WO2011152244A1 - リチウム電池用合金負極とその製造方法およびリチウム電池 - Google Patents

リチウム電池用合金負極とその製造方法およびリチウム電池 Download PDF

Info

Publication number
WO2011152244A1
WO2011152244A1 PCT/JP2011/061834 JP2011061834W WO2011152244A1 WO 2011152244 A1 WO2011152244 A1 WO 2011152244A1 JP 2011061834 W JP2011061834 W JP 2011061834W WO 2011152244 A1 WO2011152244 A1 WO 2011152244A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
negative electrode
lithium battery
resin
alloy negative
Prior art date
Application number
PCT/JP2011/061834
Other languages
English (en)
French (fr)
Inventor
進啓 太田
上村 卓
細江 晃久
真嶋 正利
新田 耕司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2011800254727A priority Critical patent/CN102906906A/zh
Priority to KR1020127029168A priority patent/KR20130042487A/ko
Publication of WO2011152244A1 publication Critical patent/WO2011152244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alloy negative electrode for a lithium battery using a porous aluminum body, a method for producing the same, and a lithium battery.
  • lithium secondary batteries such as lithium ion batteries used for portable information terminals, electric vehicles, and household power storage devices have been actively researched.
  • Non-Patent Document 1 discloses a Li—Al (negative electrode) / MnO 2 (positive electrode) lithium secondary battery.
  • the lithium secondary battery described above has difficulty in achieving industrial mass production because the Li—Al alloy as the negative electrode is fragile.
  • An alloy negative electrode for a lithium battery according to the present invention comprises: An alloy negative electrode for a lithium battery using a non-aqueous electrolyte, The aluminum porous body is filled with lithium metal.
  • the present inventor has intensively studied to solve the above problems. As a result, the present inventors have found that it is effective to use a Li—Al alloy produced by filling lithium metal in a porous aluminum body as a negative electrode instead of the conventional plate-like Li—Al alloy.
  • the Li—Al alloy negative electrode filled with lithium metal in the aluminum porous body has a skeleton as a core, and is not as brittle as the conventional Li—Al alloy negative electrode. Is preferred.
  • the Al concentration decreases as the distance from the skeleton of the porous body increases, that is, the central portion of the skeleton of the porous body becomes thinner. Therefore, the expansion and contraction stress accompanying the charge / discharge cycle is dispersed and relaxed. As a result, even when the depth of discharge is increased, cracking of the electrode and the like are suppressed, generation of pulverization is suppressed, and a sufficient charge / discharge cycle can be ensured.
  • the alloy negative electrode for lithium battery A skeleton of the aluminum porous body is formed of aluminum.
  • the skeleton of the aluminum porous body itself is made of aluminum, a Li—Al alloy can be formed using only the skeleton. For this reason, the alloy negative electrode for lithium batteries with a high porosity and a larger capacity density can be provided.
  • the lithium battery alloy negative electrode is The skeleton of the aluminum porous body is formed by an aluminum coating material in which an aluminum layer is formed on the surface of a core material made of any metal of copper, nickel, and iron.
  • the alloy negative electrode for lithium batteries of the present invention uses a metal of copper, nickel, or iron as the core material of the aluminum porous body. These metals are not alloyed with lithium or aluminum, but have high mechanical strength, so that a porous body having excellent strength can be formed. For this reason, the porous body in which the aluminum layer is formed on the surface of the core material made of these metals can provide an alloy negative electrode for a lithium battery that is strong against expansion and contraction.
  • the ratio of the volume of the lithium metal in the pores of the aluminum porous body is 50% or more and less than 100%.
  • the volume ratio of lithium metal is less than 100%, and vacancies remain in the porous aluminum body after filling Li, so even when dendrites are produced, the dendrites are mainly produced in the vacancies. . For this reason, a dendrite short is suppressed effectively.
  • the volume ratio of the lithium metal is less than 50%, there is a possibility that the practical action as an alloy negative electrode for a lithium battery cannot be sufficiently exhibited.
  • the amount of oxygen on the surface of aluminum forming the skeleton of the aluminum porous body or the aluminum layer of the aluminum covering material is 3.1% by mass or less.
  • the aluminum porous body of the alloy negative electrode for lithium batteries of the present invention has an oxygen content of 3.1% by mass or less on the surface of aluminum forming the skeleton of the aluminum porous body or the aluminum layer of the aluminum coating material. It is possible to provide a battery alloy negative electrode having an unprecedented higher capacity density.
  • Al Since Al is easily oxidized from the beginning, there has been no porous aluminum body having a sufficiently small amount of oxygen on the surface.
  • aluminum prepared by applying Al powder on the surface of an Al eutectic alloy film formed on the surface of a foamed resin described in JP-A-8-170126 and then heat-treating it in a non-oxidizing atmosphere.
  • the amount of oxygen on the surface is large.
  • the filled Li is oxidized by oxygen (O 2 ) and changed to Li 2 O that does not function as an active material, so that a large capacity density cannot be obtained. Further, the generated Li 2 O becomes a resistance layer, and the characteristics are deteriorated.
  • the present inventor has researched an aluminum porous body having a small amount of oxygen and succeeded in developing an aluminum porous body having an oxygen content of 3.1% by mass or less.
  • the present invention is characterized by using such an aluminum porous body. Since an aluminum porous body having a surface oxygen content of 3.1% by mass or less is used, an alloy negative electrode for a lithium battery having a higher capacity density can be obtained. .
  • FIG. 1A to 1C are schematic diagrams showing an outline of the first stage.
  • FIG. 1A is an enlarged schematic view showing a part of a cross section of a resin 1 having communication holes, and shows a state in which holes are formed using the resin 1 as a skeleton.
  • FIG. 1B shows a state (aluminum layer coating resin 3) in which an aluminum layer 2 is formed on the surface of the resin 1 having communication holes.
  • FIG. 1C shows a state (resin aluminum porous body 4) after the resin 1 is thermally decomposed and disappeared from the aluminum layer coating resin 3.
  • FIG. 2 shows a process of thermally decomposing the resin 1 from the aluminum layer coating resin 3.
  • the aluminum layer coating resin 3 and the positive electrode 5 are immersed in the molten salt 6, and the aluminum layer 2 is kept at a lower potential than the standard electrode potential of aluminum.
  • the positive electrode 5 can be appropriately selected as long as it shows insolubility in the molten salt.
  • an electrode made of platinum, titanium, or the like is used.
  • the aluminum porous body 4 manufactured by this method has a hollow fiber shape due to the characteristics of the manufacturing method. In this respect, it differs from the structure of the aluminum foam as disclosed in JP-A-2002-371327.
  • the heating temperature is set to be equal to or lower than the melting point of aluminum in order to prevent melting of aluminum. Specifically, it is preferable to heat at 660 ° C. or lower, which is the melting point of aluminum.
  • any resin can be selected as the resin in the present invention as long as it thermally decomposes at a temperature lower than the melting point of aluminum.
  • urethane foam is a raw material with high porosity and is easy to thermally decompose, urethane foam is preferable as resin used for the manufacturing method of this invention.
  • the resin preferably has a porosity of 80% to 98% and a pore diameter of about 50 ⁇ m to 500 ⁇ m.
  • the resin preferably has a communication hole. Thereby, the aluminum porous body without a closed pore is obtained.
  • the aluminum on the surface of the porous aluminum body described above had an extremely low oxygen content and was 3.1% by mass or less, which is the precipitation limit of EDX analysis.
  • the communication hole is formed of only aluminum because it has a closed hole but does not have a closed pore and does not use a eutectic alloy.
  • the aluminum porous body 4 is filled with Li metal.
  • the method for filling is not particularly limited, and for example, a known method such as a method of inclusion, a vacuum deposition method, or an electroplating method can be used.
  • the alloy negative electrode for lithium batteries described above is
  • the aluminum porous body has communication holes, no closed pores, Furthermore, it consists only of aluminum.
  • a conventional aluminum porous body for example, an aluminum porous body which is foamed by adding a foaming agent in a molten state described in JP-A-2002-371327 has many closed pores.
