WO2011161821A1 - Wind collection apparatus and windmill apparatus - Google Patents

Wind collection apparatus and windmill apparatus Download PDF

Info

Publication number
WO2011161821A1
WO2011161821A1 PCT/JP2010/060868 JP2010060868W WO2011161821A1 WO 2011161821 A1 WO2011161821 A1 WO 2011161821A1 JP 2010060868 W JP2010060868 W JP 2010060868W WO 2011161821 A1 WO2011161821 A1 WO 2011161821A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
collecting
vertical axis
wind turbine
windmill
Prior art date
Application number
PCT/JP2010/060868
Other languages
French (fr)
Japanese (ja)
Inventor
一孝 丸山
Original Assignee
エネルギープロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エネルギープロダクト株式会社 filed Critical エネルギープロダクト株式会社
Priority to JP2012521247A priority Critical patent/JPWO2011161821A1/en
Priority to PCT/JP2010/060868 priority patent/WO2011161821A1/en
Publication of WO2011161821A1 publication Critical patent/WO2011161821A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • F03D3/0418Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor comprising controllable elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind collecting device and a windmill device.
  • a wind turbine used for wind power generation there is a horizontal axis type wind turbine represented by a propeller type.
  • the wind collecting port has a collar, and the windmill is placed in a cone-shaped wind collecting pipe (diffuser) whose inner diameter increases from the upstream side toward the downstream side, thereby providing a wind collecting effect.
  • a cone-shaped wind collecting pipe diffuseuser
  • the vertical axis wind turbine is suitable for wind power generation using wind because it does not depend on the wind direction.
  • the current vertical axis wind turbines do not have enough power generation efficiency to make a profit.
  • This invention is made
  • a wind collecting blade is provided around the wind turbine, and a horn-shaped flow path is formed by a member that covers the top and bottom of the wind collecting blade.
  • it is a wind collecting device that collects wind flowing from an unspecified direction on an omnidirectional vertical axis wind turbine in which the rotation axis of the wind turbine is installed perpendicular to the ground, and is arranged around the vertical axis wind turbine.
  • a wind-collecting blade arranged such that a blade surface extends radially from the vertical axis wind turbine, and a wind-collecting member that covers an upper side and a lower side of the wind-collecting blade with a pair of air-collecting surfaces,
  • a wind collecting member that forms a horn-shaped channel that reduces the wind channel surrounded by the wind collecting surface from the outside to the inside of the vertical axis wind turbine.
  • the above wind collector is premised on collecting wind flowing from an unspecified direction with respect to a non-directional vertical axis wind turbine capable of converting wind energy into rotational energy without depending on the wind direction.
  • the wind collected by the wind collecting device may be any wind as long as it flows substantially perpendicular to the rotation axis of the windmill, and examples thereof include natural wind and exhaust air from an air conditioning facility.
  • the wind flows almost horizontally with respect to the ground, and the vertical axis wind turbine is also installed with the rotation axis substantially perpendicular to the ground on the assumption that the wind moves.
  • the wind collecting device includes wind collecting blades that stand around a vertical axis wind turbine and whose blade surfaces spread radially.
  • This wind collecting wing collects the wind around the vertical axis wind turbine.
  • the air collecting device includes an air collecting member that covers the upper and lower sides of the air collecting blades that stand around the vertical axis wind turbine with a pair of air collecting surfaces.
  • the wind collecting member is formed in a horn shape in which the flow path of the wind is reduced from the outside to the inside of the windmill. Therefore, the wind passing through the upper and lower sides of the windmill is taken in by the air collecting surface, and the air collecting surface prevents the wind collected by the air collecting blades from diffusing in the vertical direction, and is collected by the air collecting surface.
  • Wind collecting blades prevent the wind from spreading in the circumferential direction. Moreover, the flow path of the wind flowing into the air collecting device is reduced. As a result, the wind speed of the wind flowing to the windmill is increased, and the windmill output can be increased by utilizing the windmill characteristic proportional to the cube of the wind speed.
  • the air collecting member is, for example, the air collecting surface below the vertical axis wind turbine among the pair of air collecting surfaces formed to circulate around the upper end and the lower end of the vertical axis wind turbine, respectively. May be curved upward and the air collecting surface on the upper side of the vertical axis wind turbine may be curved convexly downward. If the air collecting surface is formed in this manner, the wind speed of the wind blown from all directions collected by the air collecting surface curved in a convex shape can be increased, and the energy received by the windmill can be increased. Therefore, it is possible to improve the energy conversion efficiency of the vertical axis wind turbine regardless of the wind direction.
  • the air collecting member may further include, for example, a diffusion preventing surface that covers the upper side and the lower side of the vertical axis wind turbine and prevents the wind from diffusing in the direction of the rotation axis of the vertical axis wind turbine.
  • a diffusion preventing surface that covers the upper side and the lower side of the vertical axis wind turbine and prevents the wind from diffusing in the direction of the rotation axis of the vertical axis wind turbine.
  • the diffusion preventing surface may be formed of any material, and for example, may be formed of a plate-like diffusion preventing plate that is disposed above and below the vertical axis wind turbine and is substantially orthogonal to the rotation axis of the vertical axis wind turbine.
  • the diffusion preventing surfaces are formed on a part or all of the upper and lower portions of the air flow path where the air collecting blade and the air collecting member collect air, thereby suppressing the air diffusion in the direction of the rotation axis.
  • the vertical axis windmill is, for example, a lift type windmill having straight blades
  • the wind collecting blade has a blade surface radially extending from the vertical axis windmill along the rotation direction of the vertical axis windmill. It may be arranged so as to form a flow path for guiding the wind passing around the vertical axis wind turbine to the side facing the front edge of the straight blade of the vertical axis wind turbine.
  • lift is generated by the force of the airflow flowing from the leading edge side to the trailing edge side of the straight blade, and the windmill rotates, so that the wind collector counters the collected wind against the leading edge of the straight blade. If guided to the side, the energy conversion efficiency of the windmill can be further improved.
  • the present invention can also be understood as a windmill device.
  • an omnidirectional vertical axis wind turbine in which the rotation axis of the wind turbine is installed perpendicularly to the ground, and a forest around the vertical axis wind turbine, and a blade surface extends radially from the vertical axis wind turbine.
  • a wind collecting member that covers an upper side and a lower side of the wind collecting blade with a pair of air collecting surfaces, and a wind flow path surrounded by the pair of air collecting surfaces, A wind collecting member that forms a horn-shaped channel that shrinks from the outside to the inside of the vertical axis wind turbine.
  • the front view of the wind power generation system which concerns on embodiment. Sectional drawing of the main-body part of the wind power generation system which concerns on embodiment. The perspective view of the main-body part of the wind power generation system which concerns on embodiment. Explanatory drawing regarding the attachment angle of a wind-collecting blade.
  • the block diagram of a control apparatus The top view which shows the flow of a wind. The perspective view which shows the flow of a wind. The figure shown about the wind direction of experimental data. The figure which shows experimental data. The figure which shows experimental data. The figure which shows experimental data. The figure which shows experimental data. The figure which shows experimental data. The graph which shows the relationship between the rotation speed of a windmill, and a wind speed. The graph which shows the relationship between the output electric power of a generator, and a wind speed.
  • the perspective view of the main-body part of the wind power generation system which concerns on a modification.
  • the front view of the vertical axis lift type windmill which concerns on a prior art.
  • FIG. 1 is a front view of a wind power generation system 1 according to an embodiment of the present invention.
  • the wind power generation system 1 includes a main body 5 having a windmill 3 having a windmill blade 2 and a wind collecting device 4 that collects wind on the windmill 3, and a quadrangular column base 6 that supports the main body 5. Is provided.
  • the wind power generation system 1 can be installed in a region where the power situation is bad such as a remote island or a mountainous region or any other region.
  • FIG. 2 is a cross-sectional view of the AA plane of the main body 5 of the wind power generation system 1.
  • FIG. 3 is a perspective view of the main body 5 of the wind power generation system 1. As shown in FIGS. 2 and 3, the main body 5 of the wind power generation system 1 is provided with a windmill 3 including four windmill blades 2, and eight wind collecting blades 7 around the windmill 3. .
  • the windmill 3 is a straight-blade vertical-axis windmill composed of straight windmill blades 2 with a vertical axis as a rotation axis.
  • the straight blade vertical axis type wind turbine 3 is different in the rotational direction component of the lift acting at right angles to the relative wind speed generated when the relative wind speed combined with the wind and the wind turbine rotational speed flows into the wind turbine blade 2 and the effect acting backward. Rotate using the thrust generated by
  • a wind collecting device 4 including a material 8 and a lower wind collecting material 9 collects wind on the wind turbine 3.
