WO2012000263A1 - 一种片段头信息中量化参数的编解码方法和装置 - Google Patents

一种片段头信息中量化参数的编解码方法和装置 Download PDF

Info

Publication number
WO2012000263A1
WO2012000263A1 PCT/CN2010/078210 CN2010078210W WO2012000263A1 WO 2012000263 A1 WO2012000263 A1 WO 2012000263A1 CN 2010078210 W CN2010078210 W CN 2010078210W WO 2012000263 A1 WO2012000263 A1 WO 2012000263A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
quantization parameter
current frame
value
slice quantization
Prior art date
Application number
PCT/CN2010/078210
Other languages
English (en)
French (fr)
Inventor
宋秀娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012000263A1 publication Critical patent/WO2012000263A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission

Definitions

  • the present invention relates to the field of communications, and in particular, to a codec method and apparatus for quantizing parameters in slice header information.
  • BACKGROUND With the development of network technologies and the increasing demand for multimedia services, video communication is gradually becoming one of the main services of digital communication networks. In order to efficiently transmit video data over the network, it is often necessary to compress and encode the video.
  • ITU-T International Telecommunications Union Telecommunication Standardization Sector
  • ISO International Organization for Standardization
  • IEC International Electrotechnical Commission
  • H.264/Advanced Video Coding (AVC) is a collaboration between the two standardization organizations. The purpose is to adapt to the ever-increasing demands of various business for the compression ratio of moving images and to make encoding.
  • the subsequent video data can be transmitted in various network environments.
  • H.264/AVC uses a block-based hybrid coding structure.
  • the video frame is divided into one or more slices for processing.
  • slice refers to a plurality of macroblocks or macroblock pairs arranged in a raster scan order in a certain slice group.
  • H.264/AVC encodes the slice quantization parameter using a predictive coding method to save the coding bit overhead of the quantization parameter as much as possible.
  • QP_Slice_Pred is generally set to a fixed value.
  • delta_QP_slice is the prediction difference of the slice quantization parameter.
  • the prediction difference delta QP slice of the slice quantization parameter is transmitted only in the coded stream, that is, before the coding.
  • the value of pic_init_qp_minus26 sets the prediction value QP_Slice_Pred of the quantization parameter, and then obtains the prediction difference delta_QP_slice of the slice quantization parameter according to formula (1), writes the value of delta_QP_slice into the slice header information field for encoding, and transmits it to the decoder together with the encoded code stream.
  • the value of the delta_QP_slice corresponds to the slice layer semantic unit slice qp delta in the encoded bitstream, that is, the value of the slice layer semantic unit slice qp delta represents the value of the delta QP slice.
  • the predicted value QP Slice Pred of the slice quantization parameter is obtained according to the parameter pic_init_qp_minus26 in the image parameter set included in the received encoded code stream, and the value of the slice layer semantic unit slice_qp_delta in the received encoded code stream is taken as a slice.
  • the prediction difference delta_QP_slice of the quantization parameter is calculated, and then the value of the slice layer quantization parameter slice_QP is calculated by the formula (1).
  • pic_init_qp_minus26 is set to 0 by default, that is, 26 is always used as the prediction value of the slice layer quantization parameter.
  • the commonly used quantization parameter value is about 37. This makes the prediction error of the slice layer quantization parameter larger, resulting in an increase in the number of coding overhead bits of the quantization parameter in the slice layer header information.
  • pic_init_qp_minus26 is initially set to a more appropriate value, it is usually necessary to use an encoder rate control module to adjust the frame layer due to the change of the channel transmission code rate, the difference of the content included in each video frame, and the prediction coding method of each frame.
  • the quantization parameters of the macroblock layer are such that the output code rate of the encoder is adapted to the channel transmission code rate. This will cause a large difference between the quantization parameter of the slice layer and the initial quantization parameter prediction value initially set, and the number of coded bits of the quantization parameter in the slice layer header information is increased.
  • the prediction value of the slice quantization parameter can be adjusted to reduce the bit overhead of the slice quantization parameter predictive coding. This requires resending a data packet containing the complete image parameter set parameter information, resulting in a certain bit overhead.
  • the main drawback in the prior art is that the prediction method of the slice layer quantization parameter is not flexible, and the prediction value of the slice layer quantization parameter is set to a fixed value, resulting in a prediction between the slice layer quantization parameter and the slice layer quantization parameter. The difference is large, so that the coded bits of the slice layer quantization parameter are turned on. The pin is large, so that the transmission bit overhead at the time of transmission and reception is large.
  • Embodiments of the present invention provide a method and apparatus for encoding and decoding quantization parameters in slice header information, which are used to flexibly set prediction values of slice layer quantization parameters, and solve the problem that the prediction value of the slice layer quantization parameter is fixed in the prior art.
  • the problem that the difference between the prediction value of the slice layer quantization parameter and the slice layer quantization parameter is large is large, thereby reducing the transmission bit overhead of the slice layer quantization parameter at the time of transmission and reception.
  • An encoding method of quantization parameters in slice header information comprising the steps of: calculating a prediction value of each slice quantization parameter in a current frame according to an actual value of a slice quantization parameter in a coded frame before a current frame; The actual value of each slice quantization parameter in the current frame and the prediction value of each slice quantization parameter in the current frame, the prediction difference of the corresponding slice quantization parameter in the current frame is obtained; the prediction difference of the corresponding slice quantization parameter in the current frame is encoded and written. Into the encoded code stream; send the encoded code stream.
  • calculating the predicted value of each slice quantization parameter in the current frame according to the actual value of the slice quantization parameter in the encoded frame before the current frame includes: calculating each slice quantization parameter in the at least one encoded frame before the current frame The average of the actual values, the average value is used as the predicted value of each slice quantization parameter in the current frame; or the linear prediction model is established according to the actual value of each slice quantization parameter in at least one coded frame before the current frame, and according to the linear The prediction model obtains a predicted value for each slice quantization parameter in the current frame.
  • a method for decoding a quantization parameter in slice header information comprising the steps of: receiving an encoded code stream; calculating an actual frame value according to an actual value of a slice quantization parameter in a decoded frame before a current frame in the encoded code stream; The prediction value of the quantization parameter of each slice; the actual value of the corresponding slice quantization parameter in the current frame is obtained according to the prediction value of each slice quantization parameter in the current frame and the prediction difference of each slice quantization parameter decoded from the current frame.
  • calculating the predicted value of each slice quantization parameter in the current frame according to the actual value of the slice quantization parameter in the decoded frame before the current frame in the encoded code stream includes: calculating each of the at least one decoded frame before the current frame The average of the actual values of the slice quantization parameter, the average value is used as the prediction value of each slice quantization parameter in the current frame; or the linear prediction model is established based on the actual values of the slice quantization parameters in at least one decoded frame before the current frame. And obtaining a predicted value of each slice quantization parameter in the current frame according to the linear prediction model.
  • An apparatus for encoding a quantization parameter in a slice header information comprising: a prediction unit, configured to calculate a predicted value of each slice quantization parameter in a current frame according to an actual value of a slice quantization parameter in a coded frame before a current frame; a coding unit, configured to obtain, according to an actual value of each slice quantization parameter in the current frame and a prediction value of each slice quantization parameter in the current frame, a prediction difference of a corresponding slice quantization parameter in the current frame, and a corresponding slice quantization parameter in the current frame.
  • the prediction difference is encoded and written into the coded code stream; and the sending unit is configured to send the coded code stream.
  • the prediction unit is further configured to calculate an average value of actual values of the slice quantization parameters in the at least one encoded frame before the current frame, and use the average value as a predicted value of each slice quantization parameter in the current frame; or according to the current frame.
  • the actual value of each slice quantization parameter in the previous at least one coded frame establishes a linear prediction model, and obtains a predicted value of each slice quantization parameter in the current frame according to the linear prediction model.
  • a decoding device for a quantization parameter in a slice header information comprising: a receiving unit, configured to receive an encoded code stream, and calculate an current value according to an actual value of a slice quantization parameter in a decoded frame before a current frame in the encoded code stream; a prediction value of each slice quantization parameter in the frame; a decoding unit, configured to obtain a corresponding value in the current frame according to a prediction value of each slice quantization parameter in the current frame and a prediction difference of each slice quantization parameter decoded from the current frame The actual value of the slice quantization parameter.
  • the receiving unit is further configured to calculate an average value of actual values of the slice quantization parameters in the at least one decoding frame before the current frame, and use the average value as a prediction value of each slice quantization parameter in the current frame; or according to the current frame.
  • the actual value of each slice quantization parameter in the previous at least one decoded frame establishes a linear prediction model, and obtains a predicted value of each slice quantization parameter in the current frame according to the linear prediction model.
  • FIG. 1 is a flow chart of a coding method according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a coding method according to a preferred embodiment of the present invention
  • 3 is a flowchart of a decoding method according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a decoding method according to a preferred embodiment of the present invention
  • FIG. 5 is a structural block diagram of an encoding apparatus according to an embodiment of the present invention
  • FIG. 1 is a flowchart of an encoding method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • S101 Calculate a predicted value of each slice quantization parameter in the current frame according to an actual value of a slice quantization parameter in the encoded frame before the current frame;
  • S102 calculate an actual value of the quantization parameter and a current frame according to each slice in the current frame.
  • the prediction value of the quantization parameter of each slice is obtained, and the prediction difference of the corresponding slice quantization parameter in the current frame is obtained; the prediction difference of the corresponding slice quantization parameter in the current frame is encoded, and then written into the coded code stream, and the coded code stream is transmitted.
  • an average value of actual values of the slice quantization parameters in at least one coded frame before the current frame may be calculated, and the average value is set as a predicted value of each slice quantization parameter in the current frame; Or establishing a linear prediction model according to an actual value of each slice quantization parameter in at least one coded frame before the current frame, and setting a predicted value of each slice quantization parameter in the current frame according to the linear prediction model.
  • the prediction difference of each slice quantization parameter in the current frame can be reduced. , thereby reducing coding bit overhead and improving coding efficiency.
  • the average value of the actual values of the slice quantization parameters of the previous frame or the previous frames is used to set the current
  • the prediction value of each slice quantization parameter in the frame can effectively reduce the prediction difference.
  • the actual value of each slice quantization parameter in the at least one coded frame is used to establish a linear prediction model, and the prediction value of each slice quantization parameter in the current frame is set according to the linear prediction model, so that each slice quantization in the current frame can be better predicted.
  • the step S101 in the method can also be implemented in the following manner: determining whether the image parameter set needs to be sent, and if necessary, obtaining the first after the image parameter set to be sent according to the parameter value in the generated image parameter set.
  • the predicted value of each slice quantization parameter in the frame; if not, the predicted value of each slice quantization parameter in the current frame is obtained according to the actual value of the slice quantization parameter in the encoded frame before the current frame.
  • the current frame is the first frame, or when the content in the current frame and the previous encoded frame changes greatly, it is necessary to generate an image parameter set. Because the previous frame is the first frame, it cannot be predicted by the previous coded frame. Therefore, an image parameter set must be sent, and the prediction difference of each slice quantization parameter in the current frame is set according to the parameter value in the image parameter set. In addition, when the content changes greatly between the current frame and the previous encoded frame, an image parameter set may be re-transmitted as needed, so that the prediction difference in the current frame becomes smaller.
  • FIG. 2 is a flowchart of the coding method according to the preferred embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
  • step S201 Before performing predictive coding on the slice layer quantization parameter, the encoder first determines whether a new image parameter set needs to be sent, and if necessary, executes step S202a, and if not, executes step S202b.
  • the determination may be made according to actual conditions. For example, the content of the subsequent video frame and the previous video frame may be changed greatly, for example, when the scene is switched, the subsequent video frame is Before encoding, first send an image parameter set, in the image parameter set, the actual situation of the slice layer quantization parameter of the subsequent video frame, and reset a value of the pic_init_qp_minus26 parameter, thereby recalculating the predicted value of the slice quantization parameter according to the value.
  • S202b Calculate an average value of the quantization parameters of each slice in the previous coding frame, and use an average value of the quantization parameters of each slice in the previous coding frame as a prediction value of the quantization parameter of each slice in the current coding frame.
  • S204 Write the prediction difference delta_QP_slice of the slice quantization parameter obtained in step S203 into the slice header information field, and encode the slice header information field and send it to the decoder.
  • the average value of the quantization parameters of each slice in the previous frame is used as the quantization parameter of each slice in the current frame.
  • the predicted value of course, the prediction value of the quantization parameter of each slice in the current frame may also be set in various manners. For example, the average value of the quantization parameters of each slice in the previous frame may be used as the current frame.
  • the prediction value of the quantization parameter of each slice may also be used to calculate the prediction value of the quantization parameter of each slice in the current frame according to the actual quantization parameter of each slice in the previous frame, that is, according to each slice in the previous frame.
  • the quantization parameter changes, constructs a linear prediction model, and sets the prediction value of the quantization parameter of each slice in the current frame according to the linear prediction model.
  • the method in the embodiment of the present invention uses the coded frame before the current frame to perform prediction. Because there is a certain correlation between adjacent frames, the coding bit overhead can be reduced and the coding efficiency can be improved.
  • FIG. 3 is a flowchart of a decoding method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • S301 Calculate a predicted value of each slice quantization parameter in the current frame according to an actual value of a slice quantization parameter in the decoded frame before the current frame;
  • step S302 Obtain a predicted value of each slice quantization parameter in the current frame and decode from the current frame. The prediction difference of each slice quantization parameter in the current frame is obtained, and the actual value of the corresponding slice quantization parameter in the current frame is obtained.
  • an average value of actual values of the slice quantization parameters in at least one decoded frame before the current frame may be calculated, and the average value is set as a predicted value of each slice quantization parameter in the current frame; or
  • a linear prediction model is established according to an actual value of each slice quantization parameter in at least one decoded frame before the current frame, and a predicted value of each slice quantization parameter in the current frame is set according to the linear prediction model.
  • the step S301 in the method may also be implemented as follows: determining whether an image parameter set is received, and if receiving the image parameter set, setting the image parameter set according to the parameter value in the image parameter set The prediction value of each slice quantization parameter in a frame; if no image parameter set is received, the prediction value of each slice quantization parameter in the current frame is set according to the actual value of the slice quantization parameter in the decoded frame before the current frame.
  • the decoding frame before the current frame is used for decoding. Because there is a certain correlation between adjacent frames, the transmission bit overhead can be reduced, and the decoding efficiency is improved.
  • FIG. 4 is a flowchart of a decoding method according to a preferred embodiment of the present invention. As shown in FIG. 4, the method includes the following steps:
  • step S401 Before decoding the encoded code stream of the received current frame, first determining whether a new image parameter set is received, and if a new image parameter set is received, performing step S402a, if no new image parameter is received. Set, step S402b is performed.
  • S403 Decode the slice header information in the current frame to obtain a prediction difference delta_QP_slice of the slice quantization parameter.
  • the parameter slice_QP that is, the slice quantization parameter QP_Slice_Pred plus the prediction difference of the slice quantization parameter is used to obtain the value of the slice quantization parameter delta_QP.
  • the average value of the quantization parameters of each slice in the previous frame is used as the quantization parameter of each slice in the current frame.
  • the predicted value of course, if the encoding method uses other methods to set the prediction value of the quantization parameter of each slice in the current frame, for example, using the average value of the quantization parameters of each slice in the previous frame as the current frame.
  • the prediction value of the quantization parameter of the slice can be flexibly set in the actual situation, and the average of each slice can be saved by about 8 bits compared with the coding method using the fixed quantization parameter.
  • the slice header information overhead bit is effectively reduced, which further improves the H.264/AVC coding efficiency and transmission efficiency, and improves the efficiency of video communication efficiency under the medium code rate.
  • the embodiment of the present invention further provides an apparatus for encoding quantization parameters in slice header information
  • FIG. 5 is a structural block diagram of an encoding apparatus according to an embodiment of the present invention. As shown in FIG.
  • the method includes: a prediction unit 51, configured to: Calculating a prediction value of each slice quantization parameter in the current frame according to an actual value of the slice quantization parameter in the encoded frame before the current frame; the encoding unit 52 is configured to: according to the actual value and the current frame of each slice quantization parameter in the current frame The prediction value of the quantization parameter of each slice is obtained, and the prediction difference of the corresponding slice quantization parameter in the current frame is obtained, and the prediction difference of the corresponding slice quantization parameter in the current frame is encoded and written into the coded code stream; and the sending unit 53 is configured to send the code. Code stream.
  • the prediction unit 51 is further configured to calculate an average value of actual values of the slice quantization parameters in the at least one encoded frame before the current frame, and set the average value as a predicted value of each slice quantization parameter in the current frame; or The linear prediction model is established based on the actual values of the slice quantization parameters in at least one of the encoded frames before the current frame, and the predicted values of the quantization parameters of each slice in the current frame are set according to the linear prediction model.
  • the prediction unit 51 is further configured to determine whether the image parameter set needs to be sent, and if necessary, set each slice quantization parameter in the first frame after the image parameter set is to be sent according to the parameter value of the generated image parameter set.
  • the predicted value; if not required, the predicted value of each slice quantization parameter in the current frame is set according to the actual value of the slice quantization parameter in the encoded frame before the current frame. And when the current frame is the first frame, or when the difference between the slice quantization parameters in the current frame and the previous encoded frame exceeds a set threshold, an image parameter set is generated.
  • the embodiment of the present invention further provides a decoding device for the quantization parameter in the slice header information
  • FIG. 6 is a structural block diagram of the decoding device according to the embodiment of the present invention. As shown in FIG.
  • the method includes: a receiving unit 61, configured to Receiving an encoded code stream, and calculating a prediction value of each slice quantization parameter in the current frame according to an actual value of a slice quantization parameter in the decoded frame before the current frame; and decoding unit 62, configured to quantize the parameter according to each slice in the current frame The predicted value and the prediction difference of each slice quantization parameter decoded from the current frame, the actual value of the corresponding slice quantization parameter in the current frame is obtained.
  • the receiving unit 61 is further configured to calculate an average value of actual values of the slice quantization parameters in the at least one decoded frame before the current frame, and set the average value to a predicted value of each slice quantization parameter in the current frame; or A linear prediction model is established based on the actual values of the slice quantization parameters in at least one decoded frame before the current frame, and the predicted value of each slice quantization parameter in the current frame is set according to the linear prediction model.
  • the receiving unit 61 is further configured to determine whether the image parameter set is received, and if the image parameter set is received, set each slice in the first frame after receiving the image parameter set according to the parameter value in the image parameter set.
  • the predicted value of the parameter if no image parameter set is received, the predicted value of each slice quantization parameter in the current frame is set according to the actual value of the slice quantization parameter in the decoded frame before the current frame.
  • the prediction value of the quantization parameter of the slice can be flexibly set according to the actual situation, and the resolution parameter of the slice layer caused by the fixed prediction value of the slice layer quantization parameter in the prior art is solved.
  • the problem that the difference between the predicted value and the slice layer quantization parameter is large is as much as about 8 bits per slice compared to the encoding method using the fixed quantization parameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

一种片段头信息中量化 的编解码方法和装置 技术领域 本发明涉及通信领域,特别是涉及一种 slice头信息中量化参数的编解码 方法和装置。 背景技术 随着网络技术的发展以及人们对多媒体业务需求的不断增长, 视频通信 正在逐步成为数字通信网络的主要业务之一。 为了高效地在网络上传输视频 数据, 通常需要对视频进行压缩编码。 目前, 制定视频编码标准的国际组织 组主要有两个: 国际电信联盟远程通信标准化组织 ( International Telecommunications Union Telecommunication Standardization Sector, 简称为 ITU-T )和国际标准 4匕组织 ( International Organization for Standardization, 简 称为 ISO ) /国际电工委员会 ( International Electrotechnical Commission, 简称 为 IEC )。 H.264/高级视频编码(Advanced Video Coding, 简称为 AVC )是这 两个标准化组织合作制订的, 其目的是为适应各种业务的不断增长对于运动 图像压缩率的更高要求, 并使得编码后的视频数据能够在各种网络环境下传 输。
H.264/AVC釆用的是基于块的混合编码结构。 在编解码的过程中, 将视 频帧划分成一个或多个 slice进行处理。 其中, slice指的是某个 slice组中按 照光栅扫描顺序排列的多个宏块或宏块对。 在 slice的头信息中, H.264/AVC 使用预测编码的方法对 slice量化参数进行编码,以尽可能节省量化参数的编 码比特开销。 Slice量化参数的预测过程可用下式表示: delta QP slice = slice QP - QP Slice Pred (1) 式中, slice_QP为 slice量 4匕参数, QP Slice Pred为 slice量 4匕参数的预 测值, delta_QP_slice为 slice量化参数的预测差。 编码时, 一般把 QP_Slice_Pred设置为一个固定值。 在编码后的码流中 含有图像参数集数据,在图像参数集数据中包含解码所需的各个参数, 其中, 包含的语义单元 pic_init_qp_minus26用于计算 QP_Slice_Pred值, 通常才艮据 公式 QP Slice Pred = pic_init_qp_minus26 + 26来计算 QP Slice Pred的值, 因此, 图像参数集数据中包含的语义单元 pic_init_qp_minus26的值需要编码 后传输给解码器。 delta_QP_slice为 slice量化参数的预测差, 在编码时, 为了尽量减少编 码比特开销, 所以, 只在编码码流中传输 slice 量化参数的预测差 delta QP slice, 也就是说, 在编码之前, 才艮据 pic_init_qp_minus26的值设置 量化参数的预测值 QP_Slice_Pred, 然后根据公式(1)得到 slice量化参数的预 测差 delta_QP_slice, 将 delta_QP_slice的值写入 slice头信息域中进行编码, 与编码码流一起传输给解码器, 该 delta_QP_slice 的值在编码码流中对应于 slice层语义单元 slice qp delta, 即 slice层语义单元 slice qp delta的值所代 表的就是该 delta QP slice的值。 在解码时, 根据接收到的编码码流中所含的图像参数集中的参数 pic_init_qp_minus26得到 slice量化参数的预测值 QP Slice Pred, 将接收到 的编码码流中的 slice层语义单元 slice_qp_delta的值作为 slice量化参数的预 测差 delta_QP_slice, 然后 居公式(1)计算得到 slice层量化参数 slice_QP的 值。 现有联合视频组( Joint Video Team, 简称为 JVT )公布的 H.264/AVC参 考模型 JM中, 默认将 pic_init_qp_minus26的值设置为 0, 即, 始终使用 26 作为 slice层量化参数的预测值。对于移动可视电话等传输带宽资源相对有限 的应用而言, 为使得编码器输出码率与信道传输码率适配, 通常使用的量化 参数值约为 37左右。 这就使得 slice层量化参数的预测误差较大, 导致 slice 层头信息中量化参数的编码开销比特数增多。 即使 pic_init_qp_minus26初始 设置为一个较为合适的值, 但由于信道传输码率的变化、 各视频帧所包含内 容的差异、 各帧预测编码方法的不同, 通常需要使用编码器码率控制模块调 整帧层、 甚至是宏块层的量化参数, 使得编码器的输出码率与信道传输码率 相适配。这将使得 slice层的量化参数与初始设置的初始量化参数预测值之间 产生较大的差异, 增加了 slice 层头信息中量化参数的编码比特数。 由于 pic_init_qp_minus26是图像参数集中的参数, 因此, 若要降低 slice量化参数 预测编码的比特开销, 可调整 slice量化参数的预测值。 这就需要重新发送一 个包含完整图像参数集参数信息的数据分组, 带来一定的比特开销。 综上所述, 现有技术中的主要缺陷是 slice 层量化参数的预测方法不灵 活, slice层量化参数的预测值设置为固定值, 导致 slice层量化参数的预测值 与 slice层量化参数之间的差值较大, 从而使 slice层量化参数的编码比特开 销较大, 从而使发送和接收时的传输比特开销较大。 发明内容 本发明实施例提供一种 slice头信息中量化参数的编解码方法和装置,用 于灵活设置 slice层量化参数的预测值, 解决了现有技术中由于 slice层量化 参数的预测值固定而导致 slice层量化参数的预测值与 slice层量化参数之间 的差值较大的问题, 从而减少发送和接收时 slice 层量化参数的传输比特开 销。 一种 slice头信息中量化参数的编码方法, 该方法包括以下步骤: 才艮据当 前帧之前的编码帧中的 slice量化参数的实际值, 计算当前帧中每个 slice量 化参数的预测值;根据当前帧中每个 slice量化参数的实际值和当前帧中每个 slice量化参数的预测值,得到当前帧中对应 slice量化参数的预测差; 将当前 帧中对应 slice量化参数的预测差编码后写入编码码流; 发送该编码码流。 进一步地, 才艮据当前帧之前的编码帧中的 slice量化参数的实际值, 计算 当前帧中每个 slice量化参数的预测值包括:计算当前帧之前的至少一个编码 帧中各 slice量化参数的实际值的平均值, 将平均值作为当前帧中每个 slice 量化参数的预测值;或者才艮据当前帧之前的至少一个编码帧中各 slice量化参 数的实际值建立线性预测模型, 并根据线性预测模型得到当前帧中每个 slice 量化参数的预测值。 一种 slice头信息中量化参数的解码方法, 该方法包括以下步骤: 接收编 码码流; 才艮据该编码码流中当前帧之前的解码帧中的 slice 量化参数的实际 值, 计算当前帧中每个 slice量化参数的预测值; 根据当前帧中每个 slice量 化参数的预测值和从当前帧中解码得到的每个 slice量化参数的预测差,得到 当前帧中对应 slice量化参数的实际值。 进一步地,才艮据编码码流中当前帧之前的解码帧中的 slice量化参数的实 际值, 计算当前帧中每个 slice量化参数的预测值包括: 计算当前帧之前的至 少一个解码帧中各 slice量化参数的实际值的平均值,将平均值作为当前帧中 每个 slice 量化参数的预测值; 或者才艮据当前帧之前的至少一个解码帧中各 slice量化参数的实际值建立线性预测模型, 并根据线性预测模型得到当前帧 中每个 slice量化参数的预测值。 一种 slice头信息中量化参数的编码装置, 包括: 预测单元, 用于才艮据当 前帧之前的编码帧中的 slice量化参数的实际值, 计算当前帧中每个 slice量 化参数的预测值; 编码单元, 用于根据当前帧中每个 slice量化参数的实际值 和当前帧中每个 slice量化参数的预测值, 得到当前帧中对应 slice量化参数 的预测差, 将当前帧中对应 slice量化参数的预测差编码后写入编码码流; 发 送单元, 用于发送该编码码流。 进一步地, 预测单元还用于计算当前帧之前的至少一个编码帧中各 slice 量化参数的实际值的平均值,将该平均值作为当前帧中每个 slice量化参数的 预测值;或者根据当前帧之前的至少一个编码帧中各 slice量化参数的实际值 建立线性预测模型,并根据线性预测模型得到当前帧中每个 slice量化参数的 预测值。 一种 slice头信息中量化参数的解码装置, 包括: 接收单元, 用于接收编 码码流,并才艮据该编码码流中当前帧之前的解码帧中的 slice量化参数的实际 值, 计算当前帧中每个 slice量化参数的预测值; 解码单元, 用于根据当前帧 中每个 slice量化参数的预测值和从当前帧中解码得到的每个 slice量化参数 的预测差, 得到当前帧中对应 slice量化参数的实际值。 进一步地, 接收单元还用于计算当前帧之前的至少一个解码帧中各 slice 量化参数的实际值的平均值,将该平均值作为当前帧中每个 slice量化参数的 预测值;或者根据当前帧之前的至少一个解码帧中各 slice量化参数的实际值 建立线性预测模型,并根据线性预测模型得到当前帧中每个 slice量化参数的 预测值。 本发明实施例中的发送和接收 slice头信息中量化参数的方法及装置,根 据当前帧之前的编码帧中的 slice量化参数的实际值,计算当前帧中每个 slice 量化参数的预测值, 因为当前帧之前的编码帧和当前帧之间通常存在一定的 相关性, 所以通过釆用本发明实施例中的方法及装置, 可以减少预测差, 提 高编码效率, 从而减少传输比特开销。 附图说明 图 1为根据本发明实施例中编码方法的流程图; 图 2为根据本发明优选实施例中编码方法的流程图; 图 3为根据本发明实施例中解码方法的流程图; 图 4为根据本发明优选实施例中解码方法的流程图; 图 5为 居本发明实施例中编码装置的结构框图; 图 6为 居本发明实施例中解码装置的结构框图。 具体实施方式 本发明实施例给出了一种 slice头信息中量化参数的编解码方法和装置, 使用该方法和装置传输编码码流,可以减少 slice头信息中量化参数的编码比 特开销, 从而减少发送和接收时的传输数据量。 以下结合说明书附图对本发 明的优选实施例进行说明, 应当理解, 此处所描述的优选实施例仅用于说明 和解释本发明, 并不用于限定本发明。 本发明实施例提供了一种 slice头信息中量化参数的编码方法, 图 1为根 据本发明实施例中编码方法的流程图, 如图 1所示, 该方法包括以下步骤:
S 101 : 根据当前帧之前的编码帧中的 slice量化参数的实际值, 计算当前 帧中每个 slice量化参数的预测值; S 102: 根据当前帧中每个 slice量化参数的实际值和当前帧中每个 slice 量化参数的预测值, 得到当前帧中对应 slice量化参数的预测差; 将当前帧中 对应 slice量化参数的预测差编码后写入编码码流, 并发送该编码码流。 较佳的, 在步骤 S 101 中, 可以计算当前帧之前的至少一个编码帧中各 slice量化参数的实际值的平均值,将该平均值设置为当前帧中每个 slice量化 参数的预测值;或者根据当前帧之前的至少一个编码帧中各 slice量化参数的 实际值建立线性预测模型,并根据线性预测模型设置当前帧中每个 slice量化 参数的预测值。 通过计算当前帧之前的至少一个编码帧中各 slice 量化参数的实际值的 平均值来设置当前帧中每个 slice量化参数的预测值的方式,可以减少当前帧 中每个 slice量化参数的预测差, 从而减少编码比特开销, 提高编码效率。 因 为在视频编码中,一般相邻的两帧之间相关性较大(即, 图像内容较为接近), 所以,利用前一帧或前几帧的 slice量化参数的实际值的平均值来设置当前帧 中每个 slice量化参数的预测值, 可以有效的减少预测差。 另夕卜, 根据当前帧 之前的至少一个编码帧中各 slice量化参数的实际值建立线性预测模型,并根 据线性预测模型设置当前帧中每个 slice量化参数的预测值,可以更好的预测 出当前帧中每个 slice量化参数的实际值相对于前几帧中 slice量化参数的实 际值的变化规律, 从而使当前帧中每个 slice量化参数的预测差更小, 进一步 减少编码比特开销 ', 提高编码效率。 较佳的, 该方法中的步骤 S 101 还可以釆用如下方式实现: 判断是否需 要发送图像参数集, 若需要, 则根据生成的图像参数集中的参数值得到要发 送图像参数集之后的第一帧中每个 slice量化参数的预测值; 若不需要, 则根 据当前帧之前的编码帧中的 slice量化参数的实际值,得到当前帧中每个 slice 量化参数的预测值。 判断是否需要生成图像参数集时, 若当前帧为首帧, 或, 当前帧与之前的编码帧中的内容变化较大时, 需要生成图像参数集。 因为在 当前帧为首帧时, 无法依靠之前的编码帧进行预测, 所以必须发送一个图像 参数集,根据图像参数集中的参数值设置当前帧中每个 slice量化参数的预测 差。 另外, 在当前帧与前一编码帧之间内容变化较大时, 可以重新根据需要 发送一个图像参数集, 使得当前帧中的预测差变小。 通过本发明实施例中的方法, 利用当前帧之前的编码帧进行预测, 因为 相邻帧之间具备一定的相关性, 所以, 可以减少传输比特开销, 提高编码效 率和传输效率。 下面以一个优选实施例详细介绍一下本发明实施例中的编码方法, 图 2 为才艮据本发明优选实施例中编码方法的流程图, 如图 2所示, 该方法包括以 下步骤:
S201 : 编码器在对 slice层量化参数进行预测编码前, 首先判断是否需要 发送新的图像参数集, 若需要, 则执行步骤 S202a, 若不需要, 则执行步骤 S202b。 在判断是否需要发送新的图像参数集时, 可以根据实际情况进行判定, 例如, 可以在后续的视频帧和之前的视频帧的内容变化较大, 例如, 场景切 换时, 在对后续的视频帧进行编码前, 先发送一个图像参数集, 在图像参数 集中 居后续视频帧的 slice层量化参数的实际情况, 给 pic_init_qp_minus26 参数重新设定一个数值,从而根据该数值重新计算得到 slice量化参数的预测 值, 作为发送该图像参数集后的第一帧中每个 slice量化参数的预测值。 在当 前帧为首帧时, 也需要发送一个新的图像参数集。 S202a: 发送一个新的图像参数集, 包含编解码所需的全部参数, 其中, pic_init_qp_minus26 参数的值用于设定该图像参数集发送之后的第一帧中每 个 slice的量化参数的预测值, 即, 才艮据 QP_Slice_Pred = pic_init_qp_minus26 + 26得到量化参数的预测值 QP_Slice_Pred。 S202b: 计算前一个编码帧中各 slice的量化参数的平均值, 并将前一个 编码帧中各 slice的量化参数的平均值作为当前编码帧中每个 slice的量化参 数的预测值。
S203 : 利用公式 delta QP slice = slice QP - QP Slice Pred计算当前编 码帧中每个 slice量化参数的预测差 delta_QP_slice, 即, 用当前编码帧中每 个 slice的量化参数的实际值减去每个 slice的量化参数的预测值, 得到对应 slice量化参数的预测差 delta_QP_slice。
S204: 将步骤 S203 中得到的 slice量化参数的预测差 delta_QP_slice写 入 slice头信息域, 并将 slice头信息域编码后发送给解码器。 在本发明实施例中, 在对当前帧进行编码之前没有发送新的图像参数集 的时候, 釆用的是前一帧中各 slice 的量化参数的平均值作为当前帧中每个 slice的量化参数的预测值, 当然, 也可以釆用其他多种方式来设定当前帧中 各 slice的量化参数的预测值, 例如, 可以釆用先前数帧中各 slice的量化参 数的平均值作为当前帧中每个 slice的量化参数的预测值,也可以根据先前数 帧中各 slice 的实际量化参数使用线性预测模型的方法计算当前帧中每个 slice的量化参数预测值, 即根据先前数帧中各 slice的量化参数变化情况, 构 建一个线性预测模型, 根据该线性预测模型, 来设置当前帧中每个 slice的量 化参数预测值。 通过本发明实施例中的方法, 利用当前帧之前的编码帧进行预测, 因为 相邻帧之间具备一定的相关性, 所以可以减少编码比特开销,提高编码效率。 本发明实施例中提供了一种 slice头信息中量化参数的解码方法,图 3为 才艮据本发明实施例中解码方法的流程图,如图 3所示,该方法包括以下步骤:
S301 : 根据当前帧之前的解码帧中的 slice量化参数的实际值, 计算当前 帧中每个 slice量化参数的预测值;
S302:根据当前帧中每个 slice量化参数的预测值和从当前帧中解码得到 的当前帧中每个 slice量化参数的预测差, 得到当前帧中对应 slice量化参数 的实际值。 较佳的, 在步骤 S301 中, 可以计算当前帧之前的至少一个解码帧中各 slice量化参数的实际值的平均值,将该平均值设置为当前帧中每个 slice量化 参数的预测值;或者根据当前帧之前的至少一个解码帧中各 slice量化参数的 实际值建立线性预测模型,并根据线性预测模型设置当前帧中每个 slice量化 参数的预测值。 较佳的, 该方法中的步骤 S301 还可以釆用如下方式实现: 判断是否接 收到图像参数集, 若接收到图像参数集, 则根据图像参数集中的参数值设置 接收到图像参数集之后的第一帧中每个 slice量化参数的预测值;若没有接收 到图像参数集, 则根据当前帧之前的解码帧中的 slice量化参数的实际值, 设 置当前帧中每个 slice量化参数的预测值。 通过本发明实施例中的方法, 利用当前帧之前的解码帧进行解码, 因为 相邻帧之间具备一定的相关性, 所以可以减少传输比特开销,提高解码效率。 下面以一个优选实施例详细介绍一下本发明实施例中的解码方法, 图 4 为根据本发明优选实施例中解码方法的流程图, 如图 4所示, 该方法包括以 下步骤:
S401 : 在对接收到的当前帧的编码码流进行解码前, 首先判断是否接收 到新的图像参数集, 若接收到了新的图像参数集, 则执行步骤 S402a, 若没 有接收到新的图像参数集, 则执行步骤 S402b。
S402a: 根据接收到的新的图像参数集中的 pic_init_qp_minus26 参数的 值,设置该图像参数集接收后的第一帧中每个 slice的量化参数的预测值,即, 才艮据 QP Slice Pred = pic_init_qp_minus26 + 26得到每个 slice的量化参数的 预测值 QP Slice Pred, S402b: 计算前一个解码帧中各 slice的量化参数的实际值的平均值, 将 该平均值设置为当前帧中每个 slice的量化参数预测值。
S403 : 对当前帧中的 slice头信息进行解码, 得到 slice量化参数的预测 差 delta_QP_slice。
S404 : 利用公式 delta QP slice = slice QP - QP Slice Pred计算 slice量 化参数 slice_QP, 即, 用 slice量化参数预测值 QP_Slice_Pred加上 slice量化 参数的预测差, 得到 slice量化参数 delta_QP的值。 在本发明实施例中, 在对当前帧进行解码之前没有收到新的图像参数集 的时候,釆用的是前一帧中各 slice的量化参数的平均值作为当前帧中各 slice 的量化参数的预测值, 当然, 如果在编码时釆用其他方式来设定当前帧中各 slice的量化参数的预测值, 例如, 釆用先前数帧中各 slice的量化参数的平均 值作为当前帧中各 slice的量化参数的预测值, 或根据先前数帧中各 slice的 实际量化参数使用线性预测模型的方法计算当前帧中各 slice 的量化参数预 测值, 即, 才艮据先前数帧中各 slice的量化参数变化情况, 构建一个线性预测 模型, 根据该线性预测模型, 来设置当前帧中各 slice的量化参数预测值, 那 么,在解码时,也要釆用与编码方式相对应的解码方式来得到当前帧中各 slice 的量化参数的预测值。 通过釆用本发明实施例中的编解码方法, 可以 居实际情况灵活设定 slice的量化参数的预测值, 与使用固定量化参数的编码方法相比, 平均每个 slice可节省 8个比特左右。 在获得同等编码质量的情况下, 有效降氏了 slice 层头信息开销比特, 进一步提高了 H.264/AVC编码效率和传输效率, 提高了 中氐码率下视频通信效率的效果。 本发明实施例还提供了一种 slice头信息中量化参数的编码装置,图 5为 才艮据本发明实施例中编码装置的结构框图, 如图 5所示, 包括: 预测单元 51 , 用于根据当前帧之前的编码帧中的 slice量化参数的实际 值, 计算当前帧中每个 slice量化参数的预测值; 编码单元 52 , 用于根据当前帧中每个 slice量化参数的实际值和当前帧 中每个 slice量化参数的预测值, 得到当前帧中对应 slice量化参数的预测差, 将当前帧中对应 slice量化参数的预测差编码后写入编码码流; 发送单元 53 , 用于发送该编码码流。 较佳的,预测单元 51还用于计算当前帧之前的至少一个编码帧中各 slice 量化参数的实际值的平均值,将该平均值设置为当前帧中每个 slice量化参数 的预测值;或者才艮据当前帧之前的至少一个编码帧中各 slice量化参数的实际 值建立线性预测模型,并根据线性预测模型设置当前帧中每个 slice量化参数 的预测值。 较佳的, 预测单元 51还可以进一步用于判断是否需要发送图像参数集, 若需要, 则根据生成的图像参数集中的参数值设置要发送图像参数集之后的 第一帧中每个 slice量化参数的预测值; 若不需要, 则根据当前帧之前的编码 帧中的 slice量化参数的实际值, 设置当前帧中每个 slice量化参数的预测值。 且在当前帧为首帧, 或者, 当前帧与之前的编码帧中各 slice量化参数的差值 超过设定阈值时, 生成图像参数集。 本发明实施例还提供了一种 slice头信息中量化参数的解码装置,图 6为 才艮据本发明实施例中解码装置的结构框图, 如图 6所示, 包括: 接收单元 61 , 用于接收编码码流, 并根据当前帧之前的解码帧中的 slice 量化参数的实际值, 计算当前帧中每个 slice量化参数的预测值; 解码单元 62 , 用于根据当前帧中每个 slice量化参数的预测值和从当前 帧中解码得到的每个 slice量化参数的预测差, 得到当前帧中对应 slice量化 参数的实际值。 较佳的,接收单元 61还用于计算当前帧之前的至少一个解码帧中各 slice 量化参数的实际值的平均值,将该平均值设置为当前帧中每个 slice量化参数 的预测值;或者才艮据当前帧之前的至少一个解码帧中各 slice量化参数的实际 值建立线性预测模型,并根据线性预测模型设置当前帧中每个 slice量化参数 的预测值。 较佳的, 接收单元 61 还进一步用于判断是否接收到图像参数集, 若接 收到图像参数集, 则根据图像参数集中的参数值设置接收到图像参数集之后 的第一帧中每个 slice量化参数的预测值; 若没有接收到图像参数集, 则根据 当前帧之前的解码帧中的 slice 量化参数的实际值, 设置当前帧中每个 slice 量化参数的预测值。 通过釆用本发明实施例中的编解码装置, 可以 居实际情况灵活设定 slice的量化参数的预测值,解决了现有技术中由于 slice层量化参数的预测值 固定而导致 slice层量化参数的预测值与 slice层量化参数之间的差值较大的 问题, 与使用固定量化参数的编码方法相比, 平均每个 slice可节省 8个比特 左右。 在获得同等编码质量的情况下, 有效降低了 slice层头信息开销比特, 进一步提高了 H.264/AVC编码传输效率,提高了中低码率下视频通信效率的 效果。 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书
1. 一种片段 slice头信息中量化参数的编码方法, 其特征在于, 该方法包括 以下步 4聚:
根据当前帧之前的编码帧中的 slice量化参数的实际值, 计算所述当 前帧中每个 slice量化参数的预测值;
才艮据所述当前帧中每个 slice量化参数的实际值和所述当前帧中每个 slice量化参数的预测值,得到所述当前帧中对应 slice量化参数的预测差; 将所述当前帧中对应 slice量化参数的预测差编码后写入编码码流; 发送所述编码码流。
2. 如权利要求 1所述的方法, 其特征在于, 根据所述当前帧之前的编码帧 中的 slice量化参数的实际值, 计算所述当前帧中每个 slice量化参数的 预测值包括:
计算所述当前帧之前的至少一个编码帧中各 slice量化参数的实际值 的平均值,将所述平均值作为所述当前帧中每个 slice量化参数的预测值; 或者
根据所述当前帧之前的至少一个编码帧中各 slice量化参数的实际值 建立线性预测模型, 并 居所述线性预测模型得到所述当前帧中每个 slice量化参数的预测值。
3. —种 slice头信息中量化参数的解码方法, 其特征在于, 该方法包括以下 步骤:
接收编码码流;
才艮据所述编码码流中当前帧之前的解码帧中的 slice量化参数的实际 值, 计算所述当前帧中每个 slice量化参数的预测值;
才艮据所述当前帧中每个 slice量化参数的预测值和从所述当前帧中解 码得到的所述当前帧中每个 slice量化参数的预测差,得到所述当前帧中 对应 slice量化参数的实际值。
4. 如权利要求 3所述的方法, 其特征在于, 根据所述编码码流中所述当前 帧之前的解码帧中的 slice 量化参数的实际值, 计算所述当前帧中每个 slice量化参数的预测值包括:
计算所述当前帧之前的至少一个解码帧中各 slice量化参数的实际值 的平均值,将所述平均值作为所述当前帧中每个 slice量化参数的预测值; 或者
根据所述当前帧之前的至少一个解码帧中各 slice量化参数的实际值 建立线性预测模型, 并 居所述线性预测模型得到所述当前帧中每个 slice量化参数的预测值。
5. —种 slice头信息中量化参数的编码装置, 其特征在于, 包括:
预测单元, 用于才艮据当前帧之前的编码帧中的 slice量化参数的实际 值, 计算所述当前帧中每个 slice量化参数的预测值;
编码单元, 用于才艮据所述当前帧中每个 slice量化参数的实际值和所 述当前帧中每个 slice 量化参数的预测值, 得到所述当前帧中对应 slice 量化参数的预测差, 将所述当前帧中对应 slice量化参数的预测差编码后 写入编码码流;
发送单元, 用于发送所述编码码流。
6. 如权利要求 5所述的装置, 其特征在于, 所述预测单元还用于计算所述 当前帧之前的至少一个编码帧中各 slice量化参数的实际值的平均值, 将 所述平均值作为所述当前帧中每个 slice量化参数的预测值; 或者才艮据所 述当前帧之前的至少一个编码帧中各 slice量化参数的实际值建立线性预 测模型, 并根据所述线性预测模型得到所述当前帧中每个 slice量化参数 的预测值。
7. —种 slice头信息中量化参数的解码装置, 其特征在于, 包括:
接收单元, 用于接收编码码流, 并根据所述编码码流中当前帧之前 的解码帧中的 slice量化参数的实际值, 计算所述当前帧中每个 slice量 化参数的预测值;
解码单元, 用于才艮据所述当前帧中每个 slice量化参数的预测值和从 所述当前帧中解码得到的每个 slice量化参数的预测差,得到所述当前帧 中对应 slice量化参数的实际值。
8. 如权利要求 7所述的装置, 其特征在于, 所述接收单元还用于计算当前 帧之前的至少一个解码帧中各 slice量化参数的实际值的平均值, 将所述 平均值作为当前帧中每个 slice量化参数的预测值; 或者根据当前帧之前 的至少一个解码帧中各 slice量化参数的实际值建立线性预测模型, 并根 据线性预测模型得到当前帧中每个 slice量化参数的预测值。
PCT/CN2010/078210 2010-06-28 2010-10-28 一种片段头信息中量化参数的编解码方法和装置 WO2012000263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010212436.9 2010-06-28
CN2010102124369A CN101888550A (zh) 2010-06-28 2010-06-28 一种slice头信息中量化参数编码方法和装置

Publications (1)

Publication Number Publication Date
WO2012000263A1 true WO2012000263A1 (zh) 2012-01-05

Family

ID=43074231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078210 WO2012000263A1 (zh) 2010-06-28 2010-10-28 一种片段头信息中量化参数的编解码方法和装置

Country Status (2)

Country Link
CN (1) CN101888550A (zh)
WO (1) WO2012000263A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056122B2 (ja) * 2011-01-24 2017-01-11 ソニー株式会社 画像符号化装置と画像復号装置およびその方法とプログラム
CN102685483B (zh) * 2011-03-11 2014-12-03 华为技术有限公司 解码方法
CN102685478B (zh) * 2011-03-11 2015-04-29 华为技术有限公司 编码方法以及装置、解码方法以及装置
CN102685484B (zh) * 2011-03-11 2014-10-08 华为技术有限公司 编码方法以及装置、解码方法以及装置
CN102685485B (zh) * 2011-03-11 2014-11-05 华为技术有限公司 编码方法以及装置、解码方法以及装置
KR20130049523A (ko) 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 장치
KR20130050407A (ko) * 2011-11-07 2013-05-16 오수미 인터 모드에서의 움직임 정보 생성 방법
KR20130050406A (ko) 2011-11-07 2013-05-16 오수미 머지 모드에서의 움직임 정보 생성 방법
TW201332374A (zh) * 2011-12-13 2013-08-01 Jvc Kenwood Corp 動態影像編碼裝置、動態影像編碼方法及動態影像編碼程式、以及動態影像解碼裝置、動態影像解碼方法及動態影像解碼程式
CN114157722A (zh) * 2020-08-17 2022-03-08 华为技术有限公司 一种数据传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1647541A (zh) * 2002-04-23 2005-07-27 诺基亚有限公司 用于在视频编码***中指示量化器参数的方法与设备
CN101171842A (zh) * 2005-03-10 2008-04-30 高通股份有限公司 多媒体数据的改进的编码
CN101494776A (zh) * 2009-02-13 2009-07-29 北京邮电大学 一种h.264码率控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4806888B2 (ja) * 2002-07-19 2011-11-02 ソニー株式会社 復号化装置及び復号化方法
CN100574427C (zh) * 2005-08-26 2009-12-23 华中科技大学 视频编码比特率的控制方法
CN101742320B (zh) * 2010-01-20 2012-09-12 李博航 图像处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1647541A (zh) * 2002-04-23 2005-07-27 诺基亚有限公司 用于在视频编码***中指示量化器参数的方法与设备
CN101171842A (zh) * 2005-03-10 2008-04-30 高通股份有限公司 多媒体数据的改进的编码
CN101494776A (zh) * 2009-02-13 2009-07-29 北京邮电大学 一种h.264码率控制方法

Also Published As

Publication number Publication date
CN101888550A (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2012000263A1 (zh) 一种片段头信息中量化参数的编解码方法和装置
AU2010285760B2 (en) Device and method for image processing
EP2472873A1 (en) Method, device and network system for transmission processing and sending processing of video data
KR20070001134A (ko) 영상 통신 에러를 처리하는 방법 및 장치
KR20110045026A (ko) 압축 도메인에서 유사성 메트릭에 기초한 비디오 코딩의 지능형 프레임 스키핑
JP2003284078A (ja) 画像符号化方法及び装置並びに画像復号化方法及び装置
AU2007213103A1 (en) Encoding device, encoding method, and program
CN101742289B (zh) 视频码流压缩方法、***及装置
KR20090063406A (ko) 전송 특성을 고려한 실시간 동영상 화질 평가 시스템 및방법
CN101931799A (zh) 一种视频码流的平滑方法及装置
CN107210843B (zh) 使用喷泉编码的实时视频通信的***和方法
US11025931B2 (en) Methods, encoder, and transcoder for transcoding
JP2011029868A (ja) 端末装置、遠隔会議システム、端末装置の制御方法、端末装置の制御プログラム、及び端末装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体
CN111937389B (zh) 用于视频编解码的设备和方法
JPH07107461A (ja) 映像符号化装置
WO2012003808A1 (zh) 视频刷新方法、装置及***
KR100712532B1 (ko) 단일표현과 다중표현 전환을 이용한 동영상 변환부호화장치 및 방법
JPH0984019A (ja) 画像データ蓄積装置
EP3782365A1 (en) Quantization parameter prediction for video encoding and decoding
KR102110227B1 (ko) 비디오 인코딩 및 디코딩 방법과 이를 이용한 장치
Li et al. Compressed-domain-based transmission distortion modeling for precoded H. 264/AVC video
TW201330625A (zh) 用於數位視訊處理的裝置及方法
CN114827669A (zh) 一种视频数据的传输方法、装置、介质及设备
KR102020953B1 (ko) 카메라 영상의 복호화 정보 기반 영상 재 부호화 방법 및 이를 이용한 영상 재부호화 시스템
KR101103974B1 (ko) 분산 비디오 부호화/복호화 방법 및 분산 비디오 부호화/복호화 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853966

Country of ref document: EP

Kind code of ref document: A1