WO2011154575A1 - Ionic elastomers with shape memory and method for the production thereof - Google Patents

Ionic elastomers with shape memory and method for the production thereof Download PDF

Info

Publication number
WO2011154575A1
WO2011154575A1 PCT/ES2011/070381 ES2011070381W WO2011154575A1 WO 2011154575 A1 WO2011154575 A1 WO 2011154575A1 ES 2011070381 W ES2011070381 W ES 2011070381W WO 2011154575 A1 WO2011154575 A1 WO 2011154575A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic
temperature
shape memory
covalent
material according
Prior art date
Application number
PCT/ES2011/070381
Other languages
Spanish (es)
French (fr)
Inventor
Luis María IBARRA RUEDA
Andrés RODRÍGUEZ DÍAZ
Juan LÓPEZ VALENTÍN
Irene Mora Barrantes
Marta Alonso Malmierca
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011154575A1 publication Critical patent/WO2011154575A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile

Definitions

  • the present invention relates to a polymeric material, preferably elastomeric, formed by networks of ionic and covalent nature interpenetrated with each other.
  • the shape memory effect in materials with thermal response is not exclusive to a specific type of material, not even to a specific property thereof, but is related to the correct combination of structure, morphology and processing.
  • the original form of these materials is acquired after processing.
  • a temporary shape is obtained which is fixed through a suitable heat treatment, which is usually accompanied by a structural transformation
  • This transformation must be reversible, so that when the material is thermally stimulated, it recovers its original form showing the shape memory effect.
  • This process can be applied repeatedly (A. Lendlein, S. Kelch. Angew. Chem., Int. Ed. 2002, 41, 2034.).
  • metallic, ceramic, polymeric or even composite materials that have shape memory (ZG Wei, R. Sandstom, S.
  • shape memory polymeric materials can be considered as improved alternatives to the metal alloys used to date (PT Mather, X. Luo, IA Rousseau. Annu. Rev. Mater. Res. 2009. 39, 445. ), as well as being more economical and easily processable, they have equal or better shape memory properties, reaching reversible deformations up to 700%.
  • the structural mechanism that promotes the shape memory effect in temperature-sensitive polymers is common to all of them, as described in the article by Lendlein et Al.
  • an elastic force capable of restoring the permanent (original) shape is necessary. of the material from the deformed or transient form.
  • the original shape of shape memory polymers is stabilized by the formation of polymeric networks, whether through chemical or physical crosslinks.
  • the programming process of a shape memory polymer must begin with the deformation of the material from its original form to the desired transient form at a temperature above the transition temperature T tra ns ⁇ temperature at which the network which stabilizes the fixed form must be stable). Subsequently, once the transient form is reached, it is necessary to cool the material to cause the structural transformation and thus be able to fix the transient form. At temperatures below Ttrans the transient form is completely stable, since it is stabilized by structural transformation. Finally, if the system is heated above T tr ans, the inverse transformation occurs and the elastic force exerted by the polymeric network restores the original shape of the material.
  • phase separation polymers, usually block copolymers, where segregation is generated and therefore a phase separation.
  • phase separation Each of these phases presents characteristic thermal transformations.
  • glass transition temperature and / or melting / crystallization temperature The transformation that has a higher transition temperature (T pe rmanent) will be responsible for setting the original shape of the material.
  • T pe rmanent The transformation that has a higher transition temperature (T pe rmanent) will be responsible for setting the original shape of the material.
  • the segregated phase that presents this transition ⁇ hard phase acts as physical knots capable of joining segments of chains that make up the other segregated phase (soft phase).
  • This network is responsible for stabilizing the original form, since the thermal transition characteristic of the hard phase (either T m or T g ) is always higher than the temperature of the thermal transition caused by the fixation of the transient form (T pe rmanent> Ttrans), regardless of the nature of the latter. Therefore, in this type of materials, the transient form is fixed through any of the other thermal transitions that take place in the material, regardless of the phase in which it occurs. It is important to note that to date, the only thermal transitions with the capacity to fix the transient form (T tran s) and therefore generate shape memory polymers have been the melting / crystallization temperature and / or the glass transition temperature.
  • linear copolymers stand out, polyurethanes or polyurethane urea (normally synthesized through the prepolymer technique) being the most used polymers (BK Kim, SY Lee, M. Xu Polymer. 1996, 37, 5781.).
  • shape memory properties have been described in block copolymers based on polyethylene terephthalate and polyethylene oxide, polystyrene and poly (1,4-butadiene) or graft copolymers of polyethylene and Nylon-6
  • Stabilization of the original form is also possible through the formation of chemical networks, either through cross-linking of linear polymers (by physical or chemical methods) or through copolymerization of monofunctional monomers with low molecular weight cross-linkers or oligomers.
  • the transient form is re-established through the thermal transitions defined above, that is, glass transition and crystallization / fusion.
  • Elastomers also called rubbers
  • Elastomers are characterized by their high elasticity, that is, they undergo considerable deformations under stress and quickly recover their shape and dimensions when the deforming force ceases. This basic property of these materials makes elastomers very attractive polymers with countless applications.
  • elastomers have no shape memory effect since until now there was no thermal transition capable of fixing the shape transient in a temperature range with applications.
  • the origin of rubber elasticity is based on its polymeric nature, its amorphous structure, the flexibility of its chains, the weak interactions between them and the formation of a three-dimensional network based on the creation of chemical bonds between rubber chains during the cross-linking or vulcanization process.
  • elastomers have been crosslinked through chemical reagents (JL Valent ⁇ n et al. Macromolecules, 2010, 43, 4210.), mainly sulfur, sulfur and accelerators, sulfur donor molecules and organic peroxides, among others, or to a lesser extent through ionizing radiation to generate covalent bonds forming a three-dimensional network that stabilizes its original shape.
  • the irreversibility of the covalent bonds generated during the vulcanization process causes its thermosetting character and hence the traditional rubber articles are hardly recyclable.
  • elastomers that have functional groups in their chain capable of forming ions. These elastomers can be crosslinked by traditional methods (sulfur, organic peroxides) obtaining covalent networks or through metal oxides giving rise to ionic networks ⁇ L. Ibarra, M. Alzorriz. ADDI Dusting Sci. 2003, 87, 805). In ionic elastomers (which are widely described in the scientific literature) the junction or cross-linking points between chains are formed by ionic bonds, where the ionized functional group tends to segregate forming ionic nano-domains stabilized by a counter-ion (Eisenberg et al. Macromolecules. 1990, 23, 4098).
  • thermolabile joints that is, they are sensitive to temperature, so they have a High temperature transition (in addition to the glass transition of the polymer that takes place at low temperatures) called ionic transition, which provides thermoplastic character to this type of polymers.
  • the present invention provides a shape memory material based on the combination of polymeric, preferably elastomeric, ionic and covalent interpenetrated networks.
  • the present invention also provides a method for obtaining said material and the possible uses as memory polymer used to manufacture actuators, sensors, artificial muscles, intelligent tissues, intelligent packaging or biomedical devices.
  • a first aspect of the present invention relates to a material formed by polymeric networks characterized by the combination of ionic and covalent networks, where both networks are interpenetrated.
  • the polymeric network is an elastomeric network.
  • Said elastomers are ionic in nature, and are considered intelligent polymers since they have a temperature sensitive memory; For this, it is necessary to combine a covalent elastomeric network, responsible for the stabilization of the original form and a temperature-sensitive ionic network, capable of fixing the desired transient form at temperatures below the ionic transition. At temperatures above this ionic transition, the ionic network, due to its thermoplasticity, weakens, recovering the material from its original shape and causing the shape memory effect in the polymer.
  • shape memory properties depend on the elastomer used, the ionic crosslinking system, the covalent system and the combination of both. This fact allows the modulation of this property according to the desired final properties and needs that you want to confer to the material of interest.
  • elastomeric network is understood in the present invention that polymer comprising long chains that are joined together by very few chemical bonds. This allows them a great intermolecular movement that is reflected in their good flexibility. They are materials that have memory, that is to say that when subjected to an effort they modify their form, recovering it when that effort is withdrawn. Ionic elastomers are based on the formation of an elastomeric network in which the junctions or crosslinks between the different elastomeric chains have an ionic nature. In order to obtain this type of network, an elastomer is needed that has functional groups with the ability to ionize in its chain.
  • the material of the present invention may further comprise a filler and / or any conventional additive in polymer science and technology known to any person skilled in the art, such as pigments, antidegradants and / or processing aids.
  • a filler and / or any conventional additive in polymer science and technology known to any person skilled in the art, such as pigments, antidegradants and / or processing aids.
  • all elastomers (and in general polymers) that have or can be modified to introduce into their structure a functional group that can be ionized are susceptible to ionic networks, so preferably the polymer comprises ionizable groups that are selected from the list comprising carboxylic groups, anhydrous groups, acid halides, epoxy groups, sulfonic groups and any combination thereof. These polymers to comprise ionizable groups give rise to an ionic network.
  • the present invention can be transferred to any polymer that contains or can be modified to contain ionizable groups selected from the above list in its structure.
  • the polymer network comprises a polymer or copolymer, which is selected from the following elastomers: ethylene / acrylic acid, carboxylated acrylonitrile-butadiene (XNBR), carboxylated styrene-butadiene (XSBR), chlorosulfonated ethylene, ethylene-propylene or ethylene-propylene-diene modified with maleic anhydride (m-EPDH), ethylene-propylene, ethylene-propylene -sulfonated diene, epoxidized natural rubber, polyurethanes containing ionizable groups or any combination thereof.
  • XNBR carboxylated acrylonitrile-butadiene
  • XSBR carboxylated styrene-butadiene
  • m-EPDH maleic anhydride
  • thermoplastic nature of ionic elastomers they possess the ability to be recycled repeatedly without loss of their properties. And as shown in the examples, this is due to a characteristic thermal transition, known as an ionic transition. Above the ionic transition temperature, ionic crosslinks weaken and polymer chains can flow. When the temperature decreases, the ionic nodes become effective again recovering their strength and the material their elastic properties, which makes this thermal transition can be repeated successively in subsequent thermal cycles.
  • the material of the present invention further comprises an ionic crosslinking agent that is selected from metal oxide, metal hydroxide, any inorganic or organic metal salt, or any combination thereof.
  • the metal oxide is selected from: CaO, MgO, ZnO or any combination thereof.
  • the material of the present invention further comprises a covalent crosslinking agent that is selected from organic peroxide, inorganic peroxide, sulfur, sulfur / accelerators, diazide, ionizing radiation or any combination thereof.
  • a covalent crosslinking agent that is selected from organic peroxide, inorganic peroxide, sulfur, sulfur / accelerators, diazide, ionizing radiation or any combination thereof.
  • the present invention is based on the formation of polymers, preferably elastomers, with temperature-sensitive memory.
  • polymers preferably elastomers, with temperature-sensitive memory.
  • elastomers containing ionizable groups can form covalent networks following the same procedures widely used in elastomer technology. It can originate through different vulcanization systems, where sulfur, sulfur and accelerator-based systems (where many different types of accelerators, as well as different sulfur / accelerator ratios), sulfur donors, stand out (among others).
  • Covalent network formed by the addition of organic peroxide, which while maintaining the thermoplastic nature of the material, makes the ionic elastomer stable and resistant enough to deform without breaking. This covalent network is formed by direct C-C junctions between polymer chains.
  • Covalent network formed by conventional sulfur / accelerating crosslinking systems, with the same requirements as in the previous case. This network is formed by unions between chains through mono-, di- and polysulfide bonds.
  • the ionic transition is described as the temperature-dependent transformation capable of causing shape memory in polymers.
  • the force caused by the creation of an ionic network must be sufficient to fix the transitory shape of the material. However at temperatures above the temperature of transition (in this case the ionic transition) this force must be minimal in order to recover the original form. In ionic elastomers, this transformation is present, but nevertheless the elastic force exerted at temperatures higher than the ionic transition temperature is not sufficient to return the material to its original form. Therefore these materials do not have shape memory.
  • the elastomers that form covalent networks have an important elastic force capable of returning the material to its original shape after being deformed even at high temperatures ⁇ since the network is stable to temperature variation), however they do not possess no mechanism capable of fixing the transient / deformed form, so they do not have a shape memory effect.
  • mixed systems in which ionic and covalent networks are combined, are those in which there is the possibility of obtaining the desired shape memory effect.
  • These mixed compounds possess an ionic network, therefore they exhibit a characteristic ionic transition.
  • the ionic nodes are effective and exert a force capable of fixing the transient form, provided that the force exerted by this ionic network is equal to or greater than the force exerted by the covalent network, since this The latter is stable to temperature variation and therefore capable of exerting an elastic force that tends to return the material to its original form.
  • the ionic knots lose effectiveness and therefore the force exerted by this network decreases. This causes the balance between the ionic and covalent force to be lost and the covalent network to return the material to its original form.
  • the combination of the different crosslinking systems used to obtain these mixed materials must be used in sufficient doses to achieve stable and resistant networks, but in such a way that the strength of the Ionic network, responsible for the stability of the temporal structure, is greater than the strength of the covalent network. That is why you should there is a minimum relationship between the concentrations of both crosslinking systems so that the shape memory effect occurs. However, within the range of concentrations in which this temperature-dependent effect occurs, the properties that characterize shape memory can be varied according to this proportion, there is always an optimal concentration where both the fixing property of the form as the recovery of the original form.
  • the present invention relates to a process for obtaining the material as described above (from now on the process of the invention), which comprises the steps:
  • step (b) vulcanization or cross-linking of the product obtained in step (a) at a temperature between 100 and 200 e C.
  • the process of the invention further comprises the addition of at least one filler and / or an additive in the mixing of step (a).
  • the elastomer reacts with the crosslinking agents, at the temperature set forth above, creating on the one hand the covalent bonds between the elastomeric chains and ionizing the functional groups of the elastomeric matrix sensitive to this process.
  • a third aspect of the present invention relates to the use of the material of the present invention as a shape memory elastomer, where the thermal transition that activates this behavior is the ionic transition.
  • said shape memory elastomer is used for the manufacture of actuators, sensors, artificial muscles, intelligent tissues, intelligent packaging and biomedical devices.
  • Figure 2 Representation of the variation of the elastic component of the force pair as a function of different heat treatments of three XNBR samples vulcanized with ZnO, MgO and CaO respectively.
  • Figure 3 Shows the representation of the variation of the elastic component of the pair of forces as a function of the temperatures of a sample of XNBR vulcanized with CaO.
  • Figure 4 Shows the variation of tan ⁇ with the temperature in XNBR crosslinked exclusively with metal oxides. Vibration frequency 1 Hz. The transition at low temperatures corresponds to the Tg of the matrix, at high temperatures to the ionic transition, Ti.
  • Figure 5 Shows the representation of the variation of the elastic component of the force pair during the vulcanization of XNBR at 160 e C using different vulcanization systems.
  • the vulcanization systems used to obtain the covalent network were a) organic peroxide, b) sulfur-accelerating system, c) diazide and d) inorganic peroxide.
  • the ionic network of all compounds has been obtained through the addition of bivalent metal oxides, MgO and ZnO.
  • Figure 6 Shows the ionic transition of vulcanized XNBR through different mixed ionic-covalent systems measured through the variation of tan ⁇ with temperature.
  • Figure 7 Shows the representation of the variation of the elastic component of the force pair as a function of different heat treatments of three XNBR samples vulcanized with metal oxide and different covalent vulcanization systems.
  • the temperatures corresponding to the different stages in the samples (o) and ( ⁇ ) are 160, 50, 70, 90, 1 10,130, 150 and 160 e C; for the sample ( ⁇ ) 180, 50, 70, 90, 1 10, 130, 150, 170 and 180 ° C. For all of them the first of the stages carried out at 160 9 C and 180 Q C respectively corresponds to the vulcanization process).
  • Figure 9 Shows the representation of the variation of the elastic component of the force pair as a function of temperature cycles of three samples of XNBR vulcanized with CaO (ionic network), organic peroxide (covalent network) and a mixture of organic peroxide and CaO (ionic network + covalent).
  • Figure 9 It shows a series of photographs that show the shape memory effect of an XNBR compound vulcanized with MgO and organic peroxide. This series of photographs show the recovery of the original form of the material after being deformed to its transient form after the temperature rise above the ionic transition temperature.
  • Figure 10 Characteristic values of two samples of XNBR vulcanized with metal oxide and organic peroxide that have shape memory. The highlighted values were obtained from the stress-strain cycles of table 2.
  • Figure 11 Characteristic values of two samples of XNBR vulcanized with metal oxide and inorganic peroxide that have shape memory. The highlighted values were obtained from the stress-strain cycles of table 3.
  • the ionic elastomers used in the examples of the present invention are based primarily on commercial elastomeric matrices of acrylic-nitrile-butadiene rubber (XNBR), with an acrylonitrile content of 26.5% by weight, of carboxylic groups of 7% by weight and a Money viscosity of 38 ⁇ 4 MU, crosslinked with metal oxides, primarily CaO, ZnO and MgO. They have been mixed in open and vulcanized rollers at 160 9 C.
  • XNBR acrylic-nitrile-butadiene rubber
  • the first stage at 160 S C corresponds to the vulcanization process. Subsequently, the vulcanized samples are subjected to a cooling in the rheometer itself followed by a gradual increase in temperature while maintaining the deformation and the frequency at which the value of the torque is measured.
  • Table 1 Variation of the tensile properties of a sample of XNBR vulcanized with CaO in successive molding processes. The remoldeos were carried out at 160 e C after cutting the vulcanized sample in the previous molding, under the same conditions as the initial vulcanization.
  • the thermoplastic nature of these materials is due to the loss of properties of ionic nano-domains at high temperatures, which allows the elastomeric chains to flow, which were originally crosslinked through these ionic nodes. This transformation, known as the ionic transition, is reversible, since when the temperature is reduced the ionic nano-domains return to act as crossings and the material recovers its elastic properties.
  • ionic elastomers have two temperature-dependent transitions, the glass transition temperature at low temperatures and the ion transition temperature at high temperatures. It is important to highlight that both the ionic transition temperature, taken and the temperature where the value of tan ⁇ reaches the second maximum, and the width of said transition depend greatly on the strength, size and distribution of the ionic junctions, which depend, among other factors on the crosslinking system used.
  • the two vulcanization systems involved that is, the one that produces the ionic network and the person responsible for the formation of the covalent network, are mixed with the elastomeric matrix according to the procedures described in the previous section.
  • the vulcanization systems used to obtain the covalent network were a) organic peroxide, b) sulfur-accelerating system, c) diazid and d) inorganic peroxide.
  • the ionic network of all compounds has been obtained through the addition of bivalent metal oxides, MgO and ZnO.
  • the first stage at 160 S C or 180 S C corresponds to the vulcanization process of the different samples. Subsequently, the vulcanized samples are subjected to a cooling in the rheometer itself followed by a gradual increase in temperature while maintaining the deformation and the frequency at which the value of the torque is measured. As the temperature rises, the ionic joints show their thermolability by reducing the value of the torque of the material.
  • thermolability is driven by the ionic network.
  • the only notable difference between the two systems is the increase in the value of the torque in the mixed system due precisely to the existence of a thermally stable covalent network.
  • the combination of the thermal transition of the ionic network and the temperature stability of the covalent network is responsible for the shape memory behavior of these materials where both types of crosslinks are combined.
  • the materials are prepared by conventional methods in rubber technology including vulcanization systems capable of generating both ionic and covalent crosslinks, as described above. Open or closed mixers can be used. It is also possible to prepare these compounds in solution, using solvents capable of dissolving the elastomer and where the vulcanization systems can be dispersed. Vulcanization is also carried out at the usual temperatures used in rubber technology (between 100 and 200 Q C), using conventional transformation methods.
  • a sample prepared with the following ingredients and proportions can be selected: 100 parts of carboxylated acrylonitrile butadiene rubber (XNBR), 1 part per citron of stearic acid rubber (ppcc), calcium oxide (6 ppcc) and dicumyl peroxide (1 ppcc). All ingredients were mixed in open rollers (15 cm in diameter and 30 cm in length) with a friction ratio between the rollers of 1: 1, 15. The vulcanization was carried out at 160 Q C in a thermo-fluid heated laboratory press at the optimum vulcanization time calculated from the vulcanization curve obtained by means of a rheometer (Rubber Process Analyzer RPA 2000).
  • the present invention uses the ionic transition temperature as the transformation temperature, or reference.
  • the ionic transition in these materials takes place in a temperature range that is a function of the polymer, the system used in the cross-linking, and the proportion of the different vulcanization systems, as previously verified. Therefore, it is essential for optimal memory behavior so that the temporary form is reached at a temperature that exceeds the upper limit of the transition zone, and that the temporary form setting is developed at a temperature below the limit lower.
  • N n s of cycle
  • the ionic transition is a relatively wide transformation, so the loss of efficiency of the Ionic bonds are gradual with increasing temperature.
  • the characteristics that define the shape memory behavior are moldable and adjustable according not only to the intrinsic properties of the material (transition temperature variation ionic) but also with the thermal cycle used in the material programming process.
  • important parameters that vary both R f and R r are the temperature and speed of heating and cooling, the deformation submitted to reach the desired final shape or even the time we give the system to reach the original shape again .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a material formed by a, preferably elastomeric, polymeric network, which is characterized in that it comprises networks of ionic and covalent nature that interpenetrate one another, to the method for the production of said material and to the possible uses thereof as a material with shape memory, in which the transformation temperature is the ionic transition temperature, said material being used to manufacture actuators, sensors, artificial muscles, intelligent tissue, intelligent packaging or biomedical devices.

Description

ELASTÓMEROS IÓNICOS CON MEMORIA DE FORMA Y PROCEDIMIENTO  IONIC ELASTOMERS WITH MEMORY OF FORM AND PROCEDURE
DE OBTENCIÓN  OBTAINING
La presente invención se refiere a un material polimérico, preferiblemente elastomérico, formado por redes de naturaleza iónica y covalente interpenetradas entre sí. Al procedimiento de obtención de material con memoria de forma, en los que la temperatura de transformación es la temperatura de transición iónica, y a sus posibles usos para la fabricación de actuadores, sensores, músculos artificíales, tejidos inteligentes, embalaje inteligente o dispositivos biomédicos. The present invention relates to a polymeric material, preferably elastomeric, formed by networks of ionic and covalent nature interpenetrated with each other. The procedure for obtaining shape memory material, in which the transformation temperature is the ionic transition temperature, and its possible uses for the manufacture of actuators, sensors, artificial muscles, intelligent tissues, intelligent packaging or biomedical devices.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
En ciencia y tecnología de materiales existe un interés creciente en el diseño y preparación de materiales inteligentes (P.T, Mather. Nal Mater. , 2007, 8, 93). para su uso en aplicaciones avanzadas tanto en biomedicina (material quirúrgico e implantes), uso textil, actuadores, materiales auto-regenerables, etc. Dentro de los materiales con respuesta a estímulos existe actualmente una importante demanda de materiales con memoria de forma debido a sus propiedades poco usuales. Estos materiales poseen la capacidad de cambiar su forma bajo un estímulo extemo. Estos estímulos pueden ser diversos (C. Liu, H. Qin, P.T. Mather. J. Mater. Chem. 2007. 17, 1543), como campos magnéticos, eléctricos o electromagnéticos o incluso luz, sin embargo, los materiales con efecto memoria de forma más comunes son aquellos estimulados térmicamente. El efecto memoria de forma en materiales con respuesta térmica no es exclusivo de un tipo de material concreto, ni siquiera de una propiedad determinada del mismo, sino que se relaciona con la correcta combinación de estructura, morfología y procesado. La forma original de estos materiales es adquirida tras el procesado. A través de la deformación (mecánica) se obtiene una forma temporal la cual es fijada a través de un tratamiento térmico adecuado, el cual suele estar acompañado de una transformación estructural. Esta transformación debe ser reversible, de tal forma que al ser estimulado térmicamente el material recobra su forma original mostrando el efecto memoria de forma. Este proceso puede aplicarse repetidamente (A. Lendlein, S. Kelch. Angew. Chem., Int. Ed. 2002, 41 , 2034.). Existen materiales metálicos, cerámicos, polimérícos o incluso materiales compuestos que presentan memoria de forma (Z.G. Wei, R. Sandstom, S. Miyazaki. J. Mater. Sci. 1998, 33, 3743). (A. Lendlein, R. Langer. Science. 2002, 296, 1673.). Los primeros materiales que mostraron efecto memoria de forma fueron las aleaciones estequiométrícas titanio-níquel (W.J. Buehler, J.V. Gilfrich, K.C. Weiley. J. Appl. Phvs. 1963, 34, 1467), desatando el interés en esta propiedad que desembocó, finalmente, en importantes aplicaciones comerciales. Estas aleaciones metálicas, a pesar de mostrar importantes propiedades, poseen desventajas que limitan sus posibles aplicaciones, como son su alto coste, difícil procesabilidad y bajo límite de deformación reversible (mantienen las propiedades de memoria de forma hasta deformaciones del 10%). In materials science and technology there is a growing interest in the design and preparation of intelligent materials (PT, Mather. Nal Mater., 2007, 8, 93). for use in advanced applications both in biomedicine (surgical material and implants), textile use, actuators, self-regenerating materials, etc. Within materials with response to stimuli there is currently a significant demand for materials with shape memory due to their unusual properties. These materials have the ability to change their form under an external stimulus. These stimuli can be diverse (C. Liu, H. Qin, PT Mather. J. Mater. Chem. 2007. 17, 1543), such as magnetic, electric or electromagnetic fields or even light, however, the materials with memory effect of Most common form are those thermally stimulated. The shape memory effect in materials with thermal response is not exclusive to a specific type of material, not even to a specific property thereof, but is related to the correct combination of structure, morphology and processing. The original form of these materials is acquired after processing. Through the (mechanical) deformation a temporary shape is obtained which is fixed through a suitable heat treatment, which is usually accompanied by a structural transformation This transformation must be reversible, so that when the material is thermally stimulated, it recovers its original form showing the shape memory effect. This process can be applied repeatedly (A. Lendlein, S. Kelch. Angew. Chem., Int. Ed. 2002, 41, 2034.). There are metallic, ceramic, polymeric or even composite materials that have shape memory (ZG Wei, R. Sandstom, S. Miyazaki. J. Mater. Sci. 1998, 33, 3743). (A. Lendlein, R. Langer. Science. 2002, 296, 1673.). The first materials that showed shape memory effect were the titanium-nickel stoichiometric alloys (WJ Buehler, JV Gilfrich, KC Weiley. J. Appl. Phvs. 1963, 34, 1467), unleashing interest in this property that eventually led to in important commercial applications. These metal alloys, despite showing important properties, have disadvantages that limit their possible applications, such as their high cost, difficult processability and low reversible deformation limit (they maintain shape memory properties up to 10% deformations).
En este sentido, los materiales polímeros con memoria de forma pueden ser considerados como alternativas mejoradas de las aleaciones metálicas empleadas hasta la fecha (P.T. Mather, X. Luo, I. A. Rousseau. Annu. Rev. Mater. Res. 2009. 39, 445.), ya que además de ser más económicos y fácilmente procesables, poseen iguales o mejores propiedades de memoria de forma, alcanzando deformaciones reversibles hasta un 700%. El mecanismo estructural que promueve el efecto memoria de forma en polímeros sensibles a la temperatura es común a todos ellos, como se describe en el artículo de Lendlein et Al. En primer lugar es necesaria una fuerza elástica capaz de restaurar la forma permanente (original) del material desde la forma deformada o transitoria. La forma original de los polímeros con memoria de forma está estabilizada por la formación de redes poliméricas, ya sean a través de entrecruzamientos químicos o físicos. Estos nudos que conectan las diferentes cadenas poliméricas evitan, por un lado, el deslizamiento de las cadenas entre sí y por tanto la pérdida de "memoria" de la forma original del material, y por otro lado, proporcionan a las cadenas que conforman la red (siempre que el material se encuentre por encima de la temperatura de transición vitrea) una importante elasticidad de origen entrópico, que es la fuerza impulsora para restaurar la forma permanente desde la forma transitoria. El otro requisito imprescindible para obtener polímeros con memoria de forma es la fijación de la forma transitoria a través de una transformación térmica (Ttrans) reversible capaz de contrarrestar la fuerza elástica que tiende a devolver al material a su forma original. Hasta la fecha se han aplicado dos tipos de transiciones térmicas en polímeros con memoria de forma: la temperatura de transición vitrea (Tg) o la temperatura de fusión en polímeros semícristalinos (Tm). En ambos casos, la movilidad de las cadenas se encuentra parcialmente impedida o limitada a temperaturas por debajo de Ttrans debido a la transición desde un estado gomoso a un estado vitreo o bien a través de la formación de cristales poliméricos, respectivamente. In this sense, shape memory polymeric materials can be considered as improved alternatives to the metal alloys used to date (PT Mather, X. Luo, IA Rousseau. Annu. Rev. Mater. Res. 2009. 39, 445. ), as well as being more economical and easily processable, they have equal or better shape memory properties, reaching reversible deformations up to 700%. The structural mechanism that promotes the shape memory effect in temperature-sensitive polymers is common to all of them, as described in the article by Lendlein et Al. First, an elastic force capable of restoring the permanent (original) shape is necessary. of the material from the deformed or transient form. The original shape of shape memory polymers is stabilized by the formation of polymeric networks, whether through chemical or physical crosslinks. These knots that connect the different polymer chains prevent, on the one hand, the sliding of the chains with each other and therefore the loss of "memory" of the original form of the material, and on the other hand, provide the chains that make up the network (provided that the material is above the glass transition temperature) an important elasticity of entropic origin, which is the driving force to restore the permanent form from the transient form. The other essential requirement to obtain shape memory polymers is the fixation of the transient form through a reversible thermal transformation (Ttrans) capable of counteracting the elastic force that tends to return the material to its original form. To date, two types of thermal transitions have been applied in shape memory polymers: the glass transition temperature (T g ) or the melting temperature in semi-crystalline polymers (T m ). In both cases, the mobility of the chains is partially impeded or limited to temperatures below T tra ns due to the transition from a gummy state to a vitreous state or through the formation of polymeric crystals, respectively.
De esta forma el proceso de programación de un polímero con memoria de forma debe comenzar con la deformación del material desde su forma original hasta la forma transitoria deseada a una temperatura por encima de la temperatura de transición Ttrans {temperatura a la cual la red que estabiliza la forma fija debe ser estable). Posteriormente, una vez alcanzada la forma transitoria es necesario enfriar el material para provocar la transformación estructural y así poder fijar la forma transitoria. A temperaturas por debajo de Ttrans la forma transitoria es totalmente estable, ya que se encuentra estabilizada por la transformación estructural. Finalmente si el sistema es calentado por encima de Ttrans, se produce la transformación inversa y la fuerza elástica ejercida por la red polimérica restaura la forma original del material. In this way the programming process of a shape memory polymer must begin with the deformation of the material from its original form to the desired transient form at a temperature above the transition temperature T tra ns {temperature at which the network which stabilizes the fixed form must be stable). Subsequently, once the transient form is reached, it is necessary to cool the material to cause the structural transformation and thus be able to fix the transient form. At temperatures below Ttrans the transient form is completely stable, since it is stabilized by structural transformation. Finally, if the system is heated above T tr ans, the inverse transformation occurs and the elastic force exerted by the polymeric network restores the original shape of the material.
Atendiendo al mecanismo estructural de fijación de la forma transitoria y de recuperación de la forma original, es posible distinguir diferentes tipos de polímeros con memoria de forma, como se describe en el artículo de Lendlein et Al. 1 .- Polímeros físicamente entrecruzados. In view of the structural mechanism of fixation of the transient form and recovery of the original form, it is possible to distinguish different types of shape memory polymers, as described in the article by Lendlein et Al. 1 .- Physically crosslinked polymers.
Son polímeros, usualmente copolímeros de bloque, donde se genera una segregación y por tanto una separación de fases. Cada una de estas fases presenta transformaciones térmicas características. En el caso de copolímeros físicamente entrecruzados con memoria de forma, sólo se han descrito ejemplos en los que las fases presentan dos tipos de transiciones térmicas: temperatura de transición vitrea y/o temperatura de fusión/cristalización. La transformación que presenta una mayor temperatura de transición (Tpermanente) será la encargada de fijar la forma original del material. La fase segregada que presenta esta transición {fase dura) actúa como nudos físicos capaces de unir segmentos de cadenas que conforman la otra fase segregada (fase blanda). Esta red es la responsable de estabilizar la forma original, ya que la transición térmica característica de la fase dura (ya sea Tm o Tg) es siempre superior a la temperatura de la transición térmica que provoca la fijación de la forma transitoria (Tpermanente>Ttrans), independientemente de la naturaleza de esta última. Por tanto, en este tipo de materiales, la forma transitoria es fijada a través de cualquiera de las restantes transiciones térmicas que tengan lugar en el material, independientemente de la fase en la que se produzca. Es importante destacar que hasta la fecha, las únicas transiciones térmicas con capacidad para fijar la forma transitoria (Ttrans) y por tanto generar polímeros con memoria de forma han sido la temperatura de fusión/cristalización y/o la temperatura de transición vitrea. Atendiendo a esta transición podemos diferenciar dos grandes bloques de polímeros físicamente entrecruzados con memoria de forma: copolímeros multibloque con Tírans=Tm y copolímeros multibloque con Ttrans= g. De esta forma, existe la posibilidad de combinar las diferentes transiciones (transición vitrea y/o fusión) de ambas fases (fase dura y fase blanda) para proporcionar el efecto memoria de forma deseado. Dentro de este tipo de copolímeros se ha estudiado el efecto de la incorporación tanto de componentes iónicos (B.K. Kím, S.Y. Lee, J.S. Lee, S.H. Baek, Y.J. Choi, J.O. Lee, M. Xu. Polvmer. 1998, 39, 2803) como mesogénicos (H. M. Jeong, J.B. Lee, S.Y. Lee, B.K. Kim. J. Mater. Sci. 2000, 35,279) dentro del segmento duro para mejorar la separación de fases e incrementar la estabilidad de la forma permanente. Dentro de los polímeros físicamente entrecruzados que poseen propiedades de memoria de forma destacan los copolímeros lineales, siendo los poliuretanos o poliuretano-urea (normalmente sintetizados a través de la técnica del prepolímero) los polímeros más utilizados (B.K. Kim, S.Y. Lee, M. Xu. Polymer. 1996, 37, 5781 .). En una menor medida se han descrito propiedades de memoria de forma en copolímeros de bloque basados en polietilentereftalato y óxido de polietileno, políestireno y poli(1 ,4-butadieno) o copolímeros de injerto de polietileno y Nylon-6 They are polymers, usually block copolymers, where segregation is generated and therefore a phase separation. Each of these phases presents characteristic thermal transformations. In the case of physically crosslinked copolymers with shape memory, only examples have been described in which the phases have two types of thermal transitions: glass transition temperature and / or melting / crystallization temperature. The transformation that has a higher transition temperature (T pe rmanent) will be responsible for setting the original shape of the material. The segregated phase that presents this transition {hard phase) acts as physical knots capable of joining segments of chains that make up the other segregated phase (soft phase). This network is responsible for stabilizing the original form, since the thermal transition characteristic of the hard phase (either T m or T g ) is always higher than the temperature of the thermal transition caused by the fixation of the transient form (T pe rmanent> Ttrans), regardless of the nature of the latter. Therefore, in this type of materials, the transient form is fixed through any of the other thermal transitions that take place in the material, regardless of the phase in which it occurs. It is important to note that to date, the only thermal transitions with the capacity to fix the transient form (T tran s) and therefore generate shape memory polymers have been the melting / crystallization temperature and / or the glass transition temperature. In response to this transition we can differentiate two large blocks of physically crosslinked polymers with shape memory: multiblock copolymers with T ran s = T m and multiblock copolymers with T t rans = g . In this way, there is the possibility of combining the different transitions (glass transition and / or fusion) of both phases (hard phase and soft phase) to provide the desired memory effect. Within this type of copolymers the effect of the incorporation of both ionic components (BK Kím, SY Lee, JS Lee, SH Baek, YJ Choi, JO Lee, M. Xu. Polvmer. 1998, 39, 2803) and mesogenic (HM Jeong, JB Lee, SY Lee, BK Kim. J. Mater. Sci. 2000, 35,279) within the hard segment to improve phase separation and increase stability permanently. Among the physically crosslinked polymers that have shape memory properties, linear copolymers stand out, polyurethanes or polyurethane urea (normally synthesized through the prepolymer technique) being the most used polymers (BK Kim, SY Lee, M. Xu Polymer. 1996, 37, 5781.). To a lesser extent, shape memory properties have been described in block copolymers based on polyethylene terephthalate and polyethylene oxide, polystyrene and poly (1,4-butadiene) or graft copolymers of polyethylene and Nylon-6
2.- Polímeros químicamente entrecruzados. 2.- Chemically crosslinked polymers.
La estabilización de la forma original es también posible a través de la formación de redes químicas, bien sea a través de entrecruzamientos de polímeros lineales (por métodos físicos o químicos) o a través de copolimerización de monómeros monofuncionales con entrecruzantes de bajo peso molecular u oligómeros. En estos polímeros la forma transitoria vuelve a ser fijada a través de las transiciones térmicas definidas anteriormente, es decir, transición vitrea y cristalización/fusión. Stabilization of the original form is also possible through the formation of chemical networks, either through cross-linking of linear polymers (by physical or chemical methods) or through copolymerization of monofunctional monomers with low molecular weight cross-linkers or oligomers. In these polymers, the transient form is re-established through the thermal transitions defined above, that is, glass transition and crystallization / fusion.
Dentro de este tipo de polímeros con memoria de forma podemos resaltar el polietileno entrecruzado con radiaciones ionizantes (rayos gamma o neutrones), y el copolímero de polietileno y poliacetato de vinilo entrecruzado con peróxidos orgánicos. Within this type of shape memory polymers we can highlight the crosslinked polyethylene with ionizing radiation (gamma rays or neutrons), and the copolymer of polyethylene and vinyl polyacetate crosslinked with organic peroxides.
Los elastómeros (también llamados cauchos) se caracterizan por su elevada elasticidad, es decir, experimentan deformaciones considerables bajo esfuerzos y recuperan rápidamente su forma y dimensiones al cesar la fuerza deformante. Esta propiedad básica de estos materiales hace de los elastomeros unos polímeros muy atractivos con infinidad de aplicaciones. Sin embargo, a pesar de poseer una gran capacidad para recuperar la forma original y por tanto ser candidatos ideales como polímeros con memoria de forma, los elastomeros no presentan efecto memoria de forma ya que hasta ahora no existía ninguna transición térmica capaz de fijar la forma transitoria en un rango de temperaturas con aplicaciones. Elastomers (also called rubbers) are characterized by their high elasticity, that is, they undergo considerable deformations under stress and quickly recover their shape and dimensions when the deforming force ceases. This basic property of these materials makes elastomers very attractive polymers with countless applications. However, despite having a great capacity to recover the original form and therefore being ideal candidates as shape memory polymers, elastomers have no shape memory effect since until now there was no thermal transition capable of fixing the shape transient in a temperature range with applications.
El origen de la elasticidad en cauchos se basa en su naturaleza polimérica, su estructura amorfa, la flexibilidad de sus cadenas, las débiles interacciones entre ellas y la formación de una red tridimensional basada en la creación de uniones químicas entre las cadenas de caucho durante el proceso de entrecruzamiento o vulcanización. Tradicionalmente los elastomeros han sido entrecruzados a través de reactivos químicos (J.L. Valentín et Al. Macromolecules, 2010, 43, 4210.), fundamentalmente azufre, azufre y acelerantes, moléculas donadoras de azufre y peróxidos orgánicos, entre otros, o en menor medida a través de radiaciones ionizantes para generar uniones covalentes formando una red tridimensional que estabiliza su forma original. Precisamente la irreversibilidad de las uniones covalentes generadas durante el proceso de vulcanización provoca su carácter termoestable y de ahí que los artículos de caucho tradicionales sean difícilmente reciclables. The origin of rubber elasticity is based on its polymeric nature, its amorphous structure, the flexibility of its chains, the weak interactions between them and the formation of a three-dimensional network based on the creation of chemical bonds between rubber chains during the cross-linking or vulcanization process. Traditionally, elastomers have been crosslinked through chemical reagents (JL Valentín et al. Macromolecules, 2010, 43, 4210.), mainly sulfur, sulfur and accelerators, sulfur donor molecules and organic peroxides, among others, or to a lesser extent through ionizing radiation to generate covalent bonds forming a three-dimensional network that stabilizes its original shape. Precisely the irreversibility of the covalent bonds generated during the vulcanization process causes its thermosetting character and hence the traditional rubber articles are hardly recyclable.
Por otra parte, existen elastomeros que poseen en su cadena grupos funcionales con capacidad de formar iones. Estos elastomeros pueden ser entrecruzados por métodos tradicionales (azufre, peróxidos orgánicos) obteniendo redes covalentes o bien a través de óxidos metálicos dando lugar a redes iónicas{L. Ibarra, M. Alzorriz. ADDI. Polvm. Sci. 2003, 87, 805). En los elastomeros iónicos (los cuales están ampliamente descritos en la literatura científica) los puntos de unión o entrecruzamiento entre cadenas están formados por enlaces iónicos, donde el grupo funcional ionizado tiende a segregarse formando nano-dominios iónicos estabilizados por un contra-ión (Eisenberg et Al. Macromolecules. 1990, 23, 4098). Este tipo de uniones son termolábiles, es decir son sensibles a la temperatura, por lo que presentan una transición a altas temperaturas (adicional a la transición vitrea del polímero que tiene lugar a bajas temperaturas) denominada transición iónica, que proporciona el carácter termoplástico a este tipo de polímeros. DESCRIPCIÓN DE LA INVENCIÓN On the other hand, there are elastomers that have functional groups in their chain capable of forming ions. These elastomers can be crosslinked by traditional methods (sulfur, organic peroxides) obtaining covalent networks or through metal oxides giving rise to ionic networks {L. Ibarra, M. Alzorriz. ADDI Dusting Sci. 2003, 87, 805). In ionic elastomers (which are widely described in the scientific literature) the junction or cross-linking points between chains are formed by ionic bonds, where the ionized functional group tends to segregate forming ionic nano-domains stabilized by a counter-ion (Eisenberg et al. Macromolecules. 1990, 23, 4098). These types of joints are thermolabile, that is, they are sensitive to temperature, so they have a High temperature transition (in addition to the glass transition of the polymer that takes place at low temperatures) called ionic transition, which provides thermoplastic character to this type of polymers. DESCRIPTION OF THE INVENTION
La presente invención proporciona un material con memoria de forma basado en la combinación de redes poliméricas, preferiblemente elastoméricas, de naturaleza iónica y covalente interpenetradas. También la presente invención proporciona un procedimiento para la obtención de dicho material y los posibles usos como polímero con memoria de forma empleado para la fabricación de actuadores, sensores, músculos artificiales, tejidos inteligentes, embalaje inteligente o dispositivos biomédicos. Un primer aspecto de la presente invención se refiere a un material formado por redes poliméricas caracterizado por la combinación de redes de naturaleza iónica y covalente, donde ambas redes se encuentran interpenetradas. The present invention provides a shape memory material based on the combination of polymeric, preferably elastomeric, ionic and covalent interpenetrated networks. The present invention also provides a method for obtaining said material and the possible uses as memory polymer used to manufacture actuators, sensors, artificial muscles, intelligent tissues, intelligent packaging or biomedical devices. A first aspect of the present invention relates to a material formed by polymeric networks characterized by the combination of ionic and covalent networks, where both networks are interpenetrated.
En una realización preferida la red polimérica es una red elastomérica. In a preferred embodiment the polymeric network is an elastomeric network.
Dichos elastómeros son de carácter iónico, y son considerados polímeros inteligentes ya que tienen memoria de forma sensible a la temperatura; para ello es necesario combinar una red elastomérica covalente, responsable de la estabilización de la forma original y una red iónica sensible a la temperatura, capaz de fijar la forma transitoria deseada a temperaturas por debajo de la transición iónica. A temperaturas por encima de esta transición iónica la red iónica, debido a su termoplasticidad, se debilita recobrando el material su forma original y provocando el efecto memoria de forma en el polímero. Estas propiedades de memoria de forma dependen del elastómero empleado, del sistema entrecruzante iónico, del sistema covalente y la combinación de ambos. Este hecho posibilita la modulación de esta propiedad de acuerdo con las necesidades y propiedades finales deseadas que se les quiera conferir al material de interés. Said elastomers are ionic in nature, and are considered intelligent polymers since they have a temperature sensitive memory; For this, it is necessary to combine a covalent elastomeric network, responsible for the stabilization of the original form and a temperature-sensitive ionic network, capable of fixing the desired transient form at temperatures below the ionic transition. At temperatures above this ionic transition, the ionic network, due to its thermoplasticity, weakens, recovering the material from its original shape and causing the shape memory effect in the polymer. These shape memory properties depend on the elastomer used, the ionic crosslinking system, the covalent system and the combination of both. This fact allows the modulation of this property according to the desired final properties and needs that you want to confer to the material of interest.
Por red elastomérica se entiende en la presente invención aquel polímero que comprende largas cadenas que se encuentran unidas entre sí por muy pocas uniones químicas. Esto les permite un gran movimiento intermolecular que se ve reflejado en su buena flexibilidad. Son materiales que tienen memoria, es decir que al someterlos a un esfuerzo modifican su forma, recuperándola cuando se retira ese esfuerzo. Los elastómeros iónicos se basan en la formación de una red elastomérica en la que las uniones o entrecruzamientos entre las diferentes cadenas elastoméricas poseen una naturaleza iónica. Para la obtención de este tipo de redes es necesario un elastómero que posea en su cadena grupos funcionales con capacidad de ionizarse. En una realización preferida el material de la presente invención puede comprender además una carga y/o cualquier aditivo convencional en ciencia y tecnología de polímeros conocidos por cualquier experto en la materia, como por ejemplo pigmentos, antídegradantes y/o ayudantes de procesado. Por lo general son susceptibles de formar redes iónicas todos los elastómeros (y en general los polímeros) que poseen o pueden ser modificados para introducir en su estructura un grupo funcional susceptible de ionizarse, por lo que preferiblemente el polímero comprende grupos ionizables que se seleccionan de la lista que comprende grupos carboxílicos, grupos anhídridos, haluros de ácido, grupos epóxido, grupos sulfónícos y cualquiera de sus combinaciones. Estos polímeros al comprender grupos ionizables dan lugar a una red iónica. By elastomeric network is understood in the present invention that polymer comprising long chains that are joined together by very few chemical bonds. This allows them a great intermolecular movement that is reflected in their good flexibility. They are materials that have memory, that is to say that when subjected to an effort they modify their form, recovering it when that effort is withdrawn. Ionic elastomers are based on the formation of an elastomeric network in which the junctions or crosslinks between the different elastomeric chains have an ionic nature. In order to obtain this type of network, an elastomer is needed that has functional groups with the ability to ionize in its chain. In a preferred embodiment the material of the present invention may further comprise a filler and / or any conventional additive in polymer science and technology known to any person skilled in the art, such as pigments, antidegradants and / or processing aids. In general, all elastomers (and in general polymers) that have or can be modified to introduce into their structure a functional group that can be ionized are susceptible to ionic networks, so preferably the polymer comprises ionizable groups that are selected from the list comprising carboxylic groups, anhydrous groups, acid halides, epoxy groups, sulfonic groups and any combination thereof. These polymers to comprise ionizable groups give rise to an ionic network.
La presente invención puede trasladarse a cualquier polímero que contenga o pueda ser modificado para contener grupos ionizables seleccionabas de la lista anterior en su estructura. Preferiblemente la red polimérica comprende un polímero o copolímero, que se selecciona de entre los siguientes elastómeros: etileno/ácido acrílico, acrilonitrilo-butadieno carboxilado (XNBR), estireno- butadieno carboxilado (XSBR), etileno clorosulfonado, etíleno-propileno o etileno-propileno-dieno modificado con anhídrido maléico (m-EPDH), etileno- propileno, etileno-propileno-dieno sulfonado, caucho natural epoxidado, poliuretanos que contengan grupos ionizables o cualquiera de sus combinaciones. The present invention can be transferred to any polymer that contains or can be modified to contain ionizable groups selected from the above list in its structure. Preferably the polymer network comprises a polymer or copolymer, which is selected from the following elastomers: ethylene / acrylic acid, carboxylated acrylonitrile-butadiene (XNBR), carboxylated styrene-butadiene (XSBR), chlorosulfonated ethylene, ethylene-propylene or ethylene-propylene-diene modified with maleic anhydride (m-EPDH), ethylene-propylene, ethylene-propylene -sulfonated diene, epoxidized natural rubber, polyurethanes containing ionizable groups or any combination thereof.
Debido a la naturaleza termoplástica de los elastómeros iónicos, éstos poseen la capacidad de ser reciclados en repetidas ocasiones sin pérdida de sus propiedades. Y según se muestra en los ejemplos, esto se debe a una transición térmica característica, conocida como transición iónica. Por encima de la temperatura de transición iónica, los entrecruzamientos iónicos se debilitan y las cadenas poliméricas pueden fluir. Al disminuir la temperatura, los nudos iónicos vuelven a ser efectivos recobrando su fortaleza y el material sus propiedades elásticas, lo que hace que esta transición térmica se pueda repetir sucesivamente en ciclos térmicos posteriores. Due to the thermoplastic nature of ionic elastomers, they possess the ability to be recycled repeatedly without loss of their properties. And as shown in the examples, this is due to a characteristic thermal transition, known as an ionic transition. Above the ionic transition temperature, ionic crosslinks weaken and polymer chains can flow. When the temperature decreases, the ionic nodes become effective again recovering their strength and the material their elastic properties, which makes this thermal transition can be repeated successively in subsequent thermal cycles.
De igual forma, estos materiales retienen sus propiedades a tracción con sucesivos procesos de remoldeo. Por tanto, la transformación estructural debida a la transición iónica es reversible, ya que como se indicó anteriormente al reducirse la temperatura los nano-dominios iónicos vuelven a actuar como entrecruzamientos y el material recobra sus propiedades elásticas. Como se demuestra en los ejemplos, en los elastómeros iónicos pueden diferenciarse dos transiciones dependientes de la temperatura, la temperatura de transición vitrea a bajas temperaturas y la temperatura de transición iónica a elevadas temperaturas. Es importante resaltar que tanto la temperatura de transición iónica, tomada como la temperatura donde el valor de la tangente del ángulo de desfase o factor de pérdidas (tan δ definido como el cociente entre el módulo viscoso y el módulo de almacenamiento, lo cual da una medida de los cambios estructurales sufridos por el polímero) en ensayos mecanodinámicos alcanza el segundo máximo, como la anchura de dicha transición dependen en gran manera de la fortaleza de las uniones iónicas, así como su tamaño y distribución, las cuales dependen, entre otros factores del sistema de entrecruzamiento empleado. Similarly, these materials retain their tensile properties with successive molding processes. Therefore, the structural transformation due to the ionic transition is reversible, since as indicated above when the temperature was reduced, the ionic nano-domains again act as crosslinks and the material recovers its elastic properties. As demonstrated in the examples, two temperature dependent transitions can be distinguished in ionic elastomers, the glass transition temperature at low temperatures and the ion transition temperature at high temperatures. It is important to highlight that both the ionic transition temperature, taken and the temperature where the value of the tangent of the offset angle or loss factor (as defined as the ratio between the viscous module and the storage module, which gives a measurement of the structural changes suffered by the polymer) in mechanodynamic tests reaches the second maximum, as the width of said transition depends largely on the strength of the ionic junctions, as well as their size and distribution, which depend, among other factors on the crosslinking system used.
En una realización preferida el material de la presente invención comprende además un agente entrecruzante iónico que se selecciona de entre óxido metálico, hidróxido metálico, cualquier sal metálica inorgánica u orgánica, o cualquiera de sus combinaciones. In a preferred embodiment, the material of the present invention further comprises an ionic crosslinking agent that is selected from metal oxide, metal hydroxide, any inorganic or organic metal salt, or any combination thereof.
En una realización más preferida el óxido metálico se selecciona de entre: CaO, MgO, ZnO o cualquiera de sus combinaciones. In a more preferred embodiment the metal oxide is selected from: CaO, MgO, ZnO or any combination thereof.
Preferiblemente el material de la presente invención además comprende un agente entrecruzante covalente que se selecciona de entre peróxido orgánico, peróxido inorgánico, azufre, azufre/acelerantes, diazida, radiaciones ionizantes o cualquiera de sus combinaciones. Preferably the material of the present invention further comprises a covalent crosslinking agent that is selected from organic peroxide, inorganic peroxide, sulfur, sulfur / accelerators, diazide, ionizing radiation or any combination thereof.
La presente invención está basada en la formación de polímeros, preferiblemente elastomeros, con memoria de forma sensibles a la temperatura. Para ello se debe conjugar la formación de una red covalente estable e irreversible a la temperatura, que fija la forma original, y una red iónica termo-sensible que fija la forma transitoria, y en la que la temperatura de transición iónica es la temperatura de referencia en el cambio de forma y lo que genera el efecto memoria de forma. Los elastomeros que contienen grupos ionízables pueden formar redes covalentes siguiendo los mismos procedimientos ampliamente utilizados en tecnología de elastomeros. Puede originarse a través de diferentes sistemas de vulcanización, donde pueden destacarse (entre otros) sistemas basados en azufre, azufre y acelerantes (donde caben gran cantidad de diferentes tipos de acelerantes, al igual que diferentes proporciones azufre/acelerantes), donadores de azufre, peróxidos orgánicos e inorgánicos, diazidas, radiaciones ionizantes, etc. En la presente invención se han realizado ensayos con diferentes composiciones que dan lugar a la formación de ambos tipos de redes, iónica y covalentes. La red iónica, como se ha indicado, se ha formado mediante la reacción con óxidos metálicos; para la formación de redes covalentes se han estudiado diferentes sistemas, entre los que se destacan los siguientes: The present invention is based on the formation of polymers, preferably elastomers, with temperature-sensitive memory. For this, the formation of a stable and irreversible covalent network at the temperature, which fixes the original form, and a thermo-sensitive ionic network that fixes the transient form, and in which the ionic transition temperature is the temperature of reference in the change of form and what generates the memory effect of form. Elastomers containing ionizable groups can form covalent networks following the same procedures widely used in elastomer technology. It can originate through different vulcanization systems, where sulfur, sulfur and accelerator-based systems (where many different types of accelerators, as well as different sulfur / accelerator ratios), sulfur donors, stand out (among others). organic and inorganic peroxides, diazides, ionizing radiation, etc. In the present invention, tests have been carried out with different compositions that give rise to the formation of both types of networks, ionic and covalent. The ionic network, as indicated, has been formed by reaction with metal oxides; For the formation of covalent networks, different systems have been studied, among which the following stand out:
• Red covalente formada mediante la adición de peróxido orgánico, que manteniendo el carácter termoplástico del material, hace que el elastómero iónico sea lo suficientemente estable y resistente para deformarse sin rotura. Esta red covalente está formada por uniones directas C-C entre cadenas de polímero.  • Covalent network formed by the addition of organic peroxide, which while maintaining the thermoplastic nature of the material, makes the ionic elastomer stable and resistant enough to deform without breaking. This covalent network is formed by direct C-C junctions between polymer chains.
• Red covalente formada mediante sistemas de entrecruzamiento convencionales azufre/acelerantes, con los mismos requisitos que en el caso anterior. Esta red está formada por uniones entre cadenas a través de enlaces mono-, di- y polisulfuros.  • Covalent network formed by conventional sulfur / accelerating crosslinking systems, with the same requirements as in the previous case. This network is formed by unions between chains through mono-, di- and polysulfide bonds.
• Red covalente formada mediante peróxidos inorgánicos, especialmente peróxido de cinc. Estos compuestos dan lugar a uniones directas C-C (de forma similar que los peróxidos orgánicos) y a la formación conjunta de uniones iónicas. Por lo tanto, en este caso también podría ser utilizado como agente entrecruzante único.  • Covalent network formed by inorganic peroxides, especially zinc peroxide. These compounds give rise to direct C-C bonds (similar to organic peroxides) and the joint formation of ionic bonds. Therefore, in this case it could also be used as a single crosslinking agent.
• Red covalente formada por la reacción con diazidas. Las diazidas medíante una reacción de entrecruzamiento a baja temperatura, preferiblemente no superior a 105eC dan lugar a entrecruzamientos donde la diazida es la molécula que une las diferentes cadenas elastoméricas. Son reacciones de cicloadición con eficacias próximas a la unidad. • Covalent network formed by the reaction with diazides. The diazides by a crosslinking reaction at low temperature, preferably not higher than 105 C and result in crosslinks where diazide is the molecule that binds the different elastomeric chains. They are cycloaddition reactions with efficiencies close to unity.
Entonces, para conseguir el efecto memoria de forma, es necesario tener una transición sensible a la temperatura. En la presente invención se describe la transición iónica como la transformación dependiente de la temperatura capaz de originar memoria de forma en polímeros. La fuerza originada por la creación de una red iónica debe ser suficiente como para fijar la forma transitoria del material. Sin embargo a temperaturas por encima de la temperatura de transición (en este caso la transición iónica) esta fuerza debe ser mínima para así poder recobrar la forma original. En elastómeros iónicos, esta transformación está presente, pero sin embargo la fuerza elástica ejercida a temperaturas superiores a la temperatura de transición iónica no es suficiente para devolver al material a su forma original. Por tanto estos materiales no poseen memoria de forma. En el extremo opuesto, los elastómeros que forman redes covalentes poseen una importante fuerza elástica capaz de devolver al material a su forma original tras ser deformado incluso a elevadas temperaturas {ya que la red es estable a la variación de temperatura), sin embargo no poseen ningún mecanismo capaz de fijar la forma transitoria/deformada, por lo que tampoco poseen efecto memoria de forma. Then, to achieve the shape memory effect, it is necessary to have a temperature sensitive transition. In the present invention, the ionic transition is described as the temperature-dependent transformation capable of causing shape memory in polymers. The force caused by the creation of an ionic network must be sufficient to fix the transitory shape of the material. However at temperatures above the temperature of transition (in this case the ionic transition) this force must be minimal in order to recover the original form. In ionic elastomers, this transformation is present, but nevertheless the elastic force exerted at temperatures higher than the ionic transition temperature is not sufficient to return the material to its original form. Therefore these materials do not have shape memory. At the opposite end, the elastomers that form covalent networks have an important elastic force capable of returning the material to its original shape after being deformed even at high temperatures {since the network is stable to temperature variation), however they do not possess no mechanism capable of fixing the transient / deformed form, so they do not have a shape memory effect.
Por tanto, los sistemas mixtos, en los que se combinan redes iónicas y covalentes, son aquellos en los que existe la posibilidad de obtener el deseado efecto memoria de forma. Estos compuestos mixtos poseen una red iónica, por lo tanto exhiben una transición iónica característica. A temperaturas por debajo de esta transición, los nudos iónicos son efectivos y ejercen una fuerza capaz de fijar la forma transitoria, siempre y cuando la fuerza ejercida por esta red iónica sea igual o superior a la fuerza ejercida por la red covalente, ya que esta última es estable a la variación de temperatura y por tanto capaz de ejercer una fuerza elástica que tiende a devolver al material a su forma original. A medida que se aumenta la temperatura, los nudos iónicos pierden efectividad y por lo tanto disminuye la fuerza ejercida por esta red. Esto hace que el balance entre la fuerza iónica y covalente se pierda y la red covalente devuelva al material a su forma original. Therefore, mixed systems, in which ionic and covalent networks are combined, are those in which there is the possibility of obtaining the desired shape memory effect. These mixed compounds possess an ionic network, therefore they exhibit a characteristic ionic transition. At temperatures below this transition, the ionic nodes are effective and exert a force capable of fixing the transient form, provided that the force exerted by this ionic network is equal to or greater than the force exerted by the covalent network, since this The latter is stable to temperature variation and therefore capable of exerting an elastic force that tends to return the material to its original form. As the temperature rises, the ionic knots lose effectiveness and therefore the force exerted by this network decreases. This causes the balance between the ionic and covalent force to be lost and the covalent network to return the material to its original form.
Atendiendo al fundamento estructural que rige el efecto memoria de forma de estos materiales, la combinación de los diferentes sistemas de entrecruzamiento utilizados para obtener estos materiales mixtos deben emplearse en dosis suficiente para lograr redes estables y resistentes, pero de tal manera que la fuerza de la red iónica, responsable de la estabilidad de la estructura temporal, sea superior a la fuerza de la red covalente. Por ello debe existir una relación mínima entre las concentraciones de ambos sistemas de entrecruzamiento para que se produzca el efecto memoria de forma. Sin embargo, dentro del rango de concentraciones en las que se produce este efecto dependiente de la temperatura, las propiedades que caracterizan la memoria de forma pueden variarse de acuerdo a esta proporción existiendo siempre una concentración óptima donde se maximizan tanto la propiedad de fijación de la forma como la recuperación de la forma original. Taking into account the structural foundation that governs the shape memory effect of these materials, the combination of the different crosslinking systems used to obtain these mixed materials must be used in sufficient doses to achieve stable and resistant networks, but in such a way that the strength of the Ionic network, responsible for the stability of the temporal structure, is greater than the strength of the covalent network. That is why you should there is a minimum relationship between the concentrations of both crosslinking systems so that the shape memory effect occurs. However, within the range of concentrations in which this temperature-dependent effect occurs, the properties that characterize shape memory can be varied according to this proportion, there is always an optimal concentration where both the fixing property of the form as the recovery of the original form.
En un segundo aspecto, la presente invención se refiere a un procedimiento de obtención del material según se ha descrito anteriormente (a partir de ahora procedimiento de la invención), que comprende las etapas: In a second aspect, the present invention relates to a process for obtaining the material as described above (from now on the process of the invention), which comprises the steps:
a) mezclado de al menos una matriz polimérica con grupos ionizables con al menos un agente entrecruzante iónico y otro covalente, según se ha descrito anteriormente, y  a) mixing at least one polymeric matrix with ionizable groups with at least one ionic crosslinking agent and another covalent, as described above, and
b) vulcanización o entrecruzamiento del producto obtenido en la etapa (a) a una temperatura de entre 100 y 200eC. b) vulcanization or cross-linking of the product obtained in step (a) at a temperature between 100 and 200 e C.
En una realización preferida el procedimiento de la invención además comprende la adición de al menos una carga y/o un aditivo en el mezclado de la etapa (a). In a preferred embodiment the process of the invention further comprises the addition of at least one filler and / or an additive in the mixing of step (a).
Durante el proceso de vulcanización, el elastómero reacciona con los agentes de entrecruzamiento, a la temperatura expuesta anteriormente, creando por un lado las uniones covalentes entre las cadenas elastoméricas e ionizando los grupos funcionales de la matriz elastomérica sensibles a este proceso. During the vulcanization process, the elastomer reacts with the crosslinking agents, at the temperature set forth above, creating on the one hand the covalent bonds between the elastomeric chains and ionizing the functional groups of the elastomeric matrix sensitive to this process.
La ionización de los grupos funcionales provoca una segregación de fases y la formación de nano-dominios iónicos. Estos nano-dominios se encuentran estabilizados por pares iónicos como estructura más simple, aunque es posible encontrarse con estructuras más complejas como multipletes o agrupaciones de estos últimos denominados clusters iónicos. Un tercer aspecto de la presente invención se refiere al uso del material de la presente invención como elastómero con memoria de forma, donde la transición térmica que activa este comportamiento es la transición iónica. Preferiblemente dicho elastómero con memoria de forma es empleado para la fabricación de actuadores, sensores, músculos artificíales, tejidos inteligentes, embalaje inteligente y dispositivos biomédicos. The ionization of functional groups causes phase segregation and the formation of ionic nano-domains. These nano-domains are stabilized by ionic pairs as a simpler structure, although it is possible to find more complex structures such as multiples or clusters of the latter called ionic clusters. A third aspect of the present invention relates to the use of the material of the present invention as a shape memory elastomer, where the thermal transition that activates this behavior is the ionic transition. Preferably said shape memory elastomer is used for the manufacture of actuators, sensors, artificial muscles, intelligent tissues, intelligent packaging and biomedical devices.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1. Espectros ATR-FTIR en la zona 1875-1375 cm'1 correspondientes a la variación de las bandas características con el tiempo de vulcanización a una temperatura de 1609C. Figure 1. ATR-FTIR spectra in the area 1875-1375 cm '1 corresponding to the variation of the characteristic bands with the vulcanization time at a temperature of 160 9 C.
Figura 2. Representación de la variación de la componente elástica del par de fuerzas en función de diferentes tratamientos térmicos de tres muestras de XNBR vulcanizadas con ZnO, MgO y CaO respectivamente. Figure 2. Representation of the variation of the elastic component of the force pair as a function of different heat treatments of three XNBR samples vulcanized with ZnO, MgO and CaO respectively.
Figura 3. Muestra la representación de la variación de la componente elástica del par de fuerzas en función de cíelos de temperaturas de una muestra de XNBR vulcanizada con CaO. Figure 3. Shows the representation of the variation of the elastic component of the pair of forces as a function of the temperatures of a sample of XNBR vulcanized with CaO.
Figura 4. Muestra la variación de tan δ con la temperatura en XNBR entrecruzado exclusivamente con óxidos metálicos. Frecuencia de vibración 1 Hz. La transición a bajas temperaturas corresponde a la Tg de la matriz, a altas temperaturas a la transición iónica, Tí. Figure 4. Shows the variation of tan δ with the temperature in XNBR crosslinked exclusively with metal oxides. Vibration frequency 1 Hz. The transition at low temperatures corresponds to the Tg of the matrix, at high temperatures to the ionic transition, Ti.
Figura 5. Muestra la representación de la variación de la componente elástica del par de fuerzas durante la vulcanización de XNBR a 160eC utilizando diferentes sistemas de vulcanización. Los sistemas de vulcanización empleados para obtener la red covalente fueron a) peróxido orgánico, b) sistema azufre-acelerantes, c) diazida y d) peróxido inorgánico. Por su parte, la red iónica de todos los compuestos ha sido obtenida a través de la adición de óxidos metálicos bivalentes, MgO y ZnO. Figure 5. Shows the representation of the variation of the elastic component of the force pair during the vulcanization of XNBR at 160 e C using different vulcanization systems. The vulcanization systems used to obtain the covalent network were a) organic peroxide, b) sulfur-accelerating system, c) diazide and d) inorganic peroxide. For its part, the ionic network of all compounds has been obtained through the addition of bivalent metal oxides, MgO and ZnO.
Figura 6. Muestra la transición iónica del XNBR vulcanizado a través de diferentes sistemas mixtos iónicos-covalentes medida a través de la variación de tan δ con la temperatura. Figure 6. Shows the ionic transition of vulcanized XNBR through different mixed ionic-covalent systems measured through the variation of tan δ with temperature.
Figura 7. Muestra la representación de la variación de la componente elástica del par de fuerzas en función de diferentes tratamientos térmicos de tres muestras de XNBR vulcanizadas con óxido metálico y diferentes sistemas de vulcanización covalentes. (Las temperaturas correspondientes a las diferentes etapas en las muestras (o) y (Δ) son 160, 50, 70, 90, 1 10,130, 150 y 160eC; para la muestra (□) 180, 50, 70, 90, 1 10, 130, 150, 170 y 180°C. Para todas ellas la primera de las etapas llevadas a cabo a 1609C y 180QC respectivamente se corresponde con el proceso de vulcanización). Figura 8. Muestra la representación de la variación de la componente elástica del par de fuerzas en función de ciclos de temperaturas de tres muestras de XNBR vulcanizada con CaO (red iónica), peróxido orgánico (red covalente) y una mezcla de peróxido orgánico y CaO (red íónica+covalente). Figura 9. Muestra una serie de fotografías que muestran el efecto memoria de forma de un compuesto de XNBR vulcanizado con MgO y peróxido orgánico. Esta serie de fotografías muestran la recuperación de la forma original del material tras ser deformado hasta su forma transitoria tras el incremento de la temperatura por encima de la temperatura de transición iónica. Figure 7. Shows the representation of the variation of the elastic component of the force pair as a function of different heat treatments of three XNBR samples vulcanized with metal oxide and different covalent vulcanization systems. (The temperatures corresponding to the different stages in the samples (o) and (Δ) are 160, 50, 70, 90, 1 10,130, 150 and 160 e C; for the sample (□) 180, 50, 70, 90, 1 10, 130, 150, 170 and 180 ° C. For all of them the first of the stages carried out at 160 9 C and 180 Q C respectively corresponds to the vulcanization process). Figure 8. Shows the representation of the variation of the elastic component of the force pair as a function of temperature cycles of three samples of XNBR vulcanized with CaO (ionic network), organic peroxide (covalent network) and a mixture of organic peroxide and CaO (ionic network + covalent). Figure 9. It shows a series of photographs that show the shape memory effect of an XNBR compound vulcanized with MgO and organic peroxide. This series of photographs show the recovery of the original form of the material after being deformed to its transient form after the temperature rise above the ionic transition temperature.
Figura 10. Valores característicos de dos muestras de XNBR vulcanizado con óxido metálico y peróxido orgánico que presentan memoria de forma. Los valores destacados fueron obtenidos de los ciclos esfuerzo-deformación de la tabla 2. Figure 10. Characteristic values of two samples of XNBR vulcanized with metal oxide and organic peroxide that have shape memory. The highlighted values were obtained from the stress-strain cycles of table 2.
Figura 11. Valores característicos de dos muestras de XNBR vulcanizado con óxido metálico y peróxido inorgánico que presentan memoria de forma. Los valores destacados fueron obtenidos de los ciclos esfuerzo-deformación de la tabla 3. Figure 11. Characteristic values of two samples of XNBR vulcanized with metal oxide and inorganic peroxide that have shape memory. The highlighted values were obtained from the stress-strain cycles of table 3.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la especificidad y efectividad de los elastómeros iónicos entrecruzados covalentemente como polímeros inteligentes con memoria de forma. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the specificity and effectiveness of covalently cross-linked ionic elastomers as shape memory intelligent polymers.
Elastómeros iónicos Ionic elastomers
Los elastómeros iónicos empleados en los ejemplos de la presente invención están basados fundamentalmente en matrices elastoméricas comerciales de caucho de acrílonitrílo-butadieno carboxílado (XNBR), con un contenido en acrilonitrilo del 26,5 % en peso, de grupos carboxilos del 7% en peso y una viscosidad Money de 38±4 M.U., entrecruzado con óxidos metálicos, fundamentalmente CaO, ZnO y MgO. Han sido mezclados en rodillos abiertos y vulcanizados a 1609C. The ionic elastomers used in the examples of the present invention are based primarily on commercial elastomeric matrices of acrylic-nitrile-butadiene rubber (XNBR), with an acrylonitrile content of 26.5% by weight, of carboxylic groups of 7% by weight and a Money viscosity of 38 ± 4 MU, crosslinked with metal oxides, primarily CaO, ZnO and MgO. They have been mixed in open and vulcanized rollers at 160 9 C.
A medida que se aumenta el contenido en óxidos metálicos se observa la progresiva desaparición de la señal infrarroja (IR) de los grupos carboxílicos presentes en la cadena elastomérica apareciendo las correspondientes bandas características de los carboxiiatos que se van formando hasta alcanzar la saturación, es decir, la transformación de todos los grupos carboxilos en sus correspondientes carboxiiatos (veáse Figura 1 ). As the content of metal oxides increases, the progressive disappearance of the infrared (IR) signal of the carboxylic groups is observed. present in the elastomeric chain appearing the corresponding characteristic bands of the carboxylates that are formed until saturation is achieved, that is, the transformation of all the carboxy groups into their corresponding carboxylates (see Figure 1).
Estos carboxiiatos tienden a segregarse formando nano-dominios iónicos responsables de la formación de la red iónica y por tanto de las propiedades elásticas mostrada por estos materiales. Sin embargo, al contrario que las redes elastoméricas covalentes, como se ha descrito anteriormente estos elastómeros iónicos presentan un carácter termoplástico, es decir tienen capacidad de ser recíclados repetidas veces sin pérdida notable en sus propiedades. El comportamiento termoplástico de los cauchos de XNBR entrecruzados con óxidos metálicos (ZnO, MgO, CaO) queda patente en la Figura 2 donde se muestra la variación del par de fuerzas con la temperatura medido a una deformación de 6,98% y una frecuencia de 1 ,66Hz. These carboxylates tend to segregate forming ionic nano-domains responsible for the formation of the ionic network and therefore the elastic properties shown by these materials. However, unlike covalent elastomeric networks, as described above, these ionic elastomers have a thermoplastic character, that is, they have the ability to be repeatedly recycled without noticeable loss in their properties. The thermoplastic behavior of XNBR rubbers intercrossed with metal oxides (ZnO, MgO, CaO) is shown in Figure 2 where the variation of the torque with the temperature measured at a deformation of 6.98% and a frequency of 1, 66Hz
La primera etapa a 160SC se corresponde con el proceso de vulcanización. Posteriormente, las muestras vulcanizadas se someten a un enfriamiento en el propio reómetro seguido por un paulatino incremento de la temperatura manteniendo constantes la deformación y la frecuencia a la cual se mide el valor del par de fuerzas. The first stage at 160 S C corresponds to the vulcanization process. Subsequently, the vulcanized samples are subjected to a cooling in the rheometer itself followed by a gradual increase in temperature while maintaining the deformation and the frequency at which the value of the torque is measured.
Como puede observarse, a medida que se aumenta la temperatura, el valor del par de fuerzas se ve reducido en todos los casos, debido fundamentalmente a la pérdida de eficiencia de las interacciones iónicas que conforman los nudos de la red. Sin embargo, este proceso es totalmente reversible tal y como se muestra en la Figura 3, los ciclos de temperaturas a los que se somete la muestra de XNBR vulcanizada con CaO, son la primera etapa a 160-C se corresponde con el proceso de vulcanización. Posteriormente, la muestra vulcanizada se enfría hasta 40eC en el propio reómetro y finalmente se incrementa de nuevo la temperatura hasta los 160°C manteniendo constantes la deformación y la frecuencia a la cual se mide el valor del par de fuerzas. Como puede observarse, cuando la temperatura se reduce los nudos iónicos vuelven a ser efectivos recobrando su fortaleza y recobrando sus propiedades elásticas. Esta transición térmica puede ser repetida sucesivamente, ya que como puede observarse en la Figura 3, tras una serie de ciclos térmicos, el par de fuerzas no se ve afectado considerablemente. As can be seen, as the temperature increases, the value of the torque is reduced in all cases, mainly due to the loss of efficiency of the ionic interactions that make up the network nodes. However, this process is completely reversible as shown in Figure 3, the temperature cycles to which the XNBR sample vulcanized with CaO is subjected, are the first stage at 160-C corresponds to the vulcanization process . Subsequently, the cured sample is cooled to 40 C and in the rheometer itself and finally again increases the temperature to 160 ° C keeping constant strain and frequency at which the value of the torque is measured. As can be seen, when the temperature is reduced, the ionic nodes become effective again recovering their strength and recovering their elastic properties. This thermal transition can be repeated successively, since as can be seen in Figure 3, after a series of thermal cycles, the torque is not significantly affected.
De igual forma, estos materiales retienen sus propiedades a tracción con sucesivos procesos de remoldeo, tal y como se muestra en la Tabla 1 . En los compuestos entrecruzados con CaO a medida que se incrementa el número de ciclos térmicos se observa una paulatina reorganización de los grupos carboxilatos en los dominios iónicos lo que incrementa la fuerza elástica pero reduce la deformación a rotura. Similarly, these materials retain their tensile properties with successive molding processes, as shown in Table 1. In the compounds cross-linked with CaO as the number of thermal cycles increases, a gradual reorganization of the carboxylate groups in the ionic domains is observed which increases the elastic force but reduces the deformation at break.
Figure imgf000020_0001
Tabla 1. Variación de las propiedades a tensión de una muestra de XNBR vulcanizada con CaO en sucesivos procesos de remoldeo. Los remóldeos se llevaron a cabo a 160eC previo troceado de la muestra vulcanizada en el moldeo anterior, bajo las mismas condiciones que la vulcanización inicial. El carácter termoplástíco de estos materiales se debe a la pérdida de propiedades de los nano-dominios iónicos a elevadas temperaturas, lo que permite fluir a las cadenas elastoméricas, las cuales se encontraban originalmente entrecruzadas a través de estos nudos iónicos. Esta transformación, conocida como transición iónica, es reversible, ya que al reducirse la temperatura los nano-dominios iónicos vuelven a actuar como entrecruzamientos y el material recobra sus propiedades elásticas. Esta importante transición estructural sensible a la temperatura puede seguirse a través de medidas mecanodinámicas tal y como se muestra en la Figura 4, la variación de la tangente del ángulo de pérdidas (tan δ, detinido como el cociente entre el módulo viscoso y el módulo de almacenamiento) con la temperatura en XNBR entrecruzado exclusivamente con óxidos metálicos.
Figure imgf000020_0001
Table 1. Variation of the tensile properties of a sample of XNBR vulcanized with CaO in successive molding processes. The remoldeos were carried out at 160 e C after cutting the vulcanized sample in the previous molding, under the same conditions as the initial vulcanization. The thermoplastic nature of these materials is due to the loss of properties of ionic nano-domains at high temperatures, which allows the elastomeric chains to flow, which were originally crosslinked through these ionic nodes. This transformation, known as the ionic transition, is reversible, since when the temperature is reduced the ionic nano-domains return to act as crossings and the material recovers its elastic properties. This important temperature-sensitive structural transition can be followed through mechanodynamic measurements as shown in Figure 4, the variation of the tangent of the loss angle (as δ, defined as the ratio between the viscous module and the modulus of storage) with the temperature in XNBR crosslinked exclusively with metal oxides.
Como puede apreciarse, los elastómeros iónicos poseen dos transiciones dependientes de la temperatura, la temperatura de transición vitrea a bajas temperaturas y la temperatura de transición iónica a elevadas temperaturas. Es importante resaltar que tanto la temperatura de transición iónica, tomada como la temperatura donde el valor de tan δ alcanza el segundo máximo, como la anchura de dicha transición dependen en gran manera de la fortaleza, tamaño y distribución de las uniones iónicas, las cuales dependen, entre otros factores del sistema de entrecruzamiento empleado. As can be seen, ionic elastomers have two temperature-dependent transitions, the glass transition temperature at low temperatures and the ion transition temperature at high temperatures. It is important to highlight that both the ionic transition temperature, taken and the temperature where the value of tan δ reaches the second maximum, and the width of said transition depend greatly on the strength, size and distribution of the ionic junctions, which depend, among other factors on the crosslinking system used.
Formación de redes covalentes en elastómeros iónicos Formation of covalent networks in ionic elastomers
En estos compuestos, los dos sistemas de vulcanización implicados, es decir, el que produce la red iónica y el responsable de la formación de la red covalente son mezclados con la matriz elastomérica de acuerdo con los procedimientos descritos en el apartado anterior. In these compounds, the two vulcanization systems involved, that is, the one that produces the ionic network and the person responsible for the formation of the covalent network, are mixed with the elastomeric matrix according to the procedures described in the previous section.
Durante el proceso de vulcanización (en los ejemplos descritos en esta invención se han utilizado temperaturas de 160QC a no ser que se indique lo contrario) se generan las dos redes, iónica y covalente. La existencia de ambas redes cuando se combinan ambos sistemas de entrecruzamiento se comprueba por el aumento en la componente elástica del par de fuerzas, S'(dNm). En la Figura 5 se muestran las curvas de vulcanización de los diferentes sistemas donde se aprecia el incremento del par de fuerzas debido a la creación de la red covalente en el seno de los elastómeros iónicos, durante la vulcanización de XNBR a 160QC utilizando diferentes sistemas de vulcanización. Los sistemas de vulcanización empleados para obtener la red covalente fueron a) peróxido orgánico, b) sistema azufre-acelerantes, c) díazída y d) peróxido inorgánico. Por su parte, la red iónica de todos los compuestos ha sido obtenida a través de la adición de óxidos metálicos bivalentes, MgO y ZnO. During the vulcanization process (in the examples described in this invention temperatures of 160 Q C have been used unless otherwise indicated) the two networks, ionic and covalent, are generated. The existence of both networks when both cross-linking systems are combined is verified by the increase in the elastic component of the torque, S '(dNm). In Figure 5 the curves of vulcanization of the different systems are shown where the increase of the pair of forces is appreciated due to the creation of the covalent network within the ionic elastomers, during the vulcanization of XNBR at 160 Q C using different System of vulcanization. The vulcanization systems used to obtain the covalent network were a) organic peroxide, b) sulfur-accelerating system, c) diazid and d) inorganic peroxide. For its part, the ionic network of all compounds has been obtained through the addition of bivalent metal oxides, MgO and ZnO.
Todos los sistemas mixtos empleados presentan una transición iónica tal y como se muestra en la Figura 6 para el XNBR. Es importante señalar que la temperatura a la cual aparece esta transición, así como la anchura de la misma depende del elastómero empleado, sistema de entrecruzamiento iónico, sistema de entrecruzamiento covalente y la proporción de ambos. Este hecho posibilita la modulación de esta propiedad de acuerdo con las necesidades y propiedades deseadas para el material. Esta transición iónica proporciona el carácter termoplástico de estos materiales tal y como se ha comprobado mediante programas de vulcanizacíón- enfriamiento-calentamiento. En la Figura 7 se observa la variación del par de fuerzas de diferentes elastómeros iónicos que contienen redes covalentes con la temperatura (XNBR vulcanizados con óxido metálico y diferentes sistemas de vulcanización covalentes). La primera etapa a 160SC o 180SC se corresponde con el proceso de vulcanización de las diferentes muestras. Posteriormente, las muestras vulcanizadas se someten a un enfriamiento en el propio reómetro seguido por un paulatino incremento de la temperatura manteniendo constantes la deformación y la frecuencia a la cual se mide el valor del par de fuerzas. A medida que se aumenta la temperatura, las uniones iónicas muestran su termolabilidad reduciéndose el valor del par de fuerzas del material. All mixed systems used have an ionic transition as shown in Figure 6 for the XNBR. It is important to note that the temperature at which this transition appears, as well as its width depends on the elastomer used, ionic crosslinking system, covalent crosslinking system and the proportion of both. This fact allows the modulation of this property according to the needs and desired properties for the material. This ionic transition provides the thermoplastic character of these materials as has been proven by vulcanization-cooling-heating programs. Figure 7 shows the variation of the force pair of different ionic elastomers containing covalent networks with temperature (XNBR vulcanized with metal oxide and different covalent vulcanization systems). The first stage at 160 S C or 180 S C corresponds to the vulcanization process of the different samples. Subsequently, the vulcanized samples are subjected to a cooling in the rheometer itself followed by a gradual increase in temperature while maintaining the deformation and the frequency at which the value of the torque is measured. As the temperature rises, the ionic joints show their thermolability by reducing the value of the torque of the material.
Este comportamiento no se observa en los elastómeros vulcanizados a través de sistemas convencionales ya que la red covalente originada es térmicamente estable y por tanto el valor del par de fuerzas no se ve afectado por el aumento de la temperatura. En la Figura 8 se muestra la variación de la componente elástica de tres muestras de XNBR vulcanizada con CaO (red iónica), peróxido orgánico (red covalente) y una mezcla de peróxido orgánico y CaO (red iónica+covalente) en función de diferentes ciclos de temperaturas. La primera etapa a 160SC se corresponde con el proceso de vulcanización. Posteriormente, las muestras vulcanizadas se enfrían hasta 40eC en el propio reómetro y finalmente se incrementa de nuevo la temperatura hasta los 160SC manteniendo constantes la deformación y la frecuencia a la cual se mide el valor del par de fuerzas. Al igual que sucede en los elastómeros iónicos puros, en los sistemas mixtos en los que se combinan uniones iónicas y covalentes la transición iónica es totalmente reversible tal y como se muestra en la Figura 8. This behavior is not observed in vulcanized elastomers through conventional systems since the covalent network originated is thermally stable and therefore the value of the torque is not affected by the increase in temperature. The variation of the component is shown in Figure 8 elastic of three samples of XNBR vulcanized with CaO (ionic network), organic peroxide (covalent network) and a mixture of organic peroxide and CaO (ionic network + covalent) depending on different temperature cycles. The first stage at 160 S C corresponds to the vulcanization process. Subsequently, the vulcanized samples are cooled to 40 e C in the rheometer itself and finally the temperature is increased again to 160 S C while maintaining the deformation and the frequency at which the torque value is measured. As with pure ionic elastomers, in mixed systems in which ionic and covalent bonds are combined, the ionic transition is completely reversible as shown in Figure 8.
Como puede observarse, no se aprecian grandes diferencias en el comportamiento con la temperatura del sistema iónico y el sistema mixto, ya que en ambos casos la termolabilidad viene impulsada por la red iónica. La única diferencia reseñable entre ambos sistemas es el aumento del valor del par de fuerzas en el sistema mixto debido precisamente a la existencia de una red covalente térmicamente estable. As can be seen, there are no large differences in the behavior with the temperature of the ionic system and the mixed system, since in both cases the thermolability is driven by the ionic network. The only notable difference between the two systems is the increase in the value of the torque in the mixed system due precisely to the existence of a thermally stable covalent network.
La combinación de la transición térmica de la red iónica y la estabilidad a la temperatura de la red covalente es la responsable del comportamiento de memoria de forma de estos materiales donde se combinan ambos tipos de entrecruzamientos. The combination of the thermal transition of the ionic network and the temperature stability of the covalent network is responsible for the shape memory behavior of these materials where both types of crosslinks are combined.
Preparación y procesado de los elastómeros iónicos con memoria de forma Preparation and processing of ionic elastomers with shape memory
Los materiales se preparan mediante los métodos convencionales en la tecnología del caucho incluyendo los sistemas de vulcanización capaces de generar entrecruzamientos tanto iónicos como covalentes, tal y como han sido descritos anteriormente. Se pueden emplear mezcladores abiertos o cerrados. También es posible la preparación de estos compuestos en disolución, empleando disolventes capaces de disolver el elastómero y donde los sistemas de vulcanización pueden ser dispersados. La vulcanización, asimismo, se lleva a cabo a las temperaturas habituales empleadas en la tecnología del caucho (entre 100 y 200QC), utilizándose los métodos convencionales de transformación. The materials are prepared by conventional methods in rubber technology including vulcanization systems capable of generating both ionic and covalent crosslinks, as described above. Open or closed mixers can be used. It is also possible to prepare these compounds in solution, using solvents capable of dissolving the elastomer and where the vulcanization systems can be dispersed. Vulcanization is also carried out at the usual temperatures used in rubber technology (between 100 and 200 Q C), using conventional transformation methods.
Como ejemplo concreto se puede seleccionar una muestra preparada con los siguientes ingredientes y proporciones: 100 partes de caucho de acrilonitrilo- butadieno carboxilado (XNBR), 1 parte por cíen de caucho (ppcc) de ácido esteárico, óxido de calcio (6 ppcc) y peróxido de dicumilo (1 ppcc). Todos los ingredientes fueron mezclados en rodillos abiertos (de 15 cm de diámetro y 30 cm de longitud) con una relación de fricción entre los rodillos de 1 : 1 ,15. La vulcanización se llevó a cabo a 160QC en una prensa de laboratorio calentada por termofluido al tiempo óptimo de vulcanización calculado a partir de la curva de vulcanización obtenida mediante un reómetro (Rubber Process Analyzer RPA 2000). Aunque en el trabajo realizado no se han empleado cargas para mejorar las propiedades físicas de los materiales, su uso no está limitado, pudiéndose adicionar cualquier tipo de carga con el objeto de reforzar la matriz elastoméríca. Sin embargo, hay que tener presente que las uniones iónicas entre cadenas suministran un nivel de propiedades mecánicas lo suficientemente elevado como para poder prescindir de dichos ingredientes en ciertas aplicaciones de estos compuestos. Del mismo modo es posible añadir durante la preparación del compuesto otros aditivos/ingredientes que se consideren necesarios para sus posteriores aplicaciones como pigmentos, antidegradantes, ayudantes de procesado, etc. Comportamiento de memoria de forma As a concrete example, a sample prepared with the following ingredients and proportions can be selected: 100 parts of carboxylated acrylonitrile butadiene rubber (XNBR), 1 part per citron of stearic acid rubber (ppcc), calcium oxide (6 ppcc) and dicumyl peroxide (1 ppcc). All ingredients were mixed in open rollers (15 cm in diameter and 30 cm in length) with a friction ratio between the rollers of 1: 1, 15. The vulcanization was carried out at 160 Q C in a thermo-fluid heated laboratory press at the optimum vulcanization time calculated from the vulcanization curve obtained by means of a rheometer (Rubber Process Analyzer RPA 2000). Although in the work carried out no loads have been used to improve the physical properties of the materials, its use is not limited, and any type of load can be added in order to reinforce the elastomeric matrix. However, it should be borne in mind that ionic bonds between chains provide a sufficiently high level of mechanical properties to be able to dispense with said ingredients in certain applications of these compounds. Similarly, it is possible to add other additives / ingredients that are deemed necessary for subsequent applications such as pigments, antidegradants, processing aids, etc. during preparation of the compound. Shape memory behavior
La presente invención utiliza como temperatura de transformación, o referencia, la temperatura de transición iónica. La transición iónica en estos materiales tiene lugar en un intervalo de temperaturas que es función del polímero, el sistema empleado en el entrecruzamiento, y la proporción de entre los diferentes sistemas de vulcanización, como se ha podido comprobar anteriormente. Por tanto, es indispensable para un óptimo comportamiento de memoria de forma que la forma temporal se alcance a una temperatura que sobrepase el límite superior de la zona de transición, y que la fijación de la forma temporal se desarrolle a una temperatura por debajo del límite inferior. The present invention uses the ionic transition temperature as the transformation temperature, or reference. The ionic transition in these materials takes place in a temperature range that is a function of the polymer, the system used in the cross-linking, and the proportion of the different vulcanization systems, as previously verified. Therefore, it is essential for optimal memory behavior so that the temporary form is reached at a temperature that exceeds the upper limit of the transition zone, and that the temporary form setting is developed at a temperature below the limit lower.
Una vez fijada la forma temporal, sí se incrementa la temperatura, se produce la recuperación de la forma original debido a la pérdida de efectividad de la fase iónica, tal y como puede apreciarse a través de una serie de fotografías (Figura 9) en las que se observa la rápida transformación de un material de XNBR, vulcanizado con MgO y peróxido de dicumilo, desde su forma transitoria (fijada por la red iónica) hasta su forma original (fijada por la red covalente) a una temperatura por encima de la transición iónica. Once the temporary form is set, if the temperature is increased, the recovery of the original form occurs due to the loss of effectiveness of the ionic phase, as can be seen through a series of photographs (Figure 9) in the that the rapid transformation of an XNBR material, vulcanized with MgO and dicumyl peroxide, is observed from its transient form (fixed by the ionic network) to its original form (fixed by the covalent network) at a temperature above the transition ionic
En esta simple experiencia, la muestra se ha sometido a un ciclo de programación que consta de 5 etapas claves: In this simple experience, the sample has undergone a programming cycle consisting of 5 key stages:
1 . - Calentamiento por encima de la temperatura de transición de referencia, en este caso la temperatura de transición iónica. De esta forma la red iónica pierde efectividad o desaparece.  one . - Heating above the reference transition temperature, in this case the ionic transition temperature. In this way the ionic network loses effectiveness or disappears.
2. - Deformación desde la forma original del material a la forma transitoria deseada. En este caso la red covalente es deformada por lo que ejerce una fuerza elástica que tiende a restaurar la forma original del material. 2. - Deformation from the original form of the material to the desired transient form. In this case, the covalent network is deformed, so it exerts an elastic force that tends to restore the original shape of the material.
3. - Enfriamiento por debajo de la temperatura de transición de referencia, en este caso la temperatura de transición iónica. La red iónica vuelve a ser efectiva en estado deformado. Esto hace que la red iónica formada fije esta forma transitoria. 4. - Calentamiento por encima de la temperatura de transición de referencia, en este caso la temperatura de transición iónica. De esta forma la red iónica pierde efectividad o desaparece, por lo que la fuerza elástica ejercida por la red covalente devuelve al material a su forma original. 3. - Cooling below the reference transition temperature, in this case the ionic transition temperature. The ionic network is effective again in the deformed state. This causes the ionic network formed to fix this transient form. 4. - Heating above the reference transition temperature, in this case the ionic transition temperature. In this way the ionic network loses effectiveness or disappears, so the elastic force exerted by the covalent network returns the material to its original form.
5. - Recuperación. Tras un breve espacio de tiempo, el material vuelve a su estado original debido a la fuerza impulsora ejercida por la red covalente. Independientemente de la forma original del material, tamaño o espesor así como la forma temporal deseada, estos sistemas iónicos que contienen entrecruzamientos covalentes presentan efecto memoria de forma impulsados por efecto de la temperatura. A pesar de que estas experiencias simples demuestran fehacientemente el deseado efecto memoria de forma, por lo general el comportamiento de memoria de forma se cuantifica mediante ciclos repetidos esfuerzo- deformación, o carga-deformación en los que la temperatura es otro parámetro importante.  5. - Recovery. After a short time, the material returns to its original state due to the driving force exerted by the covalent network. Regardless of the original shape of the material, size or thickness as well as the desired temporal shape, these ionic systems that contain covalent cross-links have a memory effect driven by temperature effect. Although these simple experiences reliably demonstrate the desired shape memory effect, usually shape memory behavior is quantified by repeated stress-strain or load-strain cycles in which temperature is another important parameter.
Por lo general, El comportamiento de r lemoria de forma está definido por dos factores: La relación de fijeza de la forma temporal, Rf, y la relación de recuperación, Rr. Ambas relaciones están definidas por las expresiones siguientes respectivamente:
Figure imgf000026_0001
en donde:
In general, the behavior of r lemoria of form is defined by two factors: The fixedness relation of the temporal form, R f , and the recovery relation, R r . Both relationships are defined by the following expressions respectively:
Figure imgf000026_0001
where:
N= ns de cicloN = n s of cycle
max = Deformación máxima  max = maximum deformation
ευ = Deformación en carga cero ε υ = Zero load deformation
ερ = Deformación al final de la recuperación De acuerdo con las expresiones definidas anteriormente, la fijeza de la forma temporal, Rf, no es más que el porcentaje de la forma temporal que ha sido retenida por el material una vez ha cesado el esfuerzo mecánico al que se le ha sometido para deformar ese material desde su forma original. Por otro lado, la relación de recuperación, Rr, nos da una idea de la capacidad que tiene el material para recordar la forma original que mostraba antes de ser deformado hasta su forma transitoria tras ser sometido al ciclo térmico de programación. ε ρ = Deformation at the end of recovery According to the expressions defined above, the fixedness of the temporary form, R f , is not more than the percentage of the temporary form that has been retained by the material once the mechanical stress to which it has been subjected to deform has ceased that material from its original form. On the other hand, the recovery ratio, R r , gives us an idea of the ability of the material to remember the original shape it showed before it was deformed to its transient shape after being subjected to the thermal programming cycle.
De acuerdo con lo anterior, a título de ejemplo se muestra el comportamiento de memoria de forma de dos de los compuestos ensayados en la Tabla 2 y 3. Los valores destacados en las respectivas tablas fueron obtenidos de los ciclos esfuerzo-deformación correspondientes a las figuras 10 y 11. In accordance with the above, by way of example, the shape memory behavior of two of the compounds tested in Table 2 and 3 is shown. The values highlighted in the respective tables were obtained from the stress-strain cycles corresponding to the figures. 10 and 11
Figure imgf000027_0001
Figure imgf000027_0001
Tabla 2. Valores característicos de una muestra de XNBR vulcanizado con óxido metálico y peróxido orgánico que presentan memoria de forma. Table 2. Characteristic values of a sample of XNBR vulcanized with metal oxide and organic peroxide that have shape memory.
Ciclo Ciclo Ciclo Cycle Cycle Cycle
Ciclo I  Cycle I
II lil IV  II lil IV
sma>: 1 1 1 1  sma>: 1 1 1 1
0,709 0,747 0,758 0,736  0.709 0.747 0.758 0.736
¾(N) 0,045 0,058 0,054 0,056  ¾ (N) 0.045 0.058 0.054 0.056
¾(N-1) 0,000 0,045 0,058 0,054  ¾ (N-1) 0.000 0.045 0.058 0.054
Rf (%) 70,9 74, 7 75,8 73,6 R f (%) 70.9 74, 7 75.8 73.6
Rr (%) 95,5 98,6 100,0 99,4 R r (%) 95.5 98.6 100.0 99.4
Tabla 3. Valores característicos de una muestra de XNBR vulcanizado con óxido metálico y peróxido inorgánico que presentan memoria de forma. Como puede observarse, la relación de recuperación es óptima en ambos casos (superior al 95% en prácticamente todos los ciclos), ya que este factor es dependiente de la red elastomérica covalente. Es bien sabido que los elastomeros poseen como característica principal su propiedad elástica, por tanto son materiales ideales para ser utilizados por su memoria de forma. Sin embargo hasta ahora no ha existido ningún mecanismo para fijar la forma transitoria en este tipo de materiales. En esta patente demostramos que la transición iónica presente en los elastomeros iónicos es capaz de ejercer una fuerza que fija con gran eficiencia la forma transitoria. Es decir, una vez deformado el material hasta la forma transitoria deseada, el material únicamente recupera entre el 20 y 25 % de su forma original debido a la fuerza fijadora de la red iónica. Table 3. Characteristic values of a sample of XNBR vulcanized with metal oxide and inorganic peroxide that have shape memory. As can be seen, the recovery ratio is optimal in both cases (greater than 95% in virtually all cycles), since this factor is dependent on the covalent elastomeric network. It is well known that elastomers have as their main characteristic their elastic property, therefore they are ideal materials to be used for their shape memory. However, until now there has been no mechanism to fix the transient form in this type of materials. In this patent we demonstrate that the ionic transition present in ionic elastomers is capable of exerting a force that fixes the transient shape with great efficiency. That is, once the material is deformed to the desired transient form, the material only recovers between 20 and 25% of its original form due to the fixing force of the ionic network.
Como puede apreciarse de los resultados expuestos en las tabla 2 y 3, las características de memoria de forma de los compuestos se mantienen a lo largo de los ciclos, por lo que este fenómeno es totalmente reproducible y repetible en sucesivos ciclos. As can be seen from the results presented in tables 2 and 3, the shape memory characteristics of the compounds are maintained throughout the cycles, so this phenomenon is fully reproducible and repeatable in successive cycles.
Como puede apreciarse en las Figuras 4 y 6, la transición iónica es una transformación relativamente ancha, por lo que la pérdida de eficiencia de las uniones iónicas es paulatina con el incremento de la temperatura. A esto hay que unirle las características intrínsecas de conducción del calor de los elastómeros, por lo que las características que definen el comportamiento de memoria de forma son moldeables y ajustables de acuerdo no sólo con las propiedades intrínsecas del material (variación de la temperatura de transición iónica) sino también con el ciclo térmico empleado en el proceso de programación del material. De esta forma, parámetros importantes que hacen variar tanto Rf como Rr son la temperatura y velocidad de calentamiento y enfriamiento, la deformación sometida para alcanzar la forma final deseada o incluso el tiempo que damos al sistema para que alcance de nuevo la forma original. Aunque todos estos criterios están dirigidos a la obtención de un comportamiento óptimo en cuanto a memoria de forma, como se ha explicado anteriormente pueden emplearse otros límites de composición, temperatura o deformación para ajustar y moldear las propiedades de memoria de forma a las necesidades requeridas por las aplicaciones en las que estos materiales sean requeridos. As can be seen in Figures 4 and 6, the ionic transition is a relatively wide transformation, so the loss of efficiency of the Ionic bonds are gradual with increasing temperature. To this we must add the intrinsic characteristics of heat conduction of elastomers, so the characteristics that define the shape memory behavior are moldable and adjustable according not only to the intrinsic properties of the material (transition temperature variation ionic) but also with the thermal cycle used in the material programming process. In this way, important parameters that vary both R f and R r are the temperature and speed of heating and cooling, the deformation submitted to reach the desired final shape or even the time we give the system to reach the original shape again . Although all these criteria are aimed at obtaining an optimal behavior in terms of shape memory, as explained above, other limits of composition, temperature or deformation can be used to adjust and shape the shape memory properties to the needs required by the applications in which these materials are required.

Claims

REIVINDICACIONES
1 . Material formado por redes poliméricas caracterizado por la combinación de redes de naturaleza iónica y covalente interpenetradas. one . Material formed by polymeric networks characterized by the combination of interpenetrated ionic and covalent networks.
2. Material según la reivindicación 1 , donde la red polimérica es elastomérica. 2. Material according to claim 1, wherein the polymeric network is elastomeric.
3. Material según cualquiera de las reivindicaciones 1 ó 2, que además comprende una carga y/o un aditivo. 3. Material according to any of claims 1 or 2, further comprising a filler and / or an additive.
4. Material según cualquiera de las reivindicaciones 1 a 3, donde la red polimérica comprende grupos ionizables que se seleccionan de la lista que comprende grupos carboxílicos, grupos anhídridos, haluros de ácido, grupos epóxido, grupos sulfónicos y cualquiera de sus combinaciones. 4. Material according to any of claims 1 to 3, wherein the polymeric network comprises ionizable groups that are selected from the list comprising carboxylic groups, anhydrous groups, acid halides, epoxide groups, sulfonic groups and any combination thereof.
5. Material según cualquiera de las reivindicaciones 1 a 4, donde la red polimérica comprende un polímero o copolímero que se selecciona de entre etíleno/ácido acrílico, acrilonitrilo-butadieno carboxilado, estireno-butadieno carboxilado, etileno clorosulfonado, etileno-propileno o etileno-propileno- dieno modificado con anhídrido maléico, etileno-propileno o etíleno- propileno-dieno sulfonado, caucho natural epoxidado, poliuretanos o cualquiera de sus combinaciones. 5. Material according to any of claims 1 to 4, wherein the polymer network comprises a polymer or copolymer selected from ethylene / acrylic acid, carboxylated acrylonitrile-butadiene, carboxylated styrene-butadiene, chlorosulfonated ethylene, ethylene-propylene or ethylene- propylene-diene modified with maleic anhydride, ethylene-propylene or ethylene-propylene-sulfonated diene, epoxidized natural rubber, polyurethanes or any combination thereof.
Material según cualquiera de las reivindicaciones 1 a 5, que además comprende un agente entrecruzante iónico que se selecciona de entre óxido metálico, hidróxido metálico, sal metálica inorgánica u orgánica o cualquiera de sus combinaciones. Material according to any one of claims 1 to 5, further comprising an ionic crosslinking agent that is selected from metal oxide, metal hydroxide, inorganic or organic metal salt or any combination thereof.
7. Material según la reivindicación 6, donde el óxido metálico se selecciona de entre CaO, MgO, ZnO o cualquiera de sus combinaciones. 7. Material according to claim 6, wherein the metal oxide is selected from CaO, MgO, ZnO or any combination thereof.
8. Material según cualquiera de las reivindicaciones 1 a 7, que además comprende un agente entrecruzante covalente que se selecciona de entre peróxido orgánico, peróxido inorgánico, azufre, azufre/acelerantes, diazidas, radiación ionizante o cualquiera de sus combinaciones. 8. Material according to any one of claims 1 to 7, further comprising a covalent crosslinking agent that is selected from organic peroxide, inorganic peroxide, sulfur, sulfur / accelerators, diazides, ionizing radiation or any combination thereof.
9. Procedimiento de obtención del material según cualquiera de las reivindicaciones 1 a 8, que comprende las etapas: 9. Method of obtaining the material according to any of claims 1 to 8, comprising the steps:
a. mezclado de al menos una matriz polimérica con grupos ionizables con al menos un agente entrecruzante iónico y otro covalente descrito según cualquiera de las reivindicaciones 1 a 8, y  to. mixing of at least one polymeric matrix with ionizable groups with at least one ionic crosslinking agent and another covalent agent described according to any one of claims 1 to 8, and
b. vulcanización o entrecruzamíento del producto obtenido en la etapa (a) a una temperatura de entre 100 y 2009C. b. vulcanization or cross-linking of the product obtained in step (a) at a temperature between 100 and 200 9 C.
10. Procedimiento según la reivindicación 9, que además comprende la adición de al menos una carga y/o un aditivo en el mezclado de la etapa (a). 10. Method according to claim 9, further comprising adding at least one filler and / or an additive in the mixing of step (a).
1 1 . Uso del material según cualquiera de las reivindicaciones 1 a 8, como polímero con memoria de forma, donde la transición térmica que activa este comportamiento es la transición iónica. eleven . Use of the material according to any of claims 1 to 8, as a shape memory polymer, wherein the thermal transition that activates this behavior is the ionic transition.
12. Uso según la reivindicación 1 1 , donde el polímero con memoria de forma se emplea para la fabricación de actuadores, sensores, músculos artificiales, tejidos inteligentes, embalaje inteligente y dispositivos biomédicos. 12. Use according to claim 1, wherein the shape memory polymer is used for the manufacture of actuators, sensors, artificial muscles, intelligent tissues, intelligent packaging and biomedical devices.
PCT/ES2011/070381 2010-06-09 2011-05-26 Ionic elastomers with shape memory and method for the production thereof WO2011154575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201030891 2010-06-09
ES201030891A ES2370987B1 (en) 2010-06-09 2010-06-09 IONIC ELASTOMERS WITH FORM MEMORY AND OBTAINING PROCEDURE.

Publications (1)

Publication Number Publication Date
WO2011154575A1 true WO2011154575A1 (en) 2011-12-15

Family

ID=45097566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070381 WO2011154575A1 (en) 2010-06-09 2011-05-26 Ionic elastomers with shape memory and method for the production thereof

Country Status (2)

Country Link
ES (1) ES2370987B1 (en)
WO (1) WO2011154575A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085477A (en) * 2021-10-29 2022-02-25 航天材料及工艺研究所 Oil-resistant conductive fluororubber, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014362A (en) * 1990-05-11 1991-05-14 Tillotson Corporation Elastomeric covering material and hand glove made therewith
JPH11140303A (en) * 1997-11-12 1999-05-25 Dainichiseika Color & Chem Mfg Co Ltd Impact-resistant shape-memory resin composition
WO2002083786A1 (en) * 2001-04-11 2002-10-24 Cheong Seok Hong Shape memory rubber composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014362A (en) * 1990-05-11 1991-05-14 Tillotson Corporation Elastomeric covering material and hand glove made therewith
JPH11140303A (en) * 1997-11-12 1999-05-25 Dainichiseika Color & Chem Mfg Co Ltd Impact-resistant shape-memory resin composition
WO2002083786A1 (en) * 2001-04-11 2002-10-24 Cheong Seok Hong Shape memory rubber composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IBARRA, L. ET AL.: "Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide.", POLYMER, vol. 43, 2002, pages 1649 - 1655 *
IBARRA, L. ET AL.: "Vulcanization of carboxylated nitrile rubber (XNBR) by a mixed zinc peroxide-sulphur system.", POLYMER INTERNATIONAL, vol. 49, 2000, pages 115 - 121 *
RADHESH KUMAR, C. ET AL.: "Curing and mechanical behavior of carboxylated NBR containing hygrothermally decomposed polyurethane.", EUROPEAN POLYMER JOURNAL, vol. 38, 2002, pages 2231 - 2237 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085477A (en) * 2021-10-29 2022-02-25 航天材料及工艺研究所 Oil-resistant conductive fluororubber, preparation method and application
CN114085477B (en) * 2021-10-29 2022-12-09 航天材料及工艺研究所 Oil-resistant conductive fluororubber, preparation method and application

Also Published As

Publication number Publication date
ES2370987A1 (en) 2011-12-26
ES2370987B1 (en) 2012-11-02

Similar Documents

Publication Publication Date Title
Zhao et al. Biphasic Synergistic Gel Materials with Switchable Mechanics and Self‐Healing Capacity
Hu et al. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels
ES2292751T3 (en) REABSORBABLE POLYMER COMPOSITIONS.
Huang et al. Study on the effect of dicumyl peroxide on structure and properties of poly (lactic acid)/natural rubber blend
Zhang et al. Light-healable hard hydrogels through photothermally induced melting–crystallization phase transition
CN103102636B (en) A kind of shape-memory material based on thermoplastic elastomer (TPE)
BR112014029253A2 (en) nanogel polymers and materials and methods of fabrication and use thereof
WO2008118782A3 (en) Fixation devices and method of repair
Xia et al. Facile fabrication of shape memory composites from natural Eucommia rubber and high density polyethylene
Glassman et al. Structure and mechanical response of protein hydrogels reinforced by block copolymer self-assembly
DE602005013262D1 (en) BIOABSORBABLE POLYMERS WITH CALCIUM CARBONATE
PT89189B (en) PREPARATION PROCESS OF POLYOLEFIN BASED ELASTOPATHIC COMPOSITIONS
Guo et al. Cold and hot gelling of alginate-graft-PNIPAM: A schizophrenic behavior induced by potassium salts
Talbamrung et al. Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend
Zhao et al. Chemically crosslinked crystalline thermoplastic polyolefin elastomer with good elasticity and improved thermo-mechanical properties
WO2011154575A1 (en) Ionic elastomers with shape memory and method for the production thereof
ES2272961T3 (en) METHOD FOR THE RETICULATION OF ASPHALTIC COMPOSITIONS AND RESULTING PRODUCT OF THE SAME.
Wu et al. Shape memory and self‐healing behavior of styrene–butadiene–styrene/ethylene‐methacrylic acid copolymer (SBS/EMAA) elastomers containing ionic interactions
Somdee et al. Effect of modified eggshell powder on physical properties of poly (lactic acid) and natural rubber composites
Delgado et al. Combining block copolymers and hydrogen bonding for poly (lactide) toughening
Pan et al. Effects of chain flexibility on the properties of DNA hydrogels
Guo et al. Mechanical properties and crystallization behavior of hydroxyapatite/poly (butylenes succinate) composites
Sainumsai et al. Influence of sulphur crosslink type on the strain-induced crystallization of natural rubber vulcanizates during uniaxial stretching by in situ WAXD using a synchrotron radiation
Genovese et al. Time‐Temperature Creep Behaviour of Poly (propylene) and Polar Ethylene Copolymer Blends
Ushimaru et al. Moldable material from ε-poly-l-lysine and lignosulfonate: mechanical and self-healing properties of a bio-based polyelectrolyte complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791971

Country of ref document: EP

Kind code of ref document: A1