  • the wind collecting blade 7 may have any cross-sectional shape as long as it can collect the wind on the wind turbine 3, and for example, the cross section is formed in a plate shape, an elliptical shape, or an airfoil shape. Eight air collecting blades 7 are arranged at an angle of 45 ° so as to circulate around the wind turbine 3.
  • the upper air collecting material 8 and the lower air collecting material 9 have a pair of air collecting surfaces 10U and L covering the upper and lower sides of each air collecting blade 7.
  • the air collecting surfaces 10U and 10L form a horn-shaped flow path in which a wind flow path formed therebetween decreases from the outside to the inside of the wind turbine 3. That is, the air collecting surface 10U of the upper air collecting material 8 is curved so as to go upward from the windmill 3 side toward the outside. Further, the air collecting surface 10L of the lower air collecting material 9 is curved so as to go downward as it goes outward from the windmill 3 side.
  • the upper air collecting material 8 and the lower air collecting material 9 have a pair of diffusion preventing surfaces 11 covering the upper side and the lower side of the wind turbine 3. The pair of diffusion preventing surfaces 11 covers the upper side and the lower side of the wind turbine 3, thereby preventing the wind collected on the wind turbine 3 by the wind collecting blades 7 from diffusing in the vertical direction.
  • FIG. 4 is an explanatory diagram relating to the mounting angle of the wind collecting blade 7.
  • Atsumarifutsubasa 7 as shown in FIG. 4, the angle ⁇ with respect to the virtual line V L that passes through the rotation center O W vertical axis, in a state of tilted 22.5 ° on the side of the rotational direction of the windmill 3 ing. That is, the blade surface of the wind collecting blade 7 is radially spread along the rotation direction of the wind turbine 3. As a result, wind gathers at the windmill 3.
  • the wind collecting blade 7 can effectively collect the wind on the windmill 3 if the angle ⁇ is within the range of 0 to 30 °.
  • Such a range of the angle ⁇ of the air collecting blade 4 is determined from the viewpoint of improving the lift of the wind turbine blade 2 and preventing the separation of the air flow in the air collecting blade 7, so that the airfoil shape of the applied air collecting blade is applied. It is preferable to set appropriately according to the viscosity of the gas or the like.
  • FIG. 5 is a block diagram of the control device.
  • the wind power generation system 1 is provided with a control device as shown in FIG.
  • This control device controls the brake controller 13 for controlling the brake provided in the generator room 12 below the windmill 3, and the output of the windmill 3 so that the windmill 3 operates most efficiently.
  • a power controller 15 for supplying surplus power to the dummy load 14 and an inverter 16 for boosting the power of the generator and outputting it in an alternating current are provided.
  • the brake controller 13 controls the control air supplied from an air compressor (not shown) with a solenoid valve, and controls the rotation of the windmill 3 by moving the disc brake.
  • the overspeed of the wind turbine 3 is basically controlled by the power controller 15, but is also controlled preliminary by the brake controller 13.
  • FIG. 6 is a diagram showing a wind flow when the windmill 3 is viewed from above.
  • FIG. 7 is a figure which shows the flow of the wind at the time of seeing the windmill 3 from the side.
  • the wind that flows around the windmill 3 is collected by the wind collecting blades 7 on the windmill 3, and the wind that flows above and below the windmill 3 is collected by the wind collecting surfaces 10 U and L on the windmill 3. It is done. For this reason, the wind collected by the wind collecting device 4 and having increased wind speed passes through the wind turbine 3.
  • the diffusion preventing surface 11 is not provided, the collected wind can diffuse up and down the windmill 3.
  • the diffusion preventing surface 11 is the windmill. 3 is prevented from diffusing in the direction of the rotation axis. For this reason, the rotational force of a windmill does not decline.
  • the wind turbine used in this experiment has three straight blades, a rotating diameter of 600 mm, and a height of 604 mm.
  • the wind collecting blades are 150 mm in width and 654 mm in height, and are installed at positions of 400 mm on the inner side and 550 mm on the outer side from the rotation axis of the windmill.
  • experiments were conducted for four cases of 0 °, 22.5 °, 45 °, and 67.5 °.
  • the wind direction is as shown in FIG.
  • the air collecting blade angle ⁇ is 0 °, 5.625 °, 11.25 °, 16.875 °, and 22.
  • the experiment was conducted for the case of 5 °.
  • an experiment was also conducted in the case where the air collecting blade and the diffusion prevention plate were not attached.
  • FIG. 9A to 9C are experimental data showing the results of this demonstration experiment.
  • FIG. 10 is a graph showing the relationship between the rotational speed of the windmill and the wind speed
  • FIG. 11 is a graph showing the relationship between the output power of the generator and the wind speed.
  • 9A to 9C the mounting angle of the air collecting blade is rounded off to the nearest whole number and displayed as an integer.
  • the data shown in the “wind turbine unit” column is experimental data when the wind collecting blade and the diffusion prevention plate are not attached, and the data shown in other columns are the wind collecting blade and the diffusion prevention plate. This is experimental data when adjusting the mounting angle and wind direction of the wind collecting blade.
  • the “average rate of increase” means the average rate of rotation and power for each wind direction, and the relative rate of increase relative to the case where the wind collecting blade and diffusion prevention plate are not installed, is expressed as a percentage for each mounting angle of the wind collecting blade. It is shown by. As shown in the experimental data of FIGS. 9A to 9C and the graphs of FIGS. 10 to 11, when the wind collecting blade and the diffusion prevention plate are attached, it is considered that there is almost no wind collecting effect “wind direction 0 In other cases, the rotation speed of the wind turbine increases, and the maximum output power of the generator is about 170% (wind collecting plate type 5: wind collecting blade mounting angle 23 °: wind direction 45 °: wind speed 10 m / s ) Confirmed to increase.
  • the significant improvement of electric power generation efficiency can be anticipated.
  • the facility utilization factor of the power generation device is calculated by dividing the actual annual power generation amount by the annual power generation amount assuming that power generation has been continued for one year at the rated output. That is, the facility utilization rate indicates the ratio of the annual average output to the facility capacity.
  • the installation rate of the wind collecting device 4 greatly improves the facility utilization rate of the wind power generation facility.
  • the main body 5 may be stacked in multiple stages.
  • the rotating shafts may be connected to each other, but may be independent from each other.
  • the machine room X needs to be connected to each wind turbine 3.
  • the case where eight wind collecting blades are used has been described as an example.
  • the number of wind collecting blades may be any number as long as the wind can be collected in the windmill.
  • the relative distance between the windmill and the wind collecting blade was not particularly mentioned, in view of the wind collecting effect, the distance from the center of the windmill to the wind collecting blade was 2 in the rotation radius of the windmill. It is preferable that it is not more than a value obtained by multiplying the square root and not less than the distance at which the windmill and the air collecting blade do not contact each other.
  • the material of the air collecting blades 7 may be any material that can withstand external forces such as wind and rain.
  • a metal such as iron or aluminum, a composite material, wood, or a frame made of these materials may be synthetic fiber.
  • a cloth-like material composed of a material such as a string or an adhesive may be used.
  • the wind power generation system 1 may be a system that uses a solar battery panel or an internal combustion diesel generator in combination and appropriately switches to an optimal power generation method according to wind conditions and solar radiation conditions.
  • a hybrid power generation system By using such a hybrid power generation system, it is possible to perform stable power supply even on a remote island where power is not supplied.
  • a wind power generation system 1 in which such a solar cell panel or diesel generator is installed is provided as a package, the user can easily and stably perform determination without selecting the optimum power source. It is possible to secure a sufficient power supply.
  • wind collecting device 4 can be applied not only to the lift type windmill as described above but also to a drag type windmill such as a paddle type windmill.
  • the air collecting device 4 has air collecting surfaces 10U and L that form horn-shaped flow paths on the upper side and the lower side of the air collecting blades 7.
  • the diffusion preventing surface may be configured to extend to the upper side or the lower side of the air collecting blade. In this case, there is no effect of collecting the wind flowing above and below the windmill, but there is an effect of collecting at least wind flowing around the windmill because of the wind collecting blades. For this reason, the energy conversion efficiency of a windmill can be improved.
  • Wind power generation system 2. Wind turbine blade 3. Wind turbine 4. Wind collecting device 5. Main body 7. Wind collecting blade 8. Upper wind collecting material 9. Lower wind collecting material 10U, L. ⁇ Air collection surface 11 ⁇ ⁇ Diffusion prevention surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The objective is to improve the energy conversion efficiency of a vertical axis windmill. A wind collection apparatus (4) collects airflows passing in unspecified directions, in a nondirectional vertical axis windmill (3) having a rotary shaft perpendicular to the ground. The wind collection apparatus (4) is provided with wind collection blades (7) which are vertically provided around the vertical axis windmill (3) and which have surfaces radially extending from the vertical axis windmill (3); and wind collection members (8, 9) which cover the top and bottom sides of each wind collection blade (7) using a pair of wind collection surfaces (10U, 10L), wherein each air passage surrounded by the pair of wind collection surfaces (10U, 10L) is shaped into a horn-shaped passage which is tapered from the outside to the inside of the vertical axis windmill (3).

