WO2011149139A1 - Air-cooled heat sink, and light-emitting diode lamp using same - Google Patents

Air-cooled heat sink, and light-emitting diode lamp using same Download PDF

Info

Publication number
WO2011149139A1
WO2011149139A1 PCT/KR2010/003550 KR2010003550W WO2011149139A1 WO 2011149139 A1 WO2011149139 A1 WO 2011149139A1 KR 2010003550 W KR2010003550 W KR 2010003550W WO 2011149139 A1 WO2011149139 A1 WO 2011149139A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
sink
tube
sinks
tubes
Prior art date
Application number
PCT/KR2010/003550
Other languages
French (fr)
Korean (ko)
Inventor
김복용
김경식
김영진
Original Assignee
Kim Bok Yong
Kim Kyung Sik
Kim Young Jin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Bok Yong, Kim Kyung Sik, Kim Young Jin filed Critical Kim Bok Yong
Publication of WO2011149139A1 publication Critical patent/WO2011149139A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/767Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having directions perpendicular to the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an air-cooled heat sink and a light emitting diode lamp employing the same, and particularly, has a lattice structure through which copper tubes penetrate horizontally arranged aluminum heat sink plates, and has natural convection of heat conduction and air inside the structure.
  • the present invention relates to an air-cooled heat sink that induces heat dissipation by a phenomenon and a light emitting diode lamp employing the air-cooled heat sink.
  • LED light emitting diode
  • a light emitting diode (LED) device has many limitations in being used as a light source due to a heat problem occurring in a light emitting diode (hereinafter, referred to as 'LED').
  • the light emitting diode has a light efficiency of about 20 to 30%, and assuming that the light efficiency of the light emitting diode is 30%, power consumed by heat per light emitting diode can be estimated to be about 70% of the total power consumption.
  • a printed circuit board (PCB) in which a power LED lamp chip or a power LED chip is mounted has a relatively high heat generation rate. If the heat generated is not efficiently processed through its heatsink, the amount of heat generated per unit area increases, and thus the temperature inside the printed circuit board or the backlight unit in which the power LED lamp chip is mounted may increase.
  • a method of dissipating heat with a heat dissipation plate made of metal has been proposed.
  • an insulating layer is stacked on the metal heat sink, a circuit pattern is formed on the insulating layer, and a semiconductor device such as a light emitting diode is mounted on the circuit pattern.
  • the metal heat sink is mainly composed of aluminum, aluminum has the advantage of good thermal conductivity, light weight and low cost.
  • the thermal conductivity of the insulating layer determines the thermal conductivity of the entire printed circuit board.
  • the insulating layer has a low thermal conductivity, heat generated from a power LED lamp chip or a printed circuit board on which the power LED chip is mounted is not effectively released. That is, since the heat generated from the power LED lamp chip is not sufficiently transferred to the metal heat sink by the blocking effect of the insulating layer, the heat sink made of the above-described metal is inferior in heat dissipation efficiency.
  • the power LED lamp chip or a printed circuit board mounted with the power LED chip has a problem that the life of the power LED lamp chip is reduced due to heat because the amount of heat generated per unit area generated in its heat sink is very large. Therefore, the power LED lamp chip is difficult to use independently without a separate heat sink.
  • the present invention has been made to solve the above problems, the present invention is in contact with the heat sink of the heat generating chip is a new type of heat dissipating heat of the self heat sink of the heat generating chip by conduction and air convection It is an object to provide an air-cooled heat sink.
  • the present invention is composed of a horizontal sink portion and tubes passing through each of two or more kinds of pure metal (matter) having different thermal conductivity and thermal conduction rate, respectively.
  • Another object is to provide such an air-cooled heat sink that uses heat conduction and natural convection of air to dissipate heat with high efficiency.
  • another object of the present invention is to provide a light emitting diode lamp having a high heat dissipation efficiency by assembling the heat sink in a substrate module mounted with a light emitting diode lamp chip.
  • An air-cooled heat sink includes first horizontal sinks and second horizontal sinks, the first horizontal sink having a larger diameter than the second horizontal sink, and the second horizontal sink between the first horizontal sinks.
  • a horizontal sink having at least one sink, first and second tubes having closed surfaces at one end thereof, and third tubes having open ends, wherein the first and second tubes are formed of the first and second tubes.
  • the third tubes include a vertical sink portion penetrating the two horizontal sinks and penetrating the first and second horizontal sinks, wherein the thermal conduction between the horizontal sink portion and the vertical sink portion is opened. Heat is released by convection of air entering and exiting the face.
  • the first tube has a closed surface exposed through the outermost first horizontal sink in the first direction, and the end including the closed surface is bonded with a self-heating sink and a conductive adhesive of the heat generating chip.
  • the second tubes may be configured such that the open surface is exposed through the second outer horizontal sink in the first direction while the closed surface is disposed so as to be located in a direction opposite to that of the first tube.
  • the open surface of the first tube may be configured to be exposed while passing through any one of the first horizontal sink and the second horizontal sink in the horizontal sink.
  • the closed surface of the second tube may be configured to be exposed while passing through any one of the first horizontal sink and the second horizontal sink in the horizontal sink.
  • the closed surface of the first tube may be provided with a protrusion that can be assembled with a groove formed in the self heat sink of the heat generating chip.
  • the first tube may be disposed in the center of the horizontal sink and be configured of any one of a circular or square tube.
  • the third tubes may be configured to further pass through the second horizontal sinks.
  • the third tubes may be configured to pass through the second horizontal sinks disposed at the outermost sides of both ends and to expose an open surface.
  • the horizontal sink unit may further include a washer disposed between the first horizontal sinks and the second horizontal sinks and through which the first tube passes.
  • the first horizontal sink and the second horizontal sink may be formed of a circular disk made of aluminum, and the first to third tubes may be formed of copper.
  • the light emitting diode lamp according to the present invention, an epoxy base substrate, a metal base substrate or a ceramic base system having a light emitting diode lamp chip mounted on the front surface and its own heat sink radiating heat of the light emitting diode lamp chip on the rear surface And an air-cooled heat sink assembled to the rear surface of the substrate module, wherein the air-cooled heat sink includes first horizontal sinks and second horizontal sinks.
  • the first horizontal sink has a larger diameter than the second horizontal sink, and the first and second tubes each having a horizontal sink portion having at least one second horizontal sink disposed between the first horizontal sinks and a closed surface at one end thereof.
  • third tubes open at both ends, wherein the first tube and the second tubes pass through the first and second horizontal sinks.
  • the third tubes include a vertical sink portion passing through the first horizontal sink.
  • the new type of air-cooled heat sink according to the present invention is in contact with the heat sink of the heat generating chip, thereby dissipating heat of the heat sink of the heat generating chip by conduction and air convection. There is.
  • the air-cooled heat sink is a horizontal heat sink and a tube through which two or more kinds of metal (matter) having different thermal conductivity and thermal conduction rate are respectively formed.
  • the air-cooled heat sink is assembled to a substrate module including a light emitting diode lamp chip in the center of the front surface and an epoxy base substrate, a metal base substrate, or a ceramic base substrate substrate having a heat sink on its rear surface.
  • the light emitting diode lamp is configured to have a high heat dissipation effect.
  • FIG. 1 is a perspective view showing a first embodiment of an air-cooled heat sink according to the present invention.
  • FIG. 2 is a plan view of the first embodiment of FIG.
  • FIG. 3 is a partial cross-sectional view taken along line 1-1 of FIG. 1.
  • FIG. 4 is a partial cross-sectional view taken along line 2-2 of FIG.
  • FIG. 5 is a plan view and a longitudinal sectional view of the first tube 14 of FIG.
  • FIG. 6 is a plan view and a longitudinal sectional view of the second tube 16 of FIG. 1.
  • FIG. 7 is a plan view and a longitudinal sectional view of the third tube 18 of FIG. 1.
  • FIG. 8 is an exemplary plan view of a washer installable in FIG. 1.
  • FIG. 8 is an exemplary plan view of a washer installable in FIG. 1.
  • FIG. 9 is a perspective view showing a second embodiment of an air-cooled heat sink according to the present invention.
  • FIG. 10 is a plan view of the second embodiment of FIG.
  • FIG. 11 is a partial cross-sectional view taken along line 3-3 of FIG.
  • FIG. 13 is a plan view and a longitudinal sectional view of the first tube 14a of FIG.
  • FIG. 14 is a perspective view showing a third embodiment of an air-cooled heat sink according to the present invention.
  • FIG. 15 is a plan view of the third embodiment of FIG.
  • FIG. 16 is a plan view and a longitudinal sectional view of the first tube 14b of FIG. 14.
  • FIG 17 is a perspective view showing a fourth embodiment of an air-cooled heat sink according to the present invention.
  • FIG. 18 is a plan view of the fourth embodiment of FIG. 17.
  • 19 is a perspective view illustrating the substrate module 30 by way of example.
  • FIG. 20 is a perspective view illustrating an example of a self heat sink of the substrate module 30 of FIG. 19.
  • FIG. 21 is a perspective view illustrating another example of a heat sink of the substrate module 30 of FIG. 19.
  • Fig. 22 is an assembled perspective view showing a preferred embodiment of a light emitting diode lamp according to the present invention.
  • FIG. 23 is a graph illustrating a light flux of a light emitting diode chip by applying power.
  • 24 is a graph showing the temperature of the first heat sink having a larger diameter among the heat sinks made of aluminum.
  • FIG. 25 is a photograph taken by an IR camera of a front surface temperature distribution of an epoxy substrate base surface on which a light emitting diode lamp chip photographed by an IR camera is mounted.
  • 26 is a side photograph showing an initial temperature distribution of an air cooled heat sink according to the present invention.
  • 27 and 28 are side pictures showing the temperature distribution of the air-cooled heat sink according to the present invention 20 minutes after the power is applied in the state of FIG. 26.
  • FIGS. 27 and 28 are graph illustrating a temperature measurement of the heat sink corresponding to the states of FIGS. 27 and 28.
  • FIG. 30 is a photograph showing a temperature distribution with respect to a plane of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after power is applied.
  • FIG. 31 is a graph illustrating a temperature measurement of a heat sink corresponding to the state of FIG. 30.
  • FIG. 32 is a photograph showing a temperature distribution of the rear surface of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after power is applied.
  • FIG. 33 is a graph illustrating a temperature measurement of a heat sink corresponding to the state of FIG. 32.
  • An air-cooled heat sink includes first horizontal sinks and second horizontal sinks, the first horizontal sink having a larger diameter than the second horizontal sink, and the second horizontal sink between the first horizontal sinks.
  • a horizontal sink having at least one sink, first and second tubes having closed surfaces at one end thereof, and third tubes having open ends, wherein the first and second tubes are formed of the first and second tubes.
  • the third tubes include a vertical sink portion penetrating the two horizontal sinks and penetrating the first and second horizontal sinks, wherein the thermal conduction between the horizontal sink portion and the vertical sink portion is opened. Heat is released by convection of air entering and exiting the face.
  • the light emitting diode lamp according to the present invention includes an epoxy base substrate, a metal base substrate, or a ceramic base substrate, in which a light emitting diode lamp chip is mounted on a front surface thereof and a heat sink for dissipating heat of the light emitting diode lamp chip on a rear surface thereof.
  • an air-cooled heat sink assembled to the rear surface of the substrate module, wherein the air-cooled heat sink includes first horizontal sinks and second horizontal sinks, and the first horizontal The sink has a diameter larger than that of the second horizontal sink, and the first and second tubes each having a horizontal sink portion having at least one second horizontal sink disposed between the first horizontal sinks and a closed surface at one end thereof; And third tubes open at both ends, wherein the first tube and the second tubes pass through the first and second horizontal sinks. And to the third tube it may comprise a vertical sync penetrating the first horizontal sync.
  • the air-cooled heat sink according to the present invention includes a horizontal sink portion and a vertical sink portion, the horizontal sink portion includes first horizontal sinks 10 and second horizontal sinks 12, and first and second horizontal sinks. 10 and 12 may be manufactured in a circular disk shape, the first horizontal sinks 10 having a larger diameter than the second horizontal sinks 12, and a second between the first horizontal sinks 10. Horizontal sinks 12 are arranged one by one. That is, the first horizontal sink 10 and the second horizontal sink 12 are alternately arranged vertically spaced apart from each other.
  • the vertical sink portion includes a first tube 14 and a second tube 18 having a closed surface at one end and third tubes 16 having both ends open, and the first tube 14 and the second tube. The tubes 18 pass through and engage with the first horizontal sinks 10 and the second horizontal sinks 12, and the third tubes 16 pass through the first horizontal sink 10. Is formed.
  • a spaced distance between the first horizontal sink 10 and the second horizontal sink 12 may be configured to be supported by the washer 17, and the washer 17 is configured as an o-type ring type. It may be configured to be inserted into the first tube 14 to be.
  • first horizontal sinks 10 and the second horizontal sinks 12 arranged in the horizontal sink portion as described above are arranged to have a concentric (first to third tube 14, 18, 16) Combined with the air-cooled heatsink according to the invention.
  • the first tube 14 and the second tube 18 have closed surfaces at one end thereof, and the third tube 16 has an open shape at both ends thereof.
  • the first tube 14 may be configured as a tube having a cross-section having a rectangular or square shape
