WO2012002493A1 - 光学ガラスの仮想温度の測定方法 - Google Patents

光学ガラスの仮想温度の測定方法 Download PDF

Info

Publication number
WO2012002493A1
WO2012002493A1 PCT/JP2011/065053 JP2011065053W WO2012002493A1 WO 2012002493 A1 WO2012002493 A1 WO 2012002493A1 JP 2011065053 W JP2011065053 W JP 2011065053W WO 2012002493 A1 WO2012002493 A1 WO 2012002493A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measured
sample
measuring
velocity
Prior art date
Application number
PCT/JP2011/065053
Other languages
English (en)
French (fr)
Inventor
淳一 櫛引
元孝 荒川
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US13/805,339 priority Critical patent/US20130103342A1/en
Priority to DE112011102193T priority patent/DE112011102193T5/de
Priority to JP2012522692A priority patent/JP5626927B2/ja
Publication of WO2012002493A1 publication Critical patent/WO2012002493A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Definitions

  • the present invention relates to glass used for optical applications such as lenses, prisms, and photomasks, and more particularly to a method for measuring a virtual temperature that affects the refractive index, transmittance, ultraviolet resistance, and expansion coefficient of optical glass.
  • quartz glass has three major characteristics: extremely high light transmittance, excellent heat resistance, and extremely low metal impurities, and is indispensable as a material for manufacturing semiconductor devices and cable materials for optical communication. It is a material that can not be.
  • Silica-titania glass TiO 2 —SiO 2 glass
  • EUVL extreme ultraviolet lithography
  • Quartz glass manufacturing methods are roughly classified into two types: fused quartz glass obtained by melting natural quartz powder, and synthetic quartz glass that is chemically synthesized.
  • a gel body is formed by hydrolysis and polycondensation reaction in a solution obtained by adding water, alcohol or hydrochloric acid to silicon alkoxide such as Si (OC 2 H 5 ) 4, and after drying this There is a sol-gel method for vitrification by heating.
  • synthetic quartz glass with less metal impurities of 10 ppb or less is used.
  • Optical applications generally require uniformity of refractive index, high transmittance, no defects that cause light scattering, and the like for lenses for reduction projection exposure devices (steppers).
  • the refractive index, transmittance, and UV resistance of synthetic quartz glass and silica / titania glass vary depending on the concentration of OH groups, other impurities, and F and Ti added as additives.
  • the OH concentration mixed during the manufacturing process is usually 500 to 2000 [wtppm] in the synthetic quartz glass of the direct method (type III), and is produced by the vapor phase axial (VAD) method, which is one of the soot methods. Since synthetic quartz glass has a concentration of 50 to 200 [wtppm], it is important to control the concentration of impurities such as OH during the manufacturing process in addition to the concentration control of additives.
  • Non-Patent Document 1 As a method for measuring the virtual temperature, a method using Raman spectroscopy or a method using infrared spectroscopy is used.
  • the method shown in Non-Patent Document 1 For the measurement of the fictive temperature by infrared spectroscopy, the method shown in Non-Patent Document 1 is well known.
  • the method shown in Non-Patent Document 2 As a method for measuring a fictive temperature by Raman spectroscopy, the method shown in Non-Patent Document 2 is well known.
  • Non-Patent Document 3 a method for obtaining a virtual temperature from a measured value of density using the relationship between the density of synthetic quartz glass and a virtual temperature is also known.
  • Non-Patent Document 4 reports that there is a linear relationship between the virtual temperature obtained from the density and the longitudinal wave velocity using the relationship between temperature and density.
  • Non-Patent Document 3 reports that the gradient of the fictive temperature dependence of density varies with the chlorine concentration.
  • Non-Patent Document 5 reports that the gradient of the virtual temperature dependence of density does not change depending on the OH concentration. As a result of further investigation, it was found that the coefficient fluctuates depending on the OH concentration contained in quartz glass, and it is difficult to introduce density measurement into the production line. This has led to the present invention.
  • the present invention solves the conventional problems related to the virtual temperature measurement method for optical glass, and does not require the preparation of a special sample for virtual temperature measurement, and is capable of measuring the virtual temperature with higher accuracy than before. It is an object to provide a method for measuring the fictive temperature of glass.
  • the method of measuring the fictive temperature of the optical glass according to the second aspect of the present invention (2-A) a step of performing heat treatment at different heat treatment temperatures for a plurality of calibration curve preparing glass samples having the same composition; (2-B) For the sample obtained in the step (2-A), one of the longitudinal wave velocity, the LSAW velocity, and the transverse wave velocity and the other one are set to the first acoustic characteristic AP 1 and the second acoustic wave, respectively.
  • the present invention it is possible to measure a virtual temperature with an accuracy one digit higher than that of a conventional virtual temperature measurement method, and it is possible to measure a virtual temperature of a material to be a product in a production line. It is possible to provide a method for measuring the virtual temperature of an optical glass capable of measuring the in-plane distribution of the virtual temperature of the sample to be measured.
  • the basic concept of the “virtual temperature measurement method” of the present invention is to improve the characteristics by adding not only synthetic quartz but also additives (fluorine, germanium, phosphorus, boron, etc.) according to the application.
  • concentration of a synthetic quartz glass sample, a strain point, a slow cooling point, and its preparation method It is a figure which shows the relationship between the heat processing temperature with respect to synthetic quartz glass # 1 and # 2, and an acoustic characteristic, A is a figure which shows the relationship between heat processing temperature and longitudinal wave sound velocity, B shows the relationship between heat processing temperature and LSAW velocity. It is a figure, C is a figure which shows the relationship between heat processing temperature and a shear-wave sound speed, D is a figure which shows the relationship between heat processing temperature and a density. It is a figure which shows the relationship between the longitudinal wave sound velocity and density with respect to synthetic quartz glass # 1 and # 2.
  • A is a figure which shows the relationship between virtual temperature and longitudinal wave sound velocity
  • B shows the relationship between virtual temperature and LSAW velocity
  • C is a figure which shows the relationship between heat processing temperature and a sound wave velocity
  • D is a figure which shows the relationship between fictive temperature and density.
  • Table 2 which shows the sensitivity with respect to virtual temperature of the acoustic characteristic of synthetic quartz glass, and resolution
  • Table 1 shown in FIG. 1 shows the specifications of the sample used in the examination experiment in carrying out the present invention.
  • the OH concentration was determined based on the method shown in Reference Document 1.
  • Synthetic quartz glass sample # 1 and sample # 2 have different OH concentrations and different glass characteristic temperatures (strain point and annealing point) because of different manufacturing processes. The values of strain point and annealing point are based on the data of the quartz glass manufacturer.
  • Samples prepared to create a calibration curve are # 1 cut out from one glass ingot and # 2 cut out from another glass ingot, each sample size is 60mm x 60mm ⁇ 15mm. Four samples cut from the same ingot are considered to have the same composition.
  • the samples shown in Table 1 were heat-treated in air using a high temperature electric furnace. First, in order to erase the thermal history of the sample, it was raised to a temperature about 50 ° C. higher than the annealing point of each sample, and then held for 5 hours (hereinafter, time is represented by h). Then, after the desired heat treatment temperature T A at a cooling rate of 5-10 ° C. / h, the samples were held for a long time in consideration of the structural relaxation time of each sample, release in the furnace by turning off the heater Chilled. Each sample was placed in a furnace with two 70 mm x 70 mm x 10 mm quartz glass plates sandwiched so that the fictive temperature distribution during heat treatment was small. The holding temperature of each sample was 1050, 1100, 1150, 1200 ° C. for the four samples # 1, respectively, 900, 1000, 1050, 1100 ° C. for the four samples # 2.
  • the sample was shaped into a size of 50 mm x 35 mm x 10 mm, and the 50 mm x 35 mm surface was optically polished on both sides.
  • the LSAW velocity was measured for the prepared sample using a linearly focused beam ultrasonic material analysis (LFB-UMC) system with an ultrasonic frequency of 225 MHz.
  • LLB-UMC linearly focused beam ultrasonic material analysis
  • the measurement principle and method of LSAW speed are detailed in Reference 2 and Reference 3.
  • longitudinal wave velocity and shear wave velocity were measured at an ultrasonic frequency of 50-250 MHz using a bulk planar ultrasonic material analysis (PW-UMC) system.
  • PW-UMC bulk planar ultrasonic material analysis
  • the measurement principle and method of longitudinal wave velocity and shear wave velocity are detailed in Reference Document 4.
  • the density ⁇ was measured based on Archimedes' principle. The measurement was performed based on Reference 5.
  • the system is calibrated using standard samples with longitudinal wave velocity, shear wave velocity, and density measurement. (Reference 6).
  • Figure 2 shows the results obtained, the relationship of the sample # 1 and # each four heat treatment temperature for 2 (retention temperature) T A and the acoustic properties of the synthetic quartz glass of the measurement.
  • the relationship between the heat treatment temperature and each acoustic characteristic was linear at temperatures below about 50 ° C below the annealing point (see Fig. 1). Deviated from its linearity. This is because the structural relaxation time is shortened when the heat treatment temperature is increased, and the fictive temperature becomes lower than the heat treatment temperature in the cooling process of the sample. In addition, when the cooling is performed in a time sufficiently shorter than the structure relaxation time, the fictive temperature becomes equal to the heat treatment temperature. From the results of FIG. 2, with respect to the heat treatment temperature T A, the change in longitudinal wave sound velocity it was found to be greatest.
  • FIG. 3 shows the result of determining the relationship between the longitudinal wave sound velocity and the density with the largest change with respect to the heat treatment temperature.
  • a linear relationship between longitudinal wave velocity and density was obtained for both synthetic quartz glass # 1 and # 2.
  • an approximate line is obtained by the least square method in data in a temperature range in which the heat treatment temperature and the virtual temperature can be regarded as being equal to each other, and on each approximate line corresponding to the longitudinal wave sound velocity of each sample in FIG.
  • FIG. 3 shows the least square method in data in a temperature range in which the heat treatment temperature and the virtual temperature can be regarded as being equal to each other, and on each approximate line corresponding to the longitudinal wave sound velocity of each sample in FIG.
  • FIG. 4A shows the result of plotting the corrected heat treatment temperature on the approximate line as the virtual temperature. That is, the two approximate lines are obtained from the data excluding the data of sample # 1 with heat treatment temperature of 1200 ° C. and sample # 2 with heat treatment temperatures of 1050 ° C. and 1100 ° C. in FIG. 2A.
  • the corrected heat treatment temperature is obtained as shown in FIG. 4A by plotting the longitudinal wave sound speeds of the four samples # 1 and the longitudinal wave sound speeds of the four samples # 2.
  • the LSAW speed in FIG. 2B, the transverse wave speed in FIG. 2C, the density in FIG. 2D are plotted, and these approximate lines are shown in FIGS. 4B and 4C. , 4D respectively. It can be seen that both characteristics have good linearity.
  • Table 2 in Fig. 5 shows the sensitivity and resolution of the acoustic characteristics with respect to the virtual temperature. From this result, it can be seen that the resolution of longitudinal sound velocity is very high at 0.3-0.4 ° C against the virtual temperature. Conventionally, the fictive temperature is measured by infrared spectroscopy or Raman spectroscopy, but the resolution is ⁇ 15 ° C. [Non-Patent Document 1] and ⁇ 60 ° C. [Non-Patent Document 2], respectively. For this reason, the measurement of the virtual temperature by the longitudinal wave velocity is 40 to 150 times higher than the conventional method and is extremely useful as a virtual temperature measurement method.
  • the approximate straight line in FIG. 4A is obtained as shown in Equation (1).
  • the longitudinal acoustic wave velocity V L is measured for the synthetic quartz glass to be measured having the same composition as the sample # 1 or # 2
  • the virtual temperature T f can be obtained using the equation (1).
  • the LSAW velocity or shear wave sound velocity data shown in FIGS. 2B and 2C the LSAW velocity or shear wave velocity of the synthetic quartz glass to be measured having the same composition is measured by directly determining the approximate heat treatment temperature as a virtual temperature.
  • the virtual temperature can be calculated from the approximate straight line.
  • an approximate linear expression (1) indicating the relationship between the virtual temperature and the longitudinal wave sound velocity shown in FIG. 4A by the longitudinal wave sound velocity with high sensitivity to the virtual temperature is obtained.
  • the virtual temperatures of Samples # 1 and # 2 plotted in the approximate straight line are obtained by correcting the heat treatment temperatures of Samples # 1 and # 2 in FIG. 2.
  • the corrected heat treatment temperatures are the virtual temperatures.
  • FIG. 4B obtained by plotting the LSAW speed of FIG. 2B
  • an approximate linear expression represented by the following equation is obtained in the same manner as FIG. 4A.
  • the virtual temperature T f of the sample can be calculated by measuring the LSAW speed V LSAW of the sample to be measured.
  • the virtual temperature at each position may be obtained from the approximate linear equation (2) shown in FIG. 4B using the measurement result of the LSAW velocity V LSAW at each position in the plane.
  • the virtual temperature may be obtained from the measured LSAW speed at each position as follows from the virtual temperature obtained from the equation (1) by measuring the longitudinal wave velocity at one point in the plane, for example, the center position.
  • T f (x, y) T f ⁇ V LSAW (x, y) ⁇ -T f (V LSAW-Std ) (3)
  • T f (x, y) T f ⁇ V LSAW (x, y) ⁇ -T f (V LSAW-Std )
  • T f (x, y) T f (V L-Std ) + ⁇ T f (x, y) (4) It is also possible to calibrate using the longitudinal wave sound velocity of the sample. Longitudinal wave acoustic velocity V LC and LSAW velocity V LSAW-C at the center of the sample, as well as a point on the sample surface (x, y) LSAW velocity V LSAW (x, y) in the measurement of performing. From equation (1), the precise value T f (V LC ) of the fictive temperature at the center of the sample is determined from the longitudinal sound velocity V LC .
  • the virtual temperature may be calculated from the transverse wave sound velocity of the sample to be measured using an approximate linear equation representing the relationship between the transverse wave sound velocity and the virtual temperature shown in FIG. 4C.
  • the reason why the gradient of the density ⁇ with respect to the virtual temperature T f of the sample # 1 and the sample # 2 is different is due to the difference in the OH concentration.
  • the longitudinal wave velocities V L and LSAW velocities V LSAW are measured and substituted into equations (1) and (2) using the above coefficients.
  • the virtual temperature T f can be obtained.
  • Non-Patent Document 5 the dependence of density ⁇ and fictive temperature T f on OH concentration is studied. Although the change in absolute value of density due to the difference in OH concentration was captured, the difference in slope with respect to the virtual temperature was not captured. For this reason, it has been found that the measurement error increases when the virtual temperature is obtained from the measured value of the density ⁇ using the relationship obtained in the past.
  • the ranges in which the heat treatment temperature and the acoustic characteristics are linear are 1150 ° C. or lower for sample # 1 and 1000 ° C. or lower for sample # 2.
  • the temperature was about 50 ° C. lower than the annealing point, and the temperatures were about 40 ° C. and about 110 ° C. higher than the strain point, respectively.
  • the structural relaxation time is shortened when the heat treatment temperature is increased, and the fictive temperature becomes lower than the heat treatment temperature in the cooling process of the sample.
  • the structural relaxation times at 1150 ° C. and 1000 ° C. are estimated to be 11 minutes and 16 minutes for samples # 1 and # 2, respectively.
  • the corresponding viscosity ⁇ is estimated to be 10 13.5 poise and 10 13.7 poise, respectively.
  • This result means that glass having a small fictive temperature distribution can be produced by lowering the heat treatment temperature in the heat treatment in the glass ingot production process.
  • the viscosity ⁇ is 10 14.5 poise, and the structure relaxation time is 47 minutes for sample # 1 and 14 hours for sample # 2.
  • the heat treatment temperature lower than the strain point, the virtual temperature distribution in the ingot resulting from the temperature distribution during the heat treatment cooling is reduced, and it is possible to produce a homogeneous large glass ingot.
  • the longitudinal sound velocity and the density are proportional. 4B and 4D, the LSAW speed and density are also proportional.
  • the resolution for longitudinal sound velocity density is 0.003 (kg / m 3 ) and 0.002 (kg / m 3 ), respectively, and the resolution for LSAW velocity density is 0.09 (kg / m 3 ), respectively. ), 0.08 (kg / m 3 ). From this, it is possible to measure the local density and its distribution by measuring longitudinal sound velocity and LSAW velocity.
  • the longitudinal wave sound velocity of the sample to be measured is only measured as in the first embodiment, and the hypothesis is obtained using the equation (1).
  • the temperature may be determined.
  • the longitudinal wave velocity is generally obtained from the propagation time of the longitudinal wave propagating in the thickness direction of the sample to be measured and the thickness of the sample to be measured. Longitudinal sound velocity has high resolution with respect to virtual temperature.
  • a parallel polishing process for the front and back surfaces of the sample to be measured is required. By reducing the measurement ultrasonic frequency (for example, about ⁇ 10 MHz), polishing required for the sample to be measured is required. The processing conditions are relaxed and it can be introduced into the mass production process.
  • the LSAW speed can be measured if the surface of the sample to be measured is flat by performing calibration using a standard sample, although the sensitivity to the virtual temperature is lower than the longitudinal wave sound speed.
  • the linearly focused beam device (LFB device) used in the above can be easily moved along the sample surface, the two-dimensional distribution, that is, the virtual temperature distribution on the sample surface can be measured. In particular, it can be introduced at an early stage of a mass production process in a mass production line with a stable production process.
  • the sensitivity of shear wave velocity to virtual temperature is lower than that of longitudinal wave velocity, and it is effective at the time of R & D because it is necessary to bond the sample to be measured to the ultrasonic device for measurement. It is difficult to introduce to LSAW speed.
  • Step S1 A plurality of synthetic quartz glass samples having the same composition as the sample to be measured are heat-treated at different temperatures, and calibration curve creation samples having different virtual temperatures are created.
  • Step S2 measuring longitudinal wave acoustic velocity for a plurality of calibration curve samples obtained in step S1, LSAW speed of sound, one of the shear wave velocity as the acoustic characteristics AP 1.
  • Step S3 From the measurement result in step S2, the heat treatment temperature as the virtual temperature T f in the linear range relationship between the heat treatment temperature T A and the acoustic characteristics AP l, as an approximate linear equation the relationship between virtual temperature and acoustic characteristics AP 1 Ask for.
  • Step S4 measuring the acoustic properties AP 1 of the measured sample.
  • Step S5 calculate the virtual temperature by substituting the acoustic characteristics AP 1 measured in the approximate linear equation.
  • step S1, S2, S3 are the same as in the first embodiment, longitudinal wave acoustic velocity, LSAW speed, yet another one acoustic characteristics in addition to any one acoustic characteristic AP 1 of shear wave velocity in the step S2 Measure AP 2 .
  • Step S3A in step S3 obtains another approximate linear equation representing the relationship between the acoustic characteristics AP 2 as measured by the virtual temperature T f and Step S2 obtained from acoustic characteristics AP l.
  • Step S4 ' measuring the acoustic characteristics AP 2 of the measured sample.
  • Step S5 ' determining the fictive temperature by using the measured approximate linear equation from the acoustic characteristics AP 2 obtained in step S3A.
  • step S4 If an approximate linear equation of equation (1) or equation (2) is obtained in advance for a calibration curve preparation sample manufactured under the same conditions as the sample to be measured, step S4, S5 or step S4 ′ , S5 ′, the virtual temperature can be obtained.
  • the fictive temperature of the optical glass and its distribution can be determined with higher accuracy than the conventional method, so that the glass manufacturer can use the fictive temperature of the produced glass and its distribution. It is possible to evaluate and evaluate the glass production process. By using this evaluation result, it can be used to improve glass manufacturing process conditions for manufacturing a glass whose virtual temperature and its distribution are controlled so as to have desired characteristics (for example, optical characteristics).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Glass Compositions (AREA)

