WO2012002697A2 - Photoelectrode, method for manufacturing same, and dye-sensitized solar cell comprising same - Google Patents

Photoelectrode, method for manufacturing same, and dye-sensitized solar cell comprising same Download PDF

Info

Publication number
WO2012002697A2
WO2012002697A2 PCT/KR2011/004703 KR2011004703W WO2012002697A2 WO 2012002697 A2 WO2012002697 A2 WO 2012002697A2 KR 2011004703 W KR2011004703 W KR 2011004703W WO 2012002697 A2 WO2012002697 A2 WO 2012002697A2
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectrode
transition metal
metal oxide
dimensional porous
porous
Prior art date
Application number
PCT/KR2011/004703
Other languages
French (fr)
Korean (ko)
Other versions
WO2012002697A3 (en
Inventor
문준혁
조창열
진우민
강지환
신주환
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of WO2012002697A2 publication Critical patent/WO2012002697A2/en
Publication of WO2012002697A3 publication Critical patent/WO2012002697A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to a photoelectrode, a method for manufacturing the photoelectrode, and a dye-sensitized solar cell including the photoelectrode, and more particularly, a three-dimensional porous photoelectrode having optical pores in the nanometer to micrometer range, and optical interference.
  • solar cells are devices that convert solar energy into electrical energy.
  • Solar cells produce electricity using solar energy, which is an infinite energy source, and silicon solar cells, which are already widely used in our lives, are typical.
  • dye-sensitized solar cells are being researched as next-generation solar cells.
  • the dye-sensitized solar cell is representative of the paper published by Gratzel et al. [US Patent No. 5350644].
  • the structure of the dye-sensitized solar cell is one of two electrodes. It is a photoelectrode including a substrate, and an electrolyte is filled in the space between the two electrodes.
  • the solar energy is absorbed by the dye adsorbed on the semiconductor oxide electrode to generate photoelectrons, which are conducted through the semiconductor oxide layer and transferred to the conductive transparent substrate on which the transparent electrode is formed.
  • the dye is reduced by the redox pairs contained in the electrolyte.
  • the electrons that reach the opposite electrode (relative electrode) through the external wire reduce the redox pair of the oxidized electrolyte again to complete the operation process.
  • an oxide electrode is generally used a titanium dioxide electrode having a porous mesopores, generally obtained by coating titanium dioxide nanoparticles.
  • Mesopores can increase dye adsorption by increasing the specific surface area and ultimately increase the photo-electric conversion efficiency.
  • porous titanium dioxide structures has recently been carried out not only by coating nanoparticles, but also by using a casting method.
  • the casting method forms a mold through self-assembly of surfactants and polymer nanoparticles, injects titanium dioxide, and molds. Removal to obtain a porous titanium dioxide structure [Advanced Functional Materials 2009, 19, p. 1913-1099].
  • this method has a problem in that reproducibility of pore control is inferior and a time for pore formation of a relatively long time (a few hours) is required.
  • the mesopores are not easily penetrated during electrolyte injection due to their small size, which is a problem when injecting electrolytes in the form of polymers or gels.
  • dye-sensitized solar cells contain more interfaces (semiconductor
  • the energy conversion efficiency of the dye-sensitized solar cell is proportional to the amount of electrons generated by the light absorption, in order to generate a large amount of electrons by the light absorption, the photoelectrode may increase the adsorption amount of the dye molecules. Manufacturing is required.
  • an optical electrode comprising a three-dimensional porous transition metal oxide layer with pores ranging from nanometers to micrometers can be easily manufactured by a simple process using optical interference lithography and self-assembly of colloidal particles.
  • the first aspect of the present application can provide a method of manufacturing a photoelectrode comprising:
  • Forming a three-dimensional porous photoresist pattern using optical interference lithography comprising irradiating the photoresist layer with a three-dimensional optical interference pattern;
  • the photoresist pattern and the polymer colloidal self-assembly are removed using a heat firing process to form a three-dimensional porous transition metal oxide layer including a plurality of porous transition metal oxide spherical structures.
  • the three-dimensional porous transition metal oxide layer formed by the manufacturing method includes the plurality of porous transition metal oxide spherical structures, the pores between the spherical structures are connected to each other, and the plurality of porous transition metals
  • the pores inside each of the oxide spherical structures may also be connected to each other.
  • the pores in each of the plurality of porous transition metal oxide spherical structures are adjustable by the size of the polymer colloidal particles, for example, may be mesopores, but is not limited thereto.
  • the method of manufacturing the photoelectrode may further include forming a blocking layer on the conductive transparent substrate before forming the photoresist layer, but is not limited thereto.
  • the pore size of the three-dimensional porous photoresist pattern may range from several tens of nanometers to several micrometers, but is not limited thereto.
  • the pore size of the three-dimensional porous photoresist pattern is about 10 nm to about 10 ⁇ m, or about 10 nm to about 5 ⁇ m, or about 10 nm to about 1 ⁇ m, or about 50 nm to about 10 ⁇ m. Or, but not limited to, from about 100 nm to about 10 ⁇ m.
  • the size of the polymer colloidal particles may be smaller than the size of the pores of the three-dimensional porous photoresist pattern, but is not limited thereto.
  • the three-dimensional optical interference pattern may have a simple cubic structure, a face centered cubic structure or a body centered cubic structure, but is not limited thereto.
  • the photoresist layer may include, but is not limited to, a positive type photoresist resist or a negative type photoresist.
  • the forming of the 3D porous photoresist pattern may include, but is not limited to, a post-exposure baking and development process.
  • the size of the pores of the three-dimensional porous photoresist pattern may be controlled by the irradiation time of the three-dimensional optical interference pattern, but is not limited thereto.
  • the pore size of the three-dimensional porous photoresist pattern may be controlled by the post-exposure baking time, but is not limited thereto.
  • the transition metal oxide precursor is Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and It may be to include a compound of the transition metal selected from the group consisting of a combination thereof, but is not limited thereto.
  • the polymer colloidal particles may include polystyrene (PS), polymethyl methacrylate (Poly (methyl methacrylate); PMMA], polystyrene / poly divinylbenzene (PS / DVB), polyamide, poly (butylmethacrylate-divinylbenzene) [poly (butylmethacrylate) -divinylbenzene; PBMA] and combinations thereof, but is not limited thereto.
  • PS polystyrene
  • Poly (methyl methacrylate); PMMA] polystyrene / poly divinylbenzene (PS / DVB)
  • polyamide poly (butylmethacrylate-divinylbenzene) [poly (butylmethacrylate) -divinylbenzene; PBMA] and combinations thereof, but is not limited thereto.
  • the forming of the polymer colloidal self-assembly may be performed by a process including coating a solution in which the polymer colloidal particles are dispersed in the three-dimensional porous photoresist pattern. It is not limited.
  • the coating of the solution in which the polymer colloidal particles are dispersed may be performed by spin coating, but is not limited thereto.
  • the size of the polymer colloidal self-assembly may be controlled by controlling the speed of the spin coating or by adjusting the amount of the polymer colloidal solution used when the casting method is performed, but is not limited thereto.
  • the polymer colloidal self-assembly may be formed by spin coating three or more times at 3000 RPM for colloidal particles having a size of about 100 nm to about 200 nm and 2000 RPM for colloidal particles having a size of 100 nm.
  • the heating firing is carried out at a temperature sufficient to convert the transition metal oxide precursor used to its corresponding oxide, which firing temperature is, for example, about 400 ° C. to about 600 ° C. It may be carried out at a temperature, but is not limited to this, those skilled in the art can be appropriately selected.
  • the size of each of the porous transition metal oxide spherical structure may be adjusted according to the size of the polymer colloidal particles used, but is not limited thereto.
  • the size of the polymer colloidal particles may be about 10 nm to about 300 nm, in which case the pores contained in each of the porous transition metal oxide spherical structure obtained is about 10 nm the same as the size of the polymer colloidal particles And may range in size from about 300 nm or about the same.
  • a portion of the pores included in each of the porous transition metal oxide spherical structures is about 10% or less or about 5% less than the size of the polymer colloidal particles due to slight volume shrinkage by the heat firing process. It may have a size as small as below, but is not limited thereto.
  • the method of manufacturing the photoelectrode, before inserting the polymer colloidal particles in the pores of the three-dimensional porous photoresist pattern, to modify the pore surface of the three-dimensional porous photoresist pattern to hydrophilic may be additionally included, but is not limited thereto.
  • the method of manufacturing the photoelectrode may further include adsorbing a photosensitive dye on the three-dimensional porous transition metal oxide layer, but is not limited thereto.
  • a second aspect of the present disclosure a conductive transparent substrate; And a three-dimensional porous transition metal oxide layer including a plurality of porous transition metal oxide spherical structures formed on the conductive transparent substrate.
  • pores between the plurality of porous transition metal oxide spherical structures are connected to each other, and pores inside each of the spherical structures may be connected to each other, but are not limited thereto.
  • it may further include a blocking layer formed between the conductive transparent substrate and the three-dimensional porous transition metal oxide layer, but is not limited thereto.
  • the plurality of porous transition metal oxide spherical structure may be arranged in a simple cubic structure, a face centered cubic structure or a body centered cubic structure, but is not limited thereto.
  • the size of each of the porous transition metal oxide spherical structure may be adjusted according to the size of the polymer colloidal particles used, but is not limited thereto.
  • the size of the polymer colloidal particles may be about 10 nm to about 300 nm, in which case the pores contained in each of the porous transition metal oxide spherical structure obtained is about 10 nm the same as the size of the polymer colloidal particles And may range in size from about 300 nm or about the same.
  • the transition metal oxide is Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and these It may be to include an oxide of the transition metal selected from the group consisting of, but is not limited thereto.
  • the photoelectrode may further include a photosensitive dye adsorbed on the 3D porous transition metal oxide layer, but is not limited thereto.
  • a third aspect of the present application may provide a dye-sensitized solar cell including the photoelectrode, a counter electrode facing the photoelectrode, and an electrolyte positioned between the photoelectrode and the counter electrode.
  • a fourth aspect of the present application the photoelectrode according to the manufacturing method of the photoelectrode
  • It can provide a method for producing a dye-sensitized solar cell.
  • the present invention comprises a porous transition metal oxide layer having a three-dimensional pore structure having a variety of pores and the pores are connected to each other through a process using three-dimensional optical interference lithography and polymer colloid self-assembly
  • the photoelectrode can be easily manufactured in a short time.
  • This photoelectrode can be effectively used as a photovoltaic cell for a solar cell by increasing its specific surface area and having pores of various sizes.
  • the photoelectrode can be efficiently used as a photoelectrode for a dye-sensitized solar cell by adsorbing a dye to the photoelectrode. Can be.
  • an optimized photoelectrode is manufactured.
  • such a photoelectrode can be efficiently used for dye-sensitized solar cells.
  • it is possible to easily control the size of the mesopores by adjusting the size of the colloidal particles to be injected.
  • the photoelectrode forms a three-dimensional pore structure having a pore size in the range of nanometers to micrometers, so that light scattering can be induced to increase light absorption, and in particular, maximize light scattering of visible light.
  • the efficiency can be increased.
  • FIGS. 1A to 1F are schematic diagrams illustrating a method of manufacturing a photoelectrode according to an exemplary embodiment of the present application.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a photoelectrode according to an embodiment of the present application
  • FIG. 3 is a conceptual diagram of three-dimensional lithography (optical interference lithography) according to an embodiment of the present application
  • FIG. 4 is a block diagram of a dye-sensitized solar cell according to an embodiment of the present application.
  • FIG. 5 is an electron micrograph of a photoresist pattern including three-dimensional pores formed through optical interference lithography according to an embodiment of the present disclosure
  • 6a to 6c are electron micrographs showing a state in which colloidal particles penetrate and assemble into a photoresist and a photoresist pattern formed through optical interference lithography according to an embodiment of the present application,
  • 7A to 7C are electron micrographs of a titanium dioxide photoelectrode formed by using a photoresist formed through optical interference lithography and a colloidal particle assembly method using spin coating as a sacrificial layer,
  • FIG. 8 is a graph of photocurrent-voltage characteristics of a dye-sensitized solar cell including a photoelectrode formed through optical interference lithography according to an embodiment of the present disclosure.
  • a layer or member when a layer or member is located "on" with another layer or member, it is not only when a layer or member is in contact with another layer or member, but also between two layers or another member between the two members. Or when another member is present.
  • FIG. 1A to 1F are schematic diagrams of a method of manufacturing a photoelectrode according to an exemplary embodiment of the present application
  • FIG. 2 is a flowchart illustrating a method of manufacturing a photoelectrode according to an exemplary embodiment of the present application.
  • Step S200 is a step of forming a photoresist layer on the conductive transparent substrate 10.
  • a transparent electrode is deposited on a glass substrate or a transparent polymer substrate to prepare a conductive transparent substrate 10 (FIG. 1A).
  • the material of the transparent polymer substrate for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), poly Or a polyimide (PI), triacetyl cellulose (TAC), or a copolymer thereof, but is not limited thereto.
  • the transparent electrode formed on the substrate for a semiconductor electrode may be indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), zinc oxide ( zinc oxide), tin oxide, ZnO- (Ga 2 O 3 or Al 2 O 3 ), and mixtures thereof, including conductive metal oxides, more preferably conductive, transparent and SnO 2 having excellent heat resistance or ITO may be inexpensive in terms of cost, but is not limited thereto.
  • ITO indium tin oxide
  • FTO fluorine tin oxide
  • ATO antimony tin oxide
  • zinc oxide zinc oxide
  • tin oxide ZnO- (Ga 2 O 3 or Al 2 O 3 )
  • conductive metal oxides more preferably conductive, transparent and SnO 2 having excellent heat resistance or ITO may be inexpensive in terms of cost, but is not limited thereto.
  • a barrier layer (not shown) may be formed by coating an oxide on a conductive transparent substrate 10 to a predetermined thickness before forming the photoresist layer.
  • the material of the barrier layer, the number of heat treatments or conditions for forming the barrier layer, and the like can be variously modified within the scope of achieving the object of the present application.
  • the blocking layer is made of Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga, and combinations thereof. It may be to include an oxide of the transition metal selected from the group, but is not limited thereto.
  • the blocking layer serves to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 when the photoelectrode 30 is formed.
  • the blocking layer may be formed by any one of a deposition method, an electrolysis method, and a wet method.
  • step S202 the three-dimensional interference pattern is irradiated onto the photoresist layer 12 to form a three-dimensional porous photoresist pattern. If necessary, the three-dimensional interference pattern may be further subjected to post-exposure baking and developing to form a three-dimensional porous photoresist pattern.
  • step S202 the photoresist layer 12 having a predetermined thickness is formed on the conductive transparent substrate 10 (FIG. 1B), and the three-dimensional interference pattern is irradiated onto the formed photoresist layer 12. 14 can be formed (FIG. 1C).
  • the thickness of the coated photoresist layer 12 may be adjusted according to the thickness of the photoelectrode to be manufactured, for example, may be formed to a thickness of about 10 ⁇ m to 30 ⁇ m, but is not limited thereto. It is not.
  • the photoresist may be coated on a conductive transparent substrate or on a blocking layer such as titanium dioxide coated on the conductive transparent substrate 10 by several nanometers.
  • an interference pattern made up of a plurality of parallel lights provided with an optical path difference can be irradiated to form a three-dimensional porous pattern 14 on the photoresist layer 12 by optical interference lithography.
  • the three-dimensional interference pattern formed by using four parallel lights may be irradiated to the photoresist layer 12 to form a three-dimensional porous pattern.
  • the method may be generated by dividing one parallel light into a plurality of lights, or applying one parallel light to a prism of a polyhedron.
  • a photo taken with an electron microscope of a photoresist with a three-dimensional porous pattern formed through optical interference lithography according to an embodiment of the present application is shown in FIG.
  • the pattern 14 formed on the photoresist layer 12 may have, for example, a three-dimensional photonic crystal form in which pores of the pattern are arranged in a simple cubic structure, a face centered cubic structure, or a body centered cubic structure. It is possible to form various grid structures by adjusting the angle and direction of light. Furthermore, by controlling the exposure time and post-exposure baking time of the irradiated interference light, the size of the pattern can be effectively controlled.
  • the size and connection of the pores in the pattern can be freely controlled by varying the three-dimensional optical interference lithography conditions, and can overcome the limitations of the pore control through the conventional nanoparticle array.