  • the second tube 18 and the third tube 16 may be configured as a tube having a circular cross section. .
  • the first tube 14 is configured to penetrate and engage with the center of the stacked first and second horizontal sinks 10, 12.
  • a plurality of second tubes 18 may be disposed, spaced apart from each other on a circumference having the same diameter from the first tube 14, and may penetrate the first and second horizontal sinks 10 and 12. It is configured to be combined with these.
  • the second tube 18 is illustrated as being configured as four in the embodiment of the present invention, it is not limited thereto, and may be configured in various ways according to the intention of the manufacturer.
  • a plurality of third tubes 16 may be formed, and the plurality of third tubes 16 may be spaced apart from each other on the circumference having the same diameter from the first tube 14, but at a position farther from the first tube 14 than the second tube 18. It is disposed and configured to penetrate and engage the first and second horizontal sinks 10, 12.
  • the third tube 16 is illustrated as being configured as four in the embodiment of the present invention, it is not limited thereto and may be configured in various ways according to the intention of the manufacturer. In particular, in the first embodiment the third tube 16 is arranged at a position in contact with the rim of the second horizontal sink 12.
  • the number of the first horizontal sink 10 and the second horizontal sink 12 included in the horizontal sink portion, the diameter thereof, and the number of the first to third tubes 14, 18, 16 and Their diameter and length may be determined in consideration of the amount of heat generated by a heat generating chip such as a light emitting diode lamp chip of a light emitting diode lamp combined with an air-cooled heat sink according to the present invention.
  • the separation distance between the first horizontal sink 10 and the second horizontal sink 12 and the density at which the first to third tubes 14, 18, and 16 are disposed may be determined in consideration of heat dissipation efficiency.
  • first and second horizontal sinks 10 and 12 and the first to third tubes 14, 18 and 16 may use different types of pure metal materials, and the first to third tubes 14. , 18, 16 is preferably made of a material having a better thermal conductivity than the first and second horizontal sinks (10, 12).
  • the first to third tubes 14, 18, and 16 may be manufactured using copper.
  • Copper is a metal with a distinctive red luster with the element symbol Cu, atomic number 29, atomic weight 63.546, melting point 1084.5 ° C, melting point 2595 ° C and specific gravity 8.92 (20 ° C), and exhibits malleability, ductility and processability. Not only is this outstanding but there is also strength.
  • the thermal conductivity of copper is 300 to 340 Kcal / m ⁇ hr ⁇ ° C, and the thermal and electrical conductivity of copper is the second largest after silver, and the crystal system is an equiaxed crystal system.
  • the copper may be used as a material of the washer 17 as well as the first to third tubes 14, 18, and 16.
  • an upper portion of the closed surface of the first tube 14 may be bonded to a heat sink of a light emitting diode lamp chip, and the bonding may be performed using a conductive adhesive made of silver.
  • a one-component conductive adhesive which is usually sold for bonding the silver electrode of the tantalum chip capacitor and the lead frame, may be used, and may be used for dispensing. It has moderate viscosity characteristics and thixotropic lndex, has a low shrinkage rate during natural curing, and has a very low solvent content of less than 1% to form a uniform bond line, and has excellent adhesion. It has a high electrical conductivity of 2.0 ⁇ 10 ⁇ 4 ⁇ cm, excellent heat and moisture resistance at high temperature, and small change in electrical conductivity with temperature.
  • the first and second horizontal sinks 10 and 12 may be manufactured using aluminum.
  • Aluminum is an aluminum white, light and soft metal with elemental symbol Al, atomic number 13, atomic weight 26.9815, melting point 660.4 ° C, breaking point 2519 ° C and density 2.70g / cm 3 (20 ° C).
  • Aluminum has high ductility, thermal conductivity of 175Kcal / m ⁇ hr ⁇ °C, and good electrical conductivity. Aluminum has lower thermal conductivity than copper.
  • the first tube 14 is configured such that the closed surface is exposed through the outermost first horizontal sink 10 on the side where the heat generating chip such as a light emitting diode lamp chip is disposed, and is opposite to the open state.
  • the end portion is configured to be exposed through the outermost second horizontal sink 12 included in the horizontal sink portion.
  • the second tube 18 is configured such that the open end is exposed through the outermost second horizontal sink 12 in the direction in which the closed surface of the first tube 14 is disposed, and the closed surface is opposite to the outermost second. It is configured to be exposed through the horizontal sink 12.
  • the third tube 16 is configured such that both ends of the open state are exposed through the outermost first horizontal sink 10 in both directions.
  • the first embodiment has a thermal conductivity between the first and second horizontal sinks 10 and 12 and the first to third tubes 14, 18 and 16 and the first to third tubes 14, 18, 16) Air cooling is achieved by natural air convection inside the structure, in which the horizontal sinks and the tubes are combined, both inside and in the form of a lattice.
  • first to third tubes 14, 18, and 16 have a higher thermal conductivity than the first and second horizontal sinks 10 and 12
  • the first to third tubes 14, 18, and 16 have a higher heat conductivity than the first and third tubes 14, 18, and 16 to quickly pump heat from the heat sink of the heat generating chip.
  • second horizontal sinks 10 and 12 to enable efficient heat dissipation.
  • first to third tubes 14, 18, and 16 have a tube shape in which one side or both sides are open to form a system of heat dissipation by natural convection air. That is, cold outside air as shown by the arrow shown in the drawing flows into the inner space of the first to third tubes 14, 18 and 16 and the inner wall of the first to third tubes 14, 18 and 16. The heat-absorbed air may cause a natural convection phenomenon emitted to the outside, thereby allowing the first to third tubes 14, 18, and 16 to more effectively radiate heat.
  • first and second horizontal sinks 10 and 12 have different diameters, a space for convection of air is formed between the first horizontal sinks 10 so that natural convection of air can be more efficiently ensured. And thus the heat dissipation effect can be increased.
  • first and second tubes 14 and 18 are disposed in opposite directions to each other, convection and heat dissipation of air are dispersed without being concentrated in a specific portion, so that effective heat dissipation can be achieved.
  • the stacked first and second horizontal sinks 10 and 12 are combined with the first to third tubes 14, 18 and 16 to form a lattice structure, heat conduction may be effectively performed.
  • the third tube 18 disposed on the periphery of the second horizontal sink (10, 12) can be made smoothly heat transfer by promoting heat dissipation at the end by using the tube is open at both ends.
  • the second embodiment differs in that the second horizontal sink 12a and the third tube 16a are separated from each other in comparison with the first embodiment shown in FIGS. 1 to 8, and the first tube 14a Is different in that the cross section is configured to be circular.
  • the third tube 16a coupled to the first horizontal sink 10a may be disposed at a more outer side than the third tube 16 of the first embodiment, or the second horizontal sink 12a may be disposed. It may be designed to have a diameter smaller than the second horizontal sink 12 of the first embodiment.
  • the arrangement relationship between the first to third tubes 14a, 18a, and 16a can be kept the same as in the first embodiment.
  • the washer 17 of FIG. 8 may be used to maintain the separation distance between the first horizontal sink 10a and the second horizontal sink 12a.
  • the third tube 16a does not participate in the heat dissipation of the second horizontal sink 12, and the overall heat dissipation mechanism is substantially the same as that of the first embodiment, and thus descriptions of overlapping configurations and operations will be omitted.
  • the overall configuration is the same as in the second embodiment, and the shape of the first tube 14b is different.
  • a tube having a circular cross section is used, and a protrusion 15 forming a rectangular shape is formed at a closed end.
  • the configuration of the first and second horizontal sinks 10b, 12b and the second and third tubes 18b, 16b of the third embodiment is the same as that of the second embodiment, and the first through third tubes 14b, 18b, Since the arrangement relationship of each other of 16b) is also the same, the overlapping structure and operation description about these are abbreviate
  • recesses (see 40 of FIG. 21) that may be coupled to the protrusions 15 may be formed, and the protrusions 15 of the third embodiment may be inserted into the recesses 40 of FIG. 21.
  • a silver conductive adhesive can be used to form a bond for heat dissipation.
  • the fourth embodiment is the same as the second embodiment, the overall configuration of the receiving groove 20 for accommodating the wiring for coupling with the heat generating chip in the first horizontal sink (10c) in one direction, that is, combined with the heat generating chip (20) This is to be formed.
  • the configuration of the second horizontal sink 12c and the first to third tubes 14c, 18c and 16c of the fourth embodiment is the same as that of the second embodiment, and the first to third tubes 14c, 18c and 16c Since the arrangement relationship between each other is also the same, overlapping configuration and operation description thereof will be omitted.
  • the fourth embodiment may be coupled to the heat generating chip as shown in FIG. 22, and the receiving groove 20 may be used to arrange the wiring 44.
  • the air-cooled heat sink according to the present invention may be configured as in the first to fourth embodiments, but the present invention is not limited thereto, and the first and second horizontal sinks and the first to third tubes may be deformed in various shapes.
  • the present invention is not limited thereto, and the first and second horizontal sinks and the first to third tubes may be deformed in various shapes.
  • the above-mentioned heat generating chip includes a chip that generates high heat, such as a light emitting diode lamp chip constituting the light emitting diode lamp, the substrate module mounting the light emitting diode lamp chip may be configured as shown in Figs. have.
  • the substrate module 30 may include a cap 34 for mounting and protecting a light emitting diode lamp chip (not shown) on the front surface of the substrate 32, and a light emitting diode lamp chip on the rear surface of the substrate 32.
  • a self heat sink 36 may be formed to radiate heat.
  • the substrate 32 may be an epoxy base substrate (eg FR4), a metal base (rigid) substrate or a ceramic (eg Al 2 O 3 , Al 2 O 3 -TiC, Si 3 N 4 , CaTiO 3 , AlN, ZrO 2 ) may be composed of any one of a series substrate-based substrate.
  • the substrate module 30 may have a recess 40 that may be coupled to the protrusion 15 protruding from the center of the first horizontal sink of the air-cooled heat sink, as described above with reference to FIG. 21.
  • the substrate module 30 as described above may be combined with any one of the first to fourth embodiments described with reference to FIGS. 1 to 18 to form a light emitting diode lamp, and in constructing the light emitting diode lamp.
  • the wiring 44 may be arranged in the accommodation groove 20.
  • the heat of the substrate module 30 may be radiated by the above-described air-cooled heat sink, and the light-emitting diode lamp according to the present invention is heat-cooled by air conduction and natural air convection. Since it is made by the light emitting diode lamp chip has the effect of improving the life and improve the light efficiency.
  • FIG. 23 is a graph illustrating the luminous flux of a light emitting diode lamp chip in a state in which power of 12V and 750mA is applied using a luminous flux measuring device (CAS140), and the horizontal axis of FIG. lumen) (lm).
  • CAS140 luminous flux measuring device
  • FIG. 24 is a graph showing the temperature of the first horizontal sink having a larger diameter among the horizontal sinks made of aluminum in the state where power is applied, as shown in FIG. 23.
  • the horizontal axis of FIG. Means temperature (° C.).
  • FIG. 25 is a photograph showing the surface temperature of a general metal substrate base on which a power light emitting diode lamp chip or a chip is mounted by using an IR camera (temperature measurement) measuring instrument. As shown in FIG. Indicated.
  • 26 to 33 are photographs and temperature measurement graphs showing temperature distributions on the side, plane, and bottom of a light emitting diode lamp chip employing an air-cooled heat sink according to the present invention.
  • FIG. 26 is a side photograph showing an initial temperature distribution of an air cooled heat sink according to the present invention.
  • the values indicated corresponding to points A to E are temperatures.
  • FIGS. 27 and 28 are side views illustrating a temperature distribution of an air-cooled heat sink according to the present invention 20 minutes after power supply of 12 V and 750 mA in the state of FIG. 26, and FIG. 29 corresponds to the states of FIGS. 27 and 28.
  • It is a temperature measurement graph of the air-cooled heat sink which becomes.
  • the values indicated corresponding to points A to E are temperatures
  • FIG. 28 represents a state in which a temperature is distributed between a maximum value of 35.9 ° C. and a minimum value of 22.0 ° C.
  • a horizontal axis means time (minutes).
  • the vertical axis means temperature.
  • FIG. 30 is a photograph showing a temperature distribution with respect to a plane of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after power supply of 12 V and 750 mA
  • FIG. 31 is an air-cooled heat corresponding to the state of FIG. This is a graph of sink temperature measurement.
  • FIG. 30 illustrates a state in which a temperature is distributed between a maximum value of 36.0 ° C. and a minimum value of 22.0 ° C.
  • a horizontal axis means time (minutes) and a vertical axis means temperature.
  • FIG. 32 is a photograph showing a temperature distribution of a bottom surface of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after applying power of 12 V and 750 mA
  • FIG. 33 is a heat sink corresponding to the state of FIG. 32.
  • FIG. 32 shows a state in which temperatures are distributed between a maximum value of 30.2 ° C. and a minimum value of 22.0 ° C.
  • a horizontal axis means time (minutes) and a vertical axis means temperature.
  • the front surface temperature of the general metal substrate base surface shows 80.7 ° C
  • the rear surface of the air-cooled heat sink of the present invention shows that the temperature indicates 22 ° C.
  • This is a temperature difference between the base metal substrate base surface on which the power LED lamp chip is mounted and the rear surface (bottom surface) of the air-cooled heat sink of the present invention is 58.7 ° C. (Natural convection) by maximizing the natural convection can be confirmed that the heat is released by the efficient thermal conductivity (thermal thermal conductivity) and thermal conductivity (Thermal conduction rate).
  • substrate module 32 substrate
  • cap 36 self heatsink

