element of the finished resistor represents the overcurrent protection element is continuously energized after (6V / 50A) 60 seconds and placed in a resistance value measured after 1 hour at ambient temperature of 25 ° C in; 5 represents The overcurrent protection element is continuously energized (6V/50A) for 60 seconds, then powered off for 6 seconds, so cycled 25 times, and then placed in a temperature environment of 25 ° C for 1 hour after the measured resistance value; R 5 .
  • Examples 1 to 4 and Comparative Examples 1 to 3 have the same volume fraction of the conductive filler, but the conductive fillers used in Examples 1 to 4 are solid solutions of two or more metal carbides, The resistance value of the finished product was smaller than Comparative Examples 1 to 3 using metal carbide titanium carbide as the conductive filler.
  • Embodiments 1 to 4 pass After 6 times of 6V/50A current impact, the resistance value is less than 60 ⁇ ⁇ , and the comparative example 1 ⁇ 2 is subjected to 6V/50A current impact for 100 times, the resistance value is greater than 400 ⁇ ⁇ , and the resistance reproducibility is poor.
  • the conductive composite material having a positive temperature coefficient of resistance used in the overcurrent protection element of the present invention has a very low electrical resistance value, excellent electrical resistance reproducibility and PTC strength because it has a conductive filler having a very low electrical resistivity. Moreover, the conductive filler used is not easily oxidized, and the conductive composite material is not protected from oxidation by encapsulation, so that an overcurrent protection element having a small current carrying area of 1206, 0805, 0603, 0402 and the like can be prepared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Abstract

一种具有电阻正温度系数(PTC)的导电复合材料及过电流保护元件。具有电阻正温度系数的导电复合材料包含:(a)至少一结晶性聚合物基材,占导电复合材料体积分数的20-70%;(b)一导电填料,其粒径为0.1-10μm,体积电阻率不大于300μΩ•cm,分散于结晶性聚合物基材中;导电填料为一种固溶体,占导电复合材料体积分数的30-80%。由具有电阻正温度系数的导电复合材料制备的过电流保护元件包含两个金属箔片(12)和介于两个金属箔片(12)之间的导电复合材料(11),具有低室温电阻率、良好的电阻再现性和PTC强度的优点。

Description

具有电阻正温度系数的导电复合材料及过电流保护元件 技术领域
本发明涉及一种表面贴装型过电流保护元件, 具有正温度系数 (PTC)特性, 尤其是一种具有电阻正温度系数的导电复合材料及由其制备的过电流保护元件。 背景技术
具有电阻正温度系数的导电复合材料在正常温度下可维持极低的电阻值, 且具有对温度变化反应敏锐的特性, 即当电路中发生过电流或过高温现象时, 其 电阻会瞬间增加到一高阻值,使电路处于断路状态,以达到保护电路元件的目的。 因此可把具有电阻正温度系数的导电复合材料连接到电路中,作为电流传感元件 的材料。 此类材料已被广泛应用于电子线路保护元器件上。
具有电阻正温度系数的导电复合材料一般由至少一种结晶性聚合物和导电 填料复合而成, 导电填料宏观上均匀分布于所述结晶性聚合物中。聚合物一般为 聚烯烃及其共聚物, 例如: 聚乙烯或乙烯-醋酸乙烯共聚物等, 而导电填料一般 为碳黑、金属粉或导电陶瓷粉。对于以碳黑作导电填料的具有电阻正温度系数的 导电复合材料, 由于碳黑特殊的聚集体结构且其表面具有极性基团, 使碳黑与聚 合物的附着性较好, 因此具有良好的电阻稳定性。但是, 由于碳黑本身的导电能 力有限,无法满足极低电阻的要求。 以金属粉为导电填料的具有电阻正温度系数 的导电复合材料, 具有极低的电阻, 但是因为金属粉容易氧化, 需要对导电复合 材料进行包封, 以阻止因金属粉在空气中氧化而造成的电阻升高, 而经过包封的 过电流保护元件的体积不能有效降低,难以满足电子元器件小型化的要求。为得 到极低的电阻值且满足电子元器件小型化的要求,逐渐趋向以金属碳化物陶瓷粉 (如碳化钛)作为低阻值电阻正温度系数导电复合材料的导电填料, 但由于金属 碳化物陶瓷粉与聚合物的结合性不佳,常规以金属碳化物陶瓷粉为导电填料的具 有电阻正温度系数的导电复合材料其电阻再现性较难控制。 发明内容
本发明所要解决的技术问题在于提供一种具有电阻正温度系数的导电复合 材料。
本发明所要解决的另一技术问题在于提供一种由上述导电复合材料制备的 过电流保护元件, 该过电流保护元件具有低室温电阻率、 优良电阻再现性和 PTC 强度。
本发明解决上述技术问题所采取的技术方案是:一种具有电阻正温度系数的 导电复合材料, 其包含:
( a) 至少一结晶性聚合物基材, 占所述具有电阻正温度系数的导电复合材 料体积分数的 20%〜70%;
(b ) 一导电填料, 占所述具有电阻正温度系数的导电复合材料体积分数的 30%〜80%, 其粒径为 0. Ι μ π!〜 ΙΟ μ ΐΉ, 且体积电阻率不大于 300 μ Ω - cm, 所述 导电填料分散于所述的结晶性聚合物基材之中,其中, 所述导电填料为一种固溶 体。
具体的, 结晶性聚合物基材的体积分数可以为 20、 25、 30、 35、 40、 45、 50、 55、 60、 65或 70%; 导电填料的体积分数可以为 30、 35、 40、 45、 50、 55、 60、 65、 70、 75或 80%。
所述的结晶性聚合物基材占所述导电复合材料的体积分数优选为 25%〜65% 之间, 更优为 30%〜60%之间。
所述导电填料占所述导电复合材料的体积分数优选为 35%〜75%之间, 更优 为 40%〜70%之间。
所述导电填料的粒径优选为 0. 01 μ m〜50 μ m, 更优为 0. 1 μ π!〜 10 μ m。 所述导电填料的体积电阻率一般不大于 500 μ Ω - cm , 更优为不大于 300 μ Ω · cm, 最优为不大于 100 μ Ω · cm
上述导电复合材料还可含有其他组分, 如抗氧剂、辐射交联剂(常称为辐照 促进剂、 交联剂或交联促进剂, 例如三烯丙基异氰脲酸酯) 、 偶联剂、 分散剂、 稳定剂、 非导电性填料(如氢氧化镁) 、 阻燃剂、 弧光抑制剂或其他组分。 这些 组分通常至多占导电复合材料总体积的 15%, 例如 3、 5、 10或 12%体积百分比。