  • the porous structure is formed up to about several hundred nanometers has the advantage of smoothly filling the pores when applying the electrolyte, it can provide efficient pores for the penetration of high viscosity polymer or solid electrolyte.
  • An average diameter of pores formed by lithography according to an embodiment of the present disclosure may range from about 100 nm to about 10 ⁇ m, but is not limited thereto.
  • the photoresist layer 12 may be formed using various polymer photoresist solutions whose crosslinking or solubility is changed by photoreaction, and both a negative type and a positive type photoresist may be used.
  • Step S204 is a step of forming a self-assembly of the polymer colloidal particles 16 in the three-dimensional porous photoresist pattern 14 (FIG. 1D).
  • the colloidal particle 16 may use any particle that satisfies the above conditions as long as it satisfies the spherical shape and the uniformity of the particle and is vaporized when flying at high temperature.
  • the polymer colloidal particles 16 may include polystyrene (PS), polymethyl methacrylate (PMMA), polystyrene / divinylbenzene (PS / DVB).
  • Polyamides such as Nylon 6, poly (butylmethacrylate-divinylbenzene) [(poly (buthylmethacrylate-divinylbenzene; PBMA)], and combinations thereof It may be to include a polymer colloid particles 16.
  • Forming the polymer colloid self-assembly, comprising coating a solution in which the polymer colloid particles 16 are dispersed in the three-dimensional porous photoresist pattern Although not limited thereto, volatilization of a mixed solvent of water and alcohol as a solvent included in a solution in which the polymer colloidal particles 16 are dispersed.
  • a solvent may be used, and the concentration of the polymer colloid dispersed in the solution in which the polymer colloid particles 16 are dispersed may be used at a high concentration of 20% by weight or more, and thus, within a short time after application of the polymer colloid solution.
  • a high concentration of colloidal particles 16 may be added to a surfactant because the storage stability may be poor, and a barrier such as a conductive transparent substrate 10 or titanium dioxide coated with several nanometers may be used. If the surface of the substrate or the barrier layer is washed by plasma cleaning or the like before coating the polymer colloidal particles 16 on the layer, the spreadability of the polymer colloidal particles 16 may be improved.
  • the optical interference pattern After the modified change in the nature of water, it is separated from the colloidal particles 16 are dispersed in the water solvent to the peripheral pattern 14, the colloidal particles (16) are able to be infiltrating into the pores of the pattern. Assembling the colloidal particles 16 may be performed by a spin coating or casting method.
  • Step S206 is a step of injecting the transition metal oxide precursor solution 18 into the three-dimensional porous photoresist pattern (FIG. 1E).
  • the transition metal oxide precursor solution 18 may be injected into the photoresist pattern in which the three-dimensional pores are formed and dried for several minutes.
  • a transition metal oxide precursor that can cause a sol-gel reaction can be used.
  • the transition metal oxide precursor solution 18 is injected into the polymer colloidal self-assembled crystal layer, the conductive transparent substrate may be fixed in a vacuum, but is not limited thereto.
  • Step S208 is a step of forming a three-dimensional porous transition metal oxide layer 20 including a plurality of porous transition metal oxide spherical structures by removing the photoresist pattern and the polymer colloidal self-assembly using a heating predetermined process (FIG. 1f).
  • the porous structure may be formed while removing the photoresist 12.
  • the porous transition metal oxide layer 20 may be formed by sintering at a temperature of 400 ° C. or more for 10 minutes or more.
  • the transition metal oxide is selected from the group consisting of Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof It may be an oxide of a transition metal, but is not limited thereto.
  • titanium dioxide may be used, and it is particularly preferable to produce titanium dioxide having anatase crystallinity by the sintering.
  • the three-dimensional porous transition metal oxide layer 20 formed by the manufacturing method includes the plurality of porous transition metal oxide spherical structures, and pores between the spherical structures are connected to each other, and the plurality of The pores inside each of the porous transition metal oxide spherical structures may also be connected to each other.
  • the porous structure can freely control the size and connection of the pores by changing the lithography conditions and the size change of the colloidal particles, and can overcome the limitation of the pore control through the arrangement of the conventional nanoparticles.
  • the porous structure is largely hundreds of nanometer pores formed by the optical interference method, there is an advantage that can fill the pores smoothly when applying the electrolyte, inserting colloidal particles having a size of several tens of nanometers to several hundred nanometers As a result, small pores may be additionally formed to increase the specific surface area of the photoelectrode.
  • the photoelectrode may be further formed by adsorbing the photosensitive dye on the porous transition metal oxide layer 20.
  • the dye may be coated by immersing the porous transition metal oxide layer formed as described above in a solution containing a dye.
  • the dye for example, is composed of a metal complex containing aluminum (Al), platinum (Pt), palladium (Pd), europium (Eu), lead (Pb), iridium (Ir), ruthenium (Ru) and the like.
  • the dye containing ruthenium for example, Ru (etc bpy) 2 (NCS) 2 CH 3 CN type can be used.
  • Dye-sensitized solar cell 1 including the photoelectrode 10 manufactured by the above method, as shown in Figure 4, the conductive transparent substrate 10 and the photosensitive dye A photoelectrode 30 including an adsorbed porous transition metal oxide layer 20; A counter electrode 60 including a conductive transparent substrate 40 and a conductive layer 50; Electrolyte 70; And, the sealing unit 80 may be included.
  • a blocking layer (not shown) may be formed between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 if necessary.
  • the blocking layer may include an oxide and may serve to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20.
  • a plurality of dye molecules are adsorbed to the porous transition metal oxide layer 20.
  • the conductive transparent substrate 10 used in forming the photoelectrode 30 has a structure in which a conductive transparent electrode is formed on a transparent semiconductor electrode substrate.
  • a transparent glass substrate or a transparent polymer substrate having flexibility may be used as the substrate for the semiconductor electrode.
  • the material of the polymer substrate polyethylene terephthalate (PET), polyethylene naphthalate (PEN), Polycarbonate (PC), polypropylene (PP), polyimide (PI), triacetyl cellulose (TAC), or copolymers thereof, but are not limited thereto. no.
  • the semiconductor electrode substrate may be doped with a material selected from the group consisting of Ti, In, Ga or Al.
  • the transparent electrode formed on the substrate for a semiconductor electrode for example, indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), Zinc oxide, tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , and conductive metal oxides selected from the group consisting of mixtures thereof, preferably conductive, SnO 2 having excellent transparency and heat resistance or ITO which is inexpensive in terms of cost may be included, but is not limited thereto.
  • the reason for employing the conductive transparent substrate 10 is to allow the sunlight to penetrate into the inside.
  • the meaning of the word transparent in the description of the present application includes not only the case where the light transmittance of the material is 100% but also the case where the light transmittance is high.
  • a plurality of dye molecules may be adsorbed to the porous transition metal oxide layer 20.
  • the pores of the porous transition metal oxide layer 20 may be, for example, arranged in a simple cubic structure, a face centered cubic structure, or a body centered cubic structure, but are not limited thereto. That is, the porous transition metal oxide layer 20 may be provided in a structure having a three-dimensional porosity. As the pores of the porous transition metal oxide layer 20 have a three-dimensional simple cubic structure, a face-centered cubic structure, or a body-centered cubic structure, a three-dimensional photonic crystal may be formed to expect a photoamplification effect.
  • an efficient electron transfer path is formed by the porous three-dimensional simple cubic structure, face centered cubic structure, or body centered cubic structure having a certain rule, thereby improving the photoelectric conversion efficiency of the dye-sensitized solar cell.
  • the electrical stability of the dye-sensitized solar cell is improved by providing an efficient passage for the penetration of a highly viscous polymer or solid electrolyte through the three-dimensional pores.
  • the pores included in each of the porous transition metal oxide spherical structures may have a size in the range of about 10 nm to about 300 nm or about the same as the size of the polymer colloidal particles.
  • the smaller the pore size of the porous transition metal oxide layer 20 having the three-dimensional pore structure is preferable. As the pore size of the porous transition metal oxide layer 20 decreases, the surface area increases, so that more dye molecules can be adsorbed, and when more dye molecules are adsorbed, more electrons are generated, which leads to energy conversion efficiency of the dye-sensitized solar cell. Because it is improved.
  • transition metal oxide included in the porous transition metal oxide layer 20 for example, Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, It may include an oxide of a transition metal selected from the group consisting of Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof.
  • the present invention is not limited thereto, and other kinds of transition metal oxides may be applied.
  • the porous transition metal oxide layer 20 includes titanium dioxide, it is preferable to use such titanium dioxide having an anatase crystallinity with good electron transfer ability.
  • a dye is adsorbed on the surface of the transition metal oxide (particle) constituting the porous transition metal oxide layer 20, electrons are generated when light is incident on and absorbed by the dye molecule, and the generated electron is the porous transition metal oxide layer 20. Is transmitted to the conductive transparent substrate 10 through the passage.
  • the counter electrode 60 is disposed to face the photoelectrode 30.
  • the counter electrode 60 may include a conductive transparent substrate 40 having a transparent electrode formed on a substrate for a semiconductor electrode, and a conductive layer 50 formed on the transparent electrode.
  • the semiconductor electrode substrate forming the counter electrode 60 may be a glass substrate or a transparent polymer substrate.
  • the transparent polymer substrate for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PI) ),
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PP polypropylene
  • PI polyimide
  • the transparent electrode formed on the semiconductor electrode substrate for forming the counter electrode 60 may be indium tin oxide (ITO), fluorine tin oxide (FTO), or antimony tin oxide (antimony tin oxide).
  • ITO indium tin oxide
  • FTO fluorine tin oxide
  • antimony tin oxide antimony tin oxide
  • ATO zinc oxide
  • tin oxide ZnO-Ga 2 O 3
  • ZnO-Al 2 O 3 ZnO-Al 2 O 3
  • a mixture thereof a mixture thereof.
  • the conductive layer 50 may be formed on one surface of the counter electrode 60 disposed opposite to the porous transition metal oxide layer 20 on which the dye of the photoelectrode 30 is adsorbed.
  • the conductive layer 50 serves to activate a redox couple, and includes platinum (Pt), gold (Au), ruthenium (Ru), palladium (Pd), and rhodium (Rh). ), Iridium (Ir), osmium (Os), carbon (C), WO 3 , TiO 2 or a conductive material such as a conductive polymer.
  • the conductive layer 50 formed on one surface of the counter electrode 60 is more efficient as the reflectivity is higher, so it is better to select a material having a high reflectance.
  • An electrolyte 70 is injected between the photoelectrode 30 and the counter electrode 60.
  • the electrolyte 70 includes, for example, iodide, and serves to transfer electrons received to dye molecules that have lost electrons by receiving them from the counter electrode by oxidation and reduction.
  • the electrolyte 70 is illustrated as one layer for convenience, but may be uniformly dispersed in the pores of the photoelectrode 30.
  • the manufacturing method of the electrolyte 70 is as follows.
  • the electrolyte 70 is composed of an electrolyte, and the electrolyte is an iodide / triodide pair that receives electrons from the counter electrode 60 by oxidation and reduction and transfers the electrons to the dye molecules. do.
  • a solution in which iodine is dissolved in acetonitrile may be used as the electrolyte 70, but is not limited thereto. Any electrolyte may be used without limitation as long as it has a hole conduction function.
  • the electrolyte 70 0.7 M 1-butyl-3-methylimidazonium iodide (1-butyl-3-methylimidazolium iodide).
  • I 2 0.03 M iodine
  • 0.1 M guanidium thiocyanate 0.03 M iodine (I 2 )
  • 0.5 M 4-tert-butylpyridine were acetonitrile and valerotrile. It can be prepared by dissolving in a nitrile (valeronitrile) mixed solution (volume ratio 85: 15), but is not limited thereto.
  • Seals 80 may be formed at edges of the photoelectrode 30 and the counter electrode 60 to prevent the electrolyte 70 from leaking out.
  • the seal 80 may include a thermoplastic polymer and may be cured by heat or ultraviolet rays.
  • the sealing unit 80 may include an epoxy resin, but is not limited thereto.
  • a polymer film having a thickness of several tens of microns may be sandwiched between two electrodes of the photoelectrode 30 and the counter electrode 60 to maintain a gap.
  • a conductive transparent electrode was formed on the glass substrate to form a conductive transparent substrate.
  • a blocking layer including titanium dioxide was formed on the conductive transparent substrate. Specifically, it was formed by spin coating a 0.1 M TiCl 4 aqueous solution on a conductive transparent substrate.
  • a photoelectrode was formed on the blocking layer and the dye molecules were adsorbed.
  • the photoelectrode has a structure in which the pattern is reversed by optical interference lithography in which colloidal particles are inserted, and is formed porous.
  • the average diameter of the pores formed by lithography was in the range of more than 100 nm to 10 ⁇ m or less, and the diameter of the pores formed by the colloidal particles was in the range of 20 nm to 300 nm or less.
  • a negative photoresist SU-8 is applied and spin coating is applied at this time, so that the thickness can be controlled by several tens of micrometers depending on the RPM to allow 2000 RPM on the blocking layer. After application, spin coating was performed twice, and SU-8 was applied to have a thickness of 8 ⁇ m. Then, after heat treatment on a 95 °C hot plate (hot plate) for 3 minutes, the laser of 488 nm wavelength was refracted in a trapezoid-shaped prism having a slope, and the three-dimensional optical interference pattern was irradiated for 1 second.
  • the post-expose baking process was performed on a 95 ° C hotplate, and then dissolved by removing an uncrosslinked portion of the SU-8 photoresist using an organic solvent, and impurities were removed using 2-propanol. Washed out to form an optical interference lithography pattern (FIG. 5).
  • Penetration of the colloidal particles in the pores of the optical interference lithography pattern was used by the spin coating method.
  • Polystyrene particles were used as colloidal particles, and colloidal particles having diameters of 60 nm, 80 nm, and 110 nm were used, respectively.
  • Colloidal particles were dropped in the pattern of optical interference lithography to penetrate the colloid into the pattern.
  • 6A to 6C are electron microscope surface photographs showing a state in which a photoresist formed by optical interference lithography and a colloidal particle are assembled into the photoresist pattern. 6A to 6C, the diameters of the colloidal particles were 60 nm, 80 nm, and 110 nm, respectively.
  • a titanium dioxide precursor was injected into the photoresist pattern into which the colloidal particles were injected.
  • the titanium dioxide precursor was used as a solution or a precursor diluted in a solvent capable of causing a sol-gel reaction. Specifically, 1 M aqueous titanium tetrachloride (TiCl 4 ) solution using ethanol and water as a solvent as the titanium dioxide precursor. was used.
  • a baking process at 500 ° C. was performed for 1 hour to form a photoelectrode including a porous titanium dioxide layer by removing the photoresist pattern into which the colloidal particles were injected.
  • N719 dye a ruthenium-based dye molecule
  • Dyesol company a photoelectrode comprising a porous titanium dioxide layer adsorbed with dyes by dipping N719 in anhydrous ethanol and soaking the photoelectrode made by lithography at a concentration of 0.5 mM for one day to adsorb the dye, followed by washing and drying.
  • 7A to 7C are electron micrographs of a photoelectrode including a porous titanium dioxide layer by removing the photoresist pattern and the colloidal self-assembled layer.
  • the three-dimensional porous titanium dioxide layer formed by the manufacturing method includes a plurality of porous titanium dioxide spherical structures, the pores between the spherical structures are connected to each other, and each of the plurality of porous titanium dioxide spherical structures The pores are also connected to each other inside. 7A to 7C, the diameters of pores in the plurality of porous titanium dioxide spherical structures were about 60 nm, 80 nm, and 110 nm, respectively.
  • the counter electrode disposed in parallel to the conductive transparent substrate was formed by forming a transparent electrode on the glass substrate, a platinum layer to prepare a counter electrode.
  • the platinum layer was formed by applying a chloroplatinic acid (H 2 PtCl 6 ) solution to a conductive transparent substrate using a brush, placing the plate on a 130 ° C. hot plate, and evaporating the solvent, and performing a heat treatment at 450 ° C. for 30 minutes. To form a counter electrode.
  • a chloroplatinic acid H 2 PtCl 6
  • the electrolyte is a liquid electrolyte having an iodine-based redox pair, which is 0.1 M of lithium iodide, 0.05 M of Iodine, and 0.5 M of 4-tertbutylpyridine; TBP ) was used after dissolving in acetonitrile, and 25 ⁇ m thick Surlyn was used as a seal to prevent leakage of the electrolyte solution.
  • the dye-sensitized solar cell manufactured according to the above example was measured for current density (Jsc), voltage (Voc), filling factor (FF) and energy conversion efficiency (EFF.) At AM 1.5 and 100 mW / cm 2. The results are shown in FIG. 8 and Table 1 below.
  • the photocurrent-voltage characteristics of the dye-sensitized solar cell including the photoelectrode manufactured by using the porous titanium dioxide layer formed by the three-dimensional optical interference lithography and colloidal particle self-assembly according to the present application is shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a photoelectrode, to a method for manufacturing same, and to a dye-sensitized solar cell comprising same. The present invention relates to a three-dimensional porous photoelectrode in which nanometer- to micrometer-sized pores are connected to one another, to a method for manufacturing the photoelectrode using interference lithography and the self-assembly of colloidal particles, and to a dye-sensitized solar cell comprising the photoelectrode.