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention relates to an air cooled heat sink having a lattice structure in which a copper tube passes through aluminum heat-sink plates and dissipates heat through heat conduction and the natural convection of air inside the structure; and a light-emitting diode lamp using the air cooled heat sink. The air-cooled heat sink comprises: a horizontal sink part including first and second horizontal sinks, wherein the first horizontal sinks have a diameter greater than the second horizontal sinks, and the second horizontal sinks are each disposed between two adjacent first sinks; and a vertical sink part including first and second tubes, one end of which is closed, and third tubes, both ends of which are open, wherein the first and second tubes pass through and are integrated with the first and second horizontal sinks, and the third tubes pass through at least the first horizontal sinks.

Description

공랭식 히트싱크 및 그를 채용한 발광다이오드 램프Air-cooled heat sink and light emitting diode lamp
본 발명은 공랭식 히트싱크 및 그를 채용한 발광다이오드 램프에 관한 것으로서, 특히 수평으로 배치되는 알루미늄 재질의 히트싱크판들을 구리 재질의 튜브가 관통하는 격자 구조를 가지고 상기 구조 내부에서 열전도 및 공기의 자연 대류 현상에 의하여 방열을 유도하는 공랭식 히트싱크와 상기 공랭식 히트싱크를 채용한 발광다이오드 램프에 관한 것이다.The present invention relates to an air-cooled heat sink and a light emitting diode lamp employing the same, and particularly, has a lattice structure through which copper tubes penetrate horizontally arranged aluminum heat sink plates, and has natural convection of heat conduction and air inside the structure. The present invention relates to an air-cooled heat sink that induces heat dissipation by a phenomenon and a light emitting diode lamp employing the air-cooled heat sink.
최근 발광다이오드(Light Emitting Diode; LED) 소자는 조명등이나 액정표시장치(Liquid Crystal Display; LCD)의 백라이트 유닛 등 이용되는 분야가 확대되고 있다.Recently, the field of light emitting diode (LED) devices, such as a lighting lamp or a backlight unit of a liquid crystal display (LCD), has been expanded.
그러나, 발광다이오드(Light Emitting Diode; LED) 소자는 발광 다이오드(이하, 'LED'라 함)에서 발생하는 열 문제로 인해 광원으로 사용하는데 제약이 많다. 발광다이오드는 대략 20~30% 정도의 광 효율을 가지며, 발광다이오드의 광 효율을 30%로 가정하면 발광다이오드 한 개당 열로 소모하는 전력은 전체 소비 전력의 70% 정도로 추산될 수 있다.However, a light emitting diode (LED) device has many limitations in being used as a light source due to a heat problem occurring in a light emitting diode (hereinafter, referred to as 'LED'). The light emitting diode has a light efficiency of about 20 to 30%, and assuming that the light efficiency of the light emitting diode is 30%, power consumed by heat per light emitting diode can be estimated to be about 70% of the total power consumption.
파워 LED 램프 칩 또는 파워 LED 칩이 실장된 인쇄회로기판(Printed Circuit Board: PCB)은 열의 발생 비율이 상대적으로 높다. 이들은 발생되는 열을 자체의 히트싱크를 통하여 효율적으로 처리하지 못하면 단위 면적당 발열량이 커지며, 그에 따라서 파워 LED 램프 칩이 실장된 인쇄회로기판이나 백라이트 유닛 내부의 온도가 상승될 수 있다.A printed circuit board (PCB) in which a power LED lamp chip or a power LED chip is mounted has a relatively high heat generation rate. If the heat generated is not efficiently processed through its heatsink, the amount of heat generated per unit area increases, and thus the temperature inside the printed circuit board or the backlight unit in which the power LED lamp chip is mounted may increase.
결과적으로 파워 LED 램프 칩이 동작되지 않거나 비정상적으로 동작되는 상태가 야기될 수 있으며, 관련 전자회로 등의 동작의 신뢰성이 저하될 수 있다. 뿐만 아니라 내부 온도차에 의한 부품이나 케이스에 열응력이 발생할 수 있으며, 열응력에 의하여 제품이 변형될 수 있다. As a result, a state in which the power LED lamp chip is not operated or is abnormally operated may be caused, and the reliability of the operation of the associated electronic circuit or the like may be deteriorated. In addition, thermal stress may occur on parts or cases due to internal temperature differences, and the product may be deformed by thermal stress.
따라서, 파워 LED 램프 칩 또는 파워 LED 칩이 실장된 인쇄회로기판의 자체 히트싱크를 통하여 열을 빠르게 방출시킬 수 있는 다양한 연구가 현재 진행되고 있다.Therefore, various researches are currently being conducted to quickly release heat through a heat sink of a printed circuit board on which a power LED lamp chip or a power LED chip is mounted.
가장 일반적인 방열 방법으로 히트싱크(Heat Sink)나 냉각팬(Cooling Fan)의 사용이 고려되고 있다. 그러나, 일반적인 히트싱크나 냉각팬은 열 방출 속도와 효율이 떨어지기 때문에 방열 효율을 높이기 위하여 열을 강제로 방출하기 위한 장치 등이 부가적으로 필요한 문제점이 있다.The most common method of heat dissipation is the use of heat sinks or cooling fans. However, since a general heat sink or cooling fan is inferior in heat release rate and efficiency, there is a problem in that an apparatus for forcibly discharging heat is additionally required to increase heat radiation efficiency.
이러한 방열 문제를 해결하기 위해 금속으로 이루어진 방열판을 구비하여 열을 방출하는 방법이 제안된 바 있다. 이 경우 금속 방열판 상부에 절연층이 적층되고, 상기 절연층 상부에 회로 패턴이 형성되며, 상기 회로 패턴 상부에 발광다이오드와 같은 반도체 소자가 실장 된다. 상기 금속 방열판은 알루미늄으로 주로 구성되며, 알루미늄은 열전도도가 좋고 가벼우며 가격이 저렴한 이점이 있다.In order to solve the heat dissipation problem, a method of dissipating heat with a heat dissipation plate made of metal has been proposed. In this case, an insulating layer is stacked on the metal heat sink, a circuit pattern is formed on the insulating layer, and a semiconductor device such as a light emitting diode is mounted on the circuit pattern. The metal heat sink is mainly composed of aluminum, aluminum has the advantage of good thermal conductivity, light weight and low cost.
상술한 금속으로 이루어진 방열판에서 상기 절연층의 열전도도가 전체 인쇄회로기판의 열전도도를 좌우한다. 그러나, 일반적으로 절연층은 낮은 열전도도를 갖기 때문에, 파워 LED 램프 칩 또는 파워 LED 칩을 실장한 인쇄회로기판에서 발생하는 열이 효과적으로 방출되지 못한다. 즉, 파워 LED 램프 칩에서 발생하는 열이 상기 절연층의 차단 효과에 의하여 금속 방열판에 충분히 전달되지 못하기 때문에 상술한 금속으로 이루어진 방열판은 열 방출 효율이 떨어진다.In the heat sink made of the above-described metal, the thermal conductivity of the insulating layer determines the thermal conductivity of the entire printed circuit board. However, in general, since the insulating layer has a low thermal conductivity, heat generated from a power LED lamp chip or a printed circuit board on which the power LED chip is mounted is not effectively released. That is, since the heat generated from the power LED lamp chip is not sufficiently transferred to the metal heat sink by the blocking effect of the insulating layer, the heat sink made of the above-described metal is inferior in heat dissipation efficiency.
최근에 파워 LED 램프 칩 또는 파워 LED 램프 칩이 실장된 인쇄회로기판의 자체 히트싱크의 단위 면적을 크게 함으로써 자체의 히트싱크의 단위 면적당 발열량을 작게 하고, 열전도도(trermal conductivity) 및 열전도율(Thermal conduction rate)을 향상시키려는 연구가 끊임없이 이루어지고 있다. By increasing the unit area of a heat sink of a printed circuit board on which a power LED lamp chip or a power LED lamp chip is recently mounted, the amount of heat generated per unit area of the heat sink is reduced, and thermal conductivity and thermal conduction are reduced. There is a constant effort to improve the rate.
그러나, 파워 LED 램프 칩 또는 파워 LED 칩을 실장한 인쇄회로기판은 자체의 히트싱크에서 발생하는 단위 면적당 발열량이 매우 크기 때문에 열로 인하여 파워 LED 램프 칩의 수명이 저하되는 문제점이 있다. 그러므로 별도의 방열판이 없이는 파워 LED 램프 칩이 독자적으로 사용되기 어렵다. However, the power LED lamp chip or a printed circuit board mounted with the power LED chip has a problem that the life of the power LED lamp chip is reduced due to heat because the amount of heat generated per unit area generated in its heat sink is very large. Therefore, the power LED lamp chip is difficult to use independently without a separate heat sink.
그러므로, 파워 LED 램프 칩 제품을 설계함에 있어서 가격 대비 성능이 뛰어난 고(高) 방열성 및 고(高) 효율성을 갖는 새로운 타입의 히트싱크의 개발이 필요한 실정이다.Therefore, in designing a power LED lamp chip product, it is necessary to develop a new type of heat sink having high heat dissipation and high efficiency with excellent cost performance.
본 발명은 상기와 같은 문제점들을 해결하기 위하여 안출된 것으로서, 본 발명은 발열성 칩의 자체 히트싱크에 접촉되어서 상기 발열성 칩의 상기 자체 히트싱크의 열을 전도 및 공기 대류로 방열하는 새로운 타입의 공랭식 히트싱크를 제공함을 목적으로 한다.The present invention has been made to solve the above problems, the present invention is in contact with the heat sink of the heat generating chip is a new type of heat dissipating heat of the self heat sink of the heat generating chip by conduction and air convection It is an object to provide an air-cooled heat sink.
또한, 본 발명은 열전도도(trermal conductivity) 및 열전도율(Thermal conduction rate)이 각기 다른 두 종류 이상의 순금속(metal, 純金屬)의 물질(matter)을 수평싱크부와 이들을 관통하는 튜브들로 각각 구성하여서 열전도와 공기의 자연 대류를 이용하여 높은 효율로 열을 방출하는 상기 공랭식 히트싱크를 제공함을 다른 목적으로 한다.In addition, the present invention is composed of a horizontal sink portion and tubes passing through each of two or more kinds of pure metal (matter) having different thermal conductivity and thermal conduction rate, respectively. Another object is to provide such an air-cooled heat sink that uses heat conduction and natural convection of air to dissipate heat with high efficiency.
또한, 본 발명은 상기 히트싱크를 발광다이오드 램프 칩을 실장한 기판모듈에 조립하여 높은 열 방출 효율을 갖는 발광다이오드 램프를 제공함을 또다른 목적으로 한다.In addition, another object of the present invention is to provide a light emitting diode lamp having a high heat dissipation efficiency by assembling the heat sink in a substrate module mounted with a light emitting diode lamp chip.
본 발명에 따른 공랭식 히트싱크는, 제1 수평싱크들 및 제2 수평싱크들을 포함하고 상기 제1 수평싱크는 상기 제2 수평싱크보다 큰 직경을 가지며 상기 제1 수평싱크들 사이에 상기 제2 수평싱크가 적어도 1개 배치되는 수평싱크부 및 일단에 닫힌 면이 형성된 제1 튜브 및 제2 튜브들 그리고 양단이 열린 제3 튜브들을 포함하며 상기 제1 튜브 및 상기 제2 튜브들은 상기 제1 및 제2 수평싱크들을 관통하면서 이들과 결합되며 상기 제3 튜브들은 상기 제1 수평싱크를 관통하는 수직싱크부를 포함하며, 상기 수평싱크부와 상기 수직싱크부 간의 열전도와 상기 제1 내지 제3 튜브들의 열린 면을 출입하는 공기의 대류로 열을 방출함을 특징으로 한다.An air-cooled heat sink according to the present invention includes first horizontal sinks and second horizontal sinks, the first horizontal sink having a larger diameter than the second horizontal sink, and the second horizontal sink between the first horizontal sinks. A horizontal sink having at least one sink, first and second tubes having closed surfaces at one end thereof, and third tubes having open ends, wherein the first and second tubes are formed of the first and second tubes. And the third tubes include a vertical sink portion penetrating the two horizontal sinks and penetrating the first and second horizontal sinks, wherein the thermal conduction between the horizontal sink portion and the vertical sink portion is opened. Heat is released by convection of air entering and exiting the face.
여기에서, 상기 제1 튜브는 닫힌 면이 제1 방향의 최외곽의 상기 제1 수평싱크를 관통하여 노출되며 상기 닫힌 면을 포함하는 단부가 발열성 칩의 자체 히트싱크와 도전성 접착제로 접착되며, 상기 제2 튜브들은 상기 닫힌 면이 상기 제1 튜브의 것과 반대 방향에 위치하도록 배치되면서 열린 면이 상기 제1 방향의 최외곽의 상기 제2 수평싱크를 관통하여 노출되도록 구성될 수 있다.Here, the first tube has a closed surface exposed through the outermost first horizontal sink in the first direction, and the end including the closed surface is bonded with a self-heating sink and a conductive adhesive of the heat generating chip. The second tubes may be configured such that the open surface is exposed through the second outer horizontal sink in the first direction while the closed surface is disposed so as to be located in a direction opposite to that of the first tube.
그리고, 상기 제1 튜브의 열린 면은 상기 수평싱크부 내부의 상기 제1 수평싱크나 상기 제2 수평싱크 중 어느 하나를 관통하면서 노출되도록 구성될 수 있다.The open surface of the first tube may be configured to be exposed while passing through any one of the first horizontal sink and the second horizontal sink in the horizontal sink.
그리고, 상기 제2 튜브의 닫힌 면은 상기 수평싱크부 내부의 상기 제1 수평싱크나 상기 제2 수평싱크 중 어느 하나를 관통하면서 노출되도록 구성될 수 있다.The closed surface of the second tube may be configured to be exposed while passing through any one of the first horizontal sink and the second horizontal sink in the horizontal sink.
그리고, 상기 제1 튜브의 상기 닫힌 면에는 상기 발열성 칩의 상기 자체 히트싱크에 형성되는 홈과 조립가능한 돌기가 형성될 수 있다.In addition, the closed surface of the first tube may be provided with a protrusion that can be assembled with a groove formed in the self heat sink of the heat generating chip.
그리고, 상기 제1 튜브는 상기 수평싱크부의 중심에 배치되며 원형 또는 사각형 튜브 중 어느 하나로 구성될 수 있다.In addition, the first tube may be disposed in the center of the horizontal sink and be configured of any one of a circular or square tube.
그리고, 상기 제3 튜브들은 상기 제2 수평싱크들을 더 관통하도록 구성될 수 있다.The third tubes may be configured to further pass through the second horizontal sinks.
그리고, 상기 제3 튜브들은 양단의 최외곽에 배치된 상기 제2 수평싱크들을 관통하며 열린 면이 노출되도록 구성될 수 있다.In addition, the third tubes may be configured to pass through the second horizontal sinks disposed at the outermost sides of both ends and to expose an open surface.
그리고, 상기 수평싱크부는 상기 제1 수평싱크들과 상기 제2 수평싱크들 사이에 배치되며 상기 제1 튜브가 관통되는 와셔를 더 포함할 수 있다.The horizontal sink unit may further include a washer disposed between the first horizontal sinks and the second horizontal sinks and through which the first tube passes.
그리고, 상기 제1 수평싱크와 상기 제2 수평싱크는 알루미늄 재질의 원형 디스크로 형성되며 상기 제1 내지 제3 튜브는 구리 재질로 형성될 수 있다.The first horizontal sink and the second horizontal sink may be formed of a circular disk made of aluminum, and the first to third tubes may be formed of copper.
