WO2011161727A1 - 有機el素子の製造方法、表示装置、発光装置および紫外光照射装置 - Google Patents

有機el素子の製造方法、表示装置、発光装置および紫外光照射装置 Download PDF

Info

Publication number
WO2011161727A1
WO2011161727A1 PCT/JP2010/004216 JP2010004216W WO2011161727A1 WO 2011161727 A1 WO2011161727 A1 WO 2011161727A1 JP 2010004216 W JP2010004216 W JP 2010004216W WO 2011161727 A1 WO2011161727 A1 WO 2011161727A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
ultraviolet light
hole injection
injection layer
manufacturing
Prior art date
Application number
PCT/JP2010/004216
Other languages
English (en)
French (fr)
Inventor
大内暁
藤田浩史
藤村慎也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/004216 priority Critical patent/WO2011161727A1/ja
Publication of WO2011161727A1 publication Critical patent/WO2011161727A1/ja
Priority to US13/716,450 priority patent/US8703530B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a method for producing an organic electroluminescent element (hereinafter referred to as “organic EL element”) which is an electroluminescent element, a display device and a light emitting device produced by the production method, and ultraviolet light used in the production method. More particularly, the present invention relates to a technique for cleaning the surface of a hole injection layer.
  • organic EL element organic electroluminescent element
  • the organic EL element is a current-driven light emitting element and has a configuration in which a functional layer including a light emitting layer made of an organic material is provided between a pair of electrodes made of an anode and a cathode. Then, a voltage is applied between the electrode pair to recombine holes injected from the anode into the functional layer and electrons injected from the cathode into the functional layer, and light is emitted by the electroluminescence phenomenon generated thereby. Since organic EL elements perform self-light emission and are highly visible and are completely solid elements, and are excellent in impact resistance, they are attracting attention as light emitting elements and light sources in various display devices.
  • the organic EL element In order for the organic EL element to emit light with high luminance, it is important to efficiently inject carriers (holes and electrons) from the electrode to the functional layer. In general, in order to inject carriers efficiently, it is effective to provide an injection layer for lowering the energy barrier during injection between each electrode and the functional layer.
  • an organic substance such as copper phthalocyanine or PEDOT (conductive polymer), or a metal oxide such as molybdenum oxide or tungsten oxide is used for the hole injection layer disposed between the functional layer and the anode.
  • an organic substance such as a metal complex or oxadiazole, or a metal such as barium is used for the electron injection layer disposed between the functional layer and the cathode.
  • Patent Document 1 Regard an organic EL element using a metal oxide such as molybdenum oxide or tungsten oxide as a hole injection layer, improvement of hole injection efficiency and improvement of life have been reported (Patent Document 1, Non-Patent Document 1). There is a report that the improvement is influenced by the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer (Non-patent Document 2).
  • an adsorbate mainly containing carbon derived from molecules contained in the atmosphere such as carbon dioxide, water, and organic substances and molecules of impurities generated during the process will be a problem. It is done. Specifically, in the stacking process of each layer constituting the organic EL element such as the electrode and the hole injection layer, when the upper layer is stacked on the lower layer surface with the adsorbed material adsorbed, the adsorbed material is interposed between these layers. As a result, the drive voltage of the element may increase or the lifetime may decrease.
  • the present invention has been made in view of the above problems, and provides a method for manufacturing an organic EL element that emits light with high luminance and is driven at a low voltage, and an ultraviolet light irradiation apparatus suitable for the manufacturing method. Objective.
  • a method for manufacturing an organic EL device includes a first step of forming a hole injection layer containing a metal oxide on an anode, and the first step.
  • the ultraviolet light irradiation apparatus includes a hole injection layer containing a metal oxide between an anode and a cathode, and a functional layer containing an organic material into which holes are injected from the hole injection layer.
  • a hole injection layer containing a metal oxide between an anode and a cathode
  • a functional layer containing an organic material into which holes are injected from the hole injection layer.
  • the hole injection layer after forming a hole injection layer containing a metal oxide, the hole injection layer has a wavelength larger than a wavelength at which oxygen molecules are decomposed and oxygen radicals are generated. Since the predetermined ultraviolet light is irradiated, the adsorbate on the surface can be removed without annihilating the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer. Therefore, it is possible to manufacture an organic EL element that emits light with high luminance and is driven at a low voltage.
  • FIG. 1 is a diagram illustrating an entire configuration of a display device according to one embodiment of the present invention.
  • 2A and 2B are diagrams illustrating a light-emitting device according to one embodiment of the present invention, in which FIG. It is a figure for demonstrating the principal part of the manufacturing method of the organic EL element which concerns on embodiment. It is a figure which shows the UPS spectrum of tungsten oxide. It is a figure which shows the UPS spectrum of tungsten oxide. It is a figure which shows the XPS spectrum of tungsten oxide. It is a figure which shows the UPS spectrum of tungsten oxide. It is a figure which shows the XPS spectrum of tungsten oxide. It is a figure which shows the XPS spectrum of tungsten oxide.
  • a method for manufacturing an organic EL element includes a first step of forming a hole injection layer containing a metal oxide on an anode, and a hole injection layer formed by the first step.
  • the second step includes oxygen decomposition by decomposition of ozone into the hole injection layer formed by the first step. Irradiate ultraviolet light having a wavelength larger than the wavelength at which radicals are generated. In this case, since there is a low possibility that ozone molecules are decomposed and oxygen radicals are generated, there is a low possibility that an electron level formed by a structure similar to an oxygen defect of a metal oxide is lost.
  • the second step is configured to emit ultraviolet light whose wavelength region is mainly greater than 184.9 nm and less than or equal to 380 nm with respect to the hole injection layer. Irradiate.
  • the wavelength of ultraviolet light for generating ozone by decomposing oxygen molecules in the atmosphere or in a gas atmosphere containing oxygen molecules to generate oxygen radicals and combining some of the oxygen radicals with other oxygen molecules to generate ozone is 184. Therefore, when a wavelength region longer than 184.9 nm is used, there is a low possibility that oxygen molecules are decomposed and oxygen radicals are generated, and an electronic level formed by a structure similar to an oxygen defect of a metal oxide is formed. Is unlikely to disappear.
  • the ultraviolet light whose wavelength region is mainly greater than 184.9 nm and less than or equal to 380 nm is that the intensity area of the spectrum greater than 184.9 nm and less than or equal to 380 nm is 98% or more with respect to the intensity area of the spectrum of the entire light having a wavelength of 380 nm or less. It means that there is.
  • the second step includes ultraviolet light whose wavelength region is mainly more than 253.7 nm and not more than 380 nm with respect to the hole injection layer. Irradiate. Since the wavelength of ultraviolet light for decomposing ozone and generating oxygen radicals again is 253.7 nm, the use of a wavelength region exceeding 253.7 nm is less likely to generate oxygen radicals. The possibility that an electron level formed by a structure similar to an oxygen defect of an oxide disappears is lower.
  • the ultraviolet light whose wavelength region is mainly 253.7 nm or more and 380 nm or less is that the intensity area of the spectrum of 253.7 nm or more and 380 nm or less is 80% or more with respect to the intensity area of the spectrum of the whole light having a wavelength of 380 nm or less. It means that there is.
  • the first step is performed in a vacuum and the second step is performed in an air atmosphere. If the first step is performed in a vacuum, a hole injection layer having an electron level formed on the surface by a structure similar to an oxygen defect of a metal oxide can be formed under predetermined film formation conditions. If it is performed in an air atmosphere, it can be easily applied to a large panel.
  • the second step includes the element in which the hole injection layer includes the metal oxide as a main component in XPS measurement. Irradiate with ultraviolet light until the shape of the narrow scan spectrum of the shell orbit does not change. In this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
  • the first step uses tungsten oxide as the metal oxide.
  • the said 2nd process is a single bond of the oxygen atom in tungsten oxide and the adsorbate adsorbed to the said oxygen atom as the said ultraviolet light. And a wavelength indicating an energy value that is smaller than the bond energy between oxygen atoms and tungsten atoms in tungsten oxide.
  • the interatomic bond in the adsorbate is broken and adsorbed in a chemically stable state without destroying the bond between the oxygen atom and the tungsten atom and chemically activating the tungsten oxide. Things can be removed.
  • the adsorbate includes at least one of a carbon atom, a hydrogen atom, an oxygen atom, and a nitrogen atom.
  • the second step has a wavelength larger than a wavelength at which oxygen molecules are decomposed and oxygen radicals are generated with respect to the hole injection layer. Irradiate with ultraviolet light. In this case, since there is a low possibility that oxygen molecules are decomposed and oxygen radicals are generated, the possibility that an electron level formed by a structure similar to an oxygen defect in a metal oxide is lost is also low.
  • the metal oxide is tungsten oxide
  • the second step includes the step of combining the hole injection layer with a binding energy of 4 in the UPS spectrum. Irradiate with ultraviolet light until the shape of 5 to 5.4 eV does not change. In this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
  • the lower limit value and the upper limit value are also included in the numerical range.
  • the numerical range includes 4.5 eV and 5.4 eV.
  • the metal oxide is molybdenum oxide
  • the second step includes the step of combining the hole injection layer with a binding energy 3 in a UPS spectrum. Irradiate with ultraviolet light until the shape of 7 to 5.2 eV does not change. Also in this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
  • the second step is performed until the hole injection layer does not change the shape of the narrow scan spectrum of C1s by XPS measurement. Irradiate light. Also in this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
  • the said metal oxide is tungsten oxide
  • the said 2nd process WHEREIN The said hole injection layer is W4f by XPS measurement. Irradiate with ultraviolet light until the shape of the narrow scan spectrum does not change. Also in this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
  • the metal oxide is molybdenum oxide
  • the hole injection layer is made of Mo3d by XPS measurement. Irradiate with ultraviolet light until the shape of the narrow scan spectrum does not change. Also in this case, since the adsorbate removal effect is considered to be saturated, a sufficient adsorbate removal effect can be expected.
  • the display device uses an organic EL element manufactured by any one of the above manufacturing methods. Accordingly, the organic EL element emits light with high luminance and is driven at a low voltage, so that it has high performance.
  • the light emitting device uses an organic EL element manufactured by any one of the above manufacturing methods. Accordingly, the organic EL element emits light with high luminance and is driven at a low voltage, so that it has high performance.
  • An ultraviolet light irradiation apparatus includes a hole injection layer containing a metal oxide and a functional layer containing an organic material into which holes are injected from the hole injection layer between an anode and a cathode.
  • An ultraviolet light irradiation device that irradiates ultraviolet light to an intermediate product of an organic EL element, wherein the wavelength range of the ultraviolet light is larger than the wavelength at which oxygen molecules are decomposed and oxygen radicals are generated. is there. Therefore, since there is a low possibility that oxygen molecules are decomposed and oxygen radicals are generated, the adsorbate on the surface can be obtained without annihilating the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer. Can be removed.
  • the wavelength range of the ultraviolet light is a wavelength range that is larger than the wavelength at which ozone is decomposed and oxygen radicals are generated.
  • the wavelength range of the ultraviolet light is a wavelength range that is larger than the wavelength at which ozone is decomposed and oxygen radicals are generated.
  • the wavelength range of the ultraviolet light is mainly more than 184.9 nm and not more than 380 nm.
  • the wavelength range of ultraviolet light is mainly more than 184.9 nm and not more than 380 nm, the possibility that oxygen radicals are generated is low, and the electron level formed by the structure similar to the oxygen defect of the metal oxide is maintained, The adsorbate can be removed from the surface of the hole injection layer.
  • the wavelength range of the ultraviolet light is mainly more than 253.7 nm and not more than 380 nm.
  • an oxygen radical is less likely to be generated, an electron level formed by a structure similar to an oxygen defect of a metal oxide is less likely to disappear.
  • the present inventor has conceived to provide a process for removing adsorbate on the surface of each layer by washing after the formation of each layer in the manufacturing process in order to prevent an increase in driving voltage of the organic EL element and a decrease in the lifetime of the element. .
  • the present inventors have focused on UV ozone cleaning and oxygen plasma cleaning, which are widely used for cleaning glass substrates and electrodes, because they have a strong cleaning power. Since these cleaning methods have strong detergency, it was initially assumed that they can be applied as they are to the process of removing the adsorbate of each layer in the organic EL element.
  • UV ozone cleaning and oxygen plasma cleaning utilize the strong oxidizing action of the generated oxygen radicals by decomposing oxygen molecules, and this oxidizing action compensates for oxygen atoms in the structure similar to the oxygen defect. Therefore, in the hole injection layer made of a metal oxide, it is considered that the electron level formed by the structure similar to the oxygen defect disappears and the hole injection efficiency may be lowered. Specifically, it was confirmed by experiments as will be described later that the electron levels formed by the structure similar to oxygen defects disappeared by UV ozone cleaning.
  • the present inventor removes the adsorbate as a process for removing the adsorbate on the hole injection layer in the organic EL element having the hole injection layer made of a metal oxide.
  • it is important to prevent the generation of oxygen radicals without the decomposition of oxygen molecules in order to prevent the hole injection efficiency from being lowered.
  • the inventors have conceived the feature of the present invention that the hole injection layer made of a metal oxide is irradiated with ultraviolet light having a wavelength larger than the wavelength at which oxygen molecules decompose and oxygen radicals are generated.
  • Non-Patent Document 1 in which UV ozone cleaning is performed after a hole injection layer made of tungsten oxide is formed.
  • This non-patent document 1 does not mention the influence of device characteristics on UV ozone cleaning, and does not describe that the conditions for UV ozone cleaning are optimized.
  • Non-Patent Document 1 describes what the inventor has clarified through specific examination, and is not suitable for cleaning a hole injection layer made of tungsten oxide as it is, and its technical reason. It has not been.
  • the adsorbate removing effect and the electron level increasing effect by the sputter etching process last only in the vacuum vessel. This is because the surface of the hole injection layer that has been sputter-etched in a vacuum is extremely unstable because the bonds between atoms are forcibly cut by an ion beam, and it is easy to get out of the vacuum vessel once. This is because the surrounding gas molecules are adsorbed and stabilized. Thereby, the structure similar to the oxygen defect of the metal oxide forcibly formed in vacuum is complemented in an instant, and the removed adsorbate is adsorbed again in an instant.
  • a part or all of the processes after the sputter etching process may be performed continuously in a vacuum vessel.
  • the process in the vacuum vessel can be applied to a small organic EL panel, but for a large-sized organic EL panel of, for example, 50 inches, a vacuum vessel suitable for the size is required. Therefore, application is extremely difficult. Also, the process in the vacuum vessel is not suitable for mass production because of its low throughput.
  • a method of blocking the adsorption of the adsorbate itself is also conceivable. For example, if some or all of the steps after the formation of each layer are continuously performed in a vacuum container so that each layer is not exposed to the atmosphere or impurity molecules after the formation, the adsorbate is not adsorbed. However, since a vacuum container is required as described above, it is extremely difficult to apply to a large organic EL panel.
  • a method of performing the process in a container filled with an inert gas is also conceivable.
  • application to a large organic EL panel is also possible.
  • impurity molecules and the like are still present in the container, and it is difficult to completely remove them.
  • the adsorbate is removed from the surface of the hole injection layer without annihilating the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer and without using a vacuum vessel.
  • the problem of doing is very difficult to solve.
  • a wavelength at which oxygen molecules are decomposed and oxygen radicals are generated in the hole injection layer. This problem is solved by irradiating ultraviolet light having a large wavelength.
  • the organic EL device manufacturing method does not eliminate the electron levels formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer, and thus the organic EL device manufactured by the manufacturing method. Can efficiently inject holes from the anode into the functional layer, and as a result, can emit light with low power consumption and high luminance.
  • the adsorbate can be removed from the hole injection layer surface in the method for manufacturing an organic EL element according to one embodiment of the present invention, the adsorbate may be embedded between the hole injection layer and the functional layer.
  • the drive voltage of the device does not increase, and the lifetime of the device is shortened by the formation of carrier traps such as impurities derived from the adsorbate, and the device characteristics are not deteriorated.
  • the method for manufacturing an organic EL element according to one embodiment of the present invention can be performed in an air atmosphere, it can be easily applied to a large organic EL panel and is suitable for mass production. .
  • an electron level formed by a structure similar to an oxygen defect of a metal oxide is formed after the hole injection layer surface is cleaned until the upper layer is stacked. Therefore, the hole injection capability of the hole injection layer does not decrease. Therefore, it is possible to stably manufacture an organic EL element having a low driving voltage and a long lifetime.
  • the removal of the adsorbate by the irradiation with ultraviolet light can be performed in vacuum or in an inert gas atmosphere as well as in the air, so that it can be applied to a large organic EL panel.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL element 1 in the present embodiment.
  • the organic EL element 1 is, for example, a coating type that is manufactured by applying a functional layer by a wet process, and includes a hole injection layer 3 and various functional layers (here, buffer layers) containing an organic material having a predetermined function. 4 and the light-emitting layer 5) are disposed between the electrode pair composed of the anode 2 and the cathode 6 in a state in which the light-emitting layer 4 and the light-emitting layer 5) are stacked on each other.