Description

광전극, 이의 제조 방법, 및 이를 포함하는 염료감응 태양전지Photoelectrode, manufacturing method thereof, and dye-sensitized solar cell comprising same
본원은 광전극, 상기 광전극의 제조 방법, 및 상기 광전극을 포함하는 염료감응 태양전지에 관한 것으로서, 보다 상세하게는, 나노미터 내지 마이크로미터 범위의 기공이 연결된 3차원 다공성 광전극, 광간섭 리소그래피 및 콜로이드 입자의 자기조립법을 이용하여 상기 광전극을 제조하는 방법, 및 상기 광전극을 포함하는 염료감응 태양전지에 관한 것이다.The present application relates to a photoelectrode, a method for manufacturing the photoelectrode, and a dye-sensitized solar cell including the photoelectrode, and more particularly, a three-dimensional porous photoelectrode having optical pores in the nanometer to micrometer range, and optical interference. A method of manufacturing the photoelectrode using lithography and self-assembly of colloidal particles, and a dye-sensitized solar cell comprising the photoelectrode.
일반적으로 태양전지는 태양에너지를 전기에너지로 변화시키는 소자이다. 태양전지는 무한한 에너지원인 태양광을 이용해 전기를 생산하는 것으로서, 이미 우리 생활에 널리 이용되고 있는 실리콘 태양전지가 대표적이며, 최근 차세대 태양전지로 염료감응 태양전지가 연구되고 있다.In general, solar cells are devices that convert solar energy into electrical energy. Solar cells produce electricity using solar energy, which is an infinite energy source, and silicon solar cells, which are already widely used in our lives, are typical. In recent years, dye-sensitized solar cells are being researched as next-generation solar cells.
염료감응 태양전지는 스위스의 그라첼(Gratzel) 등에 의하여 발표된 것이 대표적이며 [미국등록특허 제 5350644호], 구조는 두 개의 전극 중 하나의 전극은 염료가 흡착되어 있는 반도체 산화물층이 형성된 전도성 투명 기판을 포함하는 광전극이며, 상기 두 개의 전극 사이의 공간에는 전해질이 채워져 있다. 작동 원리를 살펴보면, 태양 에너지가 반도체 산화물 전극에 흡착된 염료에 의해 흡수됨으로써 광전자가 발생하며, 상기 광전자는 반도체 산화물층을 통해 전도되어 투명 전극이 형성된 전도성 투명 기판에 전달되고, 전자를 잃어 산화된 염료는 전해질에 포함된 산화-환원 쌍에 의해 환원된다. 한편, 외부 전선을 통하여 반대편 전극(상대 전극)에 도달한 전자는 산화된 전해질의 산화-환원 쌍을 다시 환원시켜서 작동 과정이 완성된다. The dye-sensitized solar cell is representative of the paper published by Gratzel et al. [US Patent No. 5350644]. The structure of the dye-sensitized solar cell is one of two electrodes. It is a photoelectrode including a substrate, and an electrolyte is filled in the space between the two electrodes. In the working principle, the solar energy is absorbed by the dye adsorbed on the semiconductor oxide electrode to generate photoelectrons, which are conducted through the semiconductor oxide layer and transferred to the conductive transparent substrate on which the transparent electrode is formed. The dye is reduced by the redox pairs contained in the electrolyte. On the other hand, the electrons that reach the opposite electrode (relative electrode) through the external wire reduce the redox pair of the oxidized electrolyte again to complete the operation process.
염료감응 태양전지에서 산화물 전극은 일반적으로 다공성 메조기공을 갖는 이산화티타늄 전극이 많이 사용되며, 일반적으로 이산화티타늄 나노입자를 코팅하여 얻어진다. 메조기공은 비표면적을 증가시킴으로써 염료흡착을 증가시켜 궁극적으로 광-전기 변환효율을 높일 수 있다. In a dye-sensitized solar cell, an oxide electrode is generally used a titanium dioxide electrode having a porous mesopores, generally obtained by coating titanium dioxide nanoparticles. Mesopores can increase dye adsorption by increasing the specific surface area and ultimately increase the photo-electric conversion efficiency.
다공성 이산화티타늄 구조체의 제조는 나노입자의 코팅뿐만 아니라 최근에 주형법을 통해서도 이루어지고 있으며, 주형법은 계면활성제 및 고분자 나노입자 등의 자기조립을 통해 틀을 만들고, 이산화티타늄을 주입하고, 틀을 제거하여 다공성 이산화티타늄 구조를 획득하는 방법이다 [Advanced Functional Materials 2009, 19, p.1913-1099]. The production of porous titanium dioxide structures has recently been carried out not only by coating nanoparticles, but also by using a casting method. The casting method forms a mold through self-assembly of surfactants and polymer nanoparticles, injects titanium dioxide, and molds. Removal to obtain a porous titanium dioxide structure [Advanced Functional Materials 2009, 19, p. 1913-1099].
그러나, 이러한 방법은 기공 제어의 재현성이 떨어지며 또한 비교적 오랜 시간(수 시간)의 기공형성의 시간이 필요하다는 문제점이 있다. 또한 메조기공은 작은 크기로 인해 전해질 주입시 침투가 용이하지 않으며 이것은 고분자 또는 젤 형태의 전해질 주입시 문제가 된다. However, this method has a problem in that reproducibility of pore control is inferior and a time for pore formation of a relatively long time (a few hours) is required. In addition, the mesopores are not easily penetrated during electrolyte injection due to their small size, which is a problem when injecting electrolytes in the form of polymers or gels.
한편, 염료감응 태양전지의 경우 기존 태양전지에 비해 여러 계면 (반도체|염료, 반도체|전해질, 반도체|투명전극, 전해질|상대전극)을 포함하고 있어 각각의 계면에서의 물리화학 작용을 이해하고 조절하는 것이 염료감응 태양전지 기술의 핵심이다. 또한, 염료감응 태양전지의 에너지 변환 효율은 광흡수에 의해 생성된 전자의 양에 비례하기 때문에, 광흡수에 의해 많은 양의 전자를 생성하기 위해서는 염료 분자의 흡착량을 증가시킬 수 있는 광전극의 제조가 요구되고 있다. 또한, 광전극의 비표면적의 극대화를 위한 메조기공의 형성뿐만 아니라 잘 연결된 기공구조, 또한 전해질 주입 등을 용이하게 하고, 또한 부가적으로 산란에 의한 광흡수효율을 증가시킬 수 있는 매크로 크기의 기공구조를 적절히 포함하는 광전극 구조의 개발이 요구되고 있다.On the other hand, dye-sensitized solar cells contain more interfaces (semiconductor | dye, semiconductor | electrolyte, semiconductor | transparent electrode, electrolyte | relative electrode) than conventional solar cells. Is the key to dye-sensitized solar cell technology. In addition, since the energy conversion efficiency of the dye-sensitized solar cell is proportional to the amount of electrons generated by the light absorption, in order to generate a large amount of electrons by the light absorption, the photoelectrode may increase the adsorption amount of the dye molecules. Manufacturing is required. In addition, not only the formation of mesopores for maximizing the specific surface area of the photoelectrode, but also the well-connected pore structure, electrolyte injection, etc., and additionally macro-sized pores that can increase the light absorption efficiency by scattering. There is a need for development of a photoelectrode structure that suitably includes the structure.
본 발명자들은, 나노미터 내지 마이크로미터 범위의 기공이 연결된 3차원 다공성 전이금속 산화물 층을 포함하는 광전극을 광간섭 리소그래피 및 콜로이드 입자의 자기조립법을 이용한 간단한 공정에 의하여 용이하게 제조할 수 있음을 발견하여 본원을 완성하였다. 이에, 본원은, 나노미터 내지 마이크로미터 범위의 기공이 연결된 3차원 다공성 광전극, 광간섭 리소그래피 및 콜로이드 입자의 자기조립법을 이용하여 상기 광전극을 제조하는 방법, 및 상기 광전극을 포함하는 염료감응 태양전지에 관한 것이다.The inventors have found that an optical electrode comprising a three-dimensional porous transition metal oxide layer with pores ranging from nanometers to micrometers can be easily manufactured by a simple process using optical interference lithography and self-assembly of colloidal particles. To complete the present application. Thus, the present application, a method for manufacturing the photoelectrode using a three-dimensional porous photoelectrode, optical interference lithography and colloidal particles of pores connected to the nanometer to micrometer range, and dye-sensitized including the photoelectrode It relates to a solar cell.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은, 하기를 포함하는, 광전극의 제조 방법을 제공할 수 있다:As a technical means for achieving the above technical problem, the first aspect of the present application can provide a method of manufacturing a photoelectrode comprising:
전도성 투명 기판 상에 포토레지스트 층을 형성하고;Forming a photoresist layer on the conductive transparent substrate;
상기 포토레지스트 층에 3차원 광간섭 패턴을 조사하는 것을 포함하는 광간섭 리소그래피를 이용하여 3차원 다공성 포토레지스트 패턴을 형성하고;Forming a three-dimensional porous photoresist pattern using optical interference lithography comprising irradiating the photoresist layer with a three-dimensional optical interference pattern;
상기 3차원 다공성 포토레지스트 패턴의 기공 내에 고분자 콜로이드 입자를 삽입하여 고분자 콜로이드 자기조립체를 형성하고;Inserting the polymer colloidal particles into the pores of the three-dimensional porous photoresist pattern to form a polymer colloid self-assembly;
상기 고분자 콜로이드 자기조립체가 형성된 3차원 다공성 포토레지스트 패턴 내로 전이금속 산화물 전구체를 주입하고; 및Injecting a transition metal oxide precursor into a three-dimensional porous photoresist pattern on which the polymer colloidal self-assembly is formed; And
가열 소성 공정을 이용하여 상기 포토레지스트 패턴 및 상기 고분자 콜로이드 자기조립체를 제거하여 복수의 다공성 전이금속 산화물 구형 구조체를 포함하는 3차원 다공성 전이금속 산화물 층을 형성함. The photoresist pattern and the polymer colloidal self-assembly are removed using a heat firing process to form a three-dimensional porous transition metal oxide layer including a plurality of porous transition metal oxide spherical structures.
상기 제조 방법에 의하여 형성되는 상기 3차원 다공성 전이금속 산화물 층은 상기 복수의 다공성 전이금속 산화물 구형 구조체를 포함하며, 상기 구형 구조체들 사이의 기공들이 서로 연결되어 있으며, 또한, 상기 복수의 다공성 전이금속 산화물 구형 구조체 각각의 내부의 기공들도 서로 연결되어 있을 수 있다. 상기 복수의 다공성 전이금속 산화물 구형 구조체 각각의 내부의 기공은 상기 고분자 콜로이드 입자의 크기에 의하여 조절가능하며, 예를 들어, 메조기공일 수 있으나, 이에 제한되는 것은 아니다. The three-dimensional porous transition metal oxide layer formed by the manufacturing method includes the plurality of porous transition metal oxide spherical structures, the pores between the spherical structures are connected to each other, and the plurality of porous transition metals The pores inside each of the oxide spherical structures may also be connected to each other. The pores in each of the plurality of porous transition metal oxide spherical structures are adjustable by the size of the polymer colloidal particles, for example, may be mesopores, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 광전극의 제조 방법은, 상기 포토레지스트 층을 형성하기 전에 상기 전도성 투명 기판 상에 차단층을 형성하는 것을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the method of manufacturing the photoelectrode may further include forming a blocking layer on the conductive transparent substrate before forming the photoresist layer, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 3차원 다공성 포토레지스트 패턴의 기공의 크기는 수십 나노미터 단위 내지 수 마이크로미터 단위 범위일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3차원 다공성 포토레지스트 패턴의 기공의 크기는 약 10 nm 내지 약 10 ㎛, 또는 약 10 nm 내지 약 5 ㎛, 또는 약 10 nm 내지 약 1 ㎛, 또는 약 50 nm 내지 약 10 ㎛, 또는 약 100 nm 내지 약 10 ㎛ 범위에서 조절될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the pore size of the three-dimensional porous photoresist pattern may range from several tens of nanometers to several micrometers, but is not limited thereto. For example, the pore size of the three-dimensional porous photoresist pattern is about 10 nm to about 10 μm, or about 10 nm to about 5 μm, or about 10 nm to about 1 μm, or about 50 nm to about 10 μm. Or, but not limited to, from about 100 nm to about 10 μm.
본원의 일 구현예에 따르면, 상기 고분자 콜로이드 입자의 크기는 상기 3차원 다공성 포토레지스트 패턴의 기공의 크기보다 작은 것일 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present application, the size of the polymer colloidal particles may be smaller than the size of the pores of the three-dimensional porous photoresist pattern, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 3차원 광간섭 패턴은 단순입방구조, 면심입방구조 또는 체심입방구조를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the three-dimensional optical interference pattern may have a simple cubic structure, a face centered cubic structure or a body centered cubic structure, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 포토레지스트 층은 포지티브 타입(positive type)의 포토레지스트 레지스트 또는 네거티브 타입(negative type) 포토레지스트를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the photoresist layer may include, but is not limited to, a positive type photoresist resist or a negative type photoresist.
본원의 일 구현예에 따르면, 상기 3차원 다공성 포토레지스트 패턴을 형성하는 것은, 노광후 베이킹(post-exposure baking) 및 현상(development) 공정을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. According to the exemplary embodiment of the present disclosure, the forming of the 3D porous photoresist pattern may include, but is not limited to, a post-exposure baking and development process.
본원의 일 구현예에 따르면, 상기 3차원 다공성 포토레지스트 패턴의 기공의 크기는 상기 3차원 광간섭 패턴의 조사 시간에 의하여 조절되는 것일 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present application, the size of the pores of the three-dimensional porous photoresist pattern may be controlled by the irradiation time of the three-dimensional optical interference pattern, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 3차원 다공성 포토레지스트 패턴의 기공의 크기는 상기 노광후 베이킹 시간에 의하여 조절되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the pore size of the three-dimensional porous photoresist pattern may be controlled by the post-exposure baking time, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 전이금속 산화물 전구체는 Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present application, the transition metal oxide precursor is Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and It may be to include a compound of the transition metal selected from the group consisting of a combination thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 고분자 콜로이드 입자는 폴리스타이렌(polystyrene; PS), 폴리메틸메타크릴레이트[Poly(methyl methacrylate); PMMA], 폴리스타이렌/폴리디비닐벤젠(polystyrene/poly divinylbenzene; PS/DVB), 폴리아미드(polyamide), 폴리(부틸메타크릴레이트-디비닐벤젠)[poly(butylmethacrylate)-divinylbenzene; PBMA] 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the polymer colloidal particles may include polystyrene (PS), polymethyl methacrylate (Poly (methyl methacrylate); PMMA], polystyrene / poly divinylbenzene (PS / DVB), polyamide, poly (butylmethacrylate-divinylbenzene) [poly (butylmethacrylate) -divinylbenzene; PBMA] and combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 고분자 콜로이드 자기조립체를 형성하는 것은, 상기 3차원 다공성 포토레지스트 패턴에 상기 고분자 콜로이드 입자가 분산된 용액을 코팅하는 것을 포함하는 공정에 의하여 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 일 구현예에 있어서, 상기 고분자 콜로이드 입자가 분산된 용액의 코팅은 스핀 코팅에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 스핀 코팅의 속도를 조절하거나 또는 상기 캐스팅 방법의 수행 시 사용되는 상기 고분자 콜로이드 용액의 양을 조절함으로써 상기 고분자 콜로이드 자기조립체의 크기를 조절할 수 있으나, 이에 제한되는 것은 아니다. 일 구현예에 있어서, 약 100 nm 내지 약 200 nm 크기의 콜로이드 입자의 경우 3000 RPM, 100 nm 크기의 콜로이드 입자의 경우 2000 RPM으로 3 차례 이상 스핀코팅하여 상기 고분자 콜로이드 자기조립체를 형성할 수 있다.According to one embodiment of the present application, the forming of the polymer colloidal self-assembly may be performed by a process including coating a solution in which the polymer colloidal particles are dispersed in the three-dimensional porous photoresist pattern. It is not limited. In one embodiment, the coating of the solution in which the polymer colloidal particles are dispersed may be performed by spin coating, but is not limited thereto. For example, the size of the polymer colloidal self-assembly may be controlled by controlling the speed of the spin coating or by adjusting the amount of the polymer colloidal solution used when the casting method is performed, but is not limited thereto. In one embodiment, the polymer colloidal self-assembly may be formed by spin coating three or more times at 3000 RPM for colloidal particles having a size of about 100 nm to about 200 nm and 2000 RPM for colloidal particles having a size of 100 nm.
본원의 일 구현예에 따르면, 상기 가열 소성은 사용되는 상기 전이금속 산화물 전구체가 그의 대응 산화물로 전환되기에 충분한 온도에서 수행되며, 이러한 소성 온도는, 예를 들어, 약 400℃ 내지 약 600℃의 온도에서 수행되는 것일 수 있으나, 이에 제한되지 않고, 당업자가 적의 선택할 수 있다.According to one embodiment of the present disclosure, the heating firing is carried out at a temperature sufficient to convert the transition metal oxide precursor used to its corresponding oxide, which firing temperature is, for example, about 400 ° C. to about 600 ° C. It may be carried out at a temperature, but is not limited to this, those skilled in the art can be appropriately selected.
본원의 일 구현예에 따르면, 상기 다공성 전이금속 산화물 구형 구조체 각각의 크기는 상기 사용되는 고분자 콜로이드 입자의 크기에 따라 조절될 수 있으며, 이에 제한되는 것은 아니다. 예를 들어, 상기 고분자 콜로이드 입자의 크기는 약 10 nm 내지 약 300 nm 일 수 있으며, 이 경우 수득되는 상기 다공성 전이금속 산화물 구형 구조체 각각에 포함된 기공은 상기 고분자 콜로이드 입자의 크기와 동일한 약 10 nm 내지 약 300 nm 범위 또는 이와 거의 동일한 범위의 크기를 가질 수 있다. 예를 들어, 경우에 따라, 상기 다공성 전이금속 산화물 구형 구조체 각각에 포함된 기공의 일부는 상기 가열 소성 공정에 의한 약간의 부피 수축으로 인하여 상기 고분자 콜로이드 입자의 크기보다 약 10% 이하 또는 약 5% 이하 정도 작은 크기를 가질 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the size of each of the porous transition metal oxide spherical structure may be adjusted according to the size of the polymer colloidal particles used, but is not limited thereto. For example, the size of the polymer colloidal particles may be about 10 nm to about 300 nm, in which case the pores contained in each of the porous transition metal oxide spherical structure obtained is about 10 nm the same as the size of the polymer colloidal particles And may range in size from about 300 nm or about the same. For example, in some cases, a portion of the pores included in each of the porous transition metal oxide spherical structures is about 10% or less or about 5% less than the size of the polymer colloidal particles due to slight volume shrinkage by the heat firing process. It may have a size as small as below, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 광전극의 제조 방법은, 상기 3차원 다공성 포토레지스트 패턴의 기공 내에 고분자 콜로이드 입자를 삽입하기 전에, 상기 3차원 다공성 포토레지스트 패턴의 기공 표면을 친수성으로 개질하는 것을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present invention, the method of manufacturing the photoelectrode, before inserting the polymer colloidal particles in the pores of the three-dimensional porous photoresist pattern, to modify the pore surface of the three-dimensional porous photoresist pattern to hydrophilic It may be additionally included, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 광전극의 제조 방법은, 상기 3차원 다공성 전이금속 산화물 층에 감광성 염료를 흡착시키는 것을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the method of manufacturing the photoelectrode may further include adsorbing a photosensitive dye on the three-dimensional porous transition metal oxide layer, but is not limited thereto.