한편, 본 발명에 따른 발광다이오드 램프는, 전면에 발광다이오드 램프 칩이 실장되고 후면에 상기 발광다이오드 램프 칩의 열을 방열하는 자체 히트싱크를 가지는 에폭시 베이스계 기판, 메탈 베이스계 기판 또는 세라믹 베이스계 기판 중 어느 하나의 계열로 구성되는 기판모듈 및 상기 기판모듈의 상기 후면에 조립되는 상기 공랭식 히트싱크를 포함하며, 상기 공랭식 히트싱크는, 제1 수평싱크들 및 제2 수평싱크들을 포함하고 상기 제1 수평싱크는 상기 제2 수평싱크보다 큰 직경을 가지며 상기 제1 수평싱크들 사이에 상기 제2 수평싱크가 적어도 1개 배치되는 수평싱크부 및 일단에 닫힌 면이 형성된 제1 튜브 및 제2 튜브들 그리고 양단이 열린 제3 튜브들을 포함하며 상기 제1 튜브 및 상기 제2 튜브들은 상기 제1 및 제2 수평싱크들을 관통하면서 이들과 결합되며 상기 제3 튜브들은 상기 제1 수평싱크를 관통하는 수직싱크부를 포함한다.On the other hand, the light emitting diode lamp according to the present invention, an epoxy base substrate, a metal base substrate or a ceramic base system having a light emitting diode lamp chip mounted on the front surface and its own heat sink radiating heat of the light emitting diode lamp chip on the rear surface And an air-cooled heat sink assembled to the rear surface of the substrate module, wherein the air-cooled heat sink includes first horizontal sinks and second horizontal sinks. The first horizontal sink has a larger diameter than the second horizontal sink, and the first and second tubes each having a horizontal sink portion having at least one second horizontal sink disposed between the first horizontal sinks and a closed surface at one end thereof. And third tubes open at both ends, wherein the first tube and the second tubes pass through the first and second horizontal sinks. And the third tubes include a vertical sink portion passing through the first horizontal sink.
본 발명에 의한 새로운 타입의 공랭식 히트싱크는 발열성 칩의 자체 히트싱크에 접촉되어서 상기 발열성 칩의 상기 자체 히트싱크의 열을 전도 및 공기 대류로 방열함으로써 높은 효율로 방열을 수행할 수 있는 효과가 있다.The new type of air-cooled heat sink according to the present invention is in contact with the heat sink of the heat generating chip, thereby dissipating heat of the heat sink of the heat generating chip by conduction and air convection. There is.
그리고, 상기 공랭식 히트싱크는 열전도도(trermal conductivity) 및 열전도율(Thermal conduction rate)이 각기 다른 두 종류 이상의 순금속(metal, 純金屬)의 물질(matter)을 수평히트싱크부와 이들을 관통하는 튜브로 각각 구성됨으로써 열전도와 공기의 자연 대류를 이용하여 높은 효율로 열을 방출하는 효과가 있다.In addition, the air-cooled heat sink is a horizontal heat sink and a tube through which two or more kinds of metal (matter) having different thermal conductivity and thermal conduction rate are respectively formed. By being configured, there is an effect of dissipating heat with high efficiency by using heat conduction and natural convection of air.
그리고, 전면 중앙에 발광다이오드 램프 칩을 탑재하고 후면에 자체 히트싱크를 갖는 에폭시 베이스계 기판, 메탈 베이스계 기판 또는 세라믹 베이스계 기판 중 임의의 기판 재료로 구성되는 기판모듈에 상기 공랭식 히트싱크가 조립되어서 발광다이오드 램프가 구성됨으로써 높은 방열성이 보장되는 효과가 있다.The air-cooled heat sink is assembled to a substrate module including a light emitting diode lamp chip in the center of the front surface and an epoxy base substrate, a metal base substrate, or a ceramic base substrate substrate having a heat sink on its rear surface. The light emitting diode lamp is configured to have a high heat dissipation effect.
도 1은 본 발명에 따른 공랭식 히트싱크의 제1 실시예를 나타내는 사시도이다.1 is a perspective view showing a first embodiment of an air-cooled heat sink according to the present invention.
도 2는 도 1의 제1 실시예의 평면도이다.2 is a plan view of the first embodiment of FIG.
도 3은 도 1의 1-1 부분 단면도이다.3 is a partial cross-sectional view taken along line 1-1 of FIG. 1.
도 4는 도 1의 2-2 부분 단면도이다.4 is a partial cross-sectional view taken along line 2-2 of FIG.
도 5는 도 1의 제1 튜브(14)의 평면도 및 종단면도이다.5 is a plan view and a longitudinal sectional view of the first tube 14 of FIG.
도 6은 도 1의 제2 튜브(16)의 평면도 및 종단면도이다.6 is a plan view and a longitudinal sectional view of the second tube 16 of FIG. 1.
도 7은 도 1의 제3 튜브(18)의 평면도 및 종단면도이다.7 is a plan view and a longitudinal sectional view of the third tube 18 of FIG. 1.
도 8은 도 1에 설치가능한 와셔의 예시적 평면도이다.FIG. 8 is an exemplary plan view of a washer installable in FIG. 1. FIG.
도 9는 본 발명에 따른 공랭식 히트싱크의 제2 실시예를 나타내는 사시도이다.9 is a perspective view showing a second embodiment of an air-cooled heat sink according to the present invention.
도 10은 도 9의 제2 실시예의 평면도이다.10 is a plan view of the second embodiment of FIG.
도 11은 도 10의 3-3 부분 단면도이다.FIG. 11 is a partial cross-sectional view taken along line 3-3 of FIG.
도 12는 도 10의 4-4 부분 단면도이다.12 is a partial cross-sectional view taken along line 4-4 of FIG.
도 13은 도 9의 제1 튜브(14a)의 평면도 및 종단면도이다.13 is a plan view and a longitudinal sectional view of the first tube 14a of FIG.
도 14는 본 발명에 따른 공랭식 히트싱크의 제3 실시예를 나타내는 사시도이다.14 is a perspective view showing a third embodiment of an air-cooled heat sink according to the present invention.
도 15는 도 14의 제3 실시예의 평면도이다.15 is a plan view of the third embodiment of FIG.
도 16은 도 14의 제1 튜브(14b)의 평면도 및 종단면도이다. FIG. 16 is a plan view and a longitudinal sectional view of the first tube 14b of FIG. 14.
도 17은 본 발명에 따른 공랭식 히트싱크의 제4 실시예를 나타내는 사시도이다.17 is a perspective view showing a fourth embodiment of an air-cooled heat sink according to the present invention.
도 18은 도 17의 제 4 실시예의 평면도이다.18 is a plan view of the fourth embodiment of FIG. 17.
도 19는 기판모듈(30)을 예시적으로 도시한 사시도이다.19 is a perspective view illustrating the substrate module 30 by way of example.
도 20은 도 19의 기판모듈(30)의 자체 히트싱크의 일예를 도시하는 사시도이다.FIG. 20 is a perspective view illustrating an example of a self heat sink of the substrate module 30 of FIG. 19.
도 21은 도 19의 기판모듈(30)의 자체 히트싱크의 다른 일예를 도시하는 사시도이다.FIG. 21 is a perspective view illustrating another example of a heat sink of the substrate module 30 of FIG. 19.
도 22는 본 발명에 따른 발광다이오드 램프의 바람직한 실시예를 나타내는 조립 상태 사시도이다.Fig. 22 is an assembled perspective view showing a preferred embodiment of a light emitting diode lamp according to the present invention.
도 23은 파워를 인가하여 발광다이오드 칩의 광속을 측정한 그래프이다.FIG. 23 is a graph illustrating a light flux of a light emitting diode chip by applying power. FIG.
도 24는 알루미늄 재질의 히트싱크 중 직경이 큰 제1 히트싱크의 온도를 나타내는 그래프이다.24 is a graph showing the temperature of the first heat sink having a larger diameter among the heat sinks made of aluminum.
도 25는 IR 카메라로 촬영한 발광다이오드 램프 칩이 탑재된 에폭시 기판 베이스 표면의 기판 전면 온도 분포를 IR 카메라로 촬영한 사진이다.FIG. 25 is a photograph taken by an IR camera of a front surface temperature distribution of an epoxy substrate base surface on which a light emitting diode lamp chip photographed by an IR camera is mounted.
도 26은 본 발명에 따른 공랭식 히트싱크의 초기 온도 분포를 나타내는 측면 사진이다.26 is a side photograph showing an initial temperature distribution of an air cooled heat sink according to the present invention.
도 27 및 도 28은 도 26의 상태에서 파워 인가 20분 후 본 발명에 따른 공랭식 히트싱크의 온도 분포를 나타내는 측면 사진이다.27 and 28 are side pictures showing the temperature distribution of the air-cooled heat sink according to the present invention 20 minutes after the power is applied in the state of FIG. 26.
도 29는 도 27 및 도 28의 상태에 대응되는 히트싱크의 온도 측정 그래프이다.29 is a graph illustrating a temperature measurement of the heat sink corresponding to the states of FIGS. 27 and 28.
도 30은 파워 인가 20분 후 본 발명에 따른 공랭식 히트싱크를 채용한 발광다이오드 램프의 평면에 대한 온도 분포를 나타내는 사진이다.30 is a photograph showing a temperature distribution with respect to a plane of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after power is applied.
도 31은 도 30의 상태에 대응되는 히트싱크의 온도 측정 그래프이다.FIG. 31 is a graph illustrating a temperature measurement of a heat sink corresponding to the state of FIG. 30.
도 32는 파워 인가 20분 후 본 발명에 따른 공랭식 히트싱크를 채용한 발광다이오드 램프의 배면에 대한 온도 분포를 나타내는 사진이다.32 is a photograph showing a temperature distribution of the rear surface of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after power is applied.
도 33은 도 32의 상태에 대응되는 히트싱크의 온도 측정 그래프이다.33 is a graph illustrating a temperature measurement of a heat sink corresponding to the state of FIG. 32.
본 발명에 따른 공랭식 히트싱크는, 제1 수평싱크들 및 제2 수평싱크들을 포함하고 상기 제1 수평싱크는 상기 제2 수평싱크보다 큰 직경을 가지며 상기 제1 수평싱크들 사이에 상기 제2 수평싱크가 적어도 1개 배치되는 수평싱크부 및 일단에 닫힌 면이 형성된 제1 튜브 및 제2 튜브들 그리고 양단이 열린 제3 튜브들을 포함하며 상기 제1 튜브 및 상기 제2 튜브들은 상기 제1 및 제2 수평싱크들을 관통하면서 이들과 결합되며 상기 제3 튜브들은 상기 제1 수평싱크를 관통하는 수직싱크부를 포함하며, 상기 수평싱크부와 상기 수직싱크부 간의 열전도와 상기 제1 내지 제3 튜브들의 열린 면을 출입하는 공기의 대류로 열을 방출한다.An air-cooled heat sink according to the present invention includes first horizontal sinks and second horizontal sinks, the first horizontal sink having a larger diameter than the second horizontal sink, and the second horizontal sink between the first horizontal sinks. A horizontal sink having at least one sink, first and second tubes having closed surfaces at one end thereof, and third tubes having open ends, wherein the first and second tubes are formed of the first and second tubes. And the third tubes include a vertical sink portion penetrating the two horizontal sinks and penetrating the first and second horizontal sinks, wherein the thermal conduction between the horizontal sink portion and the vertical sink portion is opened. Heat is released by convection of air entering and exiting the face.
본 발명에 따른 발광다이오드 램프는, 전면에 발광다이오드 램프 칩이 실장되고 후면에 상기 발광다이오드 램프 칩의 열을 방열하는 자체 히트싱크를 가지는 에폭시 베이스계 기판, 메탈 베이스계 기판 또는 세라믹 베이스계 기판 중 어느 하나의 계열로 구성되는 기판모듈 및 상기 기판모듈의 상기 후면에 조립되는 상기 공랭식 히트싱크를 포함하며, 상기 공랭식 히트싱크는, 제1 수평싱크들 및 제2 수평싱크들을 포함하고 상기 제1 수평싱크는 상기 제2 수평싱크보다 큰 직경을 가지며 상기 제1 수평싱크들 사이에 상기 제2 수평싱크가 적어도 1개 배치되는 수평싱크부 및 일단에 닫힌 면이 형성된 제1 튜브 및 제2 튜브들 그리고 양단이 열린 제3 튜브들을 포함하며 상기 제1 튜브 및 상기 제2 튜브들은 상기 제1 및 제2 수평싱크들을 관통하면서 이들과 결합되며 상기 제3 튜브들은 상기 제1 수평싱크를 관통하는 수직싱크부를 포함한다.The light emitting diode lamp according to the present invention includes an epoxy base substrate, a metal base substrate, or a ceramic base substrate, in which a light emitting diode lamp chip is mounted on a front surface thereof and a heat sink for dissipating heat of the light emitting diode lamp chip on a rear surface thereof. And an air-cooled heat sink assembled to the rear surface of the substrate module, wherein the air-cooled heat sink includes first horizontal sinks and second horizontal sinks, and the first horizontal The sink has a diameter larger than that of the second horizontal sink, and the first and second tubes each having a horizontal sink portion having at least one second horizontal sink disposed between the first horizontal sinks and a closed surface at one end thereof; And third tubes open at both ends, wherein the first tube and the second tubes pass through the first and second horizontal sinks. And to the third tube it may comprise a vertical sync penetrating the first horizontal sync.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명하기로 한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. 도면상에서 동일 부호는 동일한 요소를 지칭한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments are provided to those skilled in the art to fully understand the present invention, and may be modified in various forms, and the scope of the present invention is limited to the embodiments described below. It doesn't happen. Like numbers refer to like elements in the figures.
본 발명에 따른 공랭식 히트싱크의 바람직한 실시예들에 대하여 첨부된 도면들을 참조하여 설명한다.Preferred embodiments of the air-cooled heat sink according to the present invention will be described with reference to the accompanying drawings.
먼저, 도 1 내지 도 8을 참조하여 본 발명에 따른 제1 실시예에 대하여 설명한다.First, a first embodiment according to the present invention will be described with reference to FIGS. 1 to 8.
본 발명에 따른 공랭식 히트싱크는 수평싱크부와 수직싱크부를 포함하며, 수평싱크부는 제1 수평싱크들(10) 및 제2 수평싱크들(12)을 포함하고, 제1 및 제2 수평싱크들(10, 12)은 원형 디스크 형상으로 제작될 수 있으며, 제1 수평싱크들(10)은 제2 수평싱크들(12) 보다 큰 직경을 가지고, 제1 수평싱크들(10) 사이에 제2 수평싱크(12)가 하나씩 배치된다. 즉, 제1 수평싱크(10)와 제2 수평싱크(12)는 수직으로 일정 간격 이격되면서 교번되게 배치된다. 상기 수직싱크부는 일단에 닫힌 면이 형성된 제1 튜브(14) 및 제2 튜브들(18) 그리고 양단이 열린 제3 튜브들(16)을 포함하며, 상기 제1 튜브(14) 및 상기 제2 튜브들(18)은 제1 수평싱크들(10) 및 제2 수평싱크들(12)을 관통하면서 이들과 결합되며, 상기 제3 튜브들(16)은 제1 수평싱크(10)를 관통하게 형성된다.The air-cooled heat sink according to the present invention includes a horizontal sink portion and a vertical sink portion, the horizontal sink portion includes first horizontal sinks 10 and second horizontal sinks 12, and first and second horizontal sinks. 10 and 12 may be manufactured in a circular disk shape, the first horizontal sinks 10 having a larger diameter than the second horizontal sinks 12, and a second between the first horizontal sinks 10. Horizontal sinks 12 are arranged one by one. That is, the first horizontal sink 10 and the second horizontal sink 12 are alternately arranged vertically spaced apart from each other. The vertical sink portion includes a first tube 14 and a second tube 18 having a closed surface at one end and third tubes 16 having both ends open, and the first tube 14 and the second tube. The tubes 18 pass through and engage with the first horizontal sinks 10 and the second horizontal sinks 12, and the third tubes 16 pass through the first horizontal sink 10. Is formed.
제1 수평싱크(10)와 제2 수평싱크(12)의 이격된 간격은 와셔(17)에 의하여 지지되도록 구성될 수 있으며, 와셔(17)는 오(O)형 링 타입으로 구성되는 것으로서 후술되는 제1 튜브(14)에 삽입되어 구성될 수 있다.A spaced distance between the first horizontal sink 10 and the second horizontal sink 12 may be configured to be supported by the washer 17, and the washer 17 is configured as an o-type ring type. It may be configured to be inserted into the first tube 14 to be.
그리고, 상술한 바와 같이 배치된 수평싱크부의 제1 수평싱크들(10) 및 제2 수평싱크들(12)은 동심(同心)을 갖도록 배치되면서 제1 내지 제3 튜브(14, 18, 16)와 결합되어서 본 발명에 따른 공랭식 히트싱크를 이룬다.Then, the first horizontal sinks 10 and the second horizontal sinks 12 arranged in the horizontal sink portion as described above are arranged to have a concentric (first to third tube 14, 18, 16) Combined with the air-cooled heatsink according to the invention.