  • a coating type that is manufactured by applying a functional layer by a wet process, and includes a hole injection layer 3 and various functional layers (here, buffer layers) containing an organic material having a predetermined function. 4 and the light-emitting layer 5) are disposed between the electrode pair composed of the anode 2 and the cathode 6 in a state in which the light-emitting layer 4 and the light-emitting layer 5) are stacked on each other.
  • the organic EL element 1 includes an anode 2, a hole injection layer 3, a buffer layer 4, a light emitting layer 5, and a cathode 6 (barium layer 6 a and aluminum) with respect to one side main surface of a substrate 7.
  • Layers 6b) are stacked in the same order.
  • the hole injection layer 3 is made of, for example, a thin film (layer) of tungsten oxide, which is a metal oxide, with a thickness of 30 nm. Tungsten oxide is a real number in the range of 2 ⁇ x ⁇ 3 in the composition formula (WOx).
  • the hole injection layer 3 is preferably composed of tungsten oxide as much as possible, but may contain a trace amount of impurities to such an extent that it can be mixed at a normal level.
  • the hole injection layer 3 has an electron level in which a structure similar to an oxygen defect of a metal oxide is formed on the surface of the hole injection layer 3 when formed under a predetermined film formation condition.
  • the presence of this electron level enables good hole injection.
  • the hole injection layer 3 is irradiated with ultraviolet light having a predetermined wavelength in the atmosphere after film formation. Thereby, the adsorbate is removed from the surface of the hole injection layer 3 while maintaining the electron level formed by the structure similar to the oxygen defect of the metal oxide, and the amount thereof is smaller than that before irradiation.
  • the irradiation time and irradiation intensity of the ultraviolet light are set so that the change in the shape of a predetermined binding energy region in the photoelectron spectrum of the hole injection layer 3 converges. Thereby, the adsorbate is removed to the maximum under the minimum irradiation conditions.
  • the buffer layer 4 may be, for example, TFB (poly (9,9-di-n-octylfluorene-alt- (1,4-phenylene-((4-sec-butylphenyl) imino), which is an amine organic polymer having a thickness of 20 nm. ) -1,4-phenylene)).
  • TFB poly (9,9-di-n-octylfluorene-alt- (1,4-phenylene-((4-sec-butylphenyl) imino
  • the light emitting layer 5 is made of, for example, F8BT (poly (9,9-di-n-octylfluorene-alt-benzothiadiazole)), which is an organic polymer having a thickness of 70 nm.
  • F8BT poly (9,9-di-n-octylfluorene-alt-benzothiadiazole)
  • the light emitting layer 5 is not limited to the structure made of this material, and can be configured to include a known organic material.
  • the functional layer in the present invention includes any one of a hole transport layer that transports holes, a light emitting layer that emits light by recombination of injected holes and electrons, a buffer layer that is used for optical property adjustment or electronic block application, etc. Or a combination of two or more layers, or all layers.
  • the organic EL element has layers that perform the required functions, such as the hole transport layer and the light emitting layer described above, in addition to the hole injection layer.
  • the functional layer means a layer necessary for the organic EL element other than the hole injection layer which is an object of the present invention.
  • the anode 2 is made of, for example, an ITO thin film having a thickness of 50 nm.
  • the cathode 6 is formed by, for example, stacking a barium layer 6a having a thickness of 5 nm and an aluminum layer 6b having a thickness of 100 nm.
  • a DC power supply 8 is connected to the anode 2 and the cathode 6 so that power is supplied to the organic EL element 1 from the outside.
  • the substrate 7 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicon resin. Or an insulating material such as alumina.
  • the organic EL element 1 In the organic EL element 1 having the above configuration, the surface of the hole injection layer 3 made of tungsten oxide, which is a metal oxide, is irradiated with ultraviolet light having a predetermined wavelength. The adsorbate is removed from the surface to the maximum while the electron level formed by the similar structure is maintained. Thus, the organic EL element has a low driving voltage and a long life.
  • FIG. 2 illustrates an overall structure of a display device according to one embodiment of the present invention.
  • the display device 100 includes a display panel 110 using an organic EL element manufactured by the method for manufacturing an organic EL element according to one embodiment of the present invention, and a drive control unit 120 connected thereto. It is used for displays, televisions, mobile phones and the like.
  • the drive control unit 120 is composed of four drive circuits 121 to 124 and a control circuit 125. In the actual display device 100, the arrangement and connection relationship of the drive control unit 120 with respect to the display panel 110 are not limited to this.
  • the display device 100 having the above configuration is excellent in image quality because it uses an organic EL element having good light emission characteristics.
  • the light-emitting device 200 includes an organic EL element 210 manufactured by the method for manufacturing an organic EL element according to one embodiment of the present invention, a base 220 on which the organic EL element 210 is mounted, The base 220 is provided with a pair of reflecting members 230 attached so as to sandwich the organic EL element 210 therebetween, and is used as a lighting device or a light source.
  • Each organic EL element 210 is electrically connected to a conductive pattern (not shown) formed on the base 220, and emits light by driving power supplied by the conductive pattern. The light distribution of a part of the light emitted from each organic EL element 210 is controlled by the reflecting member 230.
  • the light emitting device 200 having the above configuration is excellent in image quality because it uses an organic EL element having good light emission characteristics.
  • FIG. 4 is a diagram for explaining a main part of the method for manufacturing the organic EL element according to the embodiment.
  • the substrate 7 is placed in the chamber of the sputter deposition apparatus. Then, a predetermined sputtering gas is introduced into the chamber, and the anode 2 made of ITO having a thickness of 50 nm is formed based on the reactive sputtering method.
  • the hole injection layer 3 is formed by reactive sputtering. Specifically, the target is replaced with metallic tungsten, and a reactive sputtering method is performed. Argon gas is introduced into the chamber as a sputtering gas, and oxygen gas is introduced into the chamber as a reactive gas. In this state, argon is ionized by a high voltage and collides with the target. At this time, the metal tungsten released by the sputtering phenomenon reacts with oxygen gas to become tungsten oxide, and the hole injection layer 3 is formed on the anode 2 of the substrate 7, and the intermediate product 9 as shown in FIG. Is obtained.
  • the film formation conditions are as follows: the substrate temperature is not controlled, the gas pressure (total pressure) is 2.3 Pa, the ratio of the oxygen gas partial pressure to the total pressure is 50%, and the input power per unit unit area (input power density) was set to 1.2 W / cm 2 .
  • the hole injection layer 3 made of tungsten oxide formed under these conditions has an electron level formed on its surface by a structure similar to an oxygen defect.
  • the substrate 7 after film formation is taken out from the chamber to the atmosphere.
  • gas molecules and the like are adsorbed on the surface.
  • impurity molecules in the chamber are adsorbed after film formation and before removal.
  • the surface of the hole injection layer 3 is irradiated with ultraviolet light in the atmosphere.
  • the ultraviolet light irradiation apparatus 20 including a metal halide lamp (model number UVL-3000M2-N) manufactured by Ushio Electric Co., Ltd. as the light source 21 was used. Details of the ultraviolet light irradiation device 20 will be described later. Irradiation conditions are separately determined by another experiment using photoelectron spectroscopy, which will be described later, so that changes in the shape of a predetermined binding energy region in the photoelectron spectrum converge.
  • the irradiation intensity is 155 mW / cm 2 and the irradiation time is 10 minutes.
  • a composition ink containing an amine-based organic molecular material is dropped on the surface of the hole injection layer 3 by, for example, a wet process using a spin coating method or an inkjet method, and the solvent is volatilized and removed. Thereby, the buffer layer 4 is formed, and the intermediate product 10 as shown in FIG. 4C is obtained.
  • a composition ink containing an organic light emitting material is dropped on the surface of the buffer layer 4 by the same method, and the solvent is volatilized and removed. Thereby, the light emitting layer 5 is formed.
  • the formation method of the buffer layer 4 and the light emitting layer 5 is not limited to this, It is well-known methods, such as methods other than a spin coat method and an inkjet method, for example, gravure printing method, dispenser method, nozzle coating method, intaglio printing, letterpress printing, etc.
  • the ink may be dropped and applied by a method.
  • a barium layer 6a and an aluminum layer 6b are formed on the surface of the light emitting layer 5 by vacuum deposition. Thereby, the cathode 6 is formed.
  • a sealing layer is further provided on the surface of the cathode 6 or the entire element 1 is spatially externally provided. Sealing cans can be provided that are isolated from each other.
  • the sealing layer can be formed of a material such as SiN (silicon nitride) or SiON (silicon oxynitride), and is provided so as to internally seal the element 1.
  • the sealing can can be formed of the same material as that of the substrate 7, for example, and a getter that adsorbs moisture and the like is provided in the sealed space.
  • the organic EL element 1 is completed through the above steps.
  • the manufacturing method of the organic EL element 1 includes a step of irradiating ultraviolet light having a predetermined wavelength after the formation of the hole injection layer 3 made of tungsten oxide.
  • the adsorbate can be removed from the surface of the hole injection layer 3 while maintaining the electron level formed by the structure similar to the oxygen defect of the metal oxide on the surface of the hole injection layer.
  • the electron level is continuously maintained in the atmosphere from the cleaning of the hole injection layer 3 to the step of forming the buffer layer 4, and therefore the hole injection capability is also stably maintained. . Thereby, it becomes possible to stably manufacture the organic EL element 1 having a low driving voltage and a long lifetime.
  • the irradiation time and irradiation intensity of the ultraviolet light in the above-described ultraviolet light irradiation step are obtained from the condition that the change in the shape of the predetermined binding energy region in the photoelectron spectrum of the hole injection layer 3 converges, and is the minimum necessary It is set to remove adsorbate to the maximum under the limited irradiation conditions. Thereby, a very stable hole injection efficiency can be realized with a minimum cleaning process.
  • the anode 2 made of ITO and the hole injection layer 3 made of tungsten oxide were laminated on the substrate 7 in the chamber of the sputter deposition apparatus. Then, it took out to air
  • the irradiation intensity was 155 mW / cm 2 .
  • non-irradiated sample a sample that is not irradiated with ultraviolet light
  • irradiated n-minute sample a sample that has been irradiated for n minutes
  • XPS X-ray photoelectron spectroscopy
  • the XPS spectrum generally reflects the elemental composition in the depth of several nanometers from the surface of the measurement object, and the electronic state such as the bonding state and valence. For this reason, if an element that is not originally contained in tungsten oxide is observed, there is a high possibility that it is an adsorbate.
  • molecules adsorbed by exposure to the atmosphere or adsorbed during the manufacturing process are mainly molecules containing carbon in addition to water molecules and oxygen molecules. Therefore, the adsorbate removal effect can be known by observing a change in the concentration of carbon in the surface layer of the hole injection layer 3 due to ultraviolet light irradiation.
  • XPS measurement conditions are as follows. During the measurement, no charge up occurred.
  • Table 1 shows the composition ratio of W and C of each sample.
  • the UPS (ultraviolet photoelectron spectroscopy) measurement was performed on the aforementioned non-irradiated sample, irradiated 1 minute sample, and irradiated 10 minute sample.
  • the UPS spectrum reflects the electronic state from the valence band to the Fermi surface (Fermi level) from the surface of the measurement object to a depth of several nm.
  • tungsten oxide or molybdenum oxide has a structure similar to oxygen vacancies on the surface, a raised spectral shape near the Fermi surface on the side of lower binding energy than the upper end of the valence band (hereinafter referred to as “protrusion near the Fermi surface”).
  • Non-Patent Documents 2 and 3 Non-Patent Documents 2 and 3. Therefore, by observing the change of the raised structure in the vicinity of the Fermi surface due to ultraviolet light irradiation, it is possible to investigate the influence of the ultraviolet light irradiation on the structure similar to the surface oxygen defect.
  • the raised structure in the vicinity of the Fermi surface is located in a binding energy region that is 1.8 to 3.6 eV lower than the upper end of the valence band (the lowest binding energy in the valence band).
  • UPS measurement conditions are as follows. Note that no charge-up occurred during the measurement.
  • FIG. 5 shows a UPS spectrum in the vicinity of the Fermi surface of each sample.
  • the origin of the binding energy on the horizontal axis is taken to the Fermi surface, and the left direction is set to a positive direction.
  • the raised structure near the Fermi surface shown by (I) in the figure can be clearly confirmed. Therefore, it can be seen that a structure similar to an oxygen defect that affects the hole injection capability is maintained even when irradiated with ultraviolet light.
  • UV ozone cleaning was performed. Specifically, the anode 2 made of ITO and the hole injection layer 3 made of tungsten oxide are laminated on the substrate 7 in the chamber of the sputter film forming apparatus, and then taken out from the chamber to the atmosphere, and the UV ozone apparatus. The surface of the hole injection layer 3 was cleaned with UV ozone, and the presence of a raised structure near the Fermi surface was confirmed by UPS measurement.
  • FIG. 6 shows a UPS spectrum in the vicinity of the Fermi surface of the hole injection layer 3 made of tungsten oxide subjected to UV ozone cleaning for 3 minutes.
  • the UPS spectrum of the non-irradiated sample in FIG. 5 is also shown.
  • the raised structure near the Fermi surface cannot be confirmed at all. That is, it can be seen that the structure similar to the oxygen defect on the surface of the hole injection layer 3 has been almost lost by the UV ozone cleaning.
  • the cleaning by ultraviolet light irradiation according to the present embodiment does not lose the structure similar to the oxygen defect like the UV ozone cleaning, that is, the structure similar to the oxygen defect that acts on the hole injection ability is the ultraviolet light. It is clear that it is maintained even after irradiation.
  • the intensities of the C1s spectra are almost the same in the samples with an irradiation time of 1 minute or longer, and therefore, it is considered that the adsorbate removal effect is almost saturated after the irradiation time of 1 minute or longer.
  • the C1s spectrum of the adsorbed material has a low absolute intensity as shown in FIG. Therefore, there is a possibility that it is not very suitable for determining the saturation of the adsorbate removal effect. Therefore, another method for judging the saturation of the adsorbate removal effect using a relatively strong spectrum will be described.
  • the first method is to make a determination based on a change in the shape of the region corresponding to the vicinity of the upper end of the valence band in the UPS spectrum, that is, a change in the shape of the region having a binding energy of 4.5 to 5.4 eV in the UPS spectrum.
  • the peak or shoulder structure present in this region corresponds to a 2p orbital unshared electron pair of oxygen atoms constituting tungsten oxide.
  • FIG. 8 shows the UPS spectrum. UPS measurement was performed on each of the non-irradiated sample, the irradiated 1 minute sample, and the irradiated 10 minute sample. The photoelectron intensity was normalized with a gentle peak near a binding energy of 6.5 eV. According to FIG. 8, the irradiation 1 minute sample and the irradiation 10 minute sample have clear peaks as shown in (II) in the figure which do not exist in the region of the binding energy of 4.5 to 5.4 eV. Is recognized. Further, the peak shapes of the irradiated 1 minute sample and the irradiated 10 minute sample are substantially the same.
  • the second is a change in the shape of the W4f spectrum of XPS measurement due to irradiation with ultraviolet light.
  • FIG. 9 shows W4f spectra of the non-irradiated sample, the irradiated 1 minute sample, the irradiated 10 minute sample, the irradiated 60 minute sample, and the irradiated 120 minute sample. It is standardized by the maximum and minimum values of the spectrum.
  • the peak shape is sharper (the half width of the peak is narrower) in the irradiated sample than in the non-irradiated sample. Furthermore, the peak shape is slightly sharper for the irradiated 10 minute sample than for the irradiated 1 minute sample, whereas the irradiated 10 minute sample, irradiated 60 minute sample, and irradiated 120 minute sample are almost completely overlapped. It can be seen that the change in the shape of the spectrum almost converged after 10 minutes of irradiation.
  • the change in the shape of the W4f spectrum depending on the irradiation time can be explained as follows, for example.
  • W4f of the inner shell orbit shifts accordingly to the low binding energy side.
  • a part of hexavalent tungsten atoms in the surface layer of tungsten oxide is changed to a low valence such as pentavalent by the influence of adsorbate.
  • the irradiation conditions when the metal oxide is tungsten oxide can be determined as follows.
  • the irradiation intensity is arbitrarily determined until the change in the shape of the narrow scan spectrum of W4f or O1s by XPS measurement or the shape of the binding energy 4.5 to 5.4 eV in the UPS spectrum converges. Time is measured and this time is defined as the irradiation time.
  • the electron level formed by the structure similar to the oxygen defect that affects the hole injection capability is continuously maintained at least after the surface cleaning until the upper layer is stacked on the surface.
  • the grounds are as follows.
  • the UPS spectrum shown in FIG. 5 was measured two days after the irradiation with ultraviolet light. That is, there is no difference in the raised structure in the vicinity of the Fermi surface in the UPS spectrum between the non-irradiated sample and the sample of each irradiation time that passed in the atmosphere for 2 days after irradiation, and the raised structure is clear in both cases. .
  • the measurement was performed 2 hours and 1 day after the irradiation with ultraviolet light, and in this case, the raised structure near the Fermi surface was clear as in FIG. That is, it was confirmed that an electron level formed by a structure similar to an oxygen defect was maintained in the atmosphere for at least two days after irradiation.
  • This period of 2 days is sufficiently longer than the period (usually within several hours) until the step of laminating the buffer layer 4 on the surface after cleaning the hole injection layer 3 by ultraviolet light irradiation. Unless the formation time of the layer 4 is delayed, the buffer layer 4 cannot be formed even after this period.
  • the organic EL element 1 according to the present embodiment in which the hole injection layer 3 is cleaned by ultraviolet light irradiation has better element characteristics than an organic EL element manufactured without irradiation. This was confirmed by the following experiment.
  • a hole-only element is used as an evaluation device. It was supposed to be manufactured.
  • the carriers for forming a current are both holes and electrons, and the electric current of the organic EL element is reflected in addition to the hole current.
  • the hole-only device the injection of electrons from the cathode is obstructed, so the electron current hardly flows, the total current is almost composed only of the hole current, and the carrier can be regarded as almost the hole only. It is suitable for.
  • the specifically produced hole-only device 1A is obtained by replacing the cathode 6 in the organic EL device 1 of FIG. 1 with gold (Au) like the cathode 6A shown in FIG. That is, according to the method of manufacturing the organic EL element 1 of the present embodiment, as shown in FIG. 10, the anode 2 made of an ITO thin film having a thickness of 50 nm is formed on the substrate 7 by the sputtering film formation method.
  • a hole injection layer 3 made of tungsten oxide having a thickness of 30 nm is formed on the surface by a predetermined sputtering film formation method so as to have an electron level formed by a structure similar to an oxygen defect, and has a thickness of 20 nm.
  • the ultraviolet light according to the present embodiment
  • the former hole-only element 1A is referred to as “irradiated HOD”, and the latter hole-only element 1A is referred to as “irradiation-less HOD”.
  • Each produced Hall-only element 1A was connected to a DC power source 8 and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the “drive voltage” here is an applied voltage at a current density of 0.4 mA / cm 2 .
  • the manufacturing method of each part other than the surface of the hole injection layer 3 is the same, and therefore, hole injection between two adjacent layers excluding the interface between the hole injection layer 3 and the buffer layer 4
  • the barrier is considered constant. Therefore, the difference in drive voltage depending on whether or not the surface of the hole injection layer 3 is irradiated with ultraviolet light strongly reflects the difference in hole injection efficiency from the hole injection layer 3 to the buffer layer 4.
  • Table 2 shows values of drive voltages of the respective hall-only elements 1A obtained by the experiment.
  • FIG. 11 is a current density-applied voltage curve of each hole-only element 1A.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • the HOD with irradiation has a lower driving voltage and the rise of the current density-applied voltage curve is faster than the HOD without irradiation, and a high current density is obtained with a lower applied voltage. Yes. That is, the HOD with irradiation has better hole injection efficiency than the HOD without irradiation.
  • the above is the verification regarding the hole injection efficiency of the hole injection layer 3 in the hole-only device 1A.
  • the hole-only device 1A has the same configuration as the organic EL device 1 of FIG. 1 except for the cathode 6A. Therefore, the effect of the removal of the adsorbate by ultraviolet light irradiation on the hole injection efficiency from the hole injection layer 3 to the buffer layer 4 is essentially the same in the organic EL element 1 as in the hole-only element 1A.
  • the organic EL element 1 was produced using the hole injection layer 3 that was irradiated with ultraviolet light and the hole injection layer 3 that was not irradiated with ultraviolet light.
  • the former organic EL element 1 is referred to as “irradiated BPD”
  • the latter organic EL element 1 is referred to as “irradiated BPD”.
  • the manufacturing method is the same as in the present embodiment except that the hole injection layer 3 of the non-irradiated BPD is not irradiated with ultraviolet light.
  • Each produced organic EL element 1 was connected to a DC power source 8 and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the “drive voltage” here is an applied voltage at a current density of 10 mA / cm 2 .
  • Table 3 shows drive voltage values of the organic EL elements 1 obtained by the experiment.
  • FIG. 12 is a current density-applied voltage curve of each organic EL element 1.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • the irradiated BPD has a lower drive voltage, the rise of the current density-applied voltage curve is faster, and a higher current density is obtained at a lower applied voltage than the non-irradiated BPD. Yes. This is the same tendency as HOD with irradiation and HOD without irradiation.
  • the organic EL element 1 when the predetermined ultraviolet light irradiation is performed after the formation of the hole injection layer 3 based on the present embodiment, the adsorbate on the surface of the hole injection layer 3 is removed to the maximum extent, In addition, the electron levels formed by the structure similar to oxygen defects are not lost by irradiation, and therefore, adsorbates that cause an increase in driving voltage and a decrease in lifetime can be removed without impairing the hole injection capability. It was confirmed that the hole injection efficiency into the buffer layer 4 was improved, thereby realizing excellent device characteristics.
  • the adsorbate of the hole injection layer 3 is removed by irradiating ultraviolet light having a predetermined wavelength in the atmosphere after the hole injection layer 3 is formed, and the removed hole injection layer 3 is removed.
  • the organic EL element 1 using the material realizes lower voltage driving than the organic EL element that is not removed.
  • the wavelength of the ultraviolet light was defined by the following consideration.
  • the wavelength of ultraviolet light for generating ozone (O 3 ) in a gas atmosphere containing oxygen molecules (O 2 ) such as in the air is 184.9 nm.
  • Oxygen molecules are decomposed by ultraviolet light having a wavelength of 184.9 nm by the following reaction, and the generated oxygen radicals (O) and other oxygen molecules are combined to generate ozone.
  • the wavelength of ultraviolet light for further decomposition of ozone and generation of oxygen radicals is 253.7 nm.
  • UV ozone cleaning oxygen radicals are generated by ultraviolet light having these wavelengths of 184.9 nm and 253.7 nm, and their strong oxidizing action is used to remove adsorbates. For this reason, there is a possibility that the electron level formed by the structure similar to the oxygen defect is almost lost, as in the hole injection layer 3 subjected to the UV ozone cleaning in the above-described experiment.
  • ultraviolet light having a wavelength region of more than 184.9 nm is used, which has a low possibility of decomposing oxygen molecules and generating oxygen radicals. Furthermore, in order to prevent generation of oxygen radicals due to decomposition of a slight amount of ozone present in the atmosphere, it is desirable to use ultraviolet light having a wavelength range of more than 253.7 nm.
  • the actually used metal halide lamp has a spectral distribution as shown in FIG.
  • ramp which does not contain the wavelength below 253.7nm as much as possible was employ
  • the intensity of a wavelength of 253.7 nm or less with respect to the maximum intensity of this metal halide lamp (wavelength of around 380 nm) is suppressed to a few percent level at most.
  • the adsorbate in the case of chemical adsorption, is considered to be mainly a single bond with the oxygen atom of tungsten oxide, but the energy of the single bond with this adsorbate is at most an OH bond. Since it is about 463 kJ / mol (corresponding to a wavelength of 258 nm), it can be seen that cutting with ultraviolet light in the wavelength region of the present embodiment is possible. Further, in the case of physical adsorption, the bond is much weaker than that of chemical adsorption, so that it is also easily removed by irradiation with ultraviolet light.
  • the UV ozone cleaning is essentially better than the ultraviolet irradiation of the present embodiment. This is because in the UV ozone cleaning, the adsorbed material whose bond has been broken is immediately oxidized to oxygen radicals and easily released as molecules such as CO 2 and H 2 O. However, as described above, UV ozone cleaning is not suitable for cleaning the hole injection layer 3 made of a metal oxide such as tungsten oxide.
  • the possibility that the interatomic bond of the metal oxide is broken by the energy of ultraviolet light in the wavelength region of the present embodiment is low.
  • the binding energy between oxygen atoms and tungsten atoms in tungsten oxide is 672 kJ / mol (corresponding to a wavelength of 178 nm), and it is difficult to cut with ultraviolet light in the wavelength region of this embodiment. .
  • This is in contrast to the aforementioned sputter etching with argon ions in vacuum. That is, by using the ultraviolet light of the present embodiment, a chemically stable state can be obtained without breaking and chemically activating the interatomic bond of the hole injection layer 3 made of a metal oxide such as tungsten oxide. The adsorbate can be removed as it is.
  • ultraviolet light having a wavelength of more than 184.9 nm, preferably, a wavelength of more than 253.7 nm is used.
  • ultraviolet light (wavelength of 380 nm or less) is used instead of visible light.
  • the 5d orbitals of tungsten atoms are more stable when the adsorbate is chemically adsorbed than when they exist as bonding orbitals between 5d orbitals or 5d orbitals of single atoms. But not necessarily.
  • a raised structure near the Fermi surface corresponding to the electron level is confirmed.
  • Non-Patent Document 4 reports that when a tungsten trioxide single crystal is cleaved in a vacuum to produce a clean (001) plane, some of the outermost oxygen atoms are released into the vacuum. . Furthermore, in Non-Patent Document 4, according to the first principle calculation, in the (001) plane, rather than all tungsten atoms on the outermost surface being terminated with oxygen atoms, some tungsten atoms are periodically formed as shown in FIG. The structure in which (a) is not terminated is more stable in terms of energy. This is because when all the outermost tungsten atoms are terminated with oxygen atoms, the electrical repulsive force between the terminal oxygen atoms becomes large, which is rather unfavorable. It is reported that it is stabilized. That is, in the (001) plane, the surface having a structure (a) similar to an oxygen defect is more stable.
  • the tungsten trioxide single crystal is shown as a rutile structure for the sake of simplification, but it is actually a distorted rutile structure.
  • the reason why the electron level formed by the structure similar to the oxygen defect on the surface of the hole injection layer 3 is continuously maintained after the ultraviolet light irradiation of the present embodiment is, for example, the following mechanism Can be considered.
  • the hole injection layer 3 made of tungsten oxide according to the present embodiment has a (001) facet on the surface at least locally immediately after the film formation, and is surrounded by the terminal oxygen atom (b) as shown in FIG. It is thought to have an unterminated tungsten atom (a). This is because the (001) plane is a stable structure. Then, this surface is exposed to impurity molecules in the chamber in the sputter deposition apparatus and molecules in the atmosphere after film formation.
  • an unsaturated coordination metal atom such as (a) when an unsaturated coordination metal atom such as (a) exists on the surface, it may be terminated by a chemical adsorption reaction with a water molecule or an organic molecule.
  • the peak that should be located near the binding energy of 31 to 33 eV derived from the bond between the tungsten atom and the carbon atom is not confirmed. Since only the peak derived from the bond with the atom is confirmed, it is highly possible that the atom of the adsorbed molecule directly chemically bonded to the tungsten atom in (a) is an oxygen atom.
  • oxygen molecules (b) which are the peripheral terminals, are chemically adsorbed by water molecules and organic molecules by causing an addition reaction.
  • This adsorption itself is relatively easy because there are almost no obstruction factors such as repulsive force around it.
  • a terminal group of an organic molecule consisting of several atoms or more exists in the immediate vicinity of (a). It can be a barrier. For this reason, it is expected that even when molecules are adsorbed to (b), molecular adsorption to (a) is still relatively difficult to occur.
  • the hole injection layer 3 made of tungsten oxide according to the present embodiment has a local structure made up of terminal oxygen atoms (b) and unterminated tungsten atoms (a) surrounded by them as shown in FIG. It has a structure on the surface, and first, due to the characteristics of the structure itself, the adsorption of molecules hardly occurs to (a). Moreover, the molecule
  • the electronic state which acts on the hole injection capability formed by the structure (a) similar to the oxygen defect on the surface is continuously maintained without being influenced by the ultraviolet light irradiation of the present embodiment after the film formation.
  • the adsorbate is removed by ultraviolet light irradiation.
  • An ultraviolet light irradiation apparatus 20 according to one embodiment of the present invention shown in FIG. 4B is an apparatus for irradiating the intermediate product 9 of the organic EL element 1 with ultraviolet light, and the wavelength region is mainly 184.9 nm.
  • a housing 23 and a controller 24 that controls lighting of the light source 21 are provided.
  • the intermediate product 9 is obtained, for example, by depositing the anode 2 and the hole injection layer 3 made of a metal oxide on the substrate 7, and the buffer layer 4 is not yet formed.
  • the light source 21 is, for example, a straight tube type metal halide lamp, which is arranged so that its longitudinal direction is the horizontal width direction of the intermediate product 9, and efficiently uses an organic EL element that emits light with low power consumption and high luminance. It is lit under suitable irradiation conditions for good manufacturing. Irradiation conditions such as irradiation time and irradiation intensity of ultraviolet light are the film formation conditions of the hole injection layer 3 such as the type of metal oxide, and the convergence of the shape of the photoelectron spectrum of the hole injection layer 3 described in this embodiment. It is set based on. The irradiation conditions are set by the operator. The setting of the irradiation conditions may be automatically performed by the control unit 24.
  • Irradiation conditions such as irradiation time and irradiation intensity of ultraviolet light are the film formation conditions of the hole injection layer 3 such as the type of metal oxide, and the convergence of the shape of the photoelectron spectrum of the hole injection layer 3 described in this embodiment. It is set based
  • control unit 24 stores a database in which film forming conditions, irradiation time, and irradiation intensity are related, and the control unit 24 refers to the database based on film forming conditions input by an operator. Set the irradiation time and irradiation intensity.
  • the conveyance of the intermediate product 9 to the ultraviolet light irradiation target position is performed by, for example, the conveyance conveyor 25.
  • the intermediate product 9 carried on the transport conveyor 25 from the transport upstream side (right side) is transported on the transport conveyor 25 and passes through the target position for ultraviolet light irradiation.
  • a predetermined amount of ultraviolet light is irradiated onto the upper surface of the intermediate product 9, that is, the upper surface of the hole injection layer 3.
  • the intermediate product 9 that has been irradiated with the ultraviolet light is unloaded to the downstream side (left side).
  • the light source 21 is not limited to a metal halide lamp, and can emit ultraviolet light whose wavelength region is mainly more than 184.9 nm and less than 380 nm (desirably more than 253.7 nm and less than 380 nm). If it is good.
  • the metal oxide contained in the hole injection layer 3 is not limited to tungsten oxide, but is molybdenum oxide, chromium oxide, vanadium oxide, niobium oxide, tantalum oxide, titanium oxide, zirconium oxide, hafnium oxide, scandium oxide, yttrium oxide.
  • the hole injection layer As an example of forming the hole injection layer with a metal oxide other than tungsten oxide, a case where molybdenum oxide is used will be described as an example.
  • the adsorbate on the surface of the hole injection layer 3 is reduced even when the hole injection layer 3 is formed of molybdenum oxide. More obvious.
  • FIG. 15 shows that the area intensity of the C1s spectrum is weaker in the irradiated 10-minute sample and irradiated 60-minute sample than in the non-irradiated sample. From this, it is considered that carbon atoms are reduced by irradiation with ultraviolet light, that is, adsorbed substances are removed.
  • the change in the shape of the region corresponding to the vicinity of the upper end of the valence band in the UPS spectrum that is, the change in the shape of the region having a binding energy of 3.7 to 5.2 eV in the UPS spectrum was evaluated.
  • the peak or shoulder structure existing in this region corresponds to a 2p orbital unshared electron pair of oxygen atoms constituting molybdenum oxide.
  • FIG. 16 shows the UPS spectrum.
  • the photoelectron intensity was normalized by the intensity of a binding energy of 6.2 eV.
  • the irradiated 10 minute sample and the irradiated 60 minute sample have a broad shoulder structure in the region of the binding energy of 3.7 to 5.2 eV indicated by (III) in the figure as compared to the non-irradiated sample. It is done. Furthermore, the shape of the shoulder structure is in good agreement between the irradiated 10 minute sample and the irradiated 60 minute sample. That is, the shape change of the binding energy of 3.7 to 5.2 eV in the UPS spectrum is almost converged after the irradiation time of 10 minutes or more. This is considered to indicate that the adsorbate removal effect is saturated.
  • FIG. 17 shows the Mo3d spectrum of each of the non-irradiated sample, the irradiated 10 minute sample, and the irradiated 60 minute sample. It is standardized by the maximum and minimum values of the spectrum.
  • FIG. 17 shows that the peak shape is broader (the half-value width of the peak is wider) in the irradiated sample than in the non-irradiated sample. Furthermore, since the momentum of the broadening of the half-width of the peak declines as the irradiation time increases, it can be seen that the change in the shape of the spectrum tends to converge as the irradiation continues.
  • the irradiation conditions when the metal oxide is molybdenum oxide can be determined as follows. For example, for the irradiation time, the irradiation intensity is arbitrarily determined until the change in the shape of the narrow scan spectrum of Mo3d or O1s by XPS measurement or the shape of the binding energy of 3.7 to 5.2 eV in the UPS spectrum converges. Time is measured and this time is defined as the irradiation time.
  • the irradiation is performed when the root mean square of the difference between the normalized intensities of the two spectra at each measurement point falls below a certain value. What is necessary is just to judge that the change in the shape of the spectrum due to the irradiation time converges in time n and that the maximum removal of the adsorbate is completed. In this embodiment, it was determined from FIG. 16 that the adsorbate removal effect was saturated after 10 minutes of irradiation.
  • ultraviolet light irradiation can be applied in various gas atmospheres, such as a reduced pressure atmosphere, an inert gas atmosphere, and a vacuum, in addition to the air.
  • gas atmospheres such as a reduced pressure atmosphere, an inert gas atmosphere, and a vacuum
  • the cleaning method uses ultraviolet light having a wavelength that does not generate oxygen radicals.
  • performing in the atmosphere is advantageous in the manufacture of large panels as described above.
  • the organic EL element according to one embodiment of the present invention is not limited to a structure used alone.
  • An organic EL panel can also be configured by integrating a plurality of organic EL elements as pixels on a substrate.
  • Such an organic EL display can be implemented by appropriately setting the film thickness of each layer in each element.
  • a bank that partitions pixels is a hole made of a metal oxide. It is formed on the injection layer, and a functional layer as an upper layer is laminated in the compartment.
  • the bank formation step is performed by, for example, applying a bank material made of a photosensitive resist material to the surface of the hole injection layer, pre-baking, and then exposing the surface using a pattern mask to unexposed excess bank. The material is washed out with a developer and finally washed with pure water.
  • the present invention is also applicable to a hole injection layer made of a metal oxide that has undergone such a bank formation process.
  • the surface of the hole injection layer after the bank formation is irradiated with ultraviolet light, and organic molecules that are residues of the bank and the developer adsorbed on the surface of the hole injection layer are mainly removed.
  • the contact angle with the organic solvent applied as the upper layer changes.
  • the contact angle and bank shape may be adjusted based on the irradiation conditions.
  • the organic EL element according to one embodiment of the present invention may have a so-called bottom emission type configuration or a so-called top emission type configuration.
  • the organic EL element manufactured by the method for manufacturing an organic EL element according to one embodiment of the present invention can be used for a display element for a mobile phone display, a television, and various light sources.
  • it can be applied as an organic EL element that is driven at a low voltage in a wide luminance range from low luminance to high luminance such as a light source. With such high performance, it can be widely used as various display devices for home or public facilities, or for business use, television devices, displays for portable electronic devices, illumination light sources, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 高輝度で発光し低電圧で駆動する有機EL素子1の製造方法を提供することを目的とし、当該目的を達成するために、陽極2上に、金属酸化物を含むホール注入層3を形成する第1の工程と、前記第1の工程により形成されたホール注入層3に対して、酸素分子が分解して酸素ラジカルが発生する波長よりも、大きい波長を示す紫外光を照射する第2の工程と、前記第2の工程後、前記ホール注入層3の上方に、有機材料を有し、発光層を含む機能層4,5を形成する第3の工程と、前記機能層4,5の上方に、陰極6を形成する第4の工程と、を有することを特徴とする有機EL素子の製造方法とする。

Description

有機EL素子の製造方法、表示装置、発光装置および紫外光照射装置
 本発明は、電気的発光素子である有機電界発光素子(以下「有機EL素子」と称する)の製造方法、その製造方法により製造された表示装置および発光装置、並びに、その製造方法に用いる紫外光照射装置に関し、特に、ホール注入層の表面を洗浄する技術に関する。
 近年、有機半導体を用いた各種機能素子の研究開発が進められており、代表的な機能素子として有機EL素子が挙げられる。有機EL素子は、電流駆動型の発光素子であり、陽極および陰極とからなる一対の電極対の間に有機材料からなる発光層を含む機能層を設けた構成を有する。そして、電極対間に電圧を印加し、陽極から機能層に注入されるホールと陰極から機能層に注入される電子とを再結合させ、これにより発生する電界発光現象によって発光する。有機EL素子は、自己発光を行うため視認性が高くかつ完全固体素子であるため耐衝撃性に優れることから、各種表示装置における発光素子や光源としての利用が注目されている。
 有機EL素子を高輝度で発光させるためには、電極から機能層へキャリア(ホールおよび電子)を効率よく注入することが重要である。一般に、キャリアを効率よく注入するためには、それぞれの電極と機能層との間に注入の際のエネルギー障壁を低くするための注入層を設けるのが有効である。このうち機能層と陽極との間に配設されるホール注入層には、銅フタロシアニンやPEDOT(導電性高分子)などの有機物、酸化モリブデンや酸化タングステンなどの金属酸化物が用いられている。また、機能層と陰極との間に配設される電子注入層には、金属錯体やオキサジアゾールなどの有機物、バリウムなどの金属が用いられている。
 中でも、酸化モリブデンや酸化タングステンなどの金属酸化物をホール注入層として用いた有機EL素子に関しては、ホール注入効率の改善や寿命の改善が報告されており(特許文献1、非特許文献1)、その改善にはホール注入層表面における金属酸化物の酸素欠陥に類する構造により形成される電子準位が影響しているとの報告がある(非特許文献2)。
特開2005-203339号公報
Jingze Li et al.,Synthetic Metals 151,141(2005). Kaname Kanai et al.,Organic Electronics 11,188(2010). J.B.Pedley et al.,Journal of Physical and Chemical Reference Data 12,967(1984). I.N.Yakovkin et al.,Surface Science 601,1481(2007).
 ところで、有機EL素子の製造工程においては、二酸化炭素、水、有機物などの大気中に含まれる分子および工程中に発生する不純物の分子などに由来する主に炭素を含む吸着物が問題になると考えられる。具体的には、電極やホール注入層など有機EL素子を構成する各層の積層工程において、下層の表面に吸着物が吸着した状態でその上に上層が積層されると、それら層間に吸着物が埋設されてしまい、素子の駆動電圧が増大したり寿命が低下したりするおそれがある。
 本発明は、以上の課題に鑑みてなされたものであって、高輝度で発光し低電圧で駆動する有機EL素子の製造方法、およびその製造方法に適した紫外光照射装置を提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る有機EL素子の製造方法は、陽極上に、金属酸化物を含むホール注入層を形成する第1の工程と、前記第1の工程により形成されたホール注入層に対して、酸素分子が分解して酸素ラジカルが発生する波長よりも大きい波長を示す紫外光を照射する第2の工程と、前記第2の工程後、前記ホール注入層の上方に、有機材料を有し、発光層を含む機能層を形成する第3の工程と、前記機能層の上方に、陰極を形成する第4の工程と、を有する、ことを特徴とする。 また、本発明の一態様に係る紫外光照射装置は、陽極と陰極との間に、金属酸化物を含むホール注入層と、有機材料を含み前記ホール注入層からホールが注入される機能層とが設けられる有機EL素子の中間製品に対し、紫外光を照射する紫外光照射装置であって、前記紫外光の波長域が主として184.9nm超380nm以下である、ことを特徴とする。
 本発明の一態様に係る有機EL素子の製造方法は、金属酸化物を含むホール注入層を形成後に、当該ホール注入層に、酸素分子が分解して酸素ラジカルが発生する波長よりも大きい波長を示す所定の紫外光を照射するため、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位を消滅させることなく、前記表面の吸着物を除去することができる。したがって、高輝度で発光し低電圧で駆動する有機EL素子を製造することができる。
実施の形態に係る有機EL素子の構成を示す模式的な断面図である。 本発明の一態様に係る表示装置の全体構成を示す図である。 本発明の一態様に係る発光装置を示す図であって、(a)は縦断面図、(b)は横断面図である。 実施の形態に係る有機EL素子の製造方法の要部を説明するための図である。 酸化タングステンのUPSスペクトルを示す図である。 酸化タングステンのUPSスペクトルを示す図である。 酸化タングステンのXPSスペクトルを示す図である。 酸化タングステンのUPSスペクトルを示す図である。 酸化タングステンのXPSスペクトルを示す図である。 ホールオンリー素子の構成を示す模式的な断面図である。 ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 作製した有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 実施の形態に係るメタルハライドランプの分光分布を示す図である。 酸化タングステン表面の構造を説明するための図である。 酸化モリブデンのXPSスペクトルを示す図である。 酸化モリブデンのUPSスペクトルを示す図である。 酸化モリブデンのXPSスペクトルを示す図である。
 [本発明の一態様の概要]
 本発明の一態様に係る有機EL素子の製造方法は、陽極上に、金属酸化物を含むホール注入層を形成する第1の工程と、前記第1の工程により形成されたホール注入層に対して、酸素分子が分解して酸素ラジカルが発生する波長よりも、大きい波長を示す紫外光を照射する第2の工程と、前記第2の工程後、前記ホール注入層の上方に、有機材料を有し、発光層を含む機能層を形成する第3の工程と、前記機能層の上方に、陰極を形成する第4の工程と、を有する。したがって、酸素分子が分解して酸素ラジカルが発生する可能性が低いため、ホール注入効率に作用する金属酸化物の酸素欠陥に類する構造が形成する電子準位が、消滅する可能性が低い。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2の工程は、前記第1の工程により形成されたホール注入層に対して、オゾンが分解して酸素ラジカルが発生する波長よりも、大きい波長を示す紫外光を照射する。この場合は、オゾン分子が分解して酸素ラジカルが発生する可能性が低いため、金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅する可能性も低い。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2工程は、前記ホール注入層に対して、波長域が主として184.9nm超380nm以下である紫外光を照射する。大気中あるいは酸素分子を含むガス雰囲気中において酸素分子が分解して酸素ラジカルが発生し、当該酸素ラジカルの一部が他の酸素分子と結合してオゾンが発生するための紫外光の波長は184.9nmであるため、184.9nm超の波長域を用いた場合は、酸素分子が分解して酸素ラジカルが発生する可能性が低く、金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅する可能性も低い。
 なお、波長域が主として184.9nm超380nm以下である紫外光とは、波長380nm以下の光全体のスペクトルの強度面積に対して、184.9nm超380nm以下のスペクトルの強度面積が98%以上であることを意味する。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2工程は、前記ホール注入層に対して、波長域が主として253.7nm超380nm以下である紫外光を照射する。オゾンが分解し、再び酸素ラジカルが発生するための紫外光の波長は253.7nmであるため、253.7nm超の波長域を用いた場合は、酸素ラジカルが発生する可能性がより低く、金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅する可能性もより低い。
 なお、波長域が主として253.7nm超380nm以下である紫外光とは、波長380nm以下の光全体のスペクトルの強度面積に対して、253.7nm超380nm以下のスペクトルの強度面積が80%以上であることを意味する。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第1工程は真空中において行われ、前記第2工程は大気雰囲気において行われる。第1工程を真空中で行えば、所定の成膜条件で、金属酸化物の酸素欠陥に類する構造が形成する電子準位を表面に有するホール注入層を形成することができ、第2工程を大気雰囲気において行えば、大型パネルへの適用が容易である。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2工程は、前記ホール注入層が、XPS測定において、前記金属酸化物が主成分として含む元素が持つ内殻軌道のナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する。この場合は、吸着物除去効果が飽和していると考えられるため、十分な吸着物除去効果を期待できる。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第1工程は、前記金属酸化物として酸化タングステンを用いる。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2工程は、前記紫外光として、酸化タングステンにおける酸素原子と前記酸素原子に吸着する吸着物との単結合の結合エネルギー以上であり、かつ、酸化タングステンにおける酸素原子とタングステン原子との原子間の結合エネルギーよりも小さい、エネルギー値を示す波長を用いる。この場合は、酸素原子とタングステン原子との原子間の結合を破壊して酸化タングステンを化学的に活性化させることなく化学的に安定した状態のまま、吸着物における原子間結合を切断して吸着物を除去することができる。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記吸着物は、炭素原子、水素原子、酸素原子、窒素原子、のうち少なくとも一つを含む。 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2工程は、前記ホール注入層に対し、酸素分子が分解して酸素ラジカルが発生する波長よりも大きい波長を示す紫外光を照射する。この場合は、酸素分子が分解して酸素ラジカルが発生する可能性が低いため、金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅する可能性も低い。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記金属酸化物は酸化タングステンであって、前記第2工程は、前記ホール注入層が、UPSスペクトルにおける結合エネルギー4.5~5.4eVの形状が変化しなくなるまで、紫外光を照射する。この場合は、吸着物除去効果が飽和していると考えられるため、十分な吸着物除去効果を期待できる。
 なお、本願において数値範囲を「~」を用いて記載した場合は、その下限値および上限値もその数値範囲に含むものとする。例えば、4.5~5.4eVと記載した場合は、その数値範囲に4.5eVおよび5.4eVが含まれる。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記金属酸化物は酸化モリブデンであって、前記第2工程は、前記ホール注入層が、UPSスペクトルにおける結合エネルギー3.7~5.2eVの形状が変化しなくなるまで、紫外光を照射する。この場合も、吸着物除去効果が飽和していると考えられるため、十分な吸着物除去効果を期待できる。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2工程は、前記ホール注入層が、XPS測定によるC1sのナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する。この場合も、吸着物除去効果が飽和していると考えられるため、十分な吸着物除去効果を期待できる。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記金属酸化物は、酸化タングステンであって、前記第2工程は、前記ホール注入層が、XPS測定によるW4fのナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する。この場合も、吸着物除去効果が飽和していると考えられるため、十分な吸着物除去効果を期待できる。
 また、本発明の一態様に係る有機EL素子の製造方法の特定の局面では、前記金属酸化物は、酸化モリブデンであって、前記第2工程は、前記ホール注入層が、XPS測定によるMo3dのナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する。この場合も、吸着物除去効果が飽和していると考えられるため、十分な吸着物除去効果を期待できる。
 本発明の一態様に係る表示装置は、上記いずれかの製造方法により製造された有機EL素子を用いた。したがって、有機EL素子が高輝度で発光し低電圧で駆動するため高性能である。
 本発明の一態様に係る発光装置は、上記いずれかの製造方法により製造された有機EL素子を用いた。したがって、有機EL素子が高輝度で発光し低電圧で駆動するため高性能である。
 本発明の一態様に係る紫外光照射装置は、陽極と陰極との間に、金属酸化物を含むホール注入層と、有機材料を含み前記ホール注入層からホールが注入される機能層とが設けられる有機EL素子の中間製品に対し、紫外光を照射する紫外光照射装置であって、前記紫外光の波長域が、酸素分子が分解して酸素ラジカルが発生する波長よりも、大きい波長域である。したがって、酸素分子が分解して酸素ラジカルが発生する可能性が低いため、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位を消滅させることなく、前記表面の吸着物を除去することができる。
 本発明の一態様に係る紫外光照射装置の特定の局面では、前記紫外光の波長域が、オゾンが分解して酸素ラジカルが発生する波長よりも、大きい波長域である。この場合は、オゾン分子が分解して酸素ラジカルが発生する可能性が低いため、金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅する可能性も低い。
 本発明の一態様に係る紫外光照射装置の特定の局面では、前記紫外光の波長域が主として184.9nm超380nm以下である。この場合、紫外光の波長域が主として184.9nm超380nm以下であるため、酸素ラジカルが発生する可能性が低く、金属酸化物の酸素欠陥に類する構造が形成する電子準位を維持したまま、ホール注入層表面から吸着物を除去することができる。
 本発明の一態様に係る紫外光照射装置の特定の局面では、前記紫外光の波長域が主として253.7nm超380nm以下である。この場合、酸素ラジカルが発生する可能性がより低いため、金属酸化物の酸素欠陥に類する構造が形成する電子準位が消滅する可能性もより低い。
 [本発明に至った経緯]
 本発明者は、有機EL素子の駆動電圧の増大や素子の寿命の低下を防止するため、製造工程において各層の形成後に、洗浄により各層の表面の吸着物を除去するプロセスを設けることを着想した。
 そして、吸着物を除去するプロセスとして、強力な洗浄力を有する点から、ガラス基板や電極などの洗浄に汎用されているUVオゾン洗浄および酸素プラズマ洗浄に着眼した。
これらの洗浄方法は、強力な洗浄力を有しているため、有機EL素子における各層の吸着物を除去するプロセスにそのまま適用できるものと当初、想定していた。
 しかし、本発明者がこれらの方法について鋭意検討した結果、実際は、酸化モリブデンや酸化タングステンなどの金属酸化物からなるホール注入層を有する有機EL素子において、UVオゾン洗浄および酸素プラズマ洗浄は、前記ホール注入層の洗浄には適していないことを見出した。
 なぜなら、UVオゾン洗浄および酸素プラズマ洗浄は、酸素分子を分解して、発生させた酸素ラジカルの強力な酸化作用を利用するものであり、この酸化作用によって前記酸素欠陥に類する構造に酸素原子が補填されてしまうため、金属酸化物からなるホール注入層において、酸素欠陥に類する構造が形成する電子準位が消滅し、ホール注入効率が低下するおそれがあると考えられるからである。具体的には、UVオゾン洗浄によって酸素欠陥に類する構造が形成する電子準位がほとんど消滅してしまうことを、後述するような実験により確認したのである。
 上記した知見を得ることができたことにより、本発明者は、金属酸化物からなるホール注入層を有する有機EL素子において、当該ホール注入層の吸着物を除去するプロセスとして、吸着物を除去する作用効果に加え、ホール注入効率の低下を防止するため、酸素分子が分解することなく酸素ラジカルの発生を未然に防止することが重要であることを認識したのである。
 この結果、金属酸化物からなるホール注入層に対し、酸素分子が分解して酸素ラジカルが発生する波長よりも大きい波長を示す紫外光を照射するという、本発明の特徴に想到できたのである。
 なお、上記した本発明の特徴に関する一連の研究・考察を行った後、酸化タングステンからなるホール注入層を成膜した後にUVオゾン洗浄が行われている非特許文献1の存在が判明した。この非特許文献1には、UVオゾン洗浄により素子特性が受ける影響については言及されておらず、UVオゾン洗浄の条件を最適化したとの記述もない。さらには、非特許文献1には、本発明者が具体的な検討を通して解明した、そのままでは酸化タングステンからなるホール注入層の洗浄には適していない点や、その技術的理由については、何ら記述されていない。
 ところで、吸着物を除去する別の方法としては、成膜後に真空容器中にてアルゴンイオンスパッタなどを施すスパッタエッチング処理が挙げられる。このスパッタエッチング処理は、吸着物の除去だけでなく、酸素欠陥に類する構造が形成する電子準位を増大させることも報告されており、一見優れた洗浄方法のようにも受け取れる。
 しかし、スパッタエッチング処理による吸着物除去効果および電子準位増大効果は、真空容器中でのみ持続する。なぜなら、真空中でスパッタエッチング処理されたホール注入層の表面は原子同士の結合がイオンビームにより強制的に切断された状態であるため極めて不安定であり、一旦真空容器から外に出せば容易に周囲の気体分子などを吸着して安定化してしまうからである。これにより、真空中で強制的に形成された金属酸化物の酸素欠陥に類する構造は瞬く間に補完され、除去された吸着物が瞬く間に再吸着してしまう。
 このような再吸着を避けるには、スパッタエッチング処理以降の工程の一部あるいは全てを、連続して真空容器中で行えばよい。しかしながら、真空容器中での工程は、小型の有機ELパネルに対しては適用が可能なものの、例えば50インチ級の大型の有機ELパネルに対してはその大きさに合わせた真空容器が必要になるため適用が極めて困難である。また、真空容器中での工程は、スループットが小さいため量産化には不向きである。
 一方、吸着物を除去するのではなく、吸着物の吸着自体を阻止する方法も考えられる。例えば、各層が形成後に大気や不純物分子に曝露されないように、各層の形成以降の工程の一部あるいは全てを、連続して真空容器中で行えば、吸着物が吸着することがない。しかしながら、上述したように真空容器が必要になるため大型の有機ELパネルに対しては適用が極めて困難である。
 また、不活性ガスを充填した容器内にて工程を行う方法も考えられる。この方法の場合、大型の有機ELパネルへの適用も可能である。しかしながら、大気中よりは少ないとは言え、容器内には依然として不純物の分子などが存在しており、それらを完全に除去することは困難である。
 以上に説明したように、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位を消滅させず、かつ、真空容器を用いないで、ホール注入層表面から吸着物を除去するという課題は非常に解決が困難である。これに対し、本発明の一態様に係る有機EL素子の製造方法は、金属酸化物を含むホール注入層を形成後に、当該ホール注入層に、酸素分子が分解して酸素ラジカルが発生する波長よりも大きい波長を示す紫外光を照射することによって、前記課題を解決したものである。
 本発明の一態様に係る有機EL素子の製造方法は、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位を消滅させないため、当該製造方法で製造された有機EL素子は、陽極から機能層へホールを効率よく注入することができ、その結果、低消費電力かつ高輝度で発光させることができる。
 また、本発明の一態様に係る有機EL素子の製造方法は、ホール注入層表面から吸着物を除去することができるため、ホール注入層と機能層との層間に吸着物が埋設されることがなく、その結果、素子の駆動電圧が増大したり、吸着物に由来する不純物などのキャリアトラップの形成により素子の寿命が早まったりして、素子特性を低下させることもない。
 さらに、本発明の一態様に係る有機EL素子の製造方法は、大気雰囲気で行うことが可能であるため、大型の有機ELパネルに対しての適用も容易であり、量産化にも適している。
 さらに、本発明の一態様に係る有機EL素子の製造方法では、ホール注入層表面の洗浄後から上層が積層されるまでの間も、金属酸化物の酸素欠陥に類する構造が形成する電子準位が継続的に維持されるため、ホール注入層のホール注入能力が低下しない。したがって、低駆動電圧で長寿命の有機EL素子を安定して製造することが可能である。
 さらに、ホール注入層の光電子スペクトルにおける所定の結合エネルギー領域の形状変化が収束するように、紫外光の照射時間や照射強度を設定することで、吸着物を確実かつ最大限に除去するための照射条件を明確に規定することができ、最小限の洗浄プロセスによって安定したホール注入効率が実現できる。
 さらに、上記紫外光の照射による吸着物の除去は、真空中や不活性ガス雰囲気中はもとより大気中でも行うことが可能であるため、大型の有機ELパネルへの適用も可能である。
 [実施の形態]
 以下、本発明の一態様に係る有機EL素子の製造方法を説明するために、まず、その製造方法により製造した有機EL素子、表示装置および発光装置を説明し、次に製造方法を説明し、続いて各性能確認実験の結果と考察を述べる。加えて、本発明の一態様に係る紫外光照射装置を説明する。なお、各図面における部材縮尺は、実際のものとは異なる。
 <有機EL素子の構成>
 図1は、本実施の形態における有機EL素子1の構成を示す模式的な断面図である。
 有機EL素子1は、例えば、機能層をウェットプロセスにより塗布して製造する塗布型であって、ホール注入層3と、所定の機能を有する有機材料を含んでなる各種機能層(ここではバッファ層4および発光層5)が互いに積層された状態で、陽極2および陰極6からなる電極対の間に介設された構成を有する。
 具体的には図1に示すように、有機EL素子1は、基板7の片側主面に対し、陽極2、ホール注入層3、バッファ層4、発光層5、陰極6(バリウム層6aおよびアルミニウム層6b)を同順に積層して構成される。
 (ホール注入層)
 ホール注入層3は、例えば、厚さ30nmの、金属酸化物である酸化タングステンの薄膜(層)からなる。酸化タングステンは、その組成式(WOx)において、xは概ね2<x<3の範囲における実数である。ホール注入層3はできるだけ酸化タングステンのみで構成されることが望ましいが、通常レベルで混入し得る程度に、極微量の不純物が含まれていてもよい。
 ここで、ホール注入層3は、所定の成膜条件で成膜することにより、その表面に金属酸化物の酸素欠陥に類する構造が形成する電子準位を持つ。この電子準位の存在により、良好なホール注入が可能となっている。また、ホール注入層3は、成膜後に、所定の波長の紫外光が、大気中にて照射されている。これにより、金属酸化物の酸素欠陥に類する構造が形成する電子準位を維持したまま、前記ホール注入層3の表面から吸着物が除去され、照射前に比べてその量が少なくなっている。さらに、紫外光の照射時間や照射強度は、ホール注入層3の光電子スペクトルにおける所定の結合エネルギー領域の形状の変化が収束するように設定されている。これにより、最小限の照射条件により、最大限に吸着物が除去されている。
 (バッファ層)
 バッファ層4は、例えば、厚さ20nmのアミン系有機高分子であるTFB(poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-((4-sec-butylphenyl)imino)-1,4-phenylene))で構成されている。
 (発光層)
 発光層5は、例えば、厚さ70nmの有機高分子であるF8BT(poly(9,9-di-n-octylfluorene-alt-benzothiadiazole))で構成される。しかしながら、発光層5はこの材料からなる構成に限定されず、公知の有機材料を含むように構成することが可能である。たとえば特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質等を挙げることができる。
 (機能層)
 本発明における機能層は、ホールを輸送するホール輸送層、注入されたホールと電子とが再結合することで発光する発光層、光学特性の調整または電子ブロックの用途に用いられるバッファ層等のいずれか、もしくはそれらの2層以上の組み合わせ、または全ての層を指す。本発明はホール注入層を対象としているが、有機EL素子はホール注入層以外に上記したホール輸送層、発光層等のそれぞれ所要機能を果たす層が存在する。機能層とは、本発明の対象とするホール注入層以外の、有機EL素子に必要な層を意味している。
 (その他)
 陽極2は、例えば、厚さ50nmのITO薄膜で構成されている。陰極6は、例えば、厚さ5nmのバリウム層6aと、厚さ100nmのアルミニウム層6bを積層して構成される。陽極2および陰極6には直流電源8が接続され、外部より有機EL素子1に給電されるようになっている。
 基板7は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコン系樹脂、またはアルミナ等の絶縁性材料のいずれかで形成することができる。
 (有機EL素子の作用および効果)
 以上の構成を持つ有機EL素子1では、金属酸化物である酸化タングステンからなるホール注入層3の成膜後にその表面に所定の波長の紫外光が照射されているため、金属酸化物の酸素欠陥に類する構造が形成する電子準位が維持されたまま、その表面から吸着物が最大限に除去されている。これにより、低駆動電圧で長寿命の有機EL素子となっている。
 <表示装置の構成>
 図2に基づいて、本発明の一態様に係る表示装置について説明する。図2は、本発明の一態様に係る表示装置の全体構成を示す図である。
 図2に示すように、表示装置100は、本発明の一態様に係る有機EL素子の製造方法により製造された有機EL素子を用いた表示パネル110と、これに接続された駆動制御部120とを備え、ディスプレイ、テレビ、携帯電話等に用いられる。駆動制御部120は、4つの駆動回路121~124と制御回路125とから構成されている。なお、実際の表示装置100では、表示パネル110に対する駆動制御部120の配置や接続関係については、これに限られない。
 以上の構成からなる表示装置100は、発光特性が良好な有機EL素子を用いているため画質が優れている。
 <発光装置の構成>
 図3は、本発明の一態様に係る発光装置を示す図であって、(a)は縦断面図、(b)は横断面図である。図3に示すように、発光装置200は、本発明の一態様に係る有機EL素子の製造方法により製造された有機EL素子210と、それら有機EL素子210が上面に実装されたベース220と、当該ベース220にそれら有機EL素子210を挟むようにして取り付けられた一対の反射部材230とを備え、照明装置や光源として用いられる。各有機EL素子210は、ベース220上に形成された導電パターン(不図示)に電気的に接続されており、前記導電パターンにより供給された駆動電力によって発光する。各有機EL素子210から出射された光の一部は、反射部材230によって配光が制御される。
 以上の構成からなる発光装置200は、発光特性が良好な有機EL素子を用いているため画質が優れている。
 <有機EL素子の製造方法>
 次に、有機EL素子1の製造方法を図4に基づき例示する。図4は、実施の形態に係る有機EL素子の製造方法の要部を説明するための図である。
 まず、基板7をスパッタ成膜装置のチャンバー内に載置する。そして、チャンバー内に所定のスパッタガスを導入し、反応性スパッタ法に基づき厚さ50nmのITOからなる陽極2を成膜する。
 次に、ホール注入層3を反応性スパッタ法で成膜する。具体的には、ターゲットを金属タングステンに交換し、反応性スパッタ法を実施する。スパッタガスとしてアルゴンガスを、反応性ガスとして酸素ガスを、それぞれチャンバー内に導入する。この状態で高電圧によりアルゴンをイオン化しターゲットに衝突させる。このとき、スパッタリング現象により放出された金属タングステンが酸素ガスと反応して酸化タングステンとなり、基板7の陽極2上にホール注入層3が成膜され、図4(a)に示すような中間製品9が得られる。
 上記の成膜条件は、基板温度は制御せず、ガス圧(全圧)を2.3Pa、酸素ガス分圧の全圧に対する比を50%、ターゲット単位面積当たりの投入電力(投入電力密度)を1.2W/cm2とした。この条件で成膜した酸化タングステンからなるホール注入層3は、その表面に酸素欠陥に類する構造が形成する電子準位を有する。
 次に、成膜後の基板7をチャンバーから大気に取り出す。なお、この時点で、ホール注入層3は大気に曝露されるため、表面に気体分子などが吸着する。また、成膜後、取り出す前においても、チャンバー内の不純物分子などが吸着すると思われる。
 次に、図4(b)に示すように、大気中において、紫外光を、ホール注入層3の表面に照射する。ここでは、ウシオ電機株式会社製のメタルハライドランプ(型番UVL-3000M2-N)を光源21として備える本発明の一態様に係る紫外光照射装置20を使用した。紫外光照射装置20の詳細は後述する。照射条件は、後述する光電子分光測定を用いた別の実験により、光電子スペクトルにおける所定の結合エネルギー領域の形状の変化が収束するように別途定めるものである。本実施の形態では、照射強度を155mW/cm2とし、照射時間は10分と求まった。
 次に、ホール注入層3の表面に、例えばスピンコート法やインクジェット法によるウェットプロセスにより、アミン系有機分子材料を含む組成物インクを滴下し、溶媒を揮発除去させる。これによりバッファ層4が形成され、図4(c)に示すような中間製品10を得る。
 次に、バッファ層4の表面に、同様の方法で、有機発光材料を含む組成物インクを滴下し、溶媒を揮発除去させる。これにより発光層5が形成される。
 なお、バッファ層4、発光層5の形成方法はこれに限定されず、スピンコート法やインクジェット法以外の方法、例えばグラビア印刷法、ディスペンサー法、ノズルコート法、凹版印刷、凸版印刷等の公知の方法によりインクを滴下・塗布しても良い。
 続いて、発光層5の表面に真空蒸着法でバリウム層6a、アルミニウム層6bを成膜する。これにより陰極6が形成される。
 なお、図1には図示しないが、有機EL素子1が完成後に大気曝露されるのを抑制する目的で、陰極6の表面にさらに封止層を設けるか、あるいは素子1全体を空間的に外部から隔離する封止缶を設けることができる。封止層は例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成でき、素子1を内部封止するように設ける。封止缶を用いる場合は、封止缶は例えば基板7と同様の材料で形成でき、水分などを吸着するゲッターを密閉空間内に設ける。
 以上の工程を経ることで、有機EL素子1が完成する。
 (有機EL素子の製造方法の効果)
 以上の有機EL素子1の製造方法では、酸化タングステンからなるホール注入層3の成膜後、所定の波長の紫外光を照射する工程を含む。これにより、ホール注入層表面における金属酸化物の酸素欠陥に類する構造が形成する電子準位を維持したまま、ホール注入層3の表面から吸着物を除去することができる。
 また、ホール注入層3の洗浄後から、バッファ層4を形成する工程までの間は、当該電子準位は、大気中において継続的に維持され、したがって、ホール注入能力も安定して維持される。これにより、低駆動電圧で長寿命の有機EL素子1の製造を、安定して行うことが可能となる。
 また、前記の紫外光照射の工程における紫外光の照射時間や照射強度は、ホール注入層3の光電子スペクトルにおける所定の結合エネルギー領域の形状の変化が収束する条件から求めたものであり、必要最小限の照射条件で、吸着物を最大限に除去するように設定されている。これにより、最小限の洗浄プロセスで、非常に安定したホール注入効率を実現することができる。
 <各種実験と考察>
 (紫外光照射による吸着物の除去効果について)
 本実施の形態では、酸化タングステンからなるホール注入層3の成膜後、所定の条件で紫外光を照射することにより、ホール注入層3表面の吸着物を除去している。この吸着物除去効果については以下の実験で確認された。
 本実施の形態の製造方法により、基板7の上に、ITOからなる陽極2、酸化タングステンからなるホール注入層3を、スパッタ成膜装置のチャンバー内で積層した。その後、大気に取り出し、紫外光照射を行わないサンプル、1分照射したサンプル、10分照射したサンプルをそれぞれ作製した。照射強度は155mW/cm2とした。
 なお、以降、本実施の形態においては、紫外光照射を行わないサンプルを「照射なしサンプル」、n分照射したサンプルを「照射n分サンプル」のように記述する。
 各サンプルを、アルバック・ファイ社製の光電子分光装置(PHI 5000 VersaProbe)に装着し、XPS(X線光電子分光)測定を実施した。ここで、一般にXPSスペクトルは、測定対象物の表面から深さ数nmまでにおける元素の組成や、結合状態および価数などの電子状態を反映する。このため、酸化タングステンに本来含まれない元素が観測されれば、それが吸着物である可能性が高い。さらに、一般に、大気曝露により吸着する或いは製造工程中に吸着する分子は、水分子や酸素分子の他は、炭素を含む分子が主であることが広く知られている。したがって、ホール注入層3表層の炭素の、紫外光照射による濃度変化を観測すれば、吸着物除去効果を知ることができる。
 XPS測定条件は以下の通りである。なお、測定中、チャージアップは発生しなかった。
  光源  :Al Kα線
  バイアス:なし
  出射角 :基板法線方向
 まず、各サンプルをワイドスキャン測定したところ、観測された元素はいずれのサンプルもタングステン(W)、酸素(O)、および炭素(C)のみであった。そこで、Wの4f軌道(W4f)、およびCの1s軌道(C1s)のナロースキャンスペクトルの測定を行い、酸化タングステンからなるホール注入層3の表層数nmにおける、タングステン原子の数密度に対する炭素原子の数密度の相対値、すなわち、WとCとの組成比を求めた。なお、スペクトルから組成比を求めるためには、測定に使用した光電子分光装置に付属のXPS解析ソフトウェア「MultiPak」の組成比算出機能を使用した。
 各サンプルのWとCの組成比を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、照射なしサンプルに比べて、照射1分サンプル、照射10分サンプルと、照射時間が長くなるにしたがって、明らかにタングステン原子に対する炭素原子の数が減っていることがわかる。すなわち、本実施の形態の紫外光照射により、酸化タングステンからなるホール注入層3表面の吸着物が減少していることが明らかである。
 (紫外光照射のホール注入能力への影響について)
 本実施の形態では、酸化タングステンからなるホール注入層3表面の吸着物を、紫外光照射で除去する際、ホール注入能力に作用する酸素欠陥に類する構造が形成する電子準位は、照射の影響はほとんど受けずに維持されている。この維持性については、以下の実験で確認された。
 前述の照射なしサンプル、照射1分サンプル、照射10分サンプルに対し、UPS(紫外光電子分光)測定を実施した。ここで、一般にUPSスペクトルは、測定対象物の表面から深さ数nmまでにおける、価電子帯からフェルミ面(フェルミ準位)にかけての電子状態を反映する。特に、酸化タングステンや酸化モリブデンでは、表面に酸素欠陥に類する構造が存在すると、価電子帯の上端よりも低結合エネルギー側のフェルミ面近傍に、***したスペクトル形状(以下、「フェルミ面近傍の***構造」と称する)が確認される(非特許文献2および3)。したがって、このフェルミ面近傍の***構造の紫外光照射による変化を観測することで、紫外光照射が表面の酸素欠陥に類する構造に及ぼす影響を調べることができる。なお、酸化タングステンでは、このフェルミ面近傍の***構造は、価電子帯の上端(価電子帯で最も低い結合エネルギー)より1.8~3.6eV低い結合エネルギー領域内に位置する。
 UPS測定条件は以下の通りである。なお、測定中にチャージアップは発生しなかった。
  光源  :He I線
  バイアス:なし
  出射角 :基板法線方向
 図5に、各サンプルのフェルミ面近傍のUPSスペクトルを示す。なお、以降、光電子分光(UPS、XPS)スペクトルは、横軸の結合エネルギーの原点はフェルミ面に採り、左方向を正の向きとした。照射なしサンプル、照射1分サンプル、照射10分サンプルのいずれも、図中に(I)で示したフェルミ面近傍の***構造が明確に確認できる。したがって、ホール注入能力に作用する酸素欠陥に類する構造が、紫外光の照射を受けても維持されていることがわかる。
 比較として、UVオゾン洗浄を行った。具体的には、基板7の上に、ITOからなる陽極2および酸化タングステンからなるホール注入層3をスパッタ成膜装置のチャンバー内で積層した後、チャンバー内から大気中に取り出し、UVオゾン装置によりホール注入層3表面のUVオゾン洗浄を行い、UPS測定によりフェルミ面近傍の***構造の有無を確認した。
 図6に、UVオゾン洗浄を3分行った酸化タングステンからなるホール注入層3のフェルミ面近傍のUPSスペクトルを示す。なお、比較のために、図5の照射なしサンプルのUPSスペクトルも併記した。図5の本実施の形態の紫外光照射の場合とは異なり、フェルミ面近傍の***構造が全く確認できない。すなわち、UVオゾン洗浄によりホール注入層3の表面の酸素欠陥に類する構造がほとんど失われてしまったことがわかる。
 以上のように、本実施の形態の紫外光照射による洗浄では、UVオゾン洗浄のように酸素欠陥に類する構造が失われないこと、すなわち、ホール注入能力に作用する酸素欠陥に類する構造が紫外光の照射を受けても維持されていることが明らかである。
 (紫外光照射条件の規定方法について)
 本実施の形態の紫外光照射による、酸化タングステンからなるホール注入層3の表面の洗浄では、ある程度以上の照射時間において、その吸着物除去効果が飽和することが、以下の実験で確認された。
 前述と同様の方法で、再度、照射なしサンプル、照射1分サンプル、照射10分サンプルを作成し、加えて、照射60分サンプル、照射120分サンプルも作成した。そして、XPS測定によって、各サンプルのW4fおよびC1sのナロースキャンスペクトルの測定を行い、それぞれバックグラウンド成分を引き算した後、W4fのナロースキャンスペクトルの面積強度で光電子強度を規格化した。このときの各サンプルのC1sのナロースキャンスペクトルを図7に示す。図7のC1sスペクトルの面積強度は、酸化タングステンからなるホール注入層3の表層数nmにおける、タングステン原子に対する炭素原子の数密度の割合に比例する。
 図7によれば、照射時間1分以上のサンプルでC1sスペクトルの強度がほぼ一致しており、したがって、照射時間1分以上で吸着物除去効果がほぼ飽和してきていると考えられる。
 しかしながら、一般に、吸着物のC1sスペクトルはそもそも吸着する絶対量が少ないことから、図7のように強度が低く荒いスペクトルになることが多い。したがって、吸着物除去効果の飽和の判断にはあまり適さないおそれがある。そこで、強度が比較的強いスペクトルを用いて吸着物除去効果の飽和を判断する別の方法も述べる。
 一つ目は、UPSスペクトルにおける価電子帯の上端付近に該当する領域の形状の変化、すなわちUPSスペクトルにおける結合エネルギー4.5~5.4eVの領域の形状の変化で判断する方法である。この領域に存在するピークあるいは肩構造は、酸化タングステンを構成する酸素原子の2p軌道の非共有電子対に相当する。
 図8に、そのUPSスペクトルを示す。照射なしサンプル、照射1分サンプル、照射10分サンプルの各サンプルに対し、UPS測定を行った。光電子強度は結合エネルギー6.5eV付近の緩やかなピークで規格化した。図8によれば、照射1分サンプルおよび照射10分サンプルは、結合エネルギー4.5~5.4eVの領域に、照射なしサンプルでは存在しない図中の(II)で示すような明確なピークが認められる。さらに、照射1分サンプルと照射10分サンプルとはピーク形状がほぼ一致している。すなわち、照射時間1分以上で、UPSスペクトルにおける結合エネルギー4.5~5.4eVの領域の形状の変化はほぼ収束している。これらはC1sで見られた挙動と同じであり、C1sと同様に、紫外光照射で吸着物除去効果が得られていること、および、照射時間1分以上でその効果が飽和していることを示していると考えられる。
 二つ目は、XPS測定のW4fスペクトルの、紫外光照射による形状の変化である。図9に、照射なしサンプル、照射1分サンプル、照射10分サンプル、照射60分サンプル、照射120分サンプルの各サンプルの、W4fスペクトルを示す。スペクトルの最大値と最小値で規格化している。
 図9によれば、照射なしサンプルに比べ、照射を行ったサンプルでは、ピーク形状が鋭くなっている(ピークの半値幅が狭くなっている)ことがわかる。さらに、照射1分サンプルよりも照射10分サンプルの方がピーク形状が若干鋭いのに対して、照射10分サンプル、照射60分サンプル、照射120分サンプルは、スペクトル自体がほぼ完全に重なっており、照射10分でスペクトルの形状の変化がほぼ収束していることがわかる。
 この、W4fのスペクトルの照射時間による形状の変化は、例えば次のように説明できる。吸着物の構造にも依存するが、吸着物が表面のタングステン原子に負電荷を寄与する場合、内殻軌道のW4fはそれに応じて低結合エネルギー側にシフトする。化学的には、酸化タングステンの表層において6価のタングステン原子の一部が吸着物の影響で5価などの低価数に変化するということである。これは、W4fのXPSスペクトルにおいては、主成分である6価のタングステン原子によるスペクトルと、少数の低価数のタングステン原子によるスペクトルが重なることで、スペクトルの形状がブロードになることに対応する。
 上記を考慮すると、図9においては、紫外光照射を行うことで吸着物が除去され、5価のタングステン原子が6価に戻ることで、ピーク形状が鋭くなると考えられる。このことから、照射1分で大部分の吸着物が除去され、照射10分以上では吸着物の除去効果がほぼ飽和していると解釈できる。これは、C1sで見られた挙動とやはり同様である。
 また、図示はしていないが、酸素原子のO1s軌道においても、紫外光の照射時間に対するスペクトルの形状の変化が、照射10分以上でほぼ収束することが確認された。
 以上より、本実施の形態の紫外光照射における吸着物除去効果は、ある程度以上の照射時間で飽和することがわかる。ここで、金属酸化物が酸化タングステンの場合の照射条件は次のように定めることができる。例えば、照射時間については、照射強度を任意に定め、XPS測定によるW4fまたはO1sのナロースキャンスペクトルの形状、または、UPSスペクトルにおける結合エネルギー4.5~5.4eVの形状の変化が収束するまでの時間を測定し、この時間を照射時間として定める。具体的には、例えば照射時間n分のスペクトルと照射時間n+1分のスペクトルを比較し、各測定点における2つのスペクトルの、規格化強度の差の二乗平均がある値以下になったときに、照射時間n分で照射時間によるスペクトルの形状の変化が収束し、最大限の吸着物の除去が完了した、と判断すればよい。本実施の形態では、図8および図9から、照射時間10分で吸着物除去効果が飽和した、と判断した。
 (紫外光照射後の電子状態の維持について)
 本実施の形態では、ホール注入能力に作用する酸素欠陥に類する構造が形成する電子準位が、少なくとも表面洗浄後からその表面に上層が積層されるまでの間において継続的に維持される。その根拠は以下の通りである。
 前述の図5のUPSスペクトルは、紫外光の照射から2日後に測定したものである。すなわち、照射なしサンプルと、照射後に大気中で2日経過した各照射時間のサンプルとの間において、UPSスペクトルにおけるフェルミ面近傍の***構造に相違は見られず、いずれも***構造は明確である。また、図示は省略するが、紫外光の照射から2時間後、1日後の場合についても測定を行っており、その場合もフェルミ面近傍の***構造は図5と同様に明確であった。すなわち、少なくとも照射後から2日間の間は、大気中で酸素欠陥に類する構造が形成する電子準位が維持されていることを確認した。
 この2日間という期間は、紫外光照射によるホール注入層3の洗浄後、その表面にバッファ層4が積層される工程までの期間(通常は数時間以内)に比べ充分に長く、意図的にバッファ層4の形成時期を遅らせることでもしない限りこの期間を過ぎてもバッファ層4が形成されないということはありえない。
 (紫外光照射による素子特性の向上について)
 紫外光照射によりホール注入層3を洗浄した本実施の形態に係る有機EL素子1は、照射をしないで作製した有機EL素子に比べて素子特性が良い。これに関しては、以下の実験で確認された。
 まず、紫外光照射によるホール注入層3の表面からの吸着物の除去がホール注入層3からバッファ層4へのホール注入効率に及ぼす効果を確実に評価するために、評価デバイスとしてホールオンリー素子を作製するものとした。
 有機EL素子においては、電流を形成するキャリアはホールと電子の両方であり、有機EL素子の電気特性にはホール電流以外にも電子電流が反映されている。しかし、ホールオンリー素子では陰極からの電子の注入が阻害されるため、電子電流はほとんど流れず、全電流はほぼホール電流のみから構成され、キャリアはほぼホールのみと見なせるため、ホール注入効率の評価に好適である。
 具体的に作製したホールオンリー素子1Aは、図1の有機EL素子1における陰極6を、図10に示す陰極6Aのように金(Au)に置き換えたものである。すなわち、本実施の形態の有機EL素子1の製造方法に従い、図10に示すように、基板7上に厚さ50nmのITO薄膜からなる陽極2をスパッタ成膜法にて成膜し、陽極2上に厚さ30nmの酸化タングステンからなるホール注入層3を、表面に酸素欠陥に類する構造が形成する電子準位を持つように、所定のスパッタ成膜法にて成膜し、厚さ20nmのアミン系有機高分子であるTFBからなるバッファ層4、厚さ70nmの有機高分子であるF8BTからなる発光層5、厚さ100nmの金からなる陰極6Aを順次積層して作製した。
 ここで、ホール注入層3としては、成膜してスパッタ成膜装置のチャンバー内から大気中に取り出した後(この時点で既に吸着物が吸着している)、本実施の形態に係る紫外光照射(照射時間は10分)を行うもの、また紫外光照射を行わないものの2つを用意し、それぞれホールオンリー素子1Aを作製した。以降、前者のホールオンリー素子1Aを「照射ありHOD」、後者のホールオンリー素子1Aを「照射なしHOD」と称す。
 作製した各ホールオンリー素子1Aを直流電源8に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。なお、ここでの「駆動電圧」とは、電流密度0.4mA/cm2のときの印加電圧とする。
 この駆動電圧が小さいほど、ホール注入層3のホール注入効率は高いと言える。なぜなら、各ホールオンリー素子1Aにおいて、ホール注入層3表面以外の各部位の作製方法は同一であるから、ホール注入層3とバッファ層4の界面を除く、隣接する2つの層の間のホール注入障壁は一定と考えられる。したがって、ホール注入層3表面への紫外光照射の有無による駆動電圧の違いは、ホール注入層3からバッファ層4へのホール注入効率の違いを強く反映したものになる。
 表2は、当該実験によって得られた、各ホールオンリー素子1Aの駆動電圧の値である。
Figure JPOXMLDOC01-appb-T000002
 また、図11は、各ホールオンリー素子1Aの電流密度―印加電圧曲線である。図中縦軸は電流密度(mA/cm2)、横軸は印加電圧(V)である。
 表2および図11に示されるように、照射ありHODは照射なしHODと比較して、駆動電圧が低く、電流密度―印加電圧曲線の立ち上がりが早く、低い印加電圧で高い電流密度が得られている。すなわち、照射ありHODは照射なしHODと比較し、ホール注入効率が優れている。
 以上は、ホールオンリー素子1Aにおけるホール注入層3のホール注入効率に関する検証であったが、ホールオンリー素子1Aは、陰極6A以外は全く図1の有機EL素子1と同一の構成である。したがって、紫外光照射による吸着物の除去が、ホール注入層3からバッファ層4へのホール注入効率に及ぼす効果は、有機EL素子1においても、本質的にホールオンリー素子1Aと同じである。
 このことを確認するために、紫外光照射を行ったホール注入層3、また紫外光照射を行わないホール注入層3を用いて、それぞれ有機EL素子1を作製した。以降、前者の有機EL素子1を「照射ありBPD」、後者の有機EL素子1を「照射なしBPD」と称す。作製方法は、照射なしBPDのホール注入層3が紫外光照射されないことを除き、全て本実施の形態のとおりである。
 作製した各有機EL素子1を直流電源8に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。なお、ここでの「駆動電圧」とは、電流密度10mA/cm2のときの印加電圧とする。
 表3は、当該実験によって得られた、各有機EL素子1の駆動電圧の値である。
Figure JPOXMLDOC01-appb-T000003
 また、図12は、各有機EL素子1の電流密度―印加電圧曲線である。図中縦軸は電流密度(mA/cm2)、横軸は印加電圧(V)である。
 表3および図12に示されるように、照射ありBPDは照射なしBPDと比較して、駆動電圧が低く、電流密度―印加電圧曲線の立ち上がりが早く、低い印加電圧で高い電流密度が得られている。これは、照射ありHODおよび照射なしHODと同様の傾向である。
 以上の結果により、ホール注入層3表面への紫外光照射による吸着物の除去が、ホール注入層3からバッファ層4へのホール注入効率に及ぼす効果は、有機EL素子1においても、ホールオンリー素子1Aの場合と同様であることが確認された。
 以上の諸実験により、有機EL素子1において、本実施の形態に基づきホール注入層3の成膜後に所定の紫外光照射を行うと、ホール注入層3表面の吸着物が最大限に除去され、かつ酸素欠陥に類する構造が形成する電子準位は照射によって失われず、したがって、ホール注入能力を損なわずに、駆動電圧の増加や寿命の低下を引き起こす吸着物を除去できるため、ホール注入層3からバッファ層4へのホール注入効率が改善され、それにより優れた素子特性が実現されることが確認された。
 (紫外光の波長について)
 本実施の形態では、ホール注入層3の成膜後に所定の波長の紫外光を大気中にて照射することで、ホール注入層3の吸着物が除去されており、除去されたホール注入層3を用いた有機EL素子1は除去を行わない有機EL素子よりも低電圧駆動を実現する。この紫外光の波長については、以下の考察により規定された。
 まず、大気中などの酸素分子(O2)を含むガス雰囲気中において、オゾン(O3)が発生するための紫外光の波長は184.9nmである。以下の反応により、酸素分子が波長184.9nmの紫外光で分解され、生成した酸素ラジカル(O)と他の酸素分子が結合し、オゾンが生成される。
 O2 → O + O
 O + O2 → O3
 また、さらにオゾンが分解し、再び酸素ラジカルが発生するための紫外光の波長は253.7nmである。
 UVオゾン洗浄では、これらの波長184.9nmおよび253.7nmの紫外光で酸素ラジカルを発生させ、その強力な酸化作用を吸着物の除去に用いている。このため、前述の実験でUVオゾン洗浄を行ったホール注入層3のように、酸素欠陥に類する構造が形成する電子準位がほとんど消滅してしまうおそれがある。
 そこで、本実施の形態では、酸素分子を分解して酸素ラジカルを発生させる可能性が低い184.9nm超の波長域の紫外光を用いる。さらに、大気中に存在する僅かな量のオゾンの分解による酸素ラジカルの発生をも防ぐために、253.7nm超の波長域の紫外光を用いることが望ましい。
 本実施の形態で、実際に用いたメタルハライドランプは、図13のような分光分布を持つ。このように、253.7nm以下の波長を極力含まないランプを採用した。このメタルハライドランプの最大の強度(波長380nm付近)に対する253.7nm以下の波長の強度は、高々数%台に抑えられている。
 次に、一般的な吸着物における、原子間の結合エネルギーを表4に示す。「=」は二重結合、「-」は単結合である。吸着物を除去するには、まず、この結合エネルギー以上のエネルギーの光を照射し、結合を切る必要がある。
Figure JPOXMLDOC01-appb-T000004
 ここで、光子1モルあたりの光のエネルギーEと、波長λとの間には、次の反比例の関係がある。
 E=Nhc/λ(N:アボガドロ数、h:プランク定数、c:光速、λ:波長 )
上式より、波長184.9nmの紫外光のエネルギーは647kJ/mol、波長253.7nmの紫外光のエネルギーは472kJ/molに相当する。これらの値を表4と比較すると、本実施の形態の波長域の紫外光は、吸着物に見られる多くの原子間結合を切断できることがわかる。特に、後述するように、化学吸着の場合は、吸着物は酸化タングステンの酸素原子と主に単結合すると考えられるが、この吸着物との単結合のエネルギーは、大きくてもO-H結合の463kJ/mol(波長258nmに相当)程度であるから、本実施の形態の波長域の紫外光で切断が可能であることがわかる。また、物理吸着の場合は、化学吸着よりもはるかに結合が弱いため、これも紫外光照射で容易に除去される。
 以上が、本実施の形態で用いた紫外光が、吸着物を除去できる理由である。
 ここで、吸着物の除去効率に限れば、UVオゾン洗浄によるものは、本実施の形態の紫外光照射によるものよりも本質的に良い。これは、UVオゾン洗浄では、結合を切られた吸着物がすぐさま酸素ラジカルに酸化されてCO2、H2Oなどの分子として容易に遊離するからである。しかしながら、前述のように、UVオゾン洗浄は、酸化タングステンのような金属酸化物からなるホール注入層3の洗浄には不適である。
 次に、一般に、金属酸化物の原子間結合が本実施の形態の波長域の紫外光のエネルギーで切断される可能性は低い。例えば非特許文献3によれば、酸化タングステンにおける酸素原子とタングステン原子の結合エネルギーは672kJ/mol(波長178nmに相当)であり、本実施の形態の波長域の紫外光での切断は困難である。これは、前述の真空中のアルゴンイオンによるスパッタエッチングとは対照的である。すなわち、本実施の形態の紫外光を用いれば、酸化タングステンなどの金属酸化物からなるホール注入層3の原子間結合を破壊して化学的に活性化させることなく、化学的に安定した状態のまま吸着物を除去できる。
 以上の理由により、本発明では、波長184.9nm超、望ましくは波長253.7nm超の紫外光を用いる。なお、可視光による化学吸着の結合の切断は一般に困難であるから、本実施の形態では、可視光ではなく紫外光(波長380nm以下)を用いる。
 (紫外光照射後も、ホール注入能力に作用する電子準位が維持される理由)
 本実施の形態では、紫外光の照射後も、ホール注入層3表面の酸素欠陥に類する構造が形成する電子準位が継続的に維持され、したがって、ホール注入能力も安定して維持され、低駆動電圧の有機EL素子の製造を安定して行うことが可能である。この維持性に関して以下に考察する。
 酸化タングステンの薄膜や結晶に見られる前記電子準位は、酸素欠陥に類する構造に由来することが、実験および第一原理計算の結果から多数報告されている。具体的には、酸素原子の欠乏により形成される隣接したタングステン原子の5d軌道同士の結合性軌道、および、酸素原子に終端されることなく膜表面や膜内に存在するタングステン原子単体の5d軌道に由来するものと推測されている。
 ここで、タングステン原子の5d軌道は、5d軌道同士の結合性軌道や原子単体の5d軌道として存在するよりは、吸着物が化学吸着した方が安定化するのではないかと予想されるかもしれないが、必ずしもそうではない。実際、大気中に2日間置いた酸化タングステンにおいて、本実施の形態の図5のUPSスペクトルが示すように、当該電子準位に該当する、フェルミ面近傍の***構造が確認されるからである。
 真空中において、三酸化タングステン単結晶を劈開して清浄な(001)面を出すと、最表面の酸素原子の一部が真空中に放出されることが、非特許文献4で報告されている。さらに、非特許文献4では、第一原理計算により、(001)面では、全ての最表面のタングステン原子が酸素原子で終端されるよりも、図14のように周期的に一部のタングステン原子(a)が終端されない構造の方がエネルギー的に安定し、この理由として、全ての最表面のタングステン原子が酸素原子で終端されると終端酸素原子同士の電気的な斥力が大きくなり、かえって不安定化するからであると報告している。つまり、(001)面においては、表面に酸素欠陥に類する構造(a)がある方が安定するのである。
 なお、図14では、単純化のために三酸化タングステン単結晶をルチル構造で示しているが、実際は歪んだルチル構造である。
 以上から類推し、ホール注入層3表面の酸素欠陥に類する構造が形成する電子準位が、本実施の形態の紫外光照射後も継続的に維持される理由としては、例えば以下のような機構が考えられる。
 本実施の形態の酸化タングステンからなるホール注入層3は、成膜直後は少なくとも局所的にはその表面に(001)面ファセットを持ち、図14のように、終端酸素原子(b)とそれに囲まれた終端されていないタングステン原子(a)とを持つと考えられる。これは、(001)面が安定構造だからである。そして、この表面が、成膜後にスパッタ成膜装置内のチャンバー内の不純物分子や大気中の分子に曝露される。
 ここで、一般に金属酸化物においては、表面に(a)のような不飽和な配位の金属原子が存在すると、水分子や有機分子などと化学吸着反応し終端されることがある。本実施の形態においては、図9のW4fのスペクトルを見る限り、タングステン原子と炭素原子との結合に由来する、結合エネルギー31~33eV付近に位置するはずのピークが確認されず、タングステン原子と酸素原子との結合に由来するピークのみが確認されることから、(a)のタングステン原子と直接化学結合する吸着分子の原子は、酸素原子である可能性が高い。
 しかしながら、例えば(a)に水分子が化学吸着して水酸基を形成する場合、あるいは(a)に有機分子が化学吸着して有機分子の持つ酸素原子が結合する場合などは、一般に負に帯電している吸着基の酸素原子と、同じく負に帯電している周囲の終端酸素原子(a)との間に斥力が働く。このため、真空中で(a)に終端酸素原子が存在しにくい理由と同様に、(a)への分子吸着も比較的起こりにくいと予想される。
 一方、(a)ではなく、その周囲の終端である酸素原子(b)に対しては、水分子や有機分子が付加反応を起こすなどして化学吸着する。この吸着自体は周囲に斥力などの阻害要因がほぼないため比較的容易である。そして、この(b)への吸着により場合によっては(a)の直近に数原子以上からなる有機分子の終端基が存在することになり、(a)への分子の吸着に対して立体的な障壁となり得る。このため、(b)に分子が吸着することによっても(a)への分子吸着がやはり比較的起こりにくくなると予想される。
 以上より、図14のような、終端酸素原子(b)と、それに囲まれた終端されていないタングステン原子(a)からなる構造を持つ表面に対しては、(a)への分子の化学吸着は起こりにくく、不純物分子や大気中の気体分子は主に(a)の周囲の(b)に対して化学吸着すると考えられる。なお、このときの化学吸着は、終端酸素を介する結合となるから一般に単結合である。
 そして、本実施の形態の紫外光が照射されると、(b)に対して化学吸着した分子のみが結合を切断され遊離する。そして、(b)は再びもとの終端酸素原子に戻るか、あるいは、今度は水分子と吸着反応し、本実施の形態の紫外光では比較的切断されにくい安定した水酸基などとして残ると予想される。
 以上をまとめると、本実施の形態の酸化タングステンからなるホール注入層3は、図14のような、終端酸素原子(b)とそれに囲まれた終端されていないタングステン原子(a)とからなる局所構造を表面に有し、まず、この構造自体の持つ特性により(a)に対し分子の吸着が起こりにくい。また、(b)に対して吸着した分子は、紫外光が照射されることで遊離され、その後には主に水酸基が残るのみである。これにより、表面の酸素欠陥に類する構造(a)が形成する、ホール注入能力に作用する電子状態が、成膜後の本実施の形態の紫外光照射の影響を受けずに継続して維持され、一方で、吸着物のみが紫外光照射により除去されるのである。
 <紫外光照射装置>
 次に、本発明の一態様に係る紫外光照射装置について説明する。図4(b)に示す本発明の一態様に係る紫外光照射装置20は、有機EL素子1の中間製品9に対し紫外光を照射するための装置であって、波長域が主として184.9nm超380nm以下である紫外光を出射する光源21と、当該光源21から出射した紫外光を前記中間製品9に向けて集光する反射鏡22と、それら光源21および反射鏡22を覆いかつ保持する筐体23と、前記光源21を点灯制御する制御部24とを備える。
 中間製品9は、例えば基板7に陽極2および金属酸化物からなるホール注入層3を成膜したものであって、バッファ層4は未成膜の状態のものである。
 光源21は、例えば、直管形のメタルハライドランプであって、その長手方向が中間製品9の搬送横幅方向となるように配置されており、低消費電力かつ高輝度で発光する有機EL素子を効率よく製造するために好適な照射条件で点灯される。紫外光の照射時間や照射強度などの照射条件は、金属酸化物の種類などのホール注入層3の成膜条件、および本実施の形態で述べたホール注入層3の光電子分光スペクトルの形状の収束などに基づいて設定される。照射条件の設定は操作者により行われる。なお、照射条件の設定は制御部24により自動で行われてもよい。例えば、制御部24には成膜条件、照射時間、照射強度が関係付けられたデータベースが格納されており、操作者が入力する成膜条件に基づいて、前記制御部24が前記データベースを参照して照射時間、照射強度を設定する。
 中間製品9の紫外光照射対象位置への搬送は、例えば搬送コンベア25によって行われる。図中において、搬送上流側(右側)から搬送コンベア25上に搬入された中間製品9は、搬送コンベア25上を搬送されて紫外光照射対象位置を通過する。この通過の際に中間製品9の上面、すなわちホール注入層3の上面に紫外光が所定量照射される。紫外光照射が完了した中間製品9は搬送下流側(左側)に搬出される。
 以上に説明した紫外光照射装置20において、光源21はメタルハライドランプに限定されず、波長域が主として184.9nm超380nm以下(望ましくは253.7nm超380nm以下)である紫外光を出射可能なものであれば良い。
 <変形例>
 以上、本発明の一態様に係る有機EL素子の製造方法、および、紫外光照射装置を具体的に説明してきたが、上記実施の形態は、本発明の構成および作用・効果を分かり易く説明するために用いた例であって、本発明の内容は、上記の実施の形態に限定されない。例えば、理解容易のために挙げた各部のサイズや材料などは、あくまでも典型的な一例に過ぎず、本発明がそれらサイズや材料などに限定されるものではない。
 例えば、ホール注入層3に含まれる金属酸化物は、酸化タングステンに限定されず、酸化モリブデン、酸化クロム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化スカンジウム、酸化イットリウム、酸化トリウム、酸化マンガン、酸化鉄、酸化ルテニウム、酸化オスミウム、酸化コバルト、酸化ニッケル、酸化銅、酸化亜鉛、酸化カドミウム、酸化アルミニウム、酸化ガリウム、酸化インジウム、酸化シリコン、酸化ゲルマニウム、酸化錫、酸化鉛、酸化アンチモン、酸化ビスマス、および、ランタンからルテチウムまでのいわゆる希土類元素の酸化物、並びに、それら酸化物の中の任意の何種類かを混合してなる金属酸化物が挙げられる。
 酸化タングステン以外の金属酸化物でホール注入層を形成する例として、酸化モリブデンを用いる場合を例に挙げて説明する。本実施の形態の紫外光照射による洗浄では、ホール注入層3が酸化モリブデンで形成されている場合であっても、前記ホール注入層3表面の吸着物が減少していることが、以下の実験より明らかである。
 実験では、酸化タングステンの場合と同様の方法で、照射なしサンプル、照射10分サンプル、照射60分サンプルを作成した。
 まず、XPS測定によって、各サンプルのモリブデン(Mo)の3d軌道(Mo3d)およびC1sのナロースキャンスペクトルの測定を行い、それぞれバックグラウンド成分を引き算した後、Mo3dのナロースキャンスペクトルの面積強度で光電子強度を規格化した。このときの各サンプルのC1sのナロースキャンスペクトルを図15に示す。図15のC1sスペクトルの面積強度は、酸化モリブデンからなるホール注入層3の表層数nmにおける、モリブデン原子に対する炭素原子の数密度の割合に比例する。
 図15によれば、照射なしサンプルに比べ、照射10分サンプル、照射60分サンプルでは、C1sスペクトルの面積強度が弱くなっていることがわかる。このことから、紫外光照射によって炭素原子は減る、すなわち吸着物は除去されると考えられる。
 次に、UPSスペクトルにおける価電子帯の上端付近に該当する領域の形状の変化、すなわちUPSスペクトルにおける結合エネルギー3.7~5.2eVの領域の形状の変化を評価した。この領域に存在するピークあるいは肩構造は、酸化モリブデンを構成する酸素原子の2p軌道の非共有電子対に相当する。
 照射なしサンプル、照射10分サンプル、照射60分サンプルの各サンプルに対し、UPS測定を行った。図16に、そのUPSスペクトルを示す。光電子強度は結合エネルギー6.2eVの強度で規格化した。
 図16によれば、照射10分サンプルと照射60分サンプルは、照射なしサンプルに比べ、図中に(III)で示した結合エネルギー3.7~5.2eVの領域でブロードな肩構造が認められる。さらに、照射10分サンプルと照射60分サンプルで、肩構造の形状がよく一致している。すなわち、照射時間10分以上で、UPSスペクトルにおける結合エネルギー3.7~5.2eVの形状の変化がほぼ収束している。これは、吸着物除去効果が飽和したことを示していると考えられる。
 次に、XPS測定のMo3dスペクトルの、紫外光照射による形状の変化を評価した。図17に、照射なしサンプル、照射10分サンプル、照射60分サンプルの各サンプルの、Mo3dスペクトルを示す。スペクトルの最大値と最小値で規格化している。
 図17によれば、照射なしサンプルに比べ、照射を行ったサンプルでは、ピーク形状がブロードになっている(ピークの半値幅が広くなっている)ことがわかる。さらに、照射時間の増加とともにピークの半値幅の広がりの勢いが衰えていることから、照射を続けることによってスペクトルの形状の変化が収束する傾向にあることがわかる。
 以上より、ホール注入層3を形成する金属酸化物が酸化モリブデンの場合も、紫外光照射における吸着物除去効果は、ある程度以上の照射時間で飽和することがわかる。ここで、金属酸化物が酸化モリブデンの場合の照射条件は次のように定めることができる。例えば、照射時間については、照射強度を任意に定め、XPS測定によるMo3dまたはO1sのナロースキャンスペクトルの形状、または、UPSスペクトルにおける結合エネルギー3.7~5.2eVの形状の変化が収束するまでの時間を測定し、この時間を照射時間として定める。具体的には、例えば照射時間n分のスペクトルと照射時間n+1分のスペクトルを比較し、各測定点における2つのスペクトルの規格化強度の差の二乗平均がある値以下になったときに、照射時間n分で照射時間によるスペクトルの形状の変化が収束し、最大限の吸着物の除去が完了した、と判断すればよい。本実施の形態では、図16から、照射時間10分で吸着物除去効果が飽和したと判断した。
 (その他の事項)
 本発明の一態様に係る有機EL素子の製造方法において、紫外光照射は、大気中以外にも、減圧雰囲気、不活性ガス雰囲気、真空など、様々なガス雰囲気内で適用できる。これは、酸素ラジカルが発生しない波長の紫外光による洗浄方法だからである。しかしながら、大気中で行うことは、前述のように、大型パネルの製造において有利である。
 本発明の一態様に係る有機EL素子は、素子単独で用いる構成に限定されない。複数の有機EL素子を画素として基板上に集積することにより有機ELパネルを構成することもできる。このような有機ELディスプレイは、各々の素子における各層の膜厚を適切に設定することにより実施可能である。
 塗布型有機EL素子を用いて有機ELパネルを形成する場合、上記のように複数の有機EL素子を画素として基板上に集積するには、例えば、画素を区画するバンクを金属酸化物からなるホール注入層の上に形成し、区画内に対し、上層である機能層を積層する。ここで、具体的にバンク形成工程は、例えば、ホール注入層表面に、感光性のレジスト材料からなるバンク材料を塗布し、プリベークした後、パターンマスクを用いて感光させ、未硬化の余分なバンク材料を現像液で洗い出し、最後に純水で洗浄する。本発明は、このようなバンク形成工程を経た金属酸化物からなるホール注入層にも適用可能である。この場合は、バンク形成後のホール注入層表面に紫外光を照射し、ホール注入層表面に吸着した、バンクや現像液の残渣である有機分子を主に除去することになる。ここで、一般にバンクに紫外光を照射すると、上層として塗布する有機溶媒との接触角が変化するが、本発明では紫外光照射条件を一意に定めることが容易であるから、その定まった紫外光照射条件をもとに、当該接触角やバンク形状を調整すればよい。
 本発明の一態様に係る有機EL素子は、いわゆるボトムエミッション型の構成でもよく、いわゆるトップエミッション型の構成でもよい。
 本発明の一態様に係る有機EL素子の製造方法で製造される有機EL素子は、携帯電話用のディスプレイやテレビなどの表示素子、各種光源などに利用可能である。いずれの用途においても、低輝度から光源用途等の高輝度まで幅広い輝度範囲で低電圧駆動される有機EL素子として適用できる。このような高性能により、家庭用もしくは公共施設、あるいは業務用の各種ディスプレイ装置、テレビジョン装置、携帯型電子機器用ディスプレイ、照明光源等として、幅広い利用が可能である。
 1  有機EL素子
 1A ホールオンリー素子
 2  陽極
 3  ホール注入層
 4  バッファ層(機能層)
 5  発光層(機能層)
 6  陰極
 6a バリウム層
 6b アルミニウム層
 6A 陰極(金層)
 7  基板
 8  直流電源
 9  中間製品
 20 紫外光照射装置
 21 光源
 22 反射鏡
 23 筐体
 24 制御部
 25 搬送コンベア
100 表示装置
200 発光装置

Claims (20)

  1. 陽極上に、金属酸化物を含むホール注入層を形成する第1の工程と、
    前記第1の工程により形成されたホール注入層に対して、酸素分子が分解して酸素ラジカルが発生する波長よりも、大きい波長を示す紫外光を照射する第2の工程と、
    前記第2の工程後、前記ホール注入層の上方に、有機材料を有し、発光層を含む機能層を形成する第3の工程と、
    前記機能層の上方に、陰極を形成する第4の工程と、
    を有する、ことを特徴とする有機EL素子の製造方法。
  2. 前記第2の工程は、前記第1の工程により形成されたホール注入層に対して、オゾンが分解して酸素ラジカルが発生する波長よりも、大きい波長を示す紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  3. 前記第2工程は、前記ホール注入層に対して、波長域が主として184.9nm超380nm以下である紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  4. 前記第2工程は、前記ホール注入層に対して、波長域が主として253.7nm超380nm以下である紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  5. 前記第1工程は真空中において行われ、前記第2工程は大気雰囲気において行われる、請求項1~4のいずれかに記載の有機EL素子の製造方法。
  6. 前記第2工程は、前記ホール注入層が、XPS測定において、前記金属酸化物が主成分として含む元素が持つ内殻軌道のナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  7. 前記第1工程は、前記金属酸化物として酸化タングステンを用いる、請求項1~6のいずれかに記載の有機EL素子の製造方法。
  8. 前記第2工程は、前記紫外光として、
    酸化タングステンにおける酸素原子と前記酸素原子に吸着する吸着物との単結合の結合エネルギー以上であり、かつ、酸化タングステンにおける酸素原子とタングステン原子との原子間の結合エネルギーよりも小さい、
    エネルギー値を示す波長を用いる、請求項7記載の有機EL素子の製造方法。
  9. 前記吸着物は、炭素原子、水素原子、酸素原子、窒素原子、のうち少なくとも一つを含む、請求項8記載の有機EL素子の製造方法。
  10. 前記金属酸化物は酸化タングステンであって、
    前記第2工程は、前記ホール注入層が、UPSスペクトルにおける結合エネルギー4.5~5.4eVの形状が変化しなくなるまで、紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  11. 前記金属酸化物は酸化モリブデンであって、
    前記第2工程は、前記ホール注入層が、UPSスペクトルにおける結合エネルギー3.7~5.2eVの形状が変化しなくなるまで、紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  12. 前記第2工程は、前記ホール注入層が、XPS測定によるC1sのナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  13. 前記金属酸化物は、酸化タングステンであって、
    前記第2工程は、前記ホール注入層が、XPS測定によるW4fのナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  14. 前記金属酸化物は、酸化モリブデンであって、
    前記第2工程は、前記ホール注入層が、XPS測定によるMo3dのナロースキャンスペクトルの形状が変化しなくなるまで、紫外光を照射する、請求項1記載の有機EL素子の製造方法。
  15. 請求項1~14のいずれかの製造方法により製造された有機EL素子を用いた表示装置。
  16. 請求項1~14のいずれかの製造方法により製造された有機EL素子を用いた発光装置。
  17. 陽極と陰極との間に、金属酸化物を含むホール注入層と、有機材料を含み前記ホール注入層からホールが注入される機能層とが設けられる有機EL素子の中間製品に対し、紫外光を照射する紫外光照射装置であって、
    前記紫外光の波長域が、酸素分子が分解して酸素ラジカルが発生する波長よりも、大きい波長域である、ことを特徴とする紫外光照射装置。
  18. 前記紫外光の波長域が、オゾンが分解して酸素ラジカルが発生する波長よりも、大きい波長域である、請求項17記載の紫外光照射装置。
  19. 前記紫外光の波長域が主として184.9nm超380nm以下である、請求項17記載の紫外光照射装置。
  20. 前記紫外光の波長域が主として253.7nm超380nm以下である、請求項17記載の紫外光照射装置。
PCT/JP2010/004216 2010-06-24 2010-06-24 有機el素子の製造方法、表示装置、発光装置および紫外光照射装置 WO2011161727A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/004216 WO2011161727A1 (ja) 2010-06-24 2010-06-24 有機el素子の製造方法、表示装置、発光装置および紫外光照射装置
US13/716,450 US8703530B2 (en) 2010-06-24 2012-12-17 Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004216 WO2011161727A1 (ja) 2010-06-24 2010-06-24 有機el素子の製造方法、表示装置、発光装置および紫外光照射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/716,450 Continuation US8703530B2 (en) 2010-06-24 2012-12-17 Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device

Publications (1)

Publication Number Publication Date
WO2011161727A1 true WO2011161727A1 (ja) 2011-12-29

Family

ID=45370943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004216 WO2011161727A1 (ja) 2010-06-24 2010-06-24 有機el素子の製造方法、表示装置、発光装置および紫外光照射装置

Country Status (2)

Country Link
US (1) US8703530B2 (ja)
WO (1) WO2011161727A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182130A1 (ja) * 2014-05-30 2015-12-03 株式会社Joled 有機el素子及び有機el発光装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111484B2 (ja) * 2012-04-18 2017-04-12 株式会社Joled 有機el素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139746A (ja) * 2002-10-15 2004-05-13 Denso Corp 有機el素子の製造方法
JP2006185869A (ja) * 2004-12-28 2006-07-13 Asahi Glass Co Ltd 有機電界発光素子及びその製造方法
JP2007214066A (ja) * 2006-02-13 2007-08-23 Seiko Epson Corp 有機エレクトロルミネセンス装置の製造方法
JP2008140724A (ja) * 2006-12-05 2008-06-19 Toppan Printing Co Ltd 有機el素子の製造方法および有機el素子
JP2009048960A (ja) * 2007-08-23 2009-03-05 Canon Inc 電極洗浄処理方法
JP2009239180A (ja) * 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5294869A (en) 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
US5688551A (en) 1995-11-13 1997-11-18 Eastman Kodak Company Method of forming an organic electroluminescent display panel
DE69727987T2 (de) 1996-11-29 2005-01-20 Idemitsu Kosan Co. Ltd. Organische elektrolumineszente Vorrichtung
JPH10162959A (ja) 1996-11-29 1998-06-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP3782245B2 (ja) 1998-10-28 2006-06-07 Tdk株式会社 有機el表示装置の製造装置及び製造方法
US6309801B1 (en) 1998-11-18 2001-10-30 U.S. Philips Corporation Method of manufacturing an electronic device comprising two layers of organic-containing material
JP4198253B2 (ja) 1999-02-02 2008-12-17 出光興産株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US7153592B2 (en) 2000-08-31 2006-12-26 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
JP2002075661A (ja) 2000-08-31 2002-03-15 Fujitsu Ltd 有機el素子及び有機el表示装置
TWI257496B (en) 2001-04-20 2006-07-01 Toshiba Corp Display device and method of manufacturing the same
JP2002318556A (ja) 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
US8058797B2 (en) 2001-05-18 2011-11-15 Cambridge University Technical Services Limited Electroluminescent device
JP2003007460A (ja) 2001-06-22 2003-01-10 Sony Corp 表示装置の製造方法および表示装置
JP3823916B2 (ja) 2001-12-18 2006-09-20 セイコーエプソン株式会社 表示装置及び電子機器並びに表示装置の製造方法
JP2003264083A (ja) 2002-03-08 2003-09-19 Sharp Corp 有機led素子とその製造方法
EP2765174B1 (en) * 2002-11-26 2018-05-30 Konica Minolta Holdings, Inc. Organic electroluminescent element, and display and illuminator
JP2004228355A (ja) 2003-01-23 2004-08-12 Seiko Epson Corp 絶縁膜基板の製造方法、絶縁膜基板の製造装置及び絶縁膜基板並びに電気光学装置の製造方法及び電気光学装置
JP2004234901A (ja) 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
US7884355B2 (en) 2003-05-12 2011-02-08 Cambridge Enterprise Ltd Polymer transistor
WO2004100282A2 (en) 2003-05-12 2004-11-18 Cambridge University Technical Services Limited Manufacture of a polymer device
JP2005012173A (ja) 2003-05-28 2005-01-13 Seiko Epson Corp 膜パターン形成方法、デバイス及びデバイスの製造方法、電気光学装置、並びに電子機器
JP2004363170A (ja) 2003-06-02 2004-12-24 Seiko Epson Corp 導電パターンの形成方法、電気光学装置、電気光学装置の製造方法および電子機器
EP1695396B1 (en) 2003-12-16 2009-06-03 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP2005203340A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子
US20090160325A1 (en) 2003-12-16 2009-06-25 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP2005203339A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP4857521B2 (ja) 2004-01-09 2012-01-18 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置、及び電子機器
JP4002949B2 (ja) 2004-03-17 2007-11-07 独立行政法人科学技術振興機構 両面発光有機elパネル
JP2005268099A (ja) 2004-03-19 2005-09-29 Mitsubishi Electric Corp 有機el表示パネル、有機el表示装置、および有機el表示パネルの製造方法
JP4645064B2 (ja) 2004-05-19 2011-03-09 セイコーエプソン株式会社 電気光学装置の製造方法
JP2006013139A (ja) * 2004-06-25 2006-01-12 Seiko Epson Corp 有機el装置とその製造方法並びに電子機器
US7211456B2 (en) 2004-07-09 2007-05-01 Au Optronics Corporation Method for electro-luminescent display fabrication
JP2006253443A (ja) 2005-03-11 2006-09-21 Seiko Epson Corp 有機el装置、その製造方法および電子機器
JP2006294261A (ja) 2005-04-05 2006-10-26 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
US20060240281A1 (en) * 2005-04-21 2006-10-26 Eastman Kodak Company Contaminant-scavenging layer on OLED anodes
TWI307612B (en) 2005-04-27 2009-03-11 Sony Corp Transfer method and transfer apparatus
JP2006344459A (ja) 2005-06-08 2006-12-21 Sony Corp 転写方法および転写装置
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
JP2007073499A (ja) 2005-08-08 2007-03-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2007095606A (ja) 2005-09-30 2007-04-12 Seiko Epson Corp 有機el装置、その製造方法、及び電子機器
JP4318689B2 (ja) 2005-12-09 2009-08-26 出光興産株式会社 n型無機半導体、n型無機半導体薄膜及びその製造方法
JP2007288074A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2007288071A (ja) 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法、それを用いた表示装置、露光装置
US20070241665A1 (en) 2006-04-12 2007-10-18 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent element, and manufacturing method thereof, as well as display device and exposure apparatus using the same
JP2007287353A (ja) 2006-04-12 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子の製造方法およびそれを用いて作成された有機エレクトロルミネッセント素子
US20070290604A1 (en) 2006-06-16 2007-12-20 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device and method of producing the same
JP2008041747A (ja) 2006-08-02 2008-02-21 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント発光装置およびその製造方法
JP4915650B2 (ja) 2006-08-25 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2008091072A (ja) 2006-09-29 2008-04-17 Seiko Epson Corp 電気光学装置、およびその製造方法
JP4915913B2 (ja) 2006-11-13 2012-04-11 パナソニック株式会社 有機エレクトロルミネッセンス素子
WO2008075615A1 (en) 2006-12-21 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP5326289B2 (ja) 2007-03-23 2013-10-30 凸版印刷株式会社 有機el素子およびそれを備えた表示装置
WO2008120714A1 (ja) 2007-03-29 2008-10-09 Dai Nippon Printing Co., Ltd. 有機エレクトロルミネッセンス素子及びその製造方法
JP2009004347A (ja) 2007-05-18 2009-01-08 Toppan Printing Co Ltd 有機el表示素子の製造方法及び有機el表示素子
EP2151867B1 (en) 2007-05-30 2016-08-03 Joled Inc. Organic el display panel
EP2077698B1 (en) 2007-05-31 2011-09-07 Panasonic Corporation Organic el device and method for manufacturing the same
WO2009017026A1 (ja) 2007-07-31 2009-02-05 Sumitomo Chemical Company, Limited 有機エレクトロルミネッセンス素子およびその製造方法
JP5001745B2 (ja) 2007-08-10 2012-08-15 住友化学株式会社 有機エレクトロルミネッセンス素子及び製造方法
JP2009058897A (ja) 2007-09-03 2009-03-19 Hitachi Displays Ltd 表示装置
WO2009075075A1 (ja) 2007-12-10 2009-06-18 Panasonic Corporation 有機elデバイスおよびelディスプレイパネル、ならびにそれらの製造方法
JP4439589B2 (ja) 2007-12-28 2010-03-24 パナソニック株式会社 有機elデバイスおよび有機elディスプレイパネル、ならびにそれらの製造方法
EP2270896B1 (en) 2008-02-28 2014-12-24 Panasonic Corporation Organic el display panel
JP2009218156A (ja) 2008-03-12 2009-09-24 Casio Comput Co Ltd Elパネル及びelパネルの製造方法
JP5267246B2 (ja) 2008-03-26 2013-08-21 凸版印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法並びに有機エレクトロルミネッセンス表示装置
JP4678421B2 (ja) 2008-05-16 2011-04-27 ソニー株式会社 表示装置
JP2008241238A (ja) 2008-05-28 2008-10-09 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP4975064B2 (ja) 2008-05-28 2012-07-11 パナソニック株式会社 発光装置及びその製造方法
JP2010021138A (ja) 2008-06-09 2010-01-28 Panasonic Corp 有機エレクトロルミネッセント装置およびその製造方法
JP5199773B2 (ja) 2008-07-30 2013-05-15 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
KR101153037B1 (ko) 2008-09-19 2012-06-04 파나소닉 주식회사 유기 일렉트로 루미네슨스 소자 및 그 제조 방법
JP5138542B2 (ja) 2008-10-24 2013-02-06 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
JP2011040167A (ja) 2008-11-12 2011-02-24 Panasonic Corp 表示装置およびその製造方法
JP2010123716A (ja) 2008-11-19 2010-06-03 Fujifilm Corp 有機電界発光素子
JP4856753B2 (ja) 2008-12-10 2012-01-18 パナソニック株式会社 光学素子および光学素子を具備する表示装置の製造方法
WO2010070798A1 (ja) 2008-12-18 2010-06-24 パナソニック株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2010161185A (ja) 2009-01-08 2010-07-22 Ulvac Japan Ltd 有機el表示装置、有機el表示装置の製造方法
KR20110126594A (ko) 2009-02-10 2011-11-23 파나소닉 주식회사 발광 소자, 발광 소자를 구비한 발광 장치 및 발광 소자의 제조 방법
JP5513414B2 (ja) 2009-02-10 2014-06-04 パナソニック株式会社 発光素子、表示装置、および発光素子の製造方法
JP5560996B2 (ja) * 2009-07-31 2014-07-30 大日本印刷株式会社 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
JP5437736B2 (ja) 2009-08-19 2014-03-12 パナソニック株式会社 有機el素子
JP4990415B2 (ja) * 2009-12-04 2012-08-01 パナソニック株式会社 有機elデバイスおよびその製造方法
JP5612691B2 (ja) 2010-08-06 2014-10-22 パナソニック株式会社 有機el素子およびその製造方法
CN103053042B (zh) 2010-08-06 2016-02-24 株式会社日本有机雷特显示器 有机el元件及其制造方法
JP5677437B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139746A (ja) * 2002-10-15 2004-05-13 Denso Corp 有機el素子の製造方法
JP2006185869A (ja) * 2004-12-28 2006-07-13 Asahi Glass Co Ltd 有機電界発光素子及びその製造方法
JP2007214066A (ja) * 2006-02-13 2007-08-23 Seiko Epson Corp 有機エレクトロルミネセンス装置の製造方法
JP2008140724A (ja) * 2006-12-05 2008-06-19 Toppan Printing Co Ltd 有機el素子の製造方法および有機el素子
JP2009048960A (ja) * 2007-08-23 2009-03-05 Canon Inc 電極洗浄処理方法
JP2009239180A (ja) * 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGZE LI ET AL.: "Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer", SYNTHETIC METALS, vol. 151, 14 June 2005 (2005-06-14), pages 141 - 146 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182130A1 (ja) * 2014-05-30 2015-12-03 株式会社Joled 有機el素子及び有機el発光装置
JPWO2015182130A1 (ja) * 2014-05-30 2017-04-20 株式会社Joled 有機el素子及び有機el発光装置

Also Published As

Publication number Publication date
US8703530B2 (en) 2014-04-22
US20130105780A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5720006B2 (ja) 有機el素子、表示装置および発光装置
JP5809234B2 (ja) 有機el表示パネルおよび有機el表示装置
JP5677432B2 (ja) 有機el素子、表示装置および発光装置
JP5677433B2 (ja) 有機el素子、表示装置および発光装置
JP5884224B2 (ja) 有機el表示パネルおよび有機el表示装置
JP5677431B2 (ja) 有機el素子、表示装置および発光装置
JP5676652B2 (ja) 有機el素子
WO2012153445A1 (ja) 有機el表示パネルおよび有機el表示装置
WO2012073270A1 (ja) 有機発光素子の製造方法、有機発光素子、発光装置、表示パネル、および表示装置
JP5624141B2 (ja) 有機el素子
JP2004139746A (ja) 有機el素子の製造方法
JPWO2011067895A1 (ja) 有機elデバイスおよびその製造方法
JP6387547B2 (ja) 有機el素子とその製造方法、および金属酸化物膜の成膜方法
WO2011161727A1 (ja) 有機el素子の製造方法、表示装置、発光装置および紫外光照射装置
JP5612503B2 (ja) 有機発光装置
JP2012174712A (ja) 有機発光素子
JP5173769B2 (ja) 有機el素子の製造方法
JP2012174346A (ja) 有機発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP