WO2012002155A1 - Laser lift-off method and laser lift-off apparatus - Google Patents

Laser lift-off method and laser lift-off apparatus Download PDF

Info

Publication number
WO2012002155A1
WO2012002155A1 PCT/JP2011/063777 JP2011063777W WO2012002155A1 WO 2012002155 A1 WO2012002155 A1 WO 2012002155A1 JP 2011063777 W JP2011063777 W JP 2011063777W WO 2012002155 A1 WO2012002155 A1 WO 2012002155A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
substrate
material layer
workpiece
laser beam
Prior art date
Application number
PCT/JP2011/063777
Other languages
French (fr)
Japanese (ja)
Inventor
僚三 松田
恵司 鳴海
田中 一也
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2012002155A1 publication Critical patent/WO2012002155A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention decomposes the material layer by irradiating the material layer formed on the substrate with a laser beam, and peels the material layer from the substrate (hereinafter referred to as the following).
  • the present invention relates to a laser lift-off method and a laser lift-off apparatus.
  • the material layer is formed by irradiating the laser beam so that each laser beam irradiated on the adjacent irradiation region on the workpiece is superimposed while changing the laser beam irradiation region on the workpiece.
  • the present invention relates to a laser lift-off method and a laser lift-off device for peeling from a substrate.
  • the GaN-based compound crystal layer may not have sufficient strength to withstand shear stress due to N 2 gas generation. Cracks are easily generated. Furthermore, cracks may propagate not only to the GaN-based compound crystal layer but also to the crystal layer formed thereon, and the device itself may be destroyed, which is a problem when forming a micro-sized device. Yes.
  • Patent Document 2 discloses that a street for separating a GaN layer formed on a sapphire substrate so as to correspond to a chip of a semiconductor light emitting device is formed, and a sapphire substrate and A technique for relieving residual stress generated at the interface with the GaN layer by the street is disclosed.
  • the GaN layer is divided into small areas, minimizing the effects of residual stress from the surroundings, and the small area itself has minimal residual stress, during laser lift-off. It is said that cracks in the GaN layer can be reduced.
  • each laser light irradiation region necessarily overlaps each end, but if each laser light irradiation region overlaps on the surface of the GaN layer (that is, the portion other than the street), This is because the energy of the laser light applied to the overlapped region becomes excessive, which may adversely affect the GaN layer.
  • the width of the streets must be increased to some extent in order to relieve the residual stress described above. By doing so, a semiconductor light emitting device collected from one sapphire substrate There is a problem that the number of chips decreases.
  • the laser light irradiation region and the GaN layer formed on the sapphire substrate are accurately aligned so that the edge of the laser light irradiation region coincides with the street. It becomes necessary to do. Therefore, when the street width is reduced, it becomes difficult to accurately align the edge portion of the laser light irradiation area on the street formed in the GaN layer, and the apparatus configuration for alignment becomes complicated. Or the operation and management becomes difficult. Furthermore, since it is necessary to perform the above-described alignment every time the chip size of the semiconductor light emitting element is different, there arises a problem that the laser lift-off process becomes extremely complicated.
  • Patent Document 3 discloses a sapphire substrate 121 and a GaN-based compound crystal as shown in FIG. 11 for the purpose of reducing cracks in the GaN layer without forming the street as described above in the GaN layer.
  • the laser beam 124 is shaped so that the irradiation region 123 to the interface of the layer 122 has a line shape, and the sapphire substrate 121 is moved in a direction perpendicular to the longitudinal direction of the laser beam 124.
  • a technique for irradiating from the back surface is disclosed.
  • the laser light 124 is shaped so as to have a line width less than or equal to the resolution of the optical system, so that the light intensity distribution in the line width direction of the laser light 124 is substantially at the center as shown in FIG. It has been described that it has a peak and becomes gentle toward the edge from the peak. According to this document, by shaping the laser beam 124 as described above, abrupt laser ablation is performed in the irradiation region that hits the edge in the line width direction of the laser beam 124 when the crystal layer 122 is irradiated with the laser beam 124. Is not done.
  • a first object of the present invention is to cause a crystal layer (hereinafter referred to as a material layer) formed on a substrate to not crack.
  • a second object of the present invention is to provide a sufficient laser energy to peel the material layer from the substrate so that the material layer formed on the substrate is not cracked and the material layer is formed on the substrate. It is an object to provide a laser lift-off method and a laser lift-off device that can peel the material layer from the substrate without causing problems such as re-adhesion.
  • a sapphire substrate (hereinafter referred to as a workpiece) on which a material layer is formed or a laser source is scanned, and the material layer is usually irradiated with laser light while changing the irradiation region of the laser beam on the workpiece.
  • the material layer is usually irradiated with laser light while changing the irradiation region of the laser beam on the workpiece.
  • the edge portions of the irradiation regions of the adjacent laser beams on the workpiece are necessarily overlapped.
  • how the laser beams are superimposed is extremely important. This will be described with reference to FIG.
  • a laser source that emits pulsed laser light is used, and the laser light is irradiated so that the irradiation region of the laser light changes every moment. That is, with reference to FIG. 2 described later, after irradiating the laser beam to the irradiation region S1 of the pulse laser beam, the workpiece or the laser source is conveyed and the next region S2 is irradiated with the laser beam. At this time, the respective edge portions of the irradiation regions S1 and S2 of the pulse laser beam are overlapped.
  • the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated for the following reason. This is because when the irradiation region is shifted from S1 to S2 after the irradiation region S1 is irradiated with the laser beam, the time required for the temperature of the GaN in the irradiation region S1 to fall to the room temperature level is reduced from S1 to S2. It is considered that this is because the temperature in the region S1 has already been lowered to the room temperature level because it is much shorter than the time required to shift to.
  • the time required for the temperature of the GaN in the irradiation region S1 to fall to the room temperature level is within 100 microseconds. Even if the irradiation region S2 is irradiated with the laser beam in a state where the temperature of the irradiation region S1 is lowered to the room temperature level, the region ST in which the irradiation regions S1 and S2 are superimposed is heated by the laser beam irradiated to the irradiation region S2. Only.
  • the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated, so the pulses irradiated to the regions S1 and S2 respectively. It is necessary to superimpose the laser light in an energy region exceeding the decomposition threshold of the material layer.
  • the intensity of the laser beam in the region where each laser beam is superimposed be VE ⁇ 1.15 or less with respect to the decomposition threshold VE necessary for peeling the material layer from the substrate.
  • the intensity of the laser beam in the region where the laser beams overlap is not too high.
  • [intensity of laser beam (maximum value) in region where laser beam is superimposed (maximum value)] / [decomposition threshold value VE] is defined as superposition degree T
  • the material layer formed on the substrate is cracked.
  • the superposition degree T is 1 ⁇ T, and in order to avoid re-adhesion between the substrate and the material layer, T ⁇ 1.15. It is desirable to do.
  • the above-described problem is solved as follows.
  • the pulse Laser light is irradiated so that each irradiation region adjacent to the workpiece overlaps while changing the irradiation region on the workpiece, and the size of each overlapping pulse laser beam peels the material layer from the substrate.
  • the amount of energy exceeds the decomposition threshold necessary for the reduction.
  • the decomposition necessary for peeling the material layer from the substrate is performed on the intensity of the laser beam in the region where the laser beams irradiated to the adjacent irradiation regions in the workpiece are superimposed.
  • VE ⁇ 1.15 or less with respect to the threshold value VE.
  • (3) In the above (1) and (2), a first transport operation for transporting the workpiece in the first transport direction and a second transport for transporting the workpiece in a direction orthogonal to the transport direction of the first transport operation. An operation and a third transport operation for transporting in a direction 180 ° different from the transport direction of the first transport operation are sequentially performed, and the pulse laser beam is sequentially irradiated to each irradiation region.
  • a laser optical system having a projection lens for shaping pulse laser light emitted from a laser source and irradiating the work is provided, and the light incident surface of the work is It arrange
  • each laser beam is irradiated so as to be superimposed. In this region, sufficient laser energy is applied to peel the material layer from the substrate, so that the material layer can be reliably peeled from the substrate without causing cracks in the material layer formed on the substrate.
  • the intensity of the laser beam in the region where the laser beams irradiated to the adjacent irradiation regions are overlapped is VE ⁇ 1 with respect to the decomposition threshold VE necessary for peeling the material layer from the substrate.
  • the beam profile of the pulsed laser light applied to the work has a gentle shape.
  • the illuminance distribution at the peripheral edge of the pulsed laser light to be irradiated has a shape that gradually decreases from the peak portion toward the edge portion).
  • FIG. 1 is a conceptual diagram illustrating an outline of laser lift-off processing according to an embodiment of the present invention.
  • the laser lift-off process is performed as follows.
  • a work 3 in which a material layer 2 is formed on a substrate 1 that transmits laser light is placed on a work stage 31.
  • the work stage 31 on which the work 3 is placed is placed on a transport mechanism 32 such as a conveyor, and is transported by the transport mechanism 32 at a predetermined speed.
  • the workpiece 3 is irradiated with a pulse laser beam L emitted from a pulse laser source (not shown) through the substrate 1 while being conveyed in the direction of arrow ABC in the figure together with the workpiece stage 31.
  • the workpiece 3 is formed by forming a material layer 2 of a GaN (gallium nitride) compound on the surface of a substrate 1 made of sapphire.
  • the substrate 1 may be any material as long as it can form a GaN-based compound material layer satisfactorily and transmits laser light having a wavelength necessary for decomposing the GaN-based compound material layer.
  • a GaN-based compound is used for the material layer 2 in order to efficiently output high-output blue light with low input energy.
  • the laser beam should be appropriately selected according to the substrate 1 and the substance constituting the material layer peeled from the substrate 1.
  • a KrF (krypton fluorine) excimer laser that emits a wavelength of 248 nm can be used.
  • the light energy at the laser wavelength of 248 nm is between the band gap of GaN (3.4 eV) and the band gap of sapphire (9.9 eV). Therefore, a laser beam having a wavelength of 248 nm is desirable for peeling the material layer of the GaN-based compound from the sapphire substrate.
  • FIG. 2 is a diagram illustrating a state in which the laser beam L is applied to the workpiece 3.
  • 2A shows a method of irradiating the workpiece 3 with the laser beam
  • FIG. 2B shows an enlarged view of a portion X in FIG. 2A
  • FIG. 2 shows an example of a cross-section of the light intensity distribution of laser light irradiated on each of the irradiation regions.
  • the solid line on the workpiece 3 shown in FIG. 2 is merely a virtual representation of the laser light irradiation area.
  • the workpiece 3 is repeatedly conveyed in the directions of arrows HA, HB, and HC shown in FIG.
  • the laser beam L is applied from the back surface of the sapphire substrate 1 and is applied to the interface between the substrate 1 and the material layer 2.
  • the shape of the laser beam L is formed into a substantially square shape.
  • the workpiece 3 corresponds to the size of the workpiece itself, and the first conveyance operation HA is conveyed in the direction of arrow A in FIG. 1 and the irradiation region S of one shot of laser light.
  • the third transport operation HC transported in the direction of arrow B is sequentially executed.
  • the transport directions of the first transport operation HA and the third transport operation HC differ by 180 °.
  • the optical system of the laser light remains fixed and is not transported. That is, when only the workpiece 3 is transported with the laser beam optical system fixed, the irradiation region of the laser beam L on the workpiece 3 is relatively relatively momentarily in the order of S1 to S12 as shown by the arrows in FIG. Will change.
  • the workpiece 3 has a circular outline, but the laser light irradiation area has a substantially rectangular shape, and a laser irradiation method for such a rectangular irradiation area will be described.
  • the laser beam is radiated once for each of the four irradiation areas S1, S2, S3, and S4 while transferring the workpiece 3 in the HA direction in FIG. . This is the first transport operation.
  • the workpiece 3 is transported in the HB direction in FIG. 2 in order to irradiate the next irradiation region S5 of the workpiece 3 with the laser light.
  • the distance by which the workpiece 3 is conveyed in the direction of the arrow HB is equal to the distance obtained by subtracting the overlapping area ST from the distance corresponding to the irradiation area for one shot (one pulse) of the pulse laser beam.
  • the laser beam is irradiated once for each of the six irradiation areas S5, S6, S7, S8, S9, and S10, a total of six times. to.
  • This is the third transport operation.
  • the laser beam is irradiated over the entire area of the workpiece 3 by conveying the workpiece 3 according to the above-described series of procedures.
  • the laser light irradiation area moves relatively in the order of S1, S2, and S3.
  • Each irradiation area is, for example, 0.5 mm ⁇ 0.5 mm, and the area is 0.25 mm. 2 .
  • the area of the work 3 is 4560 mm 2 . That is, the laser light irradiation areas S1, S2, and S3 are much smaller than the work area.
  • a laser beam in an irradiation area smaller than that of the workpiece 3 is irradiated to the workpiece 3 while scanning in the directions of arrows A and B shown in FIG.
  • the laser optical system may be transported in accordance with the transport operations HA or HC described above while the workpiece is fixed.
  • the laser beam may be irradiated to the workpiece so that the irradiation region of the laser beam on the workpiece changes with time.
  • the workpiece 3 is irradiated so that the end portions in the width direction overlap each other.
  • the laser beam L is a pulsed laser beam and is intermittently applied to the workpiece 3.
  • the width in which the laser light is superimposed is, for example, 0.1 mm.
  • the pulse interval of the laser light is appropriately set in consideration of the conveyance speed of the workpiece 3 and the width of the overlapping region ST of the laser beam irradiated on the adjacent irradiation regions S1, S2, S3,.
  • the pulse interval of the laser beam is determined so that the workpiece is not irradiated with the laser beam before the workpiece 3 moves to the next irradiation region. That is, the pulse interval of the laser beam is set longer than the time required for the work 3 to move a distance corresponding to the irradiation region for one shot of the laser beam.
  • the pulse interval of the laser light is 0.004 seconds (250 Hz).
  • FIG. 3 is a diagram showing the light intensity distribution of the laser beam irradiated on the workpiece so as to overlap the regions S1 and S2 adjacent to each other of the workpiece 3 shown in FIG. 2, and aa ′ in FIG. It is line sectional drawing.
  • the vertical axis indicates the intensity (energy value) of the laser beam irradiated to each irradiation area of the workpiece
  • the horizontal axis indicates the conveyance direction of the workpiece.
  • L1 and L2 indicate the profiles of the laser beams irradiated to the workpiece irradiation areas S1 and S2, respectively.
  • the laser beams L1 and L2 are not irradiated at the same time, but the laser beam L2 is irradiated after one pulse interval from the irradiation of the laser beam L1.
  • the cross sections of the laser beams L1 and L2 are formed in a substantially trapezoidal shape having a flat surface on the top (peak energy PE) following the edge portion LE that gently spreads in the circumferential direction.
  • the laser beams L1 and L2 are superimposed in an energy region exceeding a decomposition threshold VE necessary for decomposing and separating the material layer of the GaN-based compound from the sapphire substrate, as indicated by broken lines in FIG.
  • the intensity (energy value) CE of the laser beam at the intersection position C between the laser beams L1 and L2 is set to a value exceeding the decomposition threshold value VE. This is because, as described above, when the irradiation region is shifted from S1 to S2 after irradiating the irradiation region S1 of FIG. 2 with the laser beam, the temperature of the region S1 is already lowered to the room temperature level.
  • the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated.
  • the degree of superimposition T defined in the paragraph 0011 is preferably 1 ⁇ T.
  • the pulse interval of the laser beam is adjusted in advance so that the laser beam applied to the adjacent irradiation region of the workpiece 3 is superimposed as described above with respect to the relative movement amount of the workpiece 3 and the laser beam.
  • the decomposition threshold is 500 to 1500 J / cm 2 .
  • the decomposition threshold VE needs to be set for each substance constituting the material layer.
  • the laser beams L1 and L2 are superimposed in an energy region exceeding the decomposition threshold value VE. It is necessary to set the ratio of the size of each laser beam to the decomposition threshold VE to an appropriate value. Specifically, the ratio is set to be VE ⁇ 1.15 or less with respect to the decomposition threshold VE. Was found to be desirable.
  • the intensity (energy value) CE of the laser beam at the intersection position C of the laser beams L1 and L2 in the light intensity distribution of each laser beam is necessary for peeling the material layer from the substrate. It sets so that it may become VEx1.15 or less to decomposition threshold VE. That is, it is desirable that the degree of superimposition T is T ⁇ 1.15.
  • FIG. 4 is a conceptual diagram of a laser lift-off device according to an embodiment of the present invention.
  • a laser lift-off device 10 includes a laser source 20 that emits the above-described pulsed laser light, a laser optical system 40 for shaping the laser light into a predetermined shape, and a work stage 31 on which a work 3 is placed. And a transport mechanism 32 that transports the work stage 31, and a control unit 33 that controls the irradiation interval of the laser light generated by the laser source 20 and the operation of the transport mechanism 32.
  • the optical system 40 includes cylindrical lenses 41 and 42, a mirror 43 that reflects laser light in the direction of the workpiece, a mask 44 for shaping the laser light into a predetermined shape, and a laser beam L that has passed through the mask 44 as a workpiece. 3 is provided with a projection lens 45 for condensing the light.
  • a work 3 is disposed at the tip of the optical system 40. The work 3 is placed on the work stage 31. The work stage 31 is placed on the transport mechanism 32 and is transported by the transport mechanism 32. As a result, the workpiece 3 is sequentially conveyed in the directions of arrows A, B, and C shown in FIG. 1, and the irradiation region of the laser beam on the workpiece 3 changes every moment.
  • the control unit 33 controls the pulse interval of the pulsed laser light generated by the laser source 20 so that the degree of superimposition of each laser light irradiated on the irradiation region adjacent to the workpiece 3 becomes a desired value.
  • the laser light L generated from the laser source 20 is, for example, a KrF excimer laser that generates ultraviolet light having a wavelength of 248 nm.
  • An ArF laser or a YAG laser may be used as the laser source.
  • the light incident surface 3A of the work 3 is disposed farther in the optical axis direction of the laser light than the focal point F of the projection lens 45, or on the contrary, in the optical axis direction of the laser light, the work 3
  • the light incident surface 3 ⁇ / b> A may be disposed closer to the projection lens 45 than the focal point F of the projection lens 45.
  • the edge portions LE of the beam profiles of the laser beams L1 and L2 as shown in FIG. A laser beam having a light intensity distribution with a trapezoidal cross section is obtained.
  • the laser light L generated by the laser source 20 passes through the cylindrical lenses 41 and 42, the mirror 43, and the mask 44, and is then condensed on the work 3 by the projection lens 45.
  • Laser light incident on the light incident surface 3A of the workpiece 3 by the projection lens 45 is substantially trapezoidal light having a flat surface on the top following the edge portion LE that gently spreads in the circumferential direction in the cross section shown in FIG. Molded to have an intensity distribution.
  • FIG. 5 shows another embodiment of the light intensity distribution of the laser light applied to the workpiece.
  • the light intensity distribution of the laser light shown in FIG. 5A is formed in a substantially mountain shape having a peak at the center and an edge portion LE that gently spreads after the peak.
  • the light intensity distribution of the laser light can be changed as appropriate by adjusting the distance between the focal point F of the projection lens 45 and the light incident surface 3A of the workpiece 3 shown in FIG.
  • the light intensity distribution of the laser light becomes a sharp rectangular shape as the distance between the focal point F of the projection lens 45 and the light incident surface 3A of the workpiece 3 approaches, and the focal point F of the projection lens 45 and the light incident surface 3A of the workpiece 3 become smaller. As the distance increases, the edges are gently formed and formed in a mountain shape. Further, as shown in FIG. 5B, the light intensity distribution of the laser beams L1 and L2 may be rectangular. In this case, the intensity of the laser beam in the region where the laser beams L1 and L2 overlap (the intensity of the laser beam at the intersection of the laser beams L1 and L2, which corresponds to the peak value of the laser beam L1 in this case).
  • FIG. 3 shows the light intensity distribution of the laser light used in the laser lift-off method of this embodiment
  • FIG. 6 shows the light intensity distribution of the laser light for comparison with this.
  • L1 and L2 in FIGS. 3 and 6 indicate laser beams irradiated to the irradiation areas of S1 and S2 shown in FIG.
  • the influence of the degree of superimposition of the laser light applied to the irradiation area adjacent to the workpiece on the material layer after peeling from the substrate will be compared and examined with reference to FIGS.
  • the laser lift-off method of the embodiment of FIG. 3 when the surface of the material layer 2 on the interface side with the substrate 1 is irradiated with laser light and the GaN constituting the material layer 2 is decomposed, the N 2 gas rapidly It does not occur. Moreover, in the laser lift-off method of the embodiment of FIG. 3, the energy of the laser beam irradiated to the overlapping region ST where the laser beams L1 and L2 overlap in FIG.
  • the problem that the material layer 2 and the substrate 1 are re-adhered can be avoided, and the material layer 2 can be reliably peeled from the substrate 1.
  • the workpiece was actually irradiated with the laser beam of the embodiment shown in FIG. 3, the surface state of the material layer after peeling was very clean, and no material that adversely affects the light emission characteristics such as dirt and scratches was found.
  • the undecomposed region of GaN coincided with the overlapping region ST where the laser beams L1 and L2 overlap on the workpiece.
  • the workpiece is irradiated with the laser beam shown in the comparative example of FIG. 6B, since the degree of superimposition T of the laser beams L1 and L2 is too large, the laser beams L1 and L2 in the workpiece shown in FIG. There is a problem that a laser beam with excessive energy is irradiated onto the superposition region ST.
  • FIG. 7B-4 which will be described later, when the workpiece is actually irradiated with the laser light of the comparative example shown in FIG. A large number of such stains are formed.
  • the material layer once peeled off from the substrate is re-adhered by the second laser beam when the high-energy laser beam is irradiated twice at the same location, and the sapphire component constituting the substrate is It is thought that it adhered.
  • the black spot formed on the surface of the material layer has an adverse effect on the light emission characteristics.
  • FIG. 7 is a diagram showing the results.
  • FIG. 7 (a) is a diagram showing the light intensity distribution of the laser beam irradiated in an overlapping manner used in the experiment. In this experiment, as shown in the figure, the light intensity distribution has a rectangular shape.
  • Laser beams L1 and L2 pulse laser beams output from a KrF laser were irradiated to a work in which a GaN material layer was formed on a sapphire substrate.
  • the intensity of the laser beam in the region where the laser beams L1 and L2 overlap is changed to 105%, 110%, 115%, and 120% with respect to the decomposition threshold value VE (870 mJ / cm 2 ) of the GaN material layer.
  • the surface of the material layer after peeling was examined. 7 (b-1), (b-2), (b-3), and (b-4), the intensity of the laser beam in the overlapping region is 105%, 110%, and 115 with respect to the decomposition threshold VE, respectively.
  • % And 120% indicate the surface of the material layer after peeling. As shown in FIGS.
  • the laser beams L1 and L2 having a rectangular light intensity distribution are used.
  • the adjustment of the intensity of the laser beam in the overlapping region, which cannot be adjusted, must be performed by adjusting the intensity of the laser beams L1 and L2.
  • the light intensity distribution (beam profile) of the laser beams L1 and L2 has a shape having an edge LE that gently spreads in the circumferential direction as shown in FIG.
  • FIG. 8 (b-1) shows a case where the overlapping amount of the laser beams L1 and L2 is appropriate, and a case where the irradiation interval (or the moving speed of the workpiece) is appropriately adjusted, and is shown in FIG. 8 (b-2).
  • the surface state of the material layer after peeling was good, and no material that adversely affects the light emission characteristics such as dirt and scratches was found.
  • FIG. 8C-1 shows a case where the overlapping amount of the laser beams L1 and L2 is large, and the intensity of the laser beam in the overlapping region exceeds 115% with respect to the decomposition threshold VE.
  • the surface of the material layer after peeling had many stains such as black spots.
  • the laser optical system 40 shown in FIG. 4 causes the laser light 107 to have a substantially trapezoidal light intensity distribution having a flat surface on the top following the edge portion LE that gently spreads in the circumferential direction in the cross section shown in FIG.
  • the laser optical system 40 shown in FIG. 4 causes the laser light 107 to have a substantially trapezoidal light intensity distribution having a flat surface on the top following the edge portion LE that gently spreads in the circumferential direction in the cross section shown in FIG.
  • the laser beam is superimposed so that the laser beam irradiated to the adjacent irradiation region of the GaN layer 102 has an appropriate degree of superimposition.
  • the energy of the laser light applied to the edge portion of each irradiation region of the laser light of the GaN layer 102 is sufficient for peeling the GaN layer 102, and the GaN layer 102 is surely peeled from the sapphire substrate 101. be able to.
  • a method for manufacturing a semiconductor light emitting device to which the above-described laser lift-off process can be applied will be described.
  • the manufacturing method of the semiconductor light-emitting device formed of a GaN-based compound material layer will be described with reference to FIG.
  • a sapphire substrate capable of crystal growth of a gallium nitride (GaN) compound semiconductor that transmits laser light and forms a material layer is used.
  • GaN gallium nitride
  • FIG. 9A a GaN layer 102 made of a GaN-based compound semiconductor is rapidly formed on a sapphire substrate 101 by using, for example, a metal organic chemical vapor deposition method (MOCVD method). Subsequently, as illustrated in FIG.
  • MOCVD method metal organic chemical vapor deposition method
  • an n-type semiconductor layer 103 and a p-type semiconductor layer 104 that are light emitting layers are stacked on the surface of the GaN layer 102.
  • GaN doped with silicon is used as the n-type semiconductor
  • GaN doped with magnesium is used as the p-type semiconductor.
  • solder 105 is applied on the p-type semiconductor layer 104.
  • the support substrate 106 is attached on the solder 105.
  • the support substrate 106 is made of, for example, an alloy of copper and tungsten. Then, as shown in FIG.
  • the sapphire substrate 101 is decomposed by irradiating the laser beam 107 from the back surface side of the sapphire substrate 101 toward the interface between the sapphire substrate 101 and the GaN layer 102 to decompose the GaN layer 102. Peel off.
  • ITO 108 which is a transparent electrode is formed on the surface of the GaN layer 102 after peeling from the sapphire substrate 101 by vapor deposition, and the electrode 109 is attached to the surface of the ITO 108.