  • the aluminum porous body described in JP-A-8-170126 is a eutectic metal, it contains Bi, Ca and other metals other than Al.
  • a sufficient amount of Li cannot be filled, so that a large capacity density cannot be obtained.
  • a metal other than Al is contained, the function of the Li—Al alloy as a negative electrode is lowered.
  • the alloy negative electrode for lithium batteries of the present invention can be filled with a sufficient amount of Li metal, so that an alloy negative electrode for lithium batteries having a higher capacity density can be obtained. Further, since the aluminum porous body is made of only aluminum, the function as the negative electrode can be sufficiently exhibited.
  • the lithium battery according to the present invention is It is characterized by including the lithium battery alloy negative electrode described in (1) to (6) above.
  • the lithium battery of the present invention uses the lithium battery alloy having the above characteristics as the negative electrode, it is possible to provide a lithium battery having a large capacity density and excellent charge / discharge cycle characteristics.
  • a method for producing an alloy negative electrode for a lithium battery according to the present invention comprises: An aluminum layer forming step of forming an aluminum layer on the surface of the resin having communication holes; While the resin layer is immersed in the molten salt, the resin layer is heated to a temperature below the melting point of aluminum while maintaining the aluminum layer at a potential lower than the standard electrode potential of aluminum, and the resin is thermally decomposed to form porous aluminum.
  • the amount of oxygen on the surface of the aluminum layer is 3.1% by mass or less, has communication holes, does not have closed pores, It is possible to provide an alloy negative electrode for a lithium battery having a large capacity density using an aluminum porous body made only of aluminum and having a high effect of suppressing pulverization and dendrite short.
  • a method for producing an alloy negative electrode for a lithium battery according to the present invention comprises: A metal layer forming step of forming a metal layer made of one of copper, nickel, and iron on the surface of the resin having communication holes; An aluminum layer forming step of forming an aluminum layer on the surface of the metal layer; In a state where the resin is immersed in the molten salt, the resin is heated to a temperature below the melting point of aluminum while maintaining the aluminum layer at a potential lower than the standard electrode potential of aluminum, and the resin is thermally decomposed to form porous aluminum.
  • the amount of oxygen on the surface of the aluminum layer is 3.1% by mass or less, and has an open pore and no closed pores.
  • a lithium battery alloy negative electrode with a large capacity density using a body and an excellent charge / discharge cycle can be provided.
  • the porous aluminum body has a skeleton made of a metal made of copper, nickel, or iron. Therefore, it is possible to provide a lithium battery alloy negative electrode having high strength.
  • the manufacturing method of the said alloy negative electrode for lithium batteries is as follows.
  • the method for forming the aluminum layer is a vacuum deposition method, a sputtering method, a laser ablation method, or a plasma CVD method.
  • an aluminum metal layer is formed by irradiating an aluminum beam as a raw material with an electron beam to melt and evaporate the aluminum metal and adhere the aluminum metal to the resin surface of the resin body having communication holes.
  • an aluminum metal target can be vaporized by plasma irradiation on an aluminum metal target, and an aluminum alloy is adhered to the resin surface of a resin body having communication holes, whereby an aluminum metal layer can be formed.
  • an aluminum metal layer can be formed by melting and evaporating aluminum metal by laser irradiation and attaching the aluminum metal to the resin surface of the resin body having the communication holes.
  • an aluminum metal layer can be formed by applying a high frequency to an aluminum compound as a raw material to form a plasma and attaching it to the surface of a resin having communication holes.
  • the manufacturing method of the said alloy negative electrode for lithium batteries is as follows.
  • the method for forming the aluminum layer is a plating method in which aluminum is plated after the surface of the resin is subjected to a conductive treatment.
  • the manufacturing method of the alloy negative electrode for lithium batteries of this invention is a plating method for plating aluminum on the surface of the metal layer.
  • molten salt electroplating in which aluminum is plated in molten salt is performed.
  • the molten salt used here may be the same as or different from the molten salt to be used in the step of thermally decomposing the resin. Specifically, molten salts such as potassium chloride, aluminum chloride, and sodium chloride are used. Further, a salt of two or more components may be used and used as a eutectic molten salt. The eutectic molten salt is preferable because the melting temperature is lowered. This molten salt needs to contain at least aluminum ions.
  • the manufacturing method of the said alloy negative electrode for lithium batteries is as follows.
  • the method for forming the aluminum layer is a coating method in which an aluminum paste is applied to the surface of the resin or the surface of the metal layer.
  • the aluminum paste When the aluminum paste is applied to the resin surface, the aluminum paste is a mixture of, for example, aluminum powder, a binder (binder resin) and an organic solvent. Specifically, after the aluminum paste is applied to the surface of the resin, it is heated to eliminate the organic solvent and the binder resin, and the aluminum paste is sintered. Heating at the time of sintering may be performed in one step or in multiple steps. For example, the aluminum paste may be sintered at the same time as the resin decomposition by applying aluminum paste and heating at a low temperature to eliminate the organic solvent and then immersing in molten salt and heating.
  • the present invention it is possible to provide a lithium battery alloy negative electrode having a large capacity density and excellent charge / discharge cycle, a method for producing the same, and a lithium battery.
  • FIG. 1A is a schematic view showing a part of a cross section of a resin having a communication hole in a manufacturing process of an aluminum porous body.
  • FIG. 1B is a schematic view showing a state (aluminum layer coating resin) in which an aluminum layer is formed on the surface of a resin having communication holes in the manufacturing process of the aluminum porous body.
  • FIG. 1C is a schematic diagram illustrating a state (aluminum porous body) after the resin is thermally decomposed and disappeared from the aluminum layer coating resin in the manufacturing process of the aluminum porous body.
  • FIG. 2 is a schematic view for explaining a decomposition process of the resin in the molten salt.
  • FIG. 3 is a SEM photograph of the porous aluminum body of the present invention.
  • FIG. 4 is a view showing an EDX analysis result of the aluminum porous body according to the present invention.
  • FIG. 5 is a diagram illustrating a lithium battery according to the present invention.
  • (Embodiment 1) A. Lithium battery alloy negative electrode
  • an aluminum porous body is filled with lithium metal, and the skeleton of the aluminum porous body is formed of aluminum. Then, the lithium battery alloy negative electrode in the present embodiment is manufactured by the following manufacturing method (see FIGS. 1A to 1C).
  • porous resin 1 a foamed resin or nonwoven fabric having communication holes is used, and a resin having a porosity of 80% to 98% and a pore diameter of about 50 ⁇ m to 500 ⁇ m is particularly preferable.
  • Foam urethane is preferably used.
  • the manufacturing method of the alloy negative electrode for lithium batteries is demonstrated in order of an aluminum layer formation process, an aluminum porous body preparation process, and a lithium metal containing (filling) process.
  • An aluminum layer 2 is directly formed on the surface of the resin 1 by a vapor deposition method such as vacuum deposition, sputtering, laser ablation or plasma CVD, plating, aluminum paste coating, or the like.
  • the aluminum layer coating resin 3 is produced.
  • the surface of the resin 1 is subjected to a conductive treatment in advance.
  • a conductive treatment an arbitrary method such as electroless plating of a conductive metal such as nickel, vapor deposition or sputtering of aluminum or the like, or application of a conductive paint containing conductive particles such as carbon is selected.
  • a plating bath for aluminum plating for example, a multi-component molten salt of AlCl 3 —XCl (X: alkali metal) -MCl X (M is an additive element selected from Cr, Mn, and a transition metal element) Is used.
  • Resin 1 is immersed in the molten salt, and electroplating is performed using the conductive resin as the negative electrode.
  • the formation of the aluminum layer can also be performed by applying an aluminum paste as described above.
  • the aluminum paste is a mixture of aluminum powder, a binder (binder resin), and an organic solvent. After applying a predetermined amount of aluminum paste to the surface of the resin 1, it is sintered in a non-oxidizing atmosphere.
  • FIG. 2 is a schematic diagram for explaining a decomposition process of the porous resin in the molten salt 6.
  • Resin i.e., the aluminum layer coating resin 3
  • a salt containing one or more selected from the group consisting of AlCl 3 aluminum below the melting point, preferably Is heated at a temperature of 500 ° C. to 600 ° C., and a predetermined voltage is applied between the positive electrode 5 made of platinum or titanium, so that the aluminum layer of the aluminum layer coating resin 3 has a lower potential than the standard electrode potential of aluminum.
  • the porous resin 1 is thermally decomposed and removed while maintaining at (a potential nobler than the reduction potential of Li, K, Na), and the porous aluminum body 4 of FIG. 1C is produced.
  • a predetermined amount of lithium metal is contained in the produced porous aluminum body to produce an alloy of lithium and aluminum (Li—Al alloy) to form an alloy negative electrode for a lithium battery.
  • an aluminum porous body and a lithium foil having a predetermined thickness are bonded together, and then heated to 180 ° C. or higher to melt the lithium foil and permeate the pores of the aluminum porous body.
  • the aluminum porous body may be immersed in a molten lithium bath heated to 180 ° C. or higher.
  • the amount of lithium to be included is adjusted so that the ratio of the volume of lithium metal in the pores of the aluminum porous body is 50% or more and less than 100%. For example, when an aluminum porous body having a porosity of 97% and a lithium foil having a thickness of 1 ⁇ 2 of an aluminum porous body are bonded together, the ratio of the volume of lithium metal in the pores is 51.5%.
  • the resulting Li—Al alloy has a high aluminum concentration near the skeleton and a lower concentration gradient as the distance from the skeleton increases. For this reason, even when the Li—Al alloy expands and contracts during charge / discharge, the stress is easily relaxed, and pulverization is suppressed.
  • the ratio of the volume of lithium metal in the pores of the aluminum porous body is 50% or more, a sufficiently high capacity density is ensured, while in the aluminum porous body after filling Li by setting it to less than 100% As a result, the dendrite short circuit is suppressed even when lithium dendrite is generated.
  • the skeleton of the aluminum porous body is an aluminum covering material in which an aluminum layer is formed on the surface of the core material.
  • the core is made of copper, nickel, or iron, and is formed by applying carbon powder to the surface of the resin having the communication holes and conducting a conductive treatment, followed by plating with a predetermined thickness. Is done.
  • Embodiment 2 manufactures an alloy negative electrode for lithium batteries and a lithium battery in the same manner as Embodiment 1, except that the skeleton of the porous aluminum body is an aluminum coating material.
  • the lithium metal inclusion is not limited to the penetration of the porous aluminum body into the pores, but may be formed on the surface of the porous aluminum body.
  • the lithium metal does not have to be a single element, and may be an alloy with another metal.
  • Li—Si (silicon) and Li—Sn (tin) are suitable as an alloy negative electrode.
  • an alloy layer of Li and Si or Sn may be formed on the surface of the aluminum porous body, or “aluminum skeleton”
  • a Si or Sn metal layer may be provided on an “aluminum layer formed on the surface of a core material such as copper”, and a Li metal layer may be further stacked.
  • Example 1 is a lithium secondary battery having a negative electrode formed by including lithium metal in an aluminum porous body having a skeleton formed of aluminum.
  • Example 2 is a lithium secondary battery having a negative electrode formed by including lithium metal in an aluminum porous body that is an aluminum coating material in which an aluminum layer is formed on the surface of a core material having a skeleton made of Cu.
  • Example 1 Production of porous aluminum body
  • An aluminum layer having a thickness of about 50 ⁇ m is formed on the surface of the polyurethane foam by a vacuum deposition method, and then immersed in a LiCl—KCl eutectic molten salt at a temperature of 500 ° C., so that the aluminum layer has a lower potential than the standard electrode potential of aluminum. For 30 minutes.
  • Example 2 a polyurethane foam having a porosity of 97% and a pore diameter of about 300 ⁇ m was prepared. After applying carbon powder on the surface of this polyurethane foam and conducting a conductive treatment, copper plating with a thickness of 20 ⁇ m was applied to form a core material. A surface layer of aluminum having a thickness of about 50 ⁇ m is formed thereon by vacuum deposition, and then immersed in a LiCl—KCl eutectic molten salt at a temperature of 500 ° C., and the aluminum layer is 30 bases lower than the standard electrode potential of aluminum. Hold for a minute.
  • a foamed urethane foam having a pore diameter of 200 ⁇ m to 500 ⁇ m, a porosity of 97%, and a thickness of 1.0 mm was prepared.
  • This foamed urethane foam was placed in a vacuum deposition apparatus.
  • An aluminum film was deposited on the surface of the foamed urethane resin by a vacuum deposition method in which aluminum metal was melted and evaporated. Thereafter, the foamed urethane foam was removed by heat treatment at 550 ° C. in the atmosphere. This obtained the aluminum porous body which is a reference example.
  • the surface of the aluminum porous body of Example 1 was subjected to EDX analysis at an acceleration voltage of 15 kV. The result is shown in FIG. No oxygen peak was observed. Therefore, it was found that the oxygen content of the aluminum porous body was below the detection limit of EDX.
  • the detection limit by EDX is an oxygen content of 3.1% by mass, it can be said that the oxygen content on the surface of the porous aluminum body of Example 1 is 3.1% by mass or less.
  • Example 2 SEM photography and EDX analysis were performed, and it was confirmed that the result was the same as Example 1.
  • the surface of the aluminum porous body of the reference example was also subjected to EDX analysis under the same conditions. As a result, an oxygen peak was observed, and it was found that the oxygen content of the aluminum porous body exceeded at least 3.1 mass%. This is because the surface of the aluminum porous body was oxidized during the heat treatment.
  • EDAX Phonenix manufactured by EDAX
  • HIT22 136-2.5 HIT22 136-2.5.
  • An aluminum porous body in which lithium metal was infiltrated into pores was formed into a circle having a diameter of 15 mm to produce an alloy negative electrode for a lithium battery.
  • FIG. 5 is a diagram for explaining the configuration of the lithium battery of this embodiment.
  • 11 is a lithium secondary battery
  • 12 is a positive electrode for a lithium battery
  • 13 is a separator
  • 14 is an alloy negative electrode for a lithium battery.
  • an electrolyte made of a mixed solution of propylene carbonate / ethylene carbonate / dimethoxyethane in which 1 mol% of LiClO 4 was dissolved by laminating a polypropylene separator 13 between the positive electrode 12 and the negative electrode 14. It assembled using the liquid.
  • a comparative example is a lithium secondary battery having a negative electrode of an Al—Li alloy foil.
  • An Al—Li alloy foil having an aluminum ratio of 50 atomic% and a diameter of 15 mm was prepared as an alloy negative electrode for a lithium battery, and this negative electrode and a positive electrode for a lithium battery prepared in the same manner as in the examples were used.
  • a lithium secondary battery was produced in the same manner as in the example.
  • Test results Table 1 shows the test results of Examples 1 and 2 and the comparative example.
  • Table 1 shows that Examples 1 and 2 have excellent cycle characteristics.
  • the reason why the cycle characteristics of the examples are excellent in this way is that an alloy negative electrode for a lithium battery having a high effect of suppressing pulverization and dendrite short is used.
  • the example is a lithium secondary battery having a lithium battery alloy negative electrode having a high capacity density because Li is contained in an aluminum porous body having no closed pores and a small amount of oxygen.
  • lithium is contained in an aluminum porous body having no closed pores and a small amount of oxygen, and therefore, an alloy negative electrode for a lithium battery having a large capacity density and an excellent charge / discharge cycle and a method for producing the same And a lithium battery can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解液を用いるリチウム電池用合金負極おいて、アルミニウム多孔体中にリチウム金属を充填することにより、さらにアルミニウム多孔体の骨格をアルミニウムによって形成することにより、さらにアルミニウム多孔体の骨格を銅、ニッケル、鉄のいずれかの金属からなる芯材の表面にアルミニウム層を形成したアルミニウム被覆材によって形成することにより、容量密度が大きく、充放電サイクルに優れたリチウム電池用合金負極とその製造方法およびリチウム電池を提供する。

Description

リチウム電池用合金負極とその製造方法およびリチウム電池
 本発明は、アルミニウム多孔体を用いたリチウム電池用合金負極とその製造方法およびリチウム電池に関する。
 近年、携帯情報端末、電動車両及び家庭用電力貯蔵装置に用いられるリチウムイオン電池等のリチウム二次電池が活発に研究されている。
 このリチウム二次電池の代表的な例の一つとして、Li-Al(負極)/MnO(正極)リチウム二次電池が非特許文献1に示されている。
 しかし、上記のリチウム二次電池は、負極であるLi-Al合金が脆弱であるため、工業的量産を図ることに困難性がある。
 また、放電深度を上げて充放電を行った場合、少ない数の充放電サイクルで大幅な放電容量の劣化を招いていた。例えば、100%の放電深度で充放電を行った場合、そのサイクル寿命は、数十サイクル程度が限度であった。このため、通常は、10%程度での放電深度で充放電が行われていた。
高村 勉 監修「最新 電池ハンドブック」 株式会社朝倉書店、1996年12月26日発行、609~610ページ
 これらの問題点に鑑み、工業的量産に好適であると共に、放電深度を上げて大きな数の充放電サイクルで充放電を行った場合でも、放電容量の劣化を招く恐れがないリチウム電池用合金負極の開発が望まれていた。
 上記の課題は、以下に示す各発明により解決することができる。
(1)本発明に係るリチウム電池用合金負極は、
 非水電解液を用いるリチウム電池用合金負極であって、
 アルミニウム多孔体中にリチウム金属が充填されていることを特徴とする。
 本発明者は、上記の課題の解決につき、鋭意検討を行った。その結果、従来の板状体のLi-Al合金に替えて、アルミニウム多孔体中にリチウム金属を充填して作製したLi-Al合金を負極として用いることが有効であることを見出した。
 即ち、アルミニウム多孔体中にリチウム金属が充填されたLi-Al合金負極は、芯となる骨格を有しているため、従来のLi-Al合金負極のような脆弱性がなく、工業的量産に好適である。
 また、高い放電深度であっても充分なサイクル寿命を確保することができる。
 即ち、本発明者が検討した結果、充放電サイクルに伴って、充電時はAlが膨張し、放電時はAlが収縮し、電極全体の膨張収縮が起こるため、電極界面に割れなどを生じ、微粉化を発生させ、活物質の脱離を招き、これが、放電深度を上げた場合の充放電サイクル特性に悪影響を与えていることが分かった。
 これに対して、本発明に係るアルミニウム多孔体中にリチウム金属が充填されたLi-Al合金負極では、Al濃度が多孔体の骨格から離れるに従い、即ち、多孔体の骨格の中央部ほど薄くなるという濃度勾配が形成されているため、充放電サイクルに伴う膨張収縮の応力が分散して緩和される。この結果、放電深度を上げた場合であっても、電極の割れなどが抑制され、微粉化の発生が抑制され、充分な充放電サイクルを確保することができる。
 また、充放電サイクル寿命の低下は、Li金属負極に係わるLiデンドライト成長により、長時間使用した場合に短絡が発生することにも原因があることが分かった。この点、本発明に係るアルミニウム多孔体中にリチウム金属が充填されたLi-Al合金負極では、このLiデンドライト成長が多孔内に留まるため、短絡によるサイクル寿命の低下が抑制される。
(2)また、前記のリチウム電池用合金負極は、
 前記アルミニウム多孔体の骨格が、アルミニウムによって形成されていることを特徴とする。
 アルミニウム多孔体の骨格自体がアルミニウムによって形成されているため、骨格のみでLi-Al合金を形成することができる。このため、気孔率が高く、より容量密度の大きなリチウム電池用合金負極を提供することができる。
(3)また、前記のリチウム電池用合金負極は、
 前記アルミニウム多孔体の骨格が、銅、ニッケル、鉄のいずれかの金属からなる芯材の表面にアルミニウム層が形成されたアルミニウム被覆材によって形成されていることを特徴とする。
 本発明のリチウム電池用合金負極は、アルミニウム多孔体の骨格の芯材として、銅、ニッケル、鉄のいずれかの金属が用いられている。これらの金属は、リチウムやアルミニウムと合金化しない一方、機械的強度が高いため、強度に優れた多孔体を形成することができる。このため、これらの金属からなる芯材の表面にアルミニウム層が形成された多孔体は、膨張収縮に対して強いリチウム電池用合金負極を提供することができる。
(4)また、前記のリチウム電池用合金負極は、
 前記アルミニウム多孔体の空孔に占める前記リチウム金属の体積の比率が、50%以上100%未満であることを特徴とする。
 本発明においては、リチウム金属の体積比率が100%未満であり、Li充填後のアルミニウム多孔体に空孔が残されているため、デンドライトが生成した場合でも、デンドライトは主として空孔内に生成する。このため、デンドライトショートが効果的に抑制される。一方、リチウム金属の体積比率が50%未満になると、リチウム電池用合金負極としての実用的な作用が充分に発揮できない恐れがある。
(5)また、前記のリチウム電池用合金負極は、
 前記アルミニウム多孔体の骨格を形成するアルミニウム、または前記アルミニウム被覆材のアルミニウム層の表面の酸素量が、3.1質量%以下であることを特徴とする。
 本発明のリチウム電池用合金負極のアルミニウム多孔体は、アルミニウム多孔体の骨格を形成するアルミニウム、あるいは前記アルミニウム被覆材のアルミニウム層の表面の酸素量が、3.1質量%以下であるため、これまでにない一層容量密度が大きい電池用合金負極を提供することができる。
 Alは、もともと酸化され易いため、これまで表面の酸素量が充分に少ないアルミニウム多孔体が無かった。例えば特開平8-170126号公報に記載の発泡樹脂の表面に形成させたAlの共晶合金の皮膜の表面にAl粉末を塗着後、非酸化性の雰囲気中で熱処理して作製されたアルミニウム多孔体の場合は、表面に酸化皮膜が生成するため、表面の酸素量が多い。表面の酸素量が多い場合には、充填されたLiが酸素(O)によって酸化され活物質として機能しないLiOに変化してしまうため、大きな容量密度が得られない。また、生成したLiOは、抵抗層となるため特性が低下する。
 このため、本発明者は、酸素量の少ないアルミニウム多孔体を研究し、酸素量3.1質量%以下のアルミニウム多孔体の開発に成功した。
 本発明は、このようなアルミニウム多孔体を用いることを特徴としており、表面の酸素量が3.1質量%以下のアルミニウム多孔体を用いるため、一層容量密度が大きいリチウム電池用合金負極が得られる。
 ここで、本発明のリチウム電池用合金負極の製造方法について、図面を参照しながら詳細に説明する。製造方法の第一段階では、連通孔を有するアルミニウム多孔体を製造し、第二段階では、そのアルミニウム多孔体にLi金属を充填する。
 図1A~1Cは、その第一段階の概略を示す模式図である。図1Aは、連通孔を有する樹脂1の断面の一部を示す拡大模式図であり、樹脂1を骨格として孔が形成されている様子を示している。図1Bは、連通孔を有する樹脂1の表面にアルミニウム層2が形成された様子(アルミニウム層被膜樹脂3)を示している。図1Cは、アルミニウム層被膜樹脂3から樹脂1を熱分解させて消失させた後の様子(アルミニウム多孔体4)を示している。
 図2は、アルミニウム層被膜樹脂3から、樹脂1を熱分解して消失させる工程を示す。アルミニウム層被膜樹脂3及び正極5を溶融塩6に浸漬し、アルミニウム層2をアルミニウムの標準電極電位より卑な電位に保つ。溶融塩中に浸漬してアルミニウム層2をアルミニウムの標準電極電位より卑な電位に保つことにより、アルミニウム層2の酸化が抑制される。なお、正極5には、溶融塩に不溶性を示せば適宜選択することができるが、たとえば、白金、チタンなどからなる電極が用いられる。
 この状態で、樹脂1の分解温度以上に溶融塩6を加熱すると、アルミニウム層被膜樹脂3のうち樹脂1のみが分解して消失する。その結果、アルミニウム多孔体4が得られる。この方法により製造されたアルミニウム多孔体4は、製造法の特質上、中空糸状である。この点において、特開2002-371327で開示するようなアルミニウム発泡体の構造とは異なっている。なお、樹脂1を分解させるに際しては、アルミニウムの溶融を防ぐため、加熱温度は、アルミニウムの融点以下とする。具体的には、アルミニウムの融点である660℃以下で加熱することが好ましい。
 本発明における樹脂には、アルミニウムの融点以下の温度で熱分解するものであれば、任意の樹脂を選択できる。たとえば、ポリウレタン、ポリプロピレン、ポリエチレン等がある。なかでも、発泡ウレタンは、気孔率が高いし、熱分解しやすい素材であるので、発泡ウレタンが本発明の製造方法に用いる樹脂として好ましい。また、樹脂の気孔率は80%~98%、気孔径は50μm~500μm程度のものが好ましい。樹脂は、連通孔を有することが好ましい。これにより、閉気孔が無いアルミニウム多孔体が得られる。
 以上に説明したアルミニウム多孔体の表面のアルミニウムは、酸素量が極めて低く、EDX分析の析出限界である3.1質量%以下であった。また、連通孔は、有するが閉気孔が無く、さらに共晶合金などを用いないため、アルミニウムのみから構成されている。
 次に、第二段階として、アルミニウム多孔体4に、Li金属を充填する。充填するための方法は、特に限定されず、例えば、含入による方法や真空蒸着法、電気メッキ法などの公知の方法を用いることができる。
(6)また、前記のリチウム電池用合金負極は、
 前記アルミニウム多孔体が、連通孔を有し、閉気孔を有さず、
 さらにアルミニウムのみからなることを特徴とする。
 従来のアルミニウム多孔体、例えば、特開2002-371327号公報に記載のAlを溶融させた状態で発泡剤を加えて発泡させたアルミニウム多孔体には、閉気孔が多く存在する。また、前記した特開平8-170126号公報に記載のアルミニウム多孔体は、共晶金属であるためBi、Caその他のAl以外の金属を含有する。このように、閉気孔が多く存在する場合には、充分な量のLiを充填することができないため、大きな容量密度が得られない。また、Al以外の金属を含有するため、Li-Al合金の負極としての機能が低下する。
 一方、本発明のリチウム電池用合金負極においては、充分な量のLi金属を充填できるため、一層容量密度が大きいリチウム電池用合金負極が得られる。また、アルミニウム多孔体がアルミニウムのみからなるため、負極としての機能を充分に発揮させることができる。
(7)本発明に係るリチウム電池は、
 前記(1)~(6)に記載のリチウム電池用合金負極を備えることを特徴とする。
 本発明のリチウム電池は、前記の特徴を備えるリチウム電池用合金を負極としているため、容量密度が大きく、充放電サイクル特性が優れたリチウム電池を提供することができる。
(8)本発明に係るリチウム電池用合金負極の製造方法は、
 連通孔を有する樹脂の表面にアルミニウム層を形成するアルミニウム層形成工程と、
 前記樹脂を溶融塩に浸漬した状態で、前記アルミニウム層をアルミニウムの標準電極電位より卑な電位に保ちながら前記樹脂をアルミニウムの融点以下の温度に加熱して、前記樹脂を加熱分解してアルミニウム多孔体を作製するアルミニウム多孔体作製工程と、
 前記アルミニウム多孔体にリチウム金属を充填するリチウム金属充填工程と
を有することを特徴とする。
 本発明のリチウム電池用合金負極の製造方法によれば、前記したようにアルミニウム層の表面の酸素量が3.1質量%以下であり、連通孔を有し、閉気孔を有さず、さらにアルミニウムのみからなるアルミニウム多孔体を用いた容量密度が大きく、微粉化とデンドライトショートの抑制効果の高いリチウム電池用合金負極を提供することができる。
(9)本発明に係るリチウム電池用合金負極の製造方法は、
 連通孔を有する樹脂の表面に銅、ニッケル、鉄のいずれかの金属からなる金属層を形成する金属層形成工程と、
 前記金属層の表面にアルミニウム層を形成するアルミニウム層形成工程と、
 前記樹脂を溶融塩に浸漬した状態で、前記アルミニウム層をアルミニウムの標準電極電位より卑な電位に保ちながら前記樹脂をアルミニウムの融点以下の温度に加熱して、前記樹脂を加熱分解してアルミニウム多孔体を作製するアルミニウム多孔体作製工程と、
 前記アルミニウム多孔体にリチウム金属を充填するリチウム金属充填工程と
を有することを特徴とする。
 本発明のリチウム電池用合金負極の製造方法によれば、前記したようにアルミニウム層の表面の酸素量が3.1質量%以下であり、連通孔を有し、閉気孔を有さないアルミニウム多孔体を用いた容量密度が大きく、充放電サイクルに優れたリチウム電池用合金負極を提供することができ、さらに、アルミニウム多孔体に銅、ニッケル、鉄のいずれかの金属からなる金属を骨格としているため、強度に強いリチウム電池用合金負極を提供することができる。
(10)また、前記のリチウム電池用合金負極の製造方法は、
 前記アルミニウム層の形成方法が、真空蒸着法、スパッタリング法、レーザアブレーション法又はプラズマCVD法であることを特徴とする。
 真空蒸着法では、例えば、原料のアルミニウム金属に電子ビームを照射してアルミニウム金属を溶融・蒸発させ、連通孔を有する樹脂体の樹脂表面にアルミニウム金属を付着させることにより、アルミニウム金属層を形成することができる。スパッタリング法では、例えば、アルミニウム金属のターゲットにプラズマ照射してアルミニウム金属を気化させ、連通孔を有する樹脂体の樹脂表面にアルミニウム合金を付着させることにより、アルミニウム金属層を形成することができる。レーザアブレーション法では、例えば、レーザ照射によりアルミニウム金属を溶融・蒸発させ、連通孔を有する樹脂体の樹脂表面にアルミニウム金属を付着させることにより、アルミニウム金属層を形成することができる。プラズマCVD法では、原料であるアルミニウム化合物に高周波を印加することによってプラズマ化させ、連通孔を有する樹脂の表面に付着させることにより、アルミニウム金属層を形成することができる。
(11)また、前記のリチウム電池用合金負極の製造方法は、
 前記アルミニウム層の形成方法が、前記樹脂の表面を導電化処理した後、アルミニウムをめっきするめっき法であることを特徴とする。
(12)また、本発明のリチウム電池用合金負極の製造方法は、
 前記アルミニウム層の形成方法が、前記金属層の表面にアルミニウムをめっきするめっき法であることを特徴とする。
 水溶液中でアルミニウムをめっきすることは、実用上ほとんど不可能であるため、溶融塩中でアルミニウムをめっきする溶融塩電解めっきが行われる。この場合において、予め樹脂の表面を導電化処理した後に、溶融塩中でアルミニウムをめっきすることが好ましい。
 ここで用いる溶融塩は、樹脂を加熱分解する工程で用いられることになる溶融塩と同じであっても、異なっていてもよい。具体的には、塩化カリウム、塩化アルミニウム、塩化ナトリウム等の溶融塩が使用される。また、2成分以上の塩を使用し、共晶溶融塩として使用してもよい。共晶溶融塩にした場合、溶融温度が低下するので好ましい。この溶融塩中には、少なくともアルミニウムイオンが含まれている必要がある。
(13)また、前記のリチウム電池用合金負極の製造方法は、
 前記アルミニウム層の形成方法が、前記樹脂の表面または前記金属層の表面にアルミニウムペーストを塗布する塗布法であることを特徴とする。
 樹脂の表面にアルミニウムペーストを塗布する場合において、そのアルミニウムペーストは、たとえば、アルミニウム粉末、結着剤(バインダー樹脂)及び有機溶剤が混合されたものである。具体的には、アルミニウムペーストを樹脂の表面に塗布した後、加熱して有機溶剤及びバインダー樹脂を消失させるとともに、アルミニウムペーストを焼結させる。焼結時の加熱は、一段階でおこなっても複数回に分けておこなっても良い。例えば、アルミニウムペーストを塗布した後に低温で加熱して有機溶剤を消失させた後、溶融塩中に浸漬して加熱することにより、樹脂の分解と同時にアルミニウムペーストの焼結を行っても良い。
 本発明によれば、容量密度が大きく、充放電サイクルに優れたリチウム電池用合金負極とその製造方法およびリチウム電池を提供することができる。
図1Aは、アルミニウム多孔体の製造工程における、連通孔を有する樹脂の断面の一部を示す模式図である。 図1Bは、アルミニウム多孔体の製造工程における、連通孔を有する樹脂の表面にアルミニウム層が形成された様子(アルミニウム層被膜樹脂)を示す模式図である。 図1Cは、アルミニウム多孔体の製造工程における、アルミニウム層被膜樹脂から樹脂を熱分解させて消失させた後の様子(アルミニウム多孔体)を示す模式図である。 図2は、溶融塩の中での樹脂の分解工程を説明するための模式図である。 図3は、本発明のアルミニウム多孔体のSEM写真である。 図4は、本発明によるアルミニウム多孔体のEDX分析結果を示す図である。 図5は、本発明のリチウム電池を説明する図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は、繰り返さない。また、図面の寸法比率は、説明のものと必ずしも一致していない。
(実施の形態1)
A.リチウム電池用合金負極
 本実施の形態におけるリチウム電池用合金負極は、アルミニウム多孔体中にリチウム金属が充填されており、アルミニウム多孔体の骨格は、アルミニウムによって形成されている。そして、本実施の形態におけるリチウム電池用合金負極は、下記の製造方法により製造される(図1A~図1Cを参照)。
B.リチウム電池用合金負極の製造方法
 多孔性の樹脂1には、連通孔を有する発泡樹脂や不織布が用いられ、特に気孔率が80%~98%、気孔径が50μm~500μm程度の樹脂が好ましく、発泡ウレタンが好ましく用いられる。
 以下、リチウム電池用合金負極の製造方法を、アルミニウム層形成工程、アルミニウム多孔体作製工程、およびリチウム金属含入(充填)工程の順に説明する。
(1)アルミニウム層形成工程
 真空蒸着、スパッタリング法、レーザアブレーション法若しくはプラズマCVD等の気相法、めっき法、アルミニウムペースト塗布法等により、樹脂1の表面に、アルミニウム層2を、直に形成してアルミニウム層被覆樹脂3を作製する。
 電解めっきを行うためには、予め樹脂1の表面を導電化処理する。導電化処理には、ニッケル等の導電性金属の無電解めっき、アルミニウム等の蒸着若しくはスパッタリング、又はカーボン等の導電性粒子を含有した導電性塗料の塗布などの任意の方法が選択される。アルミニウムめっきするためのめっき浴には、例えばAlCl3-XCl(X:アルカリ金属)-MClX(Mは、Cr、Mn、及び遷移金属元素から選択される添加元素)の多成分系の溶融塩が使用される。溶融塩の中に樹脂1を浸漬し、導電化処理をした樹脂を負極にして電解めっきを行う。
 アルミニウム層の形成は、前記の通り、アルミニウムペーストの塗布によっても行うことができる。アルミニウムペーストは、アルミニウム粉末と結着剤(バインダー樹脂)及び有機溶剤を混合したものであり、樹脂1の表面に所定量のアルミニウムペーストを塗布後、非酸化性雰囲気下で焼結する。
(2)アルミニウム多孔体作製工程
 次に、樹脂1を熱分解させて除去する。図2は、溶融塩6の中での多孔性樹脂の分解工程を説明するための模式図である。表面にアルミニウム層を形成した樹脂(すなわち、アルミニウム層被膜樹脂3)をLiCl、KCl、NaCl、AlClからなる群より選択される1種以上を含む塩の中で、アルミニウムの融点以下の、好ましくは500℃~600℃の温度にて加熱して、白金またはチタン製の正極5との間に所定の電圧を印加してアルミニウム層被膜樹脂3のアルミニウム層をアルミニウムの標準電極電位より卑な電位(Li、K、Naの還元電位より貴な電位)で保って多孔性樹脂1を熱分解させて除去し、図1Cのアルミニウム多孔体4を作製する。
(3)リチウム金属含入(充填)工程
 次に、作製したアルミニウム多孔体に所定量のリチウム金属を含入し、リチウムとアルミニウムの合金(Li-Al合金)を生成させてリチウム電池用合金負極を作製する。具体的には、例えばアルミニウム多孔体と所定の厚さのリチウム箔を貼り合わせた後、180℃以上に加熱し、リチウム箔を溶融させてアルミニウム多孔体の空孔に浸透させる。また、180℃以上に加熱したリチウムの溶融浴にアルミニウム多孔体を浸漬させてもよい。なお、含入するリチウム量は、アルミニウム多孔体の空孔に占めるリチウム金属の体積の比率が50%以上100%未満となるように調整される。例えば気孔率が97%のアルミニウム多孔体と厚さがアルミニウム多孔体の1/2のリチウム箔を貼り合わせた場合、空孔に占めるリチウム金属の体積の比率は、51.5%になる。
C.リチウム電池
 このようにして作製されたリチウム電池用合金負極においては、生成させたLi-Al合金にアルミニウムの濃度が骨格の近傍で高く、骨格から離れるに従って低い濃度勾配が生じる。このため、充放電を行った際にLi-Al合金が膨張収縮しても応力緩和がされ易く、微粉化が抑制される。
 また、アルミニウム多孔体の空孔に占めるリチウム金属の体積の比率が50%以上であるため、充分に高い容量密度が確保される一方、100%未満とすることによりLi充填後のアルミニウム多孔体中に空孔が残されているため、リチウムデンドライトが生成した場合でもデンドライトショートが抑制される。
(実施の形態2)
 実施の形態2では、アルミニウム多孔体の骨格は、芯材の表面にアルミニウム層が形成されたアルミニウム被覆材である。また、芯材は、銅、ニッケル、鉄のいずれかの金属からなり、連通孔を有する樹脂の表面に炭素粉末を塗布して導電処理をした後、所定の厚さでめっきを施すことにより形成される。
 実施の形態2は、アルミニウム多孔体の骨格がアルミニウム被覆材である点を除いて、実施の形態1と同じ要領でリチウム電池用合金負極およびリチウム電池を製造する。
(実施の形態3)
 前記した各実施の形態において、リチウム金属の含入は、アルミニウム多孔体の空孔への浸透に限定されず、アルミニウム多孔体の表面に形成する形態であってもよい。
 また、リチウム金属は、単体である必要はなく、他の金属との合金であってもよく、特に、Li-Si(ケイ素)、Li-Sn(スズ)は、合金負極として好適である。
 このようなLi-SiあるいはLi-Snの合金負極をアルミニウム多孔体に形成する場合、LiとSiまたはSnとの合金層をアルミニウム多孔体の表面に形成してもよく、あるいは、「アルミニウム骨格」や「銅などの芯材の表面に形成されたアルミニウム層」の上に、SiまたはSn金属層を設け、さらに、Li金属層を積層して形成してもよい。
(実施例1、2)
 実施例1は、骨格がアルミニウムにより形成されたアルミニウム多孔体に、リチウム金属を含入して形成される負極を有するリチウム二次電池である。
 実施例2は、骨格がCu製の芯材の表面にアルミニウム層が形成されアルミニウム被覆材であるアルミニウム多孔体に、リチウム金属を含入して形成される負極を有するリチウム二次電池である。
(1)アルミニウム多孔体の作製
 実施例1では、気孔率97%、気孔径約300μmのポリウレタンフォームを準備した。このポリウレタンフォームの表面に真空蒸着法により、厚さ約50μmのアルミニウム層を形成した後、温度500℃のLiCl-KCl共晶溶融塩に浸漬し、アルミニウム層をアルミニウムの標準電極電位より卑な電位で30分間保持した。その後大気中で室温まで冷却し、水洗して溶融塩を除去してアルミニウム層を骨格とする厚さ0.5mm、気孔率97%のアルミニウム多孔体を作製した。
 実施例2では、気孔率97%、気孔径約300μmのポリウレタンフォームを準備した。このポリウレタンフォームの表面に炭素粉末を塗布して導電処理をした後、厚さ20μmの銅メッキを施し、芯材を形成した。その上に真空蒸着法により、厚さ約50μmのアルミニウムの表層を形成した後、温度500℃のLiCl-KCl共晶溶融塩に浸漬し、アルミニウム層をアルミニウムの標準電極電位より卑な電位で30分間保持した。その後大気中で室温まで冷却し、水洗して溶融塩を除去してCuの芯材の表面にアルミニウムの表層を形成したアルミニウム被覆材を骨格とする厚さ0.5mm、気孔率96%のアルミニウム多孔体を作製した。
 参考例では、孔径が200μm~500μmであり、気孔率が97%で、厚みが1.0mmの発泡ウレタンフォームを準備した。この発泡ウレタンフォームを、真空蒸着装置内に配置した。アルミニウム金属を溶融・蒸発させる真空蒸着法により、発泡ウレタン樹脂の表面にアルミニウム膜を蒸着させた。その後、大気中で、550℃の熱処理をすることにより、発泡ウレタンフォームを除去した。これにより、参考例であるアルミニウム多孔体を得た。
(2)アルミニウム多孔体の構造の確認と酸素量の測定
 実施例1のアルミニウム多孔体のSEM写真を図3に示す。図3より、アルミニウム多孔体を構成する孔が連通していることが分かった。また、実施例1のアルミニウム多孔体は、閉気孔を有しないことが分かった。
 実施例1のアルミニウム多孔体の表面について、15kVの加速電圧でEDX分析した。その結果を図4に示す。酸素のピークは、観測されなかった。したがって、アルミニウム多孔体の酸素量は、EDXの検出限界以下であることが分かった。ここで、EDXによる検出限界は、酸素量3.1質量%であるので、実施例1のアルミニウム多孔体の表面の酸素量は、3.1質量%以下であるといえる。
 実施例2についても、SEM写真の撮影とEDX分析を行ったが、実施例1と同様の結果であることを確認した。
 参考例のアルミニウム多孔体の表面についても、同様な条件でEDX分析した。その結果、酸素のピークが観測され、アルミニウム多孔体の酸素量は、少なくとも3.1質量%を超えることが分かった。熱処理する際に、アルミニウム多孔体の表面が酸化したためである。
 なお、この分析で用いた装置は、EDAX社製の「EDAX Phonenix」であり、その型式は、HIT22 136-2.5である。
(3)負極の作製
 アルミニウム多孔体に、厚さ350μmのリチウム箔を貼り合わせた後、250℃に加熱してLiを溶融させ、Liを空孔に浸透させた。なお、空孔に占めるリチウム金属の体積の比率は、75%である。
 リチウム金属を空孔に浸透させたアルミニウム多孔体を直径15mmの円形に成形してリチウム電池用合金負極を作製した。
(4)リチウム電池用正極の作製
 MnO2(活物質)、アセチレンブラック(導電助剤)、PVDF(バインダー)を所定の比率で混合し、直径が15mm、容量密度が10mAh/cm2のリチウム電池用正極を作製した。
(5)リチウム二次電池の作製
 次に、負極および正極に用いてリチウム二次電池を作製した。図5は、本実施例のリチウム電池の構成を説明するための図である。図5において、11はリチウム二次電池、12はリチウム電池用正極、13はセパレーター、14はリチウム電池用合金負極である。
 具体的には、正極12と負極14との間にポリプロピレン製のセパレーター13を挟んで積層し、LiClO4を1モル%溶解させた(1M)プロピレンカーボネート/エチレンカーボネート/ジメトキシエタンの混合液からなる電解液を用いて組立てた。
(比較例)
 比較例は、Al-Li合金箔の負極を有するリチウム二次電池である。
 アルミニウムの比率が50原子%、直径が15mmのAl-Li合金箔を作製してリチウム電池用合金負極とし、この負極と、実施例と同様にして作成されるリチウム電池用正極に用いて、実施例と同様にしてリチウム二次電池を作製した。
(実施例1、2および比較例のリチウム二次電池の特性評価)
(1)歩留り
 実施例1、2の場合、電池の組立における歩留りが100%であるのに対して、比較例の歩留りは、約50%と低かった。比較例の場合、このように歩留りが低いのは、リチウム電池用合金負極が脆弱で、ハンドリング時に割れや欠けが生じるためである。
(2)充放電サイクル特性
 イ.試験方法
 カットオフ電圧を2.0-3.3Vとし、6mA/hと18mA/hの2種類の放電深度で充放電サイクル試験を行い、放電容量が初期の50%以下となるサイクル数を調べた。
 ロ.試験結果
 実施例1、2および比較例の試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より実施例1、2は、サイクル特性が優れていることが分かる。実施例のサイクル特性がこのように優れているのは、微粉化とデンドライトショートの抑制効果の高いリチウム電池用合金負極を用いているためである。
 また、前記したように、実施例は、閉気孔がなく酸素量が少ないアルミニウム多孔体にLiを含入させているため、容量密度が高いリチウム電池用合金負極を有するリチウム二次電池である。
 以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。
 以上の如く本発明によれば、閉気孔がなく酸素量が少ないアルミニウム多孔体にリチウムを含入させているため、容量密度が大きく、充放電サイクルに優れたリチウム電池用合金負極とその製造方法およびリチウム電池を提供することができる。
 1     樹脂
 2     アルミニウム層 
 3     アルミニウム層被覆樹脂
 4     アルミニウム多孔体
 5     正極
 6     溶融塩
11     リチウム二次電池
12     リチウム電池用正極
13     セパレーター
14     リチウム電池用合金負極  

Claims (13)

  1.  非水電解液を用いるリチウム電池用合金負極であって、
     アルミニウム多孔体中にリチウム金属が充填されていることを特徴とするリチウム電池用合金負極。
  2.  前記アルミニウム多孔体の骨格が、アルミニウムによって形成されていることを特徴とする請求項1に記載のリチウム電池用合金負極。
  3.  前記アルミニウム多孔体の骨格が、銅、ニッケル、鉄のいずれかの金属からなる芯材の表面にアルミニウム層が形成されたアルミニウム被覆材によって形成されていることを特徴とする請求項1に記載のリチウム電池用合金負極。
  4.  前記アルミニウム多孔体の空孔に占める前記リチウム金属の体積の比率が、50%以上100%未満であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のリチウム電池用合金負極。
  5.  前記アルミニウム多孔体の骨格を形成するアルミニウム、または前記アルミニウム被覆材のアルミニウム層の表面の酸素量が、3.1質量%以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のリチウム電池用合金負極。
  6.  前記アルミニウム多孔体が、連通孔を有し、閉気孔を有さず、
     さらにアルミニウムのみからなることを特徴とする請求項1ないし請求項5のいずれか1項に記載のリチウム電池用合金負極。
  7.  請求項1ないし請求項6のいずれか1項に記載のリチウム電池用合金負極を備えることを特徴とするリチウム電池。
  8.  連通孔を有する樹脂の表面にアルミニウム層を形成するアルミニウム層形成工程と、
     前記樹脂を溶融塩に浸漬した状態で、前記アルミニウム層をアルミニウムの標準電極電位より卑な電位に保ちながら前記樹脂をアルミニウムの融点以下の温度に加熱して、前記樹脂を加熱分解してアルミニウム多孔体を作製するアルミニウム多孔体作製工程と、
     前記アルミニウム多孔体にリチウム金属を充填するリチウム金属充填工程と
    を有することを特徴とするリチウム電池用合金負極の製造方法。
  9.  連通孔を有する樹脂の表面に銅、ニッケル、鉄のいずれかの金属からなる金属層を形成する金属層形成工程と、
     前記金属層の表面にアルミニウム層を形成するアルミニウム層形成工程と、
     前記樹脂を溶融塩に浸漬した状態で、前記アルミニウム層をアルミニウムの標準電極電位より卑な電位に保ちながら前記樹脂をアルミニウムの融点以下の温度に加熱して、前記樹脂を加熱分解してアルミニウム多孔体を作製するアルミニウム多孔体作製工程と、
     前記アルミニウム多孔体にリチウム金属を充填するリチウム金属充填工程と
    を有することを特徴とするリチウム電池用合金負極の製造方法。
  10.  前記アルミニウム層の形成方法が、真空蒸着法、スパッタリング法、レーザアブレーション法又はプラズマCVD法であることを特徴とする請求項8または請求項9に記載のリチウム電池用合金負極の製造方法。
  11.  前記アルミニウム層の形成方法が、前記樹脂の表面を導電化処理した後、アルミニウムをめっきするめっき法であることを特徴とする請求項8に記載のリチウム電池用合金負極の製造方法。
  12.  前記アルミニウム層の形成方法が、前記金属層の表面にアルミニウムをめっきするめっき法であることを特徴とする請求項9に記載のリチウム電池用合金負極の製造方法。
  13.  前記アルミニウム層の形成方法が、前記樹脂の表面または前記金属層の表面にアルミニウムペーストを塗布する塗布法であることを特徴とする請求項8または請求項9に記載のリチウム電池用合金負極の製造方法。
PCT/JP2011/061834 2010-05-31 2011-05-24 リチウム電池用合金負極とその製造方法およびリチウム電池 WO2011152244A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800254727A CN102906906A (zh) 2010-05-31 2011-05-24 锂电池用合金负极及其制造方法、以及锂电池
KR1020127029168A KR20130042487A (ko) 2010-05-31 2011-05-24 리튬 전지용 합금 부극과 그 제조 방법 및 리튬 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010124343A JP5605749B2 (ja) 2010-05-31 2010-05-31 リチウム電池用合金負極とその製造方法およびリチウム電池
JP2010-124343 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152244A1 true WO2011152244A1 (ja) 2011-12-08

Family

ID=45066622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061834 WO2011152244A1 (ja) 2010-05-31 2011-05-24 リチウム電池用合金負極とその製造方法およびリチウム電池

Country Status (5)

Country Link
JP (1) JP5605749B2 (ja)
KR (1) KR20130042487A (ja)
CN (1) CN102906906A (ja)
TW (1) TW201201440A (ja)
WO (1) WO2011152244A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276709A1 (en) * 2016-07-25 2018-01-31 LG Chem, Ltd. Negative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
US10468665B2 (en) 2015-01-29 2019-11-05 Sigma Lithium Limited Composite materials
CN114270575A (zh) * 2021-03-31 2022-04-01 宁德新能源科技有限公司 电化学装置和电子装置
CN114421029A (zh) * 2021-12-29 2022-04-29 华中科技大学 一种金属锂表面原位合金-sei层的筑构方法与应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161652A (ja) * 2012-02-06 2013-08-19 Toyota Industries Corp 二次電池
KR101621410B1 (ko) 2013-09-11 2016-05-16 주식회사 엘지화학 리튬 전극 및 그를 포함하는 리튬 이차전지
KR101621412B1 (ko) * 2013-09-11 2016-05-16 주식회사 엘지화학 리튬 전극 및 그를 포함하는 리튬 이차전지
CN105529453B (zh) * 2015-11-22 2018-03-30 天津赫维科技有限公司 一种3v可充扣式锂电池锂铝合金负极的制作方法
KR102148506B1 (ko) * 2016-07-25 2020-08-27 주식회사 엘지화학 메쉬 형태의 집전체를 포함하는 음극, 이를 포함하는 리튬 이차전지 및 이의 제조방법
KR102142552B1 (ko) 2016-10-05 2020-08-10 주식회사 엘지화학 리튬금속 이차전지용 음극 및 이를 포함하는 리튬금속 이차전지
JP6915681B2 (ja) * 2017-04-05 2021-08-04 住友電気工業株式会社 アルミニウム多孔体及びアルミニウム多孔体の製造方法
CN108063222B (zh) * 2017-08-31 2024-04-02 广东猛狮新能源科技股份有限公司 一种锂离子电池负极材料、其制备方法和锂离子电池
CN108281611A (zh) * 2017-12-19 2018-07-13 成都亦道科技合伙企业(有限合伙) 负极层及其制备方法、锂电池电芯及锂电池
CN108134049B (zh) * 2017-12-19 2023-06-30 成都大超科技有限公司 负极层及其制备方法、锂电池电芯及锂电池
CN108598365B (zh) * 2018-05-25 2020-11-03 哈尔滨工业大学 一种锂二次电池用负极及其制备方法及其锂二次电池
CN114616693A (zh) * 2019-10-25 2022-06-10 松下知识产权经营株式会社 铝箔、锂二次电池用负极、锂二次电池用分隔件和锂二次电池
CN111434609B (zh) * 2019-12-27 2022-09-20 蜂巢能源科技有限公司 预锂化负极活性材料及其制备方法、负极片和锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342819B2 (ja) * 1981-08-29 1988-08-25 Nippon Telegraph & Telephone
JPS6463268A (en) * 1987-09-02 1989-03-09 Kanebo Ltd Organic electrolytic battery using aluminum-lithium alloyed porous body for negative electrode
JPH0454352B2 (ja) * 1983-01-18 1992-08-31 Sanyo Electric Co
JP2005294013A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 前駆体電池及び非水電解質二次電池
JP2008016329A (ja) * 2006-07-06 2008-01-24 Sumitomo Electric Ind Ltd リチウム二次電池用負極材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309558A (ja) * 1989-05-24 1990-12-25 Sumitomo Electric Ind Ltd リチウム2次電池用負極

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342819B2 (ja) * 1981-08-29 1988-08-25 Nippon Telegraph & Telephone
JPH0454352B2 (ja) * 1983-01-18 1992-08-31 Sanyo Electric Co
JPS6463268A (en) * 1987-09-02 1989-03-09 Kanebo Ltd Organic electrolytic battery using aluminum-lithium alloyed porous body for negative electrode
JP2005294013A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 前駆体電池及び非水電解質二次電池
JP2008016329A (ja) * 2006-07-06 2008-01-24 Sumitomo Electric Ind Ltd リチウム二次電池用負極材

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468665B2 (en) 2015-01-29 2019-11-05 Sigma Lithium Limited Composite materials
EP3276709A1 (en) * 2016-07-25 2018-01-31 LG Chem, Ltd. Negative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
JP2018018821A (ja) * 2016-07-25 2018-02-01 エルジー・ケム・リミテッド メッシュ形態の集電体を含む負極、これを含むリチウム二次電池及びこの製造方法
US10686193B2 (en) 2016-07-25 2020-06-16 Lg Chem, Ltd. Negative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
CN114270575A (zh) * 2021-03-31 2022-04-01 宁德新能源科技有限公司 电化学装置和电子装置
CN114421029A (zh) * 2021-12-29 2022-04-29 华中科技大学 一种金属锂表面原位合金-sei层的筑构方法与应用
CN114421029B (zh) * 2021-12-29 2023-09-01 华中科技大学 一种金属锂表面原位合金-sei层的筑构方法与应用

Also Published As

Publication number Publication date
JP2011249286A (ja) 2011-12-08
TW201201440A (en) 2012-01-01
JP5605749B2 (ja) 2014-10-15
KR20130042487A (ko) 2013-04-26
CN102906906A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5605749B2 (ja) リチウム電池用合金負極とその製造方法およびリチウム電池
Varzi et al. 3D porous Cu–Zn alloys as alternative anode materials for Li‐ion batteries with superior low T performance
CN108232114B (zh) 复合负极、制备及其在制备锂离子电池中的应用
Acebedo et al. Current status and future perspective on lithium metal anode production methods
JP6016136B2 (ja) リチウム二次電池
US8277535B2 (en) Method for producing porous metal body, porous aluminum body, battery electrode material including porous metal body or porous aluminum body, and electrode material for electrical double layer capacitor
TW201143193A (en) Collector for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5545439B2 (ja) 非水電解質電池
TW201235478A (en) Aluminum and process for producing same
US20130130124A1 (en) Porous metal body, method for producing the same, and battery using the same
JPWO2018021361A1 (ja) マグネシウム−リチウム合金及びマグネシウム空気電池
KR20130069539A (ko) 알루미늄 구조체의 제조 방법 및 알루미늄 구조체
Li et al. Pressure-tuned and surface-oxidized copper foams for dendrite-free Li metal anodes
US20120237827A1 (en) Porous metal body, method for producing the same, and molten-salt battery
JP2011249254A (ja) 非水電解質電池用正極体及びその製造方法
JP6356403B2 (ja) 電極体の製造方法
JP2011249252A (ja) 非水電解質電池用電極の製造方法、非水電解質電池用電極及び非水電解質電池
CN105247084B (zh) 铝多孔体的制造方法、铝多孔体、集电体、电极和电化学装置
WO2017194262A1 (en) Process for producing protected lithium anodes for lithium ion batteries
JP2011249287A (ja) 電池用負極とその製造方法および一次電池
JPWO2012073815A1 (ja) リチウム二次電池用負極活物質およびその製造方法
JP2011249253A (ja) 非水電解質電池用正極の製造方法、非水電解質電池用正極及び非水電解質電池
JP2011249259A (ja) 非水電解質電池用電極、及び非水電解質電池
JP2011249706A (ja) キャパシタとその製造方法
JP2013229111A (ja) リチウム二次電池用負極活物質およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025472.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127029168

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789653

Country of ref document: EP

Kind code of ref document: A1