WO2011148960A1 - Radiological imaging device and method for assembling same - Google Patents

Radiological imaging device and method for assembling same Download PDF

Info

Publication number
WO2011148960A1
WO2011148960A1 PCT/JP2011/061930 JP2011061930W WO2011148960A1 WO 2011148960 A1 WO2011148960 A1 WO 2011148960A1 JP 2011061930 W JP2011061930 W JP 2011061930W WO 2011148960 A1 WO2011148960 A1 WO 2011148960A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
conversion panel
radiation conversion
base
radiographic imaging
Prior art date
Application number
PCT/JP2011/061930
Other languages
French (fr)
Japanese (ja)
Inventor
大田恭義
西納直行
中津川晴康
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011148960A1 publication Critical patent/WO2011148960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • G03B42/025Positioning or masking the X-ray film cartridge in the radiographic apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • G03B42/04Holders for X-ray films

Definitions

  • the present invention provides a radiation conversion panel for laminating a scintillator and a photoelectric conversion layer to convert radiation into a radiation image, a base on which the radiation conversion panel is placed and supported, and the radiation placed on the base
  • the present invention relates to a radiographic imaging apparatus having a lid that covers a conversion panel, a housing that houses the radiation conversion panel, the base, and the lid, and an assembling method thereof.
  • a radiation image capturing system that irradiates a subject with radiation and guides the radiation transmitted through the subject to a radiation conversion panel to capture a radiation image is widely used.
  • the radiation conversion panel a conventional radiation film in which the radiation image is exposed and recorded, or radiation energy as the radiation image is accumulated in a phosphor and irradiated with excitation light, thereby stimulating the radiation image.
  • a storage phosphor panel that can be extracted as light is known.
  • a direct conversion type radiation conversion panel using a solid-state detection element that directly converts radiation into an electrical signal, or the radiation to fluorescence in order to immediately read out and display the radiation image from the radiation conversion panel after imaging.
  • An indirect conversion type radiation conversion panel using a scintillator that converts once and a solid state detection element that converts the fluorescence into an electric signal has been developed. Then, the direct conversion type or indirect conversion type radiation conversion panel and a circuit board on which electronic components that perform predetermined processing on the radiation image output from the radiation conversion panel are housed in a housing.
  • a radiographic imaging device so-called electronic cassette is configured.
  • Japanese Patent Application Laid-Open No. 2007-101256 discloses an example in which a TFT (thin film transistor) manufactured by a room temperature process is applied as an output signal layer for outputting a radiographic image as an electrical signal.
  • the radiation conversion panel can be reduced in weight and thickness by forming an amorphous oxide semiconductor film on a resin substrate.
  • a detection element configured in a layer form may be referred to as a “photoelectric conversion layer”.
  • fluorescence Variations in the reflectance and refractive index of (scintillation light) occur locally, and the sensitivity characteristic distribution in the detection surface becomes non-uniform. Due to such non-uniform sensitivity, there is a problem that the quality of the radiation image is degraded. Therefore, various techniques for improving the adhesion between the scintillator and the photoelectric conversion layer are disclosed.
  • Japanese Patent Application Laid-Open No. 9-54162 discloses an apparatus configured to fix a scintillator and a photoelectric conversion layer with an adhesive after providing a spacer and separating them by a predetermined interval.
  • Japanese Patent Application Laid-Open No. 9-257944 discloses a device capable of forming a sealed space with solid detection means, sealing means and cover means, and exhausting the inside of the sealed space using exhaust means.
  • a resin material has a higher thermal expansion coefficient than glass and is likely to generate thermal expansion.
  • heat is stored in a state in which materials having different coefficients of thermal expansion are bonded together, there is a problem that peeling or cracking of the material occurs due to thermal stress generated at these interfaces, resulting in a decrease in adhesion.
  • An object of the present invention is to improve the adhesion of the scintillator and the photoelectric conversion layer with a simple configuration and to prevent the adhesion of the radiation conversion panel and the base due to thermal deformation.
  • the present invention provides a radiation conversion panel for laminating a scintillator and a photoelectric conversion layer to convert radiation into a radiation image, a base for placing and supporting the radiation conversion panel, and the radiation placed on the base
  • the present invention relates to a radiographic imaging apparatus having a lid that covers a conversion panel, a housing that houses the radiation conversion panel, the base, and the lid, and an assembling method thereof.
  • the said radiation conversion panel in order to achieve said objective, in the state which deform
  • the radiation conversion panel is deformed in a concave shape with respect to the placement direction and supported by the base, and the radiation conversion panel deformed in the concave shape is covered with the lid portion, thereby Tension can be generated in the extending direction of the radiation conversion panel without floating the radiation conversion panel from the base.
  • stress acts on the front surface side and the back surface side of the radiation conversion panel, and the adhesion of the scintillator and the photoelectric conversion layer contained in the radiation conversion panel can be enhanced with a simple configuration.
  • the influence of the bending stress generated inside the radiation conversion panel is small. That is, it is possible to prevent a decrease in the adhesion of the radiation conversion panel, the base, and the lid due to thermal deformation.
  • the lid portion is a part of the top plate or a lid member that makes surface contact with the top plate.
  • the radiation conversion panel By configuring a part of the top plate (inward of the top plate) in contact with the subject as the lid, the radiation conversion panel can be reliably covered, and the subject side of the top plate is on the subject side. Can be maintained flat, so that the subject does not feel uncomfortable. On the other hand, even when the lid member is brought into surface contact with the top plate, the top plate can be kept flat, so that the radiation conversion panel can be reliably covered without giving the subject a sense of incongruity. it can. If the lid member is fixed to the top plate or pulled, the radiation conversion panel can be covered with the lid member positioned at a predetermined position in the housing.
  • the base supports the radiation conversion panel by bending it, and the radiation conversion panel side of the lid portion is curved corresponding to the radiation conversion panel.
  • the profile of the detected dose of radiation becomes continuous (smooth), and the occurrence of sharp unevenness in the radiation image can be prevented.
  • the base supports the radiation conversion panel while being deformed in line symmetry with respect to a predetermined axis on a detection surface formed by the radiation conversion panel.
  • the predetermined axis is a center line of the detection surface.
  • the vertical component of the stress applied to the radiation conversion panel increases with the displacement of the radiation conversion panel in the mounting direction, thereby further improving the adhesion between the scintillator and the photoelectric conversion layer.
  • the base is made of a resin material. Therefore, the radiation image capturing apparatus can be reduced in weight and thickness.
  • the base is preferably made of an electromagnetic shielding material.
  • the electromagnetic wave shielding effect can be exhibited, and it is possible to avoid malfunction of internal electronic components including the radiation conversion panel and external electronic devices.
  • an image correction unit that corrects the radiation image according to the degree of deformation of the radiation conversion panel. Therefore, it is possible to correct the radiation dose reaching the detection surface of the radiation conversion panel, and the in-plane uniformity in the radiation image is improved.
  • the image correction unit corrects the radiation image by estimating a degree of deformation of the radiation conversion panel based on shapes of the base and the lid. Thereby, the radiation image can be accurately corrected from the shapes of the base and the lid without actually measuring the degree of deformation of the radiation conversion panel.
  • FIG. 5 is a sectional view taken along line VV of the electronic cassette shown in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line VI-VI of the electronic cassette shown in FIG. 2.
  • 7A and 7B are schematic explanatory views showing a state in which the radiation conversion panel of FIGS. 5 and 6 is placed on a base and covered with a lid member.
  • FIG. 8A and 8B are schematic explanatory views showing the shapes of the base and the lid member in the electronic cassette according to the first modification.
  • 9A and 9B are schematic explanatory views showing the shapes of the base and the lid member in the electronic cassette according to the second modification.
  • 10A and 10B are schematic explanatory views showing the shapes of the base and the lid member in the electronic cassette according to the third modification.
  • 11A and 11B are partially enlarged cross-sectional views of the electronic cassette according to the fourth modification, taken along line XI-XI in FIG. It is a block diagram of the radiographic imaging system to which the electronic cassette concerning 2nd Embodiment is applied. It is a perspective view of the electronic cassette shown in FIG.
  • FIG. 14 is a cross-sectional view of the electronic cassette shown in FIG.
  • FIG. 16A and 16B are schematic explanatory diagrams illustrating the shape of a base in an electronic cassette according to a fifth modification.
  • FIG. 14 is a partially enlarged cross-sectional view taken along line XVII-XVII in FIG. 13 of an electronic cassette according to a sixth modification.
  • FIG. 18A is a schematic explanatory diagram schematically illustrating the internal configuration of an electronic cassette according to a seventh modification
  • FIG. 18B is a schematic explanatory diagram schematically illustrating an example of the scintillator of FIG. 18A.
  • FIG. 19A is a schematic explanatory view schematically showing the irradiation of radiation to the radiation conversion panel of the electronic cassette according to the seventh modification
  • FIG. 19B is a schematic view of irradiation of radiation to the radiation conversion panel of the conventional electronic cassette. It is a schematic explanatory drawing shown in FIG.
  • a radiographic imaging system 10A includes a radiation source 18 that irradiates a patient, who is a subject 14 lying on an imaging platform 12 such as a bed, with radiation 16 having a dose according to imaging conditions; An electronic cassette 20A (radiation imaging apparatus) that detects radiation 16 transmitted through the subject 14 and converts it into a radiation image, a console 22 that controls the radiation source 18 and the electronic cassette 20A, and a display device 24 that displays the radiation image Is provided.
  • a radiation source 18 that irradiates a patient, who is a subject 14 lying on an imaging platform 12 such as a bed, with radiation 16 having a dose according to imaging conditions
  • An electronic cassette 20A radiation imaging apparatus
  • console 22 controls the radiation source 18 and the electronic cassette 20A
  • a display device 24 that displays the radiation image Is provided.
  • the radiation source 18, the electronic cassette 20A, and the display device 24 for example, UWB (Ultra Wide Band), IEEE 802.11.
  • UWB Ultra Wide Band
  • IEEE 802.11 Signals are transmitted and received by wireless LAN using a / g / n or wireless communication using millimeter waves or the like. Note that signals may be transmitted and received by wired communication using a cable.
  • RIS 26 Radiology Information System
  • HIS28 medical information system
  • the electronic cassette 20 ⁇ / b> A is a portable electronic cassette that includes a panel housing unit 30 disposed between the photographing table 12 and the subject 14.
  • the right side surface of the panel housing unit 30 is a protruding portion that bulges upward, and this protruding portion functions as the control unit 32.
  • the panel housing unit 30 has a substantially rectangular casing 40 made of a material that can transmit the radiation 16, and the upper surface of the casing 40 on which the subject 14 lies is irradiated with the radiation 16.
  • the imaging surface 42 irradiation surface.
  • a guide line 44 serving as an index of the shooting position of the subject 14 is formed at a substantially central portion of the shooting surface 42.
  • the guide line 44 indicating the outer frame becomes the imaging region 46 indicating the region where the radiation 16 can be irradiated.
  • the center position of the guide line 44 (intersection of two guide lines 44 intersecting in a cross shape) is the center position of the imaging region 46.
  • USB Universal Serial Bus
  • a terminal 52 and a card slot 54 for loading a memory card such as a PC card are arranged.
  • the radiation conversion panel 70 indirectly converts the radiation 16 that has passed through the subject 14 into fluorescence (scintillation light) such as a visible light region or an ultraviolet light region using a scintillator, and converts the converted fluorescence into an electrical signal using a photoelectric conversion element.
  • fluorescence sintillation light
  • a photoelectric conversion element solid-state detection element
  • the ultraviolet region is converted into an electrical signal so that fluorescence (ultraviolet light) emitted by the scintillator can be converted into an electric signal.
  • a solid-state detection element made of a material such as an amorphous oxide semiconductor (for example, IGZO (InGaZnOx)), an organic photoelectric conversion material (OPC) that converts fluorescence in the visible region (visible light) emitted by the scintillator into an electric signal, etc.
  • an amorphous oxide semiconductor for example, IGZO (InGaZnOx)
  • OPC organic photoelectric conversion material
  • a communication unit 58 or the like capable of wirelessly transmitting and receiving signals between a power source unit 56 such as a battery and the console 22 is disposed (see FIG. 4).
  • FIG. 3 is a diagram schematically showing the arrangement of the pixels 72 in the radiation conversion panel 70 and the electrical connection between the pixels 72 and the cassette control unit 80.
  • the radiation conversion panel 70 a large number of pixels 72 are arranged on a substrate (not shown), and a plurality of gate lines 76 for supplying a control signal from the drive circuit unit 74 to the pixels 72 and a plurality of pixels 72.
  • a plurality of signal lines 78 for reading out the output electric signals and outputting them to the drive circuit unit 74 are arranged.
  • the pixel 72 has a photoelectric conversion element.
  • the cassette control unit 80 of the control unit 34 controls the drive circuit unit 74 by supplying a control signal to the drive circuit unit 74.
  • FIG. 4 is a diagram showing a circuit configuration of the electronic cassette 20A.
  • the radiation conversion panel 70 has a structure in which a photoelectric conversion layer in which each pixel 72 having a photoelectric conversion element made of a substance such as IGZO or OPC that converts fluorescence into an electric signal is formed is arranged on an array of matrix-like TFTs 82.
  • a bias voltage is supplied from the bias circuit 84 that constitutes the drive circuit unit 74
  • charges generated by converting the fluorescence into an electric signal (analog signal) are accumulated, and the TFT 82 is installed for each column. The charges can be read out as an image signal by sequentially turning them on.
  • a gate line 76 extending in parallel with the column direction and a signal line 78 extending in parallel with the row direction are connected to the TFT 82 connected to each pixel 72.
  • Each gate line 76 is connected to a gate drive circuit 86, and each signal line 78 is connected to a multiplexer 92 constituting the drive circuit unit 74.
  • a control signal for controlling on / off of the TFTs 82 arranged in the column direction is supplied from the gate drive circuit 86 to the gate line 76.
  • the gate drive circuit 86 is supplied with an address signal from the cassette control unit 80, and the gate drive circuit 86 performs on / off control of the TFT 82 in accordance with the address signal.
  • a multiplexer 92 is connected to the amplifier 88 via a sample and hold circuit 90.
  • the multiplexer 92 includes an FET switch 94 that switches a signal line 78 that outputs a signal, and a multiplexer driving circuit 96 that turns on one FET switch 94 and outputs a selection signal.
  • the multiplexer drive circuit 96 is supplied with an address signal from the cassette control unit 80, and turns on one FET switch 94 in accordance with the address signal.
  • An A / D converter 98 is connected to the FET switch 94, and a radiation image converted into a digital signal by the A / D converter 98 is transferred to the cassette control unit 80 via a flexible substrate 138 (see FIG. 5) described later. Supplied.
  • the flexible substrate 138 electrically connects the cassette control unit 80 and the drive circuit unit 74.
  • the TFT 82 functioning as a switching element may be realized in combination with another imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Furthermore, it can be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting them with a shift pulse corresponding to a gate signal referred to as a TFT.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the cassette control unit 80 is detected by the address signal generation unit 100 that generates an address signal to be supplied to the gate drive circuit 86 and the multiplexer drive circuit 96, the image memory 102 that stores the radiation image, and the radiation conversion panel 70.
  • An image correction unit 104 that corrects a radiation image and a correction data storage unit 106 that stores correction data corresponding to the degree of deformation of the radiation conversion panel 70 are provided.
  • the radiographic image stored in the image memory 102 is transmitted to the console 22 and the like by the communication unit 58.
  • the power supply unit 56 supplies power to the drive circuit unit 74 and also supplies power to the cassette control unit 80 and the communication unit 58.
  • each component in the housing 40 is illustrated with a partly exaggerated size and the like, and the configuration of the radiation conversion panel 70 is schematically illustrated. Are shown.
  • FIG. 5 is a sectional view taken along line VV (line parallel to the arrow X direction) of the electronic cassette 20A of FIG. 6 is a cross-sectional view taken along line VI-VI (line parallel to the arrow Y direction) of the electronic cassette 20A of FIG.
  • the radiation conversion panel 70 shown in FIG. 5 includes a substrate 122 mounted on a base 120, a radiation conversion layer 124 that is provided on the substrate 122 and converts the radiation 16 into an electrical signal of a radiation image, and a substrate 122.
  • the radiation converting layer 124 is provided with a protective film 126 for covering the side surface and the upper surface of the radiation converting layer 124 to protect the radiation converting layer 124 from moisture and the like.
  • the upper surface 152 of the base 120 has a concave (convex downward) curved shape with the lowest center position along the arrow X direction and the highest both ends. Yes.
  • the base 120 may be made of various materials such as glass, resin, Mg-containing metal, and carbon.
  • the substrate 122 is a substantially rectangular substrate having flexibility, and is made of a plastic resin in order to reduce the weight of the entire electronic cassette 20A.
  • the radiation conversion layer 124 has substantially the same area as the imaging region 46 in plan view, the signal output layer 128 formed on the substrate 122, the photoelectric conversion layer 130 stacked on the signal output layer 128, and the photoelectric conversion layer. And a scintillator 132 bonded to 130.
  • the scintillator 132 is made of columnar crystal CsI or the like substantially perpendicular to the substrate 122, and converts the radiation 16 into fluorescence (visible light in the case of the scintillator 132 made of CsI).
  • an adhesive may be used as a means for preventing dust from entering between the photoelectric conversion layer 130 and the scintillator 132 and further preventing displacement. This is because if the photoelectric conversion layer 130 on the substrate 122 side and the scintillator 132 are bonded together, the adhesion between them is improved. According to this embodiment, as will be described later, sufficient adhesion between the two can be ensured without using an adhesive.
  • the photoelectric conversion layer 130 converts fluorescence into an electric signal by the pixel 72 made of a substance such as an amorphous oxide semiconductor (for example, IGZO) or OPC (organic photoelectric conversion material).
  • the signal output layer 128 is constituted by an array of TFTs formed on the substrate 122 using an amorphous oxide semiconductor (for example, IGZO) by a room temperature process, and reads the electrical signal from the photoelectric conversion layer 130 and outputs it.
  • the radiation conversion panel 70 thus configured is normally flat and has a substantially uniform thickness in the plane.
  • the radiation conversion panel 70 housed in the housing 40 is placed in the placement direction of the radiation conversion panel 70 (arrow Z1 direction; hereinafter, simply referred to as the placement direction) according to the shape of the base 120. On the other hand, it is deformed into a concave shape (see FIG. 5).
  • a lid member 200 (lid portion) that covers the radiation conversion panel 70 deformed into a concave shape is inserted between the inner wall 134 (top plate) on the upper surface side of the housing 40 and the base 120.
  • the lid member 200 has a top surface that is flush with the top side inner wall 134 and a bottom surface 204 that is curved downward and convexly in accordance with the top surface 152 of the base 120.
  • the radiation conversion panel 70 can be maintained in a concavely curved state without floating the radiation conversion panel 70 from the upper surface 152 of the base 120. . Further, since the lid member 200 and the upper surface side inner wall 134 are flush with each other, the imaging surface 42 can be kept flat even when the lid member 200 is interposed between the upper surface side inner wall 134 and the radiation conversion panel 70. In addition, at the time of photographing, the radiation conversion panel 70 can be reliably covered without causing the subject 14 to feel uncomfortable.
  • the sense of incongruity felt by the subject 14 is, for example, a posture (uncomfortable) that places a load on the subject 14 when the subject 14 is positioned in the photographing region 46 at the time of photographing because the photographing surface 42 is not flat. This is a burden felt by the subject 14 due to the forced (natural posture).
  • the radiation conversion panel 70 is positioned at a predetermined position on the upper surface side inner wall 134 side in the housing 40. Can be covered.
  • the lid member 200 is preferably made of resin or the like to reduce the weight, and the inside of the lid member 200 is preferably a cavity 202.
  • the substrate 122 is made of flexible plastic resin (coefficient of thermal expansion is on the order of 10 ⁇ 5 / ° C.).
  • a metal coefficient of thermal expansion is on the order of 10 ⁇ 6 / ° C.
  • the substrate 122 is placed on the base 120 without attaching the base 120 and the substrate 122, and the placed radiation conversion panel 70 is covered from above. The structure which covers with the member 200 is taken.
  • the radiation conversion panel 70 (board
  • a fixing member 136 having an L-shaped cross section is provided on the side surface side of the base 120 in the arrow X2 direction so as to extend in the arrow Y direction.
  • the fixing member 136 fixes the base 120, the radiation conversion panel 70, and the lid member 200 at predetermined positions. Specifically, the radiation conversion panel 70 is positioned so that the radiation conversion layer 124 and the imaging region 46 overlap.
  • a flexible substrate 138 is fixed on the fixing member 136, and a plurality of electronic components 140 are mounted on the flexible substrate 138.
  • the flexible substrate 138 is connected to the cassette control unit 80.
  • the cassette control unit 80 transmits and receives signals between the drive circuit unit 74 and the radiation conversion layer 124 via the flexible substrate 138.
  • the power supply unit 56 also supplies power to the cassette control unit 80 and the communication unit 58 in the housing 40 and also supplies power to the drive circuit unit 74 and the radiation conversion layer 124 via the flexible substrate 138.
  • FIG. 7A and 7B are schematic explanatory views showing a state in which the radiation conversion panel 70 placed on the base 120 is covered with the lid member 200.
  • FIG. For convenience of explanation, other components are omitted. Further, the curvatures of the upper surface 152 of the base 120 and the bottom surface 204 of the lid member 200 are greatly expressed as compared with FIG. 5, but are exaggerated to help understanding of the present embodiment. It does not show the actual size.
  • the base 120 has a bow-shaped side surface 150 (arrow Y direction) that is concave downward, and extends in the arrow X direction.
  • the upper surface 152 of the base 120 forms a smooth curved surface.
  • the bottom surface 154 of the base 120 is in a positional relationship parallel to the imaging surface 42 of radiation 16 (see FIG. 5 and the like).
  • the radiation conversion panel 70 is supported by the base 120 with the back surface 156 in contact with the top surface 152. Further, the bottom surface 204 of the lid member 200 forms a smooth curved surface that protrudes downward corresponding to the top surface 152 of the base 120.
  • the radiation conversion panel 70 is deformed into a concave shape along the upper surface 152 of the base 120, and the one end 158 and the other end 160 of the radiation conversion panel 70 follow the curved surface shape of the upper surface 152.
  • the curved radiation conversion panel 70 is covered with the bottom surface 204 of the lid member 200 (see FIG. 7B).
  • the lid member 200, the radiation conversion panel 70, and the base 120 are in close contact with each other.
  • a tension T (see FIG. 7B) is generated at one end 158 and the other end 160 of the radiation conversion panel 70.
  • the influence of bending stress generated in the radiation conversion panel 70 is small. That is, it is possible to prevent the adhesion of the radiation conversion panel 70, the base 120, and the lid member 200 from being deteriorated due to thermal deformation.
  • the lid member 200 covers the radiation conversion panel 70 from above, so that the two-dimensional profile of the detected dose of the radiation 16 is continuous. (Smooth). Thereby, generation
  • the image correction unit 104 in the cassette control unit 80 appropriately corrects the radiation image based on the correction data acquired from the correction data storage unit 106.
  • a planar projection image as a reference (for example, when the base 120 and the lid member 200 are assumed to have a flat plate shape) Can be converted and corrected.
  • Various known algorithms can be used as a method for converting a planar projection image.
  • the shape of the radiation conversion panel 70 may be estimated based on the thickness information).
  • the correction data storage unit 106 stores correction data determined based on the shapes of the base 120 and the lid member 200.
  • the curvature may be used, the distance from the radiation source 18 (measured value, typical value, etc.), the positional relationship between the imaging surface 42, the base 120, and the lid member 200, etc.
  • Geometric information may be considered.
  • the shape of the radiation conversion panel 70 is preferably deformed in line symmetry with respect to a predetermined axis on the imaging surface 42 or the imaging region 46.
  • the predetermined axis is more preferably one of two guide lines 44 (arrow X direction, arrow Y direction).
  • the deformation amount (or correction amount) of the radiation conversion panel 70 is vertically or horizontally symmetrical with respect to the imaging region 46, and the calculation amount of the correction processing can be reduced.
  • the so-called back surface reading method in which the scintillator 132 is disposed in front of the irradiation direction (incident direction) of the radiation 16 and the photoelectric conversion layer 130 is disposed in the rear.
  • the radiation conversion panel 70 of PSS has been described.
  • the electronic cassette 20A according to the first embodiment is not limited to the PSS method, and the surface in which the photoelectric conversion layer 130 is disposed in the front with respect to the irradiation direction of the radiation 16 and the scintillator 132 is disposed in the rear.
  • the present invention can also be applied to a radiation conversion panel of a reading method (ISS method, ISS: Irradiation Side Sampling). Details of the ISS method and the PSS method will be described later.
  • the shapes of the bases 120a to 120c are different from those of the first embodiment (see FIGS. 1 to 7B).
  • the radiation conversion panel 70 placed on the bases 120a to 120c will be described in detail with reference to a state diagram in which the lid members 200 and 200a cover the radiation conversion panel.
  • the base 120a has an isosceles triangular side surface 162 (in the arrow Y direction), and extends in the arrow X direction.
  • the base 120a has a first inclined surface 164 and a second inclined surface 166 having the same area and the same inclination angle. Then, the first inclined surface 164 and the second inclined surface 166 intersect to form a valley line 170.
  • the bottom surface 204a of the lid member 200a has an isosceles triangle shape in a side view corresponding to the first inclined surface 164 and the second inclined surface 166 (see FIG. 8B).
  • the radiation conversion panel 70 is supported by the base 120a with its back surface 156 in contact with the first inclined surface 164 and the second inclined surface 166, and is covered by the lid member 200a from above.
  • a tension T (see FIG. 8B) is generated in the radiation conversion panel 70, and its one end 158 is curved along the first inclined surface 164 and the other end 160 is curved along the second inclined surface 166. Or it is bent.
  • the radiation conversion panel 70 is deformed according to its rigidity.
  • the radiation conversion panel 70 has the first embodiment (see FIGS. 7A and 7B) even if the surface shapes of the first inclined surface 164 and the second inclined surface 166 that contact the base 120 a and the lid member 200 a are different. ) Has the same effect.
  • the base 120b includes a plate-like flat portion 172 and two projecting portions 174 and 174 provided on both side edges (in the arrow Y direction) of the flat portion 172.
  • the two protrusions 174 and 174 have the same shape and are in a positional relationship parallel to each other.
  • the two protruding portions 174 and 174 are erected along the normal direction of the plane formed by the flat portion 172 and have arcuate side surfaces 176 and 176.
  • the upper surfaces 178 and 178 of the two protrusions 174 and 174 form a smooth curved surface.
  • the radiation conversion panel 70 is supported by the base 120b with the back surface 156 in contact with the two upper surfaces 178 and 178, and is covered by the lid member 200 from above. As a result, a tension T (see FIG. 9B) is generated in the radiation conversion panel 70, and its one end 158 and the other end 160 are curved along the curved surface shapes of the upper surfaces 178 and 178.
  • the base 120c includes a plate-like flat portion 180, a first projecting portion 182a provided at the central portion (in the direction of the arrow X) of the flat portion 180, and a side edge (in the same direction) on the near side of the flat portion. ) And a third protrusion 182c provided on the side edge (in the same direction) on the back side of the flat part.
  • the first to third protrusions 182a to 182c are all rectangular plate-like members provided extending in the direction of the arrow Y, and are in a positional relationship parallel to each other.
  • the first to third projecting portions 182a to 182c are respectively erected along the normal direction of the plane formed by the flat portion 180.
  • the second protrusion 182b and the third protrusion 182c have the same height, and the first protrusion 182a is provided lower than the second protrusion 182b and the third protrusion 182c.
  • the side surfaces of the first to third protrusions 182a to 182c have a rectangular shape that is long in the vertical direction.
  • the first to third upper surfaces 184a to 184c provided above the first to third projecting portions 182a to 182c form planes that are substantially parallel to the flat portion 180, respectively.
  • the radiation conversion panel 70 is supported by the base 120c with the back surface 156 in contact with the first to third upper surfaces 184a to 184c, and is covered with the lid member 200 from above. As a result, a tension T (see FIG. 10B) is generated in the radiation conversion panel 70, and the one end 158 and the other end 160 thereof are enveloped by the steps of the first to third protrusions 182a to 182c. Curved along.
  • the radiation conversion panel 70 is not curved along a predetermined surface shape, but the back surface 156 is supported by fulcrums with different heights arranged in a predetermined direction, and the cover member 200 is covered from above. Even if the radiation conversion panel 70 is curved by being covered, the same effects as those of the first embodiment (see FIGS. 7A and 7B) are obtained.
  • FIGS. 11A and 11B are partially enlarged cross-sectional views taken along line XI-XI of the electronic cassette 20A shown in FIG.
  • the fourth modification differs from the first embodiment in that the radiation conversion panel 70 is supported using not only the base 120 but also the housing 40.
  • a recess 188 is provided on one side wall 186 of the housing 40 in the direction of arrow Y1.
  • the recess 188 is freely engageable with one end 190 of the radiation conversion panel 70.
  • a recess (not shown) is provided on the other side wall of the housing 40 in the arrow Y2 direction at the same height as the recess 188 (in the arrow Z direction).
  • the radiation conversion panel 70 and the one side wall 186 are fixed using an adhesive or the like in a state where the recess 188 and the one end 190 are engaged. Similarly, the radiation conversion panel 70 and the other side wall are fixed. At this time, the radiation conversion panel 70 is held in a state of being separated from the upper surface side inner wall 134 and the lower surface side inner wall of the housing 40.
  • the base 120 is inserted between the radiation conversion panel 70 and the inner wall on the lower surface side of the housing 40. Thereby, the radiation conversion panel 70 is displaced along the upper surface 152 of the base 120.
  • the lid member 200 is inserted between the upper surface side inner wall 134 of the housing 40 and the radiation conversion panel 70.
  • the radiation conversion panel 70 is covered by the lid member 200 from above, and is deformed and supported by the upper surface 152 of the base 120 and the bottom surface 204 of the lid member 200 while being curved in a concave shape downward.
  • the radiation conversion panel 70 receives a drag force from the lid member 200 and is displaced according to the shapes of the base 120 and the lid member 200. Further, since the one end 190 is fixed to the housing 40, the radiation conversion panel 70 receives a tension T in its extending direction. That is, the radiation conversion panel 70 receives the Z component of tension T and the Z component of tension T. Accordingly, the radiation conversion panel 70 is pressed from both the signal output layer 128 side and the protective film 126 side, and the photoelectric conversion layer 130 and the scintillator 132 inside thereof are also pressed in the same manner. Thereby, both adhesiveness improves further.