Abstract

Disclosed are a laser lift-off method and a laser lift-off apparatus, wherein a material layer formed on a substrate can be peeled from the substrate without generating cracks in the material layer formed on the substrate. In order to peel the material layer (2) from the substrate (1) at the interface between the substrate and the material layer, a pulsed laser beam is applied, through the substrate (1), to a work (3) wherein the material layer (2) is formed on the substrate (1), while constantly changing the irradiation region on the work (3), such that adjacent irradiation regions of the work (3) overlap each other. Respective laser beams in the overlapping irradiation region are set at levels having energy that exceeds a decomposition threshold value needed to peel the material layer (2) from the substrate (1), thereby having the material layer reliably peeled from the substrate without generating cracks in the material layer formed on the substrate.

Description

レーザリフトオフ方法及びレーザリフトオフ装置Laser lift-off method and laser lift-off apparatus
 本発明は、化合物半導体により形成される半導体発光素子の製造プロセスにおいて、基板上に形成された材料層にレーザ光を照射することによって、当該材料層を分解して当該基板から剥離する(以下、レーザリフトオフという)ためのレーザリフトオフ方法及びレーザリフトオフ装置に関する。
 特に、本発明は、ワーク上のレーザ光照射領域を刻々と変えながら、ワーク上の隣接する照射領域に照射される各レーザ光が重畳するようにしてレーザ光を照射することにより、材料層を基板から剥離するレーザリフトオフ方法及びレーザリフトオフ装置に関するものである。
In the manufacturing process of a semiconductor light emitting device formed of a compound semiconductor, the present invention decomposes the material layer by irradiating the material layer formed on the substrate with a laser beam, and peels the material layer from the substrate (hereinafter referred to as the following). The present invention relates to a laser lift-off method and a laser lift-off apparatus.
In particular, according to the present invention, the material layer is formed by irradiating the laser beam so that each laser beam irradiated on the adjacent irradiation region on the workpiece is superimposed while changing the laser beam irradiation region on the workpiece. The present invention relates to a laser lift-off method and a laser lift-off device for peeling from a substrate.
 GaN(窒化ガリウム)系化合物半導体により形成される半導体発光素子の製造プロセスにおいて、サファイア基板の上に形成されたGaN系化合物結晶層を当該サファイア基板の裏面からレーザ光を照射することにより剥離するレーザリフトオフの技術が知られている。
 例えば、特許文献1においては、サファイア基板の上にGaN層を形成し、当該サファイア基板の裏面からレーザ光を照射することにより、GaN層を形成するGaNが分解され、当該GaN層をサファイア基板から剥離する技術について記載されている。
 ところで、サファイア基板の上に形成されたGaN系化合物結晶層を当該サファイア基板の裏面からレーザ光を照射することにより剥離するためには、GaN系化合物をGaとNとに分解するために必要な分解閾値以上の照射エネルギーを有するレーザ光を照射することが重要になる。
 ここで、レーザ光を照射した際には、GaNが分解することによりNガスが発生することから、当該GaN層にせん断応力が加わり、当該レーザ光の照射領域の境界部においてクラックが生じる場合がある。例えば、図10に示すように、レーザ光の1ショットの照射領域110が正方形状である場合、GaN層111のレーザ光の照射領域の境界112にクラックが発生してしまう問題がある。
Laser for peeling a GaN-based compound crystal layer formed on a sapphire substrate by irradiating laser light from the back surface of the sapphire substrate in a manufacturing process of a semiconductor light-emitting device formed of a GaN (gallium nitride) -based compound semiconductor Lift-off technology is known.
For example, in Patent Document 1, a GaN layer is formed on a sapphire substrate, and laser light is irradiated from the back surface of the sapphire substrate, whereby GaN forming the GaN layer is decomposed, and the GaN layer is separated from the sapphire substrate. A technique for peeling is described.
By the way, in order to peel off the GaN compound crystal layer formed on the sapphire substrate by irradiating laser light from the back surface of the sapphire substrate, it is necessary to decompose the GaN compound into Ga and N 2. It is important to irradiate a laser beam having an irradiation energy equal to or higher than a decomposition threshold.
Here, when laser light is irradiated, N 2 gas is generated by decomposition of GaN, so that a shear stress is applied to the GaN layer, and a crack occurs at the boundary of the laser light irradiation region. There is. For example, as shown in FIG. 10, when the irradiation region 110 of one shot of laser light is square, there is a problem that a crack occurs at the boundary 112 of the irradiation region of the GaN layer 111.
 特に、数μm以下の厚みのGaN系化合物結晶層を用いて素子を形成する場合には、GaN系化合物結晶層がNガス発生によるせん断応力に耐えるための十分な強度を有しない場合もあり、容易にクラックが発生してしまう。更に、GaN系化合物結晶層のみならず、その上に形成された結晶層にクラックが伝播し、素子そのものが破壊されてしまう場合もあり、微小なサイズの素子を形成する際の問題となっている。
 かかる問題に対して特許文献2には、サファイア基板上に形成されたGaN層を半導体発光素子のチップに対応するよう分離するためのストリートを形成し、レーザリフトオフの工程を実行中にサファイア基板とGaN層との界面で発生する残留応力を、当該ストリートによって緩和する技術が開示されている。
 同文献によれば、GaN層を小領域に分断し、周囲からの残留応力による影響を最小にし、また、小領域自体は最小の残留応力しか有しないようにすることによって、レーザリフトオフの最中におけるGaN層の割れを低減することができる、とされている。
In particular, when an element is formed using a GaN-based compound crystal layer having a thickness of several μm or less, the GaN-based compound crystal layer may not have sufficient strength to withstand shear stress due to N 2 gas generation. Cracks are easily generated. Furthermore, cracks may propagate not only to the GaN-based compound crystal layer but also to the crystal layer formed thereon, and the device itself may be destroyed, which is a problem when forming a micro-sized device. Yes.
With respect to such a problem, Patent Document 2 discloses that a street for separating a GaN layer formed on a sapphire substrate so as to correspond to a chip of a semiconductor light emitting device is formed, and a sapphire substrate and A technique for relieving residual stress generated at the interface with the GaN layer by the street is disclosed.
According to the document, the GaN layer is divided into small areas, minimizing the effects of residual stress from the surroundings, and the small area itself has minimal residual stress, during laser lift-off. It is said that cracks in the GaN layer can be reduced.
 このように、GaN層にストリート(チップ分離用境界線:スクライブライン)を形成してレーザリフトオフの工程を実行するときには、特許文献2のFig.13に示すように、レーザ光の照射領域のエッジ部が当該ストリートに一致するようにレーザ光を照射することが好ましい。これは、各レーザ光の照射領域は必然的にそれぞれの端部同士が重畳することになるが、各レーザ光の照射領域がGaN層の表面(つまり、ストリート以外の部分)において重畳すると、当該重畳した領域に照射されるレーザ光のエネルギーが過大になるため、GaN層に悪影響を生じるおそれがあるからである。 As described above, when the street (chip separation boundary: scribe line) is formed in the GaN layer and the laser lift-off process is performed, the method described in FIG. As shown in FIG. 13, it is preferable to irradiate the laser beam so that the edge portion of the irradiation region of the laser beam coincides with the street. This is because each laser light irradiation region necessarily overlaps each end, but if each laser light irradiation region overlaps on the surface of the GaN layer (that is, the portion other than the street), This is because the energy of the laser light applied to the overlapped region becomes excessive, which may adversely affect the GaN layer.
 しかしながら、GaN層にストリートを形成した場合は、前記した残留応力を緩和するためにストリートの幅をある程度大きくしなければならないが、そうすることによって、1枚のサファイア基板から採取される半導体発光素子のチップの個数が減少するという問題がある。
 而して、GaN層にストリートを形成した場合は、レーザ光の照射領域のエッジ部がストリートに一致するように、レーザ光の照射領域とサファイア基板上に形成されたGaN層とを精度良くアライメントすることが必要になる。したがって、ストリートの幅を小さくした場合は、レーザ光の照射領域のエッジ部をGaN層に形成されたストリート上に精度良くアライメントすることが困難になり、アライメントのための装置構成が複雑になるばかりか、その操作・管理が難しくなる。
 さらには、半導体発光素子のチップサイズが相違する毎に、上記したアライメントを行うことが必要になるため、レーザリフトオフの工程が極めて複雑化するといった問題が生じる。
However, when streets are formed in the GaN layer, the width of the streets must be increased to some extent in order to relieve the residual stress described above. By doing so, a semiconductor light emitting device collected from one sapphire substrate There is a problem that the number of chips decreases.
Thus, when streets are formed in the GaN layer, the laser light irradiation region and the GaN layer formed on the sapphire substrate are accurately aligned so that the edge of the laser light irradiation region coincides with the street. It becomes necessary to do. Therefore, when the street width is reduced, it becomes difficult to accurately align the edge portion of the laser light irradiation area on the street formed in the GaN layer, and the apparatus configuration for alignment becomes complicated. Or the operation and management becomes difficult.
Furthermore, since it is necessary to perform the above-described alignment every time the chip size of the semiconductor light emitting element is different, there arises a problem that the laser lift-off process becomes extremely complicated.
 一方、特許文献3には、上記のようなストリートをGaN層に形成することなく、GaN層の割れを低減することを目的として、図11に示すように、サファイア基板121とGaN系化合物の結晶層122の界面への照射領域123がライン状になるようにレーザ光124を成形し、サファイア基板121をレーザ光124の長手方向と垂直方向に移動させながら、当該レーザ光124をサファイア基板121の裏面から照射する技術が開示されている。同文献には、レーザ光124が光学系の解像度以下のライン幅になるように成形されていることにより、図12に示すように、レーザ光124のライン幅方向の光強度分布が、略中央にピークを有し当該ピークからエッジ部に向けてなだらかになっていることが記載されている。
 同文献によれば、レーザ光124を上記のように成形することにより、レーザ光124を結晶層122に照射した際のレーザ光124のライン幅方向のエッジ部に当る照射領域で急激なレーザアブレーションが行われない。したがって、GaN層である結晶層122の分解時にNが急激に発生することがないので、過剰な応力が結晶層122に加わらず、結晶層122及びその上に形成される素子へのクラック発生を低減することができる、とされている。
 しかしながら、本発明者らが上記特許文献3に開示されるレーザリフトオフ工程を検証したところ、GaN層である結晶層に発生する割れを低減する効果は、必ずしも十分でないことが確認された。
On the other hand, Patent Document 3 discloses a sapphire substrate 121 and a GaN-based compound crystal as shown in FIG. 11 for the purpose of reducing cracks in the GaN layer without forming the street as described above in the GaN layer. The laser beam 124 is shaped so that the irradiation region 123 to the interface of the layer 122 has a line shape, and the sapphire substrate 121 is moved in a direction perpendicular to the longitudinal direction of the laser beam 124. A technique for irradiating from the back surface is disclosed. In this document, the laser light 124 is shaped so as to have a line width less than or equal to the resolution of the optical system, so that the light intensity distribution in the line width direction of the laser light 124 is substantially at the center as shown in FIG. It has been described that it has a peak and becomes gentle toward the edge from the peak.
According to this document, by shaping the laser beam 124 as described above, abrupt laser ablation is performed in the irradiation region that hits the edge in the line width direction of the laser beam 124 when the crystal layer 122 is irradiated with the laser beam 124. Is not done. Therefore, since N 2 does not occur abruptly when the crystal layer 122 that is a GaN layer is decomposed, excessive stress is not applied to the crystal layer 122, and cracks are generated in the crystal layer 122 and elements formed thereon. It can be reduced.
However, when the present inventors verified the laser lift-off process disclosed in Patent Document 3 above, it was confirmed that the effect of reducing cracks generated in the crystal layer, which is a GaN layer, was not always sufficient.
特表2001-501778号公報JP-T-2001-501778 特表2007-534164号公報Special Table 2007-534164 特開2003-168820号公報JP 2003-168820 A
 具体的に、本発明者らは、特許文献3に従って、サファイア基板上に形成された結晶層をライン状に成形されたレーザ光の長手方向と垂直な方向に移動させ、サファイア基板の移動速度及び間歇的に照射されるパルスレーザ光の照射間隔を適宜変更して、ライン状に成形したレーザ光を結晶層に照射したところ、結晶層であるGaN層にクラックが生じることが確認された。
 本発明は、上記問題点を解決するためになされたものであって、本発明の第1の目的は、基板上に形成された結晶層(以下材料層と呼ぶ)に割れを生じさせることなく、当該基板から当該材料層を剥離することができるレーザリフトオフ方法およびレーザリフトオフ装置を提供することである。
 また、本発明の第2の目的は、材料層を基板から剥離させるために十分なレーザエネルギーを与えることで基板上に形成された材料層に割れを生じさせることなく、かつ、基板に材料層が再接着する等の不具合を生じさせることなく、当該基板から当該材料層を剥離することができるレーザリフトオフ方法およびレーザリフトオフ装置を提供することである。
Specifically, the inventors move the crystal layer formed on the sapphire substrate in a direction perpendicular to the longitudinal direction of the laser beam formed in a line according to Patent Document 3, and the movement speed of the sapphire substrate and It was confirmed that cracks were generated in the GaN layer as the crystal layer when the irradiation interval of the pulsed laser beam applied intermittently was appropriately changed and the crystal layer was irradiated with the laser beam formed in a line shape.
The present invention has been made to solve the above-described problems, and a first object of the present invention is to cause a crystal layer (hereinafter referred to as a material layer) formed on a substrate to not crack. It is another object of the present invention to provide a laser lift-off method and a laser lift-off device that can peel the material layer from the substrate.
In addition, a second object of the present invention is to provide a sufficient laser energy to peel the material layer from the substrate so that the material layer formed on the substrate is not cracked and the material layer is formed on the substrate. It is an object to provide a laser lift-off method and a laser lift-off device that can peel the material layer from the substrate without causing problems such as re-adhesion.
 レーザリフトオフでは、材料層が形成されたサファイア基板(以下、ワークという)或いはレーザ源をスキャンさせ、ワークに対するレーザ光の照射領域を刻々と変えながらレーザ光を材料層に照射することが通常行われる。それは、レーザ源から出射するレーザ光の照射領域をワークと同等の大きさにすることは困難だからである。このため、ワーク上の隣接する各レーザ光の照射領域のエッジ部は必然的に重畳することになるが、レーザリフトオフの工程では、いかにして各レーザ光を重畳させるかが極めて重要である。これについて図2を用いて説明する。
