WO2011148533A1 - Positive-displacement fluid machine - Google Patents

Positive-displacement fluid machine Download PDF

Info

Publication number
WO2011148533A1
WO2011148533A1 PCT/JP2010/073561 JP2010073561W WO2011148533A1 WO 2011148533 A1 WO2011148533 A1 WO 2011148533A1 JP 2010073561 W JP2010073561 W JP 2010073561W WO 2011148533 A1 WO2011148533 A1 WO 2011148533A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
rotor
elastic material
sliding contact
side locking
Prior art date
Application number
PCT/JP2010/073561
Other languages
French (fr)
Japanese (ja)
Inventor
末則 辻本
Original Assignee
Tsujimoto Suenori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsujimoto Suenori filed Critical Tsujimoto Suenori
Publication of WO2011148533A1 publication Critical patent/WO2011148533A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C2/3442Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs

Definitions

  • the present invention relates to a rotor-rotating positive displacement fluid machine that handles a fluid such as air or oil, and includes a sliding contact portion generated on a cylinder inner peripheral surface and a vane tip sliding contact portion, and a vane guide and a vane side surface.
  • the present invention relates to a device that attempts to suppress energy loss and wear caused by sliding.
  • a vane-type vacuum pump with improved durability, a vane that can move in the diameter direction of the rotor in accordance with the rotational drive of the rotor that is arranged with the center axis eccentric with respect to the center axis of the pump chamber
  • the two vanes arranged on the inner peripheral surface of the pump chamber formed in a circular shape and projecting to the one side and the other side along the diametrical direction of the rotor are always on the inner peripheral surface. Since it can be slidably contacted and at least one vane is directly supported by the rotor and can be configured without a guide member, the end of the guide member does not come into contact with the inner peripheral surface of the pump chamber.
  • the durability can be improved as compared with the pump, and the inner peripheral surface is circular.
  • the pump chamber can be manufactured more easily than when the inner peripheral surface is elliptical. Inner circumference for sliding the end of the vane It is possible to improve the wear resistance of the vane for a smooth, thereby improving the durability of the pump, are.
  • these telescopic vanes are provided with a pressing force required for sealing the working chamber formed by the inner peripheral surface and the vane tip by centrifugal force according to the speed at which the rotor is rotationally driven.
  • a vane type vacuum pump used for an automobile brake booster or the like is usually connected to a camshaft, and the rotational speed of the rotor is proportional to the rotational speed of the engine. Accordingly, the mass of the vane is set so that a sliding contact force necessary for generating a sufficient negative pressure in the working chamber, that is, a centrifugal force, can be obtained even during engine idling. Therefore, an excessive centrifugal force, that is, an excessive pressing force is generated in each vane in a state where the engine is operated at a normal rotation speed (high speed).
  • the present invention has been made in view of the above circumstances, and reduces the sliding resistance between the cylinder inner peripheral surface and the vane tip sliding contact surface, and the vane guide sliding contact surface and the vane side sliding contact surface, thereby improving the input efficiency and durability.
  • An object of the present invention is to provide a positive displacement fluid machine that is intended to enhance the performance.
  • a positive displacement fluid machine includes a cylinder 1 having a substantially circular inner peripheral surface 11 and provided with a suction port 12 and a discharge port 13, and an inner peripheral surface 11 of the cylinder 1.
  • a rotor 2 that rotates at an eccentric position, and a vane 3 that is housed in the rotor 2 so as to be reciprocally slidable in the radial direction of the rotor 2, and one end of the vane 3 and the like from the peripheral surface of the rotating rotor 2
  • the end protrudes to divide the inner peripheral surface 11 of the cylinder 1 into a plurality of working chambers R1, R2, and R3, and has the following features (1) to (7).
  • the vane 3 includes plate-shaped first vane 3A and second vane 3B having sliding contact portions 31a, 31b, 31c, and 31d with respect to the inner peripheral surface 11 of the cylinder 1.
  • the first vane 3A and the second vane 3B are provided at the one end and the other end, respectively, and the plate side surface of each vane is provided by the first elastic member 4A and the second elastic member 4B provided in the rotor 2, respectively.
  • the first elastic member 4A and the second elastic member 4B draw the first vane 3A and the second vane 3B toward the inner diameter of the rotor 2 when the rotor 2 is stopped.
  • the sliding contact portions 31a, 31b, 31c, 31d are separated from the inner peripheral surface 11 of the cylinder 1, and when the rotor 2 rotates, the first elastic material 4A and the second elastic material 4B are respectively The direction in which the first vane 3A and the second vane 3B slidably in contact with the inner peripheral surface 11 of the Linda 1 are pulled back inwardly of the rotor 2 and the pressure difference between the working chambers R1, R2, and R3 partitioned by the vane 3 A biasing force in a direction to cancel the moment to the first vane 3A and the second vane 3B is applied.
  • the tip of the vane 3 is separated from the inner peripheral surface when the rotor is stopped, and comes into contact with the inner peripheral surface by the centrifugal force generated by the rotation after the rotor rotation is started. For this reason, the rotational torque of the rotor at the start can be reduced, and consumption of excess energy can be prevented.
  • the first and second elastic members elastically support the plate side surfaces of the first vane 3A and the second vane 3B in a direction shifted from the side surfaces, so that each of the first and second vanes 3A and 3B is a rotor.
  • the vane guide is provided on the rotor 2 and the side surfaces of the first and second vanes 3A and 3B generated by the pressure difference and the action of canceling out the moment based on the pressure difference between the adjacent working chambers (R1, R2, R3).
  • the sliding resistance and wear at the sliding contact portion and the contact portion can be suppressed by the action of suppressing the excessive pressing force generated at the contact portion of the guides 21a, 21b, 21c, and 21d.
  • the first vane 3A and the second vane 3B are respectively provided with sliding contact portions 31a, 31b, 31c, 31d on the distal end side and opposed portions 33b on the proximal end side. It is preferable that a distal end side having the sliding contact portions 31a, 31b, 31c, and 31d is formed to have a larger mass than a proximal end side having the facing portions 33b and 33c.
  • first vane 3A and the second vane 3B By forming the first vane 3A and the second vane 3B near the front end protruding from the rotor 2, the centrifugal force acting on each of the first vane 3A and the second vane 3B can be efficiently applied, By increasing the contact pressure between the vane 3 and the inner peripheral surface in accordance with the number of rotations of the rotor 2, confidentiality between adjacent working chambers can be enhanced.
  • each of the first vane 3A and the second vane 3B is provided on at least one plate on the tip side of the plate-like portion.
  • the first vane 3A and the first vane 3A are formed so that the sliding contact portions 31a and 31d bulging laterally to the side surface are formed, the sliding contact portions 31a and 31d are separated from each other, and the plate inner side surfaces in the bulging direction face each other.
  • the second vanes 3B are arranged so as to overlap each other, and the inner surfaces of the plates are configured to be able to reciprocate in the radial direction of the rotor 2.
  • the first vane 3A and the second vane 3B are combined so as to be reciprocally slidable so that the sliding contact portions 31a, 31b, 31c and 31d protrude from the rotor 2
  • the structure has excellent mechanical stability and durability.
  • the rotor 2 has a hollow portion, and the first elastic member 4A and the second elastic member 4B are tractions disposed opposite to each other in the hollow portion of the rotor 2.
  • Each of the traction springs is engaged with two vane side locking portions 34a and 34B formed on the side surfaces of the first vane 3A and the second vane 3B, respectively.
  • the elastic support structure is obtained by a simple mechanism by using the pulling springs that are fixed to both ends of the locking holes and the fixing portions as the first elastic material 4A and the second elastic material 4B.
  • the direction and size of the elastic reaction force can be easily adjusted by adjusting the extension angle and extension degree of the spring.
  • a coil spring whose center of gravity is deflected to the other end side, a centrifugal force acting outward of the diameter of the rotor 2 acts on the coil portion itself, and a spring reaction force corresponding to the rotational speed is applied to the first elastic member and the first elastic member. 2 can be efficiently added to the elastic material 4B.
  • the first vane 3A and the second vane 3B are provided with elongated holes 35a and 35b penetrating each of the plate-like portions in the thickness direction, Vane side locking portions 34B and 34a are formed on the inner side surfaces of the plates that are overlapped and opposed to each other, and on the front side of the long holes 35a and 35b, and in the rotor 2, the first vane 3A and the second vane 3B are provided.
  • Rotor side locking portions 24B and 24a are respectively formed on the outer sides of the overlapped plate-like portions and on the front sides of the long holes 35a and 35b.
  • the first elastic member 4A and the second elastic member 4B are made of traction springs.
  • each one end is inserted into each of the elongated holes 35b and 35a and locked to the vane side locking portions 34B and 34a on the front side thereof, and each other end of the traction spring is set in the rotor 2 in the rotor 2
  • Rotor side locking 24a the respective engaging locked is possible to 24B, it is preferably arranged to be inclined with respect to the reciprocating sliding direction of the vane 3. This corresponds to the vane energizing form of Example 1 described later.
  • one end of each of the first elastic member 4A and the second elastic member 4B is provided on the inner surface of one vane 3A, 3B facing the other vane 3B, 3A, and the other vane 3B.
  • 3A is inserted through the through-hole 35 and locked and connected, so that the action of the traction elastic force acts so as to draw the opposing plate-like portions of the vanes 3A, 3B, so that the behavior of the vane 3 as a whole is improved. Stabilize.
  • the first vane 3A and the second vane 3B are formed with vane side locking portions 34a and 34B on the outer surfaces of the overlapped plate-like portions, respectively.
  • the rotor side locking portion 24a is located outside the plate-like portion where the first vane 3A and the second vane 3B are overlapped and is displaced from the vane side locking portions 34a, 34b. , 24b are formed, and the first elastic member 4A and the second elastic member 4B are respectively engaged with the vane side locking portions 34a, 34b of the outer surfaces of the overlapped plate-like portions.
  • the other ends of the traction springs are respectively engaged with the rotor side locking portions 24a and 24b in the rotor 2 so as to be inclined with respect to the reciprocating sliding direction of the vane 3.
  • This corresponds to a vane energizing form of Example 2 described later.
  • each end of 1st elastic material 4A and 2nd elastic material 4B is latched and connected to the outer surface of each of 1st vane 3A and 2nd vane 3B which face a mutually separated direction.
  • the traction elastic force acts so that the plate-like portions of the opposing vanes 3A and 3B are diagonally separated from each other, whereby the traction elastic force to the vane 3 is projected from the first vane 3A and the second vane 3B. It can act according to the amount.
  • the first elastic material 4A and the second elastic material 4B can be compared with the case where they are arranged orthogonal to the first vane 3A and the second vane 3B.
  • the distance of the elastic material 4B increases, and a large traction force can be obtained.
  • the first vane 3A and the second vane 3B are provided with elongated holes 38a and 38b penetrating each of the plate-like portions in the thickness direction.
  • the vane side locking portions 34B and 34a are respectively formed on the inner surfaces of the plates that are overlapped and opposed to each other on the front side of the long holes 38a and 38b, and the long holes 38b and 38a have a substantially L-shaped cross section. 39a and 39b are inserted, and one end portions of the support members 39a and 39b are inserted and fixed to the vane side locking portions 34a and 34B on the inner surface of the plate, respectively.
  • the first vane 3A is inserted.
  • each end of the traction spring is locked to the other end of each of the support members 39a and 39b, and each other end of the traction spring is connected to the rotor side engagement in the rotor 2. It is preferable to be arranged in parallel with the reciprocating sliding direction of the vane 3 by being locked to the stop portions 24a and 24B. This corresponds to a vane energizing form of Example 3 described later.
  • the first elastic member 4A and the second elastic member 4B have the pulling elastic force acting in parallel with the reciprocating sliding direction of the entire vane 3, thereby causing the first protruding from the rotor 2.
  • the second vanes 3A and 3B act stably so as to pull back. Further, by arranging the first elastic member 4A and the second elastic member 4B via the support members 39a and 39b having a substantially L-shaped cross section, the first and second vanes 3A and 3B are attached with a greater force in the plate side surface direction. You can
  • the sliding contact portions 31a, 31b, 31c, 31d provided in the first vane 3A and the second vane 3B are separated from the cylinder inner peripheral surface 11 according to the magnitude of the centrifugal force accompanying the rotation of the rotor 2, Touch.
  • the starting torque of the rotor 2 is reduced.
  • the rotor 2 is rotated, it is interfered with the magnitude of the centrifugal force acting on the first vane 3A and the second vane 3B and the amount of protrusion of the first vane 3A and the second vane 3B toward the inner peripheral surface 11 side.
  • FIG. 1 is an axial longitudinal sectional view of a positive displacement fluid machine P according to a first embodiment.
  • FIG. 2 is a perspective view of the positive displacement fluid machine P according to the first embodiment.
  • FIG. 3 is an exploded perspective view of the positive displacement fluid machine P according to the first embodiment.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a sectional view taken along line BB in FIG.
  • FIG. 6 is an axial cross-sectional view of the positive displacement fluid machine P according to the first embodiment in a starting state in which the rotor is rotated 45 ° clockwise from the state of FIG. 5.
  • FIG. 1 is an axial longitudinal sectional view of a positive displacement fluid machine P according to a first embodiment.
  • FIG. 2 is a perspective view of the positive displacement fluid machine P according to the first embodiment.
  • FIG. 3 is an exploded perspective view of the positive displacement fluid machine P according to the first embodiment.
  • 4 is a cross-sectional view taken along line AA
  • FIG. 7 is an axial cross-sectional view of the positive displacement fluid machine P of Example 1 in an operation state in which the rotor is rotated 90 ° clockwise from the state of FIG. 5.
  • FIG. 8 is an exploded perspective view of the vane portion and the elastic support member of the positive displacement fluid machine P according to the second embodiment.
  • FIG. 9 is an axial cross-sectional view of the positive displacement fluid machine P according to the second embodiment when the rotor is stopped.
  • FIG. 10 is an axial cross-sectional view of the positive displacement fluid machine P according to the second embodiment in a starting state in which the rotor is rotated 90 ° clockwise from the state of FIG. 9.
  • FIG. 10 is an axial cross-sectional view of the positive displacement fluid machine P according to the second embodiment in a starting state in which the rotor is rotated 90 ° clockwise from the state of FIG. 9.
  • FIG. 11 is an axial cross-sectional view of the positive displacement fluid machine P in an operation state in which the rotor is rotated 90 ° from the state of FIG. 9.
  • FIG. 12 is an axial cross-sectional view of the positive displacement fluid machine P in an operating state in which the rotor is rotated 360 ° clockwise from the state of FIG. 9.
  • FIG. 13 is an axial cross-sectional view of the positive displacement fluid device P of the third embodiment in a low speed operation state.
  • FIG. 14 is an axial cross-sectional view of the positive displacement fluid machine P in which the elastic support material of Example 3 is a torsion spring and the rotor is enlarged in a low speed operation state.
  • the positive displacement fluid machine P of the present invention will be described with reference to the drawings by a plurality of embodiments.
  • the same reference numerals are used to indicate details in the later embodiments. The description will be omitted.
  • FIGS. 1 to 7 show a first embodiment of the present invention, which shows a positive displacement fluid machine P used when compressing a compressible fluid such as a compressor or refrigerant gas for supplying air to a cell of a fuel cell, for example.
  • the cylinder 1 is provided with a suction port 12 and a discharge port 13.
  • a suction groove 12 a communicating with the suction port 12 is formed in the suction port 12, and a check valve 16 is disposed in the discharge port 13.
  • a front plate and a plate 14 are formed integrally with the cylinder 1 so as to close the front side surface of the cylinder 1, and a rear plate 15 is fixed to the rear of the cylinder 1 with a bolt 19.
  • An engine or motor (not shown) is provided on the inner peripheral portion of the front end portion of the drive shaft 20 formed integrally with the rotor 2 via bearings 17a and 17b fitted to the eccentric positions of the front plate 14 and the rear plate 15, respectively. 2, 3, and 5, and is formed so that a part of the hollow rotor 2 is cut out in the radial direction as shown in FIGS. 2, 3, and 5.
  • Both ends of the drive shaft 20 having a structure integrated with the rotor 2 including guides 21a, 21b, 21c, and 21d for slidably supporting the bearing 3 are fitted into bearings 17a and 17b and are rotatably supported.
  • the rotor 2 Since the rotor 2 is formed hollow in this way, the inertial mass associated with the rotation of the rotor 2 reduced in weight is reduced, the rotational inertia load at the start of the prime mover is reduced, the prime mover is downsized, and the positive displacement fluid machine P The weight is reduced, and a space for accommodating support members 39a and 39b, which will be described later, or the first elastic material 4A and the second elastic material 4B is secured.