  • the adhesion between the edge of the radiation conversion panel 70 and the base 120 is also improved. Thereby, the shape of the radiation conversion panel 70 is stabilized, and the correction accuracy of the radiation image is improved.
  • the radiation conversion panel 70 receives a larger pressure from the lid member 200 than when the side surface is not fixed. . Further, if the scintillator 132 and the substrate 122 having the heavier total weight are arranged on the lower side (in the direction of the arrow Z2), the central portion of the radiation conversion panel 70 is easily bent (deformed) downward along the base 120. Therefore, the above effect can be easily obtained.
  • the back-illuminated radiation conversion panel 70 arranged with the substrate 122 side facing the radiation 16 irradiation side incorporates the substrate 122 formed of a lightweight resin material.
  • the above-mentioned effect becomes remarkable.
  • FIG. 11A has illustrated the case where the radiation conversion panel 70 is covered with the cover member 200 without the cavity 202 as an example.
  • the upper surface side inner wall 134 of the housing 40 is curved in a convex shape in the arrow Z2 direction, and a part on the imaging surface 42 side of the housing 40 is covered with the lid portion 206.
  • the same components as those in the electronic cassette 20A and the radiographic image capturing system 10A according to the first embodiment are denoted by the same reference numerals. Detailed description thereof will be omitted, and the same shall apply hereinafter.
  • the electronic cassette 20 ⁇ / b> B and the radiographic image capturing system 10 ⁇ / b> B according to the second embodiment are the first in that the protruding portion (control unit 32) of the panel housing unit 30 is not provided. Different from the embodiment.
  • an input terminal 50, a USB terminal 52, and a card slot 54 are arranged on the side surface of the housing 40 in the arrow Y2 direction.
  • the electrical configuration of the electronic cassette 20B is the same as that of the electronic cassette 20A (see FIGS. 3 and 4) of the first embodiment, and a description thereof will be omitted.
  • the housing 40 contains a radiation conversion panel 70, a base 220 that supports the radiation conversion panel 70, and a lid member 200 that covers the radiation conversion panel 70.
  • the height of the base 220 in the arrow Z direction is higher than that of the base 120 of the electronic cassette 20A (see FIG. 2), but the upper surface 228 of the main body 222 constituting the base 220 is directed downward. It is concavely curved.
  • the main body 222 is provided with a shielding plate 224 made of a material that shields the radiation 16.
  • the base 220 has a chamber 226 surrounded by the main body 222 and the shielding plate 224. Inside the chamber 226, a power supply unit 56, a communication unit 58, and a cassette control unit 80 are accommodated.
  • FIG. 15 is an exploded perspective view of the base 220 shown in FIG. For convenience of explanation, other components are omitted. Further, although the curvature of the upper surface 228 of the base 220 is greatly expressed as compared with FIG. 14, it is exaggerated to help the understanding of the present invention. Not shown.
  • the base 220 has a substantially rectangular parallelepiped main body 222, and the upper surface 228 of the main body is curved in a concave shape downward as described above. Further, the main body 222 has an opening 230 that opens largely to the front side surface in the arrow X direction. A chamber 226 in which various units such as the power supply unit 56 can be stored is formed inside the main body 222.
  • Four bolt holes 232 are provided at the four corners of the outer wall portion on the opening 230 side.
  • four through holes 236 are provided at the four corners of the rectangular plate-shaped lid portion 234.
  • the radiation conversion panel 70 is supported by the base 220 with the back surface 156 in contact with the top surface 228 and covered with the lid member 200 from above. Therefore, the radiation conversion panel 70 is generally curved along the curved surface shapes of the upper surface 228 and the bottom surface 204. Since it comprises in this way, the radiation conversion panel 70 can be supported concavely in the stacking direction similarly to 1st Embodiment.
  • the base 220 may be an electromagnetic wave shielding member.
  • an aluminum foil can be attached, conductive coating can be applied, or electroless nickel plating can be applied to the entire surface of the base 220.
  • EMC measures including noise reduction measures for the circuit board and the electronic components (for example, the power supply unit 56, the communication unit 58, and the cassette control unit 80 shown in FIG. 14) mounted on the circuit board can be performed. .
  • the radiation conversion panel 70 or the like or an external electronic device malfunctions due to noise generated from the circuit board and the electronic component, and the electronic component is prevented from malfunctioning due to noise entering the electronic cassette 20B from the outside. It becomes possible to do.
  • FIGS. 16A and 16B a fifth modification of the second embodiment will be described with reference to FIGS. 16A and 16B.
  • the radiation conversion panel 70 will be described in detail with reference to a state diagram in which the radiation conversion panel 70 is placed on the base 220a.
  • the base 220a includes a plate-like flat portion 250, two projecting portions 252 and 252 provided on both side edges (in the arrow X direction) of the flat portion 250, and a central position (in the arrow Y direction) of the flat portion. )
  • the main protrusion 254 is a rectangular plate-like member provided so as to extend in the arrow Y direction, and is in a positional relationship parallel to each other.
  • the main projecting portion 254 is erected along the normal direction of the plane formed by the flat portion 250, and the upper surface 260 is curved in a concave shape downward. Therefore, the upper surface 260 of the main protrusion 254 forms a smooth curved surface.
  • the main protrusion 254 is provided higher than the two protrusions 252 and 252. Furthermore, each side surface of the main projecting portion 254 is fixed in a positional relationship where the projecting portions 252 and 252 cross each other. Furthermore, the main protrusion 254 partitions the surface of the flat portion 250 into a first surface 256 and a second surface 258.
  • each part can be arranged on the flat part 250 of the base 220a.
  • the power supply unit 56 is disposed on the first surface 256, and the communication unit 58 and the cassette control unit 80 are disposed on the second surface 258.
  • FIG. 17 is a partially enlarged cross-sectional view taken along line XVII-XVII in FIG.
  • the second modification is different from the second embodiment in that the radiation conversion panel 70 is supported using not only the base 220 but also the housing 40.
  • a rectangular fixing member 302 is provided on one side wall 300 of the housing 40 in the direction of arrow Y1.
  • a rectangular protective member 304 is fixed to the side surface of the fixing member 302 in the arrow Y2 direction.
  • the protective member 304 can be made of a soft elastic body such as silicon rubber.
  • the protective film 126 and the substrate 122 side of the radiation conversion panel 70 curved along the upper surface of the base 220 are brought into contact with the protective member 304. Thereby, the one end 308 of the radiation conversion panel 70 is held in contact with the protective member 304 and the outer peripheral surface 306 of the base 220.
  • a fixing member and a protection member are provided on the other side wall in the arrow Y2 direction of the housing 40, and both end portions of the radiation conversion panel 70 are fixed to the side walls of the housing 40.
  • the radiation conversion panel 70 since the radiation conversion panel 70 is covered with the lid member 200 from above, it receives a drag from the lid member 200 and is displaced according to the shapes of the base 220 and the lid member 200. Further, since the one end 308 is fixed by the fixing member 302 and the protective member 304 provided in the housing 40, the radiation conversion panel 70 receives a tension T in its extending direction.
  • the radiation conversion panel 70 receives the Z component of the drag and the Z component of the tension T along the Z direction. Thereby, since the radiation conversion panel 70 is pressed from the signal output layer 128 side and the protective film 126 side, the photoelectric conversion layer 130 and the scintillator 132 inside thereof are also pressed in the same manner. Thereby, both adhesiveness improves further.
  • both ends of the radiation conversion panel 70 are fixed via the protective member 304 made of a soft elastic body or the like, it is possible to prevent scratches and damage from occurring at both ends of the radiation conversion panel 70.
  • the adhesion between the edge of the radiation conversion panel 70 and the base 220 and the lid member 200 is further enhanced. And since the deformation degree of the radiation conversion panel 70 is stabilized, the estimation accuracy of the shape is improved. Thereby, the correction accuracy of the radiation image by the image correction unit 104 (see FIG. 4) is improved.
  • the console 22 may acquire ID information of the electronic cassettes 20A and 20B, and may acquire correction data for each radiation conversion panel 70 associated with the ID information. Then, the radiographic image can be corrected using the image processing unit on the console 22 side.
  • the stacking order of the photoelectric conversion layer 130 and the scintillator 132 may be the reverse of the present embodiment. That is, the scintillator 132 and the photoelectric conversion layer 130 may be stacked in this order on the signal output layer 128.
  • the radiation conversion panel 70 may be configured as shown in FIGS. 18A to 19A (seventh modification).
  • a specific configuration of the radiation conversion panel 70 using the scintillator made of CsI described in the first and second embodiments will be described in detail with reference to FIGS. 18A to 19A.
  • the effect of curving the radiation conversion panel 70 including the scintillator made of CsI into a concave shape (convex shape downward) will be described with reference to FIGS. 19A and 19B.
  • the radiation conversion panel 70 converts the radiation 16 transmitted through the subject 14 into visible light (absorbs the radiation 16 and emits visible light), and the scintillator.
  • the radiation detection unit 502 converts the visible light converted in 500 into an electrical signal (charge) corresponding to the radiation image.
  • the scintillator 500 corresponds to the scintillator 132 described above, and the radiation detection unit 502 corresponds to the signal output layer 128 and the photoelectric conversion layer 130.
  • the protective film 126 is not shown.
  • an ISS system in which the radiation detection unit 502 and the scintillator 500 are arranged in this order with respect to the imaging surface 42 on which the radiation 16 is irradiated.
  • a PSS system in which the scintillator 500 and the radiation detection unit 502 are arranged in this order with respect to the imaging surface 42.
  • the scintillator 500 emits light more strongly on the imaging surface 42 side on which the radiation 16 is incident.
  • the scintillator 500 is arranged in a state of being close to the imaging surface 42 as compared with the PSS method, the resolution of the radiographic image obtained by imaging is high and the radiation detection unit 502 is visible. The amount of received light also increases. Therefore, the sensitivity of the radiation conversion panel 70 (electronic cassettes 20A and 20B) can be improved in the ISS method than in the PSS method.
  • the scintillator 500 can be made of, for example, a material such as CsI: Tl (cesium iodide added with thallium), CsI: Na (sodium activated cesium iodide), GOS (Gd 2 O 2 S: Tb), or the like. .
  • FIG. 18B illustrates, as an example, a case where a scintillator 500 including a columnar crystal region is formed by evaporating a material including CsI on a deposition substrate 504.
  • a columnar crystal region composed of columnar crystals 500a is formed on the imaging surface 42 side (radiation detection unit 502 side) on which the radiation 16 is incident, and on the opposite side of the imaging surface 42 side.
  • a non-columnar crystal region composed of the non-columnar crystal 500b is formed.
  • the vapor deposition substrate 504 is preferably made of a material having high heat resistance. For example, aluminum (Al) is preferable from the viewpoint of low cost.
  • the average diameter of the columnar crystals 500a is approximately uniform along the longitudinal direction of the columnar crystals 500a.
  • the scintillator 500 has a structure formed of a columnar crystal region (columnar crystal 500a) and a non-columnar crystal region (noncolumnar crystal 500b), and a columnar crystal 500a that can emit light with high efficiency.
  • the crystal region is disposed on the radiation detection unit 502 side. Therefore, visible light generated by the scintillator 500 travels through the columnar crystal 500 a and is emitted to the radiation detection unit 502. As a result, diffusion of visible light emitted to the radiation detection unit 502 side is suppressed, and blurring of the radiation image detected by the electronic cassettes 20A and 20B is suppressed.
  • the visible light reaching the deep part (non-columnar crystal region) of the scintillator 500 is also reflected by the non-columnar crystal 500b toward the radiation detection unit 502, so that the amount of visible light incident on the radiation detection unit 502 (in the scintillator 500) (Detection efficiency of emitted visible light) can also be improved.
  • the interval between t1 and t2 , 0.01 ⁇ (t2 / t1) ⁇ 0.25 is preferably satisfied.
  • a region (columnar crystal region) that has high luminous efficiency and prevents the diffusion of visible light, and visible light The ratio along the thickness direction of the scintillator 500 to the region that reflects the light (non-columnar crystal region) is a suitable range, the light emission efficiency of the scintillator 500, the detection efficiency of visible light emitted by the scintillator 500, and the radiation image Improve the resolution.
  • (t2 / t1) is 0.02 or more and 0.1 or less. More preferably, it is the range.
  • the scintillator 500 having a structure in which a columnar crystal region and a non-columnar crystal region are continuously formed has been described.
  • a light reflection made of Al or the like is used instead of the noncolumnar crystal region.
  • a layer may be provided so that only the columnar crystal region is formed, or another configuration may be used.
  • the radiation detection unit 502 detects visible light emitted from the light emission side (columnar crystal 500a) of the scintillator 500, and is a side view of FIG. 18A (FIGS. 18A and 18B show the X direction as shown in FIG. 6).
  • the insulating substrate 508, the TFT layer 510, and the photoelectric conversion unit 512 are sequentially stacked on the imaging surface 42 along the incident direction of the radiation 16.
  • a planarization layer 514 is formed on the bottom surface of the TFT layer 510 so as to cover the photoelectric conversion portion 512.
  • the radiation detection unit 502 includes a plurality of pixel units 520 each including a photoelectric conversion unit 512 including a photodiode (PD: Photo Diode), a storage capacitor 516, and a TFT 518 in a matrix on the insulating substrate 508 in a plan view.
  • the TFT active matrix substrate (hereinafter also referred to as a TFT substrate) is formed.
  • the TFT 518 corresponds to the TFT 82 (see FIG. 4) described in the first embodiment, and the photoelectric conversion unit 512 and the storage capacitor 516 correspond to the pixel 72.
  • the photoelectric conversion unit 512 is configured by arranging a photoelectric conversion film 512c between a lower electrode 512a on the scintillator 500 side and an upper electrode 512b on the TFT layer 510 side.
  • the photoelectric conversion film 512c absorbs visible light emitted from the scintillator 500 and generates a charge corresponding to the absorbed visible light.
  • the lower electrode 512a Since the lower electrode 512a needs to make visible light emitted from the scintillator 500 incident on the photoelectric conversion film 512c, the lower electrode 512a is preferably formed of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 500. Specifically, it is preferable to use a transparent conductive oxide (TCO) having a high visible light transmittance and a low resistance value.
  • TCO transparent conductive oxide
  • the lower electrode 512a a resistance value tends to increase when an optical transmittance of 90% or more is obtained, so that the TCO is preferable.
  • ITO Indium Tin Oxide
  • IZO Indium Tin Oxide
  • AZO Alluminum doped Zinc Oxide
  • FTO Fluorine doped Tin Oxide
  • SnO 2 TiO 2 , ZnO 2 and the like
  • ITO is most preferable from the viewpoints of stability, low resistance, and transparency.
  • the lower electrode 512a may have a single configuration common to all the pixel portions 520, or may be divided for each pixel portion 520.
  • the photoelectric conversion film 512c may be formed of a material that absorbs visible light and generates electric charge, and for example, amorphous silicon (a-Si), an organic photoelectric conversion material (OPC), or the like can be used.
  • a-Si amorphous silicon
  • OPC organic photoelectric conversion material
  • the photoelectric conversion film 512c is made of amorphous silicon, visible light emitted from the scintillator 500 can be absorbed over a wide wavelength range.
  • the formation of the photoelectric conversion film 512c made of amorphous silicon requires vapor deposition.
  • the insulating substrate 508 is made of a synthetic resin, the heat resistance of the insulating substrate 508 needs to be considered.
  • the photoelectric conversion film 512c is formed of a material containing an organic photoelectric conversion material, an absorption spectrum that exhibits high absorption mainly in the visible light region is obtained. Therefore, in the photoelectric conversion film 512c, visible light emitted from the scintillator 500 is obtained. Absorption of electromagnetic waves other than light is almost eliminated. As a result, noise generated by absorption of radiation 16 such as X-rays and ⁇ -rays in the photoelectric conversion film 512c can be suppressed.
  • the photoelectric conversion film 512c made of an organic photoelectric conversion material can be formed by depositing an organic photoelectric conversion material on an object to be formed using a droplet discharge head such as an inkjet head. Heat resistance to the body is not required. For this reason, in the seventh modification, the photoelectric conversion film 512c is formed of an organic photoelectric conversion material.
  • the photoelectric conversion film 512c is made of an organic photoelectric conversion material
  • the radiation 16 is hardly absorbed by the photoelectric conversion film 512c. Therefore, in the ISS system in which the radiation detection unit 502 is arranged so that the radiation 16 is transmitted, radiation detection is performed. Attenuation of the radiation 16 transmitted through the part 502 can be suppressed, and a decrease in sensitivity to the radiation 16 can be suppressed. Therefore, it is particularly suitable for the ISS system to configure the photoelectric conversion film 512c with an organic photoelectric conversion material.
  • the organic photoelectric conversion material constituting the photoelectric conversion film 512c is preferably as close as possible to the emission peak wavelength of the scintillator 500 in order to absorb the visible light emitted from the scintillator 500 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 500, but if the difference between the two is small, the visible light emitted from the scintillator 500 can be sufficiently absorbed. It is.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength of the scintillator 500 with respect to the radiation 16 is preferably within 10 nm, and more preferably within 5 nm.
  • organic photoelectric conversion materials examples include quinacridone organic compounds and phthalocyanine organic compounds.
  • quinacridone organic compounds since the absorption peak wavelength of quinacridone in the visible region is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the scintillator 500, the difference between the peak wavelengths can be within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 512c can be substantially maximized.
  • the electromagnetic wave absorption / photoelectric conversion site in the radiation conversion panel 70 is an organic layer including an upper electrode 512b and a lower electrode 512a, and a photoelectric conversion film 512c sandwiched between the upper electrode 512b and the lower electrode 512a. More specifically, this organic layer is a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization preventing part, an electrode, and an interlayer contact. It can be formed by stacking or mixing improved parts.
  • the organic layer preferably contains an organic p-type compound or an organic n-type compound.
  • An organic p-type semiconductor (compound) is a donor organic semiconductor (compound) mainly represented by a hole-transporting organic compound, and is an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • An organic n-type semiconductor (compound) is an acceptor organic semiconductor (compound) mainly represented by an electron-transporting organic compound, and is an organic compound having a property of easily accepting electrons. More specifically, an organic compound having a higher electron affinity when two organic compounds are used in contact with each other. Therefore, any organic compound can be used as the acceptor organic compound as long as it is an organic compound having an electron accepting property.
  • the photoelectric conversion unit 512 only needs to include at least the upper electrode 512b, the lower electrode 512a, and the photoelectric conversion film 512c.
  • at least one of an electron blocking film and a hole blocking film is required. It is preferable to provide these, and it is more preferable to provide both.
  • the electron blocking film can be provided between the upper electrode 512b and the photoelectric conversion film 512c.
  • a bias voltage is applied between the upper electrode 512b and the lower electrode 512a, the electron blocking film is applied from the upper electrode 512b to the photoelectric conversion film 512c.
  • An increase in dark current due to injection of electrons can be suppressed.
  • An electron donating organic material can be used for the electron blocking film.
  • the material actually used for the electron blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 512c, etc., and the electron function is 1.3 eV or more from the work function (Wf) of the adjacent electrode material.
  • a material having a large affinity (Ea) and an Ip equivalent to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 512c is preferable. Since the material applicable as the electron donating organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
  • the thickness of the electron blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in the photoelectric conversion efficiency of the photoelectric conversion unit 512. Is from 50 nm to 100 nm.
  • the hole blocking film can be provided between the photoelectric conversion film 512c and the lower electrode 512a, and when a bias voltage is applied between the upper electrode 512b and the lower electrode 512a, the lower electrode 512a to the photoelectric conversion film 512c. It is possible to suppress the increase of dark current due to injection of holes into the substrate.
  • An electron-accepting organic material can be used for the hole blocking film.
  • the material actually used for the hole blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 512c, etc., and 1.3 eV or more from the work function (Wf) of the material of the adjacent electrode.
  • the thickness of the hole blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to reliably exhibit the dark current suppressing effect and prevent a decrease in the photoelectric conversion efficiency of the photoelectric conversion unit 512. Is from 50 nm to 100 nm.
  • the position of the electron blocking film and the holes are set.
  • the position of the blocking film may be reversed.
  • a gate electrode, a gate insulating film, and an active layer are stacked, and a source electrode and a drain electrode are formed on the active layer at a predetermined interval.
  • the active layer can be formed of any of amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube, etc., but the material that can form the active layer is not limited to these. Absent.
  • an amorphous oxide capable of forming an active layer for example, an oxide containing at least one of In, Ga, and Zn (for example, an In—O system) is preferable, and at least one of In, Ga, and Zn is used.
  • An oxide containing two eg, In—Zn—O, In—Ga—O, and Ga—Zn—O
  • an oxide containing In, Ga, and Zn is particularly preferable.
  • the In—Ga—Zn—O-based amorphous oxide an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable.
  • the amorphous oxide capable of forming the active layer is not limited to these.
  • examples of the organic semiconductor material capable of forming the active layer include, but are not limited to, phthalocyanine compounds, pentacene, vanadyl phthalocyanine, and the like.
  • the configuration of the phthalocyanine compound is described in detail in Japanese Patent Application Laid-Open No. 2009-212389, and thus the description thereof is omitted.
  • the active layer of the TFT 518 is formed of any one of an amorphous oxide, an organic semiconductor material, a carbon nanotube, and the like, the radiation 16 such as X-rays is not absorbed, or even if it is absorbed, the amount is extremely small. The generation of noise in the radiation detection unit 502 can be effectively suppressed.
  • the switching speed of the TFT 518 can be increased, and the degree of light absorption in the visible light region in the TFT 518 can be reduced.
  • the performance of the TFT 518 is remarkably deteriorated only by mixing a very small amount of metallic impurities into the active layer. Therefore, it must be used for forming the active layer.
  • membrane formed with the organic-semiconductor material have sufficient flexibility, the photoelectric conversion film 512c formed with the organic photoelectric conversion material, and an active layer are used. If the configuration is combined with a TFT 518 formed of an organic semiconductor material, it is not always necessary to increase the rigidity of the radiation detection unit 502 in which the weight of the body of the subject 14 is added as a load.
  • the insulating substrate 508 may be any substrate that has optical transparency and little radiation absorption.
  • both the amorphous oxide constituting the active layer of the TFT 518 and the organic photoelectric conversion material constituting the photoelectric conversion film 512c of the photoelectric conversion portion 512 can be formed at a low temperature. Therefore, the insulating substrate 508 is not limited to a highly heat-resistant substrate such as a semiconductor substrate, a quartz substrate, or a glass substrate, and a flexible substrate made of synthetic resin, aramid, or bio-nanofiber can also be used.
  • flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc.
  • a conductive substrate can be used.
  • the insulating substrate 508 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
  • the transparent electrode material can be cured at a high temperature to reduce resistance, and it can also be used for automatic mounting of a driver IC including a solder reflow process.
  • aramid has a thermal expansion coefficient close to that of ITO or a glass substrate, warping after production is small and it is difficult to break.
  • aramid can make a substrate thinner than a glass substrate or the like.
  • the insulating substrate 508 may be formed by stacking an ultrathin glass substrate and aramid.
  • the bionanofiber is a composite of cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetobacterium, Xylinum) and transparent resin.
  • the cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as acrylic resin or epoxy resin in bacterial cellulose
  • a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60% to 70% of the fiber.
  • Bionanofiber has a low coefficient of thermal expansion (3-7 ppm) comparable to that of silicon crystals, and is as strong as steel (460 MPa), highly elastic (30 GPa), and flexible. Compared to glass substrates, etc. Thus, the insulating substrate 508 can be thinned.
  • the thickness of the radiation detector 502 (TFT substrate) as a whole is, for example, about 0.7 mm.
  • the electronic cassettes 20A and 20B are thinned. Therefore, a thin substrate made of a light-transmitting synthetic resin is used as the insulating substrate 508.
  • the thickness of the radiation detection unit 502 as a whole can be reduced to, for example, about 0.1 mm, and the radiation detection unit 502 can be flexible. Further, by providing the radiation detection unit 502 with flexibility, the impact resistance of the electronic cassettes 20A and 20B is improved, and even when an impact is applied to the electronic cassettes 20A and 20B, it is difficult to be damaged.
  • plastic resin, aramid, bionanofiber, etc. all absorb less radiation 16, and when the insulating substrate 508 is formed of these materials, the amount of radiation 16 absorbed by the insulating substrate 508 also decreases. Even if the radiation 16 is transmitted through the radiation detection unit 502 by the ISS method, a decrease in sensitivity to the radiation 16 can be suppressed.
  • a synthetic resin substrate as the insulating substrate 508 of the electronic cassettes 20A and 20B.
  • a substrate made of another material such as a glass substrate is used.
  • the insulating substrate 508 may be used.
  • a flattening layer 514 for flattening the radiation detection unit 502 is formed on the radiation detection unit 502 (TFT substrate) on the side opposite to the arrival direction of the radiation 16 (on the scintillator 500 side).
  • the radiation conversion panel 70 may be configured as follows.
  • the photoelectric conversion part 512 including PD may be formed of an organic photoelectric conversion material, and the TFT layer 510 may be formed using a CMOS sensor. In this case, since only the PD is made of an organic material, the TFT layer 510 including the CMOS sensor may not have flexibility. Note that the photoelectric conversion unit 512 made of an organic photoelectric conversion material and the CMOS sensor are described in Japanese Patent Application Laid-Open No. 2009-212377, and thus detailed description thereof is omitted.
  • the photoelectric conversion unit 512 including the PD may be formed of an organic photoelectric conversion material, and the flexible TFT layer 510 may be realized by a CMOS circuit including a TFT made of an organic material.
  • pentacene may be adopted as the material of the p-type organic semiconductor used in the CMOS circuit
  • copper fluoride phthalocyanine (F 16 CuPc) may be adopted as the material of the n-type organic semiconductor.
  • F 16 CuPc copper fluoride phthalocyanine
  • a flexible TFT layer 510 that can have a smaller bending radius can be realized.
  • the gate insulating film can be significantly thinned, and the driving voltage can be lowered.
  • the gate insulating film, the semiconductor, and each electrode can be manufactured at room temperature or 100 ° C. or lower.
  • a CMOS circuit can be directly formed over the flexible insulating substrate 508.
  • a TFT made of an organic material can be miniaturized by a manufacturing process in accordance with a scaling law.
  • the insulating substrate 508 can be realized by applying a polyimide precursor on a thin polyimide substrate by spin coating and heating, so that the polyimide precursor is changed to polyimide, so that a flat substrate without unevenness can be realized. it can.
  • insulating PD and TFT made of crystalline Si from resin substrate It may be arranged on the substrate 508.
  • PDs and TFTs as micro device blocks of micron order are fabricated in advance on another substrate and then separated from the substrate, and the PDs and TFTs are dispersed on an insulating substrate 508 as a target substrate in a liquid. And place statistically.
  • the insulating substrate 508 is processed in advance to be adapted to the device block, and the device block can be selectively disposed on the insulating substrate 508.
  • the optimum device block (PD and TFT) made of the optimum material can be integrated on the optimum substrate (insulating substrate 508), and the PD and the insulating substrate 508 (resin substrate) which are not crystals can be integrated. It becomes possible to integrate TFTs.
  • the radiation 16 is output from the radiation source 18 so as to spread from the radiation source 18 (see FIGS. 1 and 12) toward the electronic cassettes 20A and 20B. Therefore, as schematically shown in a side view of FIG. 19A (FIG. 19A is a side view seen in the Y direction as in FIGS. 5 and 14), the radiation conversion panel 70 has a certain extent.
  • the radiation 16 having
  • the radiation conversion panel 70 including the CsI scintillator 500 is entirely arranged so that the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are substantially parallel in consideration of the spread of the radiation 16. It is curved in a concave shape (convex shape downward). Accordingly, the columnar crystal 500a of the scintillator 500 is curved so as to be directed to the radiation source 18 (the focal point thereof). In FIG. 19A, the non-columnar crystal 500b and the like are not shown for ease of explanation.
  • FIG. 19B the same components as those in FIG. 19A are denoted by the same reference numerals for convenience of explanation.
  • FIG. 19B schematically shows a conventional example, and the radiation conversion panel 70 including the CsI scintillator 500 has a flat plate shape. Therefore, the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are different from each other. As a result, in FIG. 19B, crosstalk in which the radiation 16 enters the scintillator 500 so as to straddle each columnar crystal 500a occurs, which also causes a reduction in the image quality of the radiation image.
  • the radiation conversion panel 70 including the CsI scintillator 500 is curved in a concave shape so that the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are changed. Since they are substantially parallel, it is possible to prevent the radiation 16 incident on the scintillator 500 via the radiation detection unit 502 from straddling between the columnar crystals 500a. It becomes possible to acquire a radiographic image of image quality.
  • reference numeral 530 indicates a light emission location of visible light 532 converted from radiation 16 in scintillator 500 (columnar crystal 500a thereof).
  • a non-columnar crystal region including a non-columnar crystal 500b (see FIG. 18B) on the vapor deposition substrate 504 side in the scintillator 500, the adhesion between the vapor deposition substrate 504 and the scintillator 500 can be improved.
  • FIG. 19A even if the scintillator 500 is curved in a generally concave shape so that the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are substantially parallel, The peeling of the columnar crystals 500a) can be suppressed.
  • tip of the imaging surface 42 side (radiation detection part 502 side) of the columnar crystal 500a and the interface with the radiation detection part 502 are a free state which does not interpose an adhesive agent. This is because if the scintillator 500 is curved in a concave shape as a whole in a state where the tip of the columnar crystal 500a and the radiation detection unit 502 are bonded, the columnar crystal 500a may be cracked.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Disclosed are a radiological imaging device (20A, 20B) and a method for assembling the radiological imaging device, wherein a radiation conversion panel (70) is mounted on and supported by a base (120, 120a, 120b, 120c, 220, 220a) in such a manner that the radiation conversion panel (70) is deformed into a concave shape with respect to the mounting direction of the radiation conversion panel (70) on the base (120, 120a, 120b, 120c, 220, 220a) and the radiation conversion panel (70) mounted on the base (120, 120a, 120b, 120c, 220, 220a) is covered by a cover unit (200, 200a).