Abstract

 被測定光学ガラスと同じ組成をもつとみなせる複数の検量線作成用光学ガラス試料に対して、それぞれ異なる温度で熱処理を行い、縦波音速、LSAW速度、横波音速のいずれか1つを音響特性AP1として測定し、熱処理温度と音響特性AP1が線形な範囲において、熱処理温度を仮想温度Tfとして、音響特性AP1に対する仮想温度の関係を近似線形式として求める。被測定光学ガラスの音響特性AP1を測定し、測定した音響特性AP1から近似線形式を使って仮想温度を計算する。

Description

光学ガラスの仮想温度の測定方法
 本発明は、レンズ、プリズム、フォトマスクなどの光学的な用途に使用されるガラスに関し、特に、光学ガラスの屈折率、透過率、紫外線耐性及び膨張係数に影響を与える仮想温度の測定方法に関する。
 例えば石英ガラスは、光の透過率が極めて高い、耐熱性に優れている、金属不純物が極めて少ない、という3つの大きな特徴を有しており、半導体素子製造用材料や光通信用ケーブル材料として欠かせない材料である。また、シリカ・チタニアガラス(TiO2-SiO2ガラス)は超低膨張ガラスとして極端紫外線リソグラフィー(Extreme Ultraviolet Lithography: EUVL)システムのフォトマスクブランクスや反射光学系の基体材料として注目されている。石英ガラスの製法は、天然の水晶粉を溶融した溶融石英ガラスと、化学的に合成する合成石英ガラスの2種類に大別される。溶融石英ガラスの製法には、電気で溶融する電気溶融法(タイプI)と酸水素火炎を用いて溶融を行う火炎溶融法(タイプII)とがあり、合成石英ガラスの製法には、四塩化ケイ素(SiCl4)やオクタメチルシクロテトラシロキサン(C8H24O4Si4)などを酸水素火炎中で加水分解させて石英ガラスの微粒子を直接堆積させる直接法(タイプIII)、酸水素火炎の代わりにArやO2の誘導プラズマを用いて合成するプラズマ法(タイプIV)のほか、四塩化ケイ素(SiCl4)などを熱分解してシリカのスス(スート)の塊を作り、これを焼き固めるスート法、さらに、Si(OC2H5)4などのシリコンアルコキシドに水、アルコール、塩酸を加えた溶液中で、加水分解と重縮合反応によりゲル体を作り、これを乾燥した後で加熱してガラス化するゾル・ゲル法などがある。
 レンズ、プリズム、フォトマスクなどの光学的な用途には、金属不純物が10 ppb以下と少ない合成石英ガラスが使用されている。光学的な用途としては、一般的に、屈折率の均一性、高い透過率、光散乱の原因となる欠陥の無いことなどが要求され、縮小投影露光装置(ステッパー)用レンズにおいては、これらに加えて紫外線の照射にともなう屈折率変化や透過率低下が少ないこと、すなわち紫外線耐性が高いことが要求される。合成石英ガラスやシリカ・チタニアガラスの屈折率、透過率、紫外線耐性は、製造工程で含まれるOH基やその他の不純物、添加物として加えられたFやTiなどの濃度によって変化する。製造プロセス中に混入するOH濃度は、通常、直接法(タイプIII)の合成石英ガラスにおいては500~2000[wtppm]、スート法の一つである気相軸付け(VAD)法で作られた合成石英ガラスにおいては50~200[wtppm]であるため、添加物の濃度管理に加えて、製造工程中のOHなど不純物の濃度管理が重要となる。
 また、合成石英ガラスの屈折率、透過率、紫外線耐性は、石英ガラスの仮想温度によっても大きく影響を受けることが知られている。同様に、シリカ・チタニアガラスの膨張係数が0となる温度も仮想温度の影響を受ける。このため、添加物や不純物の濃度が管理されたとしても、仮想温度を制御・評価する必要があり、製造ラインへの導入が可能でかつ精度の高い仮想温度の測定方法が要求されている。
 仮想温度の測定法としては、ラマン分光分析法を利用する方法や赤外線分光分析法を利用する方法が用いられている。赤外分光分析法による仮想温度の測定では、非特許文献1に示されている方法が良く知られている。ラマン分光分析法による仮想温度の測定法として、非特許文献2に示されている方法が良く知られている。
 また、非特許文献3や非特許文献5に報告されているように、合成石英ガラスの密度と仮想温度の関係を利用して、密度の測定値から仮想温度を求める方法も知られている。
 しかし、これら、従来の仮想温度測定法は、いずれの測定法を利用した場合でも、
(1) 仮想温度の測定精度が赤外分光分析法の場合に±15℃、ラマン分光分析法の場合に±60℃程度であり、不十分である。
(2) 仮想温度測定用の試料を準備する必要があり、製造ラインへの導入が困難である。
(3) 基板表面の仮想温度分布の測定が困難である。
(4) 密度による仮想温度評価では、試料の平均的な値しか得られない。
などの欠点があった。
 さらに、本発明者らは、合成石英ガラスの密度と縦波音速の関係についてすでに検討を行っており、それらの間に線形な関係があることを見出し、非特許文献3に報告されている仮想温度と密度の関係を利用し、密度から求めた仮想温度と縦波音速の間に線形な関係があることを非特許文献4で報告している。
 非特許文献3においては、密度の仮想温度依存性の傾きが塩素濃度により変化することが報告されている。一方、非特許文献5においては、密度の仮想温度依存性の傾きはOH濃度によっては変化しないと報告されている。検討を進めた結果、仮想温度と密度の関係は、石英ガラスに含まれるOH濃度によりその係数が変動することがわかり、さらには、密度の測定を製造ラインに導入することが困難であることから、本発明に至ったものである。
A. Agarwal, K. M. Davis, and M. Tomozawa, "A simple IR spectroscopic method for determining fictive temperature of silica glasses, " J. Non-Cryst. Solids, Vol. 185, pp. 191-198 (1995). A. E. Geissbergerand F. L. Galeener, "Raman studies of vitreous SiO2versus fictive temperature," Phys. Rev. B, Vol. 28, pp. 3266-3271 (1983). H. Kakiuchida, E. H. Sekiya, N. Shimodaira, K. Saito, and A. J. Ikushima, "Refractive index and density changes in silica glass by halogen doping," J. Non-Cryst. Solids, Vol. 353, pp. 568-572 (2007). 荒川, 島村, 櫛引, "超音波マイクロスペクトロスコピー技術による合成石英ガラスの評価," 信学技報, Vol. US2008-34, pp. 13-18 (2008.9). J. E. Shelby, "Density of vitreous silica," J. Non-Cryst. Solids, Vol. 349, pp. 331-336 (2004).
 本発明は、光学ガラスの仮想温度測定法に関する従来の問題を解決し、仮想温度測定用の特別の試料を準備する必要がなく、仮想温度を従来よりも高精度で測定することが可能な光学ガラスの仮想温度の測定方法を提供することを課題とする。
 この発明の第1の観点による光学ガラスの仮想温度を測定する方法は、
 (1-A) 同一の組成をもつ複数の検量線作成用ガラス試料に対し、それぞれ異なる熱処理温度で熱処理を行う工程と、
 (1-B) 前記工程(1-A)で得られた試料に対して縦波音速、漏洩弾性表面波(LSAW)速度、横波音速のいずれか1つを音響特性AP1として測定する工程と、
 (1-C) 前記熱処理温度を仮想温度とし、前記工程(1-B)で得られた音響特性AP1との関係を近似する次式
       Tf=a×AP1+b
で表される近似直線式を決める工程と、Tfは仮想温度、aとbは定数であり、
 (1-D) 前記検量線作成用ガラス試料と同一の組成をもつ被測定用光学ガラス試料に対して音響特性AP1を測定し、前記近似直線式を用いて仮想温度Tfを計算により求める工程、