제1 튜브(14) 및 제2 튜브(18)는 일단에 닫힌 면이 형성되고 제 3 튜브(16)는 양단이 열린 형상을 갖는다. 그리고, 제1 튜브(14)는 횡단면이 직사각형 또는 정사각형 형상을 갖는 튜브로 구성될 수 있고, 제2 튜브(18)와 제3 튜브(16)는 횡단면이 원 형상을 갖는 튜브로 구성될 수 있다.The first tube 14 and the second tube 18 have closed surfaces at one end thereof, and the third tube 16 has an open shape at both ends thereof. In addition, the first tube 14 may be configured as a tube having a cross-section having a rectangular or square shape, and the second tube 18 and the third tube 16 may be configured as a tube having a circular cross section. .
여기에서 제1 튜브(14)는 적층된 제1 및 제2 수평싱크들(10, 12)의 중심을 관통하여 이들과 결합되도록 구성된다. Here, the first tube 14 is configured to penetrate and engage with the center of the stacked first and second horizontal sinks 10, 12.
그리고, 제2 튜브(18)는 복수 개 구성되며, 제1 튜브(14)로부터 동일한 직경을 갖는 원주 상에 서로 이격되게 배치되고, 제1 및 제2 수평싱크들(10, 12)을 관통하여 이들과 결합되도록 구성된다. 제2 튜브(18)는 본 발명의 실시예로 4개가 구성된 것이 예시되고 있으나, 이에 국한하지 않고 제작자의 의도에 따라 보다 다양하게 구성될 수 있다.In addition, a plurality of second tubes 18 may be disposed, spaced apart from each other on a circumference having the same diameter from the first tube 14, and may penetrate the first and second horizontal sinks 10 and 12. It is configured to be combined with these. Although the second tube 18 is illustrated as being configured as four in the embodiment of the present invention, it is not limited thereto, and may be configured in various ways according to the intention of the manufacturer.
그리고, 제3 튜브(16)도 복수 개 구성되며, 제1 튜브(14)로부터 동일한 직경을 갖는 원주 상에 서로 이격시켜서 배치되되 제2 튜브(18)보다 제1 튜브(14)에서 먼 위치에 배치되고 제1 및 제2 수평싱크들(10, 12)을 관통하여 이들과 결합되도록 구성된다. 제3 튜브(16)는 본 발명의 실시예로 4개가 구성된 것이 예시되고 있으나, 이에 국한하지 않고 제작자의 의도에 따라서 보다 다양하게 구성될 수 있다. 특히, 제1 실시예에서 제3 튜브(16)는 제2 수평싱크(12)의 테두리에 접하는 위치에 배치된다. In addition, a plurality of third tubes 16 may be formed, and the plurality of third tubes 16 may be spaced apart from each other on the circumference having the same diameter from the first tube 14, but at a position farther from the first tube 14 than the second tube 18. It is disposed and configured to penetrate and engage the first and second horizontal sinks 10, 12. Although the third tube 16 is illustrated as being configured as four in the embodiment of the present invention, it is not limited thereto and may be configured in various ways according to the intention of the manufacturer. In particular, in the first embodiment the third tube 16 is arranged at a position in contact with the rim of the second horizontal sink 12.
상술한 구성에 있어서, 수평싱크부에 포함되는 제1 수평싱크(10)와 제2 수평싱크(12)의 수와 이들의 직경 그리고 제1 내지 제3 튜브(14, 18, 16)의 수와 이들의 직경 및 길이는 본 발명에 따른 공랭식 히트싱크와 결합되는 발광다이오드 램프의 발광다이오드 램프 칩과 같은 발열성 칩의 발열량을 고려하여 결정될 수 있다.In the above-described configuration, the number of the first horizontal sink 10 and the second horizontal sink 12 included in the horizontal sink portion, the diameter thereof, and the number of the first to third tubes 14, 18, 16 and Their diameter and length may be determined in consideration of the amount of heat generated by a heat generating chip such as a light emitting diode lamp chip of a light emitting diode lamp combined with an air-cooled heat sink according to the present invention.
그리고, 제1 수평싱크(10)와 제2 수평싱크(12)의 이격 거리와 제1 내지 제3 튜브들(14, 18, 16)이 배치되는 조밀도는 방열 효율을 고려하여 결정될 수 있다.In addition, the separation distance between the first horizontal sink 10 and the second horizontal sink 12 and the density at which the first to third tubes 14, 18, and 16 are disposed may be determined in consideration of heat dissipation efficiency.
그리고, 제1 및 제2 수평싱크(10, 12)와 제1 내지 제3 튜브들(14, 18, 16)은 서로 다른 종류의 순금속 물질을 이용할 수 있으며, 제1 내지 제3 튜브들(14, 18, 16)이 제1 및 제2 수평싱크(10, 12) 보다 열전도율이 좋은 재질로 구성됨이 바람직하다.In addition, the first and second horizontal sinks 10 and 12 and the first to third tubes 14, 18 and 16 may use different types of pure metal materials, and the first to third tubes 14. , 18, 16 is preferably made of a material having a better thermal conductivity than the first and second horizontal sinks (10, 12).
상술한 바에서 제1 내지 제3 튜브들(14, 18, 16)은 구리를 이용하여 제작될 수 있다. 구리는 원소기호 Cu, 원자번호 29, 원자량 63.546, 녹는점 1084.5℃, 끊는점 2595℃ 그리고 비중 8.92(20℃)로 특유한 적색 광택을 가진 금속이며, 전성(展性), 연성(延性) 및 가공성이 뛰어날 뿐만 아니라 강도도 있다. 구리의 열전도율은 300 내지 340 Kcal/m·hr·℃이고, 구리의 열 및 전기의 전도율은 은에 이어 2번째로 크고 결정계는 등축정계(等軸晶系)이다.As described above, the first to third tubes 14, 18, and 16 may be manufactured using copper. Copper is a metal with a distinctive red luster with the element symbol Cu, atomic number 29, atomic weight 63.546, melting point 1084.5 ° C, melting point 2595 ° C and specific gravity 8.92 (20 ° C), and exhibits malleability, ductility and processability. Not only is this outstanding but there is also strength. The thermal conductivity of copper is 300 to 340 Kcal / m · hr · ° C, and the thermal and electrical conductivity of copper is the second largest after silver, and the crystal system is an equiaxed crystal system.
상기 구리는 제1 내지 제3 튜브들(14, 18, 16) 뿐만 아니라 와셔(17)의 재질로 이용될 수 있다.The copper may be used as a material of the washer 17 as well as the first to third tubes 14, 18, and 16.
그리고, 제1 튜브(14)의 닫힌 면의 상부는 발광다이오드 램프 칩의 자체 히트싱크와 접합될 수 있으며, 이때 접합은 은 재질의 도전성 접착제를 이용하여 이루어질 수 있다. In addition, an upper portion of the closed surface of the first tube 14 may be bonded to a heat sink of a light emitting diode lamp chip, and the bonding may be performed using a conductive adhesive made of silver.
은 재질의 도전성 접착제는 통상적으로 탄탈륨 칩 커패시터( Tantalum Chip Capacitor)의 은 전극과 리드 프레임(Lead Frame)의 접착 등을 위하여 판매되는 일액형 도전성 접착제가 이용될 수 있으며, 디스펜싱(Dispensing) 작업에 알맞은 점도 특성과 틱소트로픽 인덱스(Thixotropic lndex)를 가지고, 자연 경화시 수축률이 적으며, 용제의 함량이 1%이하로 매우 적어서 균일한 본드 라인(Bond line)을 형성할 수 있고, 접착력이 우수하며, 2.0×10-4Ω㎝의 높은 전기전도도를 가지며, 고온에서 내열 및 내습성이 우수하고, 온도에 따른 전기전도도의 변화가 적다.As the conductive adhesive made of silver, a one-component conductive adhesive, which is usually sold for bonding the silver electrode of the tantalum chip capacitor and the lead frame, may be used, and may be used for dispensing. It has moderate viscosity characteristics and thixotropic lndex, has a low shrinkage rate during natural curing, and has a very low solvent content of less than 1% to form a uniform bond line, and has excellent adhesion. It has a high electrical conductivity of 2.0 × 10 −4 Ωcm, excellent heat and moisture resistance at high temperature, and small change in electrical conductivity with temperature.
또한, 상술한 바에서 제1 및 제2 수평싱크(10, 12)는 알루미늄을 이용하여 제작될 수 있다. 알루미늄(Aluminium)은 원소기호 Al, 원자번호 13, 원자량 26.9815, 녹는점 660.4℃, 끊는점 2519℃, 밀도 2.70g/cm3(20℃)로 녹이 잘 슬지 않고, 은백색의 가볍고 무른 금속이다. 알루미늄은 연성이 크며, 열전도율이 175Kcal/m·hr·℃이고 전기 전도성 또한 좋기 때문에 고전압용 전선을 만드는데 이용된다. 알루미늄은 구리보다 열전도율이 떨어진다.In addition, as described above, the first and second horizontal sinks 10 and 12 may be manufactured using aluminum. Aluminum is an aluminum white, light and soft metal with elemental symbol Al, atomic number 13, atomic weight 26.9815, melting point 660.4 ° C, breaking point 2519 ° C and density 2.70g / cm 3 (20 ° C). Aluminum has high ductility, thermal conductivity of 175Kcal / m · hr · ℃, and good electrical conductivity. Aluminum has lower thermal conductivity than copper.
제1 실시예에서 제1 튜브(14)는 닫힌 면이 발광다이오드 램프 칩과 같은 발열성 칩이 배치되는 쪽의 최외곽 제1 수평싱크(10)를 관통하여 노출되도록 구성되며, 열린 상태의 반대쪽 단부는 수평싱크부에 포함되는 최외곽 제2 수평싱크(12)를 관통하여 노출되도록 구성된다. 그리고 제2 튜브(18)는 열린 단부가 제1 튜브(14)의 닫힌 면이 배치되는 방향의 최외곽 제2 수평싱크(12)를 관통하여 노출되도록 구성되며, 닫힌 면은 반대쪽 최외곽 제2 수평싱크(12)를 관통하여 노출되도록 구성된다. 그리고, 제3 튜브(16)는 열린 상태의 양단이 양방향의 최외곽 제1 수평싱크(10)를 관통하여 노출되도록 구성된다.In the first embodiment, the first tube 14 is configured such that the closed surface is exposed through the outermost first horizontal sink 10 on the side where the heat generating chip such as a light emitting diode lamp chip is disposed, and is opposite to the open state. The end portion is configured to be exposed through the outermost second horizontal sink 12 included in the horizontal sink portion. The second tube 18 is configured such that the open end is exposed through the outermost second horizontal sink 12 in the direction in which the closed surface of the first tube 14 is disposed, and the closed surface is opposite to the outermost second. It is configured to be exposed through the horizontal sink 12. The third tube 16 is configured such that both ends of the open state are exposed through the outermost first horizontal sink 10 in both directions.
상술한 바와 같은 제1 실시예는 제1 및 제2 수평싱크(10, 12) 및 제1 내지 제 3 튜브들(14, 18, 16) 간의 열전도와 제1 내지 제3 튜브(14, 18, 16) 내부 및 격자형태로 수평싱크들과 튜브들이 결합된 구조체 내부의 자연적인 공기 대류에 의하여 공랭이 이루어진다.As described above, the first embodiment has a thermal conductivity between the first and second horizontal sinks 10 and 12 and the first to third tubes 14, 18 and 16 and the first to third tubes 14, 18, 16) Air cooling is achieved by natural air convection inside the structure, in which the horizontal sinks and the tubes are combined, both inside and in the form of a lattice.
보다 구체적으로 제1 내지 제3 튜브들(14, 18, 16)은 제1 및 제2 수평싱크(10, 12) 보다 열전도율이 높기 때문에 발열성 칩의 자체 히트싱크의 열을 빠르게 펌핑하여 제1 및 제2 수평싱크(10, 12)들에 전도할 수 있어서 효율적인 방열을 가능하게 한다.More specifically, since the first to third tubes 14, 18, and 16 have a higher thermal conductivity than the first and second horizontal sinks 10 and 12, the first to third tubes 14, 18, and 16 have a higher heat conductivity than the first and third tubes 14, 18, and 16 to quickly pump heat from the heat sink of the heat generating chip. And second horizontal sinks 10 and 12 to enable efficient heat dissipation.
그리고, 제1 내지 제3 튜브들(14, 18, 16)들은 일면 또는 양면이 개방된 튜브 형상을 가짐으로써 자연 대류하는 공기에 의하여 방열하는 시스템을 이룬다. 즉, 도면에 도시된 화살표와 같이 찬 외부 공기가 제1 내지 제3 튜브들(14, 18, 16)의 내부 공간에 유입되고 제1 내지 제3 튜브들(14, 18, 16)의 내벽의 열을 흡수한 공기는 외부로 방출되는 자연 대류 현상이 발생함으로써 제1 내지 제3 튜브들(14, 18, 16)이 보다 효과적인 방열을 수행할 수 있다.In addition, the first to third tubes 14, 18, and 16 have a tube shape in which one side or both sides are open to form a system of heat dissipation by natural convection air. That is, cold outside air as shown by the arrow shown in the drawing flows into the inner space of the first to third tubes 14, 18 and 16 and the inner wall of the first to third tubes 14, 18 and 16. The heat-absorbed air may cause a natural convection phenomenon emitted to the outside, thereby allowing the first to third tubes 14, 18, and 16 to more effectively radiate heat.
아울러, 제1 및 제2 수평싱크(10, 12)는 서로 다른 직경을 가짐으로써 제1 수평싱크(10)들 사이에 공기의 대류를 위한 공간이 형성됨으로써 보다 효율적으로 공기의 자연 대류가 보장될 수 있고 그에 따른 방열 효과가 상승될 수 있다.In addition, since the first and second horizontal sinks 10 and 12 have different diameters, a space for convection of air is formed between the first horizontal sinks 10 so that natural convection of air can be more efficiently ensured. And thus the heat dissipation effect can be increased.
그리고, 제1 및 제2 튜브(14, 18)의 개방된 단부가 서로 반대 방향에 배치됨으로써 공기의 대류 및 방열이 특정 부분에 집중되지 않고 분산됨으로써 효과적인 방열이 이루어질 수 있다.In addition, since the open ends of the first and second tubes 14 and 18 are disposed in opposite directions to each other, convection and heat dissipation of air are dispersed without being concentrated in a specific portion, so that effective heat dissipation can be achieved.
그리고, 적층된 제1 및 제2 수평싱크(10, 12)들이 제1 내지 제3 튜브(14, 18, 16)들과 결합되어 격자구조를 이룸으로써 열의 전도가 효과적으로 이루어질 수 있고, 특히 제1 및 제2 수평싱크(10, 12)의 주연부에 배치되는 제3 튜브(18)는 양단이 개방된 튜브가 이용됨으로써 말단에서 방열을 촉진시킴으로써 열전달이 순조롭게 이루어질 수 있다.In addition, since the stacked first and second horizontal sinks 10 and 12 are combined with the first to third tubes 14, 18 and 16 to form a lattice structure, heat conduction may be effectively performed. And the third tube 18 disposed on the periphery of the second horizontal sink (10, 12) can be made smoothly heat transfer by promoting heat dissipation at the end by using the tube is open at both ends.
한편, 제2 실시예는 도 9 내지 도 13을 참조하여 설명될 수 있다.Meanwhile, the second embodiment may be described with reference to FIGS. 9 to 13.
제2 실시예는 도 1 내지 도 8에 도시된 제1 실시예와 비교하여 제2 수평싱크(12a)와 제3 튜브(16a)가 서로 분리된 점에 차이가 있고, 제1 튜브(14a)는 횡단면이 원형인 것으로 구성된 점에 차이가 있다.The second embodiment differs in that the second horizontal sink 12a and the third tube 16a are separated from each other in comparison with the first embodiment shown in FIGS. 1 to 8, and the first tube 14a Is different in that the cross section is configured to be circular.
상술한 구성상 차이점에 의하여 제1 수평싱크(10a)와 결합되는 제3 튜브(16a)는 제1 실시예의 제3 튜브(16) 보다 좀 더 외곽에 배치되거나, 제 2 수평싱크(12a)가 제1 실시예의 제2 수평싱크(12) 보다 작은 직경을 갖도록 설계될 수 있다. 제 1 내지 제3 튜브(14a, 18a, 16a)의 서로 간의 배치 관계는 제1 실시예와 동일하게 유지될 수 있다. 그리고, 제1 수평싱크(10a)와 제2 수평싱크(12a) 간의 이격 거리를 유지하기 위하여 도 8의 와셔(17)가 이용될 수 있다.Due to the above-described configuration difference, the third tube 16a coupled to the first horizontal sink 10a may be disposed at a more outer side than the third tube 16 of the first embodiment, or the second horizontal sink 12a may be disposed. It may be designed to have a diameter smaller than the second horizontal sink 12 of the first embodiment. The arrangement relationship between the first to third tubes 14a, 18a, and 16a can be kept the same as in the first embodiment. In addition, the washer 17 of FIG. 8 may be used to maintain the separation distance between the first horizontal sink 10a and the second horizontal sink 12a.