Description

集風装置、及び風車装置Wind collector and windmill device
 本発明は、集風装置、及び風車装置に関する。 The present invention relates to a wind collecting device and a windmill device.
 近年、大気中に含まれる温室効果ガスが増大する傾向にあり、産業界ではこれを削減するための様々な試みがなされている。例えば、電力の分野においては、自然エネルギーを利用した風力発電の発電効率を高める技術の研究開発が盛んに行われている。 In recent years, greenhouse gases contained in the atmosphere tend to increase, and various attempts have been made in the industry to reduce them. For example, in the field of electric power, research and development of technologies for increasing the power generation efficiency of wind power generation using natural energy are actively conducted.
 風力発電に用いられる風車として、プロペラ型に代表される水平軸型風車がある。水平軸型風車の場合、集風口につばが付いており、上流側から下流側へ向かうに従って内径が広がるコーン型の集風管(デフューザー)内に風車を入れて集風効果を持たせることで、発電効率を高める技術がある。しかし、水平軸型風車の場合、風向きが変わるたびに方向転換が必要であり、振動や騒音、コスト面の問題を擁する。 As a wind turbine used for wind power generation, there is a horizontal axis type wind turbine represented by a propeller type. In the case of a horizontal axis type windmill, the wind collecting port has a collar, and the windmill is placed in a cone-shaped wind collecting pipe (diffuser) whose inner diameter increases from the upstream side toward the downstream side, thereby providing a wind collecting effect. There are technologies to increase power generation efficiency. However, in the case of a horizontal axis type windmill, it is necessary to change the direction every time the wind direction changes, and there are problems of vibration, noise, and cost.
 水平軸型風車以外の風車として、ダリウス型に代表されるような垂直軸揚力型風車がある(例えば、特許文献1や図13を参照)。垂直軸揚力型風車は、水平軸型風車に比べると始動性に劣るものの、風向きに依存しないという利点を有する。このため、サボニウス型風車等を併用して始動性を補いつつ、垂直軸揚力型風車の利用が図られている。 As a windmill other than the horizontal axis type windmill, there is a vertical axis lift type windmill represented by the Darius type (see, for example, Patent Document 1 and FIG. 13). Although the vertical axis lift type wind turbine is inferior in starting performance as compared with the horizontal axis type wind turbine, it has an advantage that it does not depend on the wind direction. For this reason, use of a vertical axis lift type wind turbine is attempted while supplementing startability by using a Savonius type wind turbine or the like together.
特開2003-206849号公報JP 2003-206849 A
 垂直軸風車は、風向きに依存しないため、風を利用した風力発電に好適である。しかし、現状の垂直軸風車では、採算に見合うだけの発電効率が得られていない。本発明は、このような問題に鑑みてなされたものであり、垂直軸風車のエネルギー変換効率を向上させることを課題とする。 The vertical axis wind turbine is suitable for wind power generation using wind because it does not depend on the wind direction. However, the current vertical axis wind turbines do not have enough power generation efficiency to make a profit. This invention is made | formed in view of such a problem, and makes it a subject to improve the energy conversion efficiency of a vertical axis windmill.
 上記課題を解決するため、本発明では、風車の周りに集風翼を設けると共に、集風翼の上下を覆う部材でホーン状の流路を形成することにした。 In order to solve the above problems, in the present invention, a wind collecting blade is provided around the wind turbine, and a horn-shaped flow path is formed by a member that covers the top and bottom of the wind collecting blade.
 詳細には、風車の回転軸が地面に対して垂直に設置される無指向性の垂直軸風車に、不特定の方角から流れる風を集める集風装置であって、前記垂直軸風車の周囲で林立し、翼面が該垂直軸風車から放射状に広がるように配置される集風翼と、前記集風翼の上側と下側を一対の集風面で覆う集風部材であって、該一対の集風面に囲まれる風の流路を、前記垂直軸風車の外側から内側へ向けて縮小するホーン状の流路を形成する集風部材と、を備える。 Specifically, it is a wind collecting device that collects wind flowing from an unspecified direction on an omnidirectional vertical axis wind turbine in which the rotation axis of the wind turbine is installed perpendicular to the ground, and is arranged around the vertical axis wind turbine. A wind-collecting blade arranged such that a blade surface extends radially from the vertical axis wind turbine, and a wind-collecting member that covers an upper side and a lower side of the wind-collecting blade with a pair of air-collecting surfaces, A wind collecting member that forms a horn-shaped channel that reduces the wind channel surrounded by the wind collecting surface from the outside to the inside of the vertical axis wind turbine.
 上記集風装置は、風向きに依存しないで風力エネルギーを回転エネルギーへ変換可能な無指向性の垂直軸風車に対し、不特定の方角から流れる風を集めることを前提とする。この集風装置が集める風は、風車の回転軸に対して略垂直に流れる風であれば如何なるものであってもよく、例えば、自然風や空調設備の排気風等を例示できる。風は、地面に対して略水平に流れることがほとんどであり、垂直軸風車も、そのような風で動くことを前提に、回転軸が地面に対して略垂直に設置される。 The above wind collector is premised on collecting wind flowing from an unspecified direction with respect to a non-directional vertical axis wind turbine capable of converting wind energy into rotational energy without depending on the wind direction. The wind collected by the wind collecting device may be any wind as long as it flows substantially perpendicular to the rotation axis of the windmill, and examples thereof include natural wind and exhaust air from an air conditioning facility. The wind flows almost horizontally with respect to the ground, and the vertical axis wind turbine is also installed with the rotation axis substantially perpendicular to the ground on the assumption that the wind moves.
 ここで、上記集風装置は、垂直軸風車の周囲で林立する、翼面が放射状に広がる集風翼を備えている。この集風翼は、垂直軸風車の周囲の風を集める。また、上記集風装置は、垂直軸風車の周囲で林立する集風翼の上側と下側を一対の集風面で覆う集風部材を備えている。この集風部材は、風の流路が風車の外側から内側へ向けて縮小するホーン状に形成されている。よって、風車の上側や下側を通過する風が集風面によって取り込まれると共に、集風翼によって集められた風が上下方向へ拡散するのを集風面が防止し、集風面によって集められた風が周方向へ拡散するのを集風翼が防止する。また、集風装置内に流入する風の流路が縮小する。この結果、風車へ流れる風の風速が速くなり、風速の3乗に比例する風車特性を利用して風車出力を増大させることが可能である。 Here, the wind collecting device includes wind collecting blades that stand around a vertical axis wind turbine and whose blade surfaces spread radially. This wind collecting wing collects the wind around the vertical axis wind turbine. In addition, the air collecting device includes an air collecting member that covers the upper and lower sides of the air collecting blades that stand around the vertical axis wind turbine with a pair of air collecting surfaces. The wind collecting member is formed in a horn shape in which the flow path of the wind is reduced from the outside to the inside of the windmill. Therefore, the wind passing through the upper and lower sides of the windmill is taken in by the air collecting surface, and the air collecting surface prevents the wind collected by the air collecting blades from diffusing in the vertical direction, and is collected by the air collecting surface. Wind collecting blades prevent the wind from spreading in the circumferential direction. Moreover, the flow path of the wind flowing into the air collecting device is reduced. As a result, the wind speed of the wind flowing to the windmill is increased, and the windmill output can be increased by utilizing the windmill characteristic proportional to the cube of the wind speed.
 なお、前記集風部材は、例えば、前記垂直軸風車の上端と下端の周囲をそれぞれ周回するように形成された前記一対の集風面のうち、該垂直軸風車の下側にある集風面が上側へ凸状に湾曲し、該垂直軸風車の上側にある集風面が下側へ凸状に湾曲していてもよい。集風面がこのように形成されていれば、凸状に湾曲する集風面によって集められたあらゆる方向から吹く風の風速を速めて、風車が受けるエネルギーを増すことができる。従って、如何なる風向であっても、垂直軸風車のエネルギー変換効率を向上させることが可能である。 The air collecting member is, for example, the air collecting surface below the vertical axis wind turbine among the pair of air collecting surfaces formed to circulate around the upper end and the lower end of the vertical axis wind turbine, respectively. May be curved upward and the air collecting surface on the upper side of the vertical axis wind turbine may be curved convexly downward. If the air collecting surface is formed in this manner, the wind speed of the wind blown from all directions collected by the air collecting surface curved in a convex shape can be increased, and the energy received by the windmill can be increased. Therefore, it is possible to improve the energy conversion efficiency of the vertical axis wind turbine regardless of the wind direction.
 また、前記集風部材は、例えば、前記垂直軸風車の上側と下側を覆う、風が該垂直軸風車の回転軸方向へ拡散するのを防ぐ拡散防止面を更に有するものであってもよい。集風翼や集風面によって風が垂直軸風車に集まると、集まった風は拡散しようとするため、垂直軸風車の回転軸方向へも不可避的に拡散することとなる。しかし、拡散防止面があれば、このような風の回転軸方向への拡散によるエネルギー変換効率の低下を防ぐことができる。なお、拡散防止面は、如何なるもので形成されていてもよく、例えば、垂直軸風車の上下に配置された、該垂直軸風車の回転軸と略直交する板状の拡散防止板で形成できる。集風翼と集風部材が集風した風の流路の上下の一部或いは全部に拡散防止面が形成されることで、回転軸方向への風の拡散が抑制される。 Further, the air collecting member may further include, for example, a diffusion preventing surface that covers the upper side and the lower side of the vertical axis wind turbine and prevents the wind from diffusing in the direction of the rotation axis of the vertical axis wind turbine. . When the wind gathers on the vertical axis wind turbine by the wind collecting blades or the wind collecting surface, the collected wind tends to diffuse, and thus inevitably diffuses in the direction of the rotation axis of the vertical axis wind turbine. However, if there is a diffusion preventing surface, it is possible to prevent such a decrease in energy conversion efficiency due to the diffusion of wind in the direction of the rotation axis. The diffusion preventing surface may be formed of any material, and for example, may be formed of a plate-like diffusion preventing plate that is disposed above and below the vertical axis wind turbine and is substantially orthogonal to the rotation axis of the vertical axis wind turbine. The diffusion preventing surfaces are formed on a part or all of the upper and lower portions of the air flow path where the air collecting blade and the air collecting member collect air, thereby suppressing the air diffusion in the direction of the rotation axis.
 また、前記垂直軸風車は、例えば、直線翼を有する揚力型の風車であり、前記集風翼は、翼面が、前記垂直軸風車から該垂直軸風車の回転方向に沿って放射状に広がるように配置されることにより、該垂直軸風車の周囲を通過する風を該垂直軸風車の直線翼の前縁に対向する側へ案内する流路を形成するものであってもよい。揚力型風車の場合、直線翼の前縁側から後縁側へ向かって流れる気流の力で揚力が発生し、風車が回転するため、集風装置が、集風した風を直線翼の前縁に対抗する側へ案内すれば、風車のエネルギー変換効率を更に向上させることが可能である。 Further, the vertical axis windmill is, for example, a lift type windmill having straight blades, and the wind collecting blade has a blade surface radially extending from the vertical axis windmill along the rotation direction of the vertical axis windmill. It may be arranged so as to form a flow path for guiding the wind passing around the vertical axis wind turbine to the side facing the front edge of the straight blade of the vertical axis wind turbine. In the case of a lift type windmill, lift is generated by the force of the airflow flowing from the leading edge side to the trailing edge side of the straight blade, and the windmill rotates, so that the wind collector counters the collected wind against the leading edge of the straight blade. If guided to the side, the energy conversion efficiency of the windmill can be further improved.
 また、本発明は、風車装置として捉えることもできる。例えば、本発明は、風車の回転軸が地面に対して垂直に設置される無指向性の垂直軸風車と、前記垂直軸風車の周囲で林立し、翼面が該垂直軸風車から放射状に広がるように配置される集風翼と、前記集風翼の上側と下側を一対の集風面で覆う集風部材であって、該一対の集風面に囲まれる風の流路を、前記垂直軸風車の外側から内側へ向けて縮小するホーン状の流路を形成する集風部材と、を備えるものであってもよい。 The present invention can also be understood as a windmill device. For example, according to the present invention, an omnidirectional vertical axis wind turbine in which the rotation axis of the wind turbine is installed perpendicularly to the ground, and a forest around the vertical axis wind turbine, and a blade surface extends radially from the vertical axis wind turbine. And a wind collecting member that covers an upper side and a lower side of the wind collecting blade with a pair of air collecting surfaces, and a wind flow path surrounded by the pair of air collecting surfaces, A wind collecting member that forms a horn-shaped channel that shrinks from the outside to the inside of the vertical axis wind turbine.
 垂直軸風車のエネルギー変換効率を向上させることが可能である。 It is possible to improve the energy conversion efficiency of the vertical axis wind turbine.
実施形態に係る風力発電システムの正面図。The front view of the wind power generation system which concerns on embodiment. 実施形態に係る風力発電システムの本体部の断面図。Sectional drawing of the main-body part of the wind power generation system which concerns on embodiment. 実施形態に係る風力発電システムの本体部の斜視図。The perspective view of the main-body part of the wind power generation system which concerns on embodiment. 集風翼の取り付け角度に関する説明図。Explanatory drawing regarding the attachment angle of a wind-collecting blade. 制御装置の構成図。The block diagram of a control apparatus. 風の流れを示す上視図。The top view which shows the flow of a wind. 風の流れを示す斜視図。The perspective view which shows the flow of a wind. 実験データの風向について示す図。The figure shown about the wind direction of experimental data. 実験データを示す図。The figure which shows experimental data. 実験データを示す図。The figure which shows experimental data. 実験データを示す図。The figure which shows experimental data. 風車の回転数と風速との関係を示すグラフ。The graph which shows the relationship between the rotation speed of a windmill, and a wind speed. 発電機の出力電力と風速との関係を示すグラフ。The graph which shows the relationship between the output electric power of a generator, and a wind speed. 変形例に係る風力発電システムの本体部の斜視図。The perspective view of the main-body part of the wind power generation system which concerns on a modification. 従来技術に係る垂直軸揚力型風車の正面図。The front view of the vertical axis lift type windmill which concerns on a prior art.
 以下、本発明の実施形態について説明する。図1は、本発明の実施形態に係る風力発電システム1の正面図である。図1に示すように、風力発電システム1は、風車翼2を有する風車3、及び風車3に風を集める集風装置4とを有する本体部5と、本体部5を支持する四角柱架台6を備える。風力発電システム1は、離島や山間部といった電力事情の悪い地域や、その他のあらゆる地域に設置することが可能である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a front view of a wind power generation system 1 according to an embodiment of the present invention. As shown in FIG. 1, the wind power generation system 1 includes a main body 5 having a windmill 3 having a windmill blade 2 and a wind collecting device 4 that collects wind on the windmill 3, and a quadrangular column base 6 that supports the main body 5. Is provided. The wind power generation system 1 can be installed in a region where the power situation is bad such as a remote island or a mountainous region or any other region.
 まず、風力発電システム1の本体部5について詳述する。図2は、風力発電システム1の本体部5のA-A面の断面図である。また、図3は、風力発電システム1の本体部5の斜視図である。図2や図3に示すように、風力発電システム1の本体部5は、4つの風車翼2で構成される風車3と、この風車3の周囲に8つの集風翼7が設けられている。 First, the main body 5 of the wind power generation system 1 will be described in detail. FIG. 2 is a cross-sectional view of the AA plane of the main body 5 of the wind power generation system 1. FIG. 3 is a perspective view of the main body 5 of the wind power generation system 1. As shown in FIGS. 2 and 3, the main body 5 of the wind power generation system 1 is provided with a windmill 3 including four windmill blades 2, and eight wind collecting blades 7 around the windmill 3. .
 風車3は、垂直軸を回転軸とし、直線状の風車翼2で構成される直線翼垂直軸型の風車である。直線翼垂直軸型の風車3は、風と風車回転速度が合成された相対風速が風車翼2に流入した際に発生する相対風速に直角に働く揚力と後方に働く効力の回転方向成分の差によって発生する推力を利用して回転する。 The windmill 3 is a straight-blade vertical-axis windmill composed of straight windmill blades 2 with a vertical axis as a rotation axis. The straight blade vertical axis type wind turbine 3 is different in the rotational direction component of the lift acting at right angles to the relative wind speed generated when the relative wind speed combined with the wind and the wind turbine rotational speed flows into the wind turbine blade 2 and the effect acting backward. Rotate using the thrust generated by
 風車3に多くの風が流れるようにするため、この風力発電システム1では、風車3の周囲に配置される8つの集風翼7と、風車3の上側や下側に配置される上部集風材8、下部集風材9を備える集風装置4が、風車3に風を集める。 In order to allow a large amount of wind to flow through the windmill 3, in the wind power generation system 1, eight wind collecting blades 7 disposed around the windmill 3, and upper wind collections disposed above and below the windmill 3. A wind collecting device 4 including a material 8 and a lower wind collecting material 9 collects wind on the wind turbine 3.
 集風翼7は、風車3に風を集めることが可能であれば如何なる断面形状を有していてもよく、例えば、断面が板状、楕円状、或いは翼型状に形成する。集風翼7は、風車3の周囲を周回するように均等に45°の角度で8つ配置されている。 The wind collecting blade 7 may have any cross-sectional shape as long as it can collect the wind on the wind turbine 3, and for example, the cross section is formed in a plate shape, an elliptical shape, or an airfoil shape. Eight air collecting blades 7 are arranged at an angle of 45 ° so as to circulate around the wind turbine 3.
 上部集風材8と下部集風材9は、各集風翼7の上側と下側を覆う一対の集風面10U,Lを有している。集風面10U,Lは、これらの間に形成される風の流路が、風車3の外側から内側へ向けて縮小するホーン状の流路を形成する。すなわち、上部集風材8の集風面10Uは、風車3の側から外側へ向かうにつれて上側へ向かうように湾曲している。また、下部集風材9の集風面10Lは、風車3の側から外側へ向かうにつれて下側へ向かうように湾曲している。また、上部集風材8と下部集風材9は、風車3の上側と下側を覆う一対の拡散防止面11を有している。一対の拡散防止面11が風車3の上側と下側を覆うことで、集風翼7によって風車3に集められた風が上下方向に拡散するのを防ぐ。 The upper air collecting material 8 and the lower air collecting material 9 have a pair of air collecting surfaces 10U and L covering the upper and lower sides of each air collecting blade 7. The air collecting surfaces 10U and 10L form a horn-shaped flow path in which a wind flow path formed therebetween decreases from the outside to the inside of the wind turbine 3. That is, the air collecting surface 10U of the upper air collecting material 8 is curved so as to go upward from the windmill 3 side toward the outside. Further, the air collecting surface 10L of the lower air collecting material 9 is curved so as to go downward as it goes outward from the windmill 3 side. Further, the upper air collecting material 8 and the lower air collecting material 9 have a pair of diffusion preventing surfaces 11 covering the upper side and the lower side of the wind turbine 3. The pair of diffusion preventing surfaces 11 covers the upper side and the lower side of the wind turbine 3, thereby preventing the wind collected on the wind turbine 3 by the wind collecting blades 7 from diffusing in the vertical direction.
 図4は、集風翼7の取り付け角度に関する説明図である。集風翼7は、図4に示すように、垂直軸の回転中心OWを通過する仮想線VLに対する角度θが、風車3の回転方向の側に22.5°だけ傾けた状態になっている。すなわち、集風翼7の翼面が風車3の回転方向に沿って放射状に広がるようになっている。これにより、風が風車3に集まる。なお、集風翼7は、その角度θが0~30°の範囲内であれば、風を風車3に有効に集めることができる。このような集風翼4の角度θの範囲は、風車翼2の揚力向上と集風翼7における気流の剥離防止の観点から決定されるものであるため、適用される集風翼の翼型や気体の粘性等によって適宜設定されることが好ましい。 FIG. 4 is an explanatory diagram relating to the mounting angle of the wind collecting blade 7. Atsumarifutsubasa 7, as shown in FIG. 4, the angle θ with respect to the virtual line V L that passes through the rotation center O W vertical axis, in a state of tilted 22.5 ° on the side of the rotational direction of the windmill 3 ing. That is, the blade surface of the wind collecting blade 7 is radially spread along the rotation direction of the wind turbine 3. As a result, wind gathers at the windmill 3. The wind collecting blade 7 can effectively collect the wind on the windmill 3 if the angle θ is within the range of 0 to 30 °. Such a range of the angle θ of the air collecting blade 4 is determined from the viewpoint of improving the lift of the wind turbine blade 2 and preventing the separation of the air flow in the air collecting blade 7, so that the airfoil shape of the applied air collecting blade is applied. It is preferable to set appropriately according to the viscosity of the gas or the like.
 図5は、制御装置の構成図である。風力発電システム1には、図5に示すような制御装置が設けられている。この制御装置は、風車3の下部にある発電機室12内に設けられたブレーキを制御するブレーキコントローラ13と、風車3が最も効率的に動作するように風車3の出力を制御すると共に、場合によっては余剰電力をダミーロード14へ流すパワーコントローラ15と、発電機の電力を昇圧して交流で出力するインバータ16とを備える。ブレーキコントローラ13は、図示しないエアーコンプレッサから供給される制御用空気を電磁弁で制御し、ディスクブレーキを動かすことで風車3の回転を制御する。風車3の過回転は、基本的にパワーコントローラ15によって制御されるが、ブレーキコントローラ13によっても予備的に制御される。 FIG. 5 is a block diagram of the control device. The wind power generation system 1 is provided with a control device as shown in FIG. This control device controls the brake controller 13 for controlling the brake provided in the generator room 12 below the windmill 3, and the output of the windmill 3 so that the windmill 3 operates most efficiently. Depending on the situation, a power controller 15 for supplying surplus power to the dummy load 14 and an inverter 16 for boosting the power of the generator and outputting it in an alternating current are provided. The brake controller 13 controls the control air supplied from an air compressor (not shown) with a solenoid valve, and controls the rotation of the windmill 3 by moving the disc brake. The overspeed of the wind turbine 3 is basically controlled by the power controller 15, but is also controlled preliminary by the brake controller 13.
 図6は、風車3を上から見た場合の風の流れを示す図である。また、図7は、風車3を横から見た場合の風の流れを示す図である。上記風力発電システム1によれば、風車3の周囲を流れる風が集風翼7によって風車3へ集められ、風車3の上側や下側を流れる風が集風面10U,Lによって風車3へ集められる。このため、集風装置4に集められて風速の増した風が風車3を通過する。周知のように、風車の受けるエネルギーEw(kW)は、ρを空気密度(kg/m3)、vを風速(m/s)、Aを受風面積(m2)とすると、E=1/2ρv3Aで表されるため、風速の3乗に比例する。このため、集風翼7や集風面10U,Lの設置によって風速が増すと、風車で得られるエネルギーが増し、発電電力が増加する。ここで、集風翼7で風を風車3に集める場合に、拡散防止面11が無いと、集めた風が風車3の上下に拡散し得るが、本実施形態では、拡散防止面11が風車3の回転軸方向への拡散を防止している。このため、風車の回転力が衰えることが無い。 FIG. 6 is a diagram showing a wind flow when the windmill 3 is viewed from above. Moreover, FIG. 7 is a figure which shows the flow of the wind at the time of seeing the windmill 3 from the side. According to the wind power generation system 1, the wind that flows around the windmill 3 is collected by the wind collecting blades 7 on the windmill 3, and the wind that flows above and below the windmill 3 is collected by the wind collecting surfaces 10 U and L on the windmill 3. It is done. For this reason, the wind collected by the wind collecting device 4 and having increased wind speed passes through the wind turbine 3. As is well known, the energy Ew (kW) received by the windmill is E = 1, where ρ is the air density (kg / m 3 ), v is the wind speed (m / s), and A is the wind receiving area (m 2 ). Since it is expressed by / 2ρv 3 A, it is proportional to the cube of the wind speed. For this reason, when the wind speed increases due to the installation of the wind collecting blades 7 and the air collecting surfaces 10U and L, the energy obtained by the windmill increases and the generated power increases. Here, when the wind collecting blade 7 collects wind on the windmill 3, if the diffusion preventing surface 11 is not provided, the collected wind can diffuse up and down the windmill 3. However, in this embodiment, the diffusion preventing surface 11 is the windmill. 3 is prevented from diffusing in the direction of the rotation axis. For this reason, the rotational force of a windmill does not decline.
 以下、集風装置4の設置効果を検証するために行った実験の結果について説明する。ここで、本実験においては、上述した実施形態に係る風力発電システム1と異なり、4枚の集風翼4を風車3の周囲に設置し、一対の拡散防止面11を風車3の上下に形成しただけの構成としている。すなわち、本実験では、4枚の集風翼7と一対の拡散防止面11を設けた場合の効果のみを検証するものとし、集風面10U,Lの設置効果については検証をしない。 Hereinafter, the results of experiments conducted to verify the installation effect of the air collecting device 4 will be described. Here, in this experiment, unlike the wind power generation system 1 according to the above-described embodiment, four wind collecting blades 4 are installed around the windmill 3, and a pair of diffusion prevention surfaces 11 are formed above and below the windmill 3. It has a configuration that just did. That is, in this experiment, only the effect when the four air collecting blades 7 and the pair of diffusion preventing surfaces 11 are provided is verified, and the installation effect of the air collecting surfaces 10U and L is not verified.
 本実験に用いる風車は、直線翼が3枚で、回転直径が600mmであり、高さが604mmのものを用いている。また、集風翼は、幅150mm、高さ654mmとし、風車の回転軸から内側で400mm、外側で550mmの位置にそれぞれ設置してあるものを用いている。なお、様々な風向きについて検証をするため、風向については0°、22.5°、45°、67.5°の4つの場合について実験を行っている。風向については、図8に示す通りである。また、集風翼の角度を調整することの有効性についても検証をするため、集風翼の角度θについては0°、5.625°、11.25°、16.875°、及び22.5°の場合について実験を行った。また、集風翼および拡散防止板を取り付けることの有効性についても検証をするため、集風翼および拡散防止板を取り付けていない場合についても実験を行った。 The wind turbine used in this experiment has three straight blades, a rotating diameter of 600 mm, and a height of 604 mm. The wind collecting blades are 150 mm in width and 654 mm in height, and are installed at positions of 400 mm on the inner side and 550 mm on the outer side from the rotation axis of the windmill. In order to verify various wind directions, experiments were conducted for four cases of 0 °, 22.5 °, 45 °, and 67.5 °. The wind direction is as shown in FIG. Further, in order to verify the effectiveness of adjusting the angle of the air collecting blade, the air collecting blade angle θ is 0 °, 5.625 °, 11.25 °, 16.875 °, and 22. The experiment was conducted for the case of 5 °. In addition, in order to verify the effectiveness of attaching the air collecting blade and the diffusion prevention plate, an experiment was also conducted in the case where the air collecting blade and the diffusion prevention plate were not attached.
 図9A~Cは、本実証実験の結果を示す実験データである。また、図10は風車の回転数と風速との関係をグラフ化したものであり、図11は発電機の出力電力と風速との関係をグラフ化したものである。なお、図9A~Cにおいて示す集風翼の取り付け角度は、小数点以下を四捨五入し、整数で表示している。図9Aにおいて「風車単体」の欄に示されるデータが、集風翼および拡散防止板を取り付けていない場合の実験データであり、その他の欄に示されるデータが、集風翼および拡散防止板を取り付け、集風翼の取り付け角度や風向きを調整した場合の実験データである。なお、「平均上昇率」とは、各風向の回転数や電力を平均化し、集風翼および拡散防止板を取り付けていない場合に対する相対的な上昇率を、集風翼の取り付け角度毎に百分率で示したものである。集風翼および拡散防止板を取り付けた場合、取り付けていない場合に比べ、図9A~Cの実験データや図10~11のグラフが示すように、集風効果がほとんど無いと考えられる「風向0°」以外の場合は風車の回転数が増大し、また、発電機の出力電力が最大で170%程度(集風板タイプ5:集風翼取付角23°:風向45°:風速10m/s)増加することが確認された。なお、周知のように、翼弦長が短くなるとレイノルズ数が小さくなるため、風車に揚力が十分に発生しなくなる。このため、本実験の実験データにおいては低い風速(例えば、風速6m/s)の場合に有意な効果が現れていない。しかし、例えば翼弦長が約4.5倍の実機を用いれば、レイノルズ数も約4.5倍となり、風速では約1/4.5の2.2m/s程度の風速から上記実施形態に係る風力発電システム1の効果が期待できる。 9A to 9C are experimental data showing the results of this demonstration experiment. FIG. 10 is a graph showing the relationship between the rotational speed of the windmill and the wind speed, and FIG. 11 is a graph showing the relationship between the output power of the generator and the wind speed. 9A to 9C, the mounting angle of the air collecting blade is rounded off to the nearest whole number and displayed as an integer. In FIG. 9A, the data shown in the “wind turbine unit” column is experimental data when the wind collecting blade and the diffusion prevention plate are not attached, and the data shown in other columns are the wind collecting blade and the diffusion prevention plate. This is experimental data when adjusting the mounting angle and wind direction of the wind collecting blade. The “average rate of increase” means the average rate of rotation and power for each wind direction, and the relative rate of increase relative to the case where the wind collecting blade and diffusion prevention plate are not installed, is expressed as a percentage for each mounting angle of the wind collecting blade. It is shown by. As shown in the experimental data of FIGS. 9A to 9C and the graphs of FIGS. 10 to 11, when the wind collecting blade and the diffusion prevention plate are attached, it is considered that there is almost no wind collecting effect “wind direction 0 In other cases, the rotation speed of the wind turbine increases, and the maximum output power of the generator is about 170% (wind collecting plate type 5: wind collecting blade mounting angle 23 °: wind direction 45 °: wind speed 10 m / s ) Confirmed to increase. As is well known, when the chord length is shortened, the Reynolds number is decreased, so that sufficient lift is not generated in the wind turbine. For this reason, in the experimental data of this experiment, a significant effect does not appear at a low wind speed (for example, a wind speed of 6 m / s). However, for example, if an actual machine having a chord length of about 4.5 times is used, the Reynolds number is also about 4.5 times, and the wind speed is about 1 / 4.5, which is about 2.2 m / s. The effect of the wind power generation system 1 can be expected.
 このように、上記実施形態に係る風力発電システム1であれば、発電効率の大幅な向上が見込める。また、上記集風装置4を用いれば、集風により風が増速するため、プロペラ型の風車等に比べて始動性に劣る直線翼垂直軸風車に適用した場合に、始動する際に必要となる風の風速が遅くなり、始動性の改善も図られる。揚力型の風車であっても、回転が停止している際は抗力が作用することで始動する。一般に、物体の抗力はFd=ρv2A/2で表されるため、受風面積比の二乗分に相当する始動風速の改善(低下)が可能になるためである。 Thus, if it is the wind power generation system 1 which concerns on the said embodiment, the significant improvement of electric power generation efficiency can be anticipated. Further, if the wind collecting device 4 is used, the wind speed increases due to the wind collecting. Therefore, when the wind collecting device 4 is applied to a straight blade vertical axis wind turbine that is inferior in starting performance as compared with a propeller type wind turbine or the like, it is necessary for starting. As a result, the wind speed of the wind becomes slower and the startability is improved. Even if it is a lift type windmill, when rotation stops, it is started by a drag acting. This is because the drag force of an object is generally expressed by Fd = ρv 2 A / 2, and therefore it is possible to improve (decrease) the starting wind speed corresponding to the square of the wind receiving area ratio.
 また、発電装置の設備利用率は、実際の年間発電量を、定格出力で1年間発電し続けたと仮定した場合の年間発電量で除算することで算出される。すなわち、設備利用率は、設備能力に対する年間平均出力の比を示している。ここで、風車が得られる風力エネルギーは、受風面積比の3乗に比例するので、上記集風装置4の設置により、風力発電設備の設備利用率が大幅に改善される。 Also, the facility utilization factor of the power generation device is calculated by dividing the actual annual power generation amount by the annual power generation amount assuming that power generation has been continued for one year at the rated output. That is, the facility utilization rate indicates the ratio of the annual average output to the facility capacity. Here, since the wind energy obtained from the windmill is proportional to the third power of the wind receiving area ratio, the installation rate of the wind collecting device 4 greatly improves the facility utilization rate of the wind power generation facility.
 なお、上記第一実施形態は、本体部5を上下に複数段重ねたものであってもよい。この場合、回転軸は、互いに連結されていてもよいが、それぞれ独立していてもよい。独立される場合には、各風車3に機械室Xがそれぞれ連結されている必要がある。 In the first embodiment, the main body 5 may be stacked in multiple stages. In this case, the rotating shafts may be connected to each other, but may be independent from each other. In the case of being independent, the machine room X needs to be connected to each wind turbine 3.
 また、上記実施形態では、8枚の集風翼で構成される場合を例に説明したが、集風翼は、風を風車に集めることが可能であれば何枚であってもよい。また、風車と集風翼との間の相対的な距離については特に言及しなかったが、集風効果に鑑みれば、風車の中心から集風翼までの距離は、風車の回転半径に2の平方根を乗算した値以下で且つ風車と集風翼とが接触しない距離以上であることが好ましい。 In the above-described embodiment, the case where eight wind collecting blades are used has been described as an example. However, the number of wind collecting blades may be any number as long as the wind can be collected in the windmill. Further, although the relative distance between the windmill and the wind collecting blade was not particularly mentioned, in view of the wind collecting effect, the distance from the center of the windmill to the wind collecting blade was 2 in the rotation radius of the windmill. It is preferable that it is not more than a value obtained by multiplying the square root and not less than the distance at which the windmill and the air collecting blade do not contact each other.
 また、集風翼7の材質は、風雨等による外力に耐えられるものであればよく、例えば、鉄、アルミ等の金属や、複合材、木材、及びこれらの材料で構成される骨組みに合成繊維等で構成される布状のものを紐や接着剤等で接合したものであってもよい。 The material of the air collecting blades 7 may be any material that can withstand external forces such as wind and rain. For example, a metal such as iron or aluminum, a composite material, wood, or a frame made of these materials may be synthetic fiber. A cloth-like material composed of a material such as a string or an adhesive may be used.
 また、上記風力発電システム1は、太陽電池パネルや内燃式のディーゼル発電機を併用し、風況や日射状況に応じて最適な発電方式に適宜切り替えるものであってもよい。このようなハイブリッド式の発電システムとすることで、電力が供給されない離島等においても安定的な電力供給を行うことが可能である。特に、上記風力発電システム1にこのような太陽電池パネルやディーゼル発電機を内置したものをパッケージとして提供すれば、ユーザは、最適な電源の選択等の判断を迫られること無く、容易に安定的な電源を確保することが可能となる。 Further, the wind power generation system 1 may be a system that uses a solar battery panel or an internal combustion diesel generator in combination and appropriately switches to an optimal power generation method according to wind conditions and solar radiation conditions. By using such a hybrid power generation system, it is possible to perform stable power supply even on a remote island where power is not supplied. In particular, if such a wind power generation system 1 in which such a solar cell panel or diesel generator is installed is provided as a package, the user can easily and stably perform determination without selecting the optimum power source. It is possible to secure a sufficient power supply.
 なお、上記実施形態に係る集風装置4は、上述したような揚力型の風車のみならず、例えばパドル型風車のような抗力型の風車等に対して適用することも可能である。 Note that the wind collecting device 4 according to the above embodiment can be applied not only to the lift type windmill as described above but also to a drag type windmill such as a paddle type windmill.
 また、上記実施形態に係る集風装置4は、集風翼7の上側と下側に、ホーン状の流路を形成する集風面10U,Lを有しているが、例えば、図12に示すように、拡散防止面が集風翼の上側や下側まで延在する構成を採ってもよい。この場合、風車の上側や下側を流れる風を集める効果は無くなるが、集風翼があるため、少なくとも風車の周囲を流れる風を集める効果がある。このため、風車のエネルギー変換効率を向上させることができる。 Further, the air collecting device 4 according to the above embodiment has air collecting surfaces 10U and L that form horn-shaped flow paths on the upper side and the lower side of the air collecting blades 7. For example, FIG. As shown, the diffusion preventing surface may be configured to extend to the upper side or the lower side of the air collecting blade. In this case, there is no effect of collecting the wind flowing above and below the windmill, but there is an effect of collecting at least wind flowing around the windmill because of the wind collecting blades. For this reason, the energy conversion efficiency of a windmill can be improved.
1・・風力発電システム
2・・風車翼
3・・風車
4・・集風装置
5・・本体部
7・・集風翼
8・・上部集風材
9・・下部集風材
10U,L・・集風面
11・・拡散防止面
1. Wind power generation system 2. Wind turbine blade 3. Wind turbine 4. Wind collecting device 5. Main body 7. Wind collecting blade 8. Upper wind collecting material 9. Lower wind collecting material 10U, L.・ Air collection surface 11 ・ ・ Diffusion prevention surface

Claims (5)

  1.  風車の回転軸が地面に対して垂直に設置される無指向性の垂直軸風車に、不特定の方角から流れる風を集める集風装置であって、
     前記垂直軸風車の周囲で林立し、翼面が該垂直軸風車から放射状に広がるように配置される集風翼と、
     前記集風翼の上側と下側を一対の集風面で覆う集風部材であって、該一対の集風面に囲まれる風の流路を、前記垂直軸風車の外側から内側へ向けて縮小するホーン状の流路を形成する集風部材と、を備える、
     集風装置。
    A wind collecting device that collects wind flowing from an unspecified direction on a non-directional vertical axis wind turbine in which the rotation axis of the wind turbine is installed perpendicular to the ground,
    A wind collecting blade disposed around the vertical axis wind turbine and disposed such that a blade surface radially extends from the vertical axis wind turbine;
    A wind collecting member that covers the upper and lower sides of the wind collecting blade with a pair of wind collecting surfaces, and a wind flow path surrounded by the pair of wind collecting surfaces is directed from the outside to the inside of the vertical axis wind turbine. A wind collecting member that forms a horn-shaped flow path to be reduced, and
    Wind collector.
  2.  前記集風部材は、前記垂直軸風車の上端と下端の周囲をそれぞれ周回するように形成された前記一対の集風面のうち、該垂直軸風車の下側にある集風面が上側へ凸状に湾曲し、該垂直軸風車の上側にある集風面が下側へ凸状に湾曲している、
     請求項1に記載の集風装置。
    Of the pair of air collecting surfaces formed to circulate around the upper end and the lower end of the vertical axis wind turbine, said air collecting member has an air collecting surface on the lower side of said vertical axis wind turbine projecting upward. The air collecting surface on the upper side of the vertical axis wind turbine is curved convexly downward,
    The air collecting device according to claim 1.
  3.  前記集風部材は、前記垂直軸風車の上側と下側を覆う、風が該垂直軸風車の回転軸方向へ拡散するのを防ぐ拡散防止面を更に有する、
     請求項1または2に記載の集風装置。
    The wind collecting member further includes a diffusion preventing surface that covers an upper side and a lower side of the vertical axis wind turbine and prevents the wind from diffusing in the rotation axis direction of the vertical axis wind turbine.
    The air collecting device according to claim 1 or 2.
  4.  前記垂直軸風車は、直線翼を有する揚力型の風車であり、
     前記集風翼は、翼面が、前記垂直軸風車から該垂直軸風車の回転方向に沿って放射状に広がるように配置されることにより、該垂直軸風車の周囲を通過する風を該垂直軸風車の直線翼の前縁に対向する側へ案内する流路を形成する、
     請求項1から3の何れか一項に記載の集風装置。
    The vertical axis windmill is a lift type windmill having straight blades,
    The wind-collecting blade is arranged such that a blade surface spreads radially from the vertical-axis wind turbine along the rotation direction of the vertical-axis wind turbine, thereby allowing wind passing around the vertical-axis wind turbine to pass through the vertical-axis wind turbine. Forming a flow path that leads to the side facing the front edge of the straight blades of the wind turbine;
    The air collecting device according to any one of claims 1 to 3.
  5.  風車の回転軸が地面に対して垂直に設置される無指向性の垂直軸風車と、
     前記垂直軸風車の周囲で林立し、翼面が該垂直軸風車から放射状に広がるように配置される集風翼と、
     前記集風翼の上側と下側を一対の集風面で覆う集風部材であって、該一対の集風面に囲まれる風の流路を、前記垂直軸風車の外側から内側へ向けて縮小するホーン状の流路を形成する集風部材と、を備える、
     風車装置。
    A non-directional vertical axis windmill in which the rotation axis of the windmill is installed perpendicular to the ground;
    A wind collecting blade disposed around the vertical axis wind turbine and disposed such that a blade surface radially extends from the vertical axis wind turbine;
    A wind collecting member that covers the upper and lower sides of the wind collecting blade with a pair of wind collecting surfaces, and a wind flow path surrounded by the pair of wind collecting surfaces is directed from the outside to the inside of the vertical axis wind turbine. A wind collecting member that forms a horn-shaped flow path to be reduced, and
    Windmill device.
PCT/JP2010/060868 2010-06-25 2010-06-25 Wind collection apparatus and windmill apparatus WO2011161821A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012521247A JPWO2011161821A1 (en) 2010-06-25 2010-06-25 Wind collector and windmill device
PCT/JP2010/060868 WO2011161821A1 (en) 2010-06-25 2010-06-25 Wind collection apparatus and windmill apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060868 WO2011161821A1 (en) 2010-06-25 2010-06-25 Wind collection apparatus and windmill apparatus

Publications (1)

Publication Number Publication Date
WO2011161821A1 true WO2011161821A1 (en) 2011-12-29

Family

ID=45371033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060868 WO2011161821A1 (en) 2010-06-25 2010-06-25 Wind collection apparatus and windmill apparatus

Country Status (2)

Country Link
JP (1) JPWO2011161821A1 (en)
WO (1) WO2011161821A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525186A (en) * 2013-08-02 2016-08-22 オーディン エネルギー シーオー., エルティーディー. Wind power generation tower with gyromill type wind turbine
JP2016525187A (en) * 2013-08-02 2016-08-22 オーディン エネルギー シーオー., エルティーディー. Wind power tower
JP2017015094A (en) * 2012-06-18 2017-01-19 株式会社ピーエス三菱 Wind collection device of vertical shaft type wind turbine
WO2022254949A1 (en) * 2021-05-31 2022-12-08 Topwind株式会社 Wind power generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949378A (en) * 1982-09-14 1984-03-21 Hiroshi Hasui Windmill device
JP2006188969A (en) * 2005-01-04 2006-07-20 Fuji Seratekku Kk Windmill and wind power generator incorporating this windmill
JP2008064106A (en) * 2002-05-16 2008-03-21 Hidemi Kurita Vertical shaft driving apparatus for vertical shaft windmill, etc., and electric power generating apparatus using the same
JP2009287516A (en) * 2008-05-30 2009-12-10 Five:Kk Vertical shaft type windmill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949378A (en) * 1982-09-14 1984-03-21 Hiroshi Hasui Windmill device
JP2008064106A (en) * 2002-05-16 2008-03-21 Hidemi Kurita Vertical shaft driving apparatus for vertical shaft windmill, etc., and electric power generating apparatus using the same
JP2006188969A (en) * 2005-01-04 2006-07-20 Fuji Seratekku Kk Windmill and wind power generator incorporating this windmill
JP2009287516A (en) * 2008-05-30 2009-12-10 Five:Kk Vertical shaft type windmill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015094A (en) * 2012-06-18 2017-01-19 株式会社ピーエス三菱 Wind collection device of vertical shaft type wind turbine
JP2016525186A (en) * 2013-08-02 2016-08-22 オーディン エネルギー シーオー., エルティーディー. Wind power generation tower with gyromill type wind turbine
JP2016525187A (en) * 2013-08-02 2016-08-22 オーディン エネルギー シーオー., エルティーディー. Wind power tower
JP2019060345A (en) * 2013-08-02 2019-04-18 オーディン エネルギー シーオー., エルティーディー. Wind power generation tower comprising gyro-mill type wind turbine
WO2022254949A1 (en) * 2021-05-31 2022-12-08 Topwind株式会社 Wind power generation device

Also Published As

Publication number Publication date
JPWO2011161821A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5441439B2 (en) Wind collector and windmill device
US7008171B1 (en) Modified Savonius rotor
US8961103B1 (en) Vertical axis wind turbine with axial flow rotor
US8167533B2 (en) Wind energy system
US20100296913A1 (en) Wind power generating system with vertical axis jet wheel turbine
US7112034B2 (en) Wind turbine assembly
JP2007528467A (en) Wind turbine in wind tunnel
KR101179277B1 (en) Wind Turbine which have Nacelle Fence
US20140356163A1 (en) Turbomachine
JP2008506877A5 (en)
JP2008506877A (en) Wind energy harvesting system
US20200300217A1 (en) Vertical axis wind turbine
US20210239088A1 (en) Wind turbine
Karmakar et al. A review of augmentation methods to enhance the performance of vertical axis wind turbine
US9046075B2 (en) Wind turbine generator
WO2011161821A1 (en) Wind collection apparatus and windmill apparatus
WO2012028893A2 (en) Wind turbine
CN104847579A (en) Adjustable-blade-attack-angle vertical-axis wind turbine with double-layer wind wheels
CN114270029A (en) Wind wall
KR20090051669A (en) Wind-collecting type windmill for wind power generation
US20130156596A1 (en) Airfoil Design for Wakeless Wind Turbine Tower Structures
EP3098436B1 (en) Noise reducing flap with opening
CN116745518A (en) Wind power generation device capable of being mounted on mobile body
US11060501B1 (en) Turbovane wind turbine
WO2019206102A1 (en) High-efficiency wind power generation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521247

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853681

Country of ref document: EP

Kind code of ref document: A1