WO2011150849A1 - 一种锥形聚光*** - Google Patents

一种锥形聚光*** Download PDF

Info

Publication number
WO2011150849A1
WO2011150849A1 PCT/CN2011/075078 CN2011075078W WO2011150849A1 WO 2011150849 A1 WO2011150849 A1 WO 2011150849A1 CN 2011075078 W CN2011075078 W CN 2011075078W WO 2011150849 A1 WO2011150849 A1 WO 2011150849A1
Authority
WO
WIPO (PCT)
Prior art keywords
conical
concentrating system
concentrating
light
disposed
Prior art date
Application number
PCT/CN2011/075078
Other languages
English (en)
French (fr)
Inventor
黄建文
Original Assignee
Huang Chien-Wen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Chien-Wen filed Critical Huang Chien-Wen
Publication of WO2011150849A1 publication Critical patent/WO2011150849A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar concentrating system, and more particularly to a conical concentrating system that utilizes conical reflection to converge toward sunlight and appropriately utilizes the concentrated solar energy, and belongs to the field of solar energy technology. Background technique
  • Fresnel lenses Refractive concentrating is the use of convex lenses or Fresnel lenses to converge sunlight. Due to the high production and manufacturing cost of lenticular lenses, it has not been used in the solar industry. The manufacture of Fresnel lenses requires high technical requirements. Since glass materials cannot suppress Fresnel lenses, they are currently manufactured using plexiglass or transparent nylon plastic. Such polymer materials absorb ultraviolet rays and cause aging. Therefore, Fresnel lenses are used in the field of solar concentrating industry, and lenses must be replaced at regular intervals, and the maintenance cost is too high.
  • the parabolic mirror is easy to obtain a higher magnification concentrating effect, but the manufacturing cost and process requirements are higher, and the production and installation speed is slower.
  • the use of a flat mirror for concentrating light is inexpensive, it is not easy to obtain a high concentrating ratio.
  • the technical problem to be solved by the present invention is to provide a conical concentrating system that utilizes conical reflection to converge toward sunlight and appropriately utilize the concentrated solar energy.
  • the conical concentrating system utilizes a conical reflecting surface to converge sunlight onto the central axis of the conical reflecting surface, and a collecting column is arranged at the central axis to achieve the purpose of concentrating sunlight and utilizing it.
  • a conical concentrating system comprising at least one reflector having a conical or truncated cone shape and a light collecting column disposed at an axis of the conical or truncated reflecting plate; reflecting on the inner side of the reflecting plate The larger side of the reflector is the light entrance of the concentrating system.
  • the light collecting column has a polygonal cross section; a photovoltaic cell and/or a thermoelectric power generating sheet are attached to an outer surface of the light collecting column.
  • a concentrating plate is further disposed around the photovoltaic cell and/or the thermoelectric power generation chip.
  • thermoelectric power generation piece is disposed on a bottom side or a top portion of the light collecting column; and a heat dissipating device is disposed on the other side of the thermoelectric power generation piece.
  • a heat transfer base is disposed on a bottom side of the light collecting column; a heat pipe or a water pipe is disposed in the heat transfer base, and heat energy is discharged through the heat pipe or the water pipe.
  • a heat pipe or a water pipe is disposed in the light collecting column.
  • a steam turbine generator is connected in series on the heat pipe or the water pipe line.
  • the light collecting column adopts a vacuum tube collecting column.
  • the angle between the reflector and its axis is 45°.
  • the reflective layer is plated with a total reflection coating, and the surface of the collection column is plated with an anti-reflection coating.
  • a solar tracker is further mounted on the cone concentrating system to enable the concentrating system to track the sunlight.
  • a sealing cover is disposed at the light entrance of the concentrating system, so that the light receiving device of the concentrating system is in a sealed protection state.
  • the light entrance of the reflector is polygonal.
  • a photovoltaic cell or a thermoelectric power generation chip is disposed on the top of the light collecting column.
  • At least one convex lens or Fresnel lens is disposed above the light collecting column; and the at least one convex lens or Fresnel lens concentrates the light on the photovoltaic cell or the thermoelectric power generating chip.