とを含む。
 この発明の第2の観点による光学ガラスの仮想温度を測定する方法は、
 (2-A) 同一の組成をもつ複数の検量線作成用ガラス試料に対し、それぞれ異なる熱処理温度で熱処理を行う工程と、
 (2-B) 前記工程(2-A)で得られた試料に対して縦波音速、LSAW速度、横波音速のいずれか1つと他の1つをそれぞれ第1音響特性AP1及び第2音響特性AP2として測定する工程と、
 (2-C) 前記熱処理温度を仮想温度とし、前記第1音響特性AP1との関係を近似する次式
       Tf=a×AP1 + b 
で表される第1近似直線式を決める工程と、Tfは仮想温度、aとbは定数であり、
 (2-D) 前記工程(2-C)で得られた仮想温度Tfと前記第2音響特性AP2との関係を表す次式
       Tf=c×AP2 + d 
で表される第2近似直線式を決める工程と、cとdは定数であり、
 (2-E) 前記検量線作成用ガラス試料と同一の組成をもつ被測定用の光学ガラス試料に対して前記第2音響特性AP2を測定し、その測定した第2音響特性AP2から前記第2近似直線式を用いて仮想温度Tfを求める工程、
とを含む。
 本発明によれば、従来の仮想温度測定法と比較して一桁以上高い精度で仮想温度の測定が可能であり、生産ラインの中で、製品となる素材の仮想温度の測定が可能であり、被測定試料の仮想温度の面内分布を測定することが可能な光学ガラスの仮想温度の測定方法を提供することができる。
 さらに、本発明の「仮想温度の測定方法」の基本的な考え方は合成石英だけでなく、用途に合わせて添加物(フッ素、ゲルマニウム、リン、ホウ素など)を添加して特性改善を図っている合成石英ガラスや残留不純物(塩素、OHなど)が存在する合成石英ガラス、溶融石英ガラス、超低膨張ガラスであるTiO2-SiO2ガラス、および一般的なすべてのガラス材料(硼珪酸ガラス、ソーダライムガラスなど)の仮想温度の測定にも適用できるということはいうまでもない。
合成石英ガラス試料のOH濃度、歪点、徐冷点、及びその作製方法を示す表1を示す図。 合成石英ガラス#1と#2に対する熱処理温度と音響特性の関係を示す図であり、Aは熱処理温度と縦波音速との関係を示す図であり、Bは熱処理温度とLSAW速度の関係を示す図であり、Cは熱処理温度と横波音速との関係を示す図であり、Dは熱処理温度と密度の関係を示す図である。 合成石英ガラス#1と#2に対する縦波音速と密度の関係を示す図である。 合成石英ガラス#1と#2に対する仮想温度と音響特性の関係を示す図であり、Aは仮想温度と縦波音速との関係を示す図であり、Bは仮想温度とLSAW速度の関係を示す図であり、Cは熱処理温度と横波音速との関係を示す図であり、Dは仮想温度と密度の関係を示す図である。 合成石英ガラスの音響特性の仮想温度に対する感度と分解能を示す表2を示す図。 シリカ・チタニアガラスに対する熱処理温度と縦波音速の関係を示す図。 本発明による光学ガラスの仮想温度を求める手順を示すフローチャートである。
[実施例]
[準備]
 以下にまず光学ガラスとして合成石英ガラスの仮想温度の測定について説明する。
 図1に示す表1は、本発明を行うに当たり検討実験に用いた試料の仕様を示している。OH濃度は、参考文献1に示されている方法に基づき求めた。合成石英ガラス試料#1および試料#2は、製造プロセスが異なるため、含有されるOH濃度が異なっており、異なるガラス特性温度(歪点、徐冷点)を有している。なお、これら歪点と徐冷点の値は石英ガラスメーカの資料による。検量線を作成するために用意した試料は、#1が1つのガラスインゴットから切り出した4枚、#2がもう1つのガラスインゴットから切り出した4枚であり、各試料の大きさは60mm×60mm×15mmである。同一のインゴットから切り出された4つの試料は同一の組成であるとみなす。
 表1に示した試料に対して高温電気炉を用いて大気中で熱処理を行った。はじめに、試料の熱履歴を消去するために、各試料の徐冷点より50℃程度高い温度まで上げたあと、5時間(以下、時間をhで表す)保持した。その後、5-10℃/hの降温レートで所望の熱処理温度TAにした後、各試料の構造緩和時間を考慮して試料を長時間保持し、ヒーターの電源を切ることにより炉内で放冷した。熱処理時の仮想温度分布が小さくなるように、各試料を2枚の70mm×70mm×10mmの石英ガラス板ではさんで、炉内に設置した。各試料の保持温度は、4枚の試料#1に対してはそれぞれ1050, 1100, 1150, 1200℃、4枚の試料#2に対してはそれぞれ900, 1000, 1050, 1100℃とした。
 熱処理後、試料を50mm×35mm×10mmの大きさに整形し、50mm×35mmの面を両面光学研磨した。
 作製した試料に対して、直線集束ビーム超音波材料解析(LFB-UMC)システムを用いて、超音波周波数を225MHzとしてLSAW速度の測定を行った。LSAW速度の測定原理・方法は参考文献2と参考文献3に詳しい。また、バルク平面超音波材料解析(PW-UMC)システムを用いて、超音波周波数50-250MHzにおいて縦波音速と横波音速の測定を行った。縦波音速と横波音速の測定原理・方法は参考文献4に詳しい。さらに、アルキメデスの原理に基づき密度ρを測定した。測定は参考文献5に基づき行った。LFB-UMCシステムにより測定されるLSAW速度は測定システム(特に用いるLFB超音波デバイス)や測定周波数によって異なるため、縦波音速、横波音速、密度測定を行った標準試料を用いて、システムの校正を行った(参考文献6)。
 図2に、測定の結果得られた、合成石英ガラスの試料#1と#2に対する各4つの熱処理温度(保持温度)TAと音響特性の関係を示す。各試料に対して、徐冷点(図1参照)より約50℃低い温度以下では、熱処理温度と各音響特性との間の関係は線形であったが、それ以上の温度では、それらの関係はその線形性から外れた。これは、熱処理温度が高くなると構造緩和時間が短くなり、試料の冷却過程において、その仮想温度が熱処理温度よりも低くなるためである。また、構造緩和時間に比べて十分短い時間で冷却した場合には、仮想温度は熱処理温度に等しくなるということである。図2の結果より、熱処理温度TAに対して、縦波音速の変化が最も大きいことがわかった。
 非特許文献3で報告されているように、合成石英ガラスの仮想温度と密度の間には、線形の関係がある。熱処理温度に対する変化が最も大きい縦波音速と密度との間の関係を求めた結果を図3に示す。合成石英ガラス#1と#2のどちらに対しても、縦波音速と密度の間に線形の関係が得られた。これらの結果、仮想温度を反映して縦波音速が変化していることがわかった。そこで、縦波音速に対して、熱処理温度と仮想温度が等しいと見なせる温度範囲のデータにおいて最小二乗法により近似直線を求め、図2Aの各試料の縦波音速に対応するそれぞれの近似直線上に補正された熱処理温度を仮想温度としてそれぞれ近似直線上にプロットした結果を図4Aに示す。すなわち、2つの近似直線は図2Aにおいて熱処理温度1200℃の試料#1と、熱処理温度1050℃および1100℃の試料#2のデータを除いたデータから求めたものであり、この2つの近似直線上に図2Aの4つの試料#1の縦波音速と4つの試料#2の縦波音速とをプロットすることにより補正された熱処理温度が仮想温度として図4Aのように求まる。さらに、その近似直線を使って補正した各試料の熱処理温度を仮想温度として図2BのLSAW速度、図2Cの横波速度、図2Dの密度をプロットした結果と、それらの近似直線を図4B,4C,4Dにそれぞれ示す。いずれの特性も線形性が良いことがわかる。
 音響特性の仮想温度に対する感度と分解能を図5の表2に示す。この結果より、仮想温度に対して、縦波音速の分解能が0.3-0.4℃と非常に高いことがわかる。仮想温度の測定は、従来、赤外分光法やラマン分光法により行われるが、分解能はそれぞれ±15℃[非特許文献1]、±60℃[非特許文献2]である。このため、縦波音速による仮想温度の測定は、従来法よりも40-150倍分解能が高く、仮想温度測定法として極めて有用である。
 音響特性の仮想温度依存性の傾きは、OH濃度の違いに起因し、図4Aに示したように合成石英ガラス#1と合成石英ガラス#2で異なる。縦波音速をVLとすると図4Aから仮想温度Tfは次式で表される。
      Tf=a×VL+b            (1)
 ここで、a、bは、合成石英ガラスに含まれるOH濃度によって定まる定数であり、図4Aに示す試料#1、#2のデータに対し近似直線の定数はそれぞれ以下のようになる。
      試料#1:a=7.294、b=-42295
      試料#2:a=6.549、b=-37871
[第1実施例]
 前述の説明から、縦波音速、LSAW速度、横波音速のいずれか1つ、例えば縦波音速を音響特性として使用し、図4Aの近似直線を式(1) のように求めておくことにより、試料#1又は#2と同じ組成の被測定合成石英ガラスに対し、その縦波音速VLを測定すれば、式(1) を使って仮想温度Tfを求めることができる。同様に、図2B,2Cに示すLSAW速度又は横波音速のデータから熱処理温度を仮想温度とみなして直接近似直線を求めることにより、同じ組成の被測定合成石英ガラスのLSAW速度又は横波音速を測定して近似直線から仮想温度を計算することができる。
 縦波音速は仮想温度に対する感度が高い利点があるが、その測定には試料の厚さを測定する必要があり、そのため試料の両面を研磨する必要がある。しかも厚さの面内分布を測定するのは手間がかかる。これに対し、LSAW速度の測定は厚さを測定する必要がないので試料の片側表面を研磨すれば測定可能であり、しかも面内分布を測定することが容易である便利さがある。ただ、図2Bからわかるように、LSAW速度は熱処理温度に対する感度(近似直線の勾配)が小さいので、仮想温度の測定精度が悪い欠点がある。横波音速も図2Cからわかるように仮想温度に対する感度が小さい欠点がある。この欠点を改善する測定方法を第2実施例として以下に説明する。
[第2実施例]
 第2実施例では、まず仮想温度に対する感度の高い縦波音速による図4Aに示した仮想温度と縦波音速の関係を示す近似直線式(1) を求める。この近似直線状にプロットされた試料#1, #2の仮想温度は図2における試料#1, #2の熱処理温度を補正したものであり、前述のようにこの補正された熱処理温度を仮想温度として図2BのLSAW速度をプロットして得られた前述の図4Bから、図4Aと同様に次式で表される近似直線式を得る。
      Tf=c×VLSAW+d           (2)
 ここで、c、dも、合成石英ガラスに含まれるOH濃度によって定まる定数であり、試料#1、#2、それぞれに関して式(2)の定数cおよびdの値は、それぞれ、以下のようになる。
   試料#1:c=144、d=-4.922×105
   試料#2:c=187、d=-6.395×105
 このようにして得られた近似直線式(2) を使えば、被測定試料のLSAW速度VLSAWを測定することにより、その試料の仮想温度Tfを計算することができる。仮想温度の面内分布を測定する場合は、面内各位置でのLSAW速度VLSAWの測定結果を使って図4Bによる近似直線式(2) からそれぞれの位置の仮想温度を求めてもよいが、面内一点、例えば中心位置での縦波音速の測定により式(1) から得られた仮想温度により次のようにして各位置の測定LSAW速度から仮想温度を求めてもよい。
 測定試料の表面上の点(x, y)におけるLSAW速度VLSAW(x, y)、標準試料のLSAW速度VLSAW-Stdおよび縦波音速VL-Stdの測定を行い、式(1)より縦波音速VL-Stdから標準試料の仮想温度の精密値Tf(VL-Std)を求める。また、LSAW速度VLSAW-StdおよびVLSAW(x, y)から式(2)により標準試料の仮想温度Tf(VLSAW-Std)および試料面内の仮想温度分布Tf{VLSAW(x, y)}を求める。
    ΔTf(x, y)=Tf{VLSAW(x, y)}-Tf(VLSAW-Std)      (3)
として、測定試料の点(x, y)における仮想温度Tf(x, y)は、以下の式を用いて求めることが可能である。
    Tf(x, y) = Tf(VL-Std) + ΔTf(x, y)        (4)
 また、試料の縦波音速を用いて校正することも可能である。試料の中心において縦波音速VL-CとLSAW速度VLSAW-C、ならびに試料表面上の点(x, y)におけるLSAW速度VLSAW (x, y)の測定を行う。式(1)より縦波音速VL-Cから試料中心における仮想温度の精密値Tf(VL-C)を求める。また、LSAW速度VLSAW-CおよびVLSAW(x, y) から、式(2)により、試料中心における仮想温度Tf(VLSAW-C)、試料面内の仮想温度分布Tf{VLSAW(x, y)}を求める。これらの結果から、
    ΔTf(x, y)= Tf{VLSAW(x, y)}- Tf(VLSAW-C)      (5)
として次式(6)を用いて、試料表面上の仮想温度の面内分布Tf(x, y)を求めることができる。
    Tf(x, y)= Tf(VL-C)+ ΔTf(x, y)          (6)
 同様にして求めた図4Cに示した横波音速と仮想温度の関係を表す近似直線式を使って、被測定試料の横波音速から仮想温度を計算してもよい。
 図4Dにおいて、試料#1と試料#2の仮想温度Tfに対する密度ρの傾きが異なっている原因はOH濃度の違いによるものである。OH濃度が0wtppmおよび1000wtppmの合成石英ガラスに対しては、縦波音速VLおよびLSAW速度VLSAWを測定することにより、前記の係数を使用した式(1)と式(2)に代入して仮想温度Tfを求めることが可能である。
 非特許文献5において、密度ρと仮想温度TfのOH濃度依存性が検討されている。OH濃度の違いによる密度の絶対値の変化は捉えられているものの、仮想温度に対する傾きの違いは捉えられていなかった。このため、従来の得られている関係を利用して、密度ρの測定値から仮想温度を求める場合には、測定誤差が大きくなることがわかった。
 図2において、熱処理温度と音響特性が線形となる範囲は、試料#1に対しては1150℃以下、試料#2に対しては1000℃以下となった。いずれも徐冷点より約50℃低い温度であり、歪点よりもそれぞれ約40℃、約110℃高い温度となった。熱処理温度が高くなると構造緩和時間が短くなり、試料の冷却過程において、その仮想温度が熱処理温度よりも低くなるためである。また、参考文献7より、試料#1、#2に対して、それぞれ1150℃、1000℃における構造緩和時間は11分、16分と見積もられる。さらに、これに対応する粘度ηは、それぞれ1013.5 poise、1013.7 poiseと見積もられる。この結果より、ガラスインゴットの製造過程における熱処理において、熱処理温度を下げることにより仮想温度分布が小さいガラスを製造できることを意味している。歪点において、粘度ηは1014.5 poiseとなり、構造緩和時間は、試料#1に対しては47分、試料#2に対しては14時間となる。このため、熱処理温度を歪点よりも低くすることにより、熱処理冷却時の温度分布に起因するインゴット内の仮想温度分布が小さくなり、均質な大型ガラスインゴットの作製が可能となると考える。
 図3より、縦波音速と密度は比例している。また、図4Bと図4Dより、LSAW速度と密度も比例する。試料#1、#2に対して、縦波音速の密度に対する分解能はそれぞれ0.003 (kg/m3)、0.002 (kg/m3)となり、LSAW速度の密度に対する分解能はそれぞれ0.09 (kg/m3)、0.08 (kg/m3)となる。このことから、縦波音速やLSAW 速度を測定することにより、局所的な密度ならびにその分布の計測が可能となる。
 通常の製造工程で標準的な製造条件で製造された合成石英ガラスにおいては、一般にOHや塩素などの不純物濃度やFやTiなどの添加物濃度の標準値は把握され、その変動は小さいと考えることができる。
 従って、以上のような、標準的な製造工程で製造された合成石英ガラスに関しては、第1実施例のように被測定試料の縦波音速を測定するだけで、式(1)を用いて仮想温度を求めてもよい。縦波音速は、一般に、被測定試料の厚さ方向に伝搬する縦波の伝搬時間と被測定試料の厚さから求められる。縦波音速は仮想温度に対する分解能は高い。その測定のためには、被測定試料の、表面と裏面の平行研磨工程が必要となるが、測定超音波周波数を低くすること(例えば、~10MHz程度)により、被測定試料に要求される研磨加工条件が緩和され、量産工程への導入が可能となる。