在上述方案的基础上, 所述的结晶性聚合物基材为环氧树脂、聚乙烯、聚丙 烯、 聚偏氟乙烯、 乙烯 -醋酸乙烯共聚物、 聚甲基丙烯酸甲酯、 乙烯 -丙烯酸共聚 物中的一种或其混合物。 其中的聚乙烯又包括: 高密度聚乙烯、 低密度聚乙烯、 线性低密度聚乙烯、 超高分子量聚乙烯等。
在上述方案的基础上, 所述固溶体为金属碳化物的固溶体, 其组成包括: 碳 化钽、 碳化钒、 碳化锆、 碳化钛、 碳化铌、 碳化钼、 碳化铪、 碳化铬、 碳化钨、 碳化硼、 碳化铍中的两种或两种以上的混合物。
例如: 碳化钽-碳化铌固溶体、含铬碳化钨 -碳化钛-碳化钽固溶体、碳化钛- 碳化钨-碳化钽固溶体、 碳化钛 -碳化钨-碳化铌固溶体、 碳化钛-碳化钨固溶体、 碳化钛-碳化钨 -碳化铌-碳化钽固溶体、 碳化钨 -碳化钽固溶体和碳化钛-碳化钽 固溶体等。
利用上述具有电阻正温度系数的导电复合材料制备的过电流保护元件,由两 个金属箔片间夹固具有电阻正温度系数的导电复合材料层构成。
在上述方案的基础上, 所述两个金属箔片含粗糙表面。
在上述方案的基础上,所述金属箔片的粗糙表面与所述具有电阻正温度系数 的导电复合材料层直接物理性接触。
在上述方案的基础上, 在 25 °C时过电流保护元件的体积电阻率小于 0. 1 Ω · cm, 且具有良好的电阻再现性和 PTC强度。
本发明的具有电阻正温度系数的导电复合材料以及由该导电复合材料制备 的过电流保护元件可按下述方法进行制备: 将至少一结晶性聚合物和导电填料投入混合设备,在高于结晶性聚合物熔融 温度以上的温度下进行捏合。 混合设备可以是密炼机、 开炼机、 单螺杆挤出机或 双螺杆挤出机。然后将熔融混合好的聚合物加工成为片材,这可以通过挤出成型、 模压成型或开练机薄通拉片来实现。 一般来说, 聚合物片材的厚度为 0. 01 2. 0mm, 优选为 0. 05 1. 0mm, 为了加工的方便更优为 0. 1 0. 5mm
复合制品的成型方法是在聚合物片材的两面压合金属箔片,当这种复合制品 被分割成单个元件时, 金属箔片起电极的作用。把复合制品分割成单个元件的方 法包括从复合制品上分离出单个元件的任何方法, 例如冲切、刻蚀、划片和激光 切割。所述单个元件具有平面形状, 即有与电流流过方向垂直的两个表面, 且两 个表面之间的距离相当薄, 即至多 3. 0mm, 优选地是至多 2. 0mm, 特别优选的是 最多 0. 5 例如 0. 35 所述单个元件可以是任何形状, 如正方形、 三角形、 圆形、 矩形、 环形、 多边形或其它不规则形状。 金属箔片包含至少一粗糙表面且 此粗糙表面与聚合物片材直接物理性接触。 金属箔的厚度一般至多为 0. lmm, 优 选至多为 0. 07 特别是至多 0. 05 例如, 0. 035 适用的金属箔片包括镍、 铜、 铝、 锌及其合金。
其他"金属导线",可以通过点焊、回流焊或导电粘合剂连接在金属箔片上, 从而将过电流保护元件连接进电路中。术语 "金属导线"包括任何能与金属箔片 导通的结构部件, 它可以是任何形状, 例如, 点状, 线状、 带状、 片状、 柱状、 其他不规则形状及它们的组合体。所述"金属导线"的基材可为任何能导电的金 属及其合金, 如镍、 铜、 铝、 锌、 锡及其合金。
通常可借助交联和 /或热处理的方法来提高过电流保护元件性能的稳定性。 交联可以是化学交联或辐照交联, 例如可利用交联促进剂、 电子束辐照或 Co6° 辐照来实现。 过电流保护元件所需的辐照剂量一般小于 lOOMrad, 优选为 1 50Mrad, 更优为 l 20Mrad。 热处理可以是退火、 热循环、 高低温交变, 例如 80 °C/-40°C高低温交变。所述退火的温度环境可以是 PTC材料层基材分解温度以下 的任何温度,例如高于导电复合材料基材熔融温度的高温退火和低于导电复合材 料基材熔融温度的低温退火。
本发明的过电流保护元件, 其在 25°C的电阻率小于 0.5Ω - cm, 优选小于 0. 1 Ω - cm, 最优为小于 0.05Ω - cm, 因此本发明的过电流保护元件在 25°C的电 阻很低, 例如 1. ΟΙΉΩ〜20 ΙΉΩ。
本发明的有益效果是:
本发明具有电阻正温度系数的导电复合材料电阻率低,由该导电复合材料制 备的过电流保护元件具有优越的电阻再现性和良好的 PTC强度,即使在导电复合 材料基材中填充了大量的导电填料时也能保证具有良好的 PTC强度。因此本发明 的过电流保护元件在具有极低电阻率的同时仍具有优良的 PTC强度。 附图说明
图 1为本发明的过电流保护元件的结构示意图。
图 2 为本发明带引脚的过电流保护元件的结构示意图。
图 3为本发明实施例 1的过电流保护元件的电阻-温度曲线图。 具体实施方式
以下通过具体的实施例对本发明作进一步的详细说明。
实施例 1
过电流保护元件的导电复合材料的组成如表一所示。
其中,结晶性聚合物 Α为熔融温度为 135°C和密度为 0.952g/cm3的高密度聚 乙烯;结晶性聚合物 B为熔融温度为 134°C和密度为 0.954g/cm3的高密度聚乙烯; 导电填料 A为碳化钛,其粒径小于 3 μ m,总含碳量 19.4%,密度为 4.93 g/cm3; 导电填料 B为碳化钛 -碳化钽-碳化钨固熔体, 其粒径小于 10μ πι。
过电路保护元件的制备过程如下: 将批式密炼机温度设定在 180°C, 转速为 30转 /分钟, 先加入结晶性聚合物密炼 3分钟后, 加入 1/4重量的导电填料, 然 后每隔 2分钟加入 1/4重量的导电填料, 最后一次加完后, 继续密炼 15分钟, 得到一具有电阻正温度系数的导电复合材料。将熔融混合好的导电复合材料通过 开炼机薄通拉片, 得到厚度为 0. 20〜0. 25mm的导电复合材料。
如图 1为本发明的过电流保护元件的结构示意图所示, 将导电复合材料 11 层置于上下对称的两金属箔片 12之间, 金属箔片 12具有至少一粗糙表面, 且所 述粗糙表面与 PTC材料层 11直接物理性接触。 通过热压合的方法将导电复合材 料 11和金属箔片 12紧密结合在一起。 热压合的温度为 180°C, 先预热 5分钟, 然后以 5MPa的压力微压 3分钟, 再以 12MPa的压力热压 10分钟, 然后在冷压机 上冷压 8分钟, 以模具将其冲切成 3 X 4mm的单个元件, 最后如图 2 为本发明带 引脚的过电流保护元件的结构示意图所示, 通过回流焊的方法将两个金属引脚 13连接在两个金属箔片 12表面, 形成一过电流保护元件。
如图 3为本发明实施例 1的过电流保护元件的电阻 -温度曲线图所示, 过电 流保护元件在 25°C时具有很低的电阻值, 随着温度的增加, 电阻缓慢上升, 当 温度增加到 13CTC左右时, 过电流保护元件的电阻发生突变, 增加约 10个数量 级, 此时过电流保护元件由导体变成绝缘体, 使电路处于断路状态, 以达到保护 电路元件的目的。
实施例 2
制备具有电阻正温度系数的导电复合材料及过电流保护元件的步骤与实施 例 1相同, 但将结晶性聚合物 A的体积分数由 34 %降为 20 %, 将结晶性聚合物 B的 体积分数由 6 %增加到 20 %。实施例 2的导电复合材料的配方和过电流保护元件的 电气特性如表一所示。
实施例 3
制备具有电阻正温度系数的导电复合材料及过电流保护元件的步骤与实施 例 1相同, 但将结晶性聚合物 A的体积分数由 34 %降为 28 %, 将结晶性聚合物 B的 体积分数由 6 %增加到 12 %。实施例 3的导电复合材料的配方和过电流保护元件的 电气特性如表一所示。
实施例 4
制备具有电阻正温度系数的导电复合材料及过电流保护元件的步骤与实施 例 1相同, 但将结晶性聚合物 A的体积分数由 34 %降为 12 %, 将结晶性聚合物 B的 体积分数由 6 %增加到 28 %。实施例 4的导电复合材料的配方和过电流保护元件的 电气特性如表一所示。
比较例 1
制备具有电阻正温度系数的导电复合材料及过电流保护元件的步骤与实施 例 1相同,但将导电填料改为碳化钛。 比较例 1的导电复合材料的配方和过电流保 护元件的电气特性如表一所示。
比较例 2
制备具有电阻正温度系数的导电复合材料及过电流保护元件的步骤与实施 例 1相同, 但将导电填料改为碳化钛, 结晶性聚合物 A的体积分数由 34 %增为 37 % , 结晶性聚合物 B的体积分数由 6 %减为 3 %。 比较例 2的导电复合材料的配方和 过电流保护元件的电气特性如表一所示。
比较例 3
制备具有电阻正温度系数的导电复合材料及过电流保护元件的步骤与实施 例 1相同, 但将导电填料改为碳化钛, 结晶性聚合物 A的体积分数由 34 %减为 24 % , 结晶性聚合物 B的体积分数由 6 %增为 16 %。 比较例 3的导电复合材料的配方 和过电流保护元件的电气特性如表一所示。
其中过电流保护元件的电阻值是用四电极法进行测量得到。
表一为由本发明的具有电阻正温度系数的导电复合材料制备的过电流保护 元件在 6V/50A的条件下触发后, 在 25°C的温度环境里放置 1小时后的电阻测试数 据。 表一中的 R表示通过回流焊在过电流保护元件的两个金属箔片 12表面上焊上 的两个金属引脚 13之前过电流保护元件的电阻; R。表示所述过电流保护元件的成 品电阻; 表示所述过电流保护元件持续通电 (6V/50A) 60秒后, 在 25°C的温度 环境里放置 1小时后所测得的电阻值; 5表示所述过电流保护元件持续通电 ( 6V/50A) 60秒后, 断电 6秒, 如此循环 25次, 然后在 25 °C的温度环境里放置 1 小时后所测得的电阻值; R5。表示所述过电流保护元件持续通电(6V/50A) 60秒后, 断电 6秒,如此循环 50次,然后在 25°C的温度环境里放置 1小时后所测得的电阻值; 。。表示所述过电流保护元件持续通电(6V/50A) 60秒后, 断电 6秒, 如此循环 100 次, 然后在 25°C的温度环境里放置 1小时后所测得的电阻值。
Figure imgf000010_0001
从表一可以看出: 实施例 1〜4和比较例 1〜3具有相同体积分数的导电填料, 但实施例 1〜4中所用导电填料为两种或两种以上金属碳化物的固溶体,其成品电 阻值比使用金属碳化物碳化钛作导电填料的比较例 1〜3要小。 实施例 1〜4经过 6V/50A电流冲击 100次后,其电阻值均小于 60πι Ω, 而比较例 1〜2经过 6V/50A电流 冲击 100次后, 其电阻值均大于 400πι Ω, 电阻再现性较差。 虽然比较例 3在经过 6V/50A电流冲击 100次后的电阻值较小,但是其成品电阻值大于 20m Ω, 已不能满 足极低电阻的要求。 从图 3中可以看出, 以金属碳化物的固熔体为导电填料的过 电流保护元件具有优异的 PTC强度。
本发明的过电流保护元件所使用的具有电阻正温度系数的导电复合材料由 于具有一电阻率非常低的导电填料, 因此具有很低的电阻值、优异的电阻再现性 和 PTC强度。 且所使用的导电填料不易氧化, 无需通过包封的方式来使导电复合 材料免受氧化, 因此可以制备具有承载电流面积为 1206、 0805、 0603、 0402等小 尺寸的过电流保护元件。
本发明的内容和特点已揭示如上, 然而前面叙述的本发明仅仅简要地或只 涉及本发明的特定部分,本发明的特征可能比在此公开的内容涉及的更多。因此, 本发明的保护范围应不限于实施例所揭示的内容,而应该包括在不同部分中所体 现的所有内容的组合, 以及各种不背离本发明的替换和修饰, 并为本发明的权利 要求书所涵盖。

Claims

权 利 要 求 书
1、 一种具有电阻正温度系数的导电复合材料, 其特征在于其包含:
( a) 至少一结晶性聚合物基材, 占所述具有电阻正温度系数的导电复合材 料体积分数的 20%〜70%;
(b ) 一导电填料, 占所述具有电阻正温度系数的导电复合材料体积分数的 30%〜80%, 其粒径为 0. Ι μ π!〜 ΙΟ μ ΐΉ, 且体积电阻率不大于 300 μ Ω - cm, 所述 导电填料分散于所述的结晶性聚合物基材之中,其中, 所述导电填料为一种固溶 体。
2、 根据权利要求 1所述的具有电阻正温度系数的导电复合材料, 其特征在于: 所述的结晶性聚合物基材为环氧树脂、 聚乙烯、 聚丙烯、 聚偏氟乙烯、 乙烯-醋 酸乙烯共聚物、 聚甲基丙烯酸甲酯、 乙烯-丙烯酸共聚物中的一种或其混合物。
3、 根据权利要求 1所述的具有电阻正温度系数的导电复合材料, 其特征在于: 所述固溶体为金属碳化物的固溶体, 其组成包括: 碳化钽、 碳化钒、 碳化锆、 碳 化钛、 碳化铌、 碳化钼、 碳化铪、 碳化铬、 碳化钨、 碳化硼、 碳化铍中的两种或 两种以上的混合物。
4、 利用权利要求 1至 3之一所述具有电阻正温度系数的导电复合材料制备的过 电流保护元件,其特征在于: 过电流保护元件由两个金属箔片间夹固具有电阻正 温度系数的导电复合材料层构成。
5、 根据权利要求 4所述的过电流保护元件, 其特征在于: 所述两个金属箔片具 有粗糙表面。
6、 根据权利要求 5所述的过电流保护元件, 其特征在于: 所述两个金属箔片的 粗糙表面与所述具有电阻正温度系数的导电复合材料直接物理性接触。
7、 根据权利要求 4所述的过电流保护元件, 其特征在于: 在 25°C时的体积电阻 率不大于 0. 1 Ω · cm, 且具有良好的电阻再现性和 PTC强度的过电流保护元件。
PCT/CN2010/076822 2010-07-08 2010-09-13 具有电阻正温度系数的导电复合材料及过电流保护元件 WO2012003661A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013516959A JP5711365B2 (ja) 2010-07-08 2010-09-13 正温度係数抵抗を有する導電性複合材料及び過電流保護素子
US13/574,712 US8653932B2 (en) 2010-07-08 2010-09-13 Conductive composite material with positive temperature coefficient of resistance and overcurrent protection component
EP10854320.8A EP2592628B1 (en) 2010-07-08 2010-09-13 Conductive composite material with positive temperature coefficient of resistance and over-current protection component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102196009A CN101887766A (zh) 2010-07-08 2010-07-08 具有电阻正温度系数的导电复合材料及过电流保护元件
CN201010219600.9 2010-07-08

Publications (1)

Publication Number Publication Date
WO2012003661A1 true WO2012003661A1 (zh) 2012-01-12

Family

ID=43073629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076822 WO2012003661A1 (zh) 2010-07-08 2010-09-13 具有电阻正温度系数的导电复合材料及过电流保护元件

Country Status (5)

Country Link
US (1) US8653932B2 (zh)
EP (1) EP2592628B1 (zh)
JP (1) JP5711365B2 (zh)
CN (1) CN101887766A (zh)
WO (1) WO2012003661A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409451A (zh) * 2016-06-18 2017-02-15 芜湖长启炉业有限公司 基于聚苯硫醚的ptc电阻及其制备方法
TWI766722B (zh) * 2021-06-10 2022-06-01 聚鼎科技股份有限公司 過電流保護元件

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127287A (zh) * 2011-01-31 2011-07-20 上海长园维安电子线路保护股份有限公司 导电复合材料及由其制备的ptc热敏元件
CN102176340A (zh) * 2011-01-31 2011-09-07 上海长园维安电子线路保护股份有限公司 聚合物基导电复合材料及由其制备的过电流保护元件
CN102903469B (zh) * 2011-07-28 2015-12-09 聚鼎科技股份有限公司 过电流保护组件
CN102543331A (zh) * 2011-12-31 2012-07-04 上海长园维安电子线路保护有限公司 高分子基导电复合材料及ptc元件
CN102522173B (zh) * 2011-12-31 2016-06-08 上海长园维安电子线路保护有限公司 电阻正温度效应导电复合材料及过电流保护元件
CN102522171A (zh) * 2011-12-31 2012-06-27 上海长园维安电子线路保护股份有限公司 一种圆环ptc的制造方法
CN103198910B (zh) * 2012-01-06 2016-04-06 聚鼎科技股份有限公司 热敏电阻元件
CN103258607B (zh) * 2012-02-16 2016-03-23 聚鼎科技股份有限公司 过电流保护元件
CN104252935B (zh) * 2013-06-25 2017-11-21 比亚迪股份有限公司 热敏电阻及其制备方法
CN103642172A (zh) * 2013-12-06 2014-03-19 上海长园维安电子线路保护有限公司 具有高热稳定性的导电复合材料及其制备的ptc热敏元件
CN104681222A (zh) * 2015-02-04 2015-06-03 上海长园维安电子线路保护有限公司 一种新型ptc热敏元件
CN104682128A (zh) * 2015-02-11 2015-06-03 上海长园维安电子线路保护有限公司 过流及过热保护的充电接口
CN105427976A (zh) * 2015-02-28 2016-03-23 上海长园维安电子线路保护有限公司 具有电阻正温度效应的表面贴装型过电流保护元件及其制造方法
CN106317544B (zh) * 2015-06-30 2018-12-21 上海利韬电子有限公司 导电聚合物组合物、导电聚合物片材、电气器件以及它们的制备方法
CN106328326A (zh) * 2015-06-30 2017-01-11 瑞侃电子(上海)有限公司 可回流焊的正温度系数电路保护器件
CN105139984A (zh) * 2015-09-09 2015-12-09 上海长园维安电子线路保护有限公司 可维持超大电流的ptc保护元件
CN106898446A (zh) * 2017-04-18 2017-06-27 上海长园维安电子线路保护有限公司 过电流保护元件
TWI643215B (zh) * 2017-09-07 2018-12-01 聚鼎科技股份有限公司 過電流保護元件
US10878980B2 (en) 2017-09-12 2020-12-29 Littelfuse, Inc. PPTC material with low percolation threshold for conductive filler
US10777340B2 (en) * 2017-09-12 2020-09-15 Littelfuse, Inc. PPTC material with mixed conductive filler composition
US9997906B1 (en) 2017-09-21 2018-06-12 Polytronics Technology Corp. Over-current protection device
US20190096621A1 (en) * 2017-09-22 2019-03-28 Littelfuse, Inc. Pptc device having low melting temperature polymer body
CN108777307A (zh) * 2017-12-29 2018-11-09 上海其鸿新材料科技有限公司 一种锂电池集流体导电涂层
EP3553795B1 (en) * 2018-04-09 2024-01-10 Mahle International GmbH Ptc thermistor element
TWI744625B (zh) * 2019-04-15 2021-11-01 富致科技股份有限公司 Ptc電路保護裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421040A (zh) * 1999-07-30 2003-05-28 泰科电子有限公司 导电聚合物组合物
TW200707874A (en) * 2005-08-11 2007-02-16 Polytronics Technology Corp Over-current protection device
US7286038B1 (en) * 2006-09-26 2007-10-23 Polytronics Technology Corporation Over-current protection device
CN101162632A (zh) * 2006-10-10 2008-04-16 聚鼎科技股份有限公司 过电流保护组件
CN101728039A (zh) * 2009-12-31 2010-06-09 上海长园维安电子线路保护股份有限公司 过电流保护元件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545926A (en) * 1980-04-21 1985-10-08 Raychem Corporation Conductive polymer compositions and devices
JP2810351B2 (ja) * 1995-09-27 1998-10-15 ティーディーケイ株式会社 有機質正特性サーミスタ
US6452476B1 (en) * 1999-01-28 2002-09-17 Tdk Corporation Organic positive temperature coefficient thermistor
JP2001023803A (ja) * 1999-07-13 2001-01-26 Tokin Corp 保護素子の製造方法
JP2002025806A (ja) * 2000-07-11 2002-01-25 Tokin Corp Ptc組成物、ptc素子及びptc素子の製造方法
JP2003234202A (ja) * 2002-02-06 2003-08-22 Nec Tokin Corp Ptc素子およびptc素子の製造方法
JP2005259823A (ja) * 2004-03-09 2005-09-22 Tdk Corp 有機ptcサーミスタ及びその製造方法
US7920045B2 (en) * 2004-03-15 2011-04-05 Tyco Electronics Corporation Surface mountable PPTC device with integral weld plate
TWI269317B (en) * 2005-07-28 2006-12-21 Polytronics Technology Corp Over-current protection device
JP2007042667A (ja) * 2005-07-29 2007-02-15 Tdk Corp 有機質正特性サーミスタ
US20070160899A1 (en) * 2006-01-10 2007-07-12 Cabot Corporation Alloy catalyst compositions and processes for making and using same
TWI298598B (en) * 2006-02-15 2008-07-01 Polytronics Technology Corp Over-current protection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421040A (zh) * 1999-07-30 2003-05-28 泰科电子有限公司 导电聚合物组合物
TW200707874A (en) * 2005-08-11 2007-02-16 Polytronics Technology Corp Over-current protection device
US7286038B1 (en) * 2006-09-26 2007-10-23 Polytronics Technology Corporation Over-current protection device
CN101162632A (zh) * 2006-10-10 2008-04-16 聚鼎科技股份有限公司 过电流保护组件
CN101728039A (zh) * 2009-12-31 2010-06-09 上海长园维安电子线路保护股份有限公司 过电流保护元件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409451A (zh) * 2016-06-18 2017-02-15 芜湖长启炉业有限公司 基于聚苯硫醚的ptc电阻及其制备方法
CN106409451B (zh) * 2016-06-18 2018-03-27 芜湖长启炉业有限公司 基于聚苯硫醚的ptc电阻及其制备方法
TWI766722B (zh) * 2021-06-10 2022-06-01 聚鼎科技股份有限公司 過電流保護元件

Also Published As

Publication number Publication date
EP2592628A1 (en) 2013-05-15
EP2592628B1 (en) 2019-07-03
JP5711365B2 (ja) 2015-04-30
JP2013535804A (ja) 2013-09-12
US8653932B2 (en) 2014-02-18
CN101887766A (zh) 2010-11-17
US20130094116A1 (en) 2013-04-18
EP2592628A4 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2012003661A1 (zh) 具有电阻正温度系数的导电复合材料及过电流保护元件
JP6598231B2 (ja) 高分子系導電性複合材料及びptc素子
JP3930904B2 (ja) 電気デバイス
US8044763B2 (en) Surface-mounted over-current protection device
TWI298598B (en) Over-current protection device
WO2018133288A1 (zh) 具有保护功能的锂电池集流体
TWI480900B (zh) 插件式過電流保護元件
JPH07507655A (ja) 導電性ポリマー組成物
US10280279B2 (en) Conductive polymer composition, conductive polymer sheet, electrical device, and their preparation methods
TW200816252A (en) Over-current protection device
JP2000188206A (ja) 重合体ptc組成物及びptc装置
CN102522172A (zh) 电阻正温度效应导电复合材料及热敏电阻元件
US9646746B2 (en) Electrical device
CN102522173B (zh) 电阻正温度效应导电复合材料及过电流保护元件
CN104817747A (zh) 聚合物基导电复合材料及过流保护元件
CN105869806B (zh) 一种高稳定性ptc热敏组件
JPS63211701A (ja) Ptc素子
TWI269317B (en) Over-current protection device
TW201123217A (en) Over-current protection device
TW201120922A (en) Method for enhancing current-carrying ability of polymer thermistor.
CN104910479A (zh) 聚合物基导电复合材料及电路保护元件
US6197220B1 (en) Conductive polymer compositions containing fibrillated fibers and devices
TW200834612A (en) Polymeric positive temperature coefficient thermistor and process for preparing the same
JP2001167905A (ja) 有機ptc組成物
JP3587163B2 (ja) 有機正特性サーミスタ組成物および有機正特性サーミスタ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13574712

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010854320

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE