WO2011154098A1 - Hochstrom-steckverbinder, insbesondere für emobility-zellmodule - Google Patents

Hochstrom-steckverbinder, insbesondere für emobility-zellmodule Download PDF

Info

Publication number
WO2011154098A1
WO2011154098A1 PCT/EP2011/002600 EP2011002600W WO2011154098A1 WO 2011154098 A1 WO2011154098 A1 WO 2011154098A1 EP 2011002600 W EP2011002600 W EP 2011002600W WO 2011154098 A1 WO2011154098 A1 WO 2011154098A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector according
plug
module
pin
connector
Prior art date
Application number
PCT/EP2011/002600
Other languages
English (en)
French (fr)
Inventor
Harald Heck
Frank Warmuth
Ralf Hojda
Original Assignee
Diehl Metal Applications Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Metal Applications Gmbh filed Critical Diehl Metal Applications Gmbh
Publication of WO2011154098A1 publication Critical patent/WO2011154098A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a high-current connector, as used for releasably interconnecting the modules of a battery pack for supplying energy to an electric vehicle. So it is not about the fixed connection of cells over quasi-rigid rails to modules, but about the flexible interchangeable interconnection of such modules.
  • the cells are, in particular, galvanic primary batteries, but also electrochemical accumulators or even fuel cells.
  • the problem arises that, despite assembly and operational fluctuations in lying in the single-digit centimeter range distances between the cell modules, these distances must be bridged mechanically and electrically reliable means of manually detachable and reusable connections under tight space accessibility.
  • a bendable-stretchable connection tab extending between adjacent modules is provided at their ends with plug sockets, which in turn are equipped with hollow cylindrical cages made in the annular gap between the pin and socket laminating slats; and the engaging in these cages connector pins in turn are mounted on the poles of the modules to be interconnected with each other - with such socket-pin placement basically can be reversed.
  • the bush or hollow pin-equipped tabs and on the other hand, the lamellae cages can be produced in one piece and therefore very inexpensive despite their very small dimensions in high dimensional accuracy in thermoforming technology.
  • FIG. 1 shows the use of a connector according to the invention equipped for interconnecting two adjacent module poles with each other
  • a battery pack for example, galvanic cells.
  • a group of which is (not shown in the drawing) practically rigidly connected by about welded Zellpolverbinder to a module 11 electrically connected.
  • These prismatic modules 1 1 are individually interchangeable. They are neighbour- barten, located in a plane module poles 12 via manually detachable and reusable short connectors 13 electrically interconnected.
  • connection between the two plug sockets 14 at the front ends of a plug connection 13 therefore serves a thick tab 15, preferably made of nickel alloy-coated copper (or else
  • the tab 15 is flexurally-extensible deformable in all three directions. This is preferably easily embossed by at least one in the central region of its longitudinal extent
  • the two about 10 mm high sockets 14, with which a typically 70 mm long tab 15 is fitted, are designed as short solid hollow cylinder, in particular from the same nickel alloy coated material as the tab 15 itself. For example, they can be connected with a punched tab 15 using the friction welding process.
  • the connector 13 is made with its two sockets 14 at the front ends of the tab 15 and with their cross beads 16 in one piece as Tiefziehstanzteil because the sockets 14 in the plane of the tab 15 need not be closed by a floor.
  • each of the strap-resistant plug sockets 14 engages over a module-strength plug pin 19 which projects orthogonally from the surface of a module pole 12.
  • This pair of pin 19 and socket 14 is a manually detachable and reassemblable connector 20.
  • the serves ei - ner contact determination by radial bridging a thin annular gap 24 hiss the two mutually facing lateral surfaces 21-22 of the connector 20 by means of resiliently against the lateral surfaces 21, 22 supported slats 26.
  • the cage 23 between two axially mutually offset end rings 25 flat band-shaped axially parallel slats 26 quasi as generatrix of an interrupted Hohlzylinderwandung.
  • the lamellae 26 are of this imaginary Wandungsfrow, and thus from the circumferential direction of the end rings
  • the strip-shaped slats 26 by conditioning their Lijnsberandened against the lateral surfaces 21, 22 resilient twisted in the direction of the peripheral course of the Wandungsfrow when the cage 23, radially supported against the inner circumferential surface 22 of the sleeve 14, is pressed axially over the outer circumferential surface 21 of a pin 19.
  • the fins 26 are not supported on both sides over their entire length of the longitudinal boundaries against the lateral surfaces 21 and 22 from. Rather, in order to achieve in this connector 20, a plurality of self-cleaning, geometrically defined contact points for low-loss ohmic current transition from the pin 19 to the socket 14, the mutual axis-parallel longitudinal boundaries of each blade 26 at least one bulge 27, preferably as shown in Figure 2 of the drawing A plurality of bulges 27 on both sides of constrictions 28. A taper 29 for laschenabgelegenen free front end 30 of the bush 14 out facilitates the placement of the cage 23 on the pin 19, so its insertion into the cage-fitted socket 14th Conveniently, the cage 23 is made in one piece.
  • a ladder-shaped structure with ribbon-shaped cross rungs between longitudinal bars is punched out of a nickel alloy-coated stainless steel or copper sheet (the latter preferably alloyed with beryllium or nickel silicon) in multiple use; and by means of a punch, the rungs are bent out of the plane of the sheet to the lamellae 26, which are entangled about their longitudinal axes, if this has not already taken place in the course of a deep-drawing punching. Then, this conductor structure is cut to the middle circumference of the plug annular gap 24 and rolled into a single-ply hollow cylindrical cage 23, whereby the ladder stiles become the two end cage rings 25.
  • the cage 23 can be closed form-fit or material-locking; but it is sufficient to use the bent only in the form of cage 23 under radial bias in the socket 14.
  • the cage 23 then undergoes therein a positive axial positioning, such as by end-side beads, beads or undercuts (not visible in the drawing).
  • the cooperating with the plug socket 14 plug pin 19 should consist of the same material as possible, as the socket 14.
  • the pin 19 directly electrically conductively mounted on the end face of the module pole 12, as welded become.
  • the module poles 12 are difficult to access given the dense packing of the modules 11. Therefore, the pin 19 is preferably designed as an axially short hollow body to weld from its interior forth as its base 31 formed lower edge on the surface of the module pole 12. It is logistically more advantageous, however, to bridge any material incompatibilities from the outset under the base 31 as
  • Welding agent to have mounted a collar 32 approximately in the form of a perforated aluminum disc in ultrasonic welding, which can then be welded through the hollow pin 19 along its inner edge 33 with the module pole 12.
  • each of the two module poles 12 of a replaceable battery pack module 11 is ultimately equipped with a plug-in pin 19 in order to connect it to a plug-in connection bent over in a bending elastic manner adjacent Modulpol 12 to contact.
  • the connector 13 is preferably formed as a deep-drawn part with two sockets 14 for receiving also deep-drawn lamellar cages 23, the lamellae 36 bridges an annular gap 24 between the male pin 19 and male connector 14 radially resilient.
  • the pin 19 is formed as a hollow body and equipped at its base 31 with a collar 32 as a material mediator, which can be welded along its inner edge 33 with a Modulpol 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Jeder der beiden Modulpole (12) eines austauschbaren Batteriepack-Modules (11) ist mit einem Steckverbinder-Stift (19) ausgestattet, um ihn über eine biegeelastische Steckverbindung (13) mit zwei, mit Lamellen-Käfigen (23) bestückten, Steckverbinder-Buchsen (14) zu einem benachbarten Modulpol (12) zu kontaktieren. Die Buchsen (14) sind mit Lamellen-Käfigen 23 zu federelastischer Aufnahme der Stifte (19) bestückt. Vorzugsweise ist auch jeder Stift (19) als Hohlkörper ausgebildet und bei seinem Sockel (31) mit einem Kragen (32) als Materialmittler bestückt, der längs seines Innenrandes (33) mit einem Modulpol (12) verschweißt werden kann.

Description

Diehl Metel Applications GmbH, Heinrich-Diehl-Str. 9,
90552 Röthenbach
Hochstrom-Steckverbinder, insbesondere für Emobility-Zellmodule
Die Erfindung betrifft einen Hochstrom-Steckverbinder, wie er etwa zum lösbaren Verschalten der Module eines Batteriepacks zur Energieversorgung eines Elekt- rofahrzeugs zur Anwendung kommt. Es handelt sich also nicht um die feste VerSchaltung von Zellen über quasi starre Schienen zu Modulen, sondern um das flexibel austauschbare Zusammenschalten solcher Module. Bei den Zellen handelt es sich insbesondere um galvanische Primärbatterien, aber auch um elektrochemische Akkumulatoren oder gar um Brennstoffzellen. Bei der Modulverschaltung tritt das Problem auf, dass trotz montage- und betriebsbedingter Schwankungen der im einstelligen Zentimeterbereich liegenden Abstände zwischen den Zellmodulen diese Abstände mittels manuell lösbarer und wieder verwendbarer Verbindungen unter räumlich beengter Zugänglichkeit mechanisch und elektrisch zuverlässig überbrückt werden müssen.
In Erkenntnis solcher in der Praxis gegebener Randbedingungen liegt vorliegender Erfindung die technische Problemstellung zugrunde, einen wiederverwendbaren Steckverbinder für betriebszuverlässige kleinbauende Hochstrom- Steckverbindungen anzugeben, der eine preisgünstige Massenfertigung erlaubt, um hinsichtlich Zuverlässigkeit und Kosten die strengen Anforderung insbesondere der Automobilindustrie zu erfüllen. Diese Aufgabe ist gemäß den im Hauptanspruch angegebenen wesentlichen Merkmalen gelöst. Danach ist eine zwischen einander benachbarten Modulen sich erstreckende biegeweich-dehnbare Verbindungs-Lasche an ihren Stirnenden mit Stecker-Buchsen ausgestattet, die ihrerseits mit hohlzylindrischen Käfigen aus im Ringspalt zwischen Stift und Buchse kontaktgebenden Lamellen bestückt sind; und die in diese Käfige eingreifenden Stecker-Stifte ihrerseits sind auf den Polen der untereinander zu verschaltenden Module befestigt - wobei solche Buchsen-Stift-Bestückung grundsätzlich auch umgekehrt erfolgen kann.
Einerseits die buchsen- oder hohlstift-bestückten Laschen und andererseits die Lamellen-Käfige lassen sich trotz ihrer sehr kleinen Abmessungen in hoher Maßhaltigkeit in Tiefziehtechnik jeweils einteilig und deshalb sehr preisgünstig herstellen.
Abwandlungen und Weiterbildungen der Erfindung ergeben sich aus den weiteren Ansprüchen und, auch hinsichtlich deren Vorteilen, aus nachstehender Beschreibung eines etwa maßstabsgerecht stark vergrößert skizzierten bevorzugten Realisierungsbeispieles für die erfindungsgemäße Lösung. In der Zeichnung zeigt
Fig.1 den Einsatz einer erfindungsgemäß ausgestatteten Steckverbindung zum Verschalten zweier einander benachbarter Modulpole miteinander,
Fig.2 einen Lamellen-Käfig in den Steckverbindern nach Fig.1 und
Fig.3 in zusätzlich vergrößertem Ausschnitt die Kotaktgabe der Lamellen nach Fig.2.
Als Energiespeicher für den Elektroantrieb eines Fahrzeuges dient ein Batteriepack aus beispielsweise galvanischen Zellen. Jeweils eine Gruppe von denen ist (in der Zeichnung nicht dargestellt) praktisch starr durch etwa aufgeschweißte Zellpolverbinder zu einem Modul 11 elektrisch verschaltet. Diese prismatischen Module 1 1 sind einzeln austauschbar. Sie sind zwischen ihren einander benach- barten, in einer Ebene gelegenen Modulpolen 12 über manuell lösbare und wieder verwendbare kurze Steckverbindungen 13 miteinander elektrisch verschaltet.
Der hohe Leistungsbedarf bei vergleichsweise geringer Batteriepack- Ausgangsspannung bedingt sehr große Ströme über die Steckverbindungen 13, die deshalb, zum Vermeiden entsprechenden ohmschen Spannungsverlustes, eine gute Leitfähigkeit, also einen möglichst niedrigen elektrischen Leitungswiderstand aufweisen sollen. Der Verbindung zwischen den beiden Stecker- Buchsen 14 an den Stirnenden einer Steckverbindung 13 dient deshalb eine di- cke Lasche 15, bevorzugt aus nickellegierungsbeschichtetem Kupfer (oder auch
Aluminium). Zum Ausgleich von austausch-, montage- und betriebsbedingten (u.a. erwärmungsabhängigen) Abstandsschwankungen zwischen einander benachbarten, zusammengeschalteten Modulen 11 ist die Lasche 15 in allen drei Raumrichtungen biegeweich-dehnbar verformbar. Das wird bevorzugt einfach durch wenigstens eine im mittleren Bereich ihrer Längserstreckung eingeprägte
Quersicke 16 erreicht, die somit zwischen den Laschen- Buchsen 14-14 und - wie aus der Zeichnung ersichtlich - bei der Lücke 17 zwischen den beiden einander benachbarten, über diese Steckverbindung 13 zusammengeschalteten Modulen 11-11 liegt.
Die zwei etwa 10 mm hohen Buchsen 14, mit denen eine typisch um 70 mm lange Lasche 15 bestückt ist, sind als kurze massive Hohlzylinder, insbesondere aus dem gleichen nickellegierungsbeschichteten Material wie die Lasche 15 selbst, ausgelegt. Sie können stirnseitig etwa im Reibschweißverfahren mit einer ausge- stanzten Lasche 15 verbunden werden. Vorzugsweise ist aber die Steckverbindung 13 mit ihren beiden Buchsen 14 bei den Stirnenden der Lasche 15 sowie mit deren Quersicken 16 einteilig als Tiefziehstanzteil gefertigt, weil die Buchsen 14 in der Ebene der Lasche 15 nicht etwa durch einen Boden geschlossen sein müssen.
Im verschalteten Zustand übergreift jede der laschenfesten Stecker-Buchsen 14 einen modulfesten Stecker-Stift 19, der orthogonal von der Oberfläche eines Mo- dulpoles 12 vorsteht. Diese Paarung aus Stift 19 und Buchse 14 stellt einen manuell lösbaren und wieder zusammenfügbaren Steckverbinder 20 dar. Dessen wechselseitige Kontaktierung über Zylinder-Außen- zu Zylinder-Innenmantelflächen 21-22 (vgl. Fig.3) erfolgt aber nicht mittels deren unmittelbarer Berührung, sondern im Interesse definierter Kontaktgaben über einen koaxial im Steckverbinder 20 gelegenen hohlzylindrischen Lamellen-Käfig 23. Der dient ei- ner Kontaktmittlung durch radiale Überbrückung eines dünnen Ringspaltes 24 zischen den beiden aufeinander zu weisenden Mantelflächen 21-22 des Steckverbinders 20 mittels federelastisch gegen die Mantelflächen 21 , 22 abgestützter Lamellen 26. Dadurch kommen fertigungstechnisch bedingte Durchmessertoleranzen bei einer Tiefziehausbildung der Buchsen kontakttechnisch nicht mehr zum Tragen.
Dafür weist der Käfig 23 zwischen zwei axial gegeneinander versetzten Stirnringen 25 flachbandförmige achsparallele Lamellen 26 quasi als Erzeugende einer unterbrochenen Hohlzylinderwandung auf. Die Lamellen 26 sind aber aus dieser imaginären Wandungsflucht, und damit aus der Umfangsrichtung der Stirnringe
25, heraus um ihre achsparallelen Längsachsen derart verschwenkt, dass ihre originäre (unbelastete) radiale Erstreckung (bezüglich der Zylinderachse) größer ist, als die Weite des Ringspaltes 24. Deshalb werden die streifenförmigen Lamellen 26 durch Anlage ihrer Längsberandungen gegen die Mantelflächen 21 , 22 federelastisch in Richtung auf den peripheren Verlauf jener Wandungsflucht verdreht, wenn der Käfig 23, radial abgestützt gegen die Innenmantelfläche 22 der Buchse 14, axial über die Außenmantelfläche 21 eines Stiftes 19 gedrückt wird.
Vorzugsweise stützen die Lamellen 26 sich nicht beiderseits über ihre gesamten Längen der Längsberandungen gegen die Mantelflächen 21 bzw. 22 ab. Vielmehr weisen, um in diesem Steckverbinder 20 eine Vielzahl selbstreinigender, geometrisch definierter Kontaktstellen für verlustarmen ohmschen Stromübergang vom Stift 19 zur Buchse 14 zu erzielen, die beiderseitigen achsparallelen Längsberandungen jeder Lamelle 26 wenigstens eine Ausbauchung 27 auf, vorzugsweise wie in Fig.2 der Zeichnung berücksichtigt mehrere Ausbauchungen 27 beiderseits von Einschnürungen 28. Eine Verjüngung 29 zum laschenabgelegenen freien Stirnende 30 der Buchse 14 hin erleichtert das Aufsetzen des Käfigs 23 auf den Stift 19, also dessen Einführen in die käfigbestückter Buchse 14. Zweckmäßigerweise wird auch der Käfig 23 einteilig gefertigt. Dafür wird etwa aus einem nickellegierungsbeschichteten Edelstahl- oder Kupferblech (letzteres bevorzugt legiert mit Beryllium oder Nickelsilizium) im Mehrfachnutzen eine leiter- förmige Struktur mit flachbandförmigen Quersprossen zwischen Längsholmen ausgestanzt; und mittels eines Stempels werden die Sprossen aus der Blechebene zu den um ihre Längsachsen verschränkten Lamellen 26 herausgebogen, wenn das nicht schon im Zuge eines Tiefziehstanzens erfolgt ist. Sodann wird diese Leiterstruktur auf den mittleren Umfang des Stecker-Ringspaltes 24 abgelängt und zum einlagig hohlzylindrischen Käfig 23 gerollt, womit die Leiterholme zu den beiden stirnseitigen Käfig-Ringen 25 werden. Die können form- oder materialschlüssig geschlossen werden; es genügt aber, den nur in Form gebogenen Käfig 23 unter radialer Vorspannung in die Buchse 14 einzusetzen. Vorzugsweise erfährt der Käfig 23 dann darin eine formschlüssige axiale Positionierung, etwa durch stirnseitige Sicken, Wülste oder Hinterschneidungen (in der Zeichnung nicht zu erkennen).
Der mit der Stecker-Buchse 14 zusammenwirkende Stecker-Stift 19 sollte möglichst aus demselben Material bestehen, wie die Buchse 14. Bei elektrochemisch und verbindungstechnisch geeignetem Material des Modulpoles 12 kann der Stift 19 direkt elektrisch leitend auf die Stirnfläche des Modulpoles 12 montiert, etwa aufgeschweißt werden. Allerdings sind die Modulpole 12 angesichts der dichten Packung der Module 11 schlecht zugänglich. Deshalb ist der Stift 19 vorzugsweise als axial kurzer Hohlkörper ausgelegt, um von dessem Innenraum her dessen als Sockel 31 ausgebildete untere Berandung auf die Oberfläche des Modulpoles 12 aufzuschweißen. Logistisch vorteilhafter ist es aber, zum Überbrücken etwaiger Materialunverträglichkeiten von vornherein unter dem Sockel 31 als
Schweißmittler einen Kragen 32 etwa in Form einer gelochten Aluminiumscheibe im Ultraschallschweißen montiert zu haben, die dann durch den hohlen Stift 19 hindurch längs ihres Innenrandes 33 mit dem Modulpol 12 verschweißt werden kann.
Jedenfalls ist erfindungsgemäß letztlich jeder der beiden Modulpole 12 eines austauschbaren Batteriepack-Modules 11 mit einem Steckverbinder-Stift 19 ausgestattet, um ihn über eine biegeelastisch abgekröpfte Steckverbindung 13 zu einem benachbarten Modulpol 12 hin zu kontaktieren. Die Steckverbindung 13 ist bevorzugt als Tiefziehteil mit zwei Buchsen 14 zur Aufnahme von ebenfalls tiefgezogenen Lamellen-Käfigen 23 ausgebildet, deren Lamellen 36 einen Ringspalt 24 zwischen Stecker-Stift 19 und Stecker-Buchse 14 federelastisch radial überbrü- cken. Vorzugsweise ist auch der Stift 19 als Hohlkörper ausgebildet und bei seinem Sockel 31 mit einem Kragen 32 als Materialmittler bestückt, der längs seines Innenrandes 33 mit einem Modulpol 12 verschweißt werden kann.
Bezugszeichenliste
Batterie-Modul
Modulpol (an 11)
Steckverbindung (15 mit 14; zwischen 12-12 von 11-11 über 17 hinweg)
Buchse (an 13)
Lasche (von 13)
Quersicke (in 15)
Lücke (zwischen 11-11 , überbrückt durch 15, 13) Stift (für 14)
Steckverbinder (19+14)
Außenmantelfläche (von 19)
Innenmantelfläche (von 14)
Käfig (in 24)
Ringspalt (zwischen 21-22)
Stirnring (von 23)
Lamelle (von 23, zwischen 25-25)
Ausbauchung (von 26)
Einschnürung (von 26, zwischen 27-27)
Verjüngung (von 26 bei 30)
Stirnende (von 14)
Sockel (von 19)
Kragen (unter 31)
Innenrand (von 32)

Claims

PATENTANSPRÜCHE
Hochstrom-Steckverbinder (20), insbesondere für über Steckverbindungen (13) zwischen Modulpolen (12) zu verschaltende Emobility- Zellmodule (11), gekennzeichnet durch, zur Aufnahme von modulpol- festen Stecker-Stiften (19), mit Lamellen-Käfigen (23) bestückte Stecker-Buchsen (14) bei den Enden einer biegeweich-dehnbar ausgelegten Lasche (15).
Steckverbinder nach dem vorangehenden Anspruch, dadurch gekennzeichnet, dass der Käfig (23) zwischen Stirnringen (25-25) aus deren Umfangsrichtung heraus ausgestellte achsparallele Lamellen (26) aufweist, die mit ihren beiderseitigen achsparallelen Längsberandungen einen Ringspalt (24) zwischen der Buchsen-Innenmantelfläche (22) und der Stift-Außenmantelfläche (21) kontaktgebend radial überbrücken.
Steckverbinder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Käfig (23) formschlüssig in der Buchse (14) gehaltert ist.
Steckverbinder nach einem der vorangehenden Ansprüche, gekennzeichnet durch wenigstens eine Ausbauchung (27) oder wenigstens eine Einschnürung (28) im Verlaufe der Längsberandungen der Lamellen (26).
Steckverbinder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Lamellen (26) beim laschenabgelegenen Stirnende (30) der Buchse (14) in einer Verjüngung (29) auslaufen.
6. Steckverbinder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Stecker-Stift (19) hohlzylindrisch ausgebildet ist.
7. Steckverbinder nach dem vorangehenden Anspruch, dadurch gekennzeichnet, dass der Stift (19) mit einem Kragen (32) unterlegt ist.
8. Steckverbinder nach dem vorangehenden Anspruch, dadurch gekennzeichnet, dass der Kragen (32) längs seines Innenrandes (33) mit dem Modulpol (12) verschweißt ist.
9. Steckverbinder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steckverbindung (13) in Form der mit den beiden Buchsen (14) bestückte Lasche (15) als einteiliges Tiefziehteil ausgelegt ist.
10. Steckverbinder nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Käfig (23) als einteiliges leiterartiges Tiefziehteil mit verschränkten Flachbandsprossen zwischen anschließend zu den beiderseitigen Stirnringen (25) zu verformenden Längsholmen ausgelegt ist.
PCT/EP2011/002600 2010-06-08 2011-05-26 Hochstrom-steckverbinder, insbesondere für emobility-zellmodule WO2011154098A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010022965 2010-06-08
DE102010022965.2 2010-06-08

Publications (1)

Publication Number Publication Date
WO2011154098A1 true WO2011154098A1 (de) 2011-12-15

Family

ID=44587746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/002600 WO2011154098A1 (de) 2010-06-08 2011-05-26 Hochstrom-steckverbinder, insbesondere für emobility-zellmodule

Country Status (1)

Country Link
WO (1) WO2011154098A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202989A1 (de) * 2015-02-19 2016-08-25 Siemens Aktiengesellschaft Zellverbinder für Batteriemodule und Verfahren zur Zellenverbindung
WO2017162367A1 (de) * 2016-03-22 2017-09-28 Robert Bosch Gmbh Batterie und verfahren zur herstellung einer batterie
WO2018103979A1 (de) * 2016-12-08 2018-06-14 Robert Bosch Gmbh Batterie und verfahren zur herstellung einer batterie
CN108807759A (zh) * 2018-06-11 2018-11-13 北京新能源汽车股份有限公司 一种动力电池及电动汽车
DE102017222934A1 (de) 2017-12-15 2019-06-19 Volkswagen Aktiengesellschaft Elektrischer Energiespeicher für ein Kraftfahrzeug, Verfahren zur Montage eines elektrischen Energiespeichers und Kraftfahrzeug mit elektrischem Energiespeicher
DE102019112372A1 (de) * 2019-05-13 2020-11-19 Bayerische Motoren Werke Aktiengesellschaft Hochvoltbatterie für ein Kraftfahrzeug mit Modulverbindern sowie Kraftfahrzeug
EP4207473A1 (de) * 2021-12-29 2023-07-05 Automotive Cells Company SE Einheit zur verbindung von elektrochemischen zellen und entsprechendes installationsverfahren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270277A1 (en) * 2005-05-25 2006-11-30 Weiping Zhao Canted coil spring power terminal and sequence connection system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270277A1 (en) * 2005-05-25 2006-11-30 Weiping Zhao Canted coil spring power terminal and sequence connection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202989A1 (de) * 2015-02-19 2016-08-25 Siemens Aktiengesellschaft Zellverbinder für Batteriemodule und Verfahren zur Zellenverbindung
WO2017162367A1 (de) * 2016-03-22 2017-09-28 Robert Bosch Gmbh Batterie und verfahren zur herstellung einer batterie
WO2018103979A1 (de) * 2016-12-08 2018-06-14 Robert Bosch Gmbh Batterie und verfahren zur herstellung einer batterie
DE102017222934A1 (de) 2017-12-15 2019-06-19 Volkswagen Aktiengesellschaft Elektrischer Energiespeicher für ein Kraftfahrzeug, Verfahren zur Montage eines elektrischen Energiespeichers und Kraftfahrzeug mit elektrischem Energiespeicher
CN108807759A (zh) * 2018-06-11 2018-11-13 北京新能源汽车股份有限公司 一种动力电池及电动汽车
CN108807759B (zh) * 2018-06-11 2021-04-27 北京新能源汽车股份有限公司 一种动力电池及电动汽车
DE102019112372A1 (de) * 2019-05-13 2020-11-19 Bayerische Motoren Werke Aktiengesellschaft Hochvoltbatterie für ein Kraftfahrzeug mit Modulverbindern sowie Kraftfahrzeug
EP4207473A1 (de) * 2021-12-29 2023-07-05 Automotive Cells Company SE Einheit zur verbindung von elektrochemischen zellen und entsprechendes installationsverfahren
WO2023126398A1 (fr) * 2021-12-29 2023-07-06 Automotive Cells Company Se Ensemble d'interconnexion de cellules électrochimiques et procédé d'installation associé

Similar Documents

Publication Publication Date Title
WO2011154098A1 (de) Hochstrom-steckverbinder, insbesondere für emobility-zellmodule
DE112012003782B4 (de) Verpressungsstruktur für Metallelemente und Sammelschiene, welche diese verwendet
EP3096372B1 (de) Batterie-speichermodul und batterie-speichersystem
EP2441103B2 (de) Batteriezellenverbinder
DE202018106375U1 (de) Zellverbinder zum elektrisch leitenden Verbinden von Rundzellen einer Batterie für ein Kraftfahrzeug sowie entsprechende Batterie
EP2441104B1 (de) Trägermatrix für batteriezellenverbinder
EP2497134B1 (de) Verfahren zur verbindung eines batteriepols an einer ersten batteriezelle mit einem batteriepol an einer zweiten batteriezelle sowie batterie mit miteinander verbundenen batteriezellen und batteriesystem
DE102012005120A1 (de) Verbindungssystem für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit dem Verbindungssystem
DE102011102231A1 (de) Batteriestapelanordnung unter Verwendung verkleideter elektrischer Verbindungen
EP3878024A1 (de) Zellverbinder zum elektrisch leitenden verbinden von rundzellen einer batterie für ein kraftfahrzeug und verfahren zum herstellen einer batterie für ein kraftfahrzeug
EP2713423B1 (de) Batteriemodul mit Verbindungselement in Omega-Form zur elektrischen Verbindung von Batteriezellen
DE202009012647U1 (de) Batteriezellenverbinder
WO2011060969A1 (de) Batteriezellenverbinder
DE102016219302A1 (de) Energiezellenhaltevorrichtung für ein Kraftfahrzeug
DE102012215205A1 (de) Zellenverbinder, Batteriezellenmodul, Batterie, Verfahren zur Herstellung eines Batteriezellenmoduls und Kraftfahrzeug
DE102011105821A1 (de) Steckverbinderbuchse
DE102012000871A1 (de) Zellengehäuse für elektrochemische Zellen zum Aufbau eines elektrochemischen Energiespeichers
DE102015007615A1 (de) Verbindungselement zur elektrischen Verschaltung von Einzelzellen, Zellblock und elektrische Batterie
DE102012204591A1 (de) Verbindungseinrichtung zum Verbinden von elektrischen Bauelementen eines elektrischen Energiespeichers, elektrischer Energiespeicher und Verfahren zum Verbinden von elektrischen Bauelementen eines elektrischen Energiespeichers
DE102014015237A1 (de) Batterie und Verfahren zur Herstellung einer solchen Batterie
DE102013019468A1 (de) Batterie mit einer Mehrzahl von Batteriezellen
DE102012223766B4 (de) Energiespeicheranordnung und Verfahren zur Herstellung der Energiespeicheranordnung
DE102011007312A1 (de) Speichereinheit mit einem federnd kontaktierten Energiespeicher
DE102009053058A1 (de) Elektrische Verbindung für Energiespeicher
EP0772251A1 (de) Galvanische Zelle mit drahtförmigen Elektrodestromableitern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11738155

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11738155

Country of ref document: EP

Kind code of ref document: A1