제2 실시예에서 제3 튜브(16a)가 제2 수평싱크(12)의 방열에 관여하지 않을 뿐 전체적인 방열 메카니즘은 제1 실시예와 실질적으로 동일하므로 중복되는 구성 및 작용 설명은 생략한다.In the second embodiment, the third tube 16a does not participate in the heat dissipation of the second horizontal sink 12, and the overall heat dissipation mechanism is substantially the same as that of the first embodiment, and thus descriptions of overlapping configurations and operations will be omitted.
그리고, 제3 실시예는 도 14 내지 도 16을 참조하여 설명될 수 있다.In addition, the third embodiment may be described with reference to FIGS. 14 to 16.
제3 실시예는 제2 실시예와 전체적인 구성이 동일하면서 제1 튜브(14b)의 형상이 다르다. 제3 실시예의 제1 튜브(14b)는 횡단면이 원형인 튜브가 이용되고 닫힌 일단에 장방체를 이루는 돌기(15)가 형성된다.In the third embodiment, the overall configuration is the same as in the second embodiment, and the shape of the first tube 14b is different. In the first tube 14b of the third embodiment, a tube having a circular cross section is used, and a protrusion 15 forming a rectangular shape is formed at a closed end.
제3 실시예의 제1 및 제2 수평싱크(10b, 12b) 및 제2 및 제3 튜브(18b, 16b)의 구성은 제2 실시예와 동일하고, 제1 내지 제3 튜브(14b, 18b, 16b)의 서로 간의 배치관계도 동일하므로, 이들에 대한 중복되는 구성 및 작용 설명은 생략한다.The configuration of the first and second horizontal sinks 10b, 12b and the second and third tubes 18b, 16b of the third embodiment is the same as that of the second embodiment, and the first through third tubes 14b, 18b, Since the arrangement relationship of each other of 16b) is also the same, the overlapping structure and operation description about these are abbreviate | omitted.
발열성 칩의 자체 히트싱크에는 돌기(15)와 결합될 수 있는 요부(도 21의 40 참조)가 형성될 수 있으며, 제3 실시예의 돌기(15)는 도 21의 요부(40)에 삽입되어서 은 도전성 접착제를 이용하여 방열을 위한 결합을 이룰 수 있다.In the heat sink of the heat generating chip, recesses (see 40 of FIG. 21) that may be coupled to the protrusions 15 may be formed, and the protrusions 15 of the third embodiment may be inserted into the recesses 40 of FIG. 21. A silver conductive adhesive can be used to form a bond for heat dissipation.
그리고, 제4 실시예는 도 17 및 도 18을 참조하여 설명될 수 있다.And, the fourth embodiment can be described with reference to FIGS. 17 and 18.
제4 실시예는 제2 실시예와 전체적인 구성이 동일하면서 일방향 즉 발열성 칩과 결합되는 방향의 제1 수평싱크(10c)에 발열성 칩과 결합을 위한 배선을 수납하기 위한 수납홈(20)이 형성되는 것이다. 제4 실시예의 제2 수평싱크(12c), 제1 내지 제3 튜브(14c, 18c, 16c)의 구성은 제2 실시예와 동일하고, 제1 내지 제3 튜브(14c, 18c, 16c)의 서로 간의 배치관계도 동일하므로, 이들에 대한 중복되는 구성 및 작용 설명은 생략한다.The fourth embodiment is the same as the second embodiment, the overall configuration of the receiving groove 20 for accommodating the wiring for coupling with the heat generating chip in the first horizontal sink (10c) in one direction, that is, combined with the heat generating chip (20) This is to be formed. The configuration of the second horizontal sink 12c and the first to third tubes 14c, 18c and 16c of the fourth embodiment is the same as that of the second embodiment, and the first to third tubes 14c, 18c and 16c Since the arrangement relationship between each other is also the same, overlapping configuration and operation description thereof will be omitted.
제4 실시예는 발열성 칩과 도 22와 같이 결합을 이룰 수 있으며, 수납홈(20)은 배선(44)을 정리하는데 이용될 수 있다.The fourth embodiment may be coupled to the heat generating chip as shown in FIG. 22, and the receiving groove 20 may be used to arrange the wiring 44.
상술한 바와 같이 본 발명에 따른 공랭식 히트싱크가 제1 내지 제4 실시예와같이 구성될 수 있으며, 이에 국한되지 않고 다양한 형상으로 제1 및 제2 수평싱크 그리고 제1 내지 제3 튜브가 변형될 수 있을 것이다.As described above, the air-cooled heat sink according to the present invention may be configured as in the first to fourth embodiments, but the present invention is not limited thereto, and the first and second horizontal sinks and the first to third tubes may be deformed in various shapes. Could be.
한편, 상술한 발열성 칩은 발광다이오드 램프를 구성하는 발광다이오드 램프 칩과 같이 고열을 발생하는 칩류를 포함하는 것이며, 발광다이오드 램프 칩을 실장한 기판모듈은 도 19 및 도 20과 같이 구성될 수 있다.On the other hand, the above-mentioned heat generating chip includes a chip that generates high heat, such as a light emitting diode lamp chip constituting the light emitting diode lamp, the substrate module mounting the light emitting diode lamp chip may be configured as shown in Figs. have.
기판모듈(30)은 기판(32)의 전면에 발광다이오드 램프 칩(도시되지 않음)을 실장하고 이를 보호하기 위한 캡(34)이 구성될 수 있으며, 기판(32)의 후면에 발광다이오드 램프 칩의 열을 방열하는 자체 히트싱크(36)가 형성될 수 있다. 기판(32)은 에폭시 베이스계 기판(예컨대, FR4), 메탈 베이스계(리지드(Rigid)계) 기판 또는 세라믹(예컨대, Al2O3, Al2O3-TiC, Si3N4, CaTiO3, AlN, ZrO2)베이스계 기판 중 어느 하나의 계열로 구성될 수 있다.The substrate module 30 may include a cap 34 for mounting and protecting a light emitting diode lamp chip (not shown) on the front surface of the substrate 32, and a light emitting diode lamp chip on the rear surface of the substrate 32. A self heat sink 36 may be formed to radiate heat. The substrate 32 may be an epoxy base substrate (eg FR4), a metal base (rigid) substrate or a ceramic (eg Al 2 O 3 , Al 2 O 3 -TiC, Si 3 N 4 , CaTiO 3 , AlN, ZrO 2 ) may be composed of any one of a series substrate-based substrate.
그리고, 기판모듈(30)은 도 21을 참조하여 상술한 바와 같이 공랭식 히트싱크의 제1 수평싱크의 중앙에 돌출되는 돌기(15)와 결합될 수 있는 요부(40)가 형성될 수 있다.In addition, the substrate module 30 may have a recess 40 that may be coupled to the protrusion 15 protruding from the center of the first horizontal sink of the air-cooled heat sink, as described above with reference to FIG. 21.
상술한 바와 같은 기판모듈(30)은 상술한 도 1 내지 도 18을 참조하여 설명된 제1 내지 제4 실시예 중 어느 하나와 결합되어서 발광다이오드 램프를 이룰 수 있으며, 발광다이오드 램프를 구성함에 있어서 제4 실시예와 같이 수납홈(20)에 배선(44)이 정리될 수 있다. The substrate module 30 as described above may be combined with any one of the first to fourth embodiments described with reference to FIGS. 1 to 18 to form a light emitting diode lamp, and in constructing the light emitting diode lamp. As in the fourth embodiment, the wiring 44 may be arranged in the accommodation groove 20.
이상과 같이 발광다이오드 램프가 구성됨으로써 기판모듈(30)의 열이 상술한 공랭식 히트싱크에 의하여 방열될 수 있으며, 본 발명에 의한 발광다이오드 램프는 열전도 및 자연 공기 대류 현상을 이용한 방열이 공랭식 히트싱크에 의하여 이루어지므로 발광다이오드 램프 칩의 수명을 향상시키고 광효율을 개선시킬 수 있는 효과가 있다.As the light emitting diode lamp is configured as described above, the heat of the substrate module 30 may be radiated by the above-described air-cooled heat sink, and the light-emitting diode lamp according to the present invention is heat-cooled by air conduction and natural air convection. Since it is made by the light emitting diode lamp chip has the effect of improving the life and improve the light efficiency.
본 발명에 따른 효과는 도 23 내지 도 33을 참조하여 이해될 수 있다. Effects according to the present invention can be understood with reference to FIGS. 23 to 33.
도 23은 광속측정(CAS140) 장비를 이용하여 12V, 750mA의 파워를 인가한 상태에서 발광다이오드 램프 칩의 광속을 측정한 그래프이며, 도 23의 수평축은 시간(분)을 의미하고 수직축은 루멘(lumen)(lm)을 의미한다. FIG. 23 is a graph illustrating the luminous flux of a light emitting diode lamp chip in a state in which power of 12V and 750mA is applied using a luminous flux measuring device (CAS140), and the horizontal axis of FIG. lumen) (lm).
그리고, 도 24는 도 23과 같이 파워를 인가한 상태에서 알루미늄 재질의 수평싱크부 중 직경이 큰 제1 수평싱크의 온도를 나타내는 그래프이며, 도 24의 수평축은 시간(분)을 의미하고 수직축은 온도(℃)를 의미한다.FIG. 24 is a graph showing the temperature of the first horizontal sink having a larger diameter among the horizontal sinks made of aluminum in the state where power is applied, as shown in FIG. 23. The horizontal axis of FIG. Means temperature (° C.).
도 25는 IR 카메라(온도측정) 측정 장비를 이용하여 파워 발광다이오드 램프 칩 또는 칩이 탑재되어 있는 일반 메탈 기판 베이스의 표면 온도를 보여주는 사진이며, 도 25에 나타난 바와 같이 중심부는 80.7℃로 온도를 나타내었다.25 is a photograph showing the surface temperature of a general metal substrate base on which a power light emitting diode lamp chip or a chip is mounted by using an IR camera (temperature measurement) measuring instrument. As shown in FIG. Indicated.
도 26 내지 도 33은 본 발명에 따른 공랭식 히트싱크를 채용한 발광다이오드 램프 칩의 측면, 평면 및 저면에 대한 온도 분포를 보여주는 사진들과 온도 측정 그래프들이다. 26 to 33 are photographs and temperature measurement graphs showing temperature distributions on the side, plane, and bottom of a light emitting diode lamp chip employing an air-cooled heat sink according to the present invention.
도 26은 본 발명에 따른 공랭식 히트싱크의 초기 온도 분포를 나타내는 측면 사진이다. 도 26에서 포인트 A 내지 E에 대응하여 표기된 값은 온도이다.26 is a side photograph showing an initial temperature distribution of an air cooled heat sink according to the present invention. In FIG. 26, the values indicated corresponding to points A to E are temperatures.
그리고, 도 27 및 도 28은 도 26의 상태에서 12V, 750mA의 파워 인가 20분 후 본 발명에 따른 공랭식 히트싱크의 온도 분포를 나타내는 측면 사진이고, 도 29는 도 27 및 도 28의 상태에 대응되는 공랭식 히트싱크의 온도 측정 그래프이다. 도 27에서 포인트 A 내지 포인트 E에 대응하여 표기된 값은 온도이고, 도 28은 최대치 35.9℃와 최소치 22.0℃ 사이에 온도가 분포되는 상태를 표시하고 있으며, 도 29에서 수평축은 시간(분)을 의미하고 수직축은 온도를 의미한다.27 and 28 are side views illustrating a temperature distribution of an air-cooled heat sink according to the present invention 20 minutes after power supply of 12 V and 750 mA in the state of FIG. 26, and FIG. 29 corresponds to the states of FIGS. 27 and 28. It is a temperature measurement graph of the air-cooled heat sink which becomes. In FIG. 27, the values indicated corresponding to points A to E are temperatures, and FIG. 28 represents a state in which a temperature is distributed between a maximum value of 35.9 ° C. and a minimum value of 22.0 ° C., and in FIG. 29, a horizontal axis means time (minutes). And the vertical axis means temperature.
그리고, 도 30은 12V, 750mA의 파워 인가 20분 후 본 발명에 따른 공랭식 히트싱크를 채용한 발광다이오드 램프의 평면에 대한 온도 분포를 나타내는 사진이고, 도 31은 도 30의 상태에 대응되는 공랭식 히트싱크의 온도 측정 그래프이다. 도 30은 최대치 36.0℃와 최소치 22.0℃ 사이에 온도가 분포되는 상태를 표시하고 있으며, 도 31에서 수평축은 시간(분)을 의미하고 수직축은 온도를 의미한다.FIG. 30 is a photograph showing a temperature distribution with respect to a plane of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after power supply of 12 V and 750 mA, and FIG. 31 is an air-cooled heat corresponding to the state of FIG. This is a graph of sink temperature measurement. FIG. 30 illustrates a state in which a temperature is distributed between a maximum value of 36.0 ° C. and a minimum value of 22.0 ° C. In FIG. 31, a horizontal axis means time (minutes) and a vertical axis means temperature.
그리고, 도 32는 12V, 750mA의 파워 인가 20분 후 본 발명에 따른 공랭식 히트싱크를 채용한 발광다이오드 램프의 저면에 대한 온도 분포를 나타내는 사진이고, 도 33은 도 32의 상태에 대응되는 히트싱크의 온도 측정 그래프이다. 도 32는 최대치 30.2℃와 최소치 22.0℃ 사이에 온도가 분포되는 상태를 표시하고 있으며, 도 33에서 수평축은 시간(분)을 의미하고 수직축은 온도를 의미한다.32 is a photograph showing a temperature distribution of a bottom surface of a light emitting diode lamp employing an air-cooled heat sink according to the present invention 20 minutes after applying power of 12 V and 750 mA, and FIG. 33 is a heat sink corresponding to the state of FIG. 32. Temperature measurement graph. FIG. 32 shows a state in which temperatures are distributed between a maximum value of 30.2 ° C. and a minimum value of 22.0 ° C. In FIG. 33, a horizontal axis means time (minutes) and a vertical axis means temperature.
앞서 살펴본 바와 같이, 일반 금속 기판 베이스 표면에서의 전면 온도가 80.7℃를 나타내지만, 본 발명의 공랭식 히트싱크가 설치된 후면에서는 온도가 22℃를 나타내는 것을 볼 수 있다. 이는 파워 LED 램프 칩이 탑재되어 있는 일반 금속 기판 베이스 전면과 본 발명의 공랭식 히트싱크 후면(저면) 사이의 온도차는 58.7℃로서, 본 발명의 공랭식 히트싱크는 온도가 높아진 자연적 공기 흐름을 이용한 자연대류(Natural convection) 현상을 극대화하여 자연 공랭(空冷)식 방법으로 효율적인 열전도도(trermal conductivity) 및 열전도율(Thermal conduction rate)로 열을 방출한다는 것을 확인할 수 있다. As described above, the front surface temperature of the general metal substrate base surface shows 80.7 ° C, but the rear surface of the air-cooled heat sink of the present invention shows that the temperature indicates 22 ° C. This is a temperature difference between the base metal substrate base surface on which the power LED lamp chip is mounted and the rear surface (bottom surface) of the air-cooled heat sink of the present invention is 58.7 ° C. (Natural convection) by maximizing the natural convection can be confirmed that the heat is released by the efficient thermal conductivity (thermal thermal conductivity) and thermal conductivity (Thermal conduction rate).
발열성 칩의 자체 히트싱크에 접촉되어서 상기 발열성 칩의 상기 자체 히트싱크의 열을 전도 및 공기 대류로 방열함으로써 높은 효율로 방열을 수행할 수 있는 공랭식 히트싱크로 산업상 이용이 가능하다.It is possible to use industrially as an air-cooled heat sink capable of performing heat dissipation with high efficiency by being in contact with the heat sink of the heat generating chip and dissipating heat of the heat sink of the heat generating chip by conduction and air convection.
10, 10a, 10b, 10c : 제1 수평싱크 12, 12a, 12b, 12c : 제2 수평싱크10, 10a, 10b, 10c: first horizontal sink 12, 12a, 12b, 12c: second horizontal sink
14, 14a, 14b, 14c : 제1 튜브 15 : 돌기14, 14a, 14b, 14c: first tube 15: projection
16, 16a, 16b, 16c : 제3 튜브 17 : 와셔16, 16a, 16b, 16c: third tube 17: washer
18, 18a, 18b, 18c : 제2 튜브 20 : 수납홈18, 18a, 18b, 18c: second tube 20: receiving groove
30 : 기판모듈 32 : 기판30: substrate module 32: substrate
34 : 캡 36 : 자체 히트싱크34: cap 36: self heatsink
40 : 요부 44 : 배선40: main part 44: wiring

Claims (20)

  1. 제1 수평싱크들 및 제2 수평싱크들을 포함하고 상기 제1 수평싱크는 상기 제2 수평싱크보다 큰 직경을 가지며 상기 제1 수평싱크들 사이에 상기 제2 수평싱크가 적어도 1개 배치되는 수평싱크부; 및A horizontal sink including first horizontal sinks and second horizontal sinks, the first horizontal sink having a larger diameter than the second horizontal sink, and having at least one second horizontal sink disposed between the first horizontal sinks; part; And
    일단에 닫힌 면이 형성된 제1 튜브 및 제2 튜브들 그리고 양단이 열린 제3 튜브들을 포함하며 상기 제1 튜브 및 상기 제2 튜브들은 상기 제1 및 제2 수평싱크들을 관통하면서 이들과 결합되며 상기 제3 튜브들은 상기 제1 수평싱크를 관통하는 수직싱크부;를 포함하며,And a first tube and a second tube having a closed surface at one end and third tubes with both ends open, wherein the first tube and the second tube are coupled to the first and second horizontal sinks while passing through the first and second horizontal sinks. The third tubes include a vertical sink portion penetrating the first horizontal sink,
    상기 수평싱크부와 상기 수직싱크부 간의 열전도와 상기 제1 내지 제3 튜브들의 열린 면을 출입하는 공기의 대류로 열을 방출함을 특징으로 하는 공랭식 히트싱크.An air-cooled heat sink characterized in that the heat is released by the convection of the heat conduction between the horizontal sink portion and the vertical sink portion and the air entering and exiting the open surface of the first to third tubes.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1 튜브는 닫힌 면이 제1 방향의 최외곽의 상기 제1 수평싱크를 관통하여 노출되며 상기 닫힌 면을 포함하는 단부가 발열성 칩의 자체 히트싱크와 도전성 접착제로 접착되며,The first tube has a closed surface exposed through the outermost first horizontal sink in a first direction, and an end including the closed surface is adhered with a self-heating sink and a conductive adhesive of a heat generating chip.
    상기 제2 튜브들은 상기 닫힌 면이 상기 제1 튜브의 것과 반대 방향에 위치하도록 배치되면서 열린 면이 상기 제1 방향의 최외곽의 상기 제2 수평싱크를 관통하여 노출되는 공랭식 히트싱크.And the second tubes are disposed such that the closed surface is positioned in a direction opposite to that of the first tube, and the open surface is exposed through the second horizontal sink in the outermost portion of the first direction.
  3. 제2항에 있어서, The method of claim 2,
    상기 제1 튜브의 열린 면은 상기 수평싱크부 내부의 상기 제1 수평싱크나 상기 제2 수평싱크 중 어느 하나를 관통하면서 노출되는 공랭식 히트싱크.The open surface of the first tube is an air-cooled heat sink exposed through any one of the first horizontal sink and the second horizontal sink in the horizontal sink portion.
  4. 제2항에 있어서, The method of claim 2,
    상기 제2 튜브의 닫힌 면은 상기 수평싱크부 내부의 상기 제1 수평싱크나 상기 제2 수평싱크 중 어느 하나를 관통하면서 노출되는 공랭식 히트싱크.The closed surface of the second tube is an air-cooled heat sink exposed through any one of the first horizontal sink and the second horizontal sink in the horizontal sink.
  5. 제2항에 있어서, The method of claim 2,
    상기 제1 튜브의 상기 닫힌 면에는 상기 발열성 칩의 상기 자체 히트싱크에 형성되는 홈과 조립가능한 돌기가 형성되는 공랭식 히트싱크.An air-cooled heat sink formed with a protrusion formed on the closed surface of the first tube and a groove formed in the heat sink of the heat generating chip.
  6. 제1항에 있어서, The method of claim 1,
    상기 제1 튜브는 상기 수평싱크부의 중심에 배치되며 원형 또는 사각형 튜브 중 어느 하나로 구성되는 공랭식 히트싱크.The first tube is an air-cooled heat sink disposed in the center of the horizontal sink portion and composed of either a round or square tube.
  7. 제1항에 있어서, The method of claim 1,
    상기 제3 튜브들은 상기 제2 수평싱크들을 더 관통하는 공랭식 히트싱크.And said third tubes further pass through said second horizontal sinks.
  8. 제1항 또는 제7항에 있어서, The method according to claim 1 or 7,
    상기 제3 튜브들은 양단의 최외곽에 배치된 상기 제2 수평싱크들을 관통하며 열린 면이 노출되는 공랭식 히트싱크.And the third tubes pass through the second horizontal sinks disposed at the outermost sides of both ends, and an open surface thereof is exposed.
  9. 제1항에 있어서, The method of claim 1,
    상기 수평싱크부는 상기 제1 수평싱크들과 상기 제2 수평싱크들 사이에 배치되며 상기 제1 튜브가 관통되는 와셔를 더 포함하는 공랭식 히트 싱크.The horizontal sink unit further comprises a washer disposed between the first horizontal sinks and the second horizontal sinks and the washer through which the first tube passes.
  10. 제1항에 있어서, The method of claim 1,
    상기 제1 수평싱크와 상기 제2 수평싱크는 알루미늄 재질의 원형 디스크로 형성되며 상기 제1 내지 제3 튜브는 구리 재질로 형성되는 공랭식 히트싱크.The first horizontal sink and the second horizontal sink is formed of an aluminum circular disk and the first to third tubes of the air-cooled heat sink is formed of a copper material.
  11. 전면에 발광다이오드 램프 칩이 실장되고 후면에 상기 발광다이오드 램프 칩의 열을 방열하는 자체 히트싱크를 가지는 에폭시 베이스계 기판, 메탈 베이스계 기판 또는 세라믹 베이스계 기판 중 어느 하나의 계열로 구성되는 기판모듈; 및Substrate module consisting of any one series of epoxy base substrate, metal base substrate or ceramic base substrate having a light emitting diode lamp chip mounted on the front surface and its own heat sink to radiate heat of the light emitting diode lamp chip on the back surface ; And
    상기 기판모듈의 상기 후면에 조립되는 공랭식 히트싱크;를 포함하며,And an air-cooled heat sink assembled to the rear surface of the substrate module.
    상기 공랭식 히트싱크는,The air-cooled heat sink,
    제1 수평싱크들 및 제2 수평싱크들을 포함하고 상기 제1 수평싱크는 상기 제2 수평싱크보다 큰 직경을 가지며 상기 제1 수평싱크들 사이에 상기 제2 수평싱크가 적어도 1개 배치되는 수평싱크부; 및A horizontal sink including first horizontal sinks and second horizontal sinks, the first horizontal sink having a larger diameter than the second horizontal sink, and having at least one second horizontal sink disposed between the first horizontal sinks; part; And
    일단에 닫힌 면이 형성된 제1 튜브 및 제2 튜브들 그리고 양단이 열린 제3 튜브들을 포함하며 상기 제1 튜브 및 상기 제2 튜브들은 상기 제1 및 제2 수평싱크들을 관통하면서 이들과 결합되며 상기 제3 튜브들은 상기 제1 수평싱크를 관통하는 수직싱크부;를 포함하며,And a first tube and a second tube having a closed surface at one end and third tubes with both ends open, wherein the first tube and the second tube are coupled to the first and second horizontal sinks while passing through the first and second horizontal sinks. The third tubes include a vertical sink portion penetrating the first horizontal sink,
    적어도 상기 제1 튜브의 상기 닫힌 면이 상기 기판모듈의 상기 자체 히트싱크에 도전성 접착제로 접착되며 상기 수평싱크부와 상기 수직싱크부 간의 열전도와 상기 제1 내지 제3 튜브들의 열린 면을 출입하는 공기의 대류로 상기 기판모듈의 상기 자체 히트싱크의 열을 방출함을 특징으로 하는 발광다이오드 램프.At least the closed surface of the first tube is adhered to the self-heating sink of the substrate module with a conductive adhesive, and air entering and exiting the heat conduction between the horizontal sink portion and the vertical sink portion and the open surfaces of the first to third tubes. The light emitting diode lamp of the heat dissipation of the heat sink of the substrate module in the convection of the.
  12. 제11항에 있어서, The method of claim 11,
    상기 제1 튜브는 닫힌 면이 제1 방향의 최외곽의 상기 제1 수평싱크를 관통하여 노출되며,The first tube has a closed surface exposed through the first horizontal sink of the outermost in the first direction,
    상기 제2 튜브들은 상기 닫힌 면이 상기 제1 튜브의 것과 반대 방향에 위치하도록 배치되면서 열린 면이 상기 제1 방향의 최외곽의 상기 제2 수평싱크를 관통하여 노출되는 발광다이오드 램프.And the second tubes are disposed such that the closed surface is positioned in a direction opposite to that of the first tube, and the open surface is exposed through the second horizontal sink in the outermost portion of the first direction.
  13. 제12항에 있어서, The method of claim 12,
    상기 제1 튜브의 열린 면은 상기 수평싱크부 내부의 상기 제1 수평싱크나 상기 제2 수평싱크 중 어느하나를 관통하면서 노출되는 발광다이오드 램프.And an open surface of the first tube is exposed while passing through either the first horizontal sink or the second horizontal sink in the horizontal sink.
  14. 제12항에 있어서, The method of claim 12,
    상기 제2 튜브의 닫힌 면은 상기 수평싱크부 내부의 상기 제1 수평싱크나 상기 제2 수평싱크 중 어느하나를 관통하면서 노출되는 발광다이오드 램프.And a closed surface of the second tube is exposed while passing through either the first horizontal sink or the second horizontal sink in the horizontal sink.
  15. 제12항에 있어서, The method of claim 12,
    상기 제1 튜브의 상기 닫힌 면에는 상기 발광다이오드 램프 칩의 상기 자체 히트싱크에 형성되는 홈과 조립가능한 돌기가 형성되는 발광다이오드 램프.The light emitting diode lamp of the first tube is formed with a protrusion that can be assembled with a groove formed in the heat sink of the LED chip of the LED lamp chip.
  16. 제11항에 있어서, The method of claim 11,
    상기 제1 튜브는 상기 수평싱크부의 중심에 배치되며 원형 또는 사각형 튜브 중 어느 하나로 구성되는 발광다이오드 램프.The first tube is disposed in the center of the horizontal sink portion of the light emitting diode lamp is composed of any one of a round or square tube.
  17. 제11항에 있어서, The method of claim 11,
    상기 제3 튜브들은 상기 제2 수평싱크들을 더 관통하는 발광다이오드 램프.And the third tubes further pass through the second horizontal sinks.
  18. 제11항 또는 제17항에 있어서, The method according to claim 11 or 17,
    상기 제3 튜브들은 양단의 최외곽에 배치된 상기 제2 수평싱크들을 관통하며 열린 면이 노출되는 발광다이오드 램프.And the third tubes pass through the second horizontal sinks disposed at the outermost sides of both ends thereof, and an open surface thereof is exposed.
  19. 제11항에 있어서, The method of claim 11,
    상기 수평싱크부는 상기 제1 수평싱크들과 상기 제2 수평싱크들 사이에 배치되며 상기 제1 튜브가 관통되는 와셔를 더 포함하는 발광다이오드 램프.The horizontal sink unit further includes a washer disposed between the first horizontal sinks and the second horizontal sinks and through which the first tube passes.
  20. 제11항에 있어서, The method of claim 11,
    상기 제1 수평싱크와 상기 제2 수평싱크는 알루미늄 재질의 원형 디스크로 형성되며 상기 제1 내지 제3 튜브는 구리 재질로 형성되는 발광다이오드 램프.The first horizontal sink and the second horizontal sink is formed of a circular disk of aluminum material and the first to third tubes are formed of a copper light emitting diode lamp.
PCT/KR2010/003550 2010-05-27 2010-06-03 Air-cooled heat sink, and light-emitting diode lamp using same WO2011149139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0049519 2010-05-27
KR1020100049519A KR100996462B1 (en) 2010-05-27 2010-05-27 Air-cooled heat sink and light emitting diode lamp using the heat sink

Publications (1)

Publication Number Publication Date
WO2011149139A1 true WO2011149139A1 (en) 2011-12-01

Family

ID=43410090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003550 WO2011149139A1 (en) 2010-05-27 2010-06-03 Air-cooled heat sink, and light-emitting diode lamp using same

Country Status (2)

Country Link
KR (1) KR100996462B1 (en)
WO (1) WO2011149139A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563582A (en) * 2012-01-20 2012-07-11 大连日盛能源科技有限公司 LED (light-emitting diode) point light source radiator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142963B1 (en) 2010-06-14 2012-05-08 서울반도체 주식회사 Light emitting diode lighting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006827A (en) * 1998-12-28 1999-12-28 Hon Hai Precision Ind. Co., Ltd. Cooling device for computer component
KR20020016683A (en) * 2000-08-26 2002-03-06 구자홍 Disk type heat sink
KR20070025146A (en) * 2005-08-31 2007-03-08 바이오닉스(주) Light emitting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006827A (en) * 1998-12-28 1999-12-28 Hon Hai Precision Ind. Co., Ltd. Cooling device for computer component
KR20020016683A (en) * 2000-08-26 2002-03-06 구자홍 Disk type heat sink
KR20070025146A (en) * 2005-08-31 2007-03-08 바이오닉스(주) Light emitting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563582A (en) * 2012-01-20 2012-07-11 大连日盛能源科技有限公司 LED (light-emitting diode) point light source radiator

Also Published As

Publication number Publication date
KR100996462B1 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
WO2013005971A2 (en) Lighting device
WO2011049374A2 (en) Light emitting device and light unit using same
WO2011040671A1 (en) Light emitting diode lighting apparatus
JP2012503306A (en) Light emitting device
WO2009157704A2 (en) Led package and manufacturing method for same
JP2008060070A (en) Liquid crystal display, and its backlight module
WO2020145644A1 (en) Highly heat-dissipating flexible printed circuit board (gfpcb), manufacturing method therefor, and led lamp for vehicle
WO2010147271A1 (en) Led array module and fabrication method thereof
WO2018030633A1 (en) Pcb module having multi-sided heat sink structure and multilayer pcb assembly for use in same
WO2009096742A4 (en) Radiant heat structure for pin type power led
WO2012036465A2 (en) Led light source structure with high illuminating power and improved heat dissipating characteristics
WO2013032239A1 (en) Lighting device
WO2018084446A1 (en) Transparent light-emitting diode film
WO2013103220A1 (en) Light source device for backlight unit in display apparatus
WO2012015161A1 (en) Led lighting apparatus comprising thermoelectric cooling module embedded led module
WO2012161380A1 (en) Lighting apparatus
WO2019151616A1 (en) Display device
WO2011149139A1 (en) Air-cooled heat sink, and light-emitting diode lamp using same
WO2017155354A1 (en) Lighting device
WO2013027871A1 (en) Lighting apparatus
WO2011129514A1 (en) Led package having a thermoelectric cooling device embedded therein
WO2011162487A2 (en) Cooling device for a heat-emitting element
WO2020050690A2 (en) Led lighting module
WO2015156522A1 (en) Printed circuit board and light-emitting device including same
WO2015186871A1 (en) Led lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852225

Country of ref document: EP

Kind code of ref document: A1