  • the intensity of the concentrated light energy of the cone concentrating system is related to the area of the reflector, and is easy to design and adjust.
  • the conical concentrating system also has the advantages of rapid manufacturing, low cost of manufacturing and installation maintenance.
  • FIG. 1 is a schematic structural view 1 of a first embodiment of a conical concentrating system
  • FIG. 2 is a schematic structural view 2 of a first embodiment of a conical concentrating system
  • FIG. 3 is a top view of a polygonal collector column of a second embodiment of a conical concentrating system
  • FIG. 4 is a schematic structural view of a third embodiment of a conical concentrating system
  • FIG. 5 is a schematic structural view of a fourth embodiment of a conical concentrating system
  • FIG. 6 is a schematic structural view 1 of a fifth embodiment of a conical concentrating system
  • FIG. 7 is a schematic structural view 2 of a fifth embodiment of a conical concentrating system
  • FIG. 8 is a top view of a group implementation of an eighth embodiment of a conical concentrating system
  • FIG. 9 is a schematic view showing a modified structure of a second embodiment of a conical concentrating system
  • FIG. 10 is a schematic structural view 1 of a ninth embodiment of a conical concentrating system
  • Figure 11 is a second schematic view of the structure of the ninth embodiment of the conical concentrating system.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the conical collecting system is composed of at least one reflecting plate 1 having a conical or truncated cone shape and a collecting column 2 provided at the axis of the conical or truncated reflecting plate 1.
  • a light reflecting layer is provided on the inner side surface of the reflecting plate 1. The larger port side of the reflector 1 is the light entrance of the concentrating system.
  • the sunlight irradiated on the reflecting plate 1 is reflected by the reflecting layer and concentrated at the collecting column 2, thereby being utilized.
  • the tapered concentrating system Compared with the existing concentrating device, the tapered concentrating system has the advantages of simple structure and convenient processing, and the intensity of the concentrated light energy is related to the area of the reflecting plate, and is easy to design and adjust.
  • the best angle between the reflector and its axis is 45°. In this way, the design of the light column 2 and the reflector 1 is flat and easy to install.
  • the present invention also employs a total reflection coating on the light-reflecting layer, and an anti-reflection coating on the surface of the light-collecting column 2.
  • a sealing cover may be provided at the light entrance of the concentrating system to protect the light-receiving device of the concentrating system from being sealed and protected from damage to the light-reflecting layer and the light-collecting column.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the main utilization of light energy can be the conversion of light energy into electrical energy through a photovoltaic cell, or the conversion of thermal energy caused by light energy into electrical energy by a thermoelectric power generation chip (the thermoelectric power generation chip can generate electrical energy based on the temperature difference between the two sides).
  • Photovoltaic cells and thermoelectric power generation chips are mostly produced in the form of flat sheets. Based on this point of view, as shown in FIG. 3, the embodiment is further defined on the basis of the first embodiment, the cross section of the light collecting column 2 is a polygonal structure, and the outer surface of the polygonal light collecting rod 2 is attached. Photovoltaic cells and / or thermoelectric power generation Film.
  • this embodiment is only designed for the currently common planar sheet photovoltaic cells.
  • flexible solar cells such as thin film solar cells that can be curled have appeared.
  • the concentrating column 2 of any cross-sectional shape without being limited by the polygonal concentrating column of this embodiment.
  • thermoelectric power generation chip since any photovoltaic cell and thermoelectric power generation chip are left in the package when there is a gap around it, when concentrated by the cone concentrating system, some concentrated light may not be irradiated on the battery sheet, resulting in Light energy is wasted.