 レーザリフトオフ工程では、パルスレーザ光を出射するレーザ源を使用し、レーザ光の照射領域が刻々と変わるようにレーザ光を照射している。つまり、後述する図2を用いて説明すると、パルスレーザ光の照射領域S1にレーザ光を照射した後に、ワーク或いはレーザ源を搬送して次なる領域S2にレーザ光を照射する。このとき、パルスレーザ光の照射領域S1とS2のそれぞれのエッジ部が重畳する。
In laser lift-off, a sapphire substrate (hereinafter referred to as a workpiece) on which a material layer is formed or a laser source is scanned, and the material layer is usually irradiated with laser light while changing the irradiation region of the laser beam on the workpiece. . This is because it is difficult to make the irradiation area of the laser beam emitted from the laser source the same size as the workpiece. For this reason, the edge portions of the irradiation regions of the adjacent laser beams on the workpiece are necessarily overlapped. However, in the laser lift-off process, how the laser beams are superimposed is extremely important. This will be described with reference to FIG.
In the laser lift-off process, a laser source that emits pulsed laser light is used, and the laser light is irradiated so that the irradiation region of the laser light changes every moment. That is, with reference to FIG. 2 described later, after irradiating the laser beam to the irradiation region S1 of the pulse laser beam, the workpiece or the laser source is conveyed and the next region S2 is irradiated with the laser beam. At this time, the respective edge portions of the irradiation regions S1 and S2 of the pulse laser beam are overlapped.
 ここで、照射領域S1とS2のそれぞれのエッジ部が重畳する領域STにおいては、以下の理由により、照射領域S1およびS2のそれぞれに照射されるパルスレーザ光の照射量が積算されない。これは、照射領域S1にレーザ光を照射した後に照射領域をS1からS2に移行させたときには、照射領域S1のGaNの温度が室温レベルまで低下するのに要する時間が、照射領域をS1からS2に移行させるまでの時間に比べて格段に短いため、領域S1の温度は既に室温レベルまで低下した状態となるためであると考えられる。
 本発明者らがシミュレーションにより検討したところでは、照射領域S1のGaNの温度が室温レベルまで低下するのに要する時間は100マイクロ秒以内であると推定される。照射領域S1の温度が室温レベルに低下した状態で照射領域S2にレーザ光を照射したとしても、照射領域S1とS2とが重畳した領域STは、照射領域S2に照射されたレーザ光によって加熱されるのみである。
 このように、照射領域S1、S2が重畳する領域STにおいては、それぞれの照射領域S1、S2に照射されるパルスレーザ光の照射量が積算されないので、領域S1、S2のそれぞれに照射されるパルスレーザ光を、材料層の分解閾値を超えるエネルギー領域で重畳させることが必要である。
Here, in the region ST where the respective edge portions of the irradiation regions S1 and S2 overlap, the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated for the following reason. This is because when the irradiation region is shifted from S1 to S2 after the irradiation region S1 is irradiated with the laser beam, the time required for the temperature of the GaN in the irradiation region S1 to fall to the room temperature level is reduced from S1 to S2. It is considered that this is because the temperature in the region S1 has already been lowered to the room temperature level because it is much shorter than the time required to shift to.
According to a study by the inventors, it is estimated that the time required for the temperature of the GaN in the irradiation region S1 to fall to the room temperature level is within 100 microseconds. Even if the irradiation region S2 is irradiated with the laser beam in a state where the temperature of the irradiation region S1 is lowered to the room temperature level, the region ST in which the irradiation regions S1 and S2 are superimposed is heated by the laser beam irradiated to the irradiation region S2. Only.
As described above, in the region ST where the irradiation regions S1 and S2 overlap, the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated, so the pulses irradiated to the regions S1 and S2 respectively. It is necessary to superimpose the laser light in an energy region exceeding the decomposition threshold of the material layer.
 一方、上記照射領域S1とS2のそれぞれのエッジ部が重畳する領域STにおける、それぞれのパルスレーザ光の強度が、前記材料層を前記基板から剥離させるに必要な分解閾値に対して大きすぎると、基板に材料層が再接着する等の不具合を生ずることが確認された。
 これは、同じ領域に、強度が大きなパルスレーザ光が2度照射されることにより、一度基板から剥離した材料層が、2度目に照射されるパルスレーザ光により再接着するものと考えられる。
 実験等により、各レーザ光が重畳している領域におけるレーザ光の強度は、前記材料層を前記基板から剥離させるに必要な分解閾値VEに対して、VE×1.15以下にするのが望ましいことが分かった。したがって、上記のような基板と材料層が再接着するという不具合を回避するためには、各レーザ光が重畳している領域におけるレーザ光の強度が大きすぎないようにすることが望ましい。
 ここで、[レーザ光が重畳している領域におけるレーザ光の強度(最大値)]/[分解閾値VE]を重畳度Tと定義すると、基板上に形成された材料層に割れを生じさせることなく、材料層を基板から確実に剥離させるためには、重畳度Tを1≦Tとするのが望ましく、また、基板と材料層の再接着を回避するためには、T≦1.15とするのが望ましい。
On the other hand, if the intensity of each pulsed laser beam in the region ST where the respective edge portions of the irradiation regions S1 and S2 overlap is too large with respect to the decomposition threshold necessary for peeling the material layer from the substrate, It was confirmed that problems such as re-adhesion of the material layer to the substrate occurred.
This is thought to be because the material layer once peeled off the substrate is re-adhered by the pulsed laser light irradiated the second time when the same region is irradiated with the pulsed laser light having a high intensity twice.
By experiment etc., it is desirable that the intensity of the laser beam in the region where each laser beam is superimposed be VE × 1.15 or less with respect to the decomposition threshold VE necessary for peeling the material layer from the substrate. I understood that. Therefore, in order to avoid the problem that the substrate and the material layer are re-adhered as described above, it is desirable that the intensity of the laser beam in the region where the laser beams overlap is not too high.
Here, if [intensity of laser beam (maximum value) in region where laser beam is superimposed (maximum value)] / [decomposition threshold value VE] is defined as superposition degree T, the material layer formed on the substrate is cracked. In order to reliably peel the material layer from the substrate, it is desirable that the superposition degree T is 1 ≦ T, and in order to avoid re-adhesion between the substrate and the material layer, T ≦ 1.15. It is desirable to do.
 以上に基づき、本発明においては、以下のようにして前記課題を解決する。
(1)基板上に材料層が形成されてなる前記基板を通して、パルスレーザ光を照射し、前記基板と前記材料層との界面で前記材料層を前記基板から剥離するレーザリフトオフ方法において、前記パルスレーザ光を、ワークに対する照射領域を刻々と変えながら、前記ワークにおいて隣接する各照射領域が重畳するように照射し、重畳するそれぞれのパルスレーザ光の大きさが、前記材料層を前記基板から剥離させるに必要な分解閾値を超えるエネルギーの大きさになるようにする。
(2)上記(1)において、前記ワークにおいて隣接する各照射領域に照射される各レーザ光が重畳している領域におけるレーザ光の強度を、前記材料層を前記基板から剥離させるに必要な分解閾値VEに対して、VE×1.15以下とする。
(3)上記(1)(2)において、前記ワークを、第1の搬送方向に搬送する第1の搬送動作と、第1の搬送動作の搬送方向と直交する方向に搬送する第2の搬送動作と、前記第1の搬送動作の搬送方向と180°異なる方向に搬送する第3の搬送動作とを順次に実行し、順次、各照射領域に前記パルスレーザ光を照射する。
(4)上記レーザリフトオフを行うレーザリフトオフ装置において、レーザ源から発したパルスレーザ光を成形して、前記ワークに照射する投影レンズを有するレーザ光学系を設け、前記ワークの光入射面が、前記レーザ光の光軸方向において前記投影レンズの焦点位置に一致しないように配置する。
Based on the above, in the present invention, the above-described problem is solved as follows.
(1) In the laser lift-off method in which pulsed laser light is irradiated through the substrate having a material layer formed on the substrate, and the material layer is separated from the substrate at the interface between the substrate and the material layer, the pulse Laser light is irradiated so that each irradiation region adjacent to the workpiece overlaps while changing the irradiation region on the workpiece, and the size of each overlapping pulse laser beam peels the material layer from the substrate. The amount of energy exceeds the decomposition threshold necessary for the reduction.
(2) In the above (1), the decomposition necessary for peeling the material layer from the substrate is performed on the intensity of the laser beam in the region where the laser beams irradiated to the adjacent irradiation regions in the workpiece are superimposed. VE × 1.15 or less with respect to the threshold value VE.
(3) In the above (1) and (2), a first transport operation for transporting the workpiece in the first transport direction and a second transport for transporting the workpiece in a direction orthogonal to the transport direction of the first transport operation. An operation and a third transport operation for transporting in a direction 180 ° different from the transport direction of the first transport operation are sequentially performed, and the pulse laser beam is sequentially irradiated to each irradiation region.
(4) In the laser lift-off device for performing the laser lift-off, a laser optical system having a projection lens for shaping pulse laser light emitted from a laser source and irradiating the work is provided, and the light incident surface of the work is It arrange | positions so that it may not correspond with the focus position of the said projection lens in the optical axis direction of a laser beam.
 本発明のレーザリフトオフ方法によれば、次の効果を期待することができる。
(1)ワーク上の隣接する照射領域に照射されるレーザ光が、材料層を分解するために必要な分解閾値を超えるエネルギー領域で重畳しているので、各レーザ光が重畳するように照射された領域において、材料層を基板から剥離させるために十分なレーザエネルギーが与えられるので、基板上に形成された材料層に割れを生じさせることなく、材料層を基板から確実に剥離させることができる。
(2)隣接する各照射領域に照射される各レーザ光が重畳している領域におけるレーザ光の強度を、前記材料層を前記基板から剥離させるに必要な分解閾値VEに対して、VE×1.15以下とすることにより、基板と材料層が再接着するという不具合を回避することができる。
(3)ワークの光入射面が、前記レーザ光の光軸方向において前記投影レンズの焦点位置に一致しないように配置することにより、ワークに照射されるパルスレーザ光のビームプロファイルをなだらかな形状とする(照射されるパルスレーザ光の周縁部の光照度分布をピーク部からエッジ部に向けてなだらかに低下する形状とする)ことができる。これにより、パルスレーザ光の照射間隔を調整する(ワークを一定速度で搬送している場合)か、あるいは、ワークの搬送速度を調整する(パルスレーザ光の照射間隔が一定の場合)ことで、各レーザ光が重畳している領域における各レーザ光の強度を変えることができる。
According to the laser lift-off method of the present invention, the following effects can be expected.
(1) Since the laser beam irradiated to the adjacent irradiation region on the workpiece is superimposed in an energy region exceeding the decomposition threshold necessary for decomposing the material layer, each laser beam is irradiated so as to be superimposed. In this region, sufficient laser energy is applied to peel the material layer from the substrate, so that the material layer can be reliably peeled from the substrate without causing cracks in the material layer formed on the substrate. .
(2) The intensity of the laser beam in the region where the laser beams irradiated to the adjacent irradiation regions are overlapped is VE × 1 with respect to the decomposition threshold VE necessary for peeling the material layer from the substrate. By setting the ratio to 15 or less, it is possible to avoid the problem that the substrate and the material layer are reattached.
(3) By arranging the light incident surface of the work so as not to coincide with the focal position of the projection lens in the optical axis direction of the laser light, the beam profile of the pulsed laser light applied to the work has a gentle shape. (The illuminance distribution at the peripheral edge of the pulsed laser light to be irradiated has a shape that gradually decreases from the peak portion toward the edge portion). Thereby, by adjusting the irradiation interval of the pulse laser beam (when the workpiece is conveyed at a constant speed), or by adjusting the conveyance speed of the workpiece (when the irradiation interval of the pulse laser beam is constant), The intensity of each laser beam in the region where each laser beam is superimposed can be changed.
本発明の実施例のレーザリフトオフ処理の概要を説明する概念図である。It is a conceptual diagram explaining the outline | summary of the laser lift-off process of the Example of this invention. レーザ光がワークに照射される様子を示す図である。It is a figure which shows a mode that a laser beam is irradiated to a workpiece | work. 本発明の実施例において、ワークの互いに隣接する領域S1、S2に重畳して照射されるレーザ光の光強度分布を示す図である。In the Example of this invention, it is a figure which shows the light intensity distribution of the laser beam irradiated on the area | region S1, S2 which mutually adjoins a workpiece | work. 本発明の実施例のレーザリフトオフ装置の概念図である。It is a conceptual diagram of the laser lift-off apparatus of the Example of this invention. レーザ光の光強度分布のその他の実施例を示す図である。It is a figure which shows the other Example of the light intensity distribution of a laser beam. 本実施例のレーザ光の光強度分布と比較するための比較例を示す図である。It is a figure which shows the comparative example for comparing with the light intensity distribution of the laser beam of a present Example. レーザ光の重畳度が剥離後の材料層に与える影響を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the influence which the superimposition degree of a laser beam has on the material layer after peeling. レーザ光の光強度分布をなだらかな形状とすることにより、重畳部分におけるレーザ光の強度を調整できることを説明する図である。It is a figure explaining that the intensity | strength of the laser beam in a superimposition part can be adjusted by making light intensity distribution of a laser beam into a gentle shape. レーザリフトオフ処理を適用することができる半導体発光素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor light-emitting device which can apply a laser lift-off process. レーザ光の1ショットの照射領域が正方形状である場合を示す図である。It is a figure which shows the case where the irradiation area | region of 1 shot of a laser beam is square shape. ライン状のレーザ光を、レーザ光の長手方向と垂直方向に移動させながら、基板の裏面から照射する従来技術を説明する図である。It is a figure explaining the prior art which irradiates from the back surface of a board | substrate, moving a linear laser beam to the orthogonal | vertical direction with the longitudinal direction of a laser beam. 図11に示す従来技術におけるレーザ光の光強度分布を示す図である。Is a graph showing the light intensity distribution of the laser beam in the prior art shown in FIG. 11.