 前述のように、LSAW速度は、仮想温度に対する感度が縦波音速よりは低いものの、標準試料を用いて校正を行うことにより被測定試料の表面が平坦であれば測定可能であり、LSAW速度測定に使用する直線集束ビームデバイス(LFBデバイス)を試料表面に沿って容易に移動できるので、二次元分布、すなわち、試料表面の仮想温度分布を測定できるという特徴がある。特に、製造工程が安定した量産ラインにおける量産工程の早い段階に導入することが可能になる。
 仮想温度に対する横波音速の感度は、縦波音速よりも低く、その測定のためには被測定試料を測定用超音波デバイスへ接着する必要があるため、研究開発時点では有効であるが、製造ラインへの導入はLSAW速度に比べて困難である。
[シリカ・チタニアガラス]
 上述では合成石英ガラスを例に仮想温度の測定方法を説明したが、次にこの測定原理をシリカ・チタニアガラスの仮想温度測定に適用した例を簡単に説明する。
 TiO2-SiO2超低膨張ガラスに対して本発明を適用した。市販のTiO2-SiO2超低膨張ガラスに対して均質化処理を行い、900℃~1100℃の温度でSiO2ガラスの場合と同様に熱処理を行った。用いた試料のTiO2濃度を蛍光X線分析法[参考文献8]により測定した結果、7.02-7.14 wt%であった。TiO2-SiO2超低膨張ガラスの縦波音速は、TiO2濃度、仮想温度、OH濃度に依存するため、TiO2濃度と縦波音速の間の関係[参考文献9]を利用して、縦波音速を7.00 wt%の値に補正した。熱処理温度と7.00 wt%における縦波音速との間の関係を図6に示す。TiO2-SiO2超低膨張ガラスの場合、式(1) の定数a、bは、以下のように求められる。
     a= 7.388、b= -41567
[仮想温度測定フローチャート]
 以上のように説明した第1及び第2実施例に基づいて、この発明による合成石英ガラスの仮想温度を評価するための基本的な処理手順を図7に示すフローチャートを参照にして以下に説明する。
 第1実施例の場合:
ステップS1:被測定試料と同じ組成の複数の合成石英ガラス試料に対してそれぞれ異なる温度で試料の熱処理を行い、異なる仮想温度の検量線作成用試料を作成する。
ステップS2:ステップS1で得られた複数の検量線作成用試料に対して縦波音速、LSAW音速、横波音速のいずれか1つを音響特性AP1として測定する。
ステップS3:ステップS2の測定結果から、熱処理温度TAと音響特性APlとの関係が線形な範囲において熱処理温度を仮想温度Tfとして、仮想温度と音響特性AP1の関係を近似直線式としてを求める。音響特性AP1として縦波音速VLを使用する場合は式(1) を得ることになる。
ステップS4:被測定試料の音響特性AP1を測定する。
ステップS5:測定した音響特性AP1を近似直線式に代入して仮想温度を計算する。
 第2実施例の場合:
ステップS1、S2,S3は第1実施例の場合と同じであるが、ステップS2において縦波音速、LSAW速度、横波音速のいずれか1つの音響特性AP1に加えてさらに他の1つの音響特性AP2を測定する。ステップS3以降は、
ステップS3A:ステップS3で音響特性APlから求めた仮想温度TfとステップS2で測定した音響特性AP2との間の関係を表すもう1つの近似直線式を求める。音響特性AP2としてLSAW速度を使用する場合は、式(2) を得ることになる。
ステップS4’:被測定試料の音響特性AP2を測定する。
ステップS5’:測定された音響特性AP2からステップS3Aで求めた近似直線式を用いて仮想温度を求める。
 被測定試料と同一条件で製造された検量線作成用試料に対して、式(1)あるいは式(2)の近似直線式が予め得られている場合には、ステップS4,S5あるいはステップS4’,S5’から仮想温度を求めることが可能である。
 本発明を用いることにより、光学ガラスの仮想温度、およびその分布を従来法よりも高精度に求めることができるため、ガラス製造業者が利用することにより、作製したガラスの仮想温度、およびその分布の評価、ならびにガラス作製プロセスの評価を行うことが可能である。この評価結果を用いることにより、所望の特性(例えば、光学特性)を有するように仮想温度、およびその分布を制御したガラスを作製するためのガラス作製プロセス条件の改善に用いることができる。
 [参考文献1]K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, ”Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass, ” J. Non-Cryst. Solids, Vol. 203, pp. 27-36 (1996).
 [参考文献2]J. Kushibikiand N. Chubachi, "Material characterization by line-focus-beam acoustic microscope," IEEE Trans. Sonics Ultrason., Vol. SU-32, pp. 189-212 (1985).
 [参考文献3]J. Kushibiki, Y. Ono, Y. Ohashi, and M. Arakawa, "Development of the line-focus-beam ultrasonic material characterization system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pp. 99-113 (2002).
 [参考文献4]J. Kushibiki, and M. Arakawa, "Diffraction effects on bulk-wave ultrasonic velocity and attenuation measurements," J. Acoust. Soc. Am., Vol. 108, pp. 564-573 (2000).
 [参考文献5]H. A. Bowman, R. M. Schoonover, and M. W. Jones, "Procedure for high precision density determinations by hydrostatic weighing," J. Res. Natl. Bur. Stand., Vol. 71C, pp. 179-198 (1967).
 [参考文献6]J. Kushibikiand M. Arakawa, "A method for calibrating the line-focus-beam acoustic microscopy system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 45, pp. 421-430 (1998).
 [参考文献7]K. Saito and A. Ikushima, ”Structural relaxation enhanced by impurities in silica glasses,” AIP Conf. Proc., pp. 507-512 (1999).
 [参考文献8]M. Arakawa, J. Kushibiki, Y. Ohashi, and K. Suzuki, "Accurate calibration line for super-precise coefficient of thermal expansion evaluation technology of TiO2-doped SiO2 ultra-low-expansion glass using the line-focus-beam ultrasonic material characterization system," Jpn. J. Appl. Phys., Vol. 45, pp. 4511-4515 (2006).
 [参考文献9]PCT/JP2011/054192.

Claims (6)

  1.  光学ガラスの仮想温度を測定する方法であり、
     (1-A) 同一の組成をもつ複数の検量線作成用ガラス試料に対し、それぞれ異なる熱処理温度で熱処理を行う工程と、
     (1-B) 前記工程(1-A)で得られた試料に対して縦波音速、LSAW速度、横波音速のいずれか1つを音響特性AP1として測定する工程と、
     (1-C) 前記熱処理温度を仮想温度とし、前記工程(1-B)で得られた音響特性AP1との関係を近似する次式
           Tf=a×AP1+ b
    で表される近似直線式を決める工程と、Tfは仮想温度、aとbは定数であり、
     (1-D) 前記検量線作成用ガラス試料と同一の組成をもつ被測定用光学ガラス試料に対して音響特性AP1を測定し、前記近似直線式を用いて仮想温度Tfを計算により求める工程、
    とを含む光学ガラスの仮想温度の測定方法。
  2.  光学ガラスの仮想温度を測定する方法であり、
     (2-A) 同一の組成をもつ複数の検量線作成用ガラス試料に対し、それぞれ異なる熱処理温度で熱処理を行う工程と、
     (2-B) 前記工程(2-A)で得られた試料に対して縦波音速、LSAW速度、横波音速のいずれか1つと他の1つをそれぞれ第1音響特性AP1及び第2音響特性AP2として測定する工程と、
     (2-C) 前記熱処理温度を仮想温度とし、前記第1音響特性AP1との関係を近似する次式 
         T= a×AP1 + b 
    で表される第1近似直線式を決める工程と、Tfは仮想温度、aとbは定数であり、
     (2-D) 前記工程(2-C)で得られた仮想温度Tfと前記第2音響特性AP2との関係を表す次式
         Tf=c×AP2 + d 
       で表される第2近似直線式を決める工程と、cとdは定数であり、
     (2-E) 前記検量線作成用ガラス試料と同一の組成をもつ被測定用の光学ガラス試料に対して前記第2音響特性AP2を測定し、その測定した第2音響特性AP2から前記第2近似直線式を用いて仮想温度Tfを求める工程、
    とを含む光学ガラスの仮想温度の測定方法。
  3.  請求項1記載の光学ガラスの仮想温度の測定方法において、
     前記第1音響特性AP1は縦波音速であり、前記工程(1-D)は縦波速度の測定を前記被測定用試料の表面上の2点以上で測定を行うことにより、仮想温度の面内分布を求める工程を含む。
  4.  請求項2記載の光学ガラスの仮想温度の測定方法において、
     前記工程(2-B)において前記第1音響特性AP1として縦波音速、前記第2音響特性AP2としてLSAW速度を測定し、前記工程(2-E)は前記被測定ガラス試料の縦波音速の測定により仮想温度の精密な値を、LSAW速度を試料表面上の複数点の測定を行うことにより仮想温度の面内分布を求めることを含む。
  5.  請求項1乃至4のいずれか記載の測定方法において、光学ガラスは、OH濃度が0から2000 [wtppm]、金属不純物濃度が10 [wtppb]以下の合成石英ガラスである光学ガラスの仮想温度の測定方法。
  6.  光学ガラスの仮想温度の測定方法であり、
     (3-A)光学ガラスからなる被測定試料の縦波音速、LSAW速度、横波音速のいずれか1つを音響特性APとして測定する工程と、
     (3-B) 測定した前記音響特性APから、被測定試料と同一の組成をもつ検量線作成用ガラス試料に対して予め作成した音響特性APに対する仮想温度の近似直線式を用いて、仮想温度Tfを求める工程
    とを含む光学ガラスの仮想温度の測定方法。
PCT/JP2011/065053 2010-06-30 2011-06-30 光学ガラスの仮想温度の測定方法 WO2012002493A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/805,339 US20130103342A1 (en) 2010-06-30 2011-06-30 Method of Measuring Fictive Temperature of Optical Glass
DE112011102193T DE112011102193T5 (de) 2010-06-30 2011-06-30 Verfahren zur Messung der fiktiven Temperatur von optischem Glas
JP2012522692A JP5626927B2 (ja) 2010-06-30 2011-06-30 光学ガラスの仮想温度の測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010149961 2010-06-30
JP2010-149961 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002493A1 true WO2012002493A1 (ja) 2012-01-05

Family

ID=45402196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065053 WO2012002493A1 (ja) 2010-06-30 2011-06-30 光学ガラスの仮想温度の測定方法

Country Status (4)

Country Link
US (1) US20130103342A1 (ja)
JP (1) JP5626927B2 (ja)
DE (1) DE112011102193T5 (ja)
WO (1) WO2012002493A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010877A (ja) * 2013-06-27 2015-01-19 日本電信電話株式会社 光ファイバの仮想温度の長手方向分布の評価方法
JP2015175830A (ja) * 2014-03-18 2015-10-05 淳一 櫛引 強化ガラスの表面特性の測定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238790B2 (ja) * 2017-12-25 2023-03-14 Agc株式会社 チタニア含有シリカガラス体の熱膨張特性の評価方法およびチタニア含有シリカガラス体の製造方法
WO2024105438A1 (en) * 2022-11-17 2024-05-23 Ecole Polytechnique Federale De Lausanne (Epfl) Ultrasound inspection training system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558667A (ja) * 1991-08-30 1993-03-09 Shinetsu Quartz Prod Co Ltd 光学部材
JP2002321936A (ja) * 2001-04-20 2002-11-08 Sumitomo Electric Ind Ltd 光ファイバ及びその製造方法
JP2006047196A (ja) * 2004-08-06 2006-02-16 Tohoku Univ 超低膨張ガラス材料の線膨張係数解析評価方法、漏洩弾性波特性校正方法、漏洩弾性波特性を用いた解析評価方法、漏洩弾性波特性測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298898B2 (en) 2003-04-15 2007-11-20 Honeywell International Inc. System and method for image segmentation
JP5742833B2 (ja) * 2010-02-24 2015-07-01 株式会社 東北テクノアーチ 超低膨張ガラスの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558667A (ja) * 1991-08-30 1993-03-09 Shinetsu Quartz Prod Co Ltd 光学部材
JP2002321936A (ja) * 2001-04-20 2002-11-08 Sumitomo Electric Ind Ltd 光ファイバ及びその製造方法
JP2006047196A (ja) * 2004-08-06 2006-02-16 Tohoku Univ 超低膨張ガラス材料の線膨張係数解析評価方法、漏洩弾性波特性校正方法、漏洩弾性波特性を用いた解析評価方法、漏洩弾性波特性測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOTAKA ARAKAWA ET AL.: "Evaluation of Synthetic Silica Glasses by the Ultrasonic Microspectroscopy Technology", IEICE TECHNICAL REPORT, vol. 108, no. 212, 18 September 2008 (2008-09-18), pages 13 - 18 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010877A (ja) * 2013-06-27 2015-01-19 日本電信電話株式会社 光ファイバの仮想温度の長手方向分布の評価方法
JP2015175830A (ja) * 2014-03-18 2015-10-05 淳一 櫛引 強化ガラスの表面特性の測定方法

Also Published As

Publication number Publication date
JP5626927B2 (ja) 2014-11-19
US20130103342A1 (en) 2013-04-25
DE112011102193T5 (de) 2013-04-11
JPWO2012002493A1 (ja) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5742833B2 (ja) 超低膨張ガラスの製造方法
WO2012008343A1 (ja) インプリントモールド用TiO2含有石英ガラス基材およびその製造方法
EP2241538A1 (en) Silica glass containing TiO2 and process for its production
JP5626927B2 (ja) 光学ガラスの仮想温度の測定方法
JP5942848B2 (ja) TiO2含有石英ガラス基材
CN104995557B (zh) 用于EUV-光刻中的镜面基材的由TiO2-SiO2玻璃构成的坯料及其制造方法
EP2250133A1 (en) Tio2-containing silica glass and optical member for lithography using the same
JP5314901B2 (ja) シリカ・チタニアガラス及びその製造方法、線膨張係数測定方法
Nürnberg et al. Metrology of fused silica
Kushibiki et al. Ultrasonic microspectroscopy characterization of silica glass
KR101606225B1 (ko) 포토마스크용 광학 부재 및 그 제조 방법
Hrdina et al. Characterization and characteristics of a ULE glass tailored for EUVL needs
JPH08259255A (ja) 光リソグラフィ−用石英ガラス、それを含む光学部材、 それを用いた露光装置、並びにその製造方法
Kushibiki et al. Ultrasonic microspectroscopy measurement of fictive temperature for synthetic silica glass
JP7155098B2 (ja) 光学素子用シリカガラスおよびその製造方法
Arakawa et al. Accurate calibration line for super-precise coefficient of thermal expansion evaluation technology of TiO2-doped SiO2 ultra-low-expansion glass using the line-focus-beam ultrasonic material characterization system
Kushibiki et al. Evaluation of TiO2-SiO2 ultra-low-expansion glass fabricated by the soot method using the line-focus-beam ultrasonic material characterization system
JP7238790B2 (ja) チタニア含有シリカガラス体の熱膨張特性の評価方法およびチタニア含有シリカガラス体の製造方法
Kushibiki et al. Development of an ultrasonic system for super-precise measurement of zero-CTE temperature of EUVL-grade TiO2-SiO2 ultra-low-expansion glasses
Kushibiki et al. Evaluation method of TiO/sub 2/-SiO/sub 2/ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system
Kushibiki et al. Homogeneous TiO2–SiO2 Ultralow-Expansion Glass for Extreme Ultraviolet Lithography Evaluated by the Line-Focus-Beam Ultrasonic Material Characterization System
KR101952404B1 (ko) 실리카티타니아 유리, 실리카티타니아 유리의 제조방법 및 실리카티타니아 유리의 선별방법
JP4560625B2 (ja) 脈理を有する材料に対する超音波材料特性解析装置校正用標準試料の作製方法
Wei Acoustic properties of silica glass doped with fluorine
Kushibiki et al. Precise evaluation of zero-CTE temperature of EUVL-grade TiO2-SiO2 ultra-low-expansion glass using the line-focus-beam ultrasonic material characterization system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800955

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805339

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012522692

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111021933

Country of ref document: DE

Ref document number: 112011102193

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800955

Country of ref document: EP

Kind code of ref document: A1