  • Fig. 9 we also have a concentrating plate 6 around the photovoltaic cell or the thermoelectric power generation chip to solve such a problem.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • thermoelectric power generation chip Because the power generation principle of the thermoelectric power generation chip is that there is a temperature difference between the heating surfaces on both sides to generate electric energy. Therefore, for this feature of the thermoelectric power generation chip, we can also design the application mode of this embodiment. As shown in Fig. 4, in the present embodiment, on the basis of the first embodiment, a temperature difference power generating sheet 3 is provided on the bottom side or the top of the light collecting column 2. A heat sink 4 is provided on the other side of the thermoelectric power generation sheet 3.
  • thermoelectric power generation sheet 3 On the two heating surfaces of the thermoelectric power generation sheet 3, one side is connected to the light collecting column 2 at a higher temperature, and the other side is connected to the heat sink 4 at a lower temperature, thereby forming a temperature difference and generating electric energy.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a heat transfer base 5 is provided on the bottom side of the light collecting column 2.
  • a heat transfer pipe or a water pipe is formed in the heat transfer base 5, and heat energy is led out through the heat pipe or water pipe for use.
  • the heat transfer base 5 is made of metal.
  • the light collecting column 2 generates a high temperature due to irradiation with high intensity solar energy.
  • the heat is conducted through the heat transfer base 5 and is led out by a heat pipe or a water pipe.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the present embodiment is provided with a heat pipe or a water pipe in the light collecting column 2 on the basis of the first embodiment.
  • the light-collecting column 2 generates high temperature due to irradiation with high-intensity solar energy, and heat energy is derived by a heat pipe or a water pipe penetrating therethrough.
  • the conical concentrating system is composed of a plurality of concentrating devices composed of a plurality of reflecting plates 1 and collecting columns 2. Then, each individual concentrating device can be connected in series through the heat pipe or the water pipe.
  • a steam turbine generator may be connected in series to the heat pipe or the water pipe line, and the heated high temperature steam is used for power generation.
  • the concentrating column 2 generates a high temperature due to exposure to high-intensity solar energy. This makes it easy for the collecting rod 2 to convect with the surrounding air, thereby reducing the energy conversion efficiency of the device.
  • the light collecting column 2 can be realized by using a transparent vacuum tube collecting column. Inside the transparent vacuum tube is a collecting column 2. Since the air is insulated by the transparent vacuum tube, the air does not contact the surface of the high temperature collecting column 2. Contact, this can reduce the thermal energy loss of the light collecting column 2. Since this is an existing technology, the vacuum tube collector of the solar water heater currently on the market is using this technology, and will not be described in depth here.
  • this embodiment transforms the light entrances of the respective concentrating devices into a polygonal structure, so that the respective concentrating devices can be closely coupled to each other when the group is implemented.
  • the conical concentrating system designed by the present invention if the concentrating ratio is too small, there is obviously no practical economic benefit. Therefore, when concentrating through a truncated reflector, the reflector will generally be far away from the collector for a higher concentration ratio. The sunlight in the middle of the trellis reflector will not be used. In order to make reasonable use of this part of the sunlight, as shown in FIG. 10, in this embodiment, a photovoltaic cell or a thermoelectric power generation chip may be disposed on the top of the light collecting column 2, and the light energy is converted into the light energy by the photovoltaic cell or the thermoelectric power generation chip. Electrical energy.
  • the present invention realizes a solar concentrating system which is simple in structure and easy to process by a conical or truncated reflector.
  • a series of solar application structures were designed for the system. Any unintended modifications made by those skilled in the art under this design concept are considered to be within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)

Description

一种锥形聚光*** 技术领域
本发明涉及一种太阳能聚光***, 特别涉及一种利用锥形反射面对太阳光进 行汇聚,并对所汇聚太阳能加以适当利用的锥形聚光***,属于太阳能技术领域。 背景技术
既有的太阳能聚光技术可以分为折射式与反射式两种。
折射式聚光是利用凸透镜或是菲涅尔透镜来汇聚太阳光, 由于凸透镜生产和 制造成本较高, 因此在太阳能工业领域迄今无人应用; 制造菲涅尔透镜需要较高 的的技术要求, 由于玻璃材料无法压制菲涅尔透镜, 所以目前都采用有机玻璃或 是透明的尼龙塑料来制造。 这类高分子材料本身会吸收紫外线而导致老化, 因此 菲涅尔透镜应用在太阳能聚光工业领域, 必须每隔一段时间就更换镜片, 维护成 本过高。
反射式聚光大部分是利用平面反射镜或是抛物面反射镜来汇聚太阳光,其中 抛物面反射镜容易获得较高倍率的聚光效果, 但是制造成本与工艺要求较高, 生 产安装的速度较慢。 利用平面反射镜聚光虽然成本低廉, 但是不易获得较高的聚 光倍率。
发明内容
本发明所要解决的技术问题在于提供一种利用锥形反射面对太阳光进行汇 聚, 并对所汇聚太阳能加以适当利用的锥形聚光***。 该锥形聚光***利用一个 锥形反射面, 将太阳光汇聚到锥形反射面的中心轴线处, 在该中心轴线处设置一 个集光柱, 来实现汇聚太阳光和加以利用的目的。
为实现上述的发明目的, 本发明采用下述的技术方案;
一种锥形聚光***, 其由至少一个呈圆锥形或圆台形的反光板和设于该圆锥 形或圆台形反光板的轴线处的集光柱构成; 在该反光板的内侧面设有反光层; 该 反光板的较大口侧为该聚光***的入光口。
其中较优地, 所述集光柱的横截面为多边形; 在该集光柱的外表面贴附有光 伏电池和 /或温差发电片。
其中较优地, 在所述光伏电池和 /或温差发电片的周边还设有聚光板。
其中较优地, 在所述集光柱的底侧或顶部设有温差发电片; 在该温差发电片 的另一侧设有散热装置。 其中较优地, 在所述集光柱的底侧设有传热基座; 在该传热基座中贯穿设有 导热管或水管, 通过该导热管或水管将热能导出。
其中较优地, 在所述集光柱中贯穿设有导热管或水管。
其中较优地, 在所述导热管或水管线路上串接有蒸汽涡轮发电机。
其中较优地, 所述集光柱采用真空管集光柱。
其中较优地, 所述反光板与其轴线的夹角为 45° 。
其中较优地, 在所述反光层处镀有全反射镀膜, 在所述集光柱表面镀有减反 射镀膜。
其中较优地, 在该锥形聚光***上还加装太阳能***, 以使聚光***跟踪 太阳光。
其中较优地, 在所述聚光***的入光口处设有密封罩, 以使聚光***的受光 设备处于密封保护状态。
其中较优地, 所述反光板的入光口为多边形。
其中较优地, 在所述集光柱的顶部设置有光伏电池或温差发电片。
其中较优地, 在所述集光柱的上方设有至少一个凸透镜或菲涅尔透镜; 该至 少一个凸透镜或菲涅尔透镜将光线汇聚在所述光伏电池或温差发电片上。
本发明的有益效果是: 该锥形聚光***汇聚光能的强度与反光板的面积相 关, 易于设计调节。 该锥形聚光***还具有生产制造快速、 制造和安装维护的成 本低廉等优点。
附图说明
图 1为锥形聚光***第一实施例结构示意图一;
图 2为锥形聚光***第一实施例结构示意图二;
图 3为锥形聚光***第二实施例多边形集光柱俯视图;
图 4为锥形聚光***第三实施例结构示意图;