  • the vane 3 is composed of a first vane 3 ⁇ / b> A and a second vane 3 ⁇ / b> B, each of which is made of a rectangular plate, and the rotational phase of the rotor 2 is brought into sliding contact with the cylinder inner peripheral surface 11. Accordingly, the first working chamber R1, the second working chamber R2, and the third working chamber R3 are partitioned. As seen in the enlarged view shown in the lower part of FIG. 5, the first vane 3A has a facing portion 33c formed of an inclined surface facing the first working chamber R1 side at the base end portion, and the third working chamber at the distal end side.
  • An opposing portion 33a made of an inclined surface facing the R3 side is provided, and arc-shaped sliding contact surfaces 31a and 31b are formed at the tip portion.
  • the second vane 3B has a facing portion 33b made of an inclined surface facing the second working chamber R2 at the base end portion, and a facing portion 33d made of an inclined surface facing the second working chamber R2 on the distal end side. And arcuate sliding contact portions 31c and 31d are formed at the tip.
  • the first vane 3A and the second vane 3B are opposed to each other and are arranged so as to be symmetrical.
  • a groove opening portion having a substantially V-shaped cross section formed by the facing portion 33a and the facing portion 33b, and the facing portion 33c and the facing portion 33d is disposed with the front in the rotational direction of the rotor 2 as the opening portion. Further, when the rotation of the rotor 2 is stopped at the bottom of the groove 2 formed by the facing portions 33a, 33b, 33c, and 33d, no centrifugal force is generated in the first vane 3A and the second vane 3B. The pulling force of the first elastic member 4A and the second elastic member 4B in which the pulling forces are balanced with each other attracts the rough center of the row 2 and functions as a contact portion.
  • hollow portions 32 are formed in the portions near the base end portions of the first vane 3A and the second vane 3B, respectively.
  • the center of gravity is biased toward the front end portions of the first vane 3A and the second vane 3B, and a centrifugal force is reliably generated at the front end side of the first vane 3A and the second vane 3B.
  • the weight reduction of the 1st vane 3A and the 2nd vane 3B is implement
  • the first vane 3A and the second vane 3B thus reduced in weight, the first vane reciprocally slides in the guides 21a, 21b, 21c, and 21d in the radial direction as the rotor 2 described later rotates.
  • the reciprocating inertia that acts on the vane 3A and the second vane 3B is reduced, and vane jumping and chattering are suppressed. Therefore, the rotor 2 can be operated at a higher speed, and the first working chamber R1, the second working chamber R2, and the second working chamber R2
  • the amount of work in the three working chambers R3 is increased, and the positive displacement fluid machine P is reduced in size and weight.
  • the first elastic member 4A (in this embodiment, a coil traction spring is employed) is drilled at one end thereof from the front surface to the back surface of the second vane 4B. It is inserted into and fixed to a locking hole 34a formed in the first vane 4A through a through hole 35b made of an elliptical long hole that is an ellipse.
  • the rotor 2 is disposed obliquely from the rear to the front in the rotational direction, and the other end is inserted into the locking hole 24 drilled from the periphery of the rotor 2 to the inside. Fixed. Incidentally, the rotor side locking holes 24a and 24B are properly plugged with a material after drilling.
  • the second elastic member 4B is inserted into a through hole 35 having an elliptical long hole whose one end is drilled from the front surface to the back surface of the first vane 4A.
  • the locking hole is inserted and fixed in the locking hole 34 ⁇ / b> B formed at an angle, is disposed obliquely from the rear to the front in the rotational direction of the rotor 2, and the other end is drilled from the peripheral part of the rotor 2 to the inside.
  • 24B is inserted and fixed.
  • Each of the first vane 3A and the second vane 3B arranged in such a manner is allowed to move a predetermined distance while the inner side surfaces are in sliding contact with each other, and the first vane 3A arranged in an overlapping manner is allowed.
  • the vanes on the front side of the second vane 3B pass through the vanes on the near side, and the vane side locking portions of the first elastic material 4A and the second elastic material 4B are fixed to the locking holes 34a and 34B, respectively.
  • the fluid pressure acting on the first working chamber R1, the second working chamber R2, and the third working chamber R3, which will be described later, and the traction force of the first elastic member 4A and the second elastic member 4B are simultaneously applied to the two first vanes 3A.
  • the rib plate 18 has the support shaft and the support member of the rotor 2 disposed only on the input shaft side in order to reduce the weight of the vane vacuum pump and reduce the manufacturing cost. Compared to a so-called cantilevered one-side support structure, the weight and cost are increased, but the two-supported type is formed to increase the rigidity of the positive displacement fluid machine P.
  • an opening 23 is formed in a rib plate 18 that includes a drive shaft 20 that is rotatably supported and is formed integrally with the rotor 2.
  • the opening 23 is a working window when the first and second elastic members 4A and 4B disposed in the internal space of the rotor 2 are attached and detached. Further, by configuring the rib plate 18 to be attachable to and detachable from the rotor 2, the work of attaching and detaching the first elastic material 4A and the second elastic material 4B is further facilitated.
  • FIG. 5 shows a state where the rotor 2 is stopped.
  • the first vane 4A and the second vane 4B are attracted in the direction toward the center of the rotor 2 and the guides 21b and 21d by the elastic material 4A and the elastic material 4B, respectively, and are opposed by the opposing portions 33a, 33b, 33c, and 33d.
  • the formed groove bottoms having a substantially V-shaped cross section are in contact with each other, and the radial dimension of the rotor 2 of the vane 3 is minimized, and the first elastic member 4A and the second elastic member 4B are radially inward of the rotor 2.
  • the first and second vanes 3 ⁇ / b> A and 3 ⁇ / b> B are positioned closer to the center of the rotor 2.
  • gaps D1, D2 are formed between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d, and the first working chamber R1, the second working chamber R2, and the third working chamber R3 are not partitioned and communicate with each other. Is in a state.
  • the gaps D1 and D2 are enlarged or reduced according to the magnitude of the centrifugal force accompanying the rotation of the rotor 2. Rather than the magnitude of the centrifugal force acting on the first vane 4A and the second vane 4B in the initial stage of the rotor 2, the first elastic member 4A and the second elastic member 4B allow the first vane 4A and the second vane 4B to The pulling force attracted toward the center is set so as to exceed each other, and the gaps D1, D2 between the inner peripheral surface 11 and the sliding contact portions 33a, 33b are secured, and the inner peripheral surface 11 and the sliding contact portions 33a, 33b, No sliding resistance is generated between the rotor 33c and 33d, the torque associated with the start-up of the positive displacement fluid machine P can be reduced, and the working chambers R1, R2, R3 in the initial stage of the rotor 2 do not perform the pumping action. The load caused by the fluid reaction force on the first vane 3A and the second vane 3B is small. Therefore, the starting torque of the
  • each sliding member constituting the positive displacement fluid machine P in the first embodiment is made of a self-lubricating material. Since the sliding portion is lubricated and sealed with an oil film, it is assumed that no agitation resistance of lubricating oil (by liquid) is generated.
  • an output shaft of an electric motor (not shown) is connected to the coupling 22 shown in FIGS. 1 and 3, and the rotor 2 is driven at a predetermined rotational speed, and is driven from the state shown in FIG. 5.
  • the shaft 20 is rotated clockwise by 45 °.
  • Centrifugal force acts on the first vane 4A and the second vane 4B, respectively, and is supported by guides 21a, 21b, 21c, and 21d and moved outward of the rotor 2 from the diameter.
  • the sliding contact portions 31a, 31b, 31c, and 31d are in sliding contact with the inner peripheral surface 11, and the first working chamber R1, the second working chamber R2, and the third working chamber R3 are partitioned, and the rotor 2 rotates.
  • the first working chamber R1, the second working chamber R2, and the third working chamber R3 expand and contract their volumes.
  • the first vane 3 ⁇ / b> A is biased toward the inner diameter of the rotor 2 by the small traction force (Ast) of the first elastic member 4 ⁇ / b> A that is being contracted to the minimum.
  • the low positive pressure (33blpp) acting on the facing portion 33a exposed to the second working chamber R2 that is in the initial stage of the compression stroke and has a low positive pressure causes the first vane 3A to move inwardly of the rotor 2. It is energizing towards.
  • the first vane 3A that urges the first vane 3A toward the inner side of the rotor 2 and has a combined urging force of these (Ast) and (33blpp) protruded small toward the inner peripheral surface 11 from the tip side having a large mass.
  • the first vane 3A is directed outwardly of the rotor 2 by a small centrifugal force (Asc) acting on the rotor 2.
  • the first vane 3A is pressed toward the outside of the rotor 2 (33ahpp) against the facing portion 33a exposed to the third working chamber R3 in which positive and high pressures are acting at the end of the compression stroke. .
  • the combined biasing force of these (Asc) and (33ahpp) that biases the second vane 3B toward the outer side of the rotor 2 is exceeded, and the first vane 3A is biased toward the outer side of the rotor 2 in the sliding contact.
  • the first working chamber R1 and the second working chamber R2 are partitioned by the first vane 3A that causes the portions 31c and 31d to slidably contact the inner peripheral surface 11, and the first working chamber R1 and the second working chamber R2 are defined by the rotor 2.
  • the volume expands and contracts with rotation.
  • the contact pressure at which the sliding contact portions 31a and 31b are in sliding contact with the inner peripheral surface 11 in this way is the magnitude of the centrifugal force generated in the first vane 3A in proportion to the mass of the first vane 3A, that is, the first vane.
  • the sliding contact portions 31a and 31b are formed on the inner peripheral surface 11 due to the difference between the magnitude of the force of 3A toward the outside of the rotor 2 and the pulling force of the first elastic member 4A that tries to pull the first vane 3A back inward of the rotor 2.
  • the pressing force for sliding contact is determined.
  • the eccentric mass of the first vane 3A and the magnitude of the traction force of the first elastic member 4A are suitably set, and the contact pressure without excess or deficiency by the sliding contact portions 31a and 31b sliding on the inner peripheral surface 11 is set.
  • the sealing performance of the first working chamber R1 and the second working chamber R2 is ensured and the compression efficiency is increased, and the sliding resistance and wear of the inner peripheral surface 11 and the sliding contact portions 31a and 31b are reduced.
  • a low positive pressure is applied to the side surface of the first vane 3A exposed to the second working chamber R2 side at the initial stage of the compression stroke, and the first vane 3A is applied to the first vane 3A.
  • a small moment (Apsm) in the rotational direction of the rotor 2 acts.
  • a high positive pressure is applied to the side surface of the first vane 3A exposed to the third working chamber R3 side at the end of the compression stroke, and the first vane 3A has a large reverse direction to the rotation direction of the rotor 2.
  • Moment (Amlm) is acting. This (Amlm) exceeds (Apsm), and the side surface of the first vane 3A on the second working chamber R2 side is pressed against the guide 21a.
  • the first elastic member 4A exerts a large traction force (Alt).
  • This (Alt) is a component of force that tries to pull the first vane 3A toward the radially inner side of the rotor 2, and the proximal end side of the first vane 3A and the distal end side of the second vane 3B are directed to the guide 21d side. Generates a component of force to be attracted.
  • the largest centrifugal force (Blc) acting on the second vane 3B is moderately attenuated to prevent the sliding contact portions 31c and 31d from slidingly contacting the inner peripheral surface 11 with excessive pressing force, and
  • the second vane is relieved by the large biasing force that strongly presses the side surface of the second vane 3B on the first working chamber R1 side against the guide 21c by the combined biasing force of (Bmsm), (31clmp), (Bmlm), and (31dhpp).
  • the sliding resistance of the sliding surface between the side surface of the 3B first working chamber R1 and the guide 21c is reduced, and wear and energy waste of these sliding surfaces are suppressed.
  • the second vane 3B is urged toward the inside of the rotor 2 by a large traction force (Blt) of the second elastic member 4B that is being expanded most roughly. Then, acting on the facing portion 33d exposed to the second working chamber R2 having a low positive pressure in the initial stage of the compression stroke (33 dlpp) urges the second vane 3B toward the inside of the rotor 2. is doing.
  • the combined biasing force of these (Blt) and (33 dlpp) that biases the second vane 3B toward the inner side of the rotor 2 is made to protrude largely from the tip side with a large mass toward the inner peripheral surface 11 side.
  • the second vane 3B is directed outwardly of the rotor 2 by a large centrifugal force (Blc) acting on the vane 3B. Then, a low negative pressure that directs the second vane 3B exposed to the first working chamber R1 where a low negative pressure is applied at the beginning of the suction stroke to the outside of the rotor 2 is applied to the sliding contact portion 31c (31clmp). Is working. Further, (33bhpp) acts on the facing portion 33b exposed to the third working chamber R3 in which the positive and high pressures are acting at the end of the compression stroke, and the second vane 3B is moved outwardly of the rotor 2. It is energizing towards.
  • the combined urging force of these (Blc), (31clmp), and (33dhpp) for urging the second vane 3B toward the outer diameter of the rotor 2 exceeds the second vane 3B toward the outer diameter of the rotor 2.
  • the first working chamber 1R and the second working chamber R2 are partitioned by the second vane 3B that slidably contacts the sliding contact portions 31c and 31d with the inner peripheral surface 11, and these first working chamber R1 and second working chamber. R2 expands or contracts its volume as the rotor 2 rotates.
  • the contact pressure that causes the sliding contact portions 31c and 31d to slide on the inner peripheral surface 11 is such that the second vane 3B is proportional to the mass of the second vane 3B according to the magnitude of the centrifugal force generated in the second vane 3B.
  • the sliding contact portions 31c and 31d are formed on the inner peripheral surface 11 due to the difference between the magnitude of the force toward the radially outer side of the rotor 2 and the pulling force of the second elastic member 4B that attempts to pull the second vane 3B back to the inner diameter of the rotor 2.
  • the pressing force for sliding contact is determined.
  • the eccentric mass of the second vane 3B and the magnitude of the traction force of the second elastic member are suitably selected, and it becomes possible to obtain a contact pressure with no excess or deficiency by the sliding contact portions 31c and 31d with respect to the inner peripheral surface 11.
  • the sliding resistance can be reduced while ensuring the sealing performance of the first working chamber R1 and the second working chamber R2 in this stroke.
  • the side surface of the first working chamber R1 that has the maximum area in which the fluid acts is maximized by projecting to the first working chamber R1 side, which is in the middle stage of the suction stroke, and where a low negative pressure is acting.
  • a large moment (Bmlm) in the direction opposite to the rotational direction of the rotor 2 acts on the side surface of the second vane 3B exposed to the surface of the second vane 3B.
  • a low negative pressure is also acting on the sliding contact portion 31c exposed to the first working chamber R1 in the middle stage of the suction stroke where the low negative pressure is acting, and the rotation direction of the rotor 2 is applied to the second vane 3B.
  • a small reverse moment (Bmsm) is generated.
  • the protrusion amount is the maximum, and the area where the pressure of the fluid in the second working chamber R2 acts is the maximum. For this reason, a large moment (Almm) in the direction opposite to the rotation direction of the rotor 2 acts on the side surface of the first vane 3A exposed to the second working chamber R2.
  • This (Amlm) is transmitted to the second working chamber 3B side surface of the second vane 3B via the first working chamber R1 side surface of the first vane 3A, and is opposite to the rotation direction of the rotor 2 to the second vane 3B.
  • a large moment (Bmlm) is applied.
  • the sliding contact portion 31d exposed to the second working chamber R2 that is in the middle stage of the compression stroke and has a positive pressure has a positive pressure acting in a state where the distance from the center of the rotor 2 is located at the maximum.
  • a large moment (Bmlm) in the direction opposite to the rotation direction of the rotor 2 is generated in the second vane 3B.
  • the combined biasing force of these (Bmlm), (Bmsm), (Bmlm), and (Bmlm) causes the side surface of the second vane 3B on the first working chamber R1 side to be strongly pressed against the guide 21c to generate a large sliding resistance. I am trying to do.
  • the second elastic member 4B has a maximum distance from the center of the rotor 2 on the tip side that is formed solidly in order to bias the center of gravity of the second vane 3B. In this state, the maximum expansion is performed against the largest centrifugal force acting on the second vane 3B, and the largest traction force (eBlc) is generated.
  • This (eBlc) attracts the component of the force that pulls the second vane 3B toward the center of the rotor 2 and the proximal end side of the first vane 3A and the distal end side of the second vane 3B toward the guide 21d. A component of force is generated.
  • the largest centrifugal force acting on the second vane 3B is moderately attenuated to prevent the sliding contact portions 31c and 31d from sliding on the inner peripheral surface 11 with excessive pressing force, and the combined biasing force (Bmlm) ), (Bmsm), (Bmlm), (Bmlm) and a large biasing force that strongly presses the side surface of the second vane 3B on the first working chamber R1 side against the guide 21c, and the base of the first vane 3A of (eBlc) above.
  • the component of the force that tries to attract the end portion side and the tip end side of the second vane 3B to the guide 21d side cancels each other, and the sliding surface of the second vane 3B on the first working chamber R1 side and the guide 21c slides.
  • the sliding resistance of the moving surface is reduced, and wear and energy waste of these sliding surfaces are suppressed.
  • the rotor 2 when used as a compressor for mainly supplying air to a fuel cell, the rotor 2 is rotationally driven by an electric motor whose rotational speed is roughly constant.
  • the rotational speed of the rotor 2 greatly varies with a load on the automobile or an increase / decrease in output. Therefore, the centrifugal force acting on the first vane 3A, the second vane 3B, the first elastic material 4A, and the second elastic material 4B is also proportional to the rotation speed of the rotor 2 according to the rotation speed of the engine.
  • the positive displacement fluid machine P when used in an environment in which the rotational speed of the rotor 2 varies greatly has the following functions.
  • a low positive pressure (31 blpp) is applied to the sliding contact portion 31b that is partitioned by the first vane 3A and is exposed to the second working chamber R2 in the initial stage of the compression stroke.
  • a high positive pressure (31 ahpp) is applied to the sliding contact portion 31a exposed to the third working chamber R3 at the end of the compression stroke.
  • a high positive pressure (33 ahpp) is acting on the facing portion 33a exposed to the third working chamber R3 at the end of the compression stroke.
  • a low positive pressure (33clpp) is acting on the facing portion 33c exposed to the second working chamber R2 in the initial stage of the compression stroke, and these press the first vane 3A toward the inner peripheral surface 11.
  • the pressure receiving area on which (33ahpp), (33clpp) acts is formed larger than the pressure receiving area on which (31blpp), (31ahpp) acts, and the first vane 3A has a pressing force toward the inner peripheral surface 11.
  • the large upper sliding contact portions 31 a and 31 b are about to be pressed excessively toward the inner peripheral surface 11.
  • the inclination angle and tractive force at which the first elastic member 4A for returning the first vane 3A to the radially inner side of the rotor 2 is arranged so as to alleviate this excessive pressing force are set optimally.
  • the sliding contact portion 31c which is partitioned by the second vane 3B and is exposed to the first working chamber R1 in the suction stroke, has a low negative pressure (31clmp) and is in the initial stage of the compression stroke.
  • the opposing portion 33d exposed to the second working chamber R2 has a low positive pressure (33 dlpp) and the opposing portion 33b exposed to the third working chamber R3 at the end of the compression stroke has a high positive pressure (33bhpp). It works.
  • the combined pressure of these (31clmp), (33dlpp), and (33bhpp) strongly presses the second vane 3B toward the inner peripheral surface 11.
  • a low positive pressure (31 dlpp) acts on the sliding contact portion 31d exposed to the second working chamber R2 in the initial stage of the compression stroke, and the second vane 3B is directed inwardly of the rotor 2. Pressing weakly. For this reason, the second vane 3 ⁇ / b> B has a large pressing force toward the inner peripheral surface 11, and the upward sliding contact portions 31 c and 31 d are about to be pressed excessively toward the inner peripheral surface 11.
  • the inclination angle and traction force of the second elastic member 4B for returning the second vane 3B to the radially inner side of the rotor 2 are set optimally so as to alleviate this excessive pressing force. Thereby, the sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31c and 31d is reduced, the sealing performance of the working chambers R1 and R2 is secured, and the input efficiency and the compression efficiency are increased.
  • a high positive pressure (31 ahpp) is applied to the sliding contact portion 31a exposed to the third working chamber R3 at the end of the compression stroke. Furthermore, a low positive pressure (33 blpp) acts on the sliding contact portion 31b exposed to the second working chamber R2 in the initial stage of the compression stroke. Further, a low positive pressure (33 dlpp) is also acting on the sliding contact portion 31d exposed to the second working chamber R2 in the initial stage of the compression stroke.
  • These (31ahpp), (33blpp), and (33dlpp) pressures cause the sliding contact portions 31a, 31b, and 31d to be separated from the inner peripheral surface 11 and cause chattering in the first vane 3A and the second vane 3B.
  • a low negative pressure (31 clmp) is acting on the sliding contact portion 31c exposed to the first working chamber R1 in the suction stroke.
  • high positive pressures (33 ahpp) and (33 bhpp) act on the facing parts 33 a and 33 b exposed to the third working chamber R 3 at the end of the compression stroke.
  • Low positive pressures (33clpp) and (33dlpp) are acting on the opposing portions 33c and 33d exposed to the second working chamber R2 in the initial stage of the compression stroke.
  • the substantially V-shaped opening formed by the facing portions 33 a and 33 b and 33 c and 33 d that are separated when the rotor 2 rotates opens forward in the rotation direction of the rotor 2. It is generated by the sliding part accompanying the rotation of, and functions as a collecting part for wear powder and the like scattered in the working chambers R1, R2, R3. And most of the abrasion powder adhering to the inclined surface is discharged to the discharge port together with the fluid by the centrifugal force accompanying the rotation of the rotor 2.
  • the wear powder having a small specific gravity which is difficult to work with centrifugal force, is attracted toward the center of the rotor 2 by the traction force of the first elastic material 4A and the second elastic material 4B immediately before the rotation of the rotor 2 is stopped.
  • the vane 3B is sandwiched by the inclined surface having a substantially V-shaped cross section that comes into contact with the movement of the vane 3B, is pushed out toward the working chambers R1, R2, and R3, and is discharged out of the apparatus together with the fluid when the positive displacement fluid machine P is started.
  • the first vane 3 ⁇ / b> A is stored in the rotor 2 at the tip end side where the mass is large, and the distance between the center of gravity of the first vane 3 ⁇ / b> A and the central axis C of the rotor 2 is the smallest. Accordingly, the centrifugal force acting on the first vane 3A is also minimized.
  • the first elastic member 4A in this state is also most contracted, and the traction force that pulls the first vane 3A toward the inside of the rotor 2 is also minimum.
  • the traction force of the first elastic member 4A increases and decreases and is autonomously controlled in conjunction with the distance between the center line C of the rotor 2 and the center of gravity of the first vane 3A, and the inner peripheral surface 11 and the sliding contact portion 31a,
  • the sliding contact pressure with 31b is maintained in a good state when the rotational speed of the rotor 2 is in the set rotational speed range, but when the rotor 2 is driven to rotate at a low speed, the sliding contact pressure with the inner peripheral surface 11 is maintained.
  • the centrifugal force of the first vane 3A that is, the inner circumference of the first vane 3A when the rotor 2 is driven to rotate at high speed. While the urging force toward the surface 11 increases, the traction force that directs the first elastic member 4A toward the inner diameter of the inner peripheral surface 11 does not increase, and the sliding between the inner peripheral surface 11 and the sliding contact portions 31a and 31b does not increase. The contact pressure becomes excessive, and the sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31a and 31b. It increased to lower the input efficiency.
  • the first elastic member 4A is selected and arranged in such a direction that a larger centrifugal force is generated, and the mass of the spring portion of the first elastic member 4A is increased so that the rotational speed of the rotor 2 is increased. Accordingly, the centrifugal force generated in the spring portion of the first elastic member 4A is added to the pulling force of the first elastic member 4A, and the pulling force exceeding the spring constant of the first elastic member 4A is applied to the first elastic member 4A. As a result, the sliding contact pressure between the inner peripheral surface 11 and the sliding contact portions 31a and 31b is always kept in a preferable state with no excess or deficiency corresponding to the change in the rotational speed of the rotor 2.
  • the second vane 3B has the largest mass protruding from the rotor 2 at the maximum and the maximum angular velocity, and the largest centrifugal force acting on the second vane 3B in this configuration is directed to the outer diameter of the rotor 2. is doing.
  • the second elastic member 4B is extended to the maximum and exerts the largest traction force, and the distance between the rotor side locking portion 24B and the vane side locking portion 34B is also maximum, so that the mass of the spring portion is increased.
  • a large centrifugal force is applied to bend the second elastic material 4B that has been bent outward in the diameter.
  • This large centrifugal force acts on the second elastic member 4B with a traction force that exceeds the spring constant of the second elastic member 4B of the second elastic member 4B, and further increases the traction force of the second elastic member 4B. Accordingly, the traction force of the second elastic member 4B is increased or decreased in accordance with the magnitude of the centrifugal force acting on the second vane 3B according to the rotational speed of the rotor 2, and the sliding between the inner peripheral surface 11 and the sliding contact portions 31c and 31d is increased.
  • the contact pressure is always kept favorable in all working strokes in the respective working chambers.
  • the contact required for sealing between the vane tip sliding contact portion and the cylinder inner peripheral surface depends only on the centrifugal force acting on the vane as the rotor rotates.
  • the centrifugal force generated in the vane is insufficient when the rotor is rotated at a low speed, and there is a concern that the compression efficiency may decrease due to insufficient contact pressure between the vane tip sliding contact portion and the cylinder inner peripheral surface.
  • the centrifugal force becomes excessive, and there is concern about a decrease in input efficiency due to an increase in sliding resistance between the vane tip sliding contact portion and the cylinder inner peripheral surface and early wear of the sliding portion.
  • these problems can be improved.
  • FIG. 8 is an exploded perspective view of the vane portion of the positive displacement fluid machine P of the second embodiment
  • FIGS. 9 to 12 show cross-sections of essential parts of the positive displacement fluid machine P of the second embodiment and the respective operations. Indicates the state.
  • the contents described in the second embodiment operate suitably when used as, for example, a vacuum pump that sucks air in a pressure chamber of a brake booster of a vehicle (not shown).
  • the first vane 3 ⁇ / b> A and the second vane 3 ⁇ / b> B are reversed from the center of the rotor 2 with respect to the arrangement of the vanes 3 in the first embodiment.
  • the first vane 3A and the second vane 3B are respectively connected to the long holes 36a and 36b through bolts 37 inserted into the long holes 36a and 36b respectively formed on the base end portions of the first vane 3A and the second vane 3B. Movement within the diameter range of the ellipse is allowed, and is configured to be movable in the radial direction around the rotor 2 while maintaining an overlapped state. Thereby, compared with the case where the 1st vane 3A and the 2nd vane 3B are not connected with the volt
  • the first elastic member 4A and the second elastic member 4B are formed on the vane side engaging portion 34a and the engaging portion 34B formed on the first vane 3A and the second vane 3B on the first elastic member 4A and second elastic member 4B side, respectively.
  • the first vane 3A and the second vane are compared with the first elastic member 4A and the second elastic member 4B locked to the first vane 3A and the second vane 3B in the first embodiment.
  • the first elastic member 4A and the second elastic member 4B can be easily attached to and detached from 3B.
  • An opening having a substantially V-shaped cross section formed by the facing portions 33a and 33b and the facing portions 33d and 33d is formed in the direction opposite to that described in the first embodiment, that is, toward the rear in the rotational direction of the rotor 2, and will be described later.
  • the negative pressure fluid can effectively act on these facing portions 33a, 33b, 33d, and 33d.
  • FIG. 9 shows a state where the rotor 2 is stopped, and a state where the lubricating oil Lo injected into the positive displacement fluid machine P by the lubricating oil supply means (not shown) is accumulated at the bottom of the inner peripheral surface 11 of the cylinder 1. Is shown.
  • Each of the letter-shaped bottom portions comes into contact with each other, and the longitudinal dimension of the vane 3 is reduced to the minimum, and gaps D1, D2 are formed between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d.
  • FIG. 10 shows, for example, an initial state in which a camshaft of an engine (not shown) is connected to a coupling 22 similar to that shown in FIG. 1 and the rotor 2 is rotated 90 ° clockwise from the configuration shown in FIG. Show.
  • the gaps D1 and D2 expand and contract according to the magnitude of the centrifugal force acting on the first vane 3A and the second vane 3B.
  • the first vane 3A and the second vane 3B are directed toward the center of the rotor 2 by the elastic material 4A and the elastic material 4B rather than the magnitude of the centrifugal force acting on the first vane 3A and the second vane 3B in the initial stage of the rotor 2.
  • the pulling force is set so as to exceed, and the gaps D1 and D2 between the inner peripheral surface 11 and the sliding contact portions 33a and 33b are secured, and the first vane 3A and the sliding contact portion 31d or the second vanes 3B and 31a are The rotational phase changes while stirring the lubricating oil Lo without moving the lubricating oil Lo to the discharge port 13 at once.
  • the gaps D1 and D2 become smaller and smaller in inverse proportion to the centrifugal force acting on the first vane 3A and the second vane 3B, and the rotor 2 reaches a predetermined rotational speed.
  • the sliding contact portions 31a, 31b, 31c, and 31d are slidably contacted with the inner peripheral surface 11, and the first working chambers R1, R2, and R3 are partitioned.
  • the lubricating oil Lo is divided into a plurality of times and moved and discharged to the discharge port together with the working fluid. In this way, it is avoided that an excessive impact load is applied to the guides 21a, 21b, 21c, 21 and the first vane 3A and the second vane 3B.
  • the starting torque of the positive displacement fluid machine P can be reduced, the driving force transmission device such as the prime mover and the clutch can be reduced in size, and the strength of the rotary drive support member of the positive displacement fluid machine P can be designed to be low.
  • the positive displacement fluid machine P can be reduced in size and weight and the manufacturing cost can be reduced.
  • FIG. 11 shows a state in which the positive displacement fluid machine P is operated at a predetermined rotational speed.
  • the first working chamber R1 is in an expansion stroke.
  • a pipe extending from a pressure chamber of a brake booster (not shown) is connected to the suction port 12.
  • the air in the pressure chamber is sucked by the first working chamber R1 in the expansion stroke and is guided to the second working chamber R2 in the compression process via the check valve 16 and the discharge port. It is discharged outside the machine.
  • the first working chamber R1 in the suction stroke has a negative pressure.
  • the side surfaces of the first vane 3A and the second vane 3B that protrude most toward the inner peripheral surface 11 and are exposed to the first working chamber R1 have large moments (Amlm) and (Bmlm) that are opposite to the rotational direction of the rotor 2. ) Is working.
  • the first vane 3A which is in the compression stroke and protrudes most toward the inner peripheral surface 11 side and is exposed to the second working chamber R2 side, has a large moment (Almm) in the direction opposite to the rotational direction of the rotor 2. Is acting.
  • the first elastic member 4A is in the most extended state, generating a large traction force (Alt) and a large centrifugal force (eAlc) acting on the first elastic member 4A.
  • This (eAlc) is the (Alt) of the first elastic member 4A in which the first elastic member 4A is bent outward in the diameter of the rotor 2 and further traction force is added to the traction spring constant of the first elastic member 4A.
  • the first vane 3A and the second vane 3B are about to be attracted to the guide 21d side. This traction force generates large moments (Aplm) and (Bplm) in the rotation direction of the rotor 2 in the first vane 3A and the second vane 3B.
  • the side surface of the second vane 3B, the side surface of the second vane 3B exposed to the second working chamber R2 side in the compression stroke, the sliding contact portion 31b, and the opposing portion 33a are inserted into the guide 21b.
  • (Bpsm), (31blpp), and (33ahmp) are applied to the 1 vane 3A and the second vane 3B.
  • the side of the guide 21a is in sliding contact with the first vane 3A and the second vane 3B in the sliding contact portion 31a exposed to the first working chamber R1 side in the expansion stroke.
  • a high negative pressure (31 amph) is applied to give a rotational moment.
  • the second elastic material 4B that has contracted the most also generates a traction force (Bst) that imparts a small moment in the rotational direction of the rotor 2 to the first vane 3A and the second vane 3B.
  • Bst a traction force
  • the sliding contact reaction forces of the sliding contact portions 31a and 31b that generate moments in opposite directions to the first vane 3A and the second vane 3B cancel each other, and the guide 21a and the guide 21d and the first vane 3A and the first vane 3A Sliding resistance and wear with the side sliding surface of the two vanes 3B are suppressed.
  • the drive shaft 20 is usually attached to the camshaft of the engine. Are connected and the rotor 2 is driven to rotate while the automobile is in operation.
  • the positive displacement fluid machine P is capable of operating even when the first working chamber R1 and the pressure chamber reach a predetermined negative pressure.
  • the friction generated between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d accelerates the wear of these sliding contact portions and wastes engine torque.
  • this is a factor that deteriorates fuel consumption. Therefore, according to the positive displacement fluid machine P of the second embodiment, the above problem can be solved by the following operation.
  • FIG. 12 shows a state in which the positive displacement fluid machine P of the second embodiment is operated at a predetermined rotational speed.