본원의 제 2 측면은, 전도성 투명 기판; 및 상기 전도성 투명 기판 상에 형성된, 복수의 다공성 전이금속 산화물 구형 구조체를 포함하는 3차원 다공성 전이금속 산화물 층:을 포함하는, 광전극을 제공할 수 있다. A second aspect of the present disclosure, a conductive transparent substrate; And a three-dimensional porous transition metal oxide layer including a plurality of porous transition metal oxide spherical structures formed on the conductive transparent substrate.
본원의 일 구현예에 따르면, 상기 복수의 다공성 전이금속 산화물 구형 구조체들 사이의 기공들이 서로 연결되어 있으며, 상기 구형 구조체 각각의 내부의 기공들이 서로 연결되어 있는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present invention, pores between the plurality of porous transition metal oxide spherical structures are connected to each other, and pores inside each of the spherical structures may be connected to each other, but are not limited thereto.
본원의 일 구현예에 따르면, 상기 전도성 투명 기판과 상기 3차원 다공성 전이금속 산화물 층 사이에 형성된 차단층을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, it may further include a blocking layer formed between the conductive transparent substrate and the three-dimensional porous transition metal oxide layer, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 복수의 다공성 전이금속 산화물 구형 구조체는 단순입방구조, 면심입방구조 또는 체심입방구조로 배열되어 있는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the plurality of porous transition metal oxide spherical structure may be arranged in a simple cubic structure, a face centered cubic structure or a body centered cubic structure, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 다공성 전이금속 산화물 구형 구조체 각각의 크기는 상기 사용되는 고분자 콜로이드 입자의 크기에 따라 조절될 수 있으며, 이에 제한되는 것은 아니다. 예를 들어, 상기 고분자 콜로이드 입자의 크기는 약 10 nm 내지 약 300 nm 일 수 있으며, 이 경우 수득되는 상기 다공성 전이금속 산화물 구형 구조체 각각에 포함된 기공은 상기 고분자 콜로이드 입자의 크기와 동일한 약 10 nm 내지 약 300 nm 범위 또는 이와 거의 동일한 범위의 크기를 가질 수 있다. According to one embodiment of the present application, the size of each of the porous transition metal oxide spherical structure may be adjusted according to the size of the polymer colloidal particles used, but is not limited thereto. For example, the size of the polymer colloidal particles may be about 10 nm to about 300 nm, in which case the pores contained in each of the porous transition metal oxide spherical structure obtained is about 10 nm the same as the size of the polymer colloidal particles And may range in size from about 300 nm or about the same.
본원의 일 구현예에 따르면, 상기 전이금속 산화물은 Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the transition metal oxide is Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and these It may be to include an oxide of the transition metal selected from the group consisting of, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 광전극은, 상기 3차원 다공성 전이금속 산화물 층에 흡착된 감광성 염료를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the photoelectrode may further include a photosensitive dye adsorbed on the 3D porous transition metal oxide layer, but is not limited thereto.
본원의 제 3 측면은, 상기 광전극, 상기 광전극에 대향되는 상대 전극, 및 상기 광전극과 상기 상대 전극 사이에 위치하는 전해질을 포함하는 염료감응 태양전지를 제공할 수 있다.A third aspect of the present application may provide a dye-sensitized solar cell including the photoelectrode, a counter electrode facing the photoelectrode, and an electrolyte positioned between the photoelectrode and the counter electrode.
본원의 제 4 측면은, 상기 광전극의 제조 방법에 따라 광전극을 제조하고;A fourth aspect of the present application, the photoelectrode according to the manufacturing method of the photoelectrode;
상기 광전극에 이격되어 상대 전극을 대향시키고; Opposing a counter electrode spaced apart from the photoelectrode;
상기 광전극과 상기 상대 전극 사이에 전해질을 주입하는 것:Injecting an electrolyte between the photoelectrode and the counter electrode:
을 포함하는, 염료감응 태양전지의 제조 방법을 제공할 수 있다.It can provide a method for producing a dye-sensitized solar cell.
전술한 본원의 과제 해결 수단에 의하면, 3차원 광간섭 리소그래피 및 고분자 콜로이드 자기조립법을 이용한 공정을 통하여 다양한 기공을 가지며 이들 기공이 서로 연결되어 있는 3차원의 기공 구조를 갖는 다공성 전이금속 산화물 층을 포함하는 광전극을 단시간에 용이하게 제조할 수 있다. 이러한 광전극은 비표면적이 증가하고 다양한 크기의 서로 연결된 기공들을 가짐으로써 태양전지용 광전극으로서 효율적으로 이용될 수 있으며, 특히, 상기 광전극에 염료를 흡착시켜 염료감응 태양전지용 광전극으로서 효율적으로 사용할 수 있다. 또한, 3차원 광간섭 리소그래피를 이용함으로써 조사하는 간섭광의 세기 및 조사 조건에 따라 다양한 형태의 기공을 정밀하게 제어하여 상기 다공성 전이금속 산화물층을 형성하여 광전극을 형성함으로써, 최적화된 광전극을 제조할 수 있고, 또한 이러한 광전극을 염료감응 태양전지에 효율적으로 이용할 수 있다. 또한 주입하는 콜로이드 입자의 크기를 조절하여 메조기공의 크기를 쉽게 제어할 수 있다.According to the above-described problem solution means of the present invention, it comprises a porous transition metal oxide layer having a three-dimensional pore structure having a variety of pores and the pores are connected to each other through a process using three-dimensional optical interference lithography and polymer colloid self-assembly The photoelectrode can be easily manufactured in a short time. This photoelectrode can be effectively used as a photovoltaic cell for a solar cell by increasing its specific surface area and having pores of various sizes. In particular, the photoelectrode can be efficiently used as a photoelectrode for a dye-sensitized solar cell by adsorbing a dye to the photoelectrode. Can be. In addition, by using the three-dimensional optical interference lithography to precisely control the various types of pores according to the intensity and the irradiation conditions of the irradiated light to form the photoelectric electrode by forming the porous transition metal oxide layer, an optimized photoelectrode is manufactured In addition, such a photoelectrode can be efficiently used for dye-sensitized solar cells. In addition, it is possible to easily control the size of the mesopores by adjusting the size of the colloidal particles to be injected.
상기 광전극은 나노미터 내지 마이크로미터 단위의 기공 크기를 갖는 3차원의 기공 구조를 형성함으로써, 광산란 유도가 가능하여 광흡수율을 증가시킬 수 있고 특히 가시광선의 광산란을 극대화할 수 있어 염료감응 태양전지의 효율을 증가시킬 수 있다. 또한, 상기 광전극 형성을 위한 다공성 전이금속 산화물 층의 기공 크기의 제어가 가능하여, 점성이 높은 고분자 또는 고체 전해질의 침투에 효율적인 통로를 제공함으로써, 전기 안정성이 향상된 염료감응 태양전지의 제조가 가능하다.The photoelectrode forms a three-dimensional pore structure having a pore size in the range of nanometers to micrometers, so that light scattering can be induced to increase light absorption, and in particular, maximize light scattering of visible light. The efficiency can be increased. In addition, it is possible to control the pore size of the porous transition metal oxide layer for forming the photoelectrode, thereby providing an efficient passage for the penetration of a highly viscous polymer or solid electrolyte, it is possible to manufacture a dye-sensitized solar cell with improved electrical stability Do.
도 1a 내지 도 1f는 본원의 일 실시예에 따른 광전극의 제조 방법을 나타내는 모식도이고,1A to 1F are schematic diagrams illustrating a method of manufacturing a photoelectrode according to an exemplary embodiment of the present application.
도 2는 본원의 일 실시예에 따른 광전극의 제조 방법을 나타내는 순서도이고,2 is a flowchart illustrating a method of manufacturing a photoelectrode according to an embodiment of the present application;
도 3은 본원의 일 실시예에 따른 3차원 리소그래피(광간섭 리소그래피)의 개념도이고,3 is a conceptual diagram of three-dimensional lithography (optical interference lithography) according to an embodiment of the present application,
도 4는 본원의 일 실시예에 따른 염료감응 태양전지의 구성도이고,Figure 4 is a block diagram of a dye-sensitized solar cell according to an embodiment of the present application,
도 5는 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 3차원 기공을 포함하는 포토레지스트 패턴의 전자 현미경 사진이고,5 is an electron micrograph of a photoresist pattern including three-dimensional pores formed through optical interference lithography according to an embodiment of the present disclosure,
도 6a 내지 6c는 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 포토레지스트와 포토레지스트 패턴 내에 콜로이드 입자가 침투되어 조립된 상태를 나타내는 전자 현미경 사진이고,6a to 6c are electron micrographs showing a state in which colloidal particles penetrate and assemble into a photoresist and a photoresist pattern formed through optical interference lithography according to an embodiment of the present application,
도 7a 내지 7c는 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 포토레지스트와 스핀코팅법을 이용한 콜로이드 입자의 조립법을 희생층으로 하여 형성된 이산화티타늄 광전극의 전자현미경 사진이고,7A to 7C are electron micrographs of a titanium dioxide photoelectrode formed by using a photoresist formed through optical interference lithography and a colloidal particle assembly method using spin coating as a sacrificial layer,
도 8은 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 광전극을 포함하는 염료감응 태양전지의 광전류-전압 특성 그래프이다.8 is a graph of photocurrent-voltage characteristics of a dye-sensitized solar cell including a photoelectrode formed through optical interference lithography according to an embodiment of the present disclosure.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예 및 실시예를 들어 상세히 설명한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments and embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated.
본원 명세서 전체에서, 어떤 층 또는 부재가 다른 층 또는 부재와 "상에" 위치하고 있다고 할 때, 이는 어떤 층 또는 부재가 다른 층 또는 부재에 접해 있는 경우뿐 아니라 두 층 또는 두 부재 사이에 또 다른 층 또는 또 다른 부재가 존재하는 경우도 포함한다. Throughout this specification, when a layer or member is located "on" with another layer or member, it is not only when a layer or member is in contact with another layer or member, but also between two layers or another member between the two members. Or when another member is present.
본원 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 용어 “~ (하는) 단계” 또는 "~ 의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used throughout this specification, the terms “about”, “substantially”, and the like, are used at, or in the vicinity of, numerical values when manufacturing and material tolerances inherent in the meanings indicated are given, and an understanding of the invention Accurate or absolute figures are used to help prevent unfair use by unscrupulous infringers. As used throughout this specification, the term “step of” or “step of” does not mean “step for”.
이하 첨부된 도면을 참고하여 본원을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present application.
도 1 내지 도 2를 참조하여, 본원의 일 실시예에 따른 염료감응 태양전지용 광전극의 제조 방법에 대하여 설명하도록 한다.1 to 2, it will be described for the manufacturing method of the photoelectrode for dye-sensitized solar cell according to an embodiment of the present application.
도 1a 내지 1f는 본원의 일 실시예에 따른 광전극 제조 방법의 모식도이고, 도 2는 본원의 일 실시예에 따른 광전극의 제조 방법을 나타내는 순서도이다.1A to 1F are schematic diagrams of a method of manufacturing a photoelectrode according to an exemplary embodiment of the present application, and FIG. 2 is a flowchart illustrating a method of manufacturing a photoelectrode according to an exemplary embodiment of the present application.
단계 S200은 전도성 투명 기판(10) 상에 포토레지스트 층을 형성하는 단계이다. 단계 S200에서는, 먼저, 예를 들어, 유리 기판 또는 투명 고분자 기판 상에 투명 전극을 증착하여 전도성 투명 기판(10)을 마련한다(도 1a). 여기서, 상기 투명 고분자 기판의 재료로는, 예를 들어, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate; PET), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate; PEN), 폴리카보네이트(polycarbonate; PC), 폴리프로필렌(polypropylene; PP), 폴리이미드(polyimide; PI), 트리아세틸 셀룰로오스(triacetyl cellulose; TAC), 또는 이들의 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 이러한 반도체 전극용 기판 상에 형성된 투명 전극은 인듐 틴 옥사이드(indium tin oxide; ITO), 플루오린 틴 옥사이드(fluorine tin oxide; FTO), 안티몬 틴 옥사이드(antimony tin oxide; ATO), 산화아연(zinc oxide), 산화주석(tin oxide), ZnO-(Ga2O3 또는 Al2O3), 및 이들의 혼합물로 이루어진 군에서 선택되는 전도성 금속 산화물을 포함하며, 보다 바람직하게는 전도성, 투명성 및 내열성이 우수한 SnO2 또는 비용면에서 저렴한 ITO를 포함할 수 있으나, 이에 제한되는 것은 아니다.Step S200 is a step of forming a photoresist layer on the conductive transparent substrate 10. In step S200, first, for example, a transparent electrode is deposited on a glass substrate or a transparent polymer substrate to prepare a conductive transparent substrate 10 (FIG. 1A). Here, as the material of the transparent polymer substrate, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), poly Or a polyimide (PI), triacetyl cellulose (TAC), or a copolymer thereof, but is not limited thereto. In addition, the transparent electrode formed on the substrate for a semiconductor electrode may be indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), zinc oxide ( zinc oxide), tin oxide, ZnO- (Ga 2 O 3 or Al 2 O 3 ), and mixtures thereof, including conductive metal oxides, more preferably conductive, transparent and SnO 2 having excellent heat resistance or ITO may be inexpensive in terms of cost, but is not limited thereto.
단계 S200에서는 포토레지스트 층을 형성하기 전에 전도성 투명 기판(10) 상에 산화물을 일정한 두께로 코팅하여 차단층(미도시)을 형성할 수 있다. 차단층의 재료, 차단층을 형성하기 위한 열처리 횟수나 조건 등은 본원의 목적을 달성할 수 있는 범위 내에서 다양하게 변형 가능하다. 예를 들어, 상기 차단층은, Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 이러한 차단층은 광전극(30)의 형성 시 전도성 투명 기판(10)과 다공성 전이금속 산화물층(20) 사이에 접착력을 강화하는 역할을 한다. 그리고, 차단층은 증착, 전기 분해, 습식법 중 어느 하나의 방법에 의하여 형성될 수 있다.In step S200, a barrier layer (not shown) may be formed by coating an oxide on a conductive transparent substrate 10 to a predetermined thickness before forming the photoresist layer. The material of the barrier layer, the number of heat treatments or conditions for forming the barrier layer, and the like can be variously modified within the scope of achieving the object of the present application. For example, the blocking layer is made of Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga, and combinations thereof. It may be to include an oxide of the transition metal selected from the group, but is not limited thereto. The blocking layer serves to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 when the photoelectrode 30 is formed. The blocking layer may be formed by any one of a deposition method, an electrolysis method, and a wet method.
단계 S202에서는 포토레지스트층(12)에 3차원 간섭 패턴을 조사하여 3차원 다공성 포토레지스트 패턴을 형성한다. 필요한 경우, 상기 3차원 간섭 패턴을 조사 후 노광후 베이킹 및 현상 공정을 추가 수행하여 3차원 다공성 포토레지스트 패턴을 형성할 수 있다.In step S202, the three-dimensional interference pattern is irradiated onto the photoresist layer 12 to form a three-dimensional porous photoresist pattern. If necessary, the three-dimensional interference pattern may be further subjected to post-exposure baking and developing to form a three-dimensional porous photoresist pattern.
단계 S202에서는, 전도성 투명 기판(10) 상에 일정한 두께의 포토레지스트층(12)을 형성하고(도 1b), 형성된 포토레지스트층(12)에 3차원 간섭 패턴을 조사하여 3차원 다공성 포토레지스트 패턴(14)을 형성할 수 있다(도 1c).In step S202, the photoresist layer 12 having a predetermined thickness is formed on the conductive transparent substrate 10 (FIG. 1B), and the three-dimensional interference pattern is irradiated onto the formed photoresist layer 12. 14 can be formed (FIG. 1C).
단계 S202에서, 코팅된 포토레지스트층(12)의 두께는 제조하고자 하는 광전극의 두께에 따라 조절될 수 있으며, 예를 들어, 약 10 ㎛ 내지 30 ㎛의 두께로 형성될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 포토레지스트는 전도성 투명 기판에 코팅하거나, 상기 전도성 투명 기판(10)에 수 나노미터로 코팅된 이산화티타늄과 같은 차단층 상에 코팅할 수도 있다.In step S202, the thickness of the coated photoresist layer 12 may be adjusted according to the thickness of the photoelectrode to be manufactured, for example, may be formed to a thickness of about 10 ㎛ to 30 ㎛, but is not limited thereto. It is not. In addition, the photoresist may be coated on a conductive transparent substrate or on a blocking layer such as titanium dioxide coated on the conductive transparent substrate 10 by several nanometers.
또한, 단계 S202에서는, 광로차가 부여된 복수의 평행광으로 이루어지는 간섭 패턴을 조사하여, 광간섭 리소그래피 방식으로 포토레지스트층(12)에 3차원의 다공성 패턴(14)을 형성할 수 있다. 또한, 도 3에 도시된 바와 같이, 4개의 평행광을 이용하여 형성된 3차원 간섭 패턴을 포토레지스트층(12)에 조사하여 3차원의 다공성 패턴을 형성할 수 있으며, 이 경우 4개 이상의 빛은, 하나의 평행광을 복수의 광으로 분할하거나, 하나의 평행광을 다면체의 프리즘에 조사하는 방법 등을 적용하여 생성할 수 있다. 또한, 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 3차원 다공성 패턴이 형성된 포토레지스트를 전자 현미경으로 촬영한 사진을 도 5에 도시하였다.In addition, in step S202, an interference pattern made up of a plurality of parallel lights provided with an optical path difference can be irradiated to form a three-dimensional porous pattern 14 on the photoresist layer 12 by optical interference lithography. In addition, as shown in FIG. 3, the three-dimensional interference pattern formed by using four parallel lights may be irradiated to the photoresist layer 12 to form a three-dimensional porous pattern. In this case, four or more lights For example, the method may be generated by dividing one parallel light into a plurality of lights, or applying one parallel light to a prism of a polyhedron. In addition, a photo taken with an electron microscope of a photoresist with a three-dimensional porous pattern formed through optical interference lithography according to an embodiment of the present application is shown in FIG.
이 경우, 포토레지스트층(12)에 형성된 패턴(14)은 예를 들어, 상기 패턴의 기공이 단순입방구조, 면심입방구조 또는 체심입방구조로 배열된 3차원 광결정 형태를 가질 수 있으며, 조사되는 빛의 각도 및 방향을 조절하여 다양한 격자 구조로 형성 가능하다. 나아가, 조사되는 간섭광의 노광(exposure) 시간 및 노광후 베이킹(post-exposure baking) 시간 등을 조절하여, 패턴의 크기를 효과적으로 조절할 수 있다.In this case, the pattern 14 formed on the photoresist layer 12 may have, for example, a three-dimensional photonic crystal form in which pores of the pattern are arranged in a simple cubic structure, a face centered cubic structure, or a body centered cubic structure. It is possible to form various grid structures by adjusting the angle and direction of light. Furthermore, by controlling the exposure time and post-exposure baking time of the irradiated interference light, the size of the pattern can be effectively controlled.
이러한 3차원 광결정 구조에서 상기 패턴 내 기공의 크기 및 연결은 3차원 광간섭 리소그래피 조건을 달리하여 자유롭게 제어할 수 있으며, 기존의 나노 입자 배열을 통한 기공 제어의 한계를 극복할 수 있다. 또한 다공성 구조는 크게는 수백 나노미터 정도까지 형성되어 전해질을 도포할 때 원활하게 기공을 채울 수 있는 장점이 있고, 점성이 높은 고분자 또는 고체 전해질의 침투에 효율적인 기공을 제공할 수 있다. 본원의 일 실시예에 따른 리소그래피에 의해 형성된 기공의 평균 지름은 약 100 nm 내지 약 10 ㎛ 의 범위일 수 있으나, 이에 제한되는 것은 아니다.In such a three-dimensional photonic crystal structure, the size and connection of the pores in the pattern can be freely controlled by varying the three-dimensional optical interference lithography conditions, and can overcome the limitations of the pore control through the conventional nanoparticle array. In addition, the porous structure is formed up to about several hundred nanometers has the advantage of smoothly filling the pores when applying the electrolyte, it can provide efficient pores for the penetration of high viscosity polymer or solid electrolyte. An average diameter of pores formed by lithography according to an embodiment of the present disclosure may range from about 100 nm to about 10 μm, but is not limited thereto.
포토레지스트층(12)은 광반응에 의해 가교 또는 용해도가 변화하는 다양한 고분자 포토레지스 용액을 사용하여 형성될 수 있으며, 네거티브(negative) 타입 및 포지티브(positive) 타입의 포토레지스트가 모두 사용 가능하다.The photoresist layer 12 may be formed using various polymer photoresist solutions whose crosslinking or solubility is changed by photoreaction, and both a negative type and a positive type photoresist may be used.
단계 S204는 3차원 다공성 포토레지스트 패턴(14) 내에 고분자 콜로이드 입자(16)의 자기조립체를 형성하는 단계이다(도 1d). 콜로이드 입자(16)는 구형태와 입자의 균일도를 충족하고, 높은 온도를 가하였을 때, 기화되어 날아간다면 상기 조건을 충족하는 어떤 입자를 사용하여도 무방하다. 예를 들어, 상기 고분자 콜로이드 입자(16)는 폴리스타이렌(polystyrene; PS), 폴리메틸메타크릴레이트([Poly(methyl methacrylate); PMMA)], 폴리스타이렌/폴리디비닐벤젠(polystyrene/divinylbenzene; PS/DVB), 나일론 6(Nylon 6) 등과 같은 폴리아미드(polyamide), 폴리(부틸메타크릴레이트-디비닐벤젠)[(poly(buthylmethacrylate-divinylbenzene;PBMA)], 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 고분자 콜로이드 입자(16)를 포함하는 것일 수 있다. 상기 고분자 콜로이드 자기조립체를 형성하는 것은, 상기 3차원 다공성 포토레지스트 패턴에 상기 고분자 콜로이드 입자(16)가 분산된 용액을 코팅하는 것을 포함하는 공정에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 고분자 콜로이드 입자(16)가 분산된 용액에 포함되는 용매로서 물과 알코올의 혼합 용매 등의 휘발성 용매를 사용할 수 있다. 상기 고분자 콜로이드 입자(16)가 분산된 용액 중 분산된 고분자 콜로이드의 농도는 20 중량% 이상의 고농도로 분산된 것을 사용할 수 있으며, 이로 인하여 상기 고분자 콜로이드 용액의 도포 후 단시간 내에 건조시킬 수 있다. 이때 고농도의 콜로이드 입자(16)의 경우 저장 안전성이 좋지 않을 수 있으므로 계면활성제를 추가할 수 있다. 또한, 전도성 투명 기판(10) 또는 수 나노미터로 코팅된 이산화티타늄과 같은 차단층 상에 상기 고분자 콜로이드 입자(16)를 코팅하기 전에 플라즈마 세정 등을 통해 상기 기판 또는 차단층 표면을 세척하면 고분자 콜로이드 입자(16)의 퍼짐성을 좋게 할 수 있다. 콜로이드 입자(16)를 삽입하는 것은 소수성의 성질을 가지는 광간섭 패턴에 황산 처리 또는 O2 플라즈마 처리를 통해, 광간섭 패턴에 친수성의 성질을 갖는 개질변화를 한 후, 물 용매에 분산되어 있는 콜로이드 입자(16)들을 패턴(14) 주변에 떨어뜨려, 콜로이드 입자(16)들이 패턴의 기공 내에 침입하게 할 수 있다. 상기 콜로이드 입자(16)를 조립하는 것은 스핀 코팅 또는 캐스팅 방법에 의하여 수행될 수 있다. Step S204 is a step of forming a self-assembly of the polymer colloidal particles 16 in the three-dimensional porous photoresist pattern 14 (FIG. 1D). The colloidal particle 16 may use any particle that satisfies the above conditions as long as it satisfies the spherical shape and the uniformity of the particle and is vaporized when flying at high temperature. For example, the polymer colloidal particles 16 may include polystyrene (PS), polymethyl methacrylate (PMMA), polystyrene / divinylbenzene (PS / DVB). ), Polyamides such as Nylon 6, poly (butylmethacrylate-divinylbenzene) [(poly (buthylmethacrylate-divinylbenzene; PBMA)], and combinations thereof It may be to include a polymer colloid particles 16. Forming the polymer colloid self-assembly, comprising coating a solution in which the polymer colloid particles 16 are dispersed in the three-dimensional porous photoresist pattern Although not limited thereto, volatilization of a mixed solvent of water and alcohol as a solvent included in a solution in which the polymer colloidal particles 16 are dispersed. A solvent may be used, and the concentration of the polymer colloid dispersed in the solution in which the polymer colloid particles 16 are dispersed may be used at a high concentration of 20% by weight or more, and thus, within a short time after application of the polymer colloid solution. In this case, a high concentration of colloidal particles 16 may be added to a surfactant because the storage stability may be poor, and a barrier such as a conductive transparent substrate 10 or titanium dioxide coated with several nanometers may be used. If the surface of the substrate or the barrier layer is washed by plasma cleaning or the like before coating the polymer colloidal particles 16 on the layer, the spreadability of the polymer colloidal particles 16 may be improved. It is through the sulfuric acid treatment or O 2 plasma treatment in an optical interference pattern having the property of hydrophobicity, the optical interference pattern After the modified change in the nature of water, it is separated from the colloidal particles 16 are dispersed in the water solvent to the peripheral pattern 14, the colloidal particles (16) are able to be infiltrating into the pores of the pattern. Assembling the colloidal particles 16 may be performed by a spin coating or casting method.
단계 S206은 3차원 다공성 포토레지스트 패턴 내로 전이금속 산화물 전구체 용액(18)을 주입하는 단계이다(도 1e).Step S206 is a step of injecting the transition metal oxide precursor solution 18 into the three-dimensional porous photoresist pattern (FIG. 1E).
단계 S206에서는, 3차원의 기공이 형성된 포토레지스트 패턴 내에 전이금속 산화물 전구체 용액(18)을 주입하고 수분 간 건조시킬 수 있다. 이 경우, 졸-겔 반응을 일으킬 수 있는 전이금속 산화물 전구체가 사용될 수 있다. 상기 고분자 콜로이드 자기조립 결정층 내로 전이금속 산화물 전구체 용액(18)을 주입할 때 상기 전도성 투명 기판을 진공으로 고정하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.In step S206, the transition metal oxide precursor solution 18 may be injected into the photoresist pattern in which the three-dimensional pores are formed and dried for several minutes. In this case, a transition metal oxide precursor that can cause a sol-gel reaction can be used. When the transition metal oxide precursor solution 18 is injected into the polymer colloidal self-assembled crystal layer, the conductive transparent substrate may be fixed in a vacuum, but is not limited thereto.
단계 S208은 가열 소정 공정을 이용하여 상기 포토레지스트 패턴 및 상기 고분자 콜로이드 자기조립체를 제거하여 복수의 다공성 전이금속 산화물 구형 구조체를 포함하는 3차원 다공성 전이금속 산화물 층(20)을 형성하는 단계이다(도 1f).Step S208 is a step of forming a three-dimensional porous transition metal oxide layer 20 including a plurality of porous transition metal oxide spherical structures by removing the photoresist pattern and the polymer colloidal self-assembly using a heating predetermined process (FIG. 1f).
단계 S208에서는, 포토레지스트(12)를 제거하는 동시에 다공성 구조를 형성할 수 있다. 예를 들어, 400℃ 이상의 온도에서 10분 이상 소결하여 다공성 전이금속 산화물층(20)을 형성할 수 있다. 상기 전이금속 산화물은 Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물일 수 있으나, 이에 제한되는 것은 아니다. 전이금속 산화물층(20)으로서, 예를 들어, 이산화티타늄을 이용할 수 있으며, 특히, 상기 소결에 의하여 아나타제(anatase) 결정성을 갖는 이산화티타늄을 제조하는 것이 바람직하다. In step S208, the porous structure may be formed while removing the photoresist 12. For example, the porous transition metal oxide layer 20 may be formed by sintering at a temperature of 400 ° C. or more for 10 minutes or more. The transition metal oxide is selected from the group consisting of Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof It may be an oxide of a transition metal, but is not limited thereto. As the transition metal oxide layer 20, for example, titanium dioxide may be used, and it is particularly preferable to produce titanium dioxide having anatase crystallinity by the sintering.
상기 제조 방법에 의하여 형성되는 상기 3차원 다공성 전이금속 산화물 층(20)은 상기 복수의 다공성 전이금속 산화물 구형 구조체를 포함하며, 상기 구형 구조체들 사이의 기공들이 서로 연결되어 있으며, 또한, 상기 복수의 다공성 전이금속 산화물 구형 구조체 각각의 내부의 기공도 서로 연결되어 있을 수 있다.The three-dimensional porous transition metal oxide layer 20 formed by the manufacturing method includes the plurality of porous transition metal oxide spherical structures, and pores between the spherical structures are connected to each other, and the plurality of The pores inside each of the porous transition metal oxide spherical structures may also be connected to each other.
다공성 구조는 리소그래피 조건과 콜로이드 입자의 크기 변화를 달리하여 기공의 크기 및 연결을 자유롭게 제어할 수 있으며, 기존의 나노입자 배열을 통한 기공 제어의 한계를 극복할 수 있다. 또한 다공성 구조는 광간섭 방법으로 형성된 크게 수백 나노미터 기공이 형성되어, 전해질을 도포할 때 원활하게 기공을 채울 수 있는 장점이 있고, 수십 나노미터에서 수백 나노미터까지의 크기를 가지는 콜로이드 입자를 삽입시켜, 작은 기공을 추가적으로 형성, 광전극의 비표면적을 넓힐 수 있는 장점이 있다.The porous structure can freely control the size and connection of the pores by changing the lithography conditions and the size change of the colloidal particles, and can overcome the limitation of the pore control through the arrangement of the conventional nanoparticles. In addition, the porous structure is largely hundreds of nanometer pores formed by the optical interference method, there is an advantage that can fill the pores smoothly when applying the electrolyte, inserting colloidal particles having a size of several tens of nanometers to several hundred nanometers As a result, small pores may be additionally formed to increase the specific surface area of the photoelectrode.
이후에, 다공성 전이금속 산화물층(20) 상에 감광성 염료를 흡착시키는 단계를 추가 포함하여 광전극을 형성할 수 있다. 예를 들어, 상기와 같이 형성된 다공성 전이금속 산화물층을 염료가 포함된 용액에 침지하여 염료를 코팅할 수 있다. 상기 염료는, 예를 들어, 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 유로퓸(Eu), 납(Pb), 이리듐(Ir), 루테늄(Ru) 등을 포함하는 금속 복합체로 이루어질 수 있다. 여기서, 루테늄을 포함하는 염료로는, 예를 들어, Ru(etc bpy)2(NCS)2·CH3CN 타입을 사용할 수 있다. 여기서 etc는 (COOEt)2 또는 (COOH)2로서 다공질막(예를 들어, TiO2) 표면과 결합 가능한 반응기이다. 또한, 유기 색소 등을 포함하는 염료가 사용될 수도 있는데, 이러한 유기 색소로는, 예를 들어, 쿠마린(coumarin), 포피린(porphyrin), 크산틴(xanthene), 리보플라빈(riboflavin), 트리페닐메탄(triphenylmethan) 등이 있다. 본원의 일 실시예에 따른 이산화티타늄 광전극을 전자 현미경으로 촬영한 사진은 도 5에 도시되어 있다.Thereafter, the photoelectrode may be further formed by adsorbing the photosensitive dye on the porous transition metal oxide layer 20. For example, the dye may be coated by immersing the porous transition metal oxide layer formed as described above in a solution containing a dye. The dye, for example, is composed of a metal complex containing aluminum (Al), platinum (Pt), palladium (Pd), europium (Eu), lead (Pb), iridium (Ir), ruthenium (Ru) and the like. Can be. Here, as the dye containing ruthenium, for example, Ru (etc bpy) 2 (NCS) 2 CH 3 CN type can be used. Where etc is a (COOEt) 2 or (COOH) 2 reactor capable of bonding with the surface of the porous membrane (eg TiO 2 ). In addition, dyes including organic dyes may be used. Examples of such organic dyes include coumarin, porphyrin, xanthene, riboflavin, and triphenylmethan. ). A photo taken with an electron microscope of a titanium dioxide photoelectrode according to an embodiment of the present application is shown in FIG. 5.
상기와 같은 방법으로 제조된 광전극(10)을 포함하는 본원의 일 실시예에 따른 염료감응 태양전지(1)는, 도 4에 도시된 바와 같이, 전도성 투명 기판(10)과 광감응 염료가 흡착된 다공성 전이금속 산화물층(20)을 포함하는 광전극(30); 전도성 투명 기판(40)과 전도층(50)을 포함하는 상대 전극(60); 전해질(70); 및, 밀봉부(80)를 포함할 수 있다.Dye-sensitized solar cell 1 according to an embodiment of the present application including the photoelectrode 10 manufactured by the above method, as shown in Figure 4, the conductive transparent substrate 10 and the photosensitive dye A photoelectrode 30 including an adsorbed porous transition metal oxide layer 20; A counter electrode 60 including a conductive transparent substrate 40 and a conductive layer 50; Electrolyte 70; And, the sealing unit 80 may be included.
전도성 투명 기판(10)과 다공성 전이금속 산화물층(20) 사이에는 필요한 경우 차단층(미도시)이 형성될 수 있다. 차단층은 산화물을 포함할 수 있으며, 전도성 투명 기판(10)과 다공성 전이금속 산화물층(20) 사이에 접착력을 강화하는 역할을 할 수 있다. 또한, 다공성 전이금속 산화물층(20)에는 복수의 염료 분자가 흡착되어 있다. A blocking layer (not shown) may be formed between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 if necessary. The blocking layer may include an oxide and may serve to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20. In addition, a plurality of dye molecules are adsorbed to the porous transition metal oxide layer 20.
광전극(30)을 형성함에 있어서 사용되는 전도성 투명 기판(10)은 투명한 반도체 전극용 기판 상에 전도성의 투명 전극이 형성되어 있는 구조를 갖는다.The conductive transparent substrate 10 used in forming the photoelectrode 30 has a structure in which a conductive transparent electrode is formed on a transparent semiconductor electrode substrate.
반도체 전극용 기판으로는 투명한 유리 기판 또는 유연성을 갖는 투명 고분자 기판이 사용될 수 있으며, 예를 들어, 상기 고분자 기판의 재료로는 폴리에틸렌테레프탈레이트(polyethyleneterephthalate; PET), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate; PEN), 폴리카보네이트(polycarbonate; PC), 폴리프로필렌(polypropylene; PP), 폴리이미드(poly imide; PI), 트리아세틸 셀룰로오스(triacetyl cellulose; TAC), 또는 이들의 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 반도체 전극용 기판은 Ti, In, Ga 또는 Al로 이루어진 군에서 선택된 물질로 도핑될 수 있다. 이러한 반도체 전극용 기판 상에 형성된 투명 전극은, 예를 들어, 인듐 틴 옥사이드(indium tin oxide; ITO), 플루오린 틴 옥사이드(fluorine tin oxide; FTO), 안티몬 틴 옥사이드(antimony tin oxide; ATO), 산화아연(zinc oxide), 산화주석(tin oxide), ZnO-Ga2O3, ZnO-Al2O3, 및 이들의 혼합물로 이루어진 군에서 선택되는 전도성 금속 산화물을 포함하며, 바람직하게는 전도성, 투명성 및 내열성이 우수한 SnO2 또는 비용 면에서 저렴한 ITO를 포함할 수 있으나, 이에 제한되는 것은 아니다. 여기서, 전도성 투명 기판(10)을 채용하는 이유는 태양광이 투과되어 내부로 입사될 수 있도록 하기 위함이다. 그리고, 본원을 설명하는 명세서에서 투명이라는 단어의 의미는 소재의 광투과율이 100%인 경우뿐만 아니라 광투과율이 높은 경우를 모두 포함한다.As the substrate for the semiconductor electrode, a transparent glass substrate or a transparent polymer substrate having flexibility may be used. For example, as the material of the polymer substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), Polycarbonate (PC), polypropylene (PP), polyimide (PI), triacetyl cellulose (TAC), or copolymers thereof, but are not limited thereto. no. In addition, the semiconductor electrode substrate may be doped with a material selected from the group consisting of Ti, In, Ga or Al. The transparent electrode formed on the substrate for a semiconductor electrode, for example, indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), Zinc oxide, tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , and conductive metal oxides selected from the group consisting of mixtures thereof, preferably conductive, SnO 2 having excellent transparency and heat resistance or ITO which is inexpensive in terms of cost may be included, but is not limited thereto. Here, the reason for employing the conductive transparent substrate 10 is to allow the sunlight to penetrate into the inside. In addition, the meaning of the word transparent in the description of the present application includes not only the case where the light transmittance of the material is 100% but also the case where the light transmittance is high.
다공성 전이금속 산화물층(20)에는 복수의 염료 분자가 흡착될 수 있다. 다공성 전이금속 산화물층(20)의 기공은, 예를 들어, 전체적으로 단순입방구조, 면심입방구조 또는 체심입방구조로 배열될 수 있으나, 이에 제한되는 것은 아니다. 즉, 다공성 전이금속 산화물층(20)은 3차원 다공성을 갖는 구조로 마련될 수 있다. 다공성 전이금속 산화물층(20)의 기공은 3차원 단순입방구조, 면심입방구조 또는 체심입방구조를 가짐에 따라 3차원 광 결정체(photonic crystal)를 형성하여 광증폭 효과를 기대할 수 있다. 구체적으로, 일정한 규칙을 갖는 다공성의 3차원 단순입방구조, 면심입방구조 또는 체심입방구조의 기공에 의하여 효과적인 전자 전달 통로가 형성되어 염료감응 태양전지의 광전 변환 효율이 향상된다. 또한, 상기 3차원 기공을 통하여 점성이 높은 고분자 또는 고체 전해질의 침투에 효율적인 통로를 제공해 줌으로써 염료감응 태양전지의 전기 안정성이 향상된다.A plurality of dye molecules may be adsorbed to the porous transition metal oxide layer 20. The pores of the porous transition metal oxide layer 20 may be, for example, arranged in a simple cubic structure, a face centered cubic structure, or a body centered cubic structure, but are not limited thereto. That is, the porous transition metal oxide layer 20 may be provided in a structure having a three-dimensional porosity. As the pores of the porous transition metal oxide layer 20 have a three-dimensional simple cubic structure, a face-centered cubic structure, or a body-centered cubic structure, a three-dimensional photonic crystal may be formed to expect a photoamplification effect. Specifically, an efficient electron transfer path is formed by the porous three-dimensional simple cubic structure, face centered cubic structure, or body centered cubic structure having a certain rule, thereby improving the photoelectric conversion efficiency of the dye-sensitized solar cell. In addition, the electrical stability of the dye-sensitized solar cell is improved by providing an efficient passage for the penetration of a highly viscous polymer or solid electrolyte through the three-dimensional pores.
상기 다공성 전이금속 산화물 구형 구조체 각각에 포함된 기공은 상기 고분자 콜로이드 입자의 크기와 동일한 약 10 nm 내지 약 300 nm 범위 또는 이와 거의 동일한 범위의 크기를 가질 수 있다.The pores included in each of the porous transition metal oxide spherical structures may have a size in the range of about 10 nm to about 300 nm or about the same as the size of the polymer colloidal particles.
한편, 상기 3차원 기공 구조를 가지는 상기 다공성 전이금속 산화물층(20)의 기공의 크기는 작을수록 바람직하다. 다공성 전이금속 산화물층(20)의 기공 크기가 작을수록 표면적이 늘어나 더 많은 염료 분자가 흡착될 수 있고, 더 많은 염료 분자가 흡착되는 경우에 더 많은 전자가 생성되어 염료감응 태양전지의 에너지 변환 효율이 향상되기 때문이다. 본원의 일 실시예에 따른 상기 다공성 전이금속 산화물층(20)에 포함되는 전이금속 산화물로서, 예를 들어, Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물을 포함할 수 있다. 그러나, 이에 한정되지 않고 다른 종류의 전이금속 산화물도 적용 가능하다. 예를 들어, 상기 다공성 전이금속 산화물층(20)은 이산화티타늄을 포함하는 경우, 이러한 이산화티타늄은 전자 전달 능력이 좋은 아나타제(anatase) 결정성을 갖는 것을 선택하여 사용하는 것이 바람직하다.On the other hand, the smaller the pore size of the porous transition metal oxide layer 20 having the three-dimensional pore structure is preferable. As the pore size of the porous transition metal oxide layer 20 decreases, the surface area increases, so that more dye molecules can be adsorbed, and when more dye molecules are adsorbed, more electrons are generated, which leads to energy conversion efficiency of the dye-sensitized solar cell. Because it is improved. As a transition metal oxide included in the porous transition metal oxide layer 20 according to an embodiment of the present application, for example, Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, It may include an oxide of a transition metal selected from the group consisting of Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof. However, the present invention is not limited thereto, and other kinds of transition metal oxides may be applied. For example, when the porous transition metal oxide layer 20 includes titanium dioxide, it is preferable to use such titanium dioxide having an anatase crystallinity with good electron transfer ability.
다공성 전이금속 산화물층(20)을 이루는 전이금속 산화물(입자)의 표면에 염료가 흡착되며, 상기 염료 분자에 광이 입사되어 흡수되면 전자가 생성되고, 생성된 전자는 다공성 전이금속 산화물층(20)을 통로로 하여 전도성 투명 기판(10)으로 전달된다.A dye is adsorbed on the surface of the transition metal oxide (particle) constituting the porous transition metal oxide layer 20, electrons are generated when light is incident on and absorbed by the dye molecule, and the generated electron is the porous transition metal oxide layer 20. Is transmitted to the conductive transparent substrate 10 through the passage.
상대전극(60)은 광전극(30)에 대향하여 배치되어 있다. 상대전극(60)은 반도체 전극용 기판 상에 투명 전극이 형성되어 있는 전도성 투명 기판(40) 및 상기 투명전극 상에 형성된 전도층(50)을 포함할 수 있다. 상대전극(60)을 형성하는 반도체 전극용 기판은 유리 기판이거나 투명 고분자 기판일 수 있다. 상기 투명 고분자 기판으로서, 예를 들어, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate; PET), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate; PEN), 폴리카보네이트(polycarbonate; PC), 폴리프로필렌(polypropylene; PP), 폴리이미드(polyimide; PI), 트리아세틸 셀룰로오스(triacetyl cellulose; TAC), 또는 이들의 공중합체 등의 고분자를 포함하는 투명 고분자 기판을 들 수 있으나, 이에 제한되는 것은 아니다. 그리고, 상대 전극(60) 형성을 위한 반도체 전극용 기판에 형성되는 투명 전극은 인듐 틴 옥사이드(indium tin oxide; ITO), 플루오린 틴 옥사이드(fluorine tin oxide; FTO), 안티몬 틴 옥사이드(antimony tin oxide; ATO), 산화아연(zinc oxide), 산화주석(tin oxide), ZnO-Ga2O3, ZnO-Al2O3, 또는 이들의 혼합물로 이루어진 군에서 선택되는 전도성 금속 산화물을 포함할 수 있다.The counter electrode 60 is disposed to face the photoelectrode 30. The counter electrode 60 may include a conductive transparent substrate 40 having a transparent electrode formed on a substrate for a semiconductor electrode, and a conductive layer 50 formed on the transparent electrode. The semiconductor electrode substrate forming the counter electrode 60 may be a glass substrate or a transparent polymer substrate. As the transparent polymer substrate, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PI) ), A transparent polymer substrate including a polymer such as triacetyl cellulose (TAC), or a copolymer thereof, but is not limited thereto. In addition, the transparent electrode formed on the semiconductor electrode substrate for forming the counter electrode 60 may be indium tin oxide (ITO), fluorine tin oxide (FTO), or antimony tin oxide (antimony tin oxide). ATO), zinc oxide, tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , or a mixture thereof. .
광전극(30)의 염료가 흡착된 다공성 전이금속 산화물 층(20)에 대향 배치되는 상대전극(60)의 일면에 전도층(50)이 형성될 수 있다. 예를 들어, 상기 전도층(50)은 산화-환원 쌍(redox couple)을 활성화시키는 역할을 하는 것으로, 백금(Pt), 금(Au), 루테늄(Ru), 팔라듐(Pd), 로듐(Rh), 이리듐(Ir), 오스뮴(Os), 탄소(C), WO3, TiO2 또는 전도성 고분자 등의 전도성 물질을 포함할 수 있다. 이러한 상대전극(60)의 일면에 형성된 전도층(50)은 반사도가 높을수록 효율이 우수하므로, 반사율이 높은 재료를 선택하는 것이 좋다.The conductive layer 50 may be formed on one surface of the counter electrode 60 disposed opposite to the porous transition metal oxide layer 20 on which the dye of the photoelectrode 30 is adsorbed. For example, the conductive layer 50 serves to activate a redox couple, and includes platinum (Pt), gold (Au), ruthenium (Ru), palladium (Pd), and rhodium (Rh). ), Iridium (Ir), osmium (Os), carbon (C), WO 3 , TiO 2 or a conductive material such as a conductive polymer. The conductive layer 50 formed on one surface of the counter electrode 60 is more efficient as the reflectivity is higher, so it is better to select a material having a high reflectance.
광전극(30)과 상대전극(60) 사이에는 전해질(70)이 주입되어 있다. 상기 전해질(70)은 예를 들어, 요오드화물(iodide)을 포함하며, 산화, 환원에 의해 상대 전극으로부터 전자를 받아 전자를 잃었던 염료분자에 받은 전자를 전달하는 역할을 수행한다. 도 4에서는 편의상 전해질(70)을 하나의 층으로 도시하였으나, 실제로는 광전극(30)의 기공 내부로 균일하게 분산되어 있을 수 있다. 예를 들어, 전해질(70)의 제조 방법은 다음과 같다. 상기 전해질(70)은 전해액으로 이루어지며, 상기 전해액은 요오드화물(iodide)/삼요오드화물(triodide) 쌍으로서 산화, 환원에 의해 상대전극(60)으로부터 전자를 받아 염료 분자에 전달하는 역할을 수행한다. 예를 들어, 상기 전해질(70)로서는 요오드를 아세토니트릴에 용해시킨 용액 등을 사용할 수 있으나 이에 한정되는 것은 아니며, 홀 전도 기능이 있는 것이라면 어느 것이나 제한 없이 사용할 수 있다. 또는, 상기 전해질(70)로서는 0.7 M 1-부틸-3-메틸이미다졸늄 요오드화물(1-butyl-3-methylimidazolium iodide). 0.03 M 요오드(Iodine; I2), 0.1 M 과니디움 티오사이아네이트(Guanidium thiocyanate), 0.5 M 4-tert-부틸피리딘(tert-buthylpyridine) 등 4개의 시약을 아세토나이트릴(acetonitrile)과 발레로나이트릴(valeronitrile) 혼합액(부피비 85 : 15)에 용해하여 제조하여 사용할 수 있으나, 이에 제한되는 것은 아니다.An electrolyte 70 is injected between the photoelectrode 30 and the counter electrode 60. The electrolyte 70 includes, for example, iodide, and serves to transfer electrons received to dye molecules that have lost electrons by receiving them from the counter electrode by oxidation and reduction. In FIG. 4, the electrolyte 70 is illustrated as one layer for convenience, but may be uniformly dispersed in the pores of the photoelectrode 30. For example, the manufacturing method of the electrolyte 70 is as follows. The electrolyte 70 is composed of an electrolyte, and the electrolyte is an iodide / triodide pair that receives electrons from the counter electrode 60 by oxidation and reduction and transfers the electrons to the dye molecules. do. For example, a solution in which iodine is dissolved in acetonitrile may be used as the electrolyte 70, but is not limited thereto. Any electrolyte may be used without limitation as long as it has a hole conduction function. Alternatively, as the electrolyte 70, 0.7 M 1-butyl-3-methylimidazonium iodide (1-butyl-3-methylimidazolium iodide). Four reagents, 0.03 M iodine (I 2 ), 0.1 M guanidium thiocyanate, and 0.5 M 4-tert-butylpyridine, were acetonitrile and valerotrile. It can be prepared by dissolving in a nitrile (valeronitrile) mixed solution (volume ratio 85: 15), but is not limited thereto.
광전극(30)과 상대전극(60)의 가장 자리에는 전해질(70)이 새어 나오지 않도록 밀봉부(80)가 형성될 수 있다. 밀봉부(80)는 열가소성 고분자물질을 포함하며, 열 또는 자외선에 의하여 경화될 수 있다. 구체적인 예로, 밀봉부(80)는 에폭시 수지를 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 밀봉부(80)로서 수십 마이크로 두께의 고분자 필름을 광전극(30)과 상대전극(60) 두 전극 사이에 끼워 넣어 간격을 유지할 수 있다. Seals 80 may be formed at edges of the photoelectrode 30 and the counter electrode 60 to prevent the electrolyte 70 from leaking out. The seal 80 may include a thermoplastic polymer and may be cured by heat or ultraviolet rays. As a specific example, the sealing unit 80 may include an epoxy resin, but is not limited thereto. For example, as the sealing part 80, a polymer film having a thickness of several tens of microns may be sandwiched between two electrodes of the photoelectrode 30 and the counter electrode 60 to maintain a gap.
[실시예 1]Example 1
유리기판 상에 전도성 투명전극이 형성하여 전도성 투명 기판을 형성하였다. 상기 전도성 투명 기판 상에 이산화티타늄을 포함하는 차단층을 형성하였다. 구체적으로, 전도성 투명 기판에 0.1 M TiCl4 수용액을 스핀코팅하여 형성하였다. 차단층 상에는 광전극을 형성하였고, 염료분자를 흡착시켰다. 여기에서 광전극은 콜로이드 입자가 삽입된 광간섭 리소그래피로 패턴이 역전된 구조로 되어 있으며, 다공성으로 형성되었다. 이와 같이, 리소그래피에 의해 형성된 기공의 평균 지름은 100 nm 초과 내지 10 ㎛ 이하의 범위이며, 콜로이드 입자에 의해 형성된 기공의 지름은 20 nm 내지 300 nm 이하의 범위였다.A conductive transparent electrode was formed on the glass substrate to form a conductive transparent substrate. A blocking layer including titanium dioxide was formed on the conductive transparent substrate. Specifically, it was formed by spin coating a 0.1 M TiCl 4 aqueous solution on a conductive transparent substrate. A photoelectrode was formed on the blocking layer and the dye molecules were adsorbed. Here, the photoelectrode has a structure in which the pattern is reversed by optical interference lithography in which colloidal particles are inserted, and is formed porous. Thus, the average diameter of the pores formed by lithography was in the range of more than 100 nm to 10 µm or less, and the diameter of the pores formed by the colloidal particles was in the range of 20 nm to 300 nm or less.
광간섭 리소그래피에 의한 포토레지스트 패턴의 형성을 위하여, 먼저, 네가티브 포토레지스트인 SU-8을 도포하고 이때 스핀코팅을 적용하며 RPM에 따라 수십 ㎛의 두께 조절이 가능하도록 하여 상기 차단층 상에 2000 RPM 을 적용 후, 2번 스핀 코팅하여, 8 ㎛ 의 두께를 갖도록 SU-8을 도포하였다. 그리고, 95℃ 핫플레이트(hot plate)에서 3분 동안 열처리 한 후, 488 nm 파장의 레이저를 사면을 갖는 사다리꼴 형태의 프리즘에 굴절시켜, 1초 동안 3차원 광간섭 패턴을 조사하였다. 노광후 베이킹(post-expose baking) 공정을 95℃ 핫플레이트에서 실시한 후 유기용매를 이용하여 가교되지 않은 SU-8 포토레지스트 부분을 용해시켜 제거하고 2-프로판올(2-propanol)을 이용하여 불순물을 씻어 내어 광간섭 리소그래피 패턴을 형성하였다 (도 5). In order to form a photoresist pattern by optical interference lithography, first, a negative photoresist SU-8 is applied and spin coating is applied at this time, so that the thickness can be controlled by several tens of micrometers depending on the RPM to allow 2000 RPM on the blocking layer. After application, spin coating was performed twice, and SU-8 was applied to have a thickness of 8 μm. Then, after heat treatment on a 95 ℃ hot plate (hot plate) for 3 minutes, the laser of 488 nm wavelength was refracted in a trapezoid-shaped prism having a slope, and the three-dimensional optical interference pattern was irradiated for 1 second. The post-expose baking process was performed on a 95 ° C hotplate, and then dissolved by removing an uncrosslinked portion of the SU-8 photoresist using an organic solvent, and impurities were removed using 2-propanol. Washed out to form an optical interference lithography pattern (FIG. 5).
광간섭 리소그래피 패턴의 기공 내에 콜로이드 입자의 침투는 스핀 코팅 방법을 이용하였다. 콜로이드 입자로 폴리스타이렌 입자를 사용하였으며, 입자의 지름이 각각 60 nm, 80 nm, 110 nm 가 되는 콜로이드 입자를 사용하였다. 광간섭 리소그래피의 패턴에 콜로이드 입자를 떨어뜨려, 패턴 내부로 콜로이드를 침투시켰다. 2000 RPM에 30초 동안 스핀 코팅하였다. 도 6a 내지 6c는 광간섭 리소그래피 법으로 형성된 포토레지스트와 상기 포토레지스트 패턴 내에 콜로이드 입자가 삽입되어 조립된 상태를 나타내는 전자 현미경 표면 사진이다. 도 6a 내지 6c에서 콜로이드 입자의 직경은 각각 60 nm, 80 nm, 110 nm 이었다.Penetration of the colloidal particles in the pores of the optical interference lithography pattern was used by the spin coating method. Polystyrene particles were used as colloidal particles, and colloidal particles having diameters of 60 nm, 80 nm, and 110 nm were used, respectively. Colloidal particles were dropped in the pattern of optical interference lithography to penetrate the colloid into the pattern. Spin coated at 2000 RPM for 30 seconds. 6A to 6C are electron microscope surface photographs showing a state in which a photoresist formed by optical interference lithography and a colloidal particle are assembled into the photoresist pattern. 6A to 6C, the diameters of the colloidal particles were 60 nm, 80 nm, and 110 nm, respectively.
광전극의 형성을 위하여 상기 콜로이드 입자가 주입된 포토레지스트 패턴 에 이산화티타늄 전구체를 주입하였다. 상기 이산화티타늄 전구체는 졸-겔 반응을 일으킬 수 있는 용액 상태의 전구체 또는 용매에 희석된 것을 사용하였으며, 구체적으로, 상기 이산화티타늄 전구체로 에탄올과 물을 용매로 사용한 1 M 사염화티타늄(TiCl4) 수용액을 사용하였다. 상기 포토레지스트 패턴에 상기 이산화티타늄 전구체를 주입한 뒤 500℃의 소성 공정을 1 시간 동안 실시하여 상기 콜로이드 입자가 주입된 포토레지스트 패턴을 제거함으로써 다공성 이산화티타늄 층을 포함하는 광전극을 형성하였다. In order to form a photoelectrode, a titanium dioxide precursor was injected into the photoresist pattern into which the colloidal particles were injected. The titanium dioxide precursor was used as a solution or a precursor diluted in a solvent capable of causing a sol-gel reaction. Specifically, 1 M aqueous titanium tetrachloride (TiCl 4 ) solution using ethanol and water as a solvent as the titanium dioxide precursor. Was used. After the titanium dioxide precursor was injected into the photoresist pattern, a baking process at 500 ° C. was performed for 1 hour to form a photoelectrode including a porous titanium dioxide layer by removing the photoresist pattern into which the colloidal particles were injected.
이어서, 상기 광전극에 포함되는 이산화티타늄 표면에 염료를 흡착하였다. 상기 염료로는 루테늄계 염료분자인 N719 염료를 Dyesol 회사로부터 구입하여 사용하였다. N719를 무수 에탄올(anhydrous ethanol)에 분산시켜 0.5 mM 의 농도로 맞추어 리소그래피로 만든 광전극을 하루 동안 담가 상기 염료를 흡착시킨 후 세척 및 건조하여, 염료가 흡착된 다공성 이산화티타늄층을 포함하는 광전극을 제조하였다. 도 7a 내지 도 7c는 상기 포토레지스트 패턴과 콜로이드 자기조립층을 제거하여 다공성 이산화티타늄 층을 포함하는 광전극의 전자 현미경 사진이다. 상기 제조 방법에 의하여 형성되는 상기 3차원 다공성 이산화티타늄 층은 복수의 다공성 이산화티타늄 구형 구조체를 포함하고, 상기 구형 구조체들 사이의 기공들이 서로 연결되어 있으며, 또한, 상기 복수의 다공성 이산화티타늄 구형 구조체 각각의 내부에도 기공들이 서로 연결되어 있다. 도 7a 내지 도 7c에서 복수의 다공성 이산화티타늄 구형 구조체 내의 기공의 직경은 각각 약 60 nm, 80 nm, 110 nm이었다. Subsequently, the dye was adsorbed onto the surface of titanium dioxide included in the photoelectrode. As the dye, N719 dye, a ruthenium-based dye molecule, was purchased from Dyesol company. A photoelectrode comprising a porous titanium dioxide layer adsorbed with dyes by dipping N719 in anhydrous ethanol and soaking the photoelectrode made by lithography at a concentration of 0.5 mM for one day to adsorb the dye, followed by washing and drying. Was prepared. 7A to 7C are electron micrographs of a photoelectrode including a porous titanium dioxide layer by removing the photoresist pattern and the colloidal self-assembled layer. The three-dimensional porous titanium dioxide layer formed by the manufacturing method includes a plurality of porous titanium dioxide spherical structures, the pores between the spherical structures are connected to each other, and each of the plurality of porous titanium dioxide spherical structures The pores are also connected to each other inside. 7A to 7C, the diameters of pores in the plurality of porous titanium dioxide spherical structures were about 60 nm, 80 nm, and 110 nm, respectively.
한편, 전도성 투명 기판에 평행하게 배치되어 있는 반대전극은 유리 기판에 투명전극을 형성한 후, 백금층을 형성하여 상대전극을 제조하였다. 구체적으로, 백금층의 형성은 염화백금산(H2PtCl6) 용액을 전도성 투명 기판에 붓을 이용해 바르고 130℃ 핫플레이트에 놓고 용매를 증발시켰으며, 450℃에서 30분 동안의 열처리를 하여 백금층을 형성하여 상기 상대전극을 제조하였다.On the other hand, the counter electrode disposed in parallel to the conductive transparent substrate was formed by forming a transparent electrode on the glass substrate, a platinum layer to prepare a counter electrode. Specifically, the platinum layer was formed by applying a chloroplatinic acid (H 2 PtCl 6 ) solution to a conductive transparent substrate using a brush, placing the plate on a 130 ° C. hot plate, and evaporating the solvent, and performing a heat treatment at 450 ° C. for 30 minutes. To form a counter electrode.
이어서, 상기 광전극과 백금이 도포된 상대전극 사이에 전해질을 주입하였으며, 상기 전해질은 상기 다공성 이산화티타늄 층을 포함하는 광전극의 기공 내부에도 침투할 수 있다. 구체적으로, 전해질은 요오드계 산화-환원 쌍을 갖는 액체 전해질로서, 0.1 M 의 리튬요오드화물(lithium iodide), 0.05 M 아이오딘(Iodine), 0.5 M 의 4-터트부틸피리딘(4-tertbutylpyridine; TBP)을 아세토나이트릴(acetonitrile)에 용해 시킨 후 사용하였으며, 전해질 용액이 새어 나오지 않도록 하기 위해 25 ㎛ 두께의 설린(Surlyn)을 밀봉부로서 사용하였다.Subsequently, an electrolyte was injected between the photoelectrode and the counter electrode coated with platinum, and the electrolyte may penetrate into the pores of the photoelectrode including the porous titanium dioxide layer. Specifically, the electrolyte is a liquid electrolyte having an iodine-based redox pair, which is 0.1 M of lithium iodide, 0.05 M of Iodine, and 0.5 M of 4-tertbutylpyridine; TBP ) Was used after dissolving in acetonitrile, and 25 µm thick Surlyn was used as a seal to prevent leakage of the electrolyte solution.
상기 실시예에 따라 제조된 염료감응 태양전지를 AM 1.5, 100 mW/㎠ 조건에서 전류밀도(Jsc), 전압(Voc), 충진계수(FF) 및 에너지 변환효율(EFF.) 값을 측정하였고, 그 결과는 도 8 및 하기 표 1에 나타난 바와 같다.The dye-sensitized solar cell manufactured according to the above example was measured for current density (Jsc), voltage (Voc), filling factor (FF) and energy conversion efficiency (EFF.) At AM 1.5 and 100 mW / cm 2. The results are shown in FIG. 8 and Table 1 below.
표 1
Figure PCTKR2011004703-appb-T000001
Table 1
Figure PCTKR2011004703-appb-T000001
또한, 본원에 따른 3차원 광간섭 리소그래피 및 콜로이드 입자 자기조립법에 의해 형성된 다공성 이산화티타늄 층을 이용하여 제조된 광전극을 포함하는 염료감응 태양전지의 광 전류-전압 특성을 도 8에 도시하였다.In addition, the photocurrent-voltage characteristics of the dye-sensitized solar cell including the photoelectrode manufactured by using the porous titanium dioxide layer formed by the three-dimensional optical interference lithography and colloidal particle self-assembly according to the present application is shown in FIG.
이상, 구현예 및 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 상기 구현예 및 실시예들에 한정되지 않으며, 여러 가지 다양한 형태로 변형될 수 있으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함이 명백하다.Although the present invention has been described in detail with reference to embodiments and examples, the present invention is not limited to the above embodiments and embodiments, and may be modified in various forms, and within the technical spirit of the present invention. It is obvious that many modifications are possible to those skilled in the art.

Claims (23)

  1. 전도성 투명 기판 상에 포토레지스트 층을 형성하고;Forming a photoresist layer on the conductive transparent substrate;
    상기 포토레지스트 층에 3차원 광간섭 패턴을 조사하는 것을 포함하는 광간섭 리소그래피를 이용하여 3차원 다공성 포토레지스트 패턴을 형성하고;Forming a three-dimensional porous photoresist pattern using optical interference lithography comprising irradiating the photoresist layer with a three-dimensional optical interference pattern;
    상기 3차원 다공성 포토레지스트 패턴의 기공 내에 고분자 콜로이드 입자를 삽입하여 고분자 콜로이드 자기조립체를 형성하고;Inserting the polymer colloidal particles into the pores of the three-dimensional porous photoresist pattern to form a polymer colloid self-assembly;
    상기 고분자 콜로이드 자기조립체가 형성된 3차원 다공성 포토레지스트 패턴 내로 전이금속 산화물 전구체를 주입하고; 및Injecting a transition metal oxide precursor into a three-dimensional porous photoresist pattern on which the polymer colloidal self-assembly is formed; And
    가열 소성 공정을 이용하여 상기 포토레지스트 패턴 및 상기 고분자 콜로이드 자기조립체를 제거하여 복수의 다공성 전이금속 산화물 구형 구조체를 포함하는 3차원 다공성 전이금속 산화물 층을 형성하는 것:Removing the photoresist pattern and the polymer colloidal self-assembly using a heat firing process to form a three-dimensional porous transition metal oxide layer comprising a plurality of porous transition metal oxide spherical structures:
    을 포함하는, 광전극의 제조 방법.It includes, the manufacturing method of the photoelectrode.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 포토레지스트 층을 형성하기 전에 상기 전도성 투명 기판 상에 차단층을 형성하는 것을 추가 포함하는, 광전극의 제조 방법.And forming a blocking layer on the conductive transparent substrate prior to forming the photoresist layer.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 다공성 포토레지스트 패턴의 기공의 크기는 수십 나노미터 내지 수 마이크로미터 범위인, 광전극의 제조 방법.The pore size of the three-dimensional porous photoresist pattern is in the range of several tens of nanometers to several micrometers, the manufacturing method of the photoelectrode.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 콜로이드 입자의 크기는 상기 3차원 다공성 포토레지스트 패턴의 기공의 크기보다 작은 것인, 광전극의 제조 방법.The size of the polymer colloidal particles is smaller than the size of the pores of the three-dimensional porous photoresist pattern, the manufacturing method of the photoelectrode.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 광간섭 패턴은 단순입방구조, 면심입방구조 또는 체심입방구조를 가지는 것인, 광전극의 제조 방법.The three-dimensional optical interference pattern has a simple cubic structure, a surface centered cubic structure or a body centered cubic structure, the manufacturing method of the photoelectrode.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 포토레지스트 층은 포지티브 타입(positive type)의 포토레지스트 또는 네거티브 타입(negative type) 포토레지스트를 포함하는 것인, 광전극의 제조 방법.And the photoresist layer comprises a positive type photoresist or a negative type photoresist.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 다공성 포토레지스트 패턴을 형성하는 것은, 노광후 베이킹(post-exposure baking) 및 현상(development) 공정을 추가 포함하는 것인, 광전극의 제조 방법.Forming the three-dimensional porous photoresist pattern, further comprising a post-exposure baking and development (development) process, the manufacturing method of the photoelectrode.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 다공성 포토레지스트 패턴의 기공의 크기는 상기 3차원 광간섭 패턴의 조사 시간에 의하여 조절되는 것인, 광전극의 제조 방법.The pore size of the three-dimensional porous photoresist pattern is controlled by the irradiation time of the three-dimensional optical interference pattern, the manufacturing method of the photoelectrode.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 3차원 다공성 포토레지스트 패턴의 기공의 크기는 상기 노광후 베이킹 시간에 의하여 조절되는 것인, 광전극의 제조 방법.The pore size of the three-dimensional porous photoresist pattern is to be controlled by the post-exposure baking time, the manufacturing method of the photoelectrode.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 전이금속 산화물 전구체는 Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 화합물을 포함하는 것인, 광전극의 제조 방법.The transition metal oxide precursor is selected from the group consisting of Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof Method for producing a photoelectrode comprising a compound of the transition metal to be.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 콜로이드 입자는 폴리스타이렌(polystyrene; PS), 폴리메틸메타크릴레이트([Poly(methyl methacrylate); PMMA)], 폴리스타이렌/폴리디비닐벤젠(polystyrene/poly divinylbenzene; PS/DVB), 폴리아미드(polyamide), 폴리(부틸메타크릴레이트-디비닐벤젠)[poly(butylmethacrylate)-divinylbenzene; PBMA] 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 것인, 광전극의 제조 방법.The polymer colloidal particles are polystyrene (PS), polymethyl methacrylate ([Poly (methyl methacrylate); PMMA)], polystyrene / poly divinylbenzene (PS / DVB), polyamide (polyamide). ), Poly (butylmethacrylate-divinylbenzene) [poly (butylmethacrylate) -divinylbenzene; PBMA] and a combination thereof, the method of manufacturing a photoelectrode.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 콜로이드 자기조립체를 형성하는 것은, 상기 3차원 다공성 포토레지스트 패턴에 상기 고분자 콜로이드 입자가 분산된 용액을 코팅하는 것을 포함하는 공정에 의하여 수행되는 것인, 광전극의 제조 방법.Forming the polymer colloidal self-assembly is performed by a process comprising coating a solution in which the polymer colloidal particles are dispersed in the three-dimensional porous photoresist pattern.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 다공성 포토레지스트 패턴의 기공 내에 고분자 콜로이드 입자를 삽입하기 전에, 상기 3차원 다공성 포토레지스트 패턴의 기공 표면을 친수성으로 개질하는 것을 추가 포함하는, 광전극의 제조 방법.Before inserting the polymer colloidal particles into the pores of the three-dimensional porous photoresist pattern, further comprising modifying the pore surface of the three-dimensional porous photoresist pattern to hydrophilic.
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13,
    상기 3차원 다공성 전이금속 산화물 층에 감광성 염료를 흡착시키는 것을 추가 포함하는, 광전극의 제조 방법.The method of manufacturing a photoelectrode further comprises adsorbing a photosensitive dye on the three-dimensional porous transition metal oxide layer.
  15. 전도성 투명 기판; 및Conductive transparent substrates; And
    상기 전도성 투명 기판 상에 형성된, 복수의 다공성 전이금속 산화물 구형 구조체를 포함하는 3차원 다공성 전이금속 산화물 층:A three-dimensional porous transition metal oxide layer comprising a plurality of porous transition metal oxide spherical structures formed on the conductive transparent substrate:
    을 포함하는, 광전극.Comprising a photoelectrode.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 복수의 다공성 전이금속 산화물 구형 구조체들 사이의 기공들이 서로 연결되어 있으며, 상기 구형 구조체 각각의 내부의 기공들이 서로 연결되어 있는 것인, 광전극.The pores between the plurality of porous transition metal oxide spherical structures are connected to each other, and the pores inside each of the spherical structures are connected to each other.
  17. 제 15 항에 있어서,The method of claim 15,
    상기 전도성 투명 기판과 상기 3차원 다공성 전이금속 산화물 층 사이에 형성된 차단층을 추가 포함하는, 광전극.And a blocking layer formed between the conductive transparent substrate and the three-dimensional porous transition metal oxide layer.
  18. 제 15 항에 있어서,The method of claim 15,
    상기 복수의 다공성 전이금속 산화물 구형 구조체는 단순입방구조, 면심입방구조 또는 체심입방구조로 배열되어 있는 것인, 광전극. The plurality of porous transition metal oxide spherical structures are arranged in a simple cubic structure, a face centered cubic structure or a body centered cubic structure, the photoelectrode.
  19. 제 15 항에 있어서,The method of claim 15,
    상기 다공성 전이금속 산화물 구형 구조체 각각에 포함된 기공의 크기는 10 nm 내지 300 nm 인, 광전극.The pore size of each of the porous transition metal oxide spherical structure is 10 nm to 300 nm, the photoelectrode.
  20. 제 15 항에 있어서,The method of claim 15,
    상기 전이금속 산화물은 Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물을 포함하는 것인, 광전극.The transition metal oxide is selected from the group consisting of Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof The photoelectrode containing an oxide of a transition metal.
  21. 제 15 항 내지 제 20 항 중 어느 한 항에 있어서,The method according to any one of claims 15 to 20,
    상기 3차원 다공성 전이금속 산화물 층에 흡착된 감광성 염료를 추가 포함하는, 광전극. The photoelectrode further comprises a photosensitive dye adsorbed on the three-dimensional porous transition metal oxide layer.
  22. 제 21 항에 따른 광전극, 상기 광전극에 대향되는 상대 전극, 및 상기 광전극과 상기 상대 전극 사이에 위치하는 전해질을 포함하는, 염료감응 태양전지. 22. A dye-sensitized solar cell comprising the photoelectrode according to claim 21, a counter electrode facing the photoelectrode, and an electrolyte located between the photoelectrode and the counter electrode.
  23. 광전극, 상기 광전극에 대향되는 상대 전극, 및 상기 광전극과 상기 상대전극 사이에 위치하는 전해질을 포함하는 염료감응 태양전지의 제조 방법에 있어서, In the manufacturing method of the dye-sensitized solar cell comprising a photoelectrode, a counter electrode facing the photoelectrode, and an electrolyte located between the photoelectrode and the counter electrode,
    제 14 항에 따른 방법에 의하여 상기 광전극을 제조하고;Producing the photoelectrode by the method according to claim 14;
    상기 광전극에 이격되어 상대전극을 대향시키고;Spaced apart from the photoelectrode to face a counter electrode;
    상기 광전극과 상기 상대전극 사이에 전해질을 주입하는 것:Injecting an electrolyte between the photoelectrode and the counter electrode:
    을 포함하는, 염료감응 태양전지의 제조 방법.A method for producing a dye-sensitized solar cell comprising a.
PCT/KR2011/004703 2010-06-29 2011-06-28 Photoelectrode, method for manufacturing same, and dye-sensitized solar cell comprising same WO2012002697A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0062247 2010-06-29
KR1020100062247A KR101177399B1 (en) 2010-06-29 2010-06-29 Photoelectrode, preparing method of the same, and dye-sensitized solar cell having the same

Publications (2)

Publication Number Publication Date
WO2012002697A2 true WO2012002697A2 (en) 2012-01-05
WO2012002697A3 WO2012002697A3 (en) 2012-04-26

Family

ID=45402541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004703 WO2012002697A2 (en) 2010-06-29 2011-06-28 Photoelectrode, method for manufacturing same, and dye-sensitized solar cell comprising same

Country Status (2)

Country Link
KR (1) KR101177399B1 (en)
WO (1) WO2012002697A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362565B2 (en) 2012-04-04 2016-06-07 Nokia Technologies Oy Apparatus and associated methods
US10515768B2 (en) 2012-04-04 2019-12-24 Lyten, Inc. Apparatus and associated methods
US9324995B2 (en) 2012-04-04 2016-04-26 Nokia Technologies Oy Apparatus and associated methods
KR101364446B1 (en) * 2012-08-09 2014-02-19 서강대학교산학협력단 Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell including the same
KR101531536B1 (en) * 2012-09-12 2015-07-07 한국화학연구원 Fabrication method of inorganic―organic hybrid solar cells having morphology and porosity―controlled upper light harvester
KR101582318B1 (en) * 2014-10-10 2016-01-06 서강대학교산학협력단 Structure of photo crystal and forming method of the same
US9733467B2 (en) 2014-12-03 2017-08-15 Hyundai Motor Company Smart glass using guided self-assembled photonic crystal
KR101634620B1 (en) * 2015-03-27 2016-06-30 재단법인대구경북과학기술원 Preparation method of metal oxide photoelectrode, the metal oxide photoelectrode thereby, and Perovskite solar cells comprising the same
KR20220159262A (en) 2021-05-25 2022-12-02 (주)티엠텍 Machine for manufacturing seamless steel pipes
KR102414747B1 (en) 2022-04-04 2022-06-29 (주)티엠텍 Machine for manufacturing seamless steel pipes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060074233A (en) * 2004-12-27 2006-07-03 삼성전자주식회사 Photovoltaic cell and manufacturing method thereof
KR20090047300A (en) * 2007-11-07 2009-05-12 한국과학기술연구원 Dye-sensitived solar cell and fabrication method thereof
KR20100011184A (en) * 2008-07-24 2010-02-03 광주과학기술원 Nanoporous inorganic layer, method for fabricating the layer, photocatalyst layer including the layer, and dye-sensitized solar cell including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060074233A (en) * 2004-12-27 2006-07-03 삼성전자주식회사 Photovoltaic cell and manufacturing method thereof
KR20090047300A (en) * 2007-11-07 2009-05-12 한국과학기술연구원 Dye-sensitived solar cell and fabrication method thereof
KR20100011184A (en) * 2008-07-24 2010-02-03 광주과학기술원 Nanoporous inorganic layer, method for fabricating the layer, photocatalyst layer including the layer, and dye-sensitized solar cell including the same

Also Published As

Publication number Publication date
KR20120001456A (en) 2012-01-04
KR101177399B1 (en) 2012-08-27
WO2012002697A3 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2012002697A2 (en) Photoelectrode, method for manufacturing same, and dye-sensitized solar cell comprising same
Bella et al. Patterning dye-sensitized solar cell photoanodes through a polymeric approach: A perspective
KR100995073B1 (en) Module of dye-sensitized solar cell and fabrication method thereof
US8754323B2 (en) Dye-sensitized solar cell and process for producing the same
US20050166958A1 (en) Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same
US20090211639A1 (en) dye-sensitized solar cell having nanostructure absorbing multi-wavelength, and a method for preparing the same
US20140227828A1 (en) Dye-sensitized solar cell and method for manufacturing the same
JP2005520314A (en) Photocell
US20090114278A1 (en) Dye-sensitized solar cell and fabrication method thereof
Dissanayake et al. An innovative TiO2 nanoparticle/nanofibre/nanoparticle, three layer composite photoanode for efficiency enhancement in dye-sensitized solar cells
Ito et al. Study of Dye‐Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes
KR101085100B1 (en) Preparing method of photoelectrode and dye-sensitized solar cell having photoelectrode prepared by the same
WO2012148213A2 (en) Layered porous transition metal oxide structure, method for preparing same, photoelectrode having same, and dye-sensitized solar cell having said photoelectrode
KR101253563B1 (en) Dye-sensitized solar cell including scattering layer containing colloid crystal, and preparing method of the same
Shin et al. Observation of positive effects of freestanding scattering film in dye-sensitized solar cells
KR20120020938A (en) Photo electrode for dye-sensitized solar cell, manufacturing method of the same and dye-sensitized solar cell including the same
KR20120001896A (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
KR101274948B1 (en) Porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode
WO2011090232A1 (en) Method for fabricating a photoelectrode using optical interference lithography, and dye-sensitized solar cell including the photoelectrode fabricated using the method
WO2013062269A1 (en) Chloride ion-adsorbed titanium dioxide nanoparticles, and preparation method thereof
KR101665637B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
KR101196819B1 (en) Photoelectrode for dye-sensitized solar cell having 1-dimensional pores, preparing method of the same, and dye-sensitized solar cell having the same
KR101451114B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell including the same
KR20110136271A (en) Preparing method of photoelectrode using chemical bath deposition, photoelectrode by the same, and dye-sensitized solar cell having the photoelectrode
KR101363593B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11801103

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11801103

Country of ref document: EP

Kind code of ref document: A2