图 5为锥形聚光***第四实施例结构示意图;
图 6为锥形聚光***第五实施例结构示意图一;
图 7为锥形聚光***第五实施例结构示意图二;
图 8为锥形聚光***第八实施例群组实施俯视图;
图 9为锥形聚光***第二实施例改进结构示意图;
图 10为锥形聚光***第九实施例结构示意图一;
图 11为锥形聚光***第九实施例结构示意图二。 附图标号: 圆锥形或圆台形的反光板 1、 集光柱 2、 温差发电片 3、 散热装置 4、 传热基座 5、 聚光板 6
具体实施方式
有关于本发明的结构组成、 技术手段及功效达成方面, 配合附图再结合具体 实施例进一步说明于后:
实施例一:
如图 1、 图 2所示, 该锥形聚光***由至少一个呈圆锥形或圆台形的反光板 1和设于该圆锥形或圆台形反光板 1的轴线处的集光柱 2构成。 在该反光板 1的 内侧面设有反光层。 该反光板 1的较大口侧为聚光***的入光口。
照射在反光板 1上的太阳光经反光层反射后汇聚于该集光柱 2处, 从而加以 利用。
该锥形聚光***相较于现有聚光装置的好处在于, 其结构简单、 加工方便, 且汇聚光能的强度与反光板的面积相关, 易于设计调节。
不难看出, 该聚光***的正常工作有赖于太阳光线始终保持以平行于该反光 板 1的轴线方向入射。 只有这样才能保证太阳光经反射后 1集光柱 2处。 因此, 在该锥形聚光***上还应加装一个太阳能***, 以保证聚光***始终跟踪太阳 光。 由于, 市场上已有多种不同形式的太阳能***, 本发明在此就不再对其具 体结构加以限定。
根据光线反射原理我们不难看出, 该反光板与其轴线的最佳夹角为 45° 。这 样, 集光柱 2与反光板 1的设计高度持平, 易于安装。
还有, 为了进一步增加集光柱 2处的聚光效果, 减小光线在反射面上的光能 损失。 本发明还在所述反光层处镀有全反射镀膜, 在集光柱 2表面镀有减反射镀 膜。
另外, 我们还可以在所述聚光***的入光口处设有密封罩, 以使聚光***的 受光设备处于密封保护状态, 防止反光层及集光柱受到损害。
实施例二:
光能的主要利用途径可以是通过光伏电池将光能转换为电能, 或是通过温差 发电片 (温差发电片可以基于其两侧温度差产生电能)将光能所引起的热能转换 为电能。 而光伏电池和温差发电片多以平面片状形式生产。 基于此点考量, 如图 3所示, 本实施例在上述第一实施例的基础上进一步限定, 所述集光柱 2的横截 面为多边形结构, 在该多边形集光柱 2 的外表面贴附有光伏电池和 /或温差发电 片。
另外, 应当指出, 本实施例仅针对目前常见的平面片状光伏电池所设计。 但 是, 随着太阳能电池技术的发展, 现已出现薄膜太阳能电池等可以卷曲的柔性太 阳能电池。 对于这种特殊的柔性太阳能电池板, 可直接贴附于任意截面形状的集 光柱 2上, 而不受本实施例多边形集光柱的限制。
再有, 由于任何光伏电池和温差发电片在封装的时候, 在其四周都会留有间 隙, 因此在利用锥形聚光***聚光的时候, 会有部分汇聚光线未能照射在电池片 上, 造成光能浪费。 鉴于此, 如图 9所示, 我们在光伏电池或温差发电片的周边 还设有聚光板 6, 以解决这样的问题。
实施例三:
由于, 温差发电片的发电原理是在其两侧受热面存在温度差即可产生电能。 因此, 针对温差发电片的这一特点, 我们还可设计本实施例的应用方式。 如图 4 所示, 本实施例在第一实施例的基础上, 在所述集光柱 2的底侧或顶部设有温差 发电片 3。 在该温差发电片 3的另一侧设有散热装置 4。
这样, 在温差发电片 3的两个受热面, 一侧与集光柱 2相接温度较高, 另一 侧与散热装置 4相接温度较低, 从而形成温度差, 产生电能。
实施例四:
如图 5所示, 本实施例在第一实施例的基础上, 在所述集光柱 2的底侧设有 传热基座 5。 在该传热基座 5中贯穿设有导热管或水管, 通过该导热管或水管将 热能导出, 加以利用。 该传热基座 5由金属制成。
所述集光柱 2由于受到高强度太阳能照射而产生高温。 该热能经传热基座 5 传导由导热管或水管导出。
实施例五:
如图 6所示, 与实施例四相类似, 本实施例在第一实施例的基础上, 在所述 集光柱 2中贯穿设有导热管或水管。 如前所述, 集光柱 2由于受到高强度太阳能 照射而产生高温, 通过贯穿其中的导热管或水管将热能导出。
如图 7所示, 若该锥形聚光***由多个反光板 1及集光柱 2所构成的聚光装 置个体构成。 则各个聚光装置个体可通过该导热管或水管串联在一起。
实施例六:
本实施例在上述第四、 五实施例的基础上, 在所述导热管或水管线路上还可 串接有蒸汽涡轮发电机, 利用加热后的高温蒸汽发电。 实施例七:
如前所述, 所述集光柱 2由于受到高强度太阳能照射会产生高温。 这使得集 光柱 2容易与周围空气产生对流, 从而降低本装置的能量转换效率。 针对这一问 题, 所述集光柱 2可采用透明真空管集光柱来实现, 在该透明真空管内部是集光 柱 2, 由于空气被该透明真空管隔绝了, 因此空气不会与高温的集光柱 2的表面 接触, 如此可以减少集光柱 2的热能损失。 由于这是既有技术, 目前市面上销售 的太阳能热水器的真空管集热器就是使用这种技术, 在此就不做深入的描述。
实施例八:
由于由单个反光板 1 及集光柱 2所构成的聚光装置个体所能汇聚的能量有 限, 因此在实际使用中往往会以群组实施方式出现。 但是, 由于圆形入光口会在 各个聚光装置个体之间留有孔隙, 从而损失对部分光能的利用。 鉴于此, 如图 8 所示, 本实施例将各个聚光装置的入光口改造为多边形结构, 以使各个聚光装置 在群组实施时可相互紧密结合。
实施例九:
在利用本发明所设计的锥形聚光***时, 如果聚光比太小则显然没有实际的 经济效益。 因此在通过圆台形反光板进行聚光时, 一般反光板会远离集光柱一段 距离才能获得较高的聚光比。 如此在圆台形反光板中间部分的阳光就会无法利 用。 为了对这部分阳光加以合理利用, 如图 10所示, 本实施例还可在集光柱 2 的顶部设置有光伏电池或温差发电片, 通过该光伏电池或温差发电片将这部分光 能转换为电能。
不过, 如果上述中间部分的面积较大, 全部使用光伏电池板覆盖这部分会花 费较大成本。 鉴于此, 我们对上述方案进行了一定改进。 如图 11 所示, 我们在 集光柱 2的上方设有至少一个凸透镜或菲涅尔透镜, 将该部分的阳光汇聚到集光 柱顶部的较窄区域内, 在集光柱顶部该区域内设置光伏电池或温差发电片, 进而 提高阳光的利用率。
综上所述, 本发明通过圆锥形或圆台形的反光板实现了一种结构简单、 便于 加工的太阳能聚光***。 并针对该***设计了一系列太阳能应用结构。 本领域一 般技术人员在此设计思想之下所做任何不具有创造性的改造均应视为在本发明 的保护范围之内。

Claims

权利 要 求
1. 一种锥形聚光***, 其特征在于:
所述锥形聚光***由至少一个呈圆锥形或圆台形的反光板和设于所述圆锥 形或圆台形反光板的轴线处的集光柱构成;
在所述反光板的内侧面设有反光层, 所述反光板的较大口侧为所述聚光*** 的入光口;在所述反光层处镀有全反射镀膜,在所述集光柱表面镀有减反射镀膜; 所述集光柱的横截面为多边形; 在所述集光柱的外表面贴附有光伏电池和 / 或温差发电片; 在所述集光柱的底侧或顶部设有温差发电片; 在所述温差发电片 的另一侧设有散热装置;
在所述集光柱的底侧设有传热基座; 在所述集光柱和所述传热基座中贯穿设 有导热管或水管, 通过所述导热管或水管将热能导出;
在所述集光柱的上方设有至少一个凸透镜或菲涅尔透镜; 所述凸透镜或菲涅 尔透镜将光线汇聚在所述光伏电池和 /或温差发电片上。
2. 如权利要求 1所述的锥形聚光***, 其特征在于:
在所述光伏电池和 /或温差发电片的周边设有聚光板。
3. 如权利要求 1所述的锥形聚光***, 其特征在于:
在所述导热管或水管线路上串接有蒸汽涡轮发电机。
4. 如权利要求 1所述的锥形聚光***, 其特征在于:
在所述锥形聚光***上还加装太阳能***, 以使所述锥形聚光***跟踪太 阳光。
5. 一种锥形聚光***, 其特征在于: 所述锥形聚光***由至少一个呈圆锥 形或圆台形的反光板和设于所述圆锥形或圆台形反光板的轴线处的集光柱构成; 在所述反光板的内侧面设有反光层; 所述反光板的较大口侧为所述聚光***的入 光口。
6. 如权利要求 5所述的锥形聚光***, 其特征在于: 所述集光柱的横截面 为多边形; 在所述集光柱的外表面贴附有光伏电池和 /或温差发电片。
7. 如权利要求 6所述的锥形聚光***, 其特征在于: 在所述光伏电池和 /或 温差发电片的周边还设有聚光板。
8. 如权利要求 5所述的锥形聚光***, 其特征在于: 在所述集光柱的底侧 或顶部设有温差发电片; 在所述温差发电片的另一侧设有散热装置。
9. 如权利要求 5所述的锥形聚光***, 其特征在于: 在所述集光柱的底侧 设有传热基座; 在所述传热基座中贯穿设有导热管或水管, 通过所述导热管或水 管将热能导出。
10. 如权利要求 5所述的锥形聚光***, 其特征在于: 在所述集光柱中贯穿 设有导热管或水管。
11. 如权利要求 9或 10所述的锥形聚光***, 其特征在于: 在所述导热管 或水管线路上串接有蒸汽涡轮发电机。
12. 如权利要求 5所述的锥形聚光***, 其特征在于: 所述集光柱为真空管 集光柱。
13. 如权利要求 5所述的锥形聚光***, 其特征在于: 所述反光板与其轴线 的夹角为 45° 。
14. 如权利要求 5所述的锥形聚光***, 其特征在于: 在所述反光层处镀有 全反射镀膜, 在所述集光柱表面镀有减反射镀膜。
15. 如权利要求 5所述的锥形聚光***, 其特征在于: 在所述锥形聚光*** 上还加装太阳能***, 以使聚光***跟踪太阳光。
16. 如权利要求 5所述的锥形聚光***, 其特征在于: 在所述聚光***的入 光口处设有密封罩, 以使聚光***的受光设备处于密封保护状态。
17. 如权利要求 5所述的锥形聚光***, 其特征在于: 所述反光板的入光口 为多边形。
18. 如权利要求 5所述的锥形聚光***, 其特征在于: 在所述集光柱的顶部 设置有光伏电池或温差发电片。
19. 如权利要求 18所述的锥形聚光***, 其特征在于: 在所述集光柱的上 方设有至少一个凸透镜或菲涅尔透镜; 所述至少一个凸透镜或菲涅尔透镜将光线 汇聚在所述光伏电池或温差发电片上。
PCT/CN2011/075078 2010-06-01 2011-06-01 一种锥形聚光*** WO2011150849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010195854.1 2010-06-01
CN201010195854A CN101872063A (zh) 2010-06-01 2010-06-01 一种锥形聚光***

Publications (1)

Publication Number Publication Date
WO2011150849A1 true WO2011150849A1 (zh) 2011-12-08

Family

ID=42997026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075078 WO2011150849A1 (zh) 2010-06-01 2011-06-01 一种锥形聚光***

Country Status (2)

Country Link
CN (1) CN101872063A (zh)
WO (1) WO2011150849A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872063A (zh) * 2010-06-01 2010-10-27 黄建文 一种锥形聚光***
CN102570915A (zh) * 2010-12-09 2012-07-11 西安大昱光电科技有限公司 太阳能光热综合发电***
CN102563694A (zh) * 2010-12-13 2012-07-11 太仓南极风能源设备有限公司 太阳能生火器
CN102608743B (zh) * 2012-04-19 2013-10-09 乌鲁木齐集成多维电子科技有限公司 太阳能轴对称平行光超薄聚光器
CN103389572A (zh) * 2012-05-08 2013-11-13 崔理立 二合光原理的热辐射单向管温差器
CN102997446A (zh) * 2012-12-18 2013-03-27 鞠纪恩 一种锥式太阳能制热发电***
CN109654751B (zh) * 2016-11-11 2020-08-21 江苏桑力太阳能产业有限公司 一种聚光式太阳能热水器
CN110335909B (zh) * 2019-06-26 2021-09-17 南京航空航天大学 一种基于反射聚光的双面耦合光伏电池***
CN111059776A (zh) * 2020-03-07 2020-04-24 潘亚强 一种太阳能聚光集热装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248643A (en) * 1979-11-19 1981-02-03 Walter Todd Peters Solar energy conversion panel
CN1595012A (zh) * 2003-09-12 2005-03-16 闵含有 锥筒式太阳能集热器
CN2847686Y (zh) * 2005-12-19 2006-12-13 中国科学院广州能源研究所 聚光集热式太阳能温差发电装置
CN1983642A (zh) * 2006-02-09 2007-06-20 易斌宣 超高倍率聚光太阳能电池装置
US20070246095A1 (en) * 2006-04-20 2007-10-25 Hydrogain Technologies, Inc. Apparatus for generating electrical power from solar radiation concentrated by a concave reflector
US20090205636A1 (en) * 2008-02-15 2009-08-20 Ron Gangemi Solar power collectors
CN201363926Y (zh) * 2009-02-05 2009-12-16 郭学才 太阳光聚光装置
CN101872063A (zh) * 2010-06-01 2010-10-27 黄建文 一种锥形聚光***
CN201689211U (zh) * 2010-06-01 2010-12-29 黄建文 一种锥形聚光***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248643A (en) * 1979-11-19 1981-02-03 Walter Todd Peters Solar energy conversion panel
CN1595012A (zh) * 2003-09-12 2005-03-16 闵含有 锥筒式太阳能集热器
CN2847686Y (zh) * 2005-12-19 2006-12-13 中国科学院广州能源研究所 聚光集热式太阳能温差发电装置
CN1983642A (zh) * 2006-02-09 2007-06-20 易斌宣 超高倍率聚光太阳能电池装置
US20070246095A1 (en) * 2006-04-20 2007-10-25 Hydrogain Technologies, Inc. Apparatus for generating electrical power from solar radiation concentrated by a concave reflector
US20090205636A1 (en) * 2008-02-15 2009-08-20 Ron Gangemi Solar power collectors
CN201363926Y (zh) * 2009-02-05 2009-12-16 郭学才 太阳光聚光装置
CN101872063A (zh) * 2010-06-01 2010-10-27 黄建文 一种锥形聚光***
CN201689211U (zh) * 2010-06-01 2010-12-29 黄建文 一种锥形聚光***

Also Published As

Publication number Publication date
CN101872063A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2011150849A1 (zh) 一种锥形聚光***
TWI234635B (en) Photovoltaic array module design for solar electric power generation systems
CN102403929B (zh) 一种太阳能聚光发电模组
WO2012113195A1 (zh) 基于碟式聚光的太阳能二次聚光分频方法及其装置
CN207603554U (zh) 一种复合聚光型太阳能光伏发电装置
CN102589159A (zh) 真空管光伏光热复合抛物面聚光器
WO2019084707A1 (zh) 聚光式太阳能***
CN103219409A (zh) 具有旋转光伏电池组合件的聚光型与非聚光型的太阳能光伏***
KR20070104300A (ko) 태양전지 집속모듈 구조
CN201409099Y (zh) 带冷却装置的太阳能聚光型发电***
US20140048117A1 (en) Solar energy systems using external reflectors
TWI437273B (zh) 可切換光聚焦位置之系統
CN101989629A (zh) 一种太阳能电池模块及其制作方法
CN201817988U (zh) 一种低倍聚光发电供热的太阳能瓦
WO2007079657A1 (fr) Dispositif tres efficace utilisant l'energie solaire
CN101974963A (zh) 一种低倍聚光发电供热的太阳能瓦
CN102607193B (zh) 太阳能直线型超薄光热利用聚光器
CN104300893A (zh) 多边结构双面发电太阳能电池组件
TWI435459B (zh) 多向式太陽能集光系統
CN101614388A (zh) 太阳能蒸汽锅炉
CN201937509U (zh) 一种聚光光伏***
CN104917453B (zh) 高聚光光伏发电热电联产***及其组元结构
WO2014176881A1 (zh) 一种管状聚光光伏电池组件
CN206237345U (zh) 一种大面积碟式聚光太阳能光伏发电装置
TW201312065A (zh) 太陽能集能裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/02/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11789228

Country of ref document: EP

Kind code of ref document: A1