Description

放射線画像撮影装置及びその組立方法Radiation imaging apparatus and method for assembling the same
 この発明は、シンチレータ及び光電変換層を積層し、放射線を放射線画像に変換する放射線変換パネルと、該放射線変換パネルを載置して支持する基台と、該基台に載置された前記放射線変換パネルを被蓋する蓋部と、前記放射線変換パネル、前記基台及び前記蓋部を収納する筐体とを有する放射線画像撮影装置、並びに、その組立方法に関する。 The present invention provides a radiation conversion panel for laminating a scintillator and a photoelectric conversion layer to convert radiation into a radiation image, a base on which the radiation conversion panel is placed and supported, and the radiation placed on the base The present invention relates to a radiographic imaging apparatus having a lid that covers a conversion panel, a housing that houses the radiation conversion panel, the base, and the lid, and an assembling method thereof.
 医療分野において、被写体に放射線を照射し、該被写体を透過した前記放射線を放射線変換パネルに導いて放射線画像を撮影する放射線画像撮影システムが広汎に使用されている。前記放射線変換パネルとしては、前記放射線画像が露光記録される従来からの放射線フイルムや、蛍光体に前記放射線画像としての放射線エネルギを蓄積し、励起光を照射することで前記放射線画像を輝尽発光光として取り出すことのできる蓄積性蛍光体パネルが知られている。 In the medical field, a radiation image capturing system that irradiates a subject with radiation and guides the radiation transmitted through the subject to a radiation conversion panel to capture a radiation image is widely used. As the radiation conversion panel, a conventional radiation film in which the radiation image is exposed and recorded, or radiation energy as the radiation image is accumulated in a phosphor and irradiated with excitation light, thereby stimulating the radiation image. A storage phosphor panel that can be extracted as light is known.
 近時、撮影後の放射線変換パネルから直ちに放射線画像を読み出して表示可能にすべく、放射線を電気信号に直接変換する固体検出素子を用いた直接変換型の放射線変換パネル、あるいは、放射線を蛍光に一旦変換するシンチレータと、前記蛍光を電気信号に変換する固体検出素子とを用いた間接変換型の放射線変換パネルが開発されている。そして、直接変換型又は間接変換型の放射線変換パネルと、該放射線変換パネルから出力された放射線画像に対して所定の処理を行う電子部品が搭載された回路基板とを筐体内に収納することにより放射線画像撮影装置(いわゆる電子カセッテ)が構成される。 Recently, a direct conversion type radiation conversion panel using a solid-state detection element that directly converts radiation into an electrical signal, or the radiation to fluorescence in order to immediately read out and display the radiation image from the radiation conversion panel after imaging. An indirect conversion type radiation conversion panel using a scintillator that converts once and a solid state detection element that converts the fluorescence into an electric signal has been developed. Then, the direct conversion type or indirect conversion type radiation conversion panel and a circuit board on which electronic components that perform predetermined processing on the radiation image output from the radiation conversion panel are housed in a housing. A radiographic imaging device (so-called electronic cassette) is configured.
 例えば、特開2007-101256号公報には、放射線画像を電気信号として出力するための出力信号層として、室温プロセスで作製したTFT(薄膜トランジスタ)を適用した例が開示されている。例えば、アモルファス酸化物半導体膜を樹脂基板上に形成することにより、放射線変換パネルの軽量化及び薄型化が可能である。 For example, Japanese Patent Application Laid-Open No. 2007-101256 discloses an example in which a TFT (thin film transistor) manufactured by a room temperature process is applied as an output signal layer for outputting a radiographic image as an electrical signal. For example, the radiation conversion panel can be reduced in weight and thickness by forming an amorphous oxide semiconductor film on a resin substrate.
 上記した間接変換型の放射線変換パネルにおいて、シンチレータ及び固体検出素子(以下、層状に構成された検出素子を「光電変換層」という場合がある。)の間に気泡や真空層が存在すると、蛍光(シンチレーション光)の反射率・屈折率の変動が局所的に発生し、検出面内での感度特性分布が不均一になる。このような感度の不均一性に起因して、放射線画像の画質が低下するという問題がある。そこで、シンチレータ及び光電変換層の密着性を高めるための各種技術が開示されている。 In the above-described indirect conversion type radiation conversion panel, if a bubble or a vacuum layer exists between a scintillator and a solid-state detection element (hereinafter, a detection element configured in a layer form may be referred to as a “photoelectric conversion layer”), fluorescence Variations in the reflectance and refractive index of (scintillation light) occur locally, and the sensitivity characteristic distribution in the detection surface becomes non-uniform. Due to such non-uniform sensitivity, there is a problem that the quality of the radiation image is degraded. Therefore, various techniques for improving the adhesion between the scintillator and the photoelectric conversion layer are disclosed.
 例えば、特開平9-54162号公報には、スペーサを設けて所定間隔だけ離間させた上で、シンチレータ及び光電変換層を接着剤で固定するように構成した装置が開示されている。 For example, Japanese Patent Application Laid-Open No. 9-54162 discloses an apparatus configured to fix a scintillator and a photoelectric conversion layer with an adhesive after providing a spacer and separating them by a predetermined interval.
 また、特開平9-257944号公報には、固体検出手段、シール手段及びカバー手段で密閉空間を形成し、排気手段を用いて該密閉空間の内部を排気可能な装置が開示されている。 Japanese Patent Application Laid-Open No. 9-257944 discloses a device capable of forming a sealed space with solid detection means, sealing means and cover means, and exhausting the inside of the sealed space using exhaust means.
 しかしながら、特開平9-54162号公報及び特開平9-257944号公報に開示された装置では、放射線変換パネルの部品点数が増加すると共に、製造工程を別途設ける必要がある。このため、製造コストが高騰するという不都合が生じていた。 However, in the apparatuses disclosed in Japanese Patent Application Laid-Open Nos. 9-54162 and 9-257944, the number of parts of the radiation conversion panel increases and a manufacturing process needs to be provided separately. For this reason, the inconvenience that the manufacturing cost has increased has occurred.
 ところで、樹脂材はガラスと比べて熱膨張係数が高く、熱膨張が発生し易いことが一般的に知られている。そして、熱膨張係数の異なる材料を貼り合わせた状態で蓄熱すると、これらの界面で発生する熱応力により、前記材料の剥離やクラックが発生し、密着性が低下するという問題がある。 Incidentally, it is generally known that a resin material has a higher thermal expansion coefficient than glass and is likely to generate thermal expansion. When heat is stored in a state in which materials having different coefficients of thermal expansion are bonded together, there is a problem that peeling or cracking of the material occurs due to thermal stress generated at these interfaces, resulting in a decrease in adhesion.
 特に、高精細な放射線画像を取り扱う電子カセッテの場合、多数の画素に対して電気的な処理を行う必要があり、それだけ回路基板からの発熱量が多くなることが想定される。そして、特開2007-101256号公報に開示された装置例のように、熱膨張係数が高い樹脂材を回路基板に適用する際、前記放射線変換パネルを支持する基台との関係において、上記したシンチレータ及び固体検出素子の場合と同様に、密着性の問題が顕在化する。 In particular, in the case of an electronic cassette that handles high-definition radiation images, it is necessary to perform electrical processing on a large number of pixels, and it is assumed that the amount of heat generated from the circuit board increases accordingly. Then, as in the example of the apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-101256, when a resin material having a high thermal expansion coefficient is applied to a circuit board, the relationship with the base supporting the radiation conversion panel is described above. Similar to the case of the scintillator and the solid state detection element, the problem of adhesion becomes obvious.
 本発明の目的は、簡易な構成でシンチレータ及び光電変換層の密着性を高めると共に、熱変形に伴う放射線変換パネル及び基台の密着性の低下を防止することにある。 An object of the present invention is to improve the adhesion of the scintillator and the photoelectric conversion layer with a simple configuration and to prevent the adhesion of the radiation conversion panel and the base due to thermal deformation.
 本発明は、シンチレータ及び光電変換層を積層し、放射線を放射線画像に変換する放射線変換パネルと、該放射線変換パネルを載置して支持する基台と、該基台に載置された前記放射線変換パネルを被蓋する蓋部と、前記放射線変換パネル、前記基台及び前記蓋部を収納する筐体とを有する放射線画像撮影装置、並びに、その組立方法に関する。 The present invention provides a radiation conversion panel for laminating a scintillator and a photoelectric conversion layer to convert radiation into a radiation image, a base for placing and supporting the radiation conversion panel, and the radiation placed on the base The present invention relates to a radiographic imaging apparatus having a lid that covers a conversion panel, a housing that houses the radiation conversion panel, the base, and the lid, and an assembling method thereof.
 そして、本発明では、上記の目的を達成するために、前記基台における前記放射線変換パネルの載置方向に対して凹状に該放射線変換パネルを変形させた状態で前記放射線変換パネルを前記基台に載置して支持し、その後、該基台に載置された前記放射線変換パネルを前記蓋部で被蓋する。 And in this invention, in order to achieve said objective, in the state which deform | transformed this radiation conversion panel into the concave shape with respect to the mounting direction of the said radiation conversion panel in the said base, the said radiation conversion panel is said base. Then, the radiation conversion panel placed on the base is covered with the lid.
 このように、前記載置方向に対し凹状に前記放射線変換パネルを変形させて前記基台に支持させると共に、前記凹状に変形された前記放射線変換パネルを前記蓋部で被蓋することにより、前記基台から前記放射線変換パネルを浮かせることなく、該放射線変換パネルの延在方向に対して張力を発生させることができる。これにより、該放射線変換パネルの表面側及び裏面側に応力が作用し、簡易な構成で、前記放射線変換パネルが内包する前記シンチレータ及び前記光電変換層の密着性を高めることができる。 In this way, the radiation conversion panel is deformed in a concave shape with respect to the placement direction and supported by the base, and the radiation conversion panel deformed in the concave shape is covered with the lid portion, thereby Tension can be generated in the extending direction of the radiation conversion panel without floating the radiation conversion panel from the base. Thereby, stress acts on the front surface side and the back surface side of the radiation conversion panel, and the adhesion of the scintillator and the photoelectric conversion layer contained in the radiation conversion panel can be enhanced with a simple configuration.
 また、予め変形させられた方向に沿って前記放射線変換パネルの変形(反り)が発生しても、前記放射線変換パネル内部で生じる曲げ応力の影響は少ない。つまり、熱変形に伴う放射線変換パネル、基台及び蓋部の密着性の低下を防止することもできる。 Further, even if the radiation conversion panel is deformed (warped) along the direction deformed in advance, the influence of the bending stress generated inside the radiation conversion panel is small. That is, it is possible to prevent a decrease in the adhesion of the radiation conversion panel, the base, and the lid due to thermal deformation.
 ここで、前記筐体の内部で該筐体の底板から前記放射線が照射される天板の方向に向かって、前記基台、前記放射線変換パネル及び前記蓋部の順に積層されている場合に、前記蓋部は、前記天板の一部であるか、又は、前記天板に面接触する蓋部材であることが好ましい。 Here, in the case where the base, the radiation conversion panel, and the lid are stacked in this order toward the top plate irradiated with the radiation from the bottom plate of the housing inside the housing, It is preferable that the lid portion is a part of the top plate or a lid member that makes surface contact with the top plate.
 被写体が接触する前記天板の一部(該天板の内方)を前記蓋部として構成することにより、前記放射線変換パネルを確実に被蓋させることができると共に、前記天板の前記被写体側を平坦に維持することができるので、前記被写体に違和感を与えることも無い。一方、前記蓋部材を前記天板に面接触させる場合でも、該天板を平坦に維持することができるので、前記被写体に違和感を与えることなく、前記放射線変換パネルを確実に被蓋させることができる。なお、前記蓋部材は、前記天板に固定されているか、あるいは、引っ張られた状態であれば、前記筐体内の所定位置に位置決めされた状態で前記放射線変換パネルを被蓋させることができる。 By configuring a part of the top plate (inward of the top plate) in contact with the subject as the lid, the radiation conversion panel can be reliably covered, and the subject side of the top plate is on the subject side. Can be maintained flat, so that the subject does not feel uncomfortable. On the other hand, even when the lid member is brought into surface contact with the top plate, the top plate can be kept flat, so that the radiation conversion panel can be reliably covered without giving the subject a sense of incongruity. it can. If the lid member is fixed to the top plate or pulled, the radiation conversion panel can be covered with the lid member positioned at a predetermined position in the housing.
 また、前記基台は、前記放射線変換パネルを湾曲させて支持し、前記蓋部の前記放射線変換パネル側は、該放射線変換パネルに対応して湾曲していることが好ましい。これにより、放射線の検出線量のプロファイルが連続的(滑らか)になり、放射線画像での鋭い筋むらの発生を防止できる。 Further, it is preferable that the base supports the radiation conversion panel by bending it, and the radiation conversion panel side of the lid portion is curved corresponding to the radiation conversion panel. Thereby, the profile of the detected dose of radiation becomes continuous (smooth), and the occurrence of sharp unevenness in the radiation image can be prevented.
 さらに、前記基台は、前記放射線変換パネルが形成する検出面上の所定の軸に対して線対称に変形させながら該放射線変換パネルを支持することが好ましい。 Furthermore, it is preferable that the base supports the radiation conversion panel while being deformed in line symmetry with respect to a predetermined axis on a detection surface formed by the radiation conversion panel.
 さらにまた、前記所定の軸は、前記検出面の中心線であることが好ましい。 Furthermore, it is preferable that the predetermined axis is a center line of the detection surface.
 また、前記放射線変換パネルは、その側面の少なくとも一対が前記筐体の内壁に固定されていることが好ましい。これにより、前記放射線変換パネルの載置方向への変位に伴って、該放射線変換パネルに付与される応力の垂直成分が増加するので、シンチレータ及び光電変換層の密着性がさらに向上する。 Moreover, it is preferable that at least a pair of side surfaces of the radiation conversion panel is fixed to the inner wall of the housing. As a result, the vertical component of the stress applied to the radiation conversion panel increases with the displacement of the radiation conversion panel in the mounting direction, thereby further improving the adhesion between the scintillator and the photoelectric conversion layer.
 さらに、前記基台は、樹脂材で形成されていることが好ましい。これにより、放射線画像撮影装置の軽量化及び薄型化が可能である。 Furthermore, it is preferable that the base is made of a resin material. Thereby, the radiation image capturing apparatus can be reduced in weight and thickness.
 さらに、前記基台は、電磁波シールド材で形成されていることが好ましい。これにより、電磁波のシールド効果を発揮可能であり、放射線変換パネルを含む内部の電子部品や外部の電子機器が誤動作することを回避することができる。 Furthermore, the base is preferably made of an electromagnetic shielding material. Thereby, the electromagnetic wave shielding effect can be exhibited, and it is possible to avoid malfunction of internal electronic components including the radiation conversion panel and external electronic devices.
 さらに、前記放射線変換パネルの変形度に応じて前記放射線画像を補正する画像補正部を有することが好ましい。これにより、放射線変換パネルの検出面内に到達する放射線量を補正可能であり、放射線画像での面内均一性が向上する。 Furthermore, it is preferable to have an image correction unit that corrects the radiation image according to the degree of deformation of the radiation conversion panel. Thereby, it is possible to correct the radiation dose reaching the detection surface of the radiation conversion panel, and the in-plane uniformity in the radiation image is improved.
 さらに、前記画像補正部は、前記基台及び前記蓋部の形状に基づいて前記放射線変換パネルの変形度を推定し、前記放射線画像を補正することが好ましい。これにより、放射線変換パネルの変形度を実測することなく、基台及び蓋部の形状から放射線画像を精度良く補正できる。 Further, it is preferable that the image correction unit corrects the radiation image by estimating a degree of deformation of the radiation conversion panel based on shapes of the base and the lid. Thereby, the radiation image can be accurately corrected from the shapes of the base and the lid without actually measuring the degree of deformation of the radiation conversion panel.
第1実施形態に係る電子カセッテが適用される放射線画像撮影システムの構成図である。It is a lineblock diagram of a radiographic imaging system to which electronic cassette concerning a 1st embodiment is applied. 図1に示す電子カセッテの斜視図である。It is a perspective view of the electronic cassette shown in FIG. 放射線変換パネルにおける画素の配列と、画素とカセッテ制御部との間の電気的接続を模式的に示す図である。It is a figure which shows typically the arrangement | sequence of the pixel in a radiation conversion panel, and the electrical connection between a pixel and a cassette control part. 図1に示す電子カセッテの回路構成図である。It is a circuit block diagram of the electronic cassette shown in FIG. 図2に示す電子カセッテのV-V線に沿った断面図である。FIG. 5 is a sectional view taken along line VV of the electronic cassette shown in FIG. 2. 図2に示す電子カセッテのVI-VI線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line VI-VI of the electronic cassette shown in FIG. 2. 図7A及び図7Bは、図5及び図6の放射線変換パネルが基台上に載置され、且つ、蓋部材により被蓋された状態を表す概略説明図である。7A and 7B are schematic explanatory views showing a state in which the radiation conversion panel of FIGS. 5 and 6 is placed on a base and covered with a lid member. 図8A及び図8Bは、第1変形例に係る電子カセッテにおける基台及び蓋部材の形状を表す概略説明図である。8A and 8B are schematic explanatory views showing the shapes of the base and the lid member in the electronic cassette according to the first modification. 図9A及び図9Bは、第2変形例に係る電子カセッテにおける基台及び蓋部材の形状を表す概略説明図である。9A and 9B are schematic explanatory views showing the shapes of the base and the lid member in the electronic cassette according to the second modification. 図10A及び図10Bは、第3変形例に係る電子カセッテにおける基台及び蓋部材の形状を表す概略説明図である。10A and 10B are schematic explanatory views showing the shapes of the base and the lid member in the electronic cassette according to the third modification. 図11A及び図11Bは、第4変形例に係る電子カセッテの図2のXI-XI線に沿った一部拡大断面図である。11A and 11B are partially enlarged cross-sectional views of the electronic cassette according to the fourth modification, taken along line XI-XI in FIG. 第2実施形態に係る電子カセッテが適用される放射線画像撮影システムの構成図である。It is a block diagram of the radiographic imaging system to which the electronic cassette concerning 2nd Embodiment is applied. 図12に示す電子カセッテの斜視図である。It is a perspective view of the electronic cassette shown in FIG. 図13に示す電子カセッテのXIV-XIV線に沿った断面図である。FIG. 14 is a cross-sectional view of the electronic cassette shown in FIG. 13 taken along line XIV-XIV. 図14に示す基台の分解斜視図である。It is a disassembled perspective view of the base shown in FIG. 図16A及び図16Bは、第5変形例に係る電子カセッテにおける基台の形状を表す概略説明図である。16A and 16B are schematic explanatory diagrams illustrating the shape of a base in an electronic cassette according to a fifth modification. 第6変形例に係る電子カセッテの図13のXVII-XVII線に沿った一部拡大断面図である。FIG. 14 is a partially enlarged cross-sectional view taken along line XVII-XVII in FIG. 13 of an electronic cassette according to a sixth modification. 図18Aは、第7変形例に係る電子カセッテの内部構成を模式的に示す概略説明図であり、図18Bは、図18Aのシンチレータの一例を模式的に示す概略説明図である。FIG. 18A is a schematic explanatory diagram schematically illustrating the internal configuration of an electronic cassette according to a seventh modification, and FIG. 18B is a schematic explanatory diagram schematically illustrating an example of the scintillator of FIG. 18A. 図19Aは、第7変形例に係る電子カセッテの放射線変換パネルに対する放射線の照射を模式的に示す概略説明図であり、図19Bは、従来の電子カセッテの放射線変換パネルに対する放射線の照射を模式的に示す概略説明図である。FIG. 19A is a schematic explanatory view schematically showing the irradiation of radiation to the radiation conversion panel of the electronic cassette according to the seventh modification, and FIG. 19B is a schematic view of irradiation of radiation to the radiation conversion panel of the conventional electronic cassette. It is a schematic explanatory drawing shown in FIG.
 本発明に係る放射線画像撮影装置について、その組立方法との関連で、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A radiographic imaging apparatus according to the present invention will be described in detail below with reference to the accompanying drawings by listing preferred embodiments in relation to the assembly method.
<第1実施形態の構成>
 先ず、第1実施形態に係る放射線画像撮影システム10Aについて、図1~図11Bを参照しながら説明する。
<Configuration of First Embodiment>
First, a radiographic imaging system 10A according to the first embodiment will be described with reference to FIGS. 1 to 11B.
 図1に示すように、放射線画像撮影システム10Aは、ベッド等の撮影台12に横臥した被写体14である患者に対して、撮影条件に従った線量からなる放射線16を照射する放射線源18と、被写体14を透過した放射線16を検出して放射線画像に変換する電子カセッテ20A(放射線画像撮影装置)と、放射線源18及び電子カセッテ20Aを制御するコンソール22と、放射線画像を表示する表示装置24とを備える。 As shown in FIG. 1, a radiographic imaging system 10A includes a radiation source 18 that irradiates a patient, who is a subject 14 lying on an imaging platform 12 such as a bed, with radiation 16 having a dose according to imaging conditions; An electronic cassette 20A (radiation imaging apparatus) that detects radiation 16 transmitted through the subject 14 and converts it into a radiation image, a console 22 that controls the radiation source 18 and the electronic cassette 20A, and a display device 24 that displays the radiation image Is provided.
 コンソール22と、放射線源18と、電子カセッテ20A、及び表示装置24との間には、例えば、UWB(Ultra Wide Band)、IEEE802.11.a/g/n等の無線LAN、又は、ミリ波等を用いた無線通信により信号の送受信が行われる。なお、ケーブルを用いた有線通信により信号の送受信を行ってもよい。 Between the console 22, the radiation source 18, the electronic cassette 20A, and the display device 24, for example, UWB (Ultra Wide Band), IEEE 802.11. Signals are transmitted and received by wireless LAN using a / g / n or wireless communication using millimeter waves or the like. Note that signals may be transmitted and received by wired communication using a cable.
 コンソール22には、病院内の放射線科において取り扱われる放射線画像やその他の情報を統括的に管理するRIS26(放射線科情報システム)が接続され、RIS26には、病院内の医事情報を統括的に管理するHIS28(医事情報システム)が接続されている。 Connected to the console 22 is an RIS 26 (Radiology Information System) that centrally manages radiographic images and other information handled in the radiology department in the hospital, and the RIS 26 manages the medical information in the hospital in an integrated manner. HIS28 (medical information system) is connected.
 電子カセッテ20Aは、撮影台12と被写体14との間に配置されたパネル収容ユニット30を備える可搬型の電子カセッテである。パネル収容ユニット30の右側面側が上方に膨出した突出部分とされ、この突出部分が制御ユニット32として機能する。 The electronic cassette 20 </ b> A is a portable electronic cassette that includes a panel housing unit 30 disposed between the photographing table 12 and the subject 14. The right side surface of the panel housing unit 30 is a protruding portion that bulges upward, and this protruding portion functions as the control unit 32.
 図2に示すように、パネル収容ユニット30は、放射線16を透過可能な材料からなる略矩形状の筐体40を有し、被写体14が横臥する筐体40の上面は、放射線16が照射される撮影面42(照射面)とされている。該撮影面42の略中央部には、被写体14の撮影位置の指標となるガイド線44が形成されている。この場合、外枠を示すガイド線44が放射線16の照射可能領域を示す撮影領域46になる。また、ガイド線44の中心位置(十字状に交差する2本のガイド線44の交点)は、該撮影領域46の中心位置である。 As shown in FIG. 2, the panel housing unit 30 has a substantially rectangular casing 40 made of a material that can transmit the radiation 16, and the upper surface of the casing 40 on which the subject 14 lies is irradiated with the radiation 16. The imaging surface 42 (irradiation surface). A guide line 44 serving as an index of the shooting position of the subject 14 is formed at a substantially central portion of the shooting surface 42. In this case, the guide line 44 indicating the outer frame becomes the imaging region 46 indicating the region where the radiation 16 can be irradiated. The center position of the guide line 44 (intersection of two guide lines 44 intersecting in a cross shape) is the center position of the imaging region 46.
 制御ユニット32の矢印Y2方向の側面には、外部の電源から充電を行なうためのACアダプタの入力端子50と、外部機器との間で情報の送受信が可能なインターフェース手段としてのUSB(Universal Serial Bus)端子52と、PCカード等のメモリカードを装填するためのカードスロット54とが配置されている。 On the side surface of the control unit 32 in the direction of arrow Y2, USB (Universal Serial Bus) as an interface means capable of transmitting and receiving information between the input terminal 50 of the AC adapter for charging from an external power source and an external device. ) A terminal 52 and a card slot 54 for loading a memory card such as a PC card are arranged.
 筐体40の内部には、放射線変換パネル70及び駆動回路部74(図3及び図4参照)が配置されている。放射線変換パネル70は、被写体14を透過した放射線16をシンチレータにより可視光領域又は紫外光領域等の蛍光(シンチレーション光)に一旦変換し、変換した前記蛍光を光電変換素子により電気信号に変換する間接変換型の放射線変換パネルである。間接変換型の放射線変換パネルに用いられる光電変換素子(固体検出素子)としては、例えば、シンチレータが放射した紫外域の蛍光(紫外光)を電気信号に変換できるように、該紫外域を感度域としたアモルファス酸化物半導体(例えば、IGZO(InGaZnOx))等の物質からなる固体検出素子や、シンチレータが放射した可視領域の蛍光(可視光)を電気信号に変換する有機光電変換材料(OPC)等の物質からなる固体検出素子がある。なお、シンチレータ及び固体検出素子の詳細については後述する。 Inside the housing 40, a radiation conversion panel 70 and a drive circuit unit 74 (see FIGS. 3 and 4) are arranged. The radiation conversion panel 70 indirectly converts the radiation 16 that has passed through the subject 14 into fluorescence (scintillation light) such as a visible light region or an ultraviolet light region using a scintillator, and converts the converted fluorescence into an electrical signal using a photoelectric conversion element. This is a conversion type radiation conversion panel. As a photoelectric conversion element (solid-state detection element) used for an indirect conversion type radiation conversion panel, for example, the ultraviolet region is converted into an electrical signal so that fluorescence (ultraviolet light) emitted by the scintillator can be converted into an electric signal. A solid-state detection element made of a material such as an amorphous oxide semiconductor (for example, IGZO (InGaZnOx)), an organic photoelectric conversion material (OPC) that converts fluorescence in the visible region (visible light) emitted by the scintillator into an electric signal, etc. There are solid-state detection elements made of these substances. Details of the scintillator and the solid state detection element will be described later.
 また、筐体40の内部(制御ユニット32側)には、放射線16から放射線画像への変換に寄与しない各部が集中して配置されている。例えば、バッテリ等の電源部56と、コンソール22との間で無線による信号の送受信が可能な通信部58等が配置されている(図4参照)。 Further, in the housing 40 (on the control unit 32 side), various parts that do not contribute to the conversion from the radiation 16 to the radiation image are concentrated. For example, a communication unit 58 or the like capable of wirelessly transmitting and receiving signals between a power source unit 56 such as a battery and the console 22 is disposed (see FIG. 4).
 図3は、放射線変換パネル70における画素72の配列と、画素72とカセッテ制御部80との間の電気的接続を模式的に示す図である。放射線変換パネル70では、多数の画素72が図示しない基板上に配列され、これらの画素72に対して駆動回路部74から制御信号を供給するための複数のゲート線76と、複数の画素72から出力される電気信号を読み出して駆動回路部74に出力する複数の信号線78とが配列されている。画素72は、光電変換素子を有する。制御部34のカセッテ制御部80は、駆動回路部74に制御信号を供給することで駆動回路部74を制御する。 FIG. 3 is a diagram schematically showing the arrangement of the pixels 72 in the radiation conversion panel 70 and the electrical connection between the pixels 72 and the cassette control unit 80. In the radiation conversion panel 70, a large number of pixels 72 are arranged on a substrate (not shown), and a plurality of gate lines 76 for supplying a control signal from the drive circuit unit 74 to the pixels 72 and a plurality of pixels 72. A plurality of signal lines 78 for reading out the output electric signals and outputting them to the drive circuit unit 74 are arranged. The pixel 72 has a photoelectric conversion element. The cassette control unit 80 of the control unit 34 controls the drive circuit unit 74 by supplying a control signal to the drive circuit unit 74.
 図4は、電子カセッテ20Aの回路構成を示す図である。放射線変換パネル70は、蛍光を電気信号に変換するIGZO又はOPC等の物質からなる光電変換素子を有する各画素72が形成された光電変換層を、行列状のTFT82のアレイの上に配置した構造を有する。この場合、駆動回路部74を構成するバイアス回路84からバイアス電圧が供給される各画素72では、蛍光を電気信号(アナログ信号)に変換することにより発生した電荷が蓄積され、列毎にTFT82を順次オンにすることにより前記電荷を画像信号として読み出すことができる。 FIG. 4 is a diagram showing a circuit configuration of the electronic cassette 20A. The radiation conversion panel 70 has a structure in which a photoelectric conversion layer in which each pixel 72 having a photoelectric conversion element made of a substance such as IGZO or OPC that converts fluorescence into an electric signal is formed is arranged on an array of matrix-like TFTs 82. Have In this case, in each pixel 72 to which a bias voltage is supplied from the bias circuit 84 that constitutes the drive circuit unit 74, charges generated by converting the fluorescence into an electric signal (analog signal) are accumulated, and the TFT 82 is installed for each column. The charges can be read out as an image signal by sequentially turning them on.
 各画素72に接続されるTFT82には、列方向と平行に延びるゲート線76と、行方向に平行に延びる信号線78とが接続される。各ゲート線76は、ゲート駆動回路86に接続され、各信号線78は、駆動回路部74を構成するマルチプレクサ92に接続される。ゲート線76には、列方向に配列されたTFT82をオンオフ制御する制御信号がゲート駆動回路86から供給される。この場合、ゲート駆動回路86には、カセッテ制御部80からアドレス信号が供給され、ゲート駆動回路86は、該アドレス信号に応じてTFT82をオンオフ制御する。 A gate line 76 extending in parallel with the column direction and a signal line 78 extending in parallel with the row direction are connected to the TFT 82 connected to each pixel 72. Each gate line 76 is connected to a gate drive circuit 86, and each signal line 78 is connected to a multiplexer 92 constituting the drive circuit unit 74. A control signal for controlling on / off of the TFTs 82 arranged in the column direction is supplied from the gate drive circuit 86 to the gate line 76. In this case, the gate drive circuit 86 is supplied with an address signal from the cassette control unit 80, and the gate drive circuit 86 performs on / off control of the TFT 82 in accordance with the address signal.
 信号線78には、行方向に配列されたTFT82を介して各画素72に保持されている電流が流出する。この電荷は、増幅器88によって増幅される。増幅器88には、サンプルホールド回路90を介してマルチプレクサ92が接続される。マルチプレクサ92は、信号を出力する信号線78を切り替えるFETスイッチ94と、1つのFETスイッチ94をオンにして選択信号を出力させるマルチプレクサ駆動回路96とを有する。マルチプレクサ駆動回路96には、カセッテ制御部80からアドレス信号が供給され、該アドレス信号に応じて1つのFETスイッチ94をオンにする。FETスイッチ94には、A/D変換器98が接続されA/D変換器98によってデジタル信号に変換された放射線画像が、後述するフレキシブル基板138(図5参照)を介してカセッテ制御部80に供給される。フレキシブル基板138は、カセッテ制御部80と駆動回路部74とを電気的に接続するものである。 The current held in each pixel 72 flows out to the signal line 78 through the TFTs 82 arranged in the row direction. This charge is amplified by the amplifier 88. A multiplexer 92 is connected to the amplifier 88 via a sample and hold circuit 90. The multiplexer 92 includes an FET switch 94 that switches a signal line 78 that outputs a signal, and a multiplexer driving circuit 96 that turns on one FET switch 94 and outputs a selection signal. The multiplexer drive circuit 96 is supplied with an address signal from the cassette control unit 80, and turns on one FET switch 94 in accordance with the address signal. An A / D converter 98 is connected to the FET switch 94, and a radiation image converted into a digital signal by the A / D converter 98 is transferred to the cassette control unit 80 via a flexible substrate 138 (see FIG. 5) described later. Supplied. The flexible substrate 138 electrically connects the cassette control unit 80 and the drive circuit unit 74.
 なお、スイッチング素子として機能するTFT82は、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の、他の撮影素子と組み合わせて実現してもよい。さらに、TFTで言うところのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えることも可能である。 Note that the TFT 82 functioning as a switching element may be realized in combination with another imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Furthermore, it can be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting them with a shift pulse corresponding to a gate signal referred to as a TFT.
 カセッテ制御部80は、ゲート駆動回路86及びマルチプレクサ駆動回路96に対して供給するアドレス信号を発生するアドレス信号発生部100と、放射線画像を記憶する画像メモリ102と、放射線変換パネル70によって検出された放射線画像を補正する画像補正部104と、放射線変換パネル70の変形度に応じた補正データを格納する補正データ格納部106とを備える。画像メモリ102に記憶された放射線画像は、通信部58によりコンソール22等に送信される。 The cassette control unit 80 is detected by the address signal generation unit 100 that generates an address signal to be supplied to the gate drive circuit 86 and the multiplexer drive circuit 96, the image memory 102 that stores the radiation image, and the radiation conversion panel 70. An image correction unit 104 that corrects a radiation image and a correction data storage unit 106 that stores correction data corresponding to the degree of deformation of the radiation conversion panel 70 are provided. The radiographic image stored in the image memory 102 is transmitted to the console 22 and the like by the communication unit 58.
 電源部56は、駆動回路部74に電力供給を行う一方で、カセッテ制御部80及び通信部58に対しても電力供給を行う。 The power supply unit 56 supplies power to the drive circuit unit 74 and also supplies power to the cassette control unit 80 and the communication unit 58.
 次いで、電子カセッテ20Aの内部構成について、図5及び図6を参照しながら説明する。なお、図5及び図6では、説明の容易化のために、筐体40内の各構成要素について、大きさ等を一部誇張して図示すると共に、放射線変換パネル70の構成等を模式化して図示している。 Next, the internal configuration of the electronic cassette 20A will be described with reference to FIGS. 5 and 6, for ease of explanation, each component in the housing 40 is illustrated with a partly exaggerated size and the like, and the configuration of the radiation conversion panel 70 is schematically illustrated. Are shown.
 図5は、図2の電子カセッテ20AのV-V線(矢印X方向に平行する線)に沿った断面図である。図6は、図2の電子カセッテ20AのVI-VI線(矢印Y方向に平行する線)に沿った断面図である。 FIG. 5 is a sectional view taken along line VV (line parallel to the arrow X direction) of the electronic cassette 20A of FIG. 6 is a cross-sectional view taken along line VI-VI (line parallel to the arrow Y direction) of the electronic cassette 20A of FIG.
 図5に示す放射線変換パネル70は、基台120に載置された基板122と、該基板122上に設けられ、放射線16を放射線画像の電気信号に変換する放射線変換層124と、基板122に設けられた放射線変換層124の側面及び上面を覆うことにより該放射線変換層124を湿気等から保護するための保護膜126とから構成されている。 The radiation conversion panel 70 shown in FIG. 5 includes a substrate 122 mounted on a base 120, a radiation conversion layer 124 that is provided on the substrate 122 and converts the radiation 16 into an electrical signal of a radiation image, and a substrate 122. The radiation converting layer 124 is provided with a protective film 126 for covering the side surface and the upper surface of the radiation converting layer 124 to protect the radiation converting layer 124 from moisture and the like.
 図5から諒解されるように、基台120の上面152は、矢印X方向に沿った中心位置が最も低く且つ両端が最も高い、凹状(下方に向かって凸状)に湾曲した形状とされている。基台120は、ガラス、樹脂、Mgを含む金属、カーボン等の種々の材質を用いてもよい。 As can be seen from FIG. 5, the upper surface 152 of the base 120 has a concave (convex downward) curved shape with the lowest center position along the arrow X direction and the highest both ends. Yes. The base 120 may be made of various materials such as glass, resin, Mg-containing metal, and carbon.
 基板122は、可撓性を有する略矩形状の基板であり、電子カセッテ20A全体の軽量化を図るために、プラスチック樹脂からなる。 The substrate 122 is a substantially rectangular substrate having flexibility, and is made of a plastic resin in order to reduce the weight of the entire electronic cassette 20A.
 放射線変換層124は、平面視で、撮影領域46と略同じ面積を有し、基板122に形成された信号出力層128と、信号出力層128に積層された光電変換層130と、光電変換層130に接着されたシンチレータ132とから構成される。シンチレータ132は、基板122に対して略垂直な柱状結晶のCsI等からなり、放射線16を蛍光(CsIからなるシンチレータ132の場合には可視光)に変換する。 The radiation conversion layer 124 has substantially the same area as the imaging region 46 in plan view, the signal output layer 128 formed on the substrate 122, the photoelectric conversion layer 130 stacked on the signal output layer 128, and the photoelectric conversion layer. And a scintillator 132 bonded to 130. The scintillator 132 is made of columnar crystal CsI or the like substantially perpendicular to the substrate 122, and converts the radiation 16 into fluorescence (visible light in the case of the scintillator 132 made of CsI).
 光電変換層130とシンチレータ132との間へのゴミの進入を防止し、さらには、位置ずれを防止する手段として、例えば接着剤を用いてもよい。基板122側の光電変換層130と、シンチレータ132とを貼り合わせれば、両者の密着性が向上するからである。本実施形態によれば、後述するように、接着剤を用いることなく両者の密着性を十分確保することができる。 For example, an adhesive may be used as a means for preventing dust from entering between the photoelectric conversion layer 130 and the scintillator 132 and further preventing displacement. This is because if the photoelectric conversion layer 130 on the substrate 122 side and the scintillator 132 are bonded together, the adhesion between them is improved. According to this embodiment, as will be described later, sufficient adhesion between the two can be ensured without using an adhesive.
 光電変換層130は、アモルファス酸化物半導体(例えば、IGZO)やOPC(有機光電変換材料)の物質からなる画素72により蛍光を電気信号に変換する。信号出力層128は、基板122上にアモルファス酸化物半導体(例えば、IGZO)を用いて室温プロセスにより形成されたTFTのアレイ等から構成され、光電変換層130から前記電気信号を読み出して出力する。 The photoelectric conversion layer 130 converts fluorescence into an electric signal by the pixel 72 made of a substance such as an amorphous oxide semiconductor (for example, IGZO) or OPC (organic photoelectric conversion material). The signal output layer 128 is constituted by an array of TFTs formed on the substrate 122 using an amorphous oxide semiconductor (for example, IGZO) by a room temperature process, and reads the electrical signal from the photoelectric conversion layer 130 and outputs it.
 このように構成された放射線変換パネル70は、通常時は平板状であり、面内で略均一な厚さを有している。筐体40内部に収納された放射線変換パネル70は、基台120の形状に応じて、該放射線変換パネル70の載置方向(矢印Z1方向;以下、単に載置方向という場合がある。)に対して凹状に変形されている(図5参照)。 The radiation conversion panel 70 thus configured is normally flat and has a substantially uniform thickness in the plane. The radiation conversion panel 70 housed in the housing 40 is placed in the placement direction of the radiation conversion panel 70 (arrow Z1 direction; hereinafter, simply referred to as the placement direction) according to the shape of the base 120. On the other hand, it is deformed into a concave shape (see FIG. 5).
 しかも、筐体40の上面側内壁134(天板)と、基台120との間には、凹状に変形された放射線変換パネル70を被蓋する蓋部材200(蓋部)が介挿されている。蓋部材200は、上面が上面側内壁134と面一であると共に、底面204が基台120の上面152に応じて下方に向かい凸状に湾曲した形状とされている。 In addition, a lid member 200 (lid portion) that covers the radiation conversion panel 70 deformed into a concave shape is inserted between the inner wall 134 (top plate) on the upper surface side of the housing 40 and the base 120. Yes. The lid member 200 has a top surface that is flush with the top side inner wall 134 and a bottom surface 204 that is curved downward and convexly in accordance with the top surface 152 of the base 120.
 そのため、蓋部材200が放射線変換パネル70を被蓋することにより、放射線変換パネル70を基台120の上面152から浮かせること無く、該放射線変換パネル70を凹状に湾曲した状態に維持することができる。また、蓋部材200と上面側内壁134とが面一であるため、上面側内壁134と放射線変換パネル70との間に蓋部材200を介挿しても、撮影面42を平坦に維持することができ、撮影時には、被写体14に違和感を与えることなく、放射線変換パネル70を確実に被蓋させることができる。ここで、被写体14が感じる違和感とは、例えば、撮影面42が平坦ではないことによって、撮影時における撮影領域46への被写体14の位置決めの際に、被写体14に対して負荷のかかる体勢(不自然な姿勢)を強いることによる被写体14が感じる負担をいう。 Therefore, when the lid member 200 covers the radiation conversion panel 70, the radiation conversion panel 70 can be maintained in a concavely curved state without floating the radiation conversion panel 70 from the upper surface 152 of the base 120. . Further, since the lid member 200 and the upper surface side inner wall 134 are flush with each other, the imaging surface 42 can be kept flat even when the lid member 200 is interposed between the upper surface side inner wall 134 and the radiation conversion panel 70. In addition, at the time of photographing, the radiation conversion panel 70 can be reliably covered without causing the subject 14 to feel uncomfortable. Here, the sense of incongruity felt by the subject 14 is, for example, a posture (uncomfortable) that places a load on the subject 14 when the subject 14 is positioned in the photographing region 46 at the time of photographing because the photographing surface 42 is not flat. This is a burden felt by the subject 14 due to the forced (natural posture).
 なお、蓋部材200は、上面側内壁134に固定されているか、あるいは、引っ張られた状態であれば、筐体40内の上面側内壁134側の所定位置に位置決めされた状態で放射線変換パネル70を被蓋させることができる。また、蓋部材200は、軽量化を図るために、樹脂等で構成すると共に、その内部を空洞202にすることが好ましい。 If the lid member 200 is fixed to the upper surface side inner wall 134 or is in a pulled state, the radiation conversion panel 70 is positioned at a predetermined position on the upper surface side inner wall 134 side in the housing 40. Can be covered. In addition, the lid member 200 is preferably made of resin or the like to reduce the weight, and the inside of the lid member 200 is preferably a cavity 202.
 ところで、基板122は、前述したように、可撓性を有するプラスチック樹脂(熱膨張係数は、10-5/℃のオーダ)からなる。例えば、基台120の材料として金属(熱膨張係数は、10-6/℃のオーダ)を用いる場合、以下のような問題が生じ得る。すなわち、熱膨張係数の異なる材料を貼り合わせた状態で蓄熱すると、これらの界面で発生する熱応力により、材料の剥離やクラックが発生するおそれがある。そこで、本実施形態では、基台120と基板122とを貼付しないで、基台120上に基板122(放射線変換パネル70)を載置すると共に、載置された放射線変換パネル70を上方から蓋部材200で被蓋する構成を採っている。 Incidentally, as described above, the substrate 122 is made of flexible plastic resin (coefficient of thermal expansion is on the order of 10 −5 / ° C.). For example, when a metal (coefficient of thermal expansion is on the order of 10 −6 / ° C.) is used as the material of the base 120, the following problems may occur. That is, when heat is stored in a state where materials having different thermal expansion coefficients are bonded together, there is a possibility that peeling or cracking of the material may occur due to thermal stress generated at these interfaces. Therefore, in the present embodiment, the substrate 122 (radiation conversion panel 70) is placed on the base 120 without attaching the base 120 and the substrate 122, and the placed radiation conversion panel 70 is covered from above. The structure which covers with the member 200 is taken.
 なお、基台120及び基板122の材料が同一である場合は、基台120に放射線変換パネル70(基板122側)を貼り付けてもよい。また、両者の材料が異なったとしても、それらの熱膨張係数が略同じ場合は、基台120に放射線変換パネル70(基板122側)を貼り付けてもよい。この場合は、前記材料の熱膨張係数と略同じ熱膨張係数を有する材料からなる接着剤を用いて、基台120に放射線変換パネル70を貼り付けることが好ましい。 In addition, when the material of the base 120 and the board | substrate 122 is the same, you may affix the radiation conversion panel 70 (board | substrate 122 side) to the base 120. FIG. Even if the two materials are different, the radiation conversion panel 70 (substrate 122 side) may be attached to the base 120 if the thermal expansion coefficients thereof are substantially the same. In this case, it is preferable to attach the radiation conversion panel 70 to the base 120 using an adhesive made of a material having a thermal expansion coefficient substantially the same as the thermal expansion coefficient of the material.
 基台120の矢印X2方向の側面側には、断面L字状の固定部材136が矢印Y方向に延在して設けられている。固定部材136は、基台120、放射線変換パネル70及び蓋部材200を所定の位置に固定する。具体的には、放射線変換層124と撮影領域46とが重なり合うように、放射線変換パネル70が位置決めされる。 A fixing member 136 having an L-shaped cross section is provided on the side surface side of the base 120 in the arrow X2 direction so as to extend in the arrow Y direction. The fixing member 136 fixes the base 120, the radiation conversion panel 70, and the lid member 200 at predetermined positions. Specifically, the radiation conversion panel 70 is positioned so that the radiation conversion layer 124 and the imaging region 46 overlap.
 固定部材136上にはフレキシブル基板138が固定されており、該フレキシブル基板138上には複数の電子部品140が搭載されている。フレキシブル基板138は、カセッテ制御部80に接続されている。 A flexible substrate 138 is fixed on the fixing member 136, and a plurality of electronic components 140 are mounted on the flexible substrate 138. The flexible substrate 138 is connected to the cassette control unit 80.
 従って、カセッテ制御部80は、フレキシブル基板138を介して駆動回路部74及び放射線変換層124との間で信号の送受信を行う。また、電源部56は、筐体40内のカセッテ制御部80や通信部58等に対する電力供給を行うと共に、フレキシブル基板138を介して、駆動回路部74及び放射線変換層124に対する電力供給も行う。 Therefore, the cassette control unit 80 transmits and receives signals between the drive circuit unit 74 and the radiation conversion layer 124 via the flexible substrate 138. The power supply unit 56 also supplies power to the cassette control unit 80 and the communication unit 58 in the housing 40 and also supplies power to the drive circuit unit 74 and the radiation conversion layer 124 via the flexible substrate 138.
 図7A及び図7Bは、基台120上に載置された放射線変換パネル70を蓋部材200で被蓋する状態を示した概略説明図である。説明の便宜上、他の構成要素を省略して表記している。また、図5と比較して、基台120の上面152及び蓋部材200の底面204の曲率を大きく表記してあるが、あくまでも本実施形態の理解を助けるために誇張して示したものであって、実際の大きさ等を示したものではない。 7A and 7B are schematic explanatory views showing a state in which the radiation conversion panel 70 placed on the base 120 is covered with the lid member 200. FIG. For convenience of explanation, other components are omitted. Further, the curvatures of the upper surface 152 of the base 120 and the bottom surface 204 of the lid member 200 are greatly expressed as compared with FIG. 5, but are exaggerated to help understanding of the present embodiment. It does not show the actual size.
 基台120は、下に向かって凹である弓形状の側面150(矢印Y方向)を有しており、矢印X方向に延在している。基台120の上面152は、滑らかな曲面を形成している。なお、基台120の底面154は、放射線16の撮影面42(図5等参照)と平行な位置関係にあることはいうまでもない。 The base 120 has a bow-shaped side surface 150 (arrow Y direction) that is concave downward, and extends in the arrow X direction. The upper surface 152 of the base 120 forms a smooth curved surface. Needless to say, the bottom surface 154 of the base 120 is in a positional relationship parallel to the imaging surface 42 of radiation 16 (see FIG. 5 and the like).
 放射線変換パネル70は、その裏面156が上面152と接触した状態で、基台120により支持されている。また、蓋部材200の底面204は、基台120の上面152に対応して、下に向かって凸である滑らかな曲面を形成している。 The radiation conversion panel 70 is supported by the base 120 with the back surface 156 in contact with the top surface 152. Further, the bottom surface 204 of the lid member 200 forms a smooth curved surface that protrudes downward corresponding to the top surface 152 of the base 120.
<第1実施形態の組立方法>
 ここで、放射線変換パネル70を図7Bの状態で収納する手順(組立方法)について説明する。
<Assembly Method of First Embodiment>
Here, a procedure (assembly method) for housing the radiation conversion panel 70 in the state of FIG. 7B will be described.
 先ず、筐体40内において、基台120の上面152に沿って放射線変換パネル70を凹状に変形させて、該放射線変換パネル70の一端部158及び他端部160を上面152の曲面形状に沿って湾曲させる。次に、湾曲した放射線変換パネル70を蓋部材200の底面204で被蓋させる(図7B参照)。このように、放射線変換パネル70の裏面156側を基台120で支持すると共に、上面側を蓋部材200で被蓋することにより、蓋部材200、放射線変換パネル70及び基台120が密着した状態となり、放射線変換パネル70の一端部158及び他端部160には、張力T(図7B参照)が発生する。 First, in the housing 40, the radiation conversion panel 70 is deformed into a concave shape along the upper surface 152 of the base 120, and the one end 158 and the other end 160 of the radiation conversion panel 70 follow the curved surface shape of the upper surface 152. To bend. Next, the curved radiation conversion panel 70 is covered with the bottom surface 204 of the lid member 200 (see FIG. 7B). Thus, while the back surface 156 side of the radiation conversion panel 70 is supported by the base 120 and the upper surface side is covered by the lid member 200, the lid member 200, the radiation conversion panel 70, and the base 120 are in close contact with each other. Thus, a tension T (see FIG. 7B) is generated at one end 158 and the other end 160 of the radiation conversion panel 70.
<第1実施形態の効果>
 このように、矢印Z1方向(載置方向)に対し凹状に放射線変換パネル70を変形させて支持する基台120と、該放射線変換パネル70を被蓋する蓋部材200とを設けたので、凹状に変形された放射線変換パネル70の辺縁部(一端部158及び他端部160)においては、放射線変換パネル70の延在方向に対して張力Tが発生するので、放射線変換パネル70の表面側及び裏面側に応力が作用する。これにより、放射線変換パネル70を基台120から浮かせること無く、簡易な構成で、放射線変換パネル70が内包するシンチレータ132及び光電変換層130の密着性を高めることができる。
<Effects of First Embodiment>
As described above, since the base 120 for supporting the radiation conversion panel 70 by deforming it in a concave shape with respect to the arrow Z1 direction (mounting direction) and the lid member 200 for covering the radiation conversion panel 70 are provided, the concave shape is provided. In the edge part (one end part 158 and the other end part 160) of the radiation conversion panel 70 that has been deformed into a tension, a tension T is generated in the extending direction of the radiation conversion panel 70. And stress acts on the back side. Thereby, the adhesion of the scintillator 132 and the photoelectric conversion layer 130 included in the radiation conversion panel 70 can be improved with a simple configuration without floating the radiation conversion panel 70 from the base 120.
 また、予め変形させられた方向に沿って放射線変換パネル70の変形(反り)が発生しても、放射線変換パネル70内部で生じる曲げ応力の影響は少ない。つまり、熱変形に伴う放射線変換パネル70、基台120及び蓋部材200の密着性の低下を防止することもできる。 Also, even if the radiation conversion panel 70 is deformed (warped) along the direction deformed in advance, the influence of bending stress generated in the radiation conversion panel 70 is small. That is, it is possible to prevent the adhesion of the radiation conversion panel 70, the base 120, and the lid member 200 from being deteriorated due to thermal deformation.
 さらに、基台120は、放射線変換パネル70を湾曲して支持し、一方で、蓋部材200は、上方から放射線変換パネル70を被蓋するので、放射線16の検出線量の二次元プロファイルが連続的(滑らか)になる。これにより、放射線画像での鋭い筋むらの発生を防止できる。 Furthermore, since the base 120 supports the radiation conversion panel 70 in a curved manner, the lid member 200 covers the radiation conversion panel 70 from above, so that the two-dimensional profile of the detected dose of the radiation 16 is continuous. (Smooth). Thereby, generation | occurrence | production of the sharp stripe unevenness in a radiographic image can be prevented.
 ところで、上記した位置関係下において通常の方法で撮影を行うと、放射線変換パネル70の変形に起因する放射線画像の歪みが生じる場合がある。そこで、カセッテ制御部80内の画像補正部104(図4参照)は、補正データ格納部106から取得した補正データに基づいて、放射線画像を適切に補正する。 By the way, when photographing is performed by a normal method under the above-described positional relationship, there is a case where the radiation image is distorted due to the deformation of the radiation conversion panel 70. Therefore, the image correction unit 104 (see FIG. 4) in the cassette control unit 80 appropriately corrects the radiation image based on the correction data acquired from the correction data storage unit 106.
 具体的には、画素72から取得した電気信号と、該画素72の配置位置とに基づいて、基準とする平面投影像(例えば、基台120及び蓋部材200が平板状であると仮定した場合の平面投影像)に変換・補正できる。平面投影像の変換手法としては、公知のアルゴリズムを種々用いることができる。 Specifically, based on the electrical signal acquired from the pixel 72 and the arrangement position of the pixel 72, a planar projection image as a reference (for example, when the base 120 and the lid member 200 are assumed to have a flat plate shape) Can be converted and corrected. Various known algorithms can be used as a method for converting a planar projection image.
 なお、放射線変換パネル70の実際の形状を計測することが困難な場合は、基台120及び蓋部材200の各形状等の各種パラメータ(例えば、不均一な厚みを有する基台120及び蓋部材200の各厚み情報)に基づいて、放射線変換パネル70の形状(あるいは、直接的に放射線画像の補正量)を推定してもよい。 If it is difficult to measure the actual shape of the radiation conversion panel 70, various parameters such as the shapes of the base 120 and the lid member 200 (for example, the base 120 and the lid member 200 having a non-uniform thickness). The shape of the radiation conversion panel 70 (or the correction amount of the radiation image directly) may be estimated based on the thickness information).
 補正データ格納部106は、基台120及び蓋部材200の各形状に基づいて決定された補正データを格納する。放射線変換パネル70が曲面を有する場合は曲率を用いてもよいし、放射線源18からの離間距離(実測値や典型値等)、撮影面42、基台120及び蓋部材200の位置関係等の幾何学的情報を考慮してもよい。 The correction data storage unit 106 stores correction data determined based on the shapes of the base 120 and the lid member 200. When the radiation conversion panel 70 has a curved surface, the curvature may be used, the distance from the radiation source 18 (measured value, typical value, etc.), the positional relationship between the imaging surface 42, the base 120, and the lid member 200, etc. Geometric information may be considered.
 このとき、放射線変換パネル70の形状は、撮影面42又は撮影領域46上の所定の軸に対して線対称に変形されていることが好ましい。また、前記所定の軸は、2本のガイド線44(矢印X方向、矢印Y方向)のいずれか一方であるとさらに好ましい。これにより、放射線変換パネル70の変形量(あるいは補正量)が撮影領域46に対して上下又は左右対称となり、補正処理の演算量を低減できる。 At this time, the shape of the radiation conversion panel 70 is preferably deformed in line symmetry with respect to a predetermined axis on the imaging surface 42 or the imaging region 46. The predetermined axis is more preferably one of two guide lines 44 (arrow X direction, arrow Y direction). Thereby, the deformation amount (or correction amount) of the radiation conversion panel 70 is vertically or horizontally symmetrical with respect to the imaging region 46, and the calculation amount of the correction processing can be reduced.
 上述した第1実施形態の説明では、放射線16の照射方向(入射方向)に対してシンチレータ132が前方に配置され、且つ、光電変換層130が後方に配置された、いわゆる裏面読取方式(PSS方式、PSS:Penetration Side Sampling)の放射線変換パネル70について説明した。第1実施形態に係る電子カセッテ20Aは、PSS方式に限定されることはなく、放射線16の照射方向に対して光電変換層130が前方に配置され、且つ、シンチレータ132が後方に配置された表面読取方式(ISS方式、ISS:Irradiation Side Sampling)の放射線変換パネルにも適用可能であることは勿論である。ISS方式及びPSS方式の詳細については、後述する。 In the description of the first embodiment described above, the so-called back surface reading method (PSS method) in which the scintillator 132 is disposed in front of the irradiation direction (incident direction) of the radiation 16 and the photoelectric conversion layer 130 is disposed in the rear. The radiation conversion panel 70 of PSS (Penetration Side Sampling) has been described. The electronic cassette 20A according to the first embodiment is not limited to the PSS method, and the surface in which the photoelectric conversion layer 130 is disposed in the front with respect to the irradiation direction of the radiation 16 and the scintillator 132 is disposed in the rear. Of course, the present invention can also be applied to a radiation conversion panel of a reading method (ISS method, ISS: Irradiation Side Sampling). Details of the ISS method and the PSS method will be described later.
<第1実施形態の変形例>
 以下、第1実施形態に係る電子カセッテ20Aの変形例(以下、第1~第4変形例ともいう。)について、図8A~図11Bを参照しながら説明する。
<Modification of First Embodiment>
Hereinafter, modified examples (hereinafter, also referred to as first to fourth modified examples) of the electronic cassette 20A according to the first embodiment will be described with reference to FIGS. 8A to 11B.
 第1~第3変形例は、基台120a~120cの形状が第1実施形態(図1~図7B参照)と異なる。ここでは、図7A及び図7Bと同様に、基台120a~120c上に載置された放射線変換パネル70を蓋部材200、200aで被蓋する状態図を用いて詳細に説明する。 In the first to third modifications, the shapes of the bases 120a to 120c are different from those of the first embodiment (see FIGS. 1 to 7B). Here, as in FIGS. 7A and 7B, the radiation conversion panel 70 placed on the bases 120a to 120c will be described in detail with reference to a state diagram in which the lid members 200 and 200a cover the radiation conversion panel.
 先ず、第1実施形態の第1変形例について、図8A及び図8Bを参照しながら説明する。 First, a first modification of the first embodiment will be described with reference to FIGS. 8A and 8B.
 基台120aは、二等辺三角形状の側面162(矢印Y方向)を有しており、矢印X方向に延在している。基台120aは、同一の面積及び同一の傾斜角である第1傾斜面164及び第2傾斜面166を有する。そして、第1傾斜面164及び第2傾斜面166が交叉して谷線170を形成している。また、蓋部材200aの底面204aは、第1傾斜面164及び第2傾斜面166に対応して、側面視で、二等辺三角形の形状とされている(図8B参照)。 The base 120a has an isosceles triangular side surface 162 (in the arrow Y direction), and extends in the arrow X direction. The base 120a has a first inclined surface 164 and a second inclined surface 166 having the same area and the same inclination angle. Then, the first inclined surface 164 and the second inclined surface 166 intersect to form a valley line 170. Further, the bottom surface 204a of the lid member 200a has an isosceles triangle shape in a side view corresponding to the first inclined surface 164 and the second inclined surface 166 (see FIG. 8B).
 この場合、放射線変換パネル70は、その裏面156が第1傾斜面164及び第2傾斜面166と接触した状態で、基台120aにより支持されると共に、上方から蓋部材200aにより被蓋される。この結果、放射線変換パネル70には張力T(図8B参照)が発生し、その一端部158が第1傾斜面164に沿って、且つ、他端部160が第2傾斜面166に沿って湾曲又は屈曲される。なお、谷線170近傍では、放射線変換パネル70はその剛性に応じて変形する。 In this case, the radiation conversion panel 70 is supported by the base 120a with its back surface 156 in contact with the first inclined surface 164 and the second inclined surface 166, and is covered by the lid member 200a from above. As a result, a tension T (see FIG. 8B) is generated in the radiation conversion panel 70, and its one end 158 is curved along the first inclined surface 164 and the other end 160 is curved along the second inclined surface 166. Or it is bent. In the vicinity of the valley line 170, the radiation conversion panel 70 is deformed according to its rigidity.
 このように、放射線変換パネル70は、第1傾斜面164及び第2傾斜面166によって基台120a及び蓋部材200aと接触する面形状が異なっても、第1実施形態(図7A及び図7B参照)と同様の作用効果を奏する。 As described above, the radiation conversion panel 70 has the first embodiment (see FIGS. 7A and 7B) even if the surface shapes of the first inclined surface 164 and the second inclined surface 166 that contact the base 120 a and the lid member 200 a are different. ) Has the same effect.
 次いで、第1実施形態の第2変形例について、図9A及び図9Bを参照しながら説明する。 Next, a second modification of the first embodiment will be described with reference to FIGS. 9A and 9B.
 基台120bは、板状の平坦部172と、該平坦部172の両側部辺縁(矢印Y方向)に設けられた2つの突出部174、174とから構成される。2つの突出部174、174は、同一の形状を有しており、且つ、互いに平行な位置関係下にある。2つの突出部174、174は、平坦部172が形成する平面の法線方向に沿って立設されていると共に、弓形状の側面176、176を有している。2つの突出部174、174の上面178、178は、滑らかな曲面を形成している。 The base 120b includes a plate-like flat portion 172 and two projecting portions 174 and 174 provided on both side edges (in the arrow Y direction) of the flat portion 172. The two protrusions 174 and 174 have the same shape and are in a positional relationship parallel to each other. The two protruding portions 174 and 174 are erected along the normal direction of the plane formed by the flat portion 172 and have arcuate side surfaces 176 and 176. The upper surfaces 178 and 178 of the two protrusions 174 and 174 form a smooth curved surface.
 放射線変換パネル70は、その裏面156が2つの上面178、178と接触した状態で、基台120bにより支持されると共に、上方から蓋部材200により被蓋されている。これにより、放射線変換パネル70には張力T(図9B参照)が発生し、その一端部158及び他端部160が上面178、178の曲面形状に沿って湾曲される。 The radiation conversion panel 70 is supported by the base 120b with the back surface 156 in contact with the two upper surfaces 178 and 178, and is covered by the lid member 200 from above. As a result, a tension T (see FIG. 9B) is generated in the radiation conversion panel 70, and its one end 158 and the other end 160 are curved along the curved surface shapes of the upper surfaces 178 and 178.
 このように、放射線変換パネル70の裏面156全体ではなく、部分的に接触しながら支持しても、第1実施形態(図7A及び図7B参照)と同様の作用効果を奏する。 As described above, even if the radiation conversion panel 70 is supported while partially contacting the back surface 156 of the radiation conversion panel 70, the same effects as those of the first embodiment (see FIGS. 7A and 7B) can be obtained.
 次いで、第1実施形態の第3変形例について、図10A及び図10Bを参照しながら説明する。 Next, a third modification of the first embodiment will be described with reference to FIGS. 10A and 10B.
 基台120cは、板状の平坦部180と、該平坦部180の中央部(矢印X方向)に設けられた第1突出部182aと、該平坦部の手前側の側部辺縁(同方向)に設けられた第2突出部182bと、該平坦部の奥側の側部辺縁(同方向)に設けられた第3突出部182cとから構成される。第1~第3突出部182a~182cは、いずれも矢印Y方向に延在して設けられた矩形板状の部材であり、且つ、互いに平行な位置関係下にある。第1~3突出部182a~182cは、平坦部180が形成する平面の法線方向に沿ってそれぞれ立設されている。ここで、第2突出部182b及び第3突出部182cは同じ高さを有しており、第1突出部182aは、第2突出部182b及び第3突出部182cと比べて低く設けられている。第1~3突出部182a~182cの側面は、上下方向に長尺な矩形状を有している。第1~第3突出部182a~182cの上方に設けられた第1~第3上面184a~184cは、平坦部180と略平行である平面をそれぞれ形成している。 The base 120c includes a plate-like flat portion 180, a first projecting portion 182a provided at the central portion (in the direction of the arrow X) of the flat portion 180, and a side edge (in the same direction) on the near side of the flat portion. ) And a third protrusion 182c provided on the side edge (in the same direction) on the back side of the flat part. The first to third protrusions 182a to 182c are all rectangular plate-like members provided extending in the direction of the arrow Y, and are in a positional relationship parallel to each other. The first to third projecting portions 182a to 182c are respectively erected along the normal direction of the plane formed by the flat portion 180. Here, the second protrusion 182b and the third protrusion 182c have the same height, and the first protrusion 182a is provided lower than the second protrusion 182b and the third protrusion 182c. . The side surfaces of the first to third protrusions 182a to 182c have a rectangular shape that is long in the vertical direction. The first to third upper surfaces 184a to 184c provided above the first to third projecting portions 182a to 182c form planes that are substantially parallel to the flat portion 180, respectively.
 放射線変換パネル70は、その裏面156が第1~第3上面184a~184cと接触した状態で、基台120cにより支持されると共に、上方から蓋部材200で被蓋されている。これにより、放射線変換パネル70には張力T(図10B参照)が発生し、その一端部158及び他端部160が、第1~第3突出部182a~182cの段差により形成される包絡線に沿って湾曲される。 The radiation conversion panel 70 is supported by the base 120c with the back surface 156 in contact with the first to third upper surfaces 184a to 184c, and is covered with the lid member 200 from above. As a result, a tension T (see FIG. 10B) is generated in the radiation conversion panel 70, and the one end 158 and the other end 160 thereof are enveloped by the steps of the first to third protrusions 182a to 182c. Curved along.
 このように、所定の面形状に沿わせて放射線変換パネル70を湾曲させるのではなく、所定方向に配列された高さの異なる支点で裏面156を支持し、且つ、上方から蓋部材200で被蓋させて、放射線変換パネル70を湾曲させるようにしても、第1実施形態(図7A及び図7B参照)と同様の作用効果を奏する。 In this way, the radiation conversion panel 70 is not curved along a predetermined surface shape, but the back surface 156 is supported by fulcrums with different heights arranged in a predetermined direction, and the cover member 200 is covered from above. Even if the radiation conversion panel 70 is curved by being covered, the same effects as those of the first embodiment (see FIGS. 7A and 7B) are obtained.
 次いで、第1実施形態の第4変形例について、図11A及び図11Bを参照しながら説明する。図11A及び図11Bは、図2に示す電子カセッテ20AのXI-XI線に沿った一部拡大断面図である。 Next, a fourth modification of the first embodiment will be described with reference to FIGS. 11A and 11B. 11A and 11B are partially enlarged cross-sectional views taken along line XI-XI of the electronic cassette 20A shown in FIG.
 第4変形例は、基台120のみならず、筐体40をも用いて放射線変換パネル70を支持する点が第1実施形態と異なる。 The fourth modification differs from the first embodiment in that the radiation conversion panel 70 is supported using not only the base 120 but also the housing 40.
 筐体40の矢印Y1方向の一側壁186には、凹部188が設けられている。凹部188は、放射線変換パネル70の一端部190と係合自在である。同様に、筐体40の矢印Y2方向の他側壁にも、図示しない凹部が前記凹部188と同じ高さ(矢印Z方向)に設けられている。 A recess 188 is provided on one side wall 186 of the housing 40 in the direction of arrow Y1. The recess 188 is freely engageable with one end 190 of the radiation conversion panel 70. Similarly, a recess (not shown) is provided on the other side wall of the housing 40 in the arrow Y2 direction at the same height as the recess 188 (in the arrow Z direction).
 以下、筐体40内に放射線変換パネル70及び基台120を収納する手順について、図11Aを参照しながら説明する。 Hereinafter, a procedure for housing the radiation conversion panel 70 and the base 120 in the housing 40 will be described with reference to FIG. 11A.
 先ず、凹部188と一端部190とを係合させた状態で、接着剤等を用いて放射線変換パネル70と一側壁186とを固着しておく。同様に、放射線変換パネル70と他側壁とを固着しておく。このとき、放射線変換パネル70は、筐体40の上面側内壁134及び下面側内壁と離間した状態で保持される。 First, the radiation conversion panel 70 and the one side wall 186 are fixed using an adhesive or the like in a state where the recess 188 and the one end 190 are engaged. Similarly, the radiation conversion panel 70 and the other side wall are fixed. At this time, the radiation conversion panel 70 is held in a state of being separated from the upper surface side inner wall 134 and the lower surface side inner wall of the housing 40.
 次に、放射線変換パネル70と、筐体40の下面側内壁との間に基台120を介挿する。これにより、放射線変換パネル70は、基台120の上面152に沿って変位する。この状態で、筐体40の上面側内壁134と放射線変換パネル70との間に蓋部材200を介挿する。これにより、放射線変換パネル70は、上方から蓋部材200によって被蓋されることになり、基台120の上面152及び蓋部材200の底面204によって下方に凹状に湾曲した状態で変形支持される。 Next, the base 120 is inserted between the radiation conversion panel 70 and the inner wall on the lower surface side of the housing 40. Thereby, the radiation conversion panel 70 is displaced along the upper surface 152 of the base 120. In this state, the lid member 200 is inserted between the upper surface side inner wall 134 of the housing 40 and the radiation conversion panel 70. As a result, the radiation conversion panel 70 is covered by the lid member 200 from above, and is deformed and supported by the upper surface 152 of the base 120 and the bottom surface 204 of the lid member 200 while being curved in a concave shape downward.
 この場合、放射線変換パネル70は、蓋部材200から抗力を受けて、基台120及び蓋部材200の形状に応じて変位する。また、一端部190が筐体40に固定されていることにより、放射線変換パネル70は、その延在方向に張力Tを受ける。すなわち、放射線変換パネル70は、前記抗力のZ成分を受けると共に、張力TのZ成分を受ける。これにより、放射線変換パネル70は、信号出力層128側及び保護膜126側の双方から押圧されることになり、その内部の光電変換層130及びシンチレータ132も同様に押圧される。これにより、両者の密着性がさらに向上する。 In this case, the radiation conversion panel 70 receives a drag force from the lid member 200 and is displaced according to the shapes of the base 120 and the lid member 200. Further, since the one end 190 is fixed to the housing 40, the radiation conversion panel 70 receives a tension T in its extending direction. That is, the radiation conversion panel 70 receives the Z component of tension T and the Z component of tension T. Accordingly, the radiation conversion panel 70 is pressed from both the signal output layer 128 side and the protective film 126 side, and the photoelectric conversion layer 130 and the scintillator 132 inside thereof are also pressed in the same manner. Thereby, both adhesiveness improves further.
 それに加えて、放射線変換パネル70の辺縁部と基台120との密着性も向上する。これにより、放射線変換パネル70の形状が安定し、放射線画像の補正精度も向上する。 In addition, the adhesion between the edge of the radiation conversion panel 70 and the base 120 is also improved. Thereby, the shape of the radiation conversion panel 70 is stabilized, and the correction accuracy of the radiation image is improved.
 なお、放射線変換パネル70の側面の少なくとも一対が筐体40の内壁に固定されていればよく、放射線変換パネル70の4つの側面をすべて固定しても上記効果が得られることは言うまでもない。 In addition, it is only necessary that at least a pair of side surfaces of the radiation conversion panel 70 is fixed to the inner wall of the housing 40, and it goes without saying that the above-described effect can be obtained even if all four side surfaces of the radiation conversion panel 70 are fixed.
 また、放射線変換パネル70の側面を筐体40の内壁に固定することにより、以下の効果も得られる。放射線変換パネル70の側面を固定しつつ、上方から蓋部材200で放射線変換パネル70を被蓋すると、放射線変換パネル70は、側面を固定しない場合と比べて、一層大きな押圧を蓋部材200から受ける。さらに、シンチレータ132及び基板122のうち総重量が重い方を下方側(矢印Z2方向)に配置すれば、放射線変換パネル70の中央部分は、基台120に沿って下方に湾曲(変形)しやすくなるので、上記の効果を容易に得ることができる。 Further, by fixing the side surface of the radiation conversion panel 70 to the inner wall of the housing 40, the following effects can be obtained. When the radiation conversion panel 70 is covered with the lid member 200 from above while fixing the side surface of the radiation conversion panel 70, the radiation conversion panel 70 receives a larger pressure from the lid member 200 than when the side surface is not fixed. . Further, if the scintillator 132 and the substrate 122 having the heavier total weight are arranged on the lower side (in the direction of the arrow Z2), the central portion of the radiation conversion panel 70 is easily bent (deformed) downward along the base 120. Therefore, the above effect can be easily obtained.
 従って、図5等の場合とは逆に、基板122側を放射線16の照射側に向けて配置した裏面照射型の放射線変換パネル70では、軽量な樹脂材で形成された基板122を組み込むことにより、上述の効果が顕著となる。なお、図11Aは、一例として、空洞202の無い蓋部材200により放射線変換パネル70を被蓋する場合を図示している。 Therefore, contrary to the case of FIG. 5 and the like, the back-illuminated radiation conversion panel 70 arranged with the substrate 122 side facing the radiation 16 irradiation side incorporates the substrate 122 formed of a lightweight resin material. The above-mentioned effect becomes remarkable. In addition, FIG. 11A has illustrated the case where the radiation conversion panel 70 is covered with the cover member 200 without the cavity 202 as an example.
 また、第4変形例では、図11Bに示すように、筐体40の上面側内壁134を矢印Z2方向に凸状に湾曲させて、筐体40の撮影面42側の一部を蓋部206として構成してもよい。この場合でも、撮影面42を平坦に維持した状態で、蓋部206の底面208(上面側内壁134)により放射線変換パネル70を被蓋することができるので、上述した第1実施形態の効果が容易に得られる。 Further, in the fourth modification example, as shown in FIG. 11B, the upper surface side inner wall 134 of the housing 40 is curved in a convex shape in the arrow Z2 direction, and a part on the imaging surface 42 side of the housing 40 is covered with the lid portion 206. You may comprise as. Even in this case, the radiation conversion panel 70 can be covered with the bottom surface 208 (upper surface inner wall 134) of the lid 206 while the imaging surface 42 is maintained flat. Therefore, the effect of the first embodiment described above can be obtained. Easy to get.
<第2実施形態>
 続いて、第2実施形態に係る電子カセッテ20B及び放射線画像撮影システム10Bについて、図12~図15を参照しながら説明する。
Second Embodiment
Next, an electronic cassette 20B and a radiographic image capturing system 10B according to the second embodiment will be described with reference to FIGS.
 なお、電子カセッテ20B及び放射線画像撮影システム10Bにおいて、第1実施形態に係る電子カセッテ20A及び放射線画像撮影システム10A(図1~図11B参照)と同じ構成要素については、同じ参照符号を付して、その詳細な説明を省略し、以下同様とする。 In the electronic cassette 20B and the radiographic image capturing system 10B, the same components as those in the electronic cassette 20A and the radiographic image capturing system 10A according to the first embodiment (see FIGS. 1 to 11B) are denoted by the same reference numerals. Detailed description thereof will be omitted, and the same shall apply hereinafter.
 図12及び図13から諒解されるように、第2実施形態に係る電子カセッテ20B及び放射線画像撮影システム10Bは、パネル収容ユニット30の突出部分(制御ユニット32)が設けられていない点で第1実施形態とは異なる。 As can be understood from FIGS. 12 and 13, the electronic cassette 20 </ b> B and the radiographic image capturing system 10 </ b> B according to the second embodiment are the first in that the protruding portion (control unit 32) of the panel housing unit 30 is not provided. Different from the embodiment.
 図13に示すように、筐体40の矢印Y2方向の側面に、入力端子50と、USB端子52と、カードスロット54とが配置されている。なお、電子カセッテ20Bの電気的構成は、第1実施形態の電子カセッテ20A(図3及び図4参照)と同様であるので、その説明を省略する。 As shown in FIG. 13, an input terminal 50, a USB terminal 52, and a card slot 54 are arranged on the side surface of the housing 40 in the arrow Y2 direction. Note that the electrical configuration of the electronic cassette 20B is the same as that of the electronic cassette 20A (see FIGS. 3 and 4) of the first embodiment, and a description thereof will be omitted.
 図14に示すように、筐体40の内部には、放射線変換パネル70と、該放射線変換パネル70を支持する基台220と、放射線変換パネル70を被蓋する蓋部材200とが収納されている。基台220の矢印Z方向の高さは、電子カセッテ20A(図2参照)の基台120と比べて高くなっているが、基台220を構成する本体222の上面228は、下方に向かって凹状に湾曲している。また、本体222には、放射線16を遮蔽する材質からなる遮蔽板224が設けられている。さらに、基台220は、本体222及び遮蔽板224により囲繞された室226を有する。室226の内部には、電源部56、通信部58及びカセッテ制御部80を収納している。 As shown in FIG. 14, the housing 40 contains a radiation conversion panel 70, a base 220 that supports the radiation conversion panel 70, and a lid member 200 that covers the radiation conversion panel 70. Yes. The height of the base 220 in the arrow Z direction is higher than that of the base 120 of the electronic cassette 20A (see FIG. 2), but the upper surface 228 of the main body 222 constituting the base 220 is directed downward. It is concavely curved. The main body 222 is provided with a shielding plate 224 made of a material that shields the radiation 16. Further, the base 220 has a chamber 226 surrounded by the main body 222 and the shielding plate 224. Inside the chamber 226, a power supply unit 56, a communication unit 58, and a cassette control unit 80 are accommodated.
 図15は、図14に示す基台220の分解斜視図である。説明の便宜上、他の構成要素を省略して表記している。また、図14と比較して、基台220の上面228の曲率を大きく表記してあるが、あくまでも本発明の理解を助けるために誇張して示したものであって、実際の大きさ等を示したものではない。 FIG. 15 is an exploded perspective view of the base 220 shown in FIG. For convenience of explanation, other components are omitted. Further, although the curvature of the upper surface 228 of the base 220 is greatly expressed as compared with FIG. 14, it is exaggerated to help the understanding of the present invention. Not shown.
 基台220は、略直方体状の本体222を有しており、該本体の上面228は、前述したように、下に凹状に湾曲している。さらに、本体222の矢印X方向の手前側側面に大きく開口する開口部230を有する。本体222の内部には、電源部56等の各種ユニットを収納自在な室226が形成されている。開口部230側の外壁部四隅には4つのボルト穴232が設けられている。一方、矩形板状の蓋部234の四隅には、4つの貫通孔236が設けられている。4つのボルト238を4つのボルト穴232にそれぞれ螺合することで、蓋部234を開口部230側に被蓋できる。 The base 220 has a substantially rectangular parallelepiped main body 222, and the upper surface 228 of the main body is curved in a concave shape downward as described above. Further, the main body 222 has an opening 230 that opens largely to the front side surface in the arrow X direction. A chamber 226 in which various units such as the power supply unit 56 can be stored is formed inside the main body 222. Four bolt holes 232 are provided at the four corners of the outer wall portion on the opening 230 side. On the other hand, four through holes 236 are provided at the four corners of the rectangular plate-shaped lid portion 234. By screwing the four bolts 238 into the four bolt holes 232, the lid 234 can be covered on the opening 230 side.
 一方、放射線変換パネル70は、その裏面156が上面228と接触した状態で、基台220により支持されると共に、上方から蓋部材200で被蓋されている。そのため、放射線変換パネル70は、全体的に、上面228及び底面204の曲面形状に沿って湾曲される。このように構成しているので、第1実施形態と同様に、放射線変換パネル70をその積載方向に凹状に支持できる。 On the other hand, the radiation conversion panel 70 is supported by the base 220 with the back surface 156 in contact with the top surface 228 and covered with the lid member 200 from above. Therefore, the radiation conversion panel 70 is generally curved along the curved surface shapes of the upper surface 228 and the bottom surface 204. Since it comprises in this way, the radiation conversion panel 70 can be supported concavely in the stacking direction similarly to 1st Embodiment.
 なお、基台220は、電磁波シールド部材であってもよい。例えば、アルミ箔を貼付し、導電性の塗装をし、あるいは基台220の全面に無電解ニッケルめっきを施して設けることができる。これにより、回路基板及び該回路基板に搭載された電子部品(例えば、図14に示す電源部56、通信部58、及びカセッテ制御部80)に対するノイズ低減対策を含めたEMC対策を行うことができる。この結果、回路基板及び電子部品から発生するノイズによって放射線変換パネル70等や外部の電子機器が誤動作することを回避すると共に、外部から電子カセッテ20Bに侵入するノイズによって電子部品が誤動作することを回避することが可能となる。 Note that the base 220 may be an electromagnetic wave shielding member. For example, an aluminum foil can be attached, conductive coating can be applied, or electroless nickel plating can be applied to the entire surface of the base 220. Thereby, EMC measures including noise reduction measures for the circuit board and the electronic components (for example, the power supply unit 56, the communication unit 58, and the cassette control unit 80 shown in FIG. 14) mounted on the circuit board can be performed. . As a result, it is avoided that the radiation conversion panel 70 or the like or an external electronic device malfunctions due to noise generated from the circuit board and the electronic component, and the electronic component is prevented from malfunctioning due to noise entering the electronic cassette 20B from the outside. It becomes possible to do.
<第2実施形態の変形例>
 以下、第2実施形態に係る電子カセッテ20Bの変形例(第5及び第6変形例)について、図16A~図17を参照しながら説明する。
<Modification of Second Embodiment>
Hereinafter, modified examples (fifth and sixth modified examples) of the electronic cassette 20B according to the second embodiment will be described with reference to FIGS. 16A to 17.
 先ず、第2実施形態の第5変形例について、図16A及び図16Bを参照しながら説明する。なお、図15と同様に、放射線変換パネル70が基台220a上に載置された状態図を用いて詳細に説明する。 First, a fifth modification of the second embodiment will be described with reference to FIGS. 16A and 16B. As in FIG. 15, the radiation conversion panel 70 will be described in detail with reference to a state diagram in which the radiation conversion panel 70 is placed on the base 220a.
 基台220aは、板状の平坦部250と、該平坦部250の両側部辺縁(矢印X方向)に設けられた2つの突出部252、252と、該平坦部の中央位置(矢印Y方向)に設けられた主突出部254とから構成される。突出部252、252は、いずれも矢印Y方向に延在して設けられた矩形板状の部材であり、且つ、互いに平行な位置関係下にある。主突出部254は、平坦部250が形成する平面の法線方向に沿って立設されており、上面260が下方に向かって凹状に湾曲している。従って、主突出部254の上面260は、滑らかな曲面を形成している。また、主突出部254は、2つの突出部252、252と比べて高く設けられている。さらに、主突出部254の各側面には、突出部252、252が交叉する位置関係下でそれぞれ固設されている。さらにまた、主突出部254は、平坦部250の表面を第1面256と第2面258とに区画する。 The base 220a includes a plate-like flat portion 250, two projecting portions 252 and 252 provided on both side edges (in the arrow X direction) of the flat portion 250, and a central position (in the arrow Y direction) of the flat portion. ) Provided in the main protrusion 254. Each of the protrusions 252 and 252 is a rectangular plate-like member provided so as to extend in the arrow Y direction, and is in a positional relationship parallel to each other. The main projecting portion 254 is erected along the normal direction of the plane formed by the flat portion 250, and the upper surface 260 is curved in a concave shape downward. Therefore, the upper surface 260 of the main protrusion 254 forms a smooth curved surface. The main protrusion 254 is provided higher than the two protrusions 252 and 252. Furthermore, each side surface of the main projecting portion 254 is fixed in a positional relationship where the projecting portions 252 and 252 cross each other. Furthermore, the main protrusion 254 partitions the surface of the flat portion 250 into a first surface 256 and a second surface 258.
 基台220aを電磁波シールド部材で構成すれば、基台220aの平坦部250上に各部を配置することができる。図16Bに示す例では、第1面256上に電源部56を配置すると共に、第2面258上に通信部58及びカセッテ制御部80を配置している。 If the base 220a is composed of an electromagnetic wave shielding member, each part can be arranged on the flat part 250 of the base 220a. In the example shown in FIG. 16B, the power supply unit 56 is disposed on the first surface 256, and the communication unit 58 and the cassette control unit 80 are disposed on the second surface 258.
 次いで、第2実施形態の第6変形例について、図17を参照しながら説明する。図17は、図13のXVII-XVII線に沿った一部拡大断面図である。 Next, a sixth modification of the second embodiment will be described with reference to FIG. FIG. 17 is a partially enlarged cross-sectional view taken along line XVII-XVII in FIG.
 第2変形例は、基台220のみならず、筐体40をも用いて放射線変換パネル70を支持する点が第2実施形態と異なる。 The second modification is different from the second embodiment in that the radiation conversion panel 70 is supported using not only the base 220 but also the housing 40.
 筐体40の矢印Y1方向の一側壁300には、矩形状の固定部材302が設けられている。固定部材302の矢印Y2方向の側面には、矩形状の保護部材304が固着されている。保護部材304には、軟らかい弾性体、例えばシリコンゴム等を用いることができる。 A rectangular fixing member 302 is provided on one side wall 300 of the housing 40 in the direction of arrow Y1. A rectangular protective member 304 is fixed to the side surface of the fixing member 302 in the arrow Y2 direction. The protective member 304 can be made of a soft elastic body such as silicon rubber.
 放射線変換パネル70、基台220及び蓋部材200を筐体40内に収納する際は、一緒に収納する。このとき、放射線変換パネル70の両端部を筐体40の各側壁にそれぞれ固定する。 When storing the radiation conversion panel 70, the base 220 and the lid member 200 in the housing 40, they are stored together. At this time, both end portions of the radiation conversion panel 70 are fixed to the respective side walls of the housing 40.
 基台220の上面に沿って湾曲する放射線変換パネル70の保護膜126及び基板122側を保護部材304と当接させる。これにより、放射線変換パネル70の一端部308は、保護部材304及び基台220の外周面306に接触した状態で保持される。同様に、筐体40の矢印Y2方向の他側壁にも図示しない固定部材及び保護部材が設けられており、放射線変換パネル70の両端部を筐体40の各側壁に固定しておく。 The protective film 126 and the substrate 122 side of the radiation conversion panel 70 curved along the upper surface of the base 220 are brought into contact with the protective member 304. Thereby, the one end 308 of the radiation conversion panel 70 is held in contact with the protective member 304 and the outer peripheral surface 306 of the base 220. Similarly, a fixing member and a protection member (not shown) are provided on the other side wall in the arrow Y2 direction of the housing 40, and both end portions of the radiation conversion panel 70 are fixed to the side walls of the housing 40.
 このような状態において、放射線変換パネル70は、上方から蓋部材200で被蓋されるので、蓋部材200から抗力を受け、基台220及び蓋部材200の形状に応じて変位する。また、筐体40に設けられた固定部材302及び保護部材304により一端部308が固定されているので、放射線変換パネル70はその延在方向に張力Tを受ける。 In such a state, since the radiation conversion panel 70 is covered with the lid member 200 from above, it receives a drag from the lid member 200 and is displaced according to the shapes of the base 220 and the lid member 200. Further, since the one end 308 is fixed by the fixing member 302 and the protective member 304 provided in the housing 40, the radiation conversion panel 70 receives a tension T in its extending direction.
 すなわち、放射線変換パネル70は、Z方向に沿って前記抗力のZ成分を受けると共に、張力TのZ成分を受ける。これにより、放射線変換パネル70は、信号出力層128側及び保護膜126側からそれぞれ押圧されるので、その内部の光電変換層130及びシンチレータ132も同様に押圧される。これにより、両者の密着性がさらに向上する。 That is, the radiation conversion panel 70 receives the Z component of the drag and the Z component of the tension T along the Z direction. Thereby, since the radiation conversion panel 70 is pressed from the signal output layer 128 side and the protective film 126 side, the photoelectric conversion layer 130 and the scintillator 132 inside thereof are also pressed in the same manner. Thereby, both adhesiveness improves further.
 また、軟らかい弾性体等からなる保護部材304を介して、放射線変換パネル70の両端部を固定するようにしたので、放射線変換パネル70の両端部での擦り傷・損傷の発生を防止できる。 In addition, since both ends of the radiation conversion panel 70 are fixed via the protective member 304 made of a soft elastic body or the like, it is possible to prevent scratches and damage from occurring at both ends of the radiation conversion panel 70.
 それに加えて、放射線変換パネル70の辺縁部と基台220及び蓋部材200との密着性がさらに高まる。そして、放射線変換パネル70の変形度が安定するため、その形状の推定精度が向上する。これにより、画像補正部104(図4参照)による放射線画像の補正精度が向上する。 In addition, the adhesion between the edge of the radiation conversion panel 70 and the base 220 and the lid member 200 is further enhanced. And since the deformation degree of the radiation conversion panel 70 is stabilized, the estimation accuracy of the shape is improved. Thereby, the correction accuracy of the radiation image by the image correction unit 104 (see FIG. 4) is improved.
<第1及び第2実施形態の他の構成例>
 なお、この発明は、上述した実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
<Another configuration example of the first and second embodiments>
Note that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.
 例えば、コンソール22は、電子カセッテ20A、20BのID情報を取得し、該ID情報と紐付けられた放射線変換パネル70毎の補正データを取得してもよい。そうすれば、コンソール22側の画像処理部を用いて放射線画像の補正を行うことができる。 For example, the console 22 may acquire ID information of the electronic cassettes 20A and 20B, and may acquire correction data for each radiation conversion panel 70 associated with the ID information. Then, the radiographic image can be corrected using the image processing unit on the console 22 side.
 また、光電変換層130及びシンチレータ132の積層順は、本実施形態と逆の構成であってもよい。すなわち、信号出力層128の上に、シンチレータ132、光電変換層130の順番で積層してもよい。 Further, the stacking order of the photoelectric conversion layer 130 and the scintillator 132 may be the reverse of the present embodiment. That is, the scintillator 132 and the photoelectric conversion layer 130 may be stacked in this order on the signal output layer 128.
 また、第1及び第2実施形態において、放射線変換パネル70は、図18A~図19Aのように構成してもよい(第7変形例)。ここでは、最初に、第1及び第2実施形態で説明した、CsIからなるシンチレータを用いた放射線変換パネル70の具体的な構成について、図18A~図19Aを参照しながら詳細に説明する。次に、CsIからなるシンチレータを含む放射線変換パネル70を凹状(下方に向かって凸状)に湾曲させたことによる効果を図19A及び図19Bを参照しながら説明する。 In the first and second embodiments, the radiation conversion panel 70 may be configured as shown in FIGS. 18A to 19A (seventh modification). Here, first, a specific configuration of the radiation conversion panel 70 using the scintillator made of CsI described in the first and second embodiments will be described in detail with reference to FIGS. 18A to 19A. Next, the effect of curving the radiation conversion panel 70 including the scintillator made of CsI into a concave shape (convex shape downward) will be described with reference to FIGS. 19A and 19B.
 図18A~図19Aの第7変形例において、放射線変換パネル70は、被写体14を透過した放射線16を可視光に変換する(放射線16を吸収して可視光を放出する)シンチレータ500と、該シンチレータ500で変換された可視光を放射線画像に応じた電気信号(電荷)に変換する放射線検出部502とから構成される。なお、シンチレータ500は、前述のシンチレータ132に対応し、放射線検出部502は、信号出力層128及び光電変換層130に対応する。また、図18A~図19Aでは、保護膜126の図示は省略している。 18A to 19A, the radiation conversion panel 70 converts the radiation 16 transmitted through the subject 14 into visible light (absorbs the radiation 16 and emits visible light), and the scintillator. The radiation detection unit 502 converts the visible light converted in 500 into an electrical signal (charge) corresponding to the radiation image. The scintillator 500 corresponds to the scintillator 132 described above, and the radiation detection unit 502 corresponds to the signal output layer 128 and the photoelectric conversion layer 130. 18A to 19A, the protective film 126 is not shown.
 前述したように、放射線変換パネル70としては、図18A及び図18Bに示すような、放射線16が照射される撮影面42に対して放射線検出部502とシンチレータ500との順に配置されたISS方式と、撮影面42に対してシンチレータ500と放射線検出部502との順に配置されたPSS方式とがある。シンチレータ500は、放射線16が入射される撮影面42側がより強く発光する。そのため、ISS方式は、PSS方式と比較して、シンチレータ500が撮影面42に接近した状態で配置されているため、撮影によって得られる放射線画像の分解能が高く、且つ、放射線検出部502での可視光の受光量も増大する。従って、ISS方式は、PSS方式よりも、放射線変換パネル70(電子カセッテ20A、20B)の感度を向上させることができる。 As described above, as the radiation conversion panel 70, as shown in FIGS. 18A and 18B, an ISS system in which the radiation detection unit 502 and the scintillator 500 are arranged in this order with respect to the imaging surface 42 on which the radiation 16 is irradiated. There is a PSS system in which the scintillator 500 and the radiation detection unit 502 are arranged in this order with respect to the imaging surface 42. The scintillator 500 emits light more strongly on the imaging surface 42 side on which the radiation 16 is incident. Therefore, in the ISS method, since the scintillator 500 is arranged in a state of being close to the imaging surface 42 as compared with the PSS method, the resolution of the radiographic image obtained by imaging is high and the radiation detection unit 502 is visible. The amount of received light also increases. Therefore, the sensitivity of the radiation conversion panel 70 ( electronic cassettes 20A and 20B) can be improved in the ISS method than in the PSS method.
 また、シンチレータ500は、例えば、CsI:Tl(タリウムを添加したヨウ化セシウム)、CsI:Na(ナトリウム賦活ヨウ化セシウム)、GOS(GdS:Tb)等の材料を用いることができる。 The scintillator 500 can be made of, for example, a material such as CsI: Tl (cesium iodide added with thallium), CsI: Na (sodium activated cesium iodide), GOS (Gd 2 O 2 S: Tb), or the like. .
 図18Bは、一例として、蒸着基板504にCsIを含む材料を蒸着させることにより、柱状結晶領域を含むシンチレータ500を形成した場合を図示している。 FIG. 18B illustrates, as an example, a case where a scintillator 500 including a columnar crystal region is formed by evaporating a material including CsI on a deposition substrate 504.
 具体的に、図18Bのシンチレータ500では、放射線16が入射される撮影面42側(放射線検出部502側)に柱状結晶500aからなる柱状結晶領域が形成され、該撮影面42側の反対側に非柱状結晶500bからなる非柱状結晶領域が形成された構成となっている。なお、蒸着基板504としては、耐熱性の高い材料が望ましく、例えば、低コストという観点からアルミニウム(Al)が好適である。また、シンチレータ500は、柱状結晶500aの平均径が該柱状結晶500aの長手方向に沿っておよそ均一とされている。 Specifically, in the scintillator 500 of FIG. 18B, a columnar crystal region composed of columnar crystals 500a is formed on the imaging surface 42 side (radiation detection unit 502 side) on which the radiation 16 is incident, and on the opposite side of the imaging surface 42 side. A non-columnar crystal region composed of the non-columnar crystal 500b is formed. Note that the vapor deposition substrate 504 is preferably made of a material having high heat resistance. For example, aluminum (Al) is preferable from the viewpoint of low cost. In the scintillator 500, the average diameter of the columnar crystals 500a is approximately uniform along the longitudinal direction of the columnar crystals 500a.
 上記のように、シンチレータ500は、柱状結晶領域(柱状結晶500a)及び非柱状結晶領域(非柱状結晶500b)で形成された構成であると共に、高効率の発光が得られる柱状結晶500aからなる柱状結晶領域が放射線検出部502側に配置されている。そのため、シンチレータ500で発生された可視光は、柱状結晶500a内を進行して放射線検出部502へ射出される。この結果、放射線検出部502側へ射出される可視光の拡散が抑制され、電子カセッテ20A、20Bによって検出される放射線画像のボケが抑制される。また、シンチレータ500の深部(非柱状結晶領域)に到達した可視光も、非柱状結晶500bによって放射線検出部502側へ反射するので、放射線検出部502に入射される可視光の光量(シンチレータ500で発光された可視光の検出効率)を向上させることもできる。 As described above, the scintillator 500 has a structure formed of a columnar crystal region (columnar crystal 500a) and a non-columnar crystal region (noncolumnar crystal 500b), and a columnar crystal 500a that can emit light with high efficiency. The crystal region is disposed on the radiation detection unit 502 side. Therefore, visible light generated by the scintillator 500 travels through the columnar crystal 500 a and is emitted to the radiation detection unit 502. As a result, diffusion of visible light emitted to the radiation detection unit 502 side is suppressed, and blurring of the radiation image detected by the electronic cassettes 20A and 20B is suppressed. Further, the visible light reaching the deep part (non-columnar crystal region) of the scintillator 500 is also reflected by the non-columnar crystal 500b toward the radiation detection unit 502, so that the amount of visible light incident on the radiation detection unit 502 (in the scintillator 500) (Detection efficiency of emitted visible light) can also be improved.
 なお、シンチレータ500の撮影面42側に位置する柱状結晶領域の厚みをt1とし、シンチレータ500の蒸着基板504側に位置する非柱状結晶領域の厚みをt2とすれば、t1とt2との間では、0.01≦(t2/t1)≦0.25の関係を満足することが望ましい。 If the thickness of the columnar crystal region located on the imaging surface 42 side of the scintillator 500 is t1, and the thickness of the non-columnar crystal region located on the vapor deposition substrate 504 side of the scintillator 500 is t2, the interval between t1 and t2 , 0.01 ≦ (t2 / t1) ≦ 0.25 is preferably satisfied.
 このように、柱状結晶領域の厚みt1と非柱状結晶領域の厚みt2とが上記の関係を満たすことで、発光効率が高く且つ可視光の拡散を防止する領域(柱状結晶領域)と、可視光を反射する領域(非柱状結晶領域)とのシンチレータ500の厚み方向に沿った比率が好適な範囲となり、シンチレータ500の発光効率、該シンチレータ500で発光された可視光の検出効率、及び、放射線画像の解像度が向上する。 Thus, when the thickness t1 of the columnar crystal region and the thickness t2 of the non-columnar crystal region satisfy the above relationship, a region (columnar crystal region) that has high luminous efficiency and prevents the diffusion of visible light, and visible light The ratio along the thickness direction of the scintillator 500 to the region that reflects the light (non-columnar crystal region) is a suitable range, the light emission efficiency of the scintillator 500, the detection efficiency of visible light emitted by the scintillator 500, and the radiation image Improve the resolution.
 なお、非柱状結晶領域の厚みt2が厚すぎると発光効率の低い領域が増え、電子カセッテ20A、20Bの感度の低下につながることから、(t2/t1)は0.02以上且つ0.1以下の範囲であることがより好ましい。 Note that if the thickness t2 of the non-columnar crystal region is too thick, the region with low light emission efficiency increases and the sensitivity of the electronic cassettes 20A and 20B decreases, so (t2 / t1) is 0.02 or more and 0.1 or less. More preferably, it is the range.
 また、上記の説明では、柱状結晶領域と非柱状結晶領域とが連続的に形成された構成のシンチレータ500について説明したが、例えば、上記の非柱状結晶領域に代えて、Al等から成る光反射層を設けて、柱状結晶領域のみ形成された構成としてもよいし、他の構成であってもよい。 In the above description, the scintillator 500 having a structure in which a columnar crystal region and a non-columnar crystal region are continuously formed has been described. For example, instead of the noncolumnar crystal region, a light reflection made of Al or the like is used. A layer may be provided so that only the columnar crystal region is formed, or another configuration may be used.
 放射線検出部502は、シンチレータ500の光射出側(柱状結晶500a)から射出された可視光を検出するものであり、図18Aの側面視(図18A及び図18Bは、図6のようにX方向で視た側面視である。)では、放射線16の入射方向に沿って、撮影面42に対して、絶縁性基板508、TFT層510及び光電変換部512が順に積層されている。TFT層510の底面には、光電変換部512を覆うように平坦化層514が形成されている。 The radiation detection unit 502 detects visible light emitted from the light emission side (columnar crystal 500a) of the scintillator 500, and is a side view of FIG. 18A (FIGS. 18A and 18B show the X direction as shown in FIG. 6). In FIG. 2, the insulating substrate 508, the TFT layer 510, and the photoelectric conversion unit 512 are sequentially stacked on the imaging surface 42 along the incident direction of the radiation 16. A planarization layer 514 is formed on the bottom surface of the TFT layer 510 so as to cover the photoelectric conversion portion 512.
 また、放射線検出部502は、フォトダイオード(PD:Photo Diode)等からなる光電変換部512、蓄積容量516及びTFT518を備えた画素部520を、絶縁性基板508上に平面視でマトリクス状に複数形成した、TFTアクティブマトリクス基板(以下、TFT基板ともいう。)として構成される。 In addition, the radiation detection unit 502 includes a plurality of pixel units 520 each including a photoelectric conversion unit 512 including a photodiode (PD: Photo Diode), a storage capacitor 516, and a TFT 518 in a matrix on the insulating substrate 508 in a plan view. The TFT active matrix substrate (hereinafter also referred to as a TFT substrate) is formed.
 なお、TFT518は、第1実施形態で説明したTFT82(図4参照)に対応し、光電変換部512及び蓄積容量516は、画素72に対応する。 The TFT 518 corresponds to the TFT 82 (see FIG. 4) described in the first embodiment, and the photoelectric conversion unit 512 and the storage capacitor 516 correspond to the pixel 72.
 光電変換部512は、シンチレータ500側の下部電極512aと、TFT層510側の上部電極512bとの間に、光電変換膜512cを配置して構成される。光電変換膜512cは、シンチレータ500から放出された可視光を吸収し、吸収した可視光に応じた電荷を発生する。 The photoelectric conversion unit 512 is configured by arranging a photoelectric conversion film 512c between a lower electrode 512a on the scintillator 500 side and an upper electrode 512b on the TFT layer 510 side. The photoelectric conversion film 512c absorbs visible light emitted from the scintillator 500 and generates a charge corresponding to the absorbed visible light.
 下部電極512aは、シンチレータ500から放出された可視光を光電変換膜512cに入射させる必要があるため、少なくともシンチレータ500の発光波長に対して透明な導電性材料で構成することが好ましい。具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO:Transparent Conducting Oxide)を用いることが好ましい。 Since the lower electrode 512a needs to make visible light emitted from the scintillator 500 incident on the photoelectric conversion film 512c, the lower electrode 512a is preferably formed of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 500. Specifically, it is preferable to use a transparent conductive oxide (TCO) having a high visible light transmittance and a low resistance value.
 なお、下部電極512aとしてAu等の金属薄膜を用いることもできるが、90%以上の光透過率を得ようとすると抵抗値が増大しやすくなるため、TCOの方が好ましい。例えば、ITO(Indium Tin Oxide)、IZO(Indium Tin Oxide)、AZO(Aluminium doped Zinc Oxide)、FTO(Fluorine doped Tin Oxide)、SnO、TiO、ZnO等を用いることが好ましいが、プロセス簡易性、低抵抗性、透明性の観点からITOが最も好ましい。また、下部電極512aは、全ての画素部520で共通する一枚構成としてもよいし、画素部520毎に分割してもよい。 Note that although a metal thin film such as Au can be used as the lower electrode 512a, a resistance value tends to increase when an optical transmittance of 90% or more is obtained, so that the TCO is preferable. For example, ITO (Indium Tin Oxide), IZO (Indium Tin Oxide), AZO (Aluminum doped Zinc Oxide), FTO (Fluorine doped Tin Oxide), SnO 2 , TiO 2 , ZnO 2 and the like are preferably used. ITO is most preferable from the viewpoints of stability, low resistance, and transparency. Further, the lower electrode 512a may have a single configuration common to all the pixel portions 520, or may be divided for each pixel portion 520.
 また、光電変換膜512cは、可視光を吸収して電荷を発生する材料から構成すればよく、例えば、アモルファスシリコン(a-Si)や有機光電変換材料(OPC)等を用いることができる。光電変換膜512cをアモルファスシリコンで構成した場合、シンチレータ500から放出された可視光を広い波長域にわたって吸収するように構成することができる。但し、アモルファスシリコンからなる光電変換膜512cの形成には蒸着を行う必要があり、絶縁性基板508が合成樹脂製である場合、絶縁性基板508の耐熱性も考慮する必要がある。 Further, the photoelectric conversion film 512c may be formed of a material that absorbs visible light and generates electric charge, and for example, amorphous silicon (a-Si), an organic photoelectric conversion material (OPC), or the like can be used. When the photoelectric conversion film 512c is made of amorphous silicon, visible light emitted from the scintillator 500 can be absorbed over a wide wavelength range. However, the formation of the photoelectric conversion film 512c made of amorphous silicon requires vapor deposition. When the insulating substrate 508 is made of a synthetic resin, the heat resistance of the insulating substrate 508 needs to be considered.
 一方、光電変換膜512cを有機光電変換材料を含む材料で構成した場合、主に可視光域で高い吸収を示す吸収スペクトルが得られるので、光電変換膜512cにおいては、シンチレータ500から放出された可視光以外の電磁波の吸収はほとんどなくなる。この結果、X線やγ線等の放射線16の光電変換膜512cでの吸収により発生するノイズを抑制することができる。 On the other hand, when the photoelectric conversion film 512c is formed of a material containing an organic photoelectric conversion material, an absorption spectrum that exhibits high absorption mainly in the visible light region is obtained. Therefore, in the photoelectric conversion film 512c, visible light emitted from the scintillator 500 is obtained. Absorption of electromagnetic waves other than light is almost eliminated. As a result, noise generated by absorption of radiation 16 such as X-rays and γ-rays in the photoelectric conversion film 512c can be suppressed.
 また、有機光電変換材料からなる光電変換膜512cは、インクジェットヘッド等の液滴吐出ヘッドを用いて、有機光電変換材料を被形成体上に付着させることにより形成することができるので、該被形成体に対する耐熱性は要求されない。このため、第7変形例では、光電変換膜512cを有機光電変換材料で構成している。 In addition, the photoelectric conversion film 512c made of an organic photoelectric conversion material can be formed by depositing an organic photoelectric conversion material on an object to be formed using a droplet discharge head such as an inkjet head. Heat resistance to the body is not required. For this reason, in the seventh modification, the photoelectric conversion film 512c is formed of an organic photoelectric conversion material.
 さらに、光電変換膜512cを有機光電変換材料で構成した場合、光電変換膜512cで放射線16がほとんど吸収されないので、放射線16が透過するように放射線検出部502が配置されるISS方式において、放射線検出部502を透過する放射線16の減衰を抑制することができ、該放射線16に対する感度の低下を抑えることができる。従って、光電変換膜512cを有機光電変換材料で構成することは、特にISS方式において好適である。 Furthermore, when the photoelectric conversion film 512c is made of an organic photoelectric conversion material, the radiation 16 is hardly absorbed by the photoelectric conversion film 512c. Therefore, in the ISS system in which the radiation detection unit 502 is arranged so that the radiation 16 is transmitted, radiation detection is performed. Attenuation of the radiation 16 transmitted through the part 502 can be suppressed, and a decrease in sensitivity to the radiation 16 can be suppressed. Therefore, it is particularly suitable for the ISS system to configure the photoelectric conversion film 512c with an organic photoelectric conversion material.
 光電変換膜512cを構成する有機光電変換材料は、シンチレータ500から放出された可視光を最も効率良く吸収するために、その吸収ピーク波長が、シンチレータ500の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長とシンチレータ500の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければ、シンチレータ500から放出された可視光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、シンチレータ500の放射線16に対する発光ピーク波長との差が10nm以内であることが好ましく、5nm以内であることがより好ましい。 The organic photoelectric conversion material constituting the photoelectric conversion film 512c is preferably as close as possible to the emission peak wavelength of the scintillator 500 in order to absorb the visible light emitted from the scintillator 500 most efficiently. Ideally, the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 500, but if the difference between the two is small, the visible light emitted from the scintillator 500 can be sufficiently absorbed. It is. Specifically, the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength of the scintillator 500 with respect to the radiation 16 is preferably within 10 nm, and more preferably within 5 nm.
 このような条件を満たすことが可能な有機光電変換材料としては、例えば、キナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えば、キナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ500の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜512cで発生する電荷量を略最大にすることができる。 Examples of organic photoelectric conversion materials that can satisfy such conditions include quinacridone organic compounds and phthalocyanine organic compounds. For example, since the absorption peak wavelength of quinacridone in the visible region is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the scintillator 500, the difference between the peak wavelengths can be within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 512c can be substantially maximized.
 次に、放射線変換パネル70に適用可能な光電変換膜512cについて、より具体的に説明する。 Next, the photoelectric conversion film 512c applicable to the radiation conversion panel 70 will be described more specifically.
 放射線変換パネル70における電磁波吸収/光電変換部位は、上部電極512b及び下部電極512aと、該上部電極512b及び下部電極512aに挟まれた光電変換膜512cを含む有機層である。この有機層は、より具体的には、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位、電子ブロッキング部位、正孔ブロッキング部位、結晶化防止部位、電極、及び、層間接触改良部位等を積み重ねるか、若しくは、混合することで形成することができる。 The electromagnetic wave absorption / photoelectric conversion site in the radiation conversion panel 70 is an organic layer including an upper electrode 512b and a lower electrode 512a, and a photoelectric conversion film 512c sandwiched between the upper electrode 512b and the lower electrode 512a. More specifically, this organic layer is a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization preventing part, an electrode, and an interlayer contact. It can be formed by stacking or mixing improved parts.
 上記有機層は、有機p型化合物又は有機n型化合物を含有することが好ましい。有機p型半導体(化合物)は、主に正孔輸送性有機化合物に代表されるドナー性有機半導体(化合物)であり、電子を供与しやすい性質を有する有機化合物である。さらに詳しくは、2つの有機材料を接触させて用いたときに、イオン化ポテンシャルの小さい方の有機化合物である。従って、ドナー性有機化合物としては、電子供与性を有する有機化合物であれば、いずれの有機化合物も使用可能である。有機n型半導体(化合物)は、主に電子輸送性有機化合物に代表されるアクセプター性有機半導体(化合物)であり、電子を受容しやすい性質を有する有機化合物である。さらに詳しくは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物である。従って、アクセプター性有機化合物は、電子受容性を有する有機化合物であれば、いずれの有機化合物も使用可能である。 The organic layer preferably contains an organic p-type compound or an organic n-type compound. An organic p-type semiconductor (compound) is a donor organic semiconductor (compound) mainly represented by a hole-transporting organic compound, and is an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound. An organic n-type semiconductor (compound) is an acceptor organic semiconductor (compound) mainly represented by an electron-transporting organic compound, and is an organic compound having a property of easily accepting electrons. More specifically, an organic compound having a higher electron affinity when two organic compounds are used in contact with each other. Therefore, any organic compound can be used as the acceptor organic compound as long as it is an organic compound having an electron accepting property.
 有機p型半導体及び有機n型半導体として適用可能な材料や、光電変換膜512cの構成については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 Since the materials applicable as the organic p-type semiconductor and the organic n-type semiconductor and the configuration of the photoelectric conversion film 512c are described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 また、光電変換部512は、少なくとも上部電極512b及び下部電極512aと光電変換膜512cとを含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜及び正孔ブロッキング膜の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。 In addition, the photoelectric conversion unit 512 only needs to include at least the upper electrode 512b, the lower electrode 512a, and the photoelectric conversion film 512c. However, in order to suppress an increase in dark current, at least one of an electron blocking film and a hole blocking film is required. It is preferable to provide these, and it is more preferable to provide both.
 電子ブロッキング膜は、上部電極512bと光電変換膜512cとの間に設けることができ、上部電極512bと下部電極512aとの間にバイアス電圧を印加したときに、上部電極512bから光電変換膜512cに電子が注入されて暗電流が増加してしまうことを抑制することができる。電子ブロッキング膜には電子供与性有機材料を用いることができる。実際に電子ブロッキング膜に用いる材料は、隣接する電極の材料及び隣接する光電変換膜512cの材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上電子親和力(Ea)が大きく、且つ、隣接する光電変換膜512cの材料のイオン化ポテンシャル(Ip)と同等のIp、若しくは、それより小さいIpを有するものが好ましい。この電子供与性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 The electron blocking film can be provided between the upper electrode 512b and the photoelectric conversion film 512c. When a bias voltage is applied between the upper electrode 512b and the lower electrode 512a, the electron blocking film is applied from the upper electrode 512b to the photoelectric conversion film 512c. An increase in dark current due to injection of electrons can be suppressed. An electron donating organic material can be used for the electron blocking film. The material actually used for the electron blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 512c, etc., and the electron function is 1.3 eV or more from the work function (Wf) of the adjacent electrode material. A material having a large affinity (Ea) and an Ip equivalent to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 512c is preferable. Since the material applicable as the electron donating organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 電子ブロッキング膜の厚みは、暗電流抑制効果を確実に発揮させると共に、光電変換部512の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、より好ましくは、30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。 The thickness of the electron blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in the photoelectric conversion efficiency of the photoelectric conversion unit 512. Is from 50 nm to 100 nm.
 正孔ブロッキング膜は、光電変換膜512cと下部電極512aとの間に設けることができ、上部電極512bと下部電極512aとの間にバイアス電圧を印加したときに、下部電極512aから光電変換膜512cに正孔が注入されて暗電流が増加してしまうことを抑制することができる。正孔ブロッキング膜には電子受容性有機材料を用いることができる。実際に正孔ブロッキング膜に用いる材料は、隣接する電極の材料及び隣接する光電変換膜512cの材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上イオン化ポテンシャル(Ip)が大きく、且つ、隣接する光電変換膜512cの材料の電子親和力(Ea)と同等のEa、若しくは、それより大きいEaを有するものが好ましい。この電子受容性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 The hole blocking film can be provided between the photoelectric conversion film 512c and the lower electrode 512a, and when a bias voltage is applied between the upper electrode 512b and the lower electrode 512a, the lower electrode 512a to the photoelectric conversion film 512c. It is possible to suppress the increase of dark current due to injection of holes into the substrate. An electron-accepting organic material can be used for the hole blocking film. The material actually used for the hole blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 512c, etc., and 1.3 eV or more from the work function (Wf) of the material of the adjacent electrode. Those having a large ionization potential (Ip) and an Ea equivalent to or higher than the electron affinity (Ea) of the material of the adjacent photoelectric conversion film 512c are preferable. Since the material applicable as the electron-accepting organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 正孔ブロッキング膜の厚みは、暗電流抑制効果を確実に発揮させると共に、光電変換部512の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、より好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。 The thickness of the hole blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to reliably exhibit the dark current suppressing effect and prevent a decrease in the photoelectric conversion efficiency of the photoelectric conversion unit 512. Is from 50 nm to 100 nm.
 なお、光電変換膜512cで発生した電荷のうち、正孔が下部電極512aに移動し、電子が上部電極512bに移動するようにバイアス電圧を設定する場合には、電子ブロッキング膜の位置と正孔ブロッキング膜の位置とを逆にすればよい。また、電子ブロッキング膜及び正孔ブロッキング膜を両方設けることは必須ではなく、いずれかを設けておけば、ある程度の暗電流抑制効果を得ることができる。 In the case where the bias voltage is set so that holes move to the lower electrode 512a and electrons move to the upper electrode 512b among the charges generated in the photoelectric conversion film 512c, the position of the electron blocking film and the holes are set. The position of the blocking film may be reversed. Moreover, it is not essential to provide both the electron blocking film and the hole blocking film, and if any of them is provided, a certain degree of dark current suppressing effect can be obtained.
 TFT層510のTFT518では、ゲート電極、ゲート絶縁膜及び活性層(チャネル層)が積層され、さらに、活性層上にソース電極とドレイン電極とが所定の間隔を隔てて形成されている。活性層は、例えば、アモルファスシリコンや非晶質酸化物、有機半導体材料、カーボンナノチューブ等のうちのいずれかにより形成することができるが、活性層を形成可能な材料はこれらに限定されるものではない。 In the TFT 518 of the TFT layer 510, a gate electrode, a gate insulating film, and an active layer (channel layer) are stacked, and a source electrode and a drain electrode are formed on the active layer at a predetermined interval. The active layer can be formed of any of amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube, etc., but the material that can form the active layer is not limited to these. Absent.
 活性層を形成可能な非晶質酸化物としては、例えば、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn-O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn-Zn-O系、In-Ga-O系、Ga-Zn-O系)がより好ましく、In、Ga及びZnを含む酸化物が特に好ましい。In-Ga-Zn-O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。なお、活性層を形成可能な非晶質酸化物はこれらに限定されるものではない。 As an amorphous oxide capable of forming an active layer, for example, an oxide containing at least one of In, Ga, and Zn (for example, an In—O system) is preferable, and at least one of In, Ga, and Zn is used. An oxide containing two (eg, In—Zn—O, In—Ga—O, and Ga—Zn—O) is more preferable, and an oxide containing In, Ga, and Zn is particularly preferable. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable. Note that the amorphous oxide capable of forming the active layer is not limited to these.
 また、活性層を形成可能な有機半導体材料としては、例えば、フタロシアニン化合物や、ペンタセン、バナジルフタロシアニン等が挙げられるが、これらに限定されるものではない。なお、フタロシアニン化合物の構成については、特開2009-212389号公報で詳細に説明されているため、説明を省略する。 Moreover, examples of the organic semiconductor material capable of forming the active layer include, but are not limited to, phthalocyanine compounds, pentacene, vanadyl phthalocyanine, and the like. The configuration of the phthalocyanine compound is described in detail in Japanese Patent Application Laid-Open No. 2009-212389, and thus the description thereof is omitted.
 非晶質酸化物や有機半導体材料、カーボンナノチューブ等のうちのいずれかによってTFT518の活性層を形成すれば、X線等の放射線16を吸収せず、あるいは、吸収したとしても極めて微量に留まるため、放射線検出部502におけるノイズの発生を効果的に抑制することができる。 If the active layer of the TFT 518 is formed of any one of an amorphous oxide, an organic semiconductor material, a carbon nanotube, and the like, the radiation 16 such as X-rays is not absorbed, or even if it is absorbed, the amount is extremely small. The generation of noise in the radiation detection unit 502 can be effectively suppressed.
 また、活性層をカーボンナノチューブで形成した場合、TFT518のスイッチング速度を高速化することができ、また、TFT518における可視光域の光の吸収度合いを低下させることができる。なお、活性層をカーボンナノチューブで形成する場合、活性層にごく微量の金属性不純物が混入しただけでTFT518の性能が著しく低下するため、遠心分離等により非常に純度の高いカーボンナノチューブを分離・抽出して活性層の形成に用いる必要がある。 Further, when the active layer is formed of carbon nanotubes, the switching speed of the TFT 518 can be increased, and the degree of light absorption in the visible light region in the TFT 518 can be reduced. In addition, when the active layer is formed of carbon nanotubes, the performance of the TFT 518 is remarkably deteriorated only by mixing a very small amount of metallic impurities into the active layer. Therefore, it must be used for forming the active layer.
 また、有機光電変換材料で形成した膜及び有機半導体材料で形成した膜は、いずれも十分な可撓性を有しているので、有機光電変換材料で形成した光電変換膜512cと、活性層を有機半導体材料で形成したTFT518とを組み合わせた構成であれば、被写体14の体の重みが荷重として加わる放射線検出部502の高剛性化は必ずしも必要ではなくなる。 Moreover, since the film | membrane formed with the organic photoelectric conversion material and the film | membrane formed with the organic-semiconductor material have sufficient flexibility, the photoelectric conversion film 512c formed with the organic photoelectric conversion material, and an active layer are used. If the configuration is combined with a TFT 518 formed of an organic semiconductor material, it is not always necessary to increase the rigidity of the radiation detection unit 502 in which the weight of the body of the subject 14 is added as a load.
 また、絶縁性基板508は、光透過性を有し且つ放射線の吸収が少ないものであればよい。ここで、TFT518の活性層を構成する非晶質酸化物や、光電変換部512の光電変換膜512cを構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、絶縁性基板508としては、半導体基板、石英基板、及び、ガラス基板等の耐熱性の高い基板に限定されず、合成樹脂製の可撓性基板、アラミド、バイオナノファイバを用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このような合成樹脂製の可撓性基板を用いれば、軽量化を図ることもでき、例えば、持ち運び等に有利となる。なお、絶縁性基板508には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。 Further, the insulating substrate 508 may be any substrate that has optical transparency and little radiation absorption. Here, both the amorphous oxide constituting the active layer of the TFT 518 and the organic photoelectric conversion material constituting the photoelectric conversion film 512c of the photoelectric conversion portion 512 can be formed at a low temperature. Therefore, the insulating substrate 508 is not limited to a highly heat-resistant substrate such as a semiconductor substrate, a quartz substrate, or a glass substrate, and a flexible substrate made of synthetic resin, aramid, or bio-nanofiber can also be used. Specifically, flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc. A conductive substrate can be used. By using such a flexible substrate made of synthetic resin, it is possible to reduce the weight, which is advantageous for carrying around, for example. Note that the insulating substrate 508 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
 なお、アラミドは200℃以上の高温プロセスを適用できるため、透明電極材料を高温硬化させて低抵抗化でき、また、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドはITOやガラス基板と熱膨張係数が近いため、製造後の反りが少なく、割れにくい。また、アラミドは、ガラス基板等と比べて基板を薄型化できる。なお、超薄型ガラス基板とアラミドとを積層して絶縁性基板508を形成してもよい。 In addition, since aramid can be applied to a high temperature process of 200 ° C. or higher, the transparent electrode material can be cured at a high temperature to reduce resistance, and it can also be used for automatic mounting of a driver IC including a solder reflow process. Moreover, since aramid has a thermal expansion coefficient close to that of ITO or a glass substrate, warping after production is small and it is difficult to break. In addition, aramid can make a substrate thinner than a glass substrate or the like. Note that the insulating substrate 508 may be formed by stacking an ultrathin glass substrate and aramid.
 また、バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂とを複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、且つ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60%~70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3ppm~7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、且つ、フレキシブルであることから、ガラス基板等と比べて絶縁性基板508を薄型化できる。 In addition, the bionanofiber is a composite of cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetobacterium, Xylinum) and transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as acrylic resin or epoxy resin in bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60% to 70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7 ppm) comparable to that of silicon crystals, and is as strong as steel (460 MPa), highly elastic (30 GPa), and flexible. Compared to glass substrates, etc. Thus, the insulating substrate 508 can be thinned.
 絶縁性基板508としてガラス基板を用いた場合、放射線検出部502(TFT基板)全体としての厚みは、例えば、0.7mm程度になるが、第7変形例では、電子カセッテ20A、20Bの薄型化を考慮し、絶縁性基板508として、光透過性を有する合成樹脂からなる薄型の基板を用いている。これにより、放射線検出部502全体としての厚みを、例えば、0.1mm程度に薄型化できると共に、放射線検出部502に可撓性を持たせることができる。また、放射線検出部502に可撓性をもたせることで、電子カセッテ20A、20Bの耐衝撃性が向上し、電子カセッテ20A、20Bに衝撃が加わった場合にも破損し難くなる。また、プラスチック樹脂や、アラミド、バイオナノファイバ等は、いずれも放射線16の吸収が少なく、絶縁性基板508をこれらの材料で形成した場合、絶縁性基板508による放射線16の吸収量も少なくなるため、ISS方式により放射線検出部502を放射線16が透過する構成であっても、放射線16に対する感度の低下を抑えることができる。 When a glass substrate is used as the insulating substrate 508, the thickness of the radiation detector 502 (TFT substrate) as a whole is, for example, about 0.7 mm. In the seventh modification, the electronic cassettes 20A and 20B are thinned. Therefore, a thin substrate made of a light-transmitting synthetic resin is used as the insulating substrate 508. As a result, the thickness of the radiation detection unit 502 as a whole can be reduced to, for example, about 0.1 mm, and the radiation detection unit 502 can be flexible. Further, by providing the radiation detection unit 502 with flexibility, the impact resistance of the electronic cassettes 20A and 20B is improved, and even when an impact is applied to the electronic cassettes 20A and 20B, it is difficult to be damaged. In addition, plastic resin, aramid, bionanofiber, etc. all absorb less radiation 16, and when the insulating substrate 508 is formed of these materials, the amount of radiation 16 absorbed by the insulating substrate 508 also decreases. Even if the radiation 16 is transmitted through the radiation detection unit 502 by the ISS method, a decrease in sensitivity to the radiation 16 can be suppressed.
 なお、電子カセッテ20A、20Bの絶縁性基板508として合成樹脂製の基板を用いることは必須ではなく、電子カセッテ20A、20Bの厚さは増大するものの、ガラス基板等の他の材料からなる基板を絶縁性基板508として用いるようにしてもよい。 It is not essential to use a synthetic resin substrate as the insulating substrate 508 of the electronic cassettes 20A and 20B. Although the thickness of the electronic cassettes 20A and 20B increases, a substrate made of another material such as a glass substrate is used. The insulating substrate 508 may be used.
 また、放射線検出部502(TFT基板)のうち、放射線16の到来方向の反対側(シンチレータ500側)には、放射線検出部502を平坦にするための平坦化層514が形成されている。 Further, a flattening layer 514 for flattening the radiation detection unit 502 is formed on the radiation detection unit 502 (TFT substrate) on the side opposite to the arrival direction of the radiation 16 (on the scintillator 500 side).
 第7変形例では、放射線変換パネル70を下記のように構成してもよい。 In the seventh modification, the radiation conversion panel 70 may be configured as follows.
 (1)PDを含む光電変換部512を有機光電変換材料で構成し、CMOSセンサを用いてTFT層510を構成してもよい。この場合、PDのみが有機系材料からなるので、CMOSセンサを含むTFT層510は可撓性を有しなくてもよい。なお、有機光電変換材料からなる光電変換部512と、CMOSセンサとについては、特開2009-212377号公報に記載されているため、その詳細な説明は省略する。 (1) The photoelectric conversion part 512 including PD may be formed of an organic photoelectric conversion material, and the TFT layer 510 may be formed using a CMOS sensor. In this case, since only the PD is made of an organic material, the TFT layer 510 including the CMOS sensor may not have flexibility. Note that the photoelectric conversion unit 512 made of an organic photoelectric conversion material and the CMOS sensor are described in Japanese Patent Application Laid-Open No. 2009-212377, and thus detailed description thereof is omitted.
 (2)PDを含む光電変換部512を有機光電変換材料で構成すると共に、有機材料からなるTFTを備えたCMOS回路によって可撓性を有するTFT層510を実現してもよい。この場合、CMOS回路で用いられるp型有機半導体の材料としてペンタセンを採用すると共に、n型有機半導体の材料としてフッ化銅フタロシアニン(F16CuPc)を採用すればよい。これにより、より小さな曲げ半径にすることが可能な可撓性を有するTFT層510を実現することができる。また、このようにTFT層510を構成することにより、ゲート絶縁膜を大幅に薄くすることができ、駆動電圧を低下させることも可能となる。さらに、ゲート絶縁膜、半導体、各電極を室温又は100℃以下で作製することができる。さらにまた、可撓性を有する絶縁性基板508上にCMOS回路を直接作製することもできる。しかも、有機材料からなるTFTは、スケーリング則に沿った製造プロセスにより微細化することが可能となる。なお、絶縁性基板508は、薄厚のポリイミド基板上にポリイミド前駆体をスピンコート法で塗布して加熱すれば、ポリイミド前駆体がポリイミドに変化するので、凹凸のない平坦な基板を実現することができる。 (2) The photoelectric conversion unit 512 including the PD may be formed of an organic photoelectric conversion material, and the flexible TFT layer 510 may be realized by a CMOS circuit including a TFT made of an organic material. In this case, pentacene may be adopted as the material of the p-type organic semiconductor used in the CMOS circuit, and copper fluoride phthalocyanine (F 16 CuPc) may be adopted as the material of the n-type organic semiconductor. As a result, a flexible TFT layer 510 that can have a smaller bending radius can be realized. In addition, by configuring the TFT layer 510 in this way, the gate insulating film can be significantly thinned, and the driving voltage can be lowered. Furthermore, the gate insulating film, the semiconductor, and each electrode can be manufactured at room temperature or 100 ° C. or lower. Furthermore, a CMOS circuit can be directly formed over the flexible insulating substrate 508. In addition, a TFT made of an organic material can be miniaturized by a manufacturing process in accordance with a scaling law. Note that the insulating substrate 508 can be realized by applying a polyimide precursor on a thin polyimide substrate by spin coating and heating, so that the polyimide precursor is changed to polyimide, so that a flat substrate without unevenness can be realized. it can.
 (3)ミクロンオーダの複数のデバイスブロックを基板上の指定位置に配置する自己整合配置技術(Fluidic Self-Assembly法)を適用して、結晶SiからなるPD及びTFTを、樹脂基板からなる絶縁性基板508上に配置してもよい。この場合、ミクロンオーダの微小デバイスブロックとしてのPD及びTFTを他の基板に予め作製した後に該基板から切り離し、液体中で、前記PD及び前記TFTをターゲット基板としての絶縁性基板508上に散布して統計的に配置する。絶縁性基板508には、デバイスブロックに適合させるための加工が予め施されており、デバイスブロックを選択的に絶縁性基板508に配置することができる。従って、最適な材料で作られた最適なデバイスブロック(PD及びTFT)を最適な基板(絶縁性基板508)上に集積化させることができ、結晶でない絶縁性基板508(樹脂基板)にPD及びTFTを集積化することが可能となる。 (3) Applying self-alignment placement technology (Fluidic Self-Assembly method) to place multiple device blocks of micron order at specified positions on the substrate, insulating PD and TFT made of crystalline Si from resin substrate It may be arranged on the substrate 508. In this case, PDs and TFTs as micro device blocks of micron order are fabricated in advance on another substrate and then separated from the substrate, and the PDs and TFTs are dispersed on an insulating substrate 508 as a target substrate in a liquid. And place statistically. The insulating substrate 508 is processed in advance to be adapted to the device block, and the device block can be selectively disposed on the insulating substrate 508. Therefore, the optimum device block (PD and TFT) made of the optimum material can be integrated on the optimum substrate (insulating substrate 508), and the PD and the insulating substrate 508 (resin substrate) which are not crystals can be integrated. It becomes possible to integrate TFTs.
 ところで、放射線16は、放射線源18(図1及び図12参照)から電子カセッテ20A、20Bに向って拡開するように該放射線源18から出力される。そのため、図19Aの側面視(図19Aは、図5及び図14と同様に、Y方向で視た側面視である。)で模式的に示すように、放射線変換パネル70には、ある程度の広がりを有する放射線16が入射される。 Incidentally, the radiation 16 is output from the radiation source 18 so as to spread from the radiation source 18 (see FIGS. 1 and 12) toward the electronic cassettes 20A and 20B. Therefore, as schematically shown in a side view of FIG. 19A (FIG. 19A is a side view seen in the Y direction as in FIGS. 5 and 14), the radiation conversion panel 70 has a certain extent. The radiation 16 having
 そこで、第7変形例では、放射線16の広がりを考慮して、柱状結晶500aの長手方向と放射線16の入射方向とが略平行となるように、CsIのシンチレータ500を含む放射線変換パネル70を全体的に凹状(下方に向かって凸状)に湾曲させている。従って、シンチレータ500の柱状結晶500aは、放射線源18(の焦点)に指向するように湾曲している。なお、図19Aでは、説明の容易化のために、非柱状結晶500b等の図示を省略している。 Therefore, in the seventh modification, the radiation conversion panel 70 including the CsI scintillator 500 is entirely arranged so that the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are substantially parallel in consideration of the spread of the radiation 16. It is curved in a concave shape (convex shape downward). Accordingly, the columnar crystal 500a of the scintillator 500 is curved so as to be directed to the radiation source 18 (the focal point thereof). In FIG. 19A, the non-columnar crystal 500b and the like are not shown for ease of explanation.
 ここで、CsIのシンチレータ500を含む放射線変換パネル70を凹状に湾曲させたことによる効果について、図19Bの従来例と対比しながら説明する。なお、図19Bにおいても、説明の便宜上、図19Aと同じ構成要素については、同じ参照符号を付けて説明する。 Here, the effect of curving the radiation conversion panel 70 including the CsI scintillator 500 in a concave shape will be described in comparison with the conventional example of FIG. 19B. In FIG. 19B, the same components as those in FIG. 19A are denoted by the same reference numerals for convenience of explanation.
 図19Bは、従来例を模式的に示したものであり、CsIのシンチレータ500を含む放射線変換パネル70は平板状である。そのため、柱状結晶500aの長手方向と放射線16の入射方向とは、互いに異なる方向となる。これにより、図19Bでは、放射線16が各柱状結晶500aをまたぐようにシンチレータ500に入射するクロストークが発生し、放射線画像の画質が低下する原因ともなる。 FIG. 19B schematically shows a conventional example, and the radiation conversion panel 70 including the CsI scintillator 500 has a flat plate shape. Therefore, the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are different from each other. As a result, in FIG. 19B, crosstalk in which the radiation 16 enters the scintillator 500 so as to straddle each columnar crystal 500a occurs, which also causes a reduction in the image quality of the radiation image.
 これに対して、図19Aの第7変形例では、前述のように、CsIのシンチレータ500を含む放射線変換パネル70を凹状に湾曲させて、柱状結晶500aの長手方向と放射線16の入射方向とを略平行としているので、放射線検出部502を介してシンチレータ500に入射される放射線16が各柱状結晶500a間をまたぐことを阻止することができ、この結果、クロストークの発生が防止され、より高画質の放射線画像を取得することが可能となる。 On the other hand, in the seventh modification of FIG. 19A, as described above, the radiation conversion panel 70 including the CsI scintillator 500 is curved in a concave shape so that the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are changed. Since they are substantially parallel, it is possible to prevent the radiation 16 incident on the scintillator 500 via the radiation detection unit 502 from straddling between the columnar crystals 500a. It becomes possible to acquire a radiographic image of image quality.
 なお、図19A及び図19Bにおいて、参照数字530は、シンチレータ500(の柱状結晶500a)において、放射線16から変換された可視光532の発光箇所を示している。 In FIGS. 19A and 19B, reference numeral 530 indicates a light emission location of visible light 532 converted from radiation 16 in scintillator 500 (columnar crystal 500a thereof).
 また、第7変形例では、下記の効果も得られる。 In the seventh modification, the following effects can also be obtained.
 シンチレータ500における蒸着基板504側に非柱状結晶500b(図18B参照)からなる非柱状結晶領域を形成することにより、蒸着基板504とシンチレータ500との密着性を向上させることができる。この結果、図19Aのように、柱状結晶500aの長手方向と放射線16の入射方向とが略平行となるようにシンチレータ500を全体的に凹状に湾曲させても、蒸着基板504に対するシンチレータ500(の柱状結晶500a)の剥離を抑制することができる。 By forming a non-columnar crystal region including a non-columnar crystal 500b (see FIG. 18B) on the vapor deposition substrate 504 side in the scintillator 500, the adhesion between the vapor deposition substrate 504 and the scintillator 500 can be improved. As a result, as shown in FIG. 19A, even if the scintillator 500 is curved in a generally concave shape so that the longitudinal direction of the columnar crystal 500a and the incident direction of the radiation 16 are substantially parallel, The peeling of the columnar crystals 500a) can be suppressed.
 なお、柱状結晶500aの撮影面42側(放射線検出部502側)の先端と、放射線検出部502との界面は、接着剤を介挿しないフリーな状態であることが好ましい。柱状結晶500aの先端と放射線検出部502とを接着させた状態でシンチレータ500を全体的に凹状に湾曲させると、柱状結晶500aの割れが発生する可能性があるからである。 In addition, it is preferable that the front-end | tip of the imaging surface 42 side (radiation detection part 502 side) of the columnar crystal 500a and the interface with the radiation detection part 502 are a free state which does not interpose an adhesive agent. This is because if the scintillator 500 is curved in a concave shape as a whole in a state where the tip of the columnar crystal 500a and the radiation detection unit 502 are bonded, the columnar crystal 500a may be cracked.

Claims (11)

  1.  シンチレータ(132)及び光電変換層(130)を積層し、放射線(16)を放射線画像に変換する放射線変換パネル(70)と、該放射線変換パネル(70)を載置して支持する基台(120、120a、120b、120c、220、220a)と、該基台(120、120a、120b、120c、220、220a)に載置された前記放射線変換パネル(70)を被蓋する蓋部(200、200a)と、前記放射線変換パネル(70)、前記基台(120、120a、120b、120c、220、220a)及び前記蓋部(200、200a)を収納する筐体(40)とを有し、
     前記基台(120、120a、120b、120c、220、220a)は、載置方向に対し凹状に前記放射線変換パネル(70)を変形させて支持する
     ことを特徴とする放射線画像撮影装置。
    A scintillator (132) and a photoelectric conversion layer (130) are stacked, a radiation conversion panel (70) for converting radiation (16) into a radiation image, and a base (the support for placing and supporting the radiation conversion panel (70)) 120, 120a, 120b, 120c, 220, 220a) and a lid (200) that covers the radiation conversion panel (70) placed on the base (120, 120a, 120b, 120c, 220, 220a). , 200a), and the radiation conversion panel (70), the base (120, 120a, 120b, 120c, 220, 220a), and the housing (40) that houses the lid (200, 200a). ,
    The said base (120,120a, 120b, 120c, 220,220a) deform | transforms and supports the said radiation conversion panel (70) to concave shape with respect to a mounting direction, The radiographic imaging device characterized by the above-mentioned.
  2.  請求項1記載の放射線画像撮影装置(20A、20B)において、
     前記筐体(40)の内部で該筐体(40)の底板から前記放射線(16)が照射される天板(134)の方向に向かって、前記基台(120、120a、120b、120c、220、220a)、前記放射線変換パネル(70)及び前記蓋部(200、200a)の順に積層されている場合に、前記蓋部(200、200a)は、前記天板(134)の一部であるか、又は、前記天板(134)に面接触する蓋部材である
     ことを特徴とする放射線画像撮影装置。
    In the radiographic imaging device (20A, 20B) according to claim 1,
    The bases (120, 120a, 120b, 120c) toward the top plate (134) irradiated with the radiation (16) from the bottom plate of the housing (40) inside the housing (40). 220, 220a), the radiation conversion panel (70), and the lid (200, 200a) are stacked in this order, the lid (200, 200a) is a part of the top plate (134). Or a lid member that makes surface contact with the top plate (134).
  3.  請求項1又は2記載の放射線画像撮影装置(20A、20B)において、
     前記基台(120、120a、120b、120c、220、220a)は、前記放射線変換パネル(70)を湾曲させて支持し、
     前記蓋部(200)の前記放射線変換パネル(70)側は、該放射線変換パネル(70)に対応して湾曲している
     ことを特徴とする放射線画像撮影装置。
    In the radiographic imaging device (20A, 20B) according to claim 1 or 2,
    The base (120, 120a, 120b, 120c, 220, 220a) supports the radiation conversion panel (70) by curving it,
    The radiation image capturing apparatus, wherein the radiation conversion panel (70) side of the lid (200) is curved corresponding to the radiation conversion panel (70).
  4.  請求項1~3のいずれか1項に記載の放射線画像撮影装置(20A、20B)において、
     前記基台(120、120a、120b、120c、220、220a)は、前記放射線変換パネル(70)が形成する検出面上の所定の軸に対して線対称に変形させながら該放射線変換パネル(70)を支持する
     ことを特徴とする放射線画像撮影装置。
    The radiographic imaging device (20A, 20B) according to any one of claims 1 to 3,
    While the base (120, 120a, 120b, 120c, 220, 220a) is deformed in line symmetry with respect to a predetermined axis on the detection surface formed by the radiation conversion panel (70), the radiation conversion panel (70). ) Is supported.
  5.  請求項4記載の放射線画像撮影装置(20A、20B)において、
     前記所定の軸は、前記検出面の中心線である
     ことを特徴とする放射線画像撮影装置。
    In the radiographic imaging device (20A, 20B) according to claim 4,
    The radiographic imaging apparatus, wherein the predetermined axis is a center line of the detection surface.
  6.  請求項1~5のいずれか1項に記載の放射線画像撮影装置(20A、20B)において、
     前記放射線変換パネル(70)は、その側面の少なくとも一対が前記筐体(40)の内壁に固定されている
     ことを特徴とする放射線画像撮影装置。
    In the radiographic image capturing apparatus (20A, 20B) according to any one of claims 1 to 5,
    At least a pair of side surfaces of the radiation conversion panel (70) is fixed to an inner wall of the casing (40).
  7.  請求項1~6のいずれか1項に記載の放射線画像撮影装置(20A、20B)において、
     前記基台(120、120a、120b、120c、220、220a)は、樹脂材で形成されている
     ことを特徴とする放射線画像撮影装置。
    The radiographic imaging device (20A, 20B) according to any one of claims 1 to 6,
    The said base (120,120a, 120b, 120c, 220,220a) is formed with the resin material. The radiographic imaging apparatus characterized by the above-mentioned.
  8.  請求項1~7のいずれか1項に記載の放射線画像撮影装置(20A、20B)において、
     前記基台(120、120a、120b、120c、220、220a)は、電磁波シールド材で形成されている
     ことを特徴とする放射線画像撮影装置。
    The radiographic imaging device (20A, 20B) according to any one of claims 1 to 7,
    The said base (120, 120a, 120b, 120c, 220, 220a) is formed with the electromagnetic wave shielding material. The radiographic imaging apparatus characterized by the above-mentioned.
  9.  請求項1~8のいずれか1項に記載の放射線画像撮影装置(20A、20B)において、
     前記放射線変換パネル(70)の変形度に応じて前記放射線画像を補正する画像補正部(104)を有する
     ことを特徴とする放射線画像撮影装置。
    The radiographic imaging device (20A, 20B) according to any one of claims 1 to 8,
    A radiographic imaging apparatus comprising: an image correction unit (104) that corrects the radiographic image according to a degree of deformation of the radiation conversion panel (70).
  10.  請求項9記載の放射線画像撮影装置(20A、20B)において、
     前記画像補正部(104)は、前記基台(120、120a、120b、120c、220、220a)及び前記蓋部(200、200a)の形状に基づいて前記放射線変換パネル(70)の変形度を推定し、前記放射線画像を補正する
     ことを特徴とする放射線画像撮影装置。
    In the radiographic imaging device (20A, 20B) according to claim 9,
    The image correction unit (104) determines the degree of deformation of the radiation conversion panel (70) based on the shapes of the base (120, 120a, 120b, 120c, 220, 220a) and the lid (200, 200a). A radiographic imaging apparatus characterized by estimating and correcting the radiographic image.
  11.  シンチレータ(132)及び光電変換層(130)を積層し、放射線(16)を放射線画像に変換する放射線変換パネル(70)と、該放射線変換パネル(70)を載置して支持する基台(120、120a、120b、120c、220、220a)と、蓋部(200、200a)とを筐体(40)に収納する際に、
     載置方向に対して凹状に前記放射線変換パネル(70)を変形させた状態で該放射線変換パネル(70)を前記基台(120、120a、120b、120c、220、220a)に載置し、
     前記基台(120、120a、120b、120c、220、220a)に載置された前記放射線変換パネル(70)を前記蓋部(200、200a)で被蓋する
     ことを特徴とする放射線画像撮影装置の組立方法。
    A scintillator (132) and a photoelectric conversion layer (130) are stacked, a radiation conversion panel (70) for converting radiation (16) into a radiation image, and a base (the support for placing and supporting the radiation conversion panel (70)) 120, 120a, 120b, 120c, 220, 220a) and the lid portion (200, 200a) are stored in the housing (40).
    The radiation conversion panel (70) is placed on the base (120, 120a, 120b, 120c, 220, 220a) in a state where the radiation conversion panel (70) is deformed in a concave shape with respect to the placement direction,
    The radiographic imaging apparatus characterized by covering the radiation conversion panel (70) placed on the base (120, 120a, 120b, 120c, 220, 220a) with the lid (200, 200a). Assembly method.
PCT/JP2011/061930 2010-05-25 2011-05-25 Radiological imaging device and method for assembling same WO2011148960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-119549 2010-05-25
JP2010119549A JP2011247684A (en) 2010-05-25 2010-05-25 Imaging apparatus for radiation image and assembly method for the same

Publications (1)

Publication Number Publication Date
WO2011148960A1 true WO2011148960A1 (en) 2011-12-01

Family

ID=45003949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061930 WO2011148960A1 (en) 2010-05-25 2011-05-25 Radiological imaging device and method for assembling same

Country Status (2)

Country Link
JP (1) JP2011247684A (en)
WO (1) WO2011148960A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057204A (en) * 2014-09-10 2016-04-21 キヤノン株式会社 Radiation imaging device and radiation imaging system
CN108604591A (en) * 2016-02-22 2018-09-28 索尼公司 Photographic device, camera shooting display system and display device
EP3722837A4 (en) * 2018-03-20 2021-08-11 Canon Kabushiki Kaisha Radiation imaging device
US11183533B2 (en) * 2017-11-13 2021-11-23 Tovis Co., Ltd. Method for manufacturing curved-surface detector, and curved-surface detector manufactured using the manufacturing method
EP3859401A4 (en) * 2018-09-27 2021-11-24 FUJIFILM Corporation Radiation detector, radiation imaging apparatus, and manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081358A (en) * 2012-09-27 2014-05-08 Fujifilm Corp Radiation image detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133039A (en) * 1979-04-02 1980-10-16 Toray Ind Inc X-ray film cassette
JPH03107944A (en) * 1989-09-22 1991-05-08 Canon Inc Film contact device
JPH0511301U (en) * 1991-07-26 1993-02-12 日本板硝子株式会社 X-ray image sensor
WO2001063321A1 (en) * 2000-02-25 2001-08-30 Hamamatsu Photonics K.K. X-ray imaging device and method of manufacture thereof
JP2002006050A (en) * 2000-06-26 2002-01-09 Canon Inc Mounting structure for two-dimensional imaging device
JP2002341042A (en) * 2001-05-21 2002-11-27 Canon Inc Photoelectric conversion device
JP2004064087A (en) * 2002-07-25 2004-02-26 General Electric Co <Ge> Flexible imager and digital image forming method
WO2009125632A1 (en) * 2008-04-10 2009-10-15 コニカミノルタエムジー株式会社 Portable solid-state radiation detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133039A (en) * 1979-04-02 1980-10-16 Toray Ind Inc X-ray film cassette
JPH03107944A (en) * 1989-09-22 1991-05-08 Canon Inc Film contact device
JPH0511301U (en) * 1991-07-26 1993-02-12 日本板硝子株式会社 X-ray image sensor
WO2001063321A1 (en) * 2000-02-25 2001-08-30 Hamamatsu Photonics K.K. X-ray imaging device and method of manufacture thereof
JP2002006050A (en) * 2000-06-26 2002-01-09 Canon Inc Mounting structure for two-dimensional imaging device
JP2002341042A (en) * 2001-05-21 2002-11-27 Canon Inc Photoelectric conversion device
JP2004064087A (en) * 2002-07-25 2004-02-26 General Electric Co <Ge> Flexible imager and digital image forming method
WO2009125632A1 (en) * 2008-04-10 2009-10-15 コニカミノルタエムジー株式会社 Portable solid-state radiation detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057204A (en) * 2014-09-10 2016-04-21 キヤノン株式会社 Radiation imaging device and radiation imaging system
CN108604591A (en) * 2016-02-22 2018-09-28 索尼公司 Photographic device, camera shooting display system and display device
US11183533B2 (en) * 2017-11-13 2021-11-23 Tovis Co., Ltd. Method for manufacturing curved-surface detector, and curved-surface detector manufactured using the manufacturing method
EP3722837A4 (en) * 2018-03-20 2021-08-11 Canon Kabushiki Kaisha Radiation imaging device
US11320546B2 (en) 2018-03-20 2022-05-03 Canon Kabushiki Kaisha Radiation imaging apparatus
EP3859401A4 (en) * 2018-09-27 2021-11-24 FUJIFILM Corporation Radiation detector, radiation imaging apparatus, and manufacturing method
US11802980B2 (en) 2018-09-27 2023-10-31 Fujifilm Corporation Radiation detector, radiographic imaging apparatus, and manufacturing method

Also Published As

Publication number Publication date
JP2011247684A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2011148943A1 (en) Radiological imaging device
JP5647581B2 (en) Radiography equipment
TWI596744B (en) Irradiation pixel detecting device
JP5906162B2 (en) Radiation image detection device
JP5653829B2 (en) Radiographic apparatus, radiographic system, and radiographic method
JP5498982B2 (en) Radiography equipment
WO2011136195A1 (en) Radiation imaging device, radiation imaging system, and method for affixing radiation conversion panel in radiation imaging device
WO2011148960A1 (en) Radiological imaging device and method for assembling same
JP2012247281A (en) Radiographic apparatus, scintillator, and method for manufacturing the same
WO2014050861A1 (en) Radiographic image detecting device
JP5711700B2 (en) Radiation imaging device
JP2012251978A (en) Radiation detection device
US20120256095A1 (en) Radiographic device and manufacturing method thereof
US8884232B2 (en) Radiation detection device
JP5624447B2 (en) Radiation detection apparatus and scintillator panel manufacturing method
JP2012132768A (en) Radiation detection panel and method for manufacturing scintillator
JP2012202784A (en) Radiographic imaging apparatus and method of manufacturing the same
WO2014050399A1 (en) Radiograph detection device
JP2016136160A (en) Radiographic image detection device
JP2012093188A (en) Radiation detecting panel
WO2012023311A1 (en) Radiation detecting panel
WO2014050534A1 (en) Method for producing radiographic-image detection device
WO2011136244A1 (en) Radiation imaging device
JP2012200373A (en) Radiographic apparatus and its manufacturing method
JP2012127697A (en) Radiation detector and radiation image photographing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786659

Country of ref document: EP

Kind code of ref document: A1