 図1は、本発明の実施例のレーザリフトオフ処理の概要を説明する概念図である。
 同図に示すように、本実施例において、レーザリフトオフ処理は次のように行われる。
 レーザ光を透過する基板1上に材料層2が形成されたワーク3が、ワークステージ31上に載置されている。ワーク3を載せたワークステージ31は、コンベヤのような搬送機構32に載置され、搬送機構32によって所定の速度で搬送される。ワーク3は、ワークステージ31と共に図中の矢印ABC方向に搬送されながら、基板1を通じて、図示しないパルスレーザ源から出射するパルスレーザ光Lが照射される。
 ワーク3は、サファイアからなる基板1の表面に、GaN(窒化ガリウム)系化合物の材料層2が形成されてなるものである。基板1は、GaN系化合物の材料層を良好に形成することができ、尚且つ、GaN系化合物材料層を分解するために必要な波長のレーザ光を透過するものであれば良い。材料層2には、低い入力エネルギーによって高出力の青色光を効率良く出力するためにGaN系化合物が用いられる。
FIG. 1 is a conceptual diagram illustrating an outline of laser lift-off processing according to an embodiment of the present invention.
As shown in the figure, in the present embodiment, the laser lift-off process is performed as follows.
A work 3 in which a material layer 2 is formed on a substrate 1 that transmits laser light is placed on a work stage 31. The work stage 31 on which the work 3 is placed is placed on a transport mechanism 32 such as a conveyor, and is transported by the transport mechanism 32 at a predetermined speed. The workpiece 3 is irradiated with a pulse laser beam L emitted from a pulse laser source (not shown) through the substrate 1 while being conveyed in the direction of arrow ABC in the figure together with the workpiece stage 31.
The workpiece 3 is formed by forming a material layer 2 of a GaN (gallium nitride) compound on the surface of a substrate 1 made of sapphire. The substrate 1 may be any material as long as it can form a GaN-based compound material layer satisfactorily and transmits laser light having a wavelength necessary for decomposing the GaN-based compound material layer. A GaN-based compound is used for the material layer 2 in order to efficiently output high-output blue light with low input energy.
 レーザ光は、基板1および基板1から剥離する材料層を構成する物質に対応して適宜選択すべきである。サファイアの基板1からGaN系化合物の材料層2を剥離する場合には、例えば波長248nmを放射するKrF(クリプトンフッ素)エキシマレーザを用いることができる。レーザ波長248nmの光エネルギーは、GaNのバンドギャップ(3.4eV)とサファイアのバンドギャップ(9.9eV)の間にある。したがって、波長248nmのレーザ光はサファイアの基板からGaN系化合物の材料層を剥離するために望ましい。 The laser beam should be appropriately selected according to the substrate 1 and the substance constituting the material layer peeled from the substrate 1. When the GaN-based compound material layer 2 is peeled from the sapphire substrate 1, for example, a KrF (krypton fluorine) excimer laser that emits a wavelength of 248 nm can be used. The light energy at the laser wavelength of 248 nm is between the band gap of GaN (3.4 eV) and the band gap of sapphire (9.9 eV). Therefore, a laser beam having a wavelength of 248 nm is desirable for peeling the material layer of the GaN-based compound from the sapphire substrate.
 続いて、本発明の実施例のレーザリフトオフ処理について、図1及び2を用いて説明する。図2は、レーザ光Lがワーク3に照射される様子を示す図である。
 図2(a)はワーク3に対するレーザ光の照射方法を示し、図2(b)は図2(a)のX部を拡大して示したものであり、図2(b)では、ワーク3の各照射領域の照射されるレーザ光の光強度分布の断面の一例を示している。なお、図2に示すワーク3上の実線は、レーザ光の照射領域を仮想的に示すものに過ぎない。
 ワーク3は、搬送機構32によって図2に示す矢印HA、HB、HCの方向に繰返し搬送される。レーザ光Lはサファイアの基板1の裏面から照射され、基板1と材料層2の界面に照射される。レーザ光Lの形状は略方形状に成形される。
 ワーク3は、図1、2に示すように、ワーク自体のサイズに対応して、図1の矢印Aの方向に搬送される第1の搬送動作HAと、レーザ光の1ショットの照射領域Sに相当する距離から重畳領域STを差し引いた距離だけ第1の搬送動作HAの搬送方向と直交する方向(図1の矢印Cの方向)に搬送される第2の搬送動作HBと、図1の矢印Bの方向に搬送される第3の搬送動作HCとが順次に実行される。第1の搬送動作HAおよび第3の搬送動作HCのそれぞれの搬送方向は180°異なっている。
 ここで、レーザ光の光学系は固定されたままであり搬送されない。つまり、レーザ光の光学系を固定した状態でワーク3のみが搬送されることによって、ワーク3におけるレーザ光Lの照射領域が、図2の矢印に示すようにS1ないしS12の順に相対的に刻々と変わることになる。
Next, laser lift-off processing according to an embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a diagram illustrating a state in which the laser beam L is applied to the workpiece 3.
2A shows a method of irradiating the workpiece 3 with the laser beam, FIG. 2B shows an enlarged view of a portion X in FIG. 2A, and FIG. 2 shows an example of a cross-section of the light intensity distribution of laser light irradiated on each of the irradiation regions. Note that the solid line on the workpiece 3 shown in FIG. 2 is merely a virtual representation of the laser light irradiation area.
The workpiece 3 is repeatedly conveyed in the directions of arrows HA, HB, and HC shown in FIG. The laser beam L is applied from the back surface of the sapphire substrate 1 and is applied to the interface between the substrate 1 and the material layer 2. The shape of the laser beam L is formed into a substantially square shape.
As shown in FIGS. 1 and 2, the workpiece 3 corresponds to the size of the workpiece itself, and the first conveyance operation HA is conveyed in the direction of arrow A in FIG. 1 and the irradiation region S of one shot of laser light. A second transport operation HB transported in a direction (in the direction of arrow C in FIG. 1) perpendicular to the transport direction of the first transport operation HA by a distance obtained by subtracting the overlapping region ST from the distance corresponding to The third transport operation HC transported in the direction of arrow B is sequentially executed. The transport directions of the first transport operation HA and the third transport operation HC differ by 180 °.
Here, the optical system of the laser light remains fixed and is not transported. That is, when only the workpiece 3 is transported with the laser beam optical system fixed, the irradiation region of the laser beam L on the workpiece 3 is relatively relatively momentarily in the order of S1 to S12 as shown by the arrows in FIG. Will change.
 次に、本発明の実施例のレーザリフトオフ処理についてより具体的に説明する。図2に示す実施例では、ワーク3は円形状の輪郭を持つものであるが、レーザ光の照射領域が略方形状となっており、このような方形状の照射領域に対するレーザ照射方法について説明する。
 図2に示すように、ワーク3を図2のHA方向に搬送させながら、S1、S2、S3、S4の4つの照射領域に対して、それぞれ1回ずつ合計4回に亘りレーザ光を照射する。これが第1の搬送動作である。
 次に、レーザ光がワーク3の次なる照射領域S5に照射されるようにするため、ワーク3を図2のHB方向に搬送する。これが第2の搬送動作である。ワーク3が矢印HB方向に搬送される距離は、パルスレーザ光の1ショット(1パルス)分の照射領域に相当する距離から重畳領域STを差し引いた距離に等しい。
 その次に、ワーク3を図2のHC方向に搬送させながら、S5、S6、S7、S8、S9、S10の6つの照射領域に対して、それぞれ1回ずつ合計6回に亘りレーザ光を照射する。これが第3の搬送動作である。ワーク3のその他の照射領域についても上記の一連の手順に従ってワーク3を搬送することにより、ワーク3の全域に亘りレーザ光が照射される。
Next, the laser lift-off process according to the embodiment of the present invention will be described more specifically. In the embodiment shown in FIG. 2, the workpiece 3 has a circular outline, but the laser light irradiation area has a substantially rectangular shape, and a laser irradiation method for such a rectangular irradiation area will be described. To do.
As shown in FIG. 2, the laser beam is radiated once for each of the four irradiation areas S1, S2, S3, and S4 while transferring the workpiece 3 in the HA direction in FIG. . This is the first transport operation.
Next, the workpiece 3 is transported in the HB direction in FIG. 2 in order to irradiate the next irradiation region S5 of the workpiece 3 with the laser light. This is the second transport operation. The distance by which the workpiece 3 is conveyed in the direction of the arrow HB is equal to the distance obtained by subtracting the overlapping area ST from the distance corresponding to the irradiation area for one shot (one pulse) of the pulse laser beam.
Next, while transporting the workpiece 3 in the HC direction in FIG. 2, the laser beam is irradiated once for each of the six irradiation areas S5, S6, S7, S8, S9, and S10, a total of six times. to. This is the third transport operation. Also in the other irradiation areas of the workpiece 3, the laser beam is irradiated over the entire area of the workpiece 3 by conveying the workpiece 3 according to the above-described series of procedures.
 レーザ光の照射領域は、図2に示すようにS1、S2、S3の順に相対的に移動することになるが、それぞれの照射領域は例えば0.5mm×0.5mmであり面積は0.25mmとされる。これに対して、ワーク3の面積は4560mmである。つまり、レーザ光の照射領域S1、S2、S3はワーク面積に比して遥かに小さいものである。
 本実施例のレーザリフトオフ処理では、ワーク3に比して小さい照射領域のレーザ光が図1に示す矢印AおよびBの方向(つまりワークの左右方向)にスキャンしながらワーク3に対して照射される。なお、本発明の実施例とは逆に、ワークを固定したままで、上記した搬送動作HAないしHCに従ってレーザの光学系を搬送しても良い。要は、ワーク上のレーザ光の照射領域が時間とともに刻々と移り変わるように、ワークに対してレーザ光が照射されれば良い。
As shown in FIG. 2, the laser light irradiation area moves relatively in the order of S1, S2, and S3. Each irradiation area is, for example, 0.5 mm × 0.5 mm, and the area is 0.25 mm. 2 . On the other hand, the area of the work 3 is 4560 mm 2 . That is, the laser light irradiation areas S1, S2, and S3 are much smaller than the work area.
In the laser lift-off process of the present embodiment, a laser beam in an irradiation area smaller than that of the workpiece 3 is irradiated to the workpiece 3 while scanning in the directions of arrows A and B shown in FIG. The In contrast to the embodiment of the present invention, the laser optical system may be transported in accordance with the transport operations HA or HC described above while the workpiece is fixed. In short, the laser beam may be irradiated to the workpiece so that the irradiation region of the laser beam on the workpiece changes with time.
 ここで、本発明のレーザリフトオフ処理においては、図2(b)に示すように、レーザ光がワーク3の互いに隣接する照射領域S1、S2、S3において、間歇的に照射される各レーザ光の幅方向の端部が互いに重畳するようにワーク3に照射される。レーザ光Lは、パルスレーザ光であり、間歇的にワーク3に照射される。ワーク3の照射領域S1、S2、S3においてレーザ光が重畳する幅は、例えば0.1mmである。
 レーザ光のパルス間隔は、ワーク3の搬送速度と、ワーク3上の隣接する照射領域S1、S2、S3、…に照射されるレーザ光の重畳領域STの幅を考慮して適宜設定される。
 基本的にはワーク3が次なる照射領域に移動する前にレーザ光がワークに照射されることのないように、レーザ光のパルス間隔が決められる。つまり、レーザ光のパルス間隔は、ワーク3がレーザ光の1ショット分の照射領域に相当する距離を移動するために要する時間よりも長く設定される。例えば、ワーク3の搬送速度が100mm/秒、レーザ光の重畳領域STの幅が0.1mmである場合、レーザ光のパルス間隔は0.004秒(250Hz)である。
Here, in the laser lift-off process of the present invention, as shown in FIG. 2B, each laser beam irradiated intermittently in the irradiation regions S1, S2, and S3 of the workpiece 3 adjacent to each other as shown in FIG. The workpiece 3 is irradiated so that the end portions in the width direction overlap each other. The laser beam L is a pulsed laser beam and is intermittently applied to the workpiece 3. In the irradiation areas S1, S2, and S3 of the work 3, the width in which the laser light is superimposed is, for example, 0.1 mm.
The pulse interval of the laser light is appropriately set in consideration of the conveyance speed of the workpiece 3 and the width of the overlapping region ST of the laser beam irradiated on the adjacent irradiation regions S1, S2, S3,.
Basically, the pulse interval of the laser beam is determined so that the workpiece is not irradiated with the laser beam before the workpiece 3 moves to the next irradiation region. That is, the pulse interval of the laser beam is set longer than the time required for the work 3 to move a distance corresponding to the irradiation region for one shot of the laser beam. For example, when the conveying speed of the workpiece 3 is 100 mm / second and the width of the laser light overlapping region ST is 0.1 mm, the pulse interval of the laser light is 0.004 seconds (250 Hz).
 図3は、図2に示すワーク3の互いに隣接する領域S1、S2に重畳するようにワークに照射されるレーザ光の光強度分布を示す図であり、図2(b)におけるa-a´線断面図である。
 同図において縦軸はワークの各照射領域に照射されるレーザ光の強度(エネルギー値)を、横軸はワークの搬送方向を示す。また、L1、L2は、それぞれワークの照射領域S1、S2に照射されるレーザ光のプロファイルを示す。なお、レーザ光L1,L2は同時に照射されるわけではなく、レーザ光L1が照射されてから1パルス間隔後にレーザ光L2が照射される。
 この例では、図3に示すように、レーザ光L1、L2の断面は、周方向になだらかに広がるエッジ部LEに続いて頂上(ピークエネルギーPE)に平坦面を有する略台形状に形成されている。そして、レーザ光L1、L2は、図3に破線で示すように、GaN系化合物の材料層を分解してサファイアの基板から剥離させるために必要な分解閾値VEを超えるエネルギー領域において重畳される。
FIG. 3 is a diagram showing the light intensity distribution of the laser beam irradiated on the workpiece so as to overlap the regions S1 and S2 adjacent to each other of the workpiece 3 shown in FIG. 2, and aa ′ in FIG. It is line sectional drawing.
In the figure, the vertical axis indicates the intensity (energy value) of the laser beam irradiated to each irradiation area of the workpiece, and the horizontal axis indicates the conveyance direction of the workpiece. L1 and L2 indicate the profiles of the laser beams irradiated to the workpiece irradiation areas S1 and S2, respectively. The laser beams L1 and L2 are not irradiated at the same time, but the laser beam L2 is irradiated after one pulse interval from the irradiation of the laser beam L1.
In this example, as shown in FIG. 3, the cross sections of the laser beams L1 and L2 are formed in a substantially trapezoidal shape having a flat surface on the top (peak energy PE) following the edge portion LE that gently spreads in the circumferential direction. Yes. The laser beams L1 and L2 are superimposed in an energy region exceeding a decomposition threshold VE necessary for decomposing and separating the material layer of the GaN-based compound from the sapphire substrate, as indicated by broken lines in FIG.
 すなわち、各レーザ光の光強度分布における、レーザ光L1とL2との交差位置Cでのレーザ光の強度(エネルギー値)CEは、上記分解閾値VEを越える値になるように設定される。
 これは、前述したように、図2の照射領域S1にレーザ光を照射した後に照射領域をS1からS2に移行させたとき、領域S1の温度は既に室温レベルまで低下した状態となるため、照射領域S1の温度が室温レベルに低下した状態で照射領域S2にレーザ光を照射したとしても、それぞれの照射領域S1、S2に照射されるパルスレーザ光の照射量が積算されないためである。
 レーザ光L1とL2との交差位置Cでのレーザ光の強度CE、すなわち、レーザ光が重畳して照射される領域におけるそれぞれのパルスレーザ光の強度を、上記分解閾値VEを越える値になるように設定することで、材料層を基板から剥離させるために十分なレーザエネルギーが与えることができ、基板上に形成された材料層に割れを生じさせることなく、材料層を基板から確実に剥離させることができる。すなわち、前記段落0011に定義される重畳度Tは、1≦Tとするのが望ましい。
 なお、ワーク3とレーザ光の相対的な移動量に対して、レーザ光のパルス間隔は、ワーク3の隣接する照射領域に照射されるレーザ光が前記のように重畳するように予め調整されている。同図に示す実施例では、材料層がGaNであるため、分解閾値は500~1500J/cmである。分解閾値VEは、材料層を構成する物質毎に設定することが必要とされる。
That is, in the light intensity distribution of each laser beam, the intensity (energy value) CE of the laser beam at the intersection position C between the laser beams L1 and L2 is set to a value exceeding the decomposition threshold value VE.
This is because, as described above, when the irradiation region is shifted from S1 to S2 after irradiating the irradiation region S1 of FIG. 2 with the laser beam, the temperature of the region S1 is already lowered to the room temperature level. This is because even if the irradiation region S2 is irradiated with the laser light in a state where the temperature of the region S1 is lowered to the room temperature level, the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated.
The intensity CE of the laser beam at the crossing position C between the laser beams L1 and L2, that is, the intensity of each pulsed laser beam in the region irradiated with the laser beam superimposed, becomes a value exceeding the decomposition threshold VE. By setting to, sufficient laser energy can be given to peel the material layer from the substrate, and the material layer is surely peeled from the substrate without causing cracks in the material layer formed on the substrate. be able to. That is, the degree of superimposition T defined in the paragraph 0011 is preferably 1 ≦ T.
Note that the pulse interval of the laser beam is adjusted in advance so that the laser beam applied to the adjacent irradiation region of the workpiece 3 is superimposed as described above with respect to the relative movement amount of the workpiece 3 and the laser beam. there. In the example shown in the figure, since the material layer is GaN, the decomposition threshold is 500 to 1500 J / cm 2 . The decomposition threshold VE needs to be set for each substance constituting the material layer.
 ここで、上記のようにレーザ光L1とL2とは分解閾値VEを超えるエネルギー領域で重畳されるが、後述するように、基板と材料層が再接着するという不具合を回避するためには、重畳するそれぞれのレーザ光の分解閾値VEに対する大きさの割合を適切な値に設定する必要があり、具体的に、上記分解閾値VEに対して、VE×1.15以下になるように設定するのが望ましいことが分かった。
 図3の実施例では、各レーザ光の光強度分布におけるレーザ光L1とL2との交差位置Cでのレーザ光の強度(エネルギー値)CEは、前記材料層を前記基板から剥離させるに必要な分解閾値VEに対して、VE×1.15以下になるように設定する。
 すなわち、前記重畳度Tは、T≦1.15とするのが望ましい。
Here, as described above, the laser beams L1 and L2 are superimposed in an energy region exceeding the decomposition threshold value VE. It is necessary to set the ratio of the size of each laser beam to the decomposition threshold VE to an appropriate value. Specifically, the ratio is set to be VE × 1.15 or less with respect to the decomposition threshold VE. Was found to be desirable.
In the embodiment of FIG. 3, the intensity (energy value) CE of the laser beam at the intersection position C of the laser beams L1 and L2 in the light intensity distribution of each laser beam is necessary for peeling the material layer from the substrate. It sets so that it may become VEx1.15 or less to decomposition threshold VE.
That is, it is desirable that the degree of superimposition T is T ≦ 1.15.
 図4は、本発明の実施例のレーザリフトオフ装置の概念図である。
同図において、レーザリフトオフ装置10は、前記したパルスレーザ光を出射するレーザ源20と、レーザ光を所定の形状に成形するためのレーザ光学系40と、ワーク3が載置されるワークステージ31と、ワークステージ31を搬送する搬送機構32と、レーザ源20で発生するレーザ光の照射間隔および搬送機構32の動作を制御する制御部33とを備えている。
 光学系40は、シリンドリカルレンズ41、42と、レーザ光をワークの方向へ反射するミラー43と、レーザ光を所定の形状に成形するためのマスク44と、マスク44を通過したレーザ光Lをワーク3上に集光させる投影レンズ45とを備えている。
 光学系40の先にはワーク3が配置されている。ワーク3はワークステージ31上に載置されている。ワークステージ31は搬送機構32に載置されており、搬送機構32によって搬送される。これにより、ワーク3が、前記図1に示した矢印A、B、Cの方向に順次に搬送され、ワーク3におけるレーザ光の照射領域が刻々と変わる。制御部33は、ワーク3の隣接する照射領域に照射される各レーザ光の重畳度が所望の値になるように、レーザ源20で発生するパルスレーザ光のパルス間隔を制御する。
FIG. 4 is a conceptual diagram of a laser lift-off device according to an embodiment of the present invention.
In the figure, a laser lift-off device 10 includes a laser source 20 that emits the above-described pulsed laser light, a laser optical system 40 for shaping the laser light into a predetermined shape, and a work stage 31 on which a work 3 is placed. And a transport mechanism 32 that transports the work stage 31, and a control unit 33 that controls the irradiation interval of the laser light generated by the laser source 20 and the operation of the transport mechanism 32.
The optical system 40 includes cylindrical lenses 41 and 42, a mirror 43 that reflects laser light in the direction of the workpiece, a mask 44 for shaping the laser light into a predetermined shape, and a laser beam L that has passed through the mask 44 as a workpiece. 3 is provided with a projection lens 45 for condensing the light.
A work 3 is disposed at the tip of the optical system 40. The work 3 is placed on the work stage 31. The work stage 31 is placed on the transport mechanism 32 and is transported by the transport mechanism 32. As a result, the workpiece 3 is sequentially conveyed in the directions of arrows A, B, and C shown in FIG. 1, and the irradiation region of the laser beam on the workpiece 3 changes every moment. The control unit 33 controls the pulse interval of the pulsed laser light generated by the laser source 20 so that the degree of superimposition of each laser light irradiated on the irradiation region adjacent to the workpiece 3 becomes a desired value.
 レーザ源20から発生するレーザ光Lは波長248nmの紫外線を発生する、例えばKrFエキシマレーザである。レーザ源としてArFレーザやYAGレーザを使用しても良い。
 ここで、ワーク3の光入射面3Aは、投影レンズ45の焦点Fよりもレーザ光の光軸方向において遠方側に配置するか、これとは反対に、レーザ光の光軸方向において、ワーク3の光入射面3Aを投影レンズ45の焦点Fよりも投影レンズ45に近づけるように配置しても良い。このように、ワーク3の光入射面3Aを投影レンズ45の焦点Fに一致しないように配置することにより、図3に示すような、レーザ光L1,L2のビームプロファイルのエッジ部LEがなだらかに低下する、断面が台形状の光強度分布を持つレーザ光が得られる。
 レーザ源20で発生したレーザ光Lは、シリンドリカルレンズ41、42、ミラー43、マスク44を通過した後に、投影レンズ45によってワーク3上に集光される。
 投影レンズ45により、ワーク3の光入射面3Aに入射されるレーザ光は、図3に示す断面において、周方向になだらかに広がるエッジ部LEに続いて頂上に平坦面を有する略台形状の光強度分布を持つように成形される。
The laser light L generated from the laser source 20 is, for example, a KrF excimer laser that generates ultraviolet light having a wavelength of 248 nm. An ArF laser or a YAG laser may be used as the laser source.
Here, the light incident surface 3A of the work 3 is disposed farther in the optical axis direction of the laser light than the focal point F of the projection lens 45, or on the contrary, in the optical axis direction of the laser light, the work 3 The light incident surface 3 </ b> A may be disposed closer to the projection lens 45 than the focal point F of the projection lens 45. Thus, by arranging the light incident surface 3A of the workpiece 3 so as not to coincide with the focal point F of the projection lens 45, the edge portions LE of the beam profiles of the laser beams L1 and L2 as shown in FIG. A laser beam having a light intensity distribution with a trapezoidal cross section is obtained.
The laser light L generated by the laser source 20 passes through the cylindrical lenses 41 and 42, the mirror 43, and the mask 44, and is then condensed on the work 3 by the projection lens 45.
Laser light incident on the light incident surface 3A of the workpiece 3 by the projection lens 45 is substantially trapezoidal light having a flat surface on the top following the edge portion LE that gently spreads in the circumferential direction in the cross section shown in FIG. Molded to have an intensity distribution.
 ワークの隣接する照射領域に重畳するように照射される各々のレーザ光の光強度分布は、上記したように断面が略台形状であることが理想的であるが、必ずしも台形状でなくても良い。
 図5は、ワークに照射されるレーザ光の光強度分布のその他の実施例を示す。
 図5(a)に示すレーザ光の光強度分布は、中央にピークが位置すると共に、該ピークに続いてなだらかに広がるエッジ部LEを有する略山状に形成されている。レーザ光の光強度分布は、図4に示す投影レンズ45の焦点Fとワーク3の光入射面3Aとの距離を調整することによって適宜変更することができる。
 レーザ光の光強度分布は、投影レンズ45の焦点Fとワーク3の光入射面3Aとの距離が近付くにつれてシャープな矩形状となり、投影レンズ45の焦点Fとワーク3の光入射面3Aとの距離が遠くなるにつれてエッジがなだらかに形成されると共に山状に形成される。
 また、図5(b)に示すようにレーザ光L1,L2の光強度分布を矩形状にしても良い。この場合、レーザ光L1,L2が重なっている領域におけるレーザ光の強度(レーザ光L1とL2との交差位置でのレーザ光の強度であり、この場合はレーザ光L1のピーク値に対応)をCEとすると、前記重畳度Tは、T=CE/[分解閾値VE]で計算される。
 この場合においても、上記レーザ光L1とL2との交差位置でのレーザ光の強度CEは、前記材料層を前記基板から剥離させるに必要な分解閾値VEより大きく、かつ、分解閾値VEに対して、VE×1.15以下とすることが望ましい。
As described above, it is ideal that the light intensity distribution of each laser beam irradiated so as to be superimposed on the adjacent irradiation region of the workpiece has a substantially trapezoidal cross section, but it does not necessarily have a trapezoidal shape. good.
FIG. 5 shows another embodiment of the light intensity distribution of the laser light applied to the workpiece.
The light intensity distribution of the laser light shown in FIG. 5A is formed in a substantially mountain shape having a peak at the center and an edge portion LE that gently spreads after the peak. The light intensity distribution of the laser light can be changed as appropriate by adjusting the distance between the focal point F of the projection lens 45 and the light incident surface 3A of the workpiece 3 shown in FIG.
The light intensity distribution of the laser light becomes a sharp rectangular shape as the distance between the focal point F of the projection lens 45 and the light incident surface 3A of the workpiece 3 approaches, and the focal point F of the projection lens 45 and the light incident surface 3A of the workpiece 3 become smaller. As the distance increases, the edges are gently formed and formed in a mountain shape.
Further, as shown in FIG. 5B, the light intensity distribution of the laser beams L1 and L2 may be rectangular. In this case, the intensity of the laser beam in the region where the laser beams L1 and L2 overlap (the intensity of the laser beam at the intersection of the laser beams L1 and L2, which corresponds to the peak value of the laser beam L1 in this case). Assuming CE, the degree of superimposition T is calculated by T = CE / [decomposition threshold VE].
Even in this case, the intensity CE of the laser beam at the crossing position of the laser beams L1 and L2 is larger than the decomposition threshold value VE necessary for peeling the material layer from the substrate, and with respect to the decomposition threshold value VE. VE × 1.15 or less is desirable.
 ここで、本実施例のレーザリフトオフ処理を実行することによって得られる効果について図3、図6を用いて説明する。
 図3は本実施例のレーザリフトオフ方法に使用されるレーザ光の光強度分布を示し、図6はこれと比較するためのレーザ光の光強度分布を示す。図3、図6のL1、L2は、図2に示すS1、S2の照射領域に照射されるレーザ光を示す。ワークの隣接する照射領域に照射されるレーザ光の重畳度が基板から剥離後の材料層に与える影響について、図3、6を用いて比較検討する。
 図3に示すレーザ光L1、L2は、周方向になだらかに広がるエッジ部LEに続いて頂上に平坦面を有する略台形状の光強度分布を有し、尚且つ、分解閾値VEを超えるエネルギー領域においてレーザ光L1、L2は重畳度Tが適切な値(1以上1.15以内)になるように重畳している。
 従って、図3の実施例のレーザリフトオフ方法は、レーザ光が基板1との界面側の材料層2の表面に照射され材料層2を構成するGaNが分解する際に、Nガスが急激に発生することがない。しかも、図3の実施例のレーザリフトオフ方法は、図2においてレーザ光L1とL2とが重畳する重畳領域STに対して照射されるレーザ光のエネルギーが、過不足なく最適なエネルギーになるため、材料層2と基板1が再接着する不具合を回避することができ、材料層2を基板1から確実に剥離させることができる。
 実際に図3に示す実施例のレーザ光をワークに照射した場合の、剥離後の材料層の表面状態はとても綺麗であり、汚れ、傷などといった発光特性に悪影響を与えるものは見あたらなかった。
Here, the effect obtained by executing the laser lift-off process of the present embodiment will be described with reference to FIGS.
FIG. 3 shows the light intensity distribution of the laser light used in the laser lift-off method of this embodiment, and FIG. 6 shows the light intensity distribution of the laser light for comparison with this. L1 and L2 in FIGS. 3 and 6 indicate laser beams irradiated to the irradiation areas of S1 and S2 shown in FIG. The influence of the degree of superimposition of the laser light applied to the irradiation area adjacent to the workpiece on the material layer after peeling from the substrate will be compared and examined with reference to FIGS.
The laser beams L1 and L2 shown in FIG. 3 have a substantially trapezoidal light intensity distribution having a flat surface on the top following an edge portion LE that gently spreads in the circumferential direction, and an energy region exceeding the decomposition threshold VE. The laser beams L1 and L2 are superposed so that the superposition degree T becomes an appropriate value (1 to 1.15).
Therefore, in the laser lift-off method of the embodiment of FIG. 3, when the surface of the material layer 2 on the interface side with the substrate 1 is irradiated with laser light and the GaN constituting the material layer 2 is decomposed, the N 2 gas rapidly It does not occur. Moreover, in the laser lift-off method of the embodiment of FIG. 3, the energy of the laser beam irradiated to the overlapping region ST where the laser beams L1 and L2 overlap in FIG. The problem that the material layer 2 and the substrate 1 are re-adhered can be avoided, and the material layer 2 can be reliably peeled from the substrate 1.
When the workpiece was actually irradiated with the laser beam of the embodiment shown in FIG. 3, the surface state of the material layer after peeling was very clean, and no material that adversely affects the light emission characteristics such as dirt and scratches was found.
 これに対し、図6(a)の比較例に示すレーザ光をワークに照射した場合は、レーザ光L1とL2のそれぞれの光強度分布が分解閾値VEを下回るエネルギー領域で交差しているので、図2に示すワークにおいてレーザ光L1とL2との重畳領域STに照射されるレーザ光のエネルギーが不足するといった不具合がある。
 実際に図6(a)に示す比較例のレーザ光をワークに照射した場合、材料層を構成するGaNの未分解領域が形成され、材料層を基板から十分に剥離させることができなかった。GaNの未分解領域は、ワークにおいてレーザ光L1とL2とが重畳する重畳領域STに一致していた。
 一方、図6(b)の比較例に示すレーザ光をワークに照射した場合は、レーザ光L1とL2との重畳度Tが大きすぎるため、図2に示すワークにおいてレーザ光L1とL2との重畳領域STに過剰なエネルギーのレーザ光が照射されるといった不具合がある。
 後述する図7(b-4)に示すように、実際に図6(b)に示す比較例のレーザ光をワークに照射した場合の、剥離後の材料層の表面状態は、表面に黒いシミのような汚れが多数形成されている。
 これは、エネルギーが大きなレーザ光が同じ個所に2度照射されることにより、一度基板から剥離した材料層が、2度目に照射されるレーザ光により再接着し、基板を構成するサファイアの成分が付着したものと考えられる。このように材料層の表面に形成された黒いシミは発光特性に悪影響を及ぼす。
In contrast, when the workpiece is irradiated with the laser beam shown in the comparative example of FIG. 6A, the light intensity distributions of the laser beams L1 and L2 intersect each other in the energy region below the decomposition threshold VE. In the work shown in FIG. 2, there is a problem that the energy of the laser beam irradiated on the overlapping region ST of the laser beams L1 and L2 is insufficient.
When the workpiece was actually irradiated with the laser beam of the comparative example shown in FIG. 6A, an undecomposed region of GaN constituting the material layer was formed, and the material layer could not be sufficiently separated from the substrate. The undecomposed region of GaN coincided with the overlapping region ST where the laser beams L1 and L2 overlap on the workpiece.
On the other hand, when the workpiece is irradiated with the laser beam shown in the comparative example of FIG. 6B, since the degree of superimposition T of the laser beams L1 and L2 is too large, the laser beams L1 and L2 in the workpiece shown in FIG. There is a problem that a laser beam with excessive energy is irradiated onto the superposition region ST.
As shown in FIG. 7B-4, which will be described later, when the workpiece is actually irradiated with the laser light of the comparative example shown in FIG. A large number of such stains are formed.
This is because the material layer once peeled off from the substrate is re-adhered by the second laser beam when the high-energy laser beam is irradiated twice at the same location, and the sapphire component constituting the substrate is It is thought that it adhered. Thus, the black spot formed on the surface of the material layer has an adverse effect on the light emission characteristics.
 上記効果を確認するため、レーザ光が重畳する照射領域におけるレーザ光の重畳度が、剥離後の材料層に与える影響について実験を行った。
 図7はその結果を示す図である。図7(a)は実験に使用した隣接する領域に重畳させて照射したレーザ光の光強度分布を示す図であり、本実験では、同図に示すように、矩形状の光強度分布を有するレーザ光L1,L2(KrFレーザが出力するパルスレーザ光)を、サファイア基板上にGaN材料層を形成したワークに照射して行った。
 レーザ光L1,L2が重畳する領域でのレーザ光の強度を、GaN材料層の分解閾値VE(870mJ/cm)に対して105%、110%、115%、120%と変えて照射し、剥離後の材料層の表面を調べた。
 図7(b-1)、(b-2)(b-3)、(b-4)に、重畳する領域におけるレーザ光の強度を分解閾値VEに対して、それぞれ105%、110%、115%、120%と変えた場合の剥離後の材料層の表面を示す。
 図7(b-1)、(b-2)(b-3)に示すように、分解閾値VEに対して、重畳する領域でのレーザ光の強度が105%、110%、115%の場合には、剥離後の材料層の表面状態は良好であり、汚れ、傷などといった発光特性に悪影響を与えるものは見あたらなかった。これに対し、レーザ光の強度を分解閾値VEに対して120%にすると、図7(b-4)に示すように、剥離後の材料層の表面状態は、黒いシミのような汚れが多数形成された。
 なお、図7には示していないが、分解閾値VEに対して、重畳する領域でのレーザ光の強度が100%以下の場合も、レーザ光が重畳して照射される領域に、GaN材料層に未分解部分が発生することが確認された。
In order to confirm the above effect, an experiment was conducted on the influence of the degree of superimposition of the laser light on the irradiated region where the laser light is superimposed on the material layer after peeling.
FIG. 7 is a diagram showing the results. FIG. 7 (a) is a diagram showing the light intensity distribution of the laser beam irradiated in an overlapping manner used in the experiment. In this experiment, as shown in the figure, the light intensity distribution has a rectangular shape. Laser beams L1 and L2 (pulse laser beams output from a KrF laser) were irradiated to a work in which a GaN material layer was formed on a sapphire substrate.
The intensity of the laser beam in the region where the laser beams L1 and L2 overlap is changed to 105%, 110%, 115%, and 120% with respect to the decomposition threshold value VE (870 mJ / cm 2 ) of the GaN material layer. The surface of the material layer after peeling was examined.
7 (b-1), (b-2), (b-3), and (b-4), the intensity of the laser beam in the overlapping region is 105%, 110%, and 115 with respect to the decomposition threshold VE, respectively. % And 120% indicate the surface of the material layer after peeling.
As shown in FIGS. 7 (b-1), (b-2), and (b-3), when the intensity of the laser beam in the overlapping region is 105%, 110%, and 115% with respect to the decomposition threshold VE In this case, the surface condition of the material layer after peeling was good, and no material that adversely affects the luminescent properties such as dirt and scratches was found. On the other hand, when the intensity of the laser beam is set to 120% with respect to the decomposition threshold VE, as shown in FIG. 7B-4, the surface state of the material layer after peeling has many stains such as black spots. Been formed.
Although not shown in FIG. 7, even when the intensity of the laser beam in the overlapping region is 100% or less with respect to the decomposition threshold VE, the GaN material layer is applied to the region irradiated with the overlapping laser beam. It was confirmed that an undecomposed portion was generated.
 ところで、図7に示した例では、矩形状の光強度分布を有するレーザ光L1,L2を用いており、この場合、図8(a)に示すように重畳する領域でのレーザ光の強度を調整することができず、重畳する領域でのレーザ光の強度の調整は、各レーザ光L1,L2の強度を調整することにより行う必要がある。
 これに対し、レーザ光L1,L2の光強度分布(ビームプロファイル)を前記図3に示したように、周方向になだらかに広がるエッジ部LEを有する形状とすることにより、レーザ光L1,L2の照射間隔(あるいはワークの移動速度)を調整し、上記エッジ部LEの重なり程度を調整することで、重畳部分におけるレーザ光の強度を自在に調整することができる。
 図8(b-1)はレーザ光L1,L2の重ね量が適正な場合であり、照射間隔(あるいはワークの移動速度)を適切に調整した場合であり、同図(b-2)に示すように剥離後の材料層の表面状態は良好であり、汚れ、傷などといった発光特性に悪影響を与えるものは見あたらなかった。
 図8(C-1)はレーザ光L1,L2の重ね量が大きく、重畳する領域におけるレーザ光の強度が分解閾値VEに対して115%を超える場合であり、同図(C-2)に示すように、剥離後の材料層の表面状態は、黒いシミのような汚れが多数形成された。
By the way, in the example shown in FIG. 7, the laser beams L1 and L2 having a rectangular light intensity distribution are used. In this case, the intensity of the laser beam in the overlapping region as shown in FIG. The adjustment of the intensity of the laser beam in the overlapping region, which cannot be adjusted, must be performed by adjusting the intensity of the laser beams L1 and L2.
On the other hand, the light intensity distribution (beam profile) of the laser beams L1 and L2 has a shape having an edge LE that gently spreads in the circumferential direction as shown in FIG. By adjusting the irradiation interval (or the moving speed of the workpiece) and adjusting the degree of overlap of the edge portions LE, the intensity of the laser beam at the overlapping portion can be freely adjusted.
FIG. 8 (b-1) shows a case where the overlapping amount of the laser beams L1 and L2 is appropriate, and a case where the irradiation interval (or the moving speed of the workpiece) is appropriately adjusted, and is shown in FIG. 8 (b-2). As described above, the surface state of the material layer after peeling was good, and no material that adversely affects the light emission characteristics such as dirt and scratches was found.
FIG. 8C-1 shows a case where the overlapping amount of the laser beams L1 and L2 is large, and the intensity of the laser beam in the overlapping region exceeds 115% with respect to the decomposition threshold VE. As shown in the figure, the surface of the material layer after peeling had many stains such as black spots.
 また、レーザ光107を図4に示すレーザ光学系40によって、図3に示す断面において、周方向になだらかに広がるエッジ部LEに続いて頂上に平坦面を有する略台形状の光強度分布を有するように成形することにより、図3に示すレーザ光をGaN層102に照射した際に、レーザ光の照射領域のエッジ部において急激なレーザアブレーションが行わることを緩和することができる。
 よって、GaN層102の分解時にNガスが急激に発生することによる過剰な応力がGaN層102に加わることを緩和し、剥離後のGaN層102へのクラック発生を確実に低減することができる。
 さらに、本発明においては、レーザ光はGaN層102の隣接する照射領域に照射されるレーザ光が適切な重畳度となるように重畳されている。それにより、GaN層102のレーザ光の各照射領域のエッジ部に照射されるレーザ光のエネルギーが、GaN層102を剥離させるために十分であり、GaN層102をサファイア基板101から確実に剥離させることができる。
Further, the laser optical system 40 shown in FIG. 4 causes the laser light 107 to have a substantially trapezoidal light intensity distribution having a flat surface on the top following the edge portion LE that gently spreads in the circumferential direction in the cross section shown in FIG. By shaping in this way, when laser light shown in FIG. 3 is irradiated onto the GaN layer 102, abrupt laser ablation at the edge of the laser light irradiation region can be mitigated.
Therefore, it is possible to alleviate the application of excessive stress to the GaN layer 102 due to the rapid generation of N 2 gas when the GaN layer 102 is decomposed, and to reliably reduce the occurrence of cracks in the GaN layer 102 after peeling. .
Furthermore, in the present invention, the laser beam is superimposed so that the laser beam irradiated to the adjacent irradiation region of the GaN layer 102 has an appropriate degree of superimposition. Thereby, the energy of the laser light applied to the edge portion of each irradiation region of the laser light of the GaN layer 102 is sufficient for peeling the GaN layer 102, and the GaN layer 102 is surely peeled from the sapphire substrate 101. be able to.
 次に、上記したレーザリフトオフ処理を適用することができる半導体発光素子の製造方法について説明する。以下ではGaN系化合物材料層により形成される半導体発光素子の製造方法について図9を用いて説明する。
 結晶成長用の基板には、レーザ光を透過し材料層を構成する窒化ガリウム(GaN)系化合物半導体を結晶成長させることができるサファイア基板を使用する。
 図9(a)に示すように、サファイア基板101上には、例えば有機金属気相成長法(MOCVD法)を用いて迅速にGaN系化合物半導体よりなるGaN層102が形成される。続いて、図9(b)に示すように、GaN層102の表面には、発光層であるn型半導体層103とp型半導体層104とを積層させる。例えば、n型半導体としてはシリコンがドープされたGaNが用いられ、p型半導体としてはマグネシウムがドープされたGaNが用いられる。続いて、図9(c)に示すように、p型半導体層104上には、半田105が塗布される。続いて、図9(d)に示すように、半田105上にサポート基板106が取付けられる。サポート基板106は例えば銅とタングステンの合金からなる。そして、図9(e)に示すように、サファイア基板101の裏面側からサファイア基板101とGaN層102との界面に向けてレーザ光107を照射し、GaN層102を分解することによってサファイア基板101を剥離する。サファイア基板101から剥離後のGaN層102の表面に透明電極であるITO108を蒸着により形成し、ITO108の表面に電極109を取付ける。
Next, a method for manufacturing a semiconductor light emitting device to which the above-described laser lift-off process can be applied will be described. Below, the manufacturing method of the semiconductor light-emitting device formed of a GaN-based compound material layer will be described with reference to FIG.
As the substrate for crystal growth, a sapphire substrate capable of crystal growth of a gallium nitride (GaN) compound semiconductor that transmits laser light and forms a material layer is used.
As shown in FIG. 9A, a GaN layer 102 made of a GaN-based compound semiconductor is rapidly formed on a sapphire substrate 101 by using, for example, a metal organic chemical vapor deposition method (MOCVD method). Subsequently, as illustrated in FIG. 9B, an n-type semiconductor layer 103 and a p-type semiconductor layer 104 that are light emitting layers are stacked on the surface of the GaN layer 102. For example, GaN doped with silicon is used as the n-type semiconductor, and GaN doped with magnesium is used as the p-type semiconductor. Subsequently, as shown in FIG. 9C, solder 105 is applied on the p-type semiconductor layer 104. Subsequently, as shown in FIG. 9D, the support substrate 106 is attached on the solder 105. The support substrate 106 is made of, for example, an alloy of copper and tungsten. Then, as shown in FIG. 9E, the sapphire substrate 101 is decomposed by irradiating the laser beam 107 from the back surface side of the sapphire substrate 101 toward the interface between the sapphire substrate 101 and the GaN layer 102 to decompose the GaN layer 102. Peel off. ITO 108 which is a transparent electrode is formed on the surface of the GaN layer 102 after peeling from the sapphire substrate 101 by vapor deposition, and the electrode 109 is attached to the surface of the ITO 108.
1    基板
2    材料層
3    ワーク
10   レーザリフトオフ装置
20   レーザ源
31   ワークステージ
32   搬送機構
33   制御部
40   レーザ光学系
41、42  シリンドリカルレンズ
43   ミラー
44   マスク
45   投影レンズ
101  サファイア基板
102  GaN層
103  n型半導体層
104  p型半導体層
105  半田
106  サポート基板
107  レーザ光
108  透明電極(ITO)
109  電極
L,L1,L2    レーザ光
LE   エッジ部
VE   分解閾値
DESCRIPTION OF SYMBOLS 1 Substrate 2 Material layer 3 Work 10 Laser lift-off device 20 Laser source 31 Work stage 32 Transport mechanism 33 Control unit 40 Laser optical system 41, 42 Cylindrical lens 43 Mirror 44 Mask 45 Projection lens 101 Sapphire substrate 102 GaN layer 103 N-type semiconductor layer 104 p-type semiconductor layer 105 solder 106 support substrate 107 laser beam 108 transparent electrode (ITO)
109 Electrode L, L1, L2 Laser beam LE Edge portion VE Decomposition threshold

Claims (7)

  1.  基板上に材料層が形成されてなる前記基板を通してパルスレーザ光を照射し、前記基板と前記材料層との界面で前記材料層を前記基板から剥離するレーザリフトオフ方法において、
     前記パルスレーザ光は、ワークに対する照射領域を刻々と変えながら上記ワークに照射され、
     前記ワークにおいて隣接する各照射領域に照射されるそれぞれのパルスレーザ光が、前記材料層を前記基板から剥離させるに必要な分解閾値を超えるエネルギー領域において重畳する
    ことを特徴とするレーザリフトオフ方法。
    In a laser lift-off method of irradiating a pulse laser beam through the substrate in which a material layer is formed on the substrate and peeling the material layer from the substrate at an interface between the substrate and the material layer,
    The pulse laser light is irradiated to the workpiece while changing the irradiation area for the workpiece every moment,
    A laser lift-off method, wherein each pulsed laser beam irradiated to each irradiation region adjacent to the workpiece is superimposed in an energy region exceeding a decomposition threshold necessary for peeling the material layer from the substrate.
  2.  前記ワークにおいて隣接する各照射領域に照射される各レーザ光が重畳している領域におけるレーザ光の強度が、前記材料層を前記基板から剥離させるに必要な分解閾値VEに対して、VE×1.15以下である
    ことを特徴とする請求項1記載のレーザリフトオフ方法。
    The intensity of the laser beam in the region where each irradiation region irradiated on each irradiation region adjacent to the workpiece is overlapped is VE × 1 with respect to the decomposition threshold VE necessary for peeling the material layer from the substrate. The laser lift-off method according to claim 1, wherein the laser lift-off method is .15 or less.
  3.  前記ワークを第1の搬送方向に搬送する第1の搬送動作と、前記ワークを第1の搬送動作の搬送方向と直交する方向に搬送する第2の搬送動作と、前記ワークを前記第1の搬送動作の搬送方向と180°異なる方向に搬送する第3の搬送動作とを順次に実行することを特徴とする請求項1または請求項2に記載のレーザリフトオフ方法。 A first transport operation for transporting the work in a first transport direction; a second transport operation for transporting the work in a direction perpendicular to the transport direction of the first transport operation; and the work in the first transport direction. 3. The laser lift-off method according to claim 1, wherein a third transport operation for transporting in a direction different from the transport direction of the transport operation by 180 ° is sequentially performed.
  4.  基板上に材料層が形成されてなる前記基板を通してパルスレーザ光を照射し、前記基板と前記材料層との界面で前記材料層を前記基板から剥離するレーザリフトオフ装置において、
     前記基板を透過すると共に前記材料層を分解するために必要な波長域のパルスレーザ光を発生するレーザ源と、
     前記ワークと前記レーザ源とを相対的に搬送する搬送機構と、
     前記レーザ源から発したパルスレーザ光を成形して、前記ワークに照射するレーザ光学系と、
     前記レーザ光の照射間隔を制御するとともに、前記搬送機構を制御して、レーザ光の1ショット毎にワークに対する照射領域が刻々と変わるようにワークを移動させる制御部とを備え、
     前記制御部は、前記ワークにおいて隣接する各照射領域に照射されるそれぞれのレーザ光を、前記材料層を前記基板から剥離させるに必要な分解閾値を超えるエネルギー領域において重畳させるように、レーザ光の照射間隔を制御することを特徴とするレーザリフトオフ装置。
    In a laser lift-off device that irradiates a pulse laser beam through the substrate in which a material layer is formed on the substrate and peels the material layer from the substrate at an interface between the substrate and the material layer,
    A laser source that transmits pulsed laser light in a wavelength region that is necessary for transmitting the substrate and decomposing the material layer;
    A transport mechanism for relatively transporting the workpiece and the laser source;
    A laser optical system for shaping pulse laser light emitted from the laser source and irradiating the workpiece;
    A control unit for controlling the irradiation interval of the laser beam and controlling the transport mechanism to move the workpiece so that the irradiation region for the workpiece changes every moment of the laser beam;
    The control unit is configured to superimpose laser beams irradiated on each irradiation region adjacent to the workpiece in an energy region exceeding a decomposition threshold necessary for peeling the material layer from the substrate. A laser lift-off device that controls an irradiation interval.
  5.  前記制御部は、前記ワークにおいて隣接する各照射領域に照射される各レーザ光の重畳度が、前記材料層を前記基板から剥離させるに必要な分解閾値VEに対して、VE×1.15以下となるように、前記レーザ光の照射間隔を制御することを特徴とする請求項4記載のレーザリフトオフ装置。 The controller is configured such that the degree of superimposition of each laser beam irradiated on each irradiation region adjacent to the workpiece is VE × 1.15 or less with respect to a decomposition threshold VE necessary for peeling the material layer from the substrate. The laser lift-off device according to claim 4, wherein an irradiation interval of the laser light is controlled so that
  6.  前記レーザ光学系は、前記レーザ光を前記ワークに集光させる投影レンズを有し、
     前記ワークの光入射面は、前記レーザ光の光軸方向において前記投影レンズの焦点位置に一致することなく配置されていることを特徴とする請求項4または請求項5記載のレーザリフトオフ装置。
    The laser optical system has a projection lens that focuses the laser light on the workpiece,
    6. The laser lift-off device according to claim 4, wherein a light incident surface of the workpiece is arranged without being coincident with a focal position of the projection lens in an optical axis direction of the laser light.
  7.  前記搬送機構は、前記ワークを第1の搬送方向に搬送する第1の搬送動作と、前記ワークを第1の搬送動作の搬送方向と直交する方向に搬送する第2の搬送動作と、前記ワークを前記第1の搬送動作の搬送方向と180°異なる方向に搬送する第3の搬送動作とを順次に実行することを特徴とする請求項4または請求項5記載のレーザリフトオフ装置。 The transport mechanism includes a first transport operation for transporting the work in a first transport direction, a second transport operation for transporting the work in a direction orthogonal to the transport direction of the first transport operation, and the work 6. The laser lift-off device according to claim 4, wherein a third transport operation for transporting the laser beam in a direction different from the transport direction of the first transport operation by 180 ° is sequentially performed.
PCT/JP2011/063777 2010-06-29 2011-06-16 Laser lift-off method and laser lift-off apparatus WO2012002155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-147362 2010-06-29
JP2010147362A JP2012015150A (en) 2010-06-29 2010-06-29 Laser lift-off method and laser lift-off system

Publications (1)

Publication Number Publication Date
WO2012002155A1 true WO2012002155A1 (en) 2012-01-05

Family

ID=45401880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063777 WO2012002155A1 (en) 2010-06-29 2011-06-16 Laser lift-off method and laser lift-off apparatus

Country Status (3)

Country Link
JP (1) JP2012015150A (en)
TW (1) TW201216333A (en)
WO (1) WO2012002155A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091068A (en) * 2018-01-30 2019-08-06 上海鸣志电器股份有限公司 Device and method for the automatic duplicate removal of laser after rotor dynamic balancing
US11633810B2 (en) 2019-11-20 2023-04-25 Shin-Etsu Engineering Co., Ltd. Workpiece-separating device and workpiece-separating method
US11672148B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544819B (en) * 2019-03-22 2024-01-05 日本碍子株式会社 Pre-fixed substrate, composite substrate, and method for peeling electronic component
TW202236925A (en) * 2021-01-15 2022-09-16 日商東京威力科創股份有限公司 Substrate processing device and substrate processing method
TW202234508A (en) * 2021-01-15 2022-09-01 日商東京威力科創股份有限公司 Substrate processing device, substrate processing method, and substrate production method
TW202233342A (en) * 2021-01-15 2022-09-01 日商東京威力科創股份有限公司 Substrate processing device and substrate processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055979A (en) * 1996-08-09 1998-02-24 Casio Comput Co Ltd Crystallization of semiconductor thin film
JP2003168820A (en) * 2001-12-03 2003-06-13 Sony Corp Stripping method, laser light irradiating method, and method for fabricating element using these method
JP2005516415A (en) * 2002-01-31 2005-06-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of semiconductor device
JP2007534164A (en) * 2004-03-29 2007-11-22 ジェイピー・サーセル・アソシエイツ・インコーポレーテッド Material layer separation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640594B4 (en) * 1996-10-01 2016-08-04 Osram Gmbh module
JP4883991B2 (en) * 2005-11-28 2012-02-22 国立大学法人東京工業大学 Laser lift-off method and laser lift-off device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055979A (en) * 1996-08-09 1998-02-24 Casio Comput Co Ltd Crystallization of semiconductor thin film
JP2003168820A (en) * 2001-12-03 2003-06-13 Sony Corp Stripping method, laser light irradiating method, and method for fabricating element using these method
JP2005516415A (en) * 2002-01-31 2005-06-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of semiconductor device
JP2007534164A (en) * 2004-03-29 2007-11-22 ジェイピー・サーセル・アソシエイツ・インコーポレーテッド Material layer separation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONG XL ET AL.: "The influences of laser scanning speed on the structural and optical properties of thin GaN films s", JOURNAL OF PHYSICS D-APPLIED PHYSICS, vol. 42, no. 4, 21 February 2009 (2009-02-21), pages 045414 - 1 - 045414-4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672148B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
CN110091068A (en) * 2018-01-30 2019-08-06 上海鸣志电器股份有限公司 Device and method for the automatic duplicate removal of laser after rotor dynamic balancing
CN110091068B (en) * 2018-01-30 2024-03-15 上海鸣志电器股份有限公司 Device and method for automatic laser weight removal after dynamic balance of motor rotor
US11633810B2 (en) 2019-11-20 2023-04-25 Shin-Etsu Engineering Co., Ltd. Workpiece-separating device and workpiece-separating method

Also Published As

Publication number Publication date
JP2012015150A (en) 2012-01-19
TW201216333A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
JP4948629B2 (en) Laser lift-off method
WO2012002155A1 (en) Laser lift-off method and laser lift-off apparatus
JP6390898B2 (en) Substrate manufacturing method, workpiece cutting method, and laser processing apparatus
JP4661989B1 (en) Laser lift-off device
US7846847B2 (en) Method of separating layers of material
US8969220B2 (en) Methods and systems for laser processing of coated substrates
JP5073915B2 (en) Manufacturing method of semiconductor device
JP5712700B2 (en) Laser lift-off device
KR101254639B1 (en) Method of manufacturing semiconductor light emitting element
US7749782B1 (en) Laser roughening to improve LED emissions
TWI575589B (en) Method (1)
JP2014214036A (en) Method for forming through-hole through glass substrate by using laser
JP5240318B2 (en) Laser lift-off method
TW201221268A (en) Laser lift-off method and laser lift-off device
JP2012081478A (en) Laser lift-off device
JP2012080020A (en) Laser lift-off method, and laser lift-off device
JP2012146771A (en) Laser lift-off method and laser lift-off device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800621

Country of ref document: EP

Kind code of ref document: A1