  • the air in the pressure chamber of the brake booster of the vehicle (not shown) is moved by the positive displacement fluid machine P.
  • the negative pressure in the pressure chamber reaches a predetermined reference
  • the first centrifugal operation (Alc) acting on the first vane 3A and the first operation at a high negative pressure in the initial stage of the expansion stroke Part of the oil layer Ll of the lubricating oil Lo that is exposed to the chamber R1, stirred by the rotation of the rotor 2 and the first vane 3A, and stuck to the inner peripheral surface 11 and interposed between the inner peripheral surface 11 and the sliding contact portion 31c.
  • the first elastic member than the combined urging force of these (Alc), (31chmp), and (31dlmp) that causes the first vane 3A to be directed radially outward of the rotor 2 by acting on the slidable contact portion 31d (31dlmp) 4A large traction force (Alt) and high negative pressure (33 dhmp) acting on the opposing portion 33d and the opposing portion 33b exposed to the second working chamber R2 at the end of the expansion stroke and having a low negative pressure.
  • the combined urging force that directs the first vane 3A having a low negative pressure (33blmp) toward the inner diameter of the rotor 2 is increased, and the gap between the inner peripheral surface 11 and the sliding contact portions 31c and 31d is increased.
  • the oil layer Ll is interposed, the inner peripheral surface 11 from the sliding contact portion 31c, 31d are first vane 3A in a state of being separated from phase changes with the rotation of the rotor 2.
  • sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31c and 31d does not occur, wear of these sliding contact portions and waste of energy are avoided, and the first working chamber R1 and the second working chamber. Since R2 is not partitioned and the pumping action by the first working chamber R1 and the second working chamber R2 is not performed, energy consumption associated with the fluid expansion / contraction operation by the first vane 3A is also reduced.
  • a part of the oil layer Ll is attached between the inner peripheral surface 11 and the sliding contact portion 31d, which is attached to the peripheral surface 11, and acts on the sliding contact portion 31a in which the area where the low negative pressure acts is narrowed ( 31almp)
  • the traction force (Alt) of the first elastic member 4A acts on the opposing portion 33a rather than the combined urging force of these (Blc), (31bhmp), and (31almp) that causes the two vanes 3B to be directed outward of the diameter of the rotor 2.
  • These second vanes 3B having a low negative pressure (33almp) and a high negative pressure (33chmp) acting on the facing portion 33c exposed to the first working chamber R1 which is at the beginning of the expansion stroke and has a high negative pressure.
  • the oil layer Ll is interposed between the inner peripheral surface 11 and the sliding contact portions 31b and 31a, and the sliding contact portion 31b,
  • the phase of the second vane 3 ⁇ / b> B changes as the rotor 2 rotates while 31 a is separated. Thereby, sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31b and 31a does not occur, energy saving is realized, and wear of the inner peripheral surface 11 and the sliding contact portions 31b and 31a is also avoided.
  • the second working chamber R2 and the third working chamber R3 are not partitioned by the second vane 3B, and the pumping action by the second working chamber R2 and the third working chamber R3 is not performed. For this reason, the energy consumption accompanying the operation
  • FIG. 13 is an axial cross-sectional view of the main part showing a state where the rotor 2 of the positive displacement fluid machine P of the third embodiment is driven to rotate clockwise at a low speed.
  • the positive displacement fluid machine P of the third embodiment is used as a pump that pumps incompressible fluid such as lubricating oil.
  • the check valve 16 disposed on the discharge port 13 side in the first and second embodiments is omitted, and the second working chamber R2, the third working chamber R3, and the discharge port 13 are omitted. Are formed, and the incompressible fluid is sucked and discharged without interruption during the operation of the positive displacement fluid machine P.
  • One end of the first elastic member 4A is inserted into a long hole 38b formed in the second vane 3B through a support member 39a having a substantially L-shaped cross section, and one end is formed on the tip end side of the first vane 3A. It is inserted and fixed to the stop portion 34 a and is locked to the other end protruding from the hollow portion of the rotor 2. The other end portion of the first elastic member 4A is inserted and fixed to a locking portion 24a formed on the rotor 2.
  • One end portion of the second elastic member 4B is inserted into a long hole 38a formed in the first vane 3A through a support member 39b having a substantially L-shaped cross section, and one end portion is formed on the distal end side of the second vane 3B.
  • the second elastic member 4B is inserted and fixed to a locking portion 24B formed on the rotor 2 and is fixed to the locking portion 34B and locked to the other end protruding from the hollow portion of the rotor 2. .
  • Each of the first elastic member 4A and the second elastic member 4B is disposed substantially parallel to the side surface of the vane 3 so that the space of the hollow portion of the rotor 2 can be used more effectively.
  • the first vane 3A and the second vane 3B are respectively held by the first elastic member 4A and the second elastic member 4B from the positions shifted from the positions shifted from the front end side of the support members 39a and 39b in the lateral direction and the other lateral direction.
  • Example 3 In the positive displacement fluid machine P of the third embodiment shown in FIG. 13, the rotor 2 is rotationally driven at a low speed in the clockwise direction. In this state, the first vane 3A and the second vane 3B are located within the diameter of the rotor 2 rather than the small centrifugal forces (Asc) and (Bsc) that direct the first vane 3A and the second vane 3B to the outside of the diameter of the rotor 2.
  • Oil is stirred along the inner peripheral surface 11 to gradually increase the centrifugal force, and the working fluid sucked from the suction port 12 and the suction groove 12a is guided to the first working chamber R1 as indicated by the white arrows. It is moved to the second working chamber R2 and the third working chamber R3, and the low-pressure working fluid is discharged out of the machine through the discharge groove 13a and the discharge port 13.
  • the centrifugal force acting on the first vane 3A and the second vane 3B exceeds the large traction force (Alt), (Blt) of the first elastic material 4A and the second elastic material 4B.
  • the sliding contact portions 31a, 31b, 31c, 31d are slidably contacted with the inner peripheral surface 11, and the first working chamber R1, the second working chamber R2, and the third working chamber R3 are partitioned (not shown).
  • the working fluid sucked from 12a is guided to the first working chamber R1 and sequentially moved to the second working chamber R2 and the third working chamber R3, and the high-pressure working fluid is discharged to the outside through the discharge groove 13a and the discharge port 13. And discharged.
  • the amount and pressure of the discharged fluid can be controlled by increasing or decreasing the rotation speed of the rotor 2.
  • each working chamber in the third embodiment is basically the same as the operation mode described in FIGS. 5 to 7 of the first embodiment, and therefore the rotation of the rotor 2 in the third embodiment is not limited.
  • Each operation form diagram accompanying the phase change is omitted, and FIG. 13 is used instead.
  • a high positive pressure (31 dhmp) is applied to the facing portion 33d exposed to the second working chamber R2 to which a high positive pressure is applied (33dhp) and the sliding contact portion 31d.
  • the combined biasing force of (Amlm), (33dhpp), and (31dhmp) opposite to the rotation direction of the rotor 2 tries to strongly press the side surface of the second vane 3B on the guide 21c side against the guide 21c.
  • it is arranged by effectively utilizing the limited hollow portion of the rotor 2, and from the side surface of the first vane 3A via the support member 39b so as to generate a large counter biasing force on the second vane 3B.
  • the large traction force of the second elastic member 4B that is pulled from a position greatly deviated from the diameter of the rotor 2 is larger than the component of the force that pulls the second vane 3B toward the center of the rotor 2.
  • a component that generates a large moment in the rotational direction of the rotor 2 with the end side as a fulcrum increases, and this large moment imparts a large moment (Aplm) in the rotational direction of the rotor 2 to the first vane 3A. .
  • the outer diameter of the rotor 2 is increased in accordance with the speed at which the rotor 2 is rotationally driven, the distance between the first vane 3A and the second vane 3B projecting radially outward from the center of the rotor 2, and the rotational speed of the rotor 2.
  • the amount of bending of the spring portions of the first elastic member 4A and the second elastic member 4B changes.
  • This bending generates a traction force that directs the first vane 3A and the second vane 3B inward of the rotor 2, and this traction force is applied to the first elastic material 4A and the second elastic material 4B, and the first elastic material 4A and A traction force exceeding the spring constant of the second elastic material 4B is generated in the first elastic material 4A and the second elastic material 4B, and the traction force is increased or decreased.
  • the rotational speed of the rotor 2 that is, the magnitude of the centrifugal force acting on the first vane 3 ⁇ / b> A and the second vane 3 ⁇ / b> B, and the first vane 3 ⁇ / b> A and the second vane protruding radially outward from the center of the rotor 2.
  • the traction force of the first elastic member 4A and the second elastic member 4B is suitably adjusted according to the distance 3B, and the inner peripheral surface 11, the sliding contact portions 31a, 31b, 31c, 31d, the guides 21b, 21c, the first vane 3A,
  • the sliding resistance of the second vane 3B with the sliding contact surfaces of the guides 21b and 21c is reduced and wear is also suppressed.
  • the spring portions of the first elastic member 4A and the second elastic member 4B are examples using normal coil springs. However, tweezer springs or torsion springs or first elastic members 4A are shown. In order to increase the mass of the spring portions of the first elastic member 4A and the second elastic member 4B without generating a spring constant in each of the second elastic members 4B and generate a large centrifugal force in the spring portions, You may use what formed the side part cross-sectional shape of a spring or a linear spring material in the shape of a chain or a bead.
  • the shape and angle formed by the facing portions 33a, 33b, 33c, and 33d and the area where the fluid acts on the facing portions 33a, 33b, 33c, and 33d are formed in an appropriate size, and the facing portions 33a, 33b,
  • the urging force generated in each of 33c and 33d can be set optimally.
  • a torsion spring can be used for the first elastic member 4A and the second elastic member 4B of the third embodiment.
  • a chemical reaction occurs between the compound contained in the fluid taken into the working chamber and the spring, and the spring material changes in quality.
  • a polymer spring, a ceramic spring, a magnetic spring, a fluid spring, or the like may be used for the first elastic member 4A and the second elastic member 4B.
  • the rotor 2 When the positive displacement fluid machine P described in the first embodiment is used as a compressor for supplying fluid to the fuel cell, the rotor 2 is provided with a plurality of vanes 3 or in the axial direction on the drive shaft 20. A plurality of working chambers may be formed and the discharge ports 13 may be communicated with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The input efficiency and durability of a positive-displacement fluid machine (P) are improved by reducing both the sliding resistance between an inner peripheral surface (11) and sliding contact sections (31a, 31b, 31c, 31d) and the sliding resistance between guides (21a, 21b, 21c, 21d) and the sliding contact surfaces of side sections of a first vane (3A) and a second vane (3B). The first vane (3A) and the second vane (3B) are disposed so as to be slidable in the radial direction of a rotor (2). In order to cancel excessive sliding contact pressure which is generated between the inner peripheral surface (11) and the sliding contact sections (31a, 31b, 31c, 31d) by a centrifugal force acting on the first vane (3A) and the second vane (3B), and also to cancel moment which is generated by the pressure of operation fluid acting on the first vane (3A) and the second vane (3B) in the direction opposite the direction of rotation of the rotor (2), a pressing force caused by the pulling force of a first elastic material (4A) and a second elastic material (4B) is applied to the first vane (3A) and the second vane (3B). This reduces both the sliding resistance between the inner peripheral surface (11) and the sliding contact sections (31a, 31b, 31c, 31d) and the sliding resistance between the guides (21a, 21b, 21c, 21d) and the sliding contact surfaces of the side sections of the first vane (3A) and the second vane (3B).

Description

容積型流体機械Positive displacement fluid machinery
 本発明は、空気または油などの流体を取り扱うロータ自転型の容積型流体機械であって、シリンダ内周面とベーン先端摺接部およびベーンガイドとベーンの側面とに発生するこれら摺接部の摺動に伴うエネルギー損失と磨耗を抑制しようとするものに関する。 The present invention relates to a rotor-rotating positive displacement fluid machine that handles a fluid such as air or oil, and includes a sliding contact portion generated on a cylinder inner peripheral surface and a vane tip sliding contact portion, and a vane guide and a vane side surface. The present invention relates to a device that attempts to suppress energy loss and wear caused by sliding.
 従来、耐久性を向上させたベーン式バキュームポンプとして、ポンプ室の中心軸に対して中心軸を偏心させて配設されるロータの回転駆動に伴って、該ロータの直径方向に移動可能なベーンを円形に形成されるポンプ室の内周面に有し、ベーンがロータの直径方向に沿って一方側と他方側とに突出するように配置される2つのベーンが内周面に対して常に摺接可能とされ、少なくとも一方のベーンがロータに直接支持され、ガイド部材を配設せずに構成できるため、ガイド部材の端部がポンプ室の内周面と接触することもなく、従来のポンプに比して耐久性を向上させることができ、さらに、内周面を円形としていることから、例えば、内周面を楕円形とする場合に比してポンプ室の製造が容易となると共にベーンの端部を摺動させる内周面が滑らかとなるためベーンの耐摩耗性を向上させることができ、ポンプの耐久性を向上させることができる、とされる。 Conventionally, as a vane-type vacuum pump with improved durability, a vane that can move in the diameter direction of the rotor in accordance with the rotational drive of the rotor that is arranged with the center axis eccentric with respect to the center axis of the pump chamber The two vanes arranged on the inner peripheral surface of the pump chamber formed in a circular shape and projecting to the one side and the other side along the diametrical direction of the rotor are always on the inner peripheral surface. Since it can be slidably contacted and at least one vane is directly supported by the rotor and can be configured without a guide member, the end of the guide member does not come into contact with the inner peripheral surface of the pump chamber. The durability can be improved as compared with the pump, and the inner peripheral surface is circular. For example, the pump chamber can be manufactured more easily than when the inner peripheral surface is elliptical. Inner circumference for sliding the end of the vane It is possible to improve the wear resistance of the vane for a smooth, thereby improving the durability of the pump, are.
 しかしながら、特開2004-257357号公報の図2にみられる形態において、ロータによって逆時計回りに回転駆動され、膨張行程にある作動室に臨むベーンの右側側面には負圧が作用しており、ベーンに時計回りのモーメントを与えている。このモーメントは、ロータに形成されるベーン溝の右側摺接面とベーンの右側摺接面とに過剰な押圧力を発生させている。(ここでいう過剰な押圧力とは、作動室の摺動部が流体のシールを維持するのに必要とされる押圧力を超える無用な力をいう。)このため、必要以上に大きな力で摺動部が押し付けられながら摺動している状態となっている。
However, in the form shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2004-257357, a negative pressure is applied to the right side surface of the vane that is driven to rotate counterclockwise by the rotor and faces the working chamber in the expansion stroke, Giving the vane a clockwise moment. This moment generates an excessive pressing force on the right sliding surface of the vane groove formed on the rotor and the right sliding surface of the vane. (Excessive pressing force here means unnecessary force exceeding the pressing force required for the sliding part of the working chamber to maintain the fluid seal.) The sliding portion is sliding while being pressed.
 一方、圧縮行程にある作動室に臨むベーンの左側側面には圧縮された流体の圧力が作用しており、ベーンに時計回りのモーメントを与えている。このモーメントは、ベーン溝の右側摺接面とベーンの右側摺接面とに過剰な押圧力を発生させている。このため、ベーンにはさらなる大きなモーメントが作用し、過剰な押圧力を及ぼしている。そして、特開2004-257357号公報の図2にみられる形態において、ベーン摺接面はベーン溝の一部によって、この大きなモーメントを支持しながら摺動しており、ベーン溝の右側摺接面とベーンの右側摺接面は過剰な力で押圧されながら摺動している。 On the other hand, the pressure of the compressed fluid is acting on the left side surface of the vane facing the working chamber in the compression stroke, giving a clockwise moment to the vane. This moment generates excessive pressing force on the right sliding surface of the vane groove and the right sliding surface of the vane. For this reason, an even larger moment acts on the vane and exerts an excessive pressing force. In the form shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2004-257357, the vane sliding contact surface slides while supporting this large moment by a part of the vane groove, and the right sliding contact surface of the vane groove. The right sliding surface of the vane slides while being pressed with an excessive force.
 また、入れ子式のこれらのベーンは、ロータが回転駆動される速度に従う遠心力によって、内周面とベーン先端部とで形成される作動室のシールに必要とされる押圧力が賄われている。自動車のブレーキブースタ等に使用されるベーン式バキュームポンプは、通常、カムシャフトに連結されロータの回転速度はエンジンの回転速度に比例する。したがって、エンジンアイドリング時においても作動室に十分な負圧を発生させるのに必要な摺接力、すなわち遠心力が得られるようにベーンの質量が設定されている。このためエンジンが通常の回転速度(高速)で運転される状態におけるそれぞれのベーンには過剰な遠心力、すなわち過剰な押圧力が発生している。 In addition, these telescopic vanes are provided with a pressing force required for sealing the working chamber formed by the inner peripheral surface and the vane tip by centrifugal force according to the speed at which the rotor is rotationally driven. . A vane type vacuum pump used for an automobile brake booster or the like is usually connected to a camshaft, and the rotational speed of the rotor is proportional to the rotational speed of the engine. Accordingly, the mass of the vane is set so that a sliding contact force necessary for generating a sufficient negative pressure in the working chamber, that is, a centrifugal force, can be obtained even during engine idling. Therefore, an excessive centrifugal force, that is, an excessive pressing force is generated in each vane in a state where the engine is operated at a normal rotation speed (high speed).
 さらに、ポンプ室を円形に形成することにより内周面の加工精度の向上および製造コストの軽減が実現されるものの、ベーン本体とベーン本体間の摺動が増加すると共に、ベーン本体部の(18・・・凹部)とベーン本体の(20b・・・元部)との間に形成される圧力室によって、圧縮と膨張が繰り返される作動流体によるエネルギーの浪費と、これらの作動流体によってベーン本体のスムーズな出没動作が妨げられベーンジャンピングの発生によるポンプ効率の低下等に伴う入力損失および上記摺動部の早期摩耗などが懸念される。 Further, although the processing accuracy of the inner peripheral surface is improved and the manufacturing cost is reduced by forming the pump chamber in a circular shape, sliding between the vane main body and the vane main body increases, and (18 ... the waste of energy by the working fluid that is repeatedly compressed and expanded by the pressure chamber formed between the recess) and the vane body (20b ... the base), and these working fluids cause the vane body to There is a concern about the input loss accompanying the decrease in pump efficiency due to the occurrence of vane jumping and the early wear of the sliding portion due to the hindrance to smooth intrusion operation.
特開2004-257357号公報JP 2004-257357 A
 本発明は、上記事情に鑑みてなされたもので、シリンダ内周面とベーン先端摺接面およびベーンガイド摺接面とベーン側面摺接面との摺動抵抗の軽減を図り、入力効率と耐久性を高めようとする容積型流体機械の提供を課題とする。 The present invention has been made in view of the above circumstances, and reduces the sliding resistance between the cylinder inner peripheral surface and the vane tip sliding contact surface, and the vane guide sliding contact surface and the vane side sliding contact surface, thereby improving the input efficiency and durability. An object of the present invention is to provide a positive displacement fluid machine that is intended to enhance the performance.
 前記課題を解決すべく、本発明の容積型流体機械は、略円形の内周面11を有し吸入口12と吐出口13を配設したシリンダ1と、前記シリンダ1の内周面11内の偏心した位置で回転するロータ2と、前記ロータ2内にロータ2の径方向へ往復摺動可能に収容されたベーン3を備え、回転するロータ2の周面から前記ベーン3の一端および他端が突出してシリンダ1の内周面11内を複数の作動室R1,R2,R3に区画するものであって、以下(1)~(7)の特徴を備える。 In order to solve the above problems, a positive displacement fluid machine according to the present invention includes a cylinder 1 having a substantially circular inner peripheral surface 11 and provided with a suction port 12 and a discharge port 13, and an inner peripheral surface 11 of the cylinder 1. A rotor 2 that rotates at an eccentric position, and a vane 3 that is housed in the rotor 2 so as to be reciprocally slidable in the radial direction of the rotor 2, and one end of the vane 3 and the like from the peripheral surface of the rotating rotor 2 The end protrudes to divide the inner peripheral surface 11 of the cylinder 1 into a plurality of working chambers R1, R2, and R3, and has the following features (1) to (7).
 (1)上記容積型流体機械において、前記ベーン3は、シリンダ1の内周面11への摺接部31a,31b,31c,31dを有したプレート状の第1ベーン3Aおよび第2ベーン3Bを、それぞれ前記一端および他端側に備え、これら第1ベーン3Aおよび第2ベーン3Bはそれぞれ、ロータ2内に備えた第1弾性材4A、第2弾性材4Bによって、各ベーンの前記プレート側面を該側面からずらした方向に弾性支持され、ロータ2の停止時には、前記第1弾性材4A、第2弾性材4Bがそれぞれ第1ベーン3Aおよび第2ベーン3Bをロータ2の径内方に引き寄せることで前記摺接部31a,31b,31c,31dをシリンダ1の内周面11から離間させ、ロータ2の回転時には、前記第1弾性材4A、第2弾性材4Bがそれぞれ、シリンダ1の内周面11に摺接した第1ベーン3Aおよび第2ベーン3Bをロータ2の径内方に引き戻す方向、およびベーン3によって区画される作動室R1,R2,R3間の圧力差に基づく第1ベーン3Aおよび第2ベーン3Bへのモーメントを打ち消す方向の付勢力を付与することを特徴とする。 (1) In the positive displacement fluid machine, the vane 3 includes plate-shaped first vane 3A and second vane 3B having sliding contact portions 31a, 31b, 31c, and 31d with respect to the inner peripheral surface 11 of the cylinder 1. The first vane 3A and the second vane 3B are provided at the one end and the other end, respectively, and the plate side surface of each vane is provided by the first elastic member 4A and the second elastic member 4B provided in the rotor 2, respectively. The first elastic member 4A and the second elastic member 4B draw the first vane 3A and the second vane 3B toward the inner diameter of the rotor 2 when the rotor 2 is stopped. The sliding contact portions 31a, 31b, 31c, 31d are separated from the inner peripheral surface 11 of the cylinder 1, and when the rotor 2 rotates, the first elastic material 4A and the second elastic material 4B are respectively The direction in which the first vane 3A and the second vane 3B slidably in contact with the inner peripheral surface 11 of the Linda 1 are pulled back inwardly of the rotor 2 and the pressure difference between the working chambers R1, R2, and R3 partitioned by the vane 3 A biasing force in a direction to cancel the moment to the first vane 3A and the second vane 3B is applied.
 上記(1)の発明によれば、ベーン3の先端は、ロータ停止時には内周面から離間しており、ロータ回転の始動後、回転によって生じた遠心力により内周面に接触する。このため始動時のロータの回転トルクが小さくてすみ、余分なエネルギーの消費を防ぐことができる。また第1、第2弾性材は、第1ベーン3A、第2ベーン3Bの各プレート側面を該側面からずらした方向に弾性支持することで、第1、第2ベーン3A,3Bのそれぞれをロータ2の径内方に引き戻して摺接部31a,31b,31c,31dの内周面11への過剰な摺接力を抑制することができる。また、隣接する作動室(R1,R2,R3)間の圧力差に基づくモーメントを打ち消す作用および、圧力差によって生じる第1、第2ベーン3A,3Bの各側面とロータ2に備えるベーンガイドであるガイド21a,21b,21c,21dの接触部とに発生する過剰な押圧力とを抑制する作用によって、前記摺接部と接触部における摺動抵抗および磨耗を抑制することができる。 According to the invention of (1) above, the tip of the vane 3 is separated from the inner peripheral surface when the rotor is stopped, and comes into contact with the inner peripheral surface by the centrifugal force generated by the rotation after the rotor rotation is started. For this reason, the rotational torque of the rotor at the start can be reduced, and consumption of excess energy can be prevented. Further, the first and second elastic members elastically support the plate side surfaces of the first vane 3A and the second vane 3B in a direction shifted from the side surfaces, so that each of the first and second vanes 3A and 3B is a rotor. It is possible to suppress the excessive sliding contact force to the inner peripheral surface 11 of the sliding contact portions 31a, 31b, 31c, and 31d by pulling back inwardly in the diameter of 2. Further, the vane guide is provided on the rotor 2 and the side surfaces of the first and second vanes 3A and 3B generated by the pressure difference and the action of canceling out the moment based on the pressure difference between the adjacent working chambers (R1, R2, R3). The sliding resistance and wear at the sliding contact portion and the contact portion can be suppressed by the action of suppressing the excessive pressing force generated at the contact portion of the guides 21a, 21b, 21c, and 21d.
 (2)上記(1)記載の容積型流体機械において、前記第1ベーン3Aおよび第2ベーン3Bはそれぞれ、先端側の摺接部31a,31b,31c,31dと基端側の対向部33b,33cとを有し、前記摺接部31a,31b,31c,31dを有する先端側が、前記対向部33b,33cを有する基端側よりも大きい質量に形成されることが好ましい。 (2) In the positive displacement fluid machine described in (1) above, the first vane 3A and the second vane 3B are respectively provided with sliding contact portions 31a, 31b, 31c, 31d on the distal end side and opposed portions 33b on the proximal end side. It is preferable that a distal end side having the sliding contact portions 31a, 31b, 31c, and 31d is formed to have a larger mass than a proximal end side having the facing portions 33b and 33c.
 第1ベーン3Aおよび第2ベーン3Bを、ロータ2から突出する先端部寄りに偏質量形成することで、第1ベーン3A、第2ベーン3Bそれぞれに係る遠心力の作用を効率的に作用させ、ロータ2の回転数に応じてベーン3と内周面への接触圧をより大きくすることで、隣接する作動室間の機密性を高めることができる。 By forming the first vane 3A and the second vane 3B near the front end protruding from the rotor 2, the centrifugal force acting on each of the first vane 3A and the second vane 3B can be efficiently applied, By increasing the contact pressure between the vane 3 and the inner peripheral surface in accordance with the number of rotations of the rotor 2, confidentiality between adjacent working chambers can be enhanced.
 (3)上記(1)または(2)記載の容積型流体機械において、ベーン3の形状として、前記第1ベーン3Aおよび第2ベーン3Bはそれぞれ、プレート状部の先端側に、少なくとも一方のプレート側面へ側方膨出した摺接部31a,31dが形成されてなり、前記摺接部31a,31d同士が離間しかつ膨出方向のプレート内側面同士が対向するように、第1ベーン3Aと第2ベーン3Bが重ね合わせて配置され、前記各プレート内側面が相互にロータ2の径方向へ往復摺動可能に構成されることが好ましい。 (3) In the positive displacement fluid machine described in (1) or (2) above, as the shape of the vane 3, each of the first vane 3A and the second vane 3B is provided on at least one plate on the tip side of the plate-like portion. The first vane 3A and the first vane 3A are formed so that the sliding contact portions 31a and 31d bulging laterally to the side surface are formed, the sliding contact portions 31a and 31d are separated from each other, and the plate inner side surfaces in the bulging direction face each other. It is preferable that the second vanes 3B are arranged so as to overlap each other, and the inner surfaces of the plates are configured to be able to reciprocate in the radial direction of the rotor 2.
 上記(3)の発明によれば、第1ベーン3A、第2ベーン3B同士を往復摺動可能に組み合わせて構成することで、摺接部31a,31b,31c,31dのロータ2からの突出入機構の機械的安定性、耐久性に優れた構造となる。 According to the invention of (3) above, the first vane 3A and the second vane 3B are combined so as to be reciprocally slidable so that the sliding contact portions 31a, 31b, 31c and 31d protrude from the rotor 2 The structure has excellent mechanical stability and durability.
 (4)上記(3)記載の容積型流体機械において、ロータ2は中空部を有し、第1弾性材4Aおよび第2弾性材4Bは、前記ロータ2の中空部内に対向配設された牽引バネからなると共に、牽引バネの各一端が、第1ベーン3A、第2ベーン3Bの側面に各々形成された2つのベーン側係止部34a,34Bにそれぞれ係止され、牽引バネの各他端が、ロータ2内に形成された2つのロータ側係止部24a,24Bにそれぞれ係止されることが好ましい。 (4) In the positive displacement fluid machine according to the above (3), the rotor 2 has a hollow portion, and the first elastic member 4A and the second elastic member 4B are tractions disposed opposite to each other in the hollow portion of the rotor 2. Each of the traction springs is engaged with two vane side locking portions 34a and 34B formed on the side surfaces of the first vane 3A and the second vane 3B, respectively. However, it is preferable to be respectively locked by the two rotor side locking portions 24a and 24B formed in the rotor 2.
 上記(4)の発明によれば、第1弾性材4Aおよび第2弾性材4Bとして、係止孔と固定部へ両端固定する牽引バネを使用することで、簡易な機構によって弾性支持構造を得ると共に、バネの伸長角度や伸長度の加減により容易に弾性反力の作用方向や大きさを調整することができる。特に他端側へ重心偏向させたコイルばねを使用することで、コイル部分自体にロータ2の径外方へ向かう遠心力が作用し、回転速度に応じたバネ反力を第1弾性材および第2弾性材4Bに効率的に付加することができる。 According to the invention of (4) above, the elastic support structure is obtained by a simple mechanism by using the pulling springs that are fixed to both ends of the locking holes and the fixing portions as the first elastic material 4A and the second elastic material 4B. At the same time, the direction and size of the elastic reaction force can be easily adjusted by adjusting the extension angle and extension degree of the spring. In particular, by using a coil spring whose center of gravity is deflected to the other end side, a centrifugal force acting outward of the diameter of the rotor 2 acts on the coil portion itself, and a spring reaction force corresponding to the rotational speed is applied to the first elastic member and the first elastic member. 2 can be efficiently added to the elastic material 4B.
 (5)上記(4)記載の容積型流体機械において、第1ベーン3Aおよび第2ベーン3Bには、プレート状部の各々を厚さ方向に貫通する長孔35a,35bが形成されると共に、重ね合わされて対向するプレート内側面であってこの長孔35a,35bの先側にベーン側係止部34B,34aが各々形成され、ロータ2内には、第1ベーン3Aおよび第2ベーン3Bの重ね合わされたプレート状部外方であって前記長孔35a,35bの先側にロータ側係止部24B,24aが各々形成され、第1弾性材4Aおよび第2弾性材4Bは、牽引バネの各一端が、前記長孔35b,35aをそれぞれ挿通してその先側にある前記ベーン側係止部34B,34aにそれぞれ係止されると共に、牽引バネの各他端が、ロータ2内の前記ロータ側係止部24a,24Bにそれぞれ係止されることで、ベーン3の往復摺動方向に対し傾斜して配置されることが好ましい。これは後述の実施例1のベーン付勢形態に相当する。 (5) In the positive displacement fluid machine described in (4) above, the first vane 3A and the second vane 3B are provided with elongated holes 35a and 35b penetrating each of the plate-like portions in the thickness direction, Vane side locking portions 34B and 34a are formed on the inner side surfaces of the plates that are overlapped and opposed to each other, and on the front side of the long holes 35a and 35b, and in the rotor 2, the first vane 3A and the second vane 3B are provided. Rotor side locking portions 24B and 24a are respectively formed on the outer sides of the overlapped plate-like portions and on the front sides of the long holes 35a and 35b. The first elastic member 4A and the second elastic member 4B are made of traction springs. Each one end is inserted into each of the elongated holes 35b and 35a and locked to the vane side locking portions 34B and 34a on the front side thereof, and each other end of the traction spring is set in the rotor 2 in the rotor 2 Rotor side locking 24a, the respective engaging locked is possible to 24B, it is preferably arranged to be inclined with respect to the reciprocating sliding direction of the vane 3. This corresponds to the vane energizing form of Example 1 described later.
 上記(5)の発明によれば、第1弾性材4A、第2弾性材4Bの各一端を他のベーン3B,3Aへ対向する一のベーン3A,3Bの内側面に設け、他のベーン3B,3Aの貫通孔35内を挿通して係止接続することで、牽引弾性力の作用が対向するベーン3A,3Bのプレート状部同士を引き寄せるように作用することで、ベーン3全体の挙動が安定する。また、ベーンの往復摺動方向に対して斜め方向に配置しているため、直交させて配置する場合と比べて第1弾性材4A、第2弾性材4Bの距離が増加し、大きな牽引力を得ることが可能となる。 According to the invention of (5) above, one end of each of the first elastic member 4A and the second elastic member 4B is provided on the inner surface of one vane 3A, 3B facing the other vane 3B, 3A, and the other vane 3B. , 3A is inserted through the through-hole 35 and locked and connected, so that the action of the traction elastic force acts so as to draw the opposing plate-like portions of the vanes 3A, 3B, so that the behavior of the vane 3 as a whole is improved. Stabilize. Moreover, since it arrange | positions in the diagonal direction with respect to the reciprocating sliding direction of a vane, compared with the case where it arranges orthogonally, the distance of 4 A of 1st elastic materials and the 2nd elastic material 4B increases, and a big tractive force is obtained. It becomes possible.
 (6)或いは上記(4)記載の容積型流体機械において、第1ベーン3Aおよび第2ベーン3Bには、重ね合わされたプレート状部の各外側面にベーン側係止部34a,34Bが各々形成され、ロータ2内には、第1ベーン3Aおよび第2ベーン3Bの重ね合わされたプレート状部外方であって前記ベーン側係止部34a,34bよりもずれた位置にロータ側係止部24a,24bが各々形成され、第1弾性材4Aおよび第2弾性材4Bは、牽引バネの各一端が、重ね合わされたプレート状部の各外側面の前記ベーン側係止部34a,34bにそれぞれ係止されると共に、牽引バネの各他端が、ロータ2内の前記ロータ側係止部24a,24bにそれぞれ係止されることで、ベーン3の往復摺動方向に対し傾斜して配置されることが好ましい。これは後述の実施例2のベーン付勢形態に相当する。 In the positive displacement fluid machine described in (6) or (4) above, the first vane 3A and the second vane 3B are formed with vane side locking portions 34a and 34B on the outer surfaces of the overlapped plate-like portions, respectively. In the rotor 2, the rotor side locking portion 24a is located outside the plate-like portion where the first vane 3A and the second vane 3B are overlapped and is displaced from the vane side locking portions 34a, 34b. , 24b are formed, and the first elastic member 4A and the second elastic member 4B are respectively engaged with the vane side locking portions 34a, 34b of the outer surfaces of the overlapped plate-like portions. At the same time, the other ends of the traction springs are respectively engaged with the rotor side locking portions 24a and 24b in the rotor 2 so as to be inclined with respect to the reciprocating sliding direction of the vane 3. Preferably . This corresponds to a vane energizing form of Example 2 described later.
 上記(6)の発明によれば、第1弾性材4A、第2弾性材4Bの各一端を、互いに離反方向を向く第1ベーン3A、第2ベーン3Bそれぞれの外側面に係止接続することで、牽引弾性力の作用が対向するベーン3A、3Bのプレート状部同士を斜めに引き離すように作用することで、ベーン3への牽引弾性力を第1ベーン3A、第2ベーン3Bそれぞれの突出量に応じて作用させることができる。また第1弾性材4A、第2弾性材4Bをそれぞれ斜めに配置することで、第1ベーン3A、第2ベーン3Bに対して直交させて配置する場合と比べて第1弾性材4A、第2弾性材4Bの距離が増加し、大きな牽引力を得ることが可能となる。 According to invention of said (6), each end of 1st elastic material 4A and 2nd elastic material 4B is latched and connected to the outer surface of each of 1st vane 3A and 2nd vane 3B which face a mutually separated direction. Thus, the traction elastic force acts so that the plate-like portions of the opposing vanes 3A and 3B are diagonally separated from each other, whereby the traction elastic force to the vane 3 is projected from the first vane 3A and the second vane 3B. It can act according to the amount. Further, by arranging the first elastic material 4A and the second elastic material 4B obliquely, the first elastic material 4A and the second elastic material 4A and the second elastic material 4A and the second elastic material 4B can be compared with the case where they are arranged orthogonal to the first vane 3A and the second vane 3B. The distance of the elastic material 4B increases, and a large traction force can be obtained.
 (7)或いは上記(4)記載の容積型流体機械において、第1ベーン3Aおよび第2ベーン3Bには、プレート状部の各々を厚さ方向に貫通する長孔38a,38bが形成されると共に、重ね合わされて対向するプレート内側面であってこの長孔38a,38bの先側にベーン側係止部34B,34aが各々形成され、前記長孔38b,38aに断面略L字状の支持部材39a,39bが挿通され、各支持部材39a,39bの挿通された一端部が、プレート内側面の前記ベーン側係止部34a,34Bにそれぞれ挿入固定され、ロータ2内には、第1ベーン3Aおよび第2ベーン3Bの重ね合わされたプレート状部外方であって前記各支持部材39a,39bの他端部側にロータ側係止部24a,24Bが各々形成され、第1弾性材4Aおよび第2弾性材4Bは、牽引バネの各一端が、前記各支持部材39a,39bの他端部にそれぞれ係止されると共に、牽引バネの各他端が、ロータ2内の前記ロータ側係止部24a,24Bにそれぞれ係止されることで、ベーン3の往復摺動方向に対して並行配置されることが好ましい。これは後述の実施例3のベーン付勢形態に相当する。 In the positive displacement fluid machine according to (7) or (4), the first vane 3A and the second vane 3B are provided with elongated holes 38a and 38b penetrating each of the plate-like portions in the thickness direction. The vane side locking portions 34B and 34a are respectively formed on the inner surfaces of the plates that are overlapped and opposed to each other on the front side of the long holes 38a and 38b, and the long holes 38b and 38a have a substantially L-shaped cross section. 39a and 39b are inserted, and one end portions of the support members 39a and 39b are inserted and fixed to the vane side locking portions 34a and 34B on the inner surface of the plate, respectively. In the rotor 2, the first vane 3A is inserted. And the rotor side latching | locking part 24a, 24B is each formed in the other end part side of each said supporting member 39a, 39b outside the plate-shaped part on which the 2nd vane 3B was piled up, and 4A of 1st elastic members In the second elastic member 4B, each end of the traction spring is locked to the other end of each of the support members 39a and 39b, and each other end of the traction spring is connected to the rotor side engagement in the rotor 2. It is preferable to be arranged in parallel with the reciprocating sliding direction of the vane 3 by being locked to the stop portions 24a and 24B. This corresponds to a vane energizing form of Example 3 described later.
 上記(7)の発明によれば、第1弾性材4A、第2弾性材4Bの牽引弾性力がベーン3全体の往復摺動方向と並行して作用することで、ロータ2から突出した第1、第2ベーン3A,3Bを引き戻すように安定して作用する。また第1弾性材4A、第2弾性材4Bを断面略L字状の支持部材39a,39bを介して配置することで、第1、第2ベーン3A,3Bをプレート側面方向により大きな力で付勢することができる。 According to the invention of the above (7), the first elastic member 4A and the second elastic member 4B have the pulling elastic force acting in parallel with the reciprocating sliding direction of the entire vane 3, thereby causing the first protruding from the rotor 2. The second vanes 3A and 3B act stably so as to pull back. Further, by arranging the first elastic member 4A and the second elastic member 4B via the support members 39a and 39b having a substantially L-shaped cross section, the first and second vanes 3A and 3B are attached with a greater force in the plate side surface direction. You can
 上記発明によれば、ロータ2の回転に伴う遠心力の大きさにしたがって第1ベーン3Aおよび第2ベーン3Bに備える摺接部31a,31b,31c,31dはシリンダ内周面11に離間、摺接する。これにより、ロータ2の始動トルクは軽減される。さらに、ロータ2の回転時には、第1ベーン3Aおよび第2ベーン3Bに作用する遠心力の大きさと、第1ベーン3Aおよび第2ベーン3Bの内周面11側への突出量に干渉されることなく、シリンダ内周面11と摺接部31a,31b,31c,31dとの摺接圧力が常に良好な状態に保たれるため、作動室からの流体漏洩と、ベーンチャタリングの発生を抑制してポンプ効率を高め、かつ、ベーン軸からずらした位置に配置される第1弾性材4Aおよび第2弾性材4Bによって牽引される第1ベーン3Aおよび第2ベーン3Bの側部摺接面とガイド21a,21b,21c,21dとの摺動抵抗が軽減され、これら摺動部の磨耗とエネルギー損失が抑制される。  According to the above invention, the sliding contact portions 31a, 31b, 31c, 31d provided in the first vane 3A and the second vane 3B are separated from the cylinder inner peripheral surface 11 according to the magnitude of the centrifugal force accompanying the rotation of the rotor 2, Touch. Thereby, the starting torque of the rotor 2 is reduced. Further, when the rotor 2 is rotated, it is interfered with the magnitude of the centrifugal force acting on the first vane 3A and the second vane 3B and the amount of protrusion of the first vane 3A and the second vane 3B toward the inner peripheral surface 11 side. Since the sliding contact pressure between the cylinder inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, and 31d is always kept in a good state, the occurrence of fluid leakage from the working chamber and the occurrence of vane chattering is suppressed. Side sliding contact surfaces of the first vane 3A and the second vane 3B pulled by the first elastic material 4A and the second elastic material 4B arranged at positions shifted from the vane shaft and the guide 21a. , 21b, 21c, and 21d are reduced, and wear and energy loss of these sliding portions are suppressed.
図1は、実施例1の容積型流体機械Pの軸縦断面図である。FIG. 1 is an axial longitudinal sectional view of a positive displacement fluid machine P according to a first embodiment. 図2は、実施例1の容積型流体機械Pの斜視図である。FIG. 2 is a perspective view of the positive displacement fluid machine P according to the first embodiment. 図3は、実施例1の容積型流体機械Pの分解斜視図である。FIG. 3 is an exploded perspective view of the positive displacement fluid machine P according to the first embodiment. 図4は、図1のA-A線に沿う断面図である。4 is a cross-sectional view taken along line AA in FIG. 図5は、図1のB-B線に沿う断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 図6は、図5の状態からロータが時計回りに45°回動した始動状態における実施例1の容積型流体機械Pの軸横断面図である。FIG. 6 is an axial cross-sectional view of the positive displacement fluid machine P according to the first embodiment in a starting state in which the rotor is rotated 45 ° clockwise from the state of FIG. 5. 図7は、図5の状態からロータが時計回りに90°回動した運転状態における実施例1の容積型流体機械Pの軸横断面図である。FIG. 7 is an axial cross-sectional view of the positive displacement fluid machine P of Example 1 in an operation state in which the rotor is rotated 90 ° clockwise from the state of FIG. 5. 図8は、実施例2の容積型流体機械Pのベーン部および弾性支持材の分解斜視図である。FIG. 8 is an exploded perspective view of the vane portion and the elastic support member of the positive displacement fluid machine P according to the second embodiment. 図9は、実施例2の容積型流体機械Pのロータ停止状態における軸横断面図である。FIG. 9 is an axial cross-sectional view of the positive displacement fluid machine P according to the second embodiment when the rotor is stopped. 図10は、図9の状態からロータが時計回りに90°回動した始動状態における実施例2の容積型流体機械Pの軸横断面図である。FIG. 10 is an axial cross-sectional view of the positive displacement fluid machine P according to the second embodiment in a starting state in which the rotor is rotated 90 ° clockwise from the state of FIG. 9. 図11は、図9の状態からロータが90°回動した運転状態における容積型流体機械Pの軸横断面図である。FIG. 11 is an axial cross-sectional view of the positive displacement fluid machine P in an operation state in which the rotor is rotated 90 ° from the state of FIG. 9. 図12は、図9の状態からロータが時計回りに360°回動した運転状態における容積型流体機械Pの軸横断面図である。FIG. 12 is an axial cross-sectional view of the positive displacement fluid machine P in an operating state in which the rotor is rotated 360 ° clockwise from the state of FIG. 9. 図13は、実施例3の容積型流体装置Pの低速運転状態における軸横断面図である。FIG. 13 is an axial cross-sectional view of the positive displacement fluid device P of the third embodiment in a low speed operation state. 図14は、実施例3の弾性支持材をねじりバネとし、ロータを大型化した容積型流体機械Pの低速運転状態における軸横断面図である。FIG. 14 is an axial cross-sectional view of the positive displacement fluid machine P in which the elastic support material of Example 3 is a torsion spring and the rotor is enlarged in a low speed operation state.
   1  シリンダ
  11  内周面
  12  吸入口
  12a 吸入溝
  13  吐出口
  13a 吐出溝
  14  フロントプレート
  15  リアプレート 
  16  逆止弁
  17a,17b  ベアリング
  18  リブプレート
  19,37  ボルト
   2  ロータ
  20  駆動軸
  21a,21b,21c,21d  ガイド
  22  カップリング
  23  開口部
  24a,24B  ロータ側係止部 または 係止孔
   3  ベーン
   3A 第1ベーン
   3B 第2ベーン
  31a,31b,31c,31d  摺接部
  32  中空部
  33a,33b,33c,33d  対向部
  34a,34B  ベーン側係止部 または 係止孔
  35a, 35b  長孔
  39a,39b  支持部材
   4A 第1弾性材
   4B 第2弾性材
  R1  第1作動室
  R2  第2作動室
  R3  第3作動室
  C   中心線
  D1,D2  隙間
  Lo  潤滑油
  Ll  油層
 
1 Cylinder 11 Inner peripheral surface 12 Suction port 12a Suction groove 13 Discharge port 13a Discharge groove 14 Front plate 15 Rear plate
16 Check valve 17a, 17b Bearing 18 Rib plate 19, 37 Bolt 2 Rotor 20 Drive shaft 21a, 21b, 21c, 21d Guide 22 Coupling 23 Opening 24a, 24B Rotor side locking part or locking hole 3 Vane 3A 1st 1 vane 3B second vane 31a, 31b, 31c, 31d sliding contact portion 32 hollow portion 33a, 33b, 33c, 33d opposing portion 34a, 34B vane side locking portion or locking hole 35a, 35b long hole 39a, 39b support member 4A 1st elastic material 4B 2nd elastic material R1 1st working chamber R2 2nd working chamber R3 3rd working chamber C Center line D1, D2 Crevice Lo Lubricating oil Ll Oil layer
 以下、本発明の容積型流体機械Pを、複数の実施例により図面を参照しながら説明する。なお、複数の実施例において、先の実施例と後の実施例とで実質的に同一の部材、或いは実質的に同一の部分があるときには、互いに同一の符号を用い後の実施例において詳細な説明は省略することとする。 Hereinafter, the positive displacement fluid machine P of the present invention will be described with reference to the drawings by a plurality of embodiments. In addition, in a plurality of embodiments, when there are substantially the same members or substantially the same parts in the previous embodiment and the later embodiments, the same reference numerals are used to indicate details in the later embodiments. The description will be omitted.
 「実施例1の構成」
 図1~図7は本発明の実施例1を示し、例えば燃料電池のセルに空気を供給するコンプレッサーや冷媒ガス等の圧縮性流体を圧縮する場合に用いられる容積型流体機械Pを示すもので、シリンダ1には吸入口12および吐出口13が配置される。吸入口12には吸入口12と連通する吸入溝12aが形成され、吐出口13内には逆止弁16が配置される。そして、シリンダ1の前方側面を塞ぐようにシリンダ1と一体にフロンとプレート14が形成され、シリンダ1の後方にはリアプレート15がボルト19により固着される。
“Configuration of Example 1”
FIGS. 1 to 7 show a first embodiment of the present invention, which shows a positive displacement fluid machine P used when compressing a compressible fluid such as a compressor or refrigerant gas for supplying air to a cell of a fuel cell, for example. The cylinder 1 is provided with a suction port 12 and a discharge port 13. A suction groove 12 a communicating with the suction port 12 is formed in the suction port 12, and a check valve 16 is disposed in the discharge port 13. Then, a front plate and a plate 14 are formed integrally with the cylinder 1 so as to close the front side surface of the cylinder 1, and a rear plate 15 is fixed to the rear of the cylinder 1 with a bolt 19.
 フロントプレート14およびリアプレート15の偏心位置にそれぞれ嵌合されるベアリング17a,17bを介して、ロータ2と一体に形成される駆動軸20の前方端部の内周部に、図示しないエンジン或いはモータの出力軸を連結される例えばスプラインなどのカップリング22を備え、図2,図3および図5にみられるように中空構造のロータ2の一部を径方向へ切り欠くように形成され、ベーン3を摺動自在に支持するガイド21a,21b,21c,21dを備えるロータ2と一体構造の駆動軸20の両端部をベアリング17a,17bに嵌合され回転自在に支持される。このようにロータ2を中空に形成したことにより軽量化されたロータ2の回転に伴う慣性質量が軽減され、原動機始動時の回転慣性負荷が低減され、原動機の小型化および容積型流体機械Pの軽量化が図られると共に、後述する支持部材39a,39b或いは、第一弾性材4Aおよび第二弾性材4Bを収容するスペースが確保される。 An engine or motor (not shown) is provided on the inner peripheral portion of the front end portion of the drive shaft 20 formed integrally with the rotor 2 via bearings 17a and 17b fitted to the eccentric positions of the front plate 14 and the rear plate 15, respectively. 2, 3, and 5, and is formed so that a part of the hollow rotor 2 is cut out in the radial direction as shown in FIGS. 2, 3, and 5. Both ends of the drive shaft 20 having a structure integrated with the rotor 2 including guides 21a, 21b, 21c, and 21d for slidably supporting the bearing 3 are fitted into bearings 17a and 17b and are rotatably supported. Since the rotor 2 is formed hollow in this way, the inertial mass associated with the rotation of the rotor 2 reduced in weight is reduced, the rotational inertia load at the start of the prime mover is reduced, the prime mover is downsized, and the positive displacement fluid machine P The weight is reduced, and a space for accommodating support members 39a and 39b, which will be described later, or the first elastic material 4A and the second elastic material 4B is secured.
 図5にみられる形態において、ベーン3は、第1ベーン3Aおよび第2ベーン3Bとで構成され、それぞれ矩形のプレートからなりシリンダ内周面11に先端側を摺接させてロータ2の回転位相に応じて第1作動室R1,第2作動室R2,第3作動室R3に区画する。図5の下方に示す拡大図にみられるように、第1ベーン3Aは、基端部に第1作動室R1側に向く傾斜面からなる対向部33cを有し、先端側に第3作動室R3側に向く傾斜面からなる対向部33aを備え、先端部に円弧状の摺接面31a,31bが形成されている。そして、第2ベーン3Bは、基端部に第2作動室R2側に向く傾斜面からなる対向部33bを有し、先端側に第2作動室R2側に向く傾斜面からなる対向部33dを備え、先端部に円弧状の摺接部31c,31dが形成される。これらの第1ベーン3Aおよび第2ベーン3Bは互いに対向させ左右対称に重ね合せて配置される。対抗部33aと対向部33bおよび対向部33cと対向部33dとで形成される断面略V字状の溝開口部をロータ2の回転方向前方を開口部として配置される。そして、これら対向部33a,33b,33c,33dによって形成される断面略V字状の溝底部がロータ2の回転停止時には、第1ベーン3Aおよび第2ベーン3Bに遠心力が発生しておらず互いに牽引力が均衡する第一弾性材4Aおよび第二弾性材4Bの牽引力によりロー2の粗中心に引き寄せられ互いに当接部として機能する。これにより、図4に仮想線で示すようにベーン3のロータ2の中心を通る径方向、すなわち長手方向寸法は最縮小化され、図5にみられように内周面11と摺接部31a,31b,1c31dとの間には隙間D1,D2が形成される。 In the form seen in FIG. 5, the vane 3 is composed of a first vane 3 </ b> A and a second vane 3 </ b> B, each of which is made of a rectangular plate, and the rotational phase of the rotor 2 is brought into sliding contact with the cylinder inner peripheral surface 11. Accordingly, the first working chamber R1, the second working chamber R2, and the third working chamber R3 are partitioned. As seen in the enlarged view shown in the lower part of FIG. 5, the first vane 3A has a facing portion 33c formed of an inclined surface facing the first working chamber R1 side at the base end portion, and the third working chamber at the distal end side. An opposing portion 33a made of an inclined surface facing the R3 side is provided, and arc-shaped sliding contact surfaces 31a and 31b are formed at the tip portion. The second vane 3B has a facing portion 33b made of an inclined surface facing the second working chamber R2 at the base end portion, and a facing portion 33d made of an inclined surface facing the second working chamber R2 on the distal end side. And arcuate sliding contact portions 31c and 31d are formed at the tip. The first vane 3A and the second vane 3B are opposed to each other and are arranged so as to be symmetrical. A groove opening portion having a substantially V-shaped cross section formed by the facing portion 33a and the facing portion 33b, and the facing portion 33c and the facing portion 33d is disposed with the front in the rotational direction of the rotor 2 as the opening portion. Further, when the rotation of the rotor 2 is stopped at the bottom of the groove 2 formed by the facing portions 33a, 33b, 33c, and 33d, no centrifugal force is generated in the first vane 3A and the second vane 3B. The pulling force of the first elastic member 4A and the second elastic member 4B in which the pulling forces are balanced with each other attracts the rough center of the row 2 and functions as a contact portion. As a result, the radial direction passing through the center of the rotor 2 of the vane 3 as shown by the phantom line in FIG. 4, that is, the longitudinal dimension is minimized, and the inner peripheral surface 11 and the slidable contact portion 31a as shown in FIG. , 31b, 1c31d, gaps D1 and D2 are formed.
 図1および図5~図7にみられるように、第1ベーン3Aおよび第2ベーン3Bの基端部寄りの部分にはそれぞれ中空部32が形成される。これにより第1ベーン3Aおよび第2ベーン3Bの先端部側に重心が偏りこれらの第1ベーン3Aおよび第2ベーン3Bの先端側に確実にロータ2の径外方に向く遠心力を発生させる共に、第1ベーン3Aおよび第2ベーン3Bの軽量化が実現される。 As shown in FIG. 1 and FIGS. 5 to 7, hollow portions 32 are formed in the portions near the base end portions of the first vane 3A and the second vane 3B, respectively. As a result, the center of gravity is biased toward the front end portions of the first vane 3A and the second vane 3B, and a centrifugal force is reliably generated at the front end side of the first vane 3A and the second vane 3B. The weight reduction of the 1st vane 3A and the 2nd vane 3B is implement | achieved.
 さらに、このように軽量化された第1ベーン3Aおよび第2ベーン3Bによれば、後述するロータ2の回転に伴ってガイド21a,21b,21c,21d内を径方向へ往復摺動する第1ベーン3Aおよび第2ベーン3Bに作用する往復運動慣性が軽減され、ベーンジャンピングやチャタリングが抑制されるため、ロータ2のより高速運転が可能となり、第1作動室R1,第2作動室R2,第3作動室R3の仕事量が増加し容積型流体機械Pの小型軽量化が実現される。 Further, according to the first vane 3A and the second vane 3B thus reduced in weight, the first vane reciprocally slides in the guides 21a, 21b, 21c, and 21d in the radial direction as the rotor 2 described later rotates. The reciprocating inertia that acts on the vane 3A and the second vane 3B is reduced, and vane jumping and chattering are suppressed. Therefore, the rotor 2 can be operated at a higher speed, and the first working chamber R1, the second working chamber R2, and the second working chamber R2 The amount of work in the three working chambers R3 is increased, and the positive displacement fluid machine P is reduced in size and weight.
 図2~図7にみられるように第1弾性材4A(本実施例ではコイル牽引バネが採用されている)は、その一端部を第2ベーン4Bの表面から裏面に向け穿孔され径方向を長円とする楕円形の長孔からなる貫通孔35bに挿通され第一ベーン4Aに形成される係止孔34aに挿入固定される。図5~図7にみられるようにロータ2の回転方向後方から前方に向けて斜めに配置され、他方の端部をロータ2の周部から内部に向けて穿孔される係止孔24に挿入固定される。因みに、ロータ側係止孔24a,24Bは穴あけ加工後適宜材料により塞栓される。 As shown in FIGS. 2 to 7, the first elastic member 4A (in this embodiment, a coil traction spring is employed) is drilled at one end thereof from the front surface to the back surface of the second vane 4B. It is inserted into and fixed to a locking hole 34a formed in the first vane 4A through a through hole 35b made of an elliptical long hole that is an ellipse. As shown in FIGS. 5 to 7, the rotor 2 is disposed obliquely from the rear to the front in the rotational direction, and the other end is inserted into the locking hole 24 drilled from the periphery of the rotor 2 to the inside. Fixed. Incidentally, the rotor side locking holes 24a and 24B are properly plugged with a material after drilling.
 一方第2弾性材4Bは、その一端部を第1ベーン4Aの表面から裏面に向けて穿孔される径方向を長円とする楕円形の長孔からなる貫通孔35に挿通され第2ベーンBに形成される係止孔34Bに挿入固定され、ロータ2の回転方向後方から前方に向けて斜めに配置され、他方の端部をロータ2の周部から内部に向けて穿孔される係止孔24Bに挿入固定される。このように重ね合わせて配置される第1ベーン3Aおよび第2ベーン3Bのそれぞれは内側面を互いに摺接させながら所定距離の移動が許容されると共に重ね合わせて配置されるこれらの第1ベーン3A,第2ベーン3Bのそれぞれ手前側のベーンを貫通し先側のベーンに第1弾性材4Aおよび第2弾性材4Bのベーン側係止部を係止孔34a,34Bにそれぞれ固定される。これにより後述する第1作動室R1,第2作動室R2,第3作動室R3に作用する流体圧力および第1弾性材4Aおよび第2弾性材4Bの牽引力を互いに同時に2枚の第1ベーン3Aおよび第2ベーン3Bを牽引され、第1ベーン3A或いは第2ベーン3Bいずれか1枚のベーンを牽引される構成に比べ、ベーン3に作用する作動流体の圧力および内周面11と摺接部31a,31b,1c31dに発生する摺動抵抗による曲げ応力に対する強度が粗倍増する。さらに、図7の形態において第1作動室に臨む第2ベーン3Bに第2弾性材4Bの第2ベーン3B側係止部がロータ2の周部より外側に位置しており、第2ベーン3Bに最も大きな流体反力が作用する時、より応力の作用点に近まる位置を第2弾性材4Bによって第2ベーン3Bは牽引されている。これにより該図にみられるような形態を辿り作用するそれぞれの作動行程において、第1ベーン3Aおよび第2ベーン3Bへの曲げ応力は軽減される。 On the other hand, the second elastic member 4B is inserted into a through hole 35 having an elliptical long hole whose one end is drilled from the front surface to the back surface of the first vane 4A. The locking hole is inserted and fixed in the locking hole 34 </ b> B formed at an angle, is disposed obliquely from the rear to the front in the rotational direction of the rotor 2, and the other end is drilled from the peripheral part of the rotor 2 to the inside. 24B is inserted and fixed. Each of the first vane 3A and the second vane 3B arranged in such a manner is allowed to move a predetermined distance while the inner side surfaces are in sliding contact with each other, and the first vane 3A arranged in an overlapping manner is allowed. The vanes on the front side of the second vane 3B pass through the vanes on the near side, and the vane side locking portions of the first elastic material 4A and the second elastic material 4B are fixed to the locking holes 34a and 34B, respectively. As a result, the fluid pressure acting on the first working chamber R1, the second working chamber R2, and the third working chamber R3, which will be described later, and the traction force of the first elastic member 4A and the second elastic member 4B are simultaneously applied to the two first vanes 3A. Compared with the configuration in which the first vane 3A or the second vane 3B is pulled by the second vane 3B and the pressure of the working fluid acting on the vane 3, and the inner peripheral surface 11 and the sliding contact portion The strength against bending stress due to sliding resistance generated in 31a, 31b, and 1c31d is roughly doubled. Furthermore, the second vane 3B side locking portion of the second elastic member 4B is located outside the peripheral portion of the rotor 2 in the second vane 3B facing the first working chamber in the form of FIG. When the largest fluid reaction force acts on the second vane 3B, the second vane 3B is pulled by the second elastic member 4B at a position closer to the stress application point. As a result, the bending stress applied to the first vane 3A and the second vane 3B is reduced in each operation stroke that follows the form as seen in the figure.
 図4に示すものは、図1のA-A線に沿う断面図で、ロータ2と一体に形成されるリブプレート18である。このリブプレート18は、例えば特開2004-257357号公報にみられるようにベーン式バキュームポンプの軽量化と製造コストの削減を図るためロータ2の支持軸および支持部材を入力軸側にのみ配置される、所謂、片持式の片側支持構造に比べ、重量とコストは嵩むものの容積型流体機械Pの剛性を高めるため両支持形に形成したものであり、図1にみられるベアリング17a、17bにより回転自在に支持される駆動軸20を備え、ロータ2と一体に形成されるリブプレート18には、図1~図4にみられるように、開口部23が形成される。この開口部23は、ロータ2の内部空間に配置される第1、第2弾性材4A,4Bの着脱を実施する際の作業用の窓である。また、このリブプレート18をロータ2に着脱可能に構成することにより第1弾性材4A,第2弾性材4Bの着脱作業がさらに容易となる。 4 is a cross-sectional view taken along the line AA in FIG. 1, and is a rib plate 18 formed integrally with the rotor 2. For example, as disclosed in Japanese Patent Application Laid-Open No. 2004-257357, the rib plate 18 has the support shaft and the support member of the rotor 2 disposed only on the input shaft side in order to reduce the weight of the vane vacuum pump and reduce the manufacturing cost. Compared to a so-called cantilevered one-side support structure, the weight and cost are increased, but the two-supported type is formed to increase the rigidity of the positive displacement fluid machine P. The bearings 17a and 17b shown in FIG. As shown in FIGS. 1 to 4, an opening 23 is formed in a rib plate 18 that includes a drive shaft 20 that is rotatably supported and is formed integrally with the rotor 2. The opening 23 is a working window when the first and second elastic members 4A and 4B disposed in the internal space of the rotor 2 are attached and detached. Further, by configuring the rib plate 18 to be attachable to and detachable from the rotor 2, the work of attaching and detaching the first elastic material 4A and the second elastic material 4B is further facilitated.
 「実施例1の作用」
 次に、以上のように構成される実施例1の容積型流体機械Pの作用を説明する。図5にロータ2が停止した状態を示す。この状態では、第1ベーン4Aおよび第2ベーン4Bは弾性材4Aおよび弾性材4Bによってロータ2の中心部およびガイド21bと21dに向く方向にそれぞれ引き寄せられ、対向部33a,33b,33c,33dによって形成される断面略V字状の溝底部がそれぞれ当接しベーン3のロータ2の径方向寸法は最縮小化されると共に第1弾性材4Aと第2弾性材4Bが互いにロータ2の径内方に引き合う力が均衡され第1ベーン3Aおよび第2ベーン3Bはロータ2の中央寄りに位置している。これにより内周面11と摺接部31a,31b,31c,31dの間に隙間D1,D2が形成され、第1作動室R1,第2作動室R2,第3作動室R3は区画されず連通状態にある。
“Operation of Example 1”
Next, the operation of the positive displacement fluid machine P of the first embodiment configured as described above will be described. FIG. 5 shows a state where the rotor 2 is stopped. In this state, the first vane 4A and the second vane 4B are attracted in the direction toward the center of the rotor 2 and the guides 21b and 21d by the elastic material 4A and the elastic material 4B, respectively, and are opposed by the opposing portions 33a, 33b, 33c, and 33d. The formed groove bottoms having a substantially V-shaped cross section are in contact with each other, and the radial dimension of the rotor 2 of the vane 3 is minimized, and the first elastic member 4A and the second elastic member 4B are radially inward of the rotor 2. The first and second vanes 3 </ b> A and 3 </ b> B are positioned closer to the center of the rotor 2. As a result, gaps D1, D2 are formed between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d, and the first working chamber R1, the second working chamber R2, and the third working chamber R3 are not partitioned and communicate with each other. Is in a state.
 そして、この隙間D1,D2は、ロータ2の回転に伴う遠心力の大きさにしたがって拡大縮小する。ロータ2の始動初期における第1ベーン4Aおよび第2ベーン4Bに作用する遠心力の大きさよりも、第1弾性材4Aおよび第2弾性材4Bによって第1ベーン4Aおよび第2ベーン4Bをロータ2の中心に向けて引き寄せる牽引力がそれぞれ上回るように設定されており内周面11と摺接部33a,33bとの隙間D1,D2は確保されており、内周面11と摺接部33a,33b,33c,33dとの間に摺動抵抗は発生せず容積型流体機械Pの起動に伴うトルクを軽減できると共に、ロータ2の始動初期における作動室R1,R2,R3は、ポンプ作用を果たさないため第1ベーン3Aおよび第2ベーン3Bへの流体反力による負荷は小さい。したがって容積型流体機械Pの起動トルクを軽減でき原動機の小型化が実現される。 The gaps D1 and D2 are enlarged or reduced according to the magnitude of the centrifugal force accompanying the rotation of the rotor 2. Rather than the magnitude of the centrifugal force acting on the first vane 4A and the second vane 4B in the initial stage of the rotor 2, the first elastic member 4A and the second elastic member 4B allow the first vane 4A and the second vane 4B to The pulling force attracted toward the center is set so as to exceed each other, and the gaps D1, D2 between the inner peripheral surface 11 and the sliding contact portions 33a, 33b are secured, and the inner peripheral surface 11 and the sliding contact portions 33a, 33b, No sliding resistance is generated between the rotor 33c and 33d, the torque associated with the start-up of the positive displacement fluid machine P can be reduced, and the working chambers R1, R2, R3 in the initial stage of the rotor 2 do not perform the pumping action. The load caused by the fluid reaction force on the first vane 3A and the second vane 3B is small. Therefore, the starting torque of the positive displacement fluid machine P can be reduced, and the prime mover can be downsized.
 尚、実施例1における容積型流体機械Pの潤滑手段について述べていないが実施例1の容積型流体機械Pを構成する各摺動部材を自己潤滑性材料により構成されているものとし、それぞれの摺動部は油膜によって潤滑およびシールがなされているため、潤滑油(液体による)の攪拌抵抗は発生していないものとする。 Although the lubrication means of the positive displacement fluid machine P in the first embodiment is not described, it is assumed that each sliding member constituting the positive displacement fluid machine P in the first embodiment is made of a self-lubricating material. Since the sliding portion is lubricated and sealed with an oil film, it is assumed that no agitation resistance of lubricating oil (by liquid) is generated.
 図6にみられる形態において、例えば、図示しない電動モータの出力軸を、図1および図3にみられるカップリング22に連結されロータ2が所定の回転数で駆動され、図5の状態から駆動軸20を時計回りに45°回転させた状態を示し、第1ベーン4Aおよび第2ベーン4Bにそれぞれ遠心力が作用しガイド21a,21b,21c,21dに支持されてロータ2の径外方に突出し、摺接部31a,31b,31c,31dが内周面11に摺接しており第1作動室R1,第2作動室R2,第3作動室R3はそれぞれ区画され、ロータ2の回転に伴って、それぞれの第1作動室R1,第2作動室R2,第3作動室R3は、その容積を拡縮する。 6, for example, an output shaft of an electric motor (not shown) is connected to the coupling 22 shown in FIGS. 1 and 3, and the rotor 2 is driven at a predetermined rotational speed, and is driven from the state shown in FIG. 5. The shaft 20 is rotated clockwise by 45 °. Centrifugal force acts on the first vane 4A and the second vane 4B, respectively, and is supported by guides 21a, 21b, 21c, and 21d and moved outward of the rotor 2 from the diameter. The sliding contact portions 31a, 31b, 31c, and 31d are in sliding contact with the inner peripheral surface 11, and the first working chamber R1, the second working chamber R2, and the third working chamber R3 are partitioned, and the rotor 2 rotates. The first working chamber R1, the second working chamber R2, and the third working chamber R3 expand and contract their volumes.
 ここで、以降明細書の簡潔化を図るため、本発明の容積型流体機械Pを構成する各部位、部材に作用する力の向きと大きさを次のような記号で表すこととする。
第1ベーン3Aに作用する小さな遠心力・・(Asc)
第1ベーン3Aに作用する大きな遠心力・・(Alc)
第2ベーン3Bに作用する小さな遠心力・・(Bsc)
第2ベーン3Bに作用する大きな遠心力・・(Blc)
第1ベーン3Aに作用するロータ2の回転向きの小さなモーメント・・(Apsm)
第1ベーン3Aに作用するロータ2の回転向きの大きなモーメント・・(Aplm)
第1ベーン3Aに作用するロータ2の回転向きと逆向きの小さなモーメント・・(Amsm)
第1ベーン3Aに作用するロータ2の回転向きと逆向きの大きなモーメント・・(Amlm)
第2ベーン3Bに作用するロータ2の回転向きの小さなモーメント・・(Bpsm)
第2ベーン3Bに作用するロータ2の回転向きの大きなモーメント・・(Bplm)
第2ベーン3Bに作用するロータ2の回転向きと逆向きの小さなモーメント・・(Bmsm)
第2ベーン3Bに作用するロータ2の回転向きと逆向きの大きなモーメント・・(Bmlm)
摺接部31aに作用する低い正圧力・・(31alpp)
摺接部31aに作用する高い正圧力・・(31ahpp)
摺接部31aに作用する低い負圧力・・(31almp)
摺接部31aに作用する高い負圧力・・(31ahmp)
摺接部31bに作用する低い正圧力・・(31blpp)
摺接部31bに作用する高い正圧力・・(31bhpp)
摺接部31bに作用する低い負圧力・・(31blmp)
摺接部31bに作用する高い負圧力・・(31bhmp)
摺接部31cに作用する低い正圧力・・(31clpp)
摺接部31cに作用する高い正圧力・・(31chpp)
摺接部31cに作用する低い負圧力・・(31clmp)
摺接部31cに作用する高い負圧力・・(31chmp)
摺接部31dに作用する低い正圧力・・(31dlpp)
摺接部31dに作用する高い正圧力・・(31dhpp)
摺接部31dに作用する低い負圧力・・(31dlmp)
摺接部31dに作用する高い負圧力・・(31dhmp)
第1弾性材4Aの小さな牽引力・・(Ast)
第1弾性材4Aの大きな牽引力・・(Alt)
第2弾性材4Bの小さな牽引力・・(Bst)
第2弾性材4Bの大きな牽引力・・(Blt)
第1弾性材4Aの牽引力が第1ベーン3Aに作用する小さなモーメント・・(Atsm)
第1弾性材4Aの牽引力が第1ベーン3Aに作用する大きなモーメント・・(Atlm)
第2弾性材4Bの牽引力が第2ベーン3Bに作用する小さなモーメント・・(Btsm)
第2弾性材4Bの牽引力が第2ベーン3Bに作用する大きなモーメント・・(Btlm)
対向部33aに作用する低い正圧力・・(33alpp)
対向部33aに作用する高い正圧力・・(33ahpp)
対向部33aに作用する低い負圧力・・(33almp)
対向部33aに作用する高い負圧力・・(33ahmp)
対向部33bに作用する低い正圧力・・(33blpp)
対向部33bに作用する高い正圧力・・(33bhpp)
対向部33bに作用する低い負圧力・・(33blmp)
対向部33bに作用する高い負圧力・・(33bhmp)
対向部33cに作用する低い正圧力・・(33clpp)
対向部33cに作用する高い正圧力・・(33chpp)
対向部33cに作用する低い負圧力・・(33clmp)
対向部33cに作用する高い負圧力・・(33chmp)
対向部33dに作用する低い正圧力・・(33dlpp)
対向部33dに作用する高い正圧力・・(33dhpp)
対向部33dに作用する低い負圧力・・(33dlmp)
対向部33dに作用する高い負圧力・・(33dhmp)
第1弾性材4Aに作用する小さな遠心力・・(eAsc)
第1弾性材4Aに作用する大きな遠心力・・(eAlc)
第2弾性材4Bに作用する小さな遠心力・・(eBsc)
第2弾性材4Bに作用する大きな遠心力・・(eBlc)
Here, in order to simplify the description, the direction and magnitude of the force acting on each part and member constituting the positive displacement fluid machine P of the present invention will be represented by the following symbols.
Small centrifugal force acting on the first vane 3A (Asc)
Large centrifugal force acting on the first vane 3A ... (Alc)
Small centrifugal force acting on the second vane 3B (Bsc)
Large centrifugal force acting on the second vane 3B (Blc)
Small moment of rotation of the rotor 2 acting on the first vane 3A (Apsm)
Large moment of rotation of the rotor 2 acting on the first vane 3A (Aplm)
A small moment in the direction opposite to the rotational direction of the rotor 2 acting on the first vane 3A (Amsm)
Large moment in the direction opposite to the rotation direction of the rotor 2 acting on the first vane 3A (Amlm)
A small moment of rotation of the rotor 2 acting on the second vane 3B (Bpsm)
A large moment of rotation of the rotor 2 acting on the second vane 3B (Bplm)
A small moment in the direction opposite to the rotational direction of the rotor 2 acting on the second vane 3B (Bmsm)
A large moment in the direction opposite to the rotational direction of the rotor 2 acting on the second vane 3B (Bmlm)
Low positive pressure acting on the sliding contact portion 31a (31alpp)
High positive pressure acting on the sliding contact portion 31a (31 ahpp)
Low negative pressure acting on the sliding contact portion 31a (31almp)
High negative pressure acting on the sliding contact portion 31a (31ahmp)
Low positive pressure acting on sliding contact part 31b (31blpp)
High positive pressure acting on the sliding contact portion 31b (31bhpp)
Low negative pressure acting on sliding part 31b (31blmp)
High negative pressure acting on the sliding contact portion 31b (31bhmp)
Low positive pressure acting on sliding contact portion 31c (31clpp)
High positive pressure acting on sliding contact portion 31c (31chpp)
Low negative pressure acting on sliding contact part 31c (31clmp)
High negative pressure acting on the sliding contact part 31c (31 chmp)
Low positive pressure acting on the sliding contact portion 31d (31 dlpp)
High positive pressure acting on the sliding contact part 31d (31dhpp)
Low negative pressure acting on the sliding contact portion 31d (31 dlmp)
High negative pressure acting on the sliding contact part 31d (31 dhmp)
Small traction force of the first elastic material 4A (Ast)
Large traction force of the first elastic material 4A ... (Alt)
Small traction force of second elastic material 4B (Bst)
Large traction force of the second elastic material 4B (Blt)
A small moment that the tractive force of the first elastic member 4A acts on the first vane 3A (Atsm)
Large moment when the tractive force of the first elastic member 4A acts on the first vane 3A (Atlm)
A small moment that the traction force of the second elastic member 4B acts on the second vane 3B (Btsm)
A large moment when the traction force of the second elastic member 4B acts on the second vane 3B (Btlm)
Low positive pressure acting on the facing part 33a (33alpp)
High positive pressure acting on the opposed part 33a (33ahpp)
Low negative pressure acting on the facing part 33a (33almp)
High negative pressure acting on the facing part 33a (33ahmp)
Low positive pressure acting on the opposing part 33b (33blpp)
High positive pressure acting on the facing part 33b (33bhpp)
Low negative pressure acting on the opposing part 33b (33blmp)
High negative pressure acting on the facing part 33b (33bhmp)
Low positive pressure acting on the facing part 33c (33clpp)
High positive pressure acting on the facing part 33c (33chpp)
Low negative pressure acting on the opposing part 33c (33clmp)
High negative pressure acting on the facing part 33c (33chmp)
Low positive pressure acting on the opposing part 33d (33dlpp)
High positive pressure acting on the facing part 33d (33dhpp)
Low negative pressure acting on the opposed part 33d (33dlmp)
High negative pressure acting on the opposed part 33d (33dhmp)
Small centrifugal force acting on the first elastic material 4A (eAsc)
Large centrifugal force acting on the first elastic material 4A (eAlc)
Small centrifugal force acting on the second elastic material 4B (eBsc)
Large centrifugal force acting on the second elastic member 4B (eBlc)
 図6にみられるように、粗最縮小しつつある第1弾性材4Aの小さな牽引力(Ast)によって第1ベーン3Aはロータ2の径内方に向け付勢されている。そして、圧縮行程の初期にあり低い正圧となっている第2作動室R2に晒されている対向部33aに作用する低い正圧力(33blpp)は第1ベーン3Aをロータ2の径内方に向けて付勢している。第1ベーン3Aをロータ2の内方に向けて付勢する、これら(Ast),(33blpp)の合成付勢力を質量が大きい先端側を内周面11側に小さく突出させた第1ベーン3Aに作用する小さな遠心力(Asc)によって、第1ベーン3Aをロータ2の径外方に向かわせている。圧縮行程の終期にある正高圧が作用している第3作動室R3に晒されている対向部33aに第1ベーン3Aをロータ2の外方に向けて押圧する(33ahpp)が作用している。第2ベーン3Bをロータ2の外方へ向けて付勢するこれら(Asc),(33ahpp)の合成付勢力が上回り第1ベーン3Aはロータ2の径外方へ向けて付勢され、摺接部31c,31dを内周面11に摺接させる第1ベーン3Aによって第1作動室R1と第2作動室R2とに区画され、これら第1作動室R1,第2作動室R2はロータ2の回転に伴ってその容積を拡縮する。 As shown in FIG. 6, the first vane 3 </ b> A is biased toward the inner diameter of the rotor 2 by the small traction force (Ast) of the first elastic member 4 </ b> A that is being contracted to the minimum. The low positive pressure (33blpp) acting on the facing portion 33a exposed to the second working chamber R2 that is in the initial stage of the compression stroke and has a low positive pressure causes the first vane 3A to move inwardly of the rotor 2. It is energizing towards. The first vane 3A that urges the first vane 3A toward the inner side of the rotor 2 and has a combined urging force of these (Ast) and (33blpp) protruded small toward the inner peripheral surface 11 from the tip side having a large mass. The first vane 3A is directed outwardly of the rotor 2 by a small centrifugal force (Asc) acting on the rotor 2. The first vane 3A is pressed toward the outside of the rotor 2 (33ahpp) against the facing portion 33a exposed to the third working chamber R3 in which positive and high pressures are acting at the end of the compression stroke. . The combined biasing force of these (Asc) and (33ahpp) that biases the second vane 3B toward the outer side of the rotor 2 is exceeded, and the first vane 3A is biased toward the outer side of the rotor 2 in the sliding contact. The first working chamber R1 and the second working chamber R2 are partitioned by the first vane 3A that causes the portions 31c and 31d to slidably contact the inner peripheral surface 11, and the first working chamber R1 and the second working chamber R2 are defined by the rotor 2. The volume expands and contracts with rotation.
 このようにして摺接部31a,31bを内周面11に摺接させる接触圧は、第1ベーン3Aの質量に比例して第1ベーン3Aに発生する遠心力の大きさ、つまり第1ベーン3Aがロータ2の外方に向かう力の大きさと、第1ベーン3Aをロータ2の内方に引き戻そうとする第1弾性材4Aの牽引力の差によって内周面11に摺接部31a,31bが摺接する押圧力が定まる。このため第1ベーン3Aの偏心質量と第1弾性材4Aの牽引力の大きさが好適に設定され、内周面11に対して摺動する摺接部31a,31bによる過不足のない接触圧力によって、第1作動室R1と第2作動室R2のシール性が確保され圧縮効率が高まると共に、これらの内周面11および摺接部31a,31bの摺動抵抗と磨耗が軽減される。 The contact pressure at which the sliding contact portions 31a and 31b are in sliding contact with the inner peripheral surface 11 in this way is the magnitude of the centrifugal force generated in the first vane 3A in proportion to the mass of the first vane 3A, that is, the first vane. The sliding contact portions 31a and 31b are formed on the inner peripheral surface 11 due to the difference between the magnitude of the force of 3A toward the outside of the rotor 2 and the pulling force of the first elastic member 4A that tries to pull the first vane 3A back inward of the rotor 2. The pressing force for sliding contact is determined. For this reason, the eccentric mass of the first vane 3A and the magnitude of the traction force of the first elastic member 4A are suitably set, and the contact pressure without excess or deficiency by the sliding contact portions 31a and 31b sliding on the inner peripheral surface 11 is set. The sealing performance of the first working chamber R1 and the second working chamber R2 is ensured and the compression efficiency is increased, and the sliding resistance and wear of the inner peripheral surface 11 and the sliding contact portions 31a and 31b are reduced.
 図6の形態にみられるように、第2作動室R2側に晒されている第1ベーン3Aの側面には圧縮行程の初期にあり低い正圧力が作用しており、第1ベーン3Aにはロータ2の回転向きの小さなモーメント(Apsm)が作用している。一方第3作動室R3側に晒されている第1ベーン3Aの側面には圧縮行程の終期にあり高い正圧力が作用しており第1ベーン3Aにはロータ2の回転向きと逆向きの大きなモーメント(Amlm)が作用している。この(Amlm)が(Apsm)を上回り、第1ベーン3Aの第2作動室R2側側面をガイド21aに押し付けようとしている。 As seen in the form of FIG. 6, a low positive pressure is applied to the side surface of the first vane 3A exposed to the second working chamber R2 side at the initial stage of the compression stroke, and the first vane 3A is applied to the first vane 3A. A small moment (Apsm) in the rotational direction of the rotor 2 acts. On the other hand, a high positive pressure is applied to the side surface of the first vane 3A exposed to the third working chamber R3 side at the end of the compression stroke, and the first vane 3A has a large reverse direction to the rotation direction of the rotor 2. Moment (Amlm) is acting. This (Amlm) exceeds (Apsm), and the side surface of the first vane 3A on the second working chamber R2 side is pressed against the guide 21a.
 これに対して第1弾性材4Aは大きな牽引力(Alt)を作用させている。この(Alt)は第1ベーン3Aをロータ2の径内方に向けて引き寄せようとする力の成分と、第1ベーン3Aの基端部側および第2ベーン3Bの先端側をガイド21d側に引き付けようとする力の成分を発生している。これにより第2ベーン3Bに作用している最も大きな遠心力(Blc)を適度に減衰させて摺接部31c,31dが内周面11に過剰な押圧力で摺接するのを回避すると共に、上記(Bmsm),(31clmp),(Bmlm),(31dhpp)の合成付勢力によって第2ベーン3Bの第1作動室R1側の側面をガイド21cに強く押し付けられる大きな付勢力を緩和して第2ベーン3Bの第1作動室R1側の側面とガイド21cとの摺動面の摺動抵抗を軽減して、これら摺動面の磨耗とエネルギーの浪費が抑制される。 In contrast, the first elastic member 4A exerts a large traction force (Alt). This (Alt) is a component of force that tries to pull the first vane 3A toward the radially inner side of the rotor 2, and the proximal end side of the first vane 3A and the distal end side of the second vane 3B are directed to the guide 21d side. Generates a component of force to be attracted. As a result, the largest centrifugal force (Blc) acting on the second vane 3B is moderately attenuated to prevent the sliding contact portions 31c and 31d from slidingly contacting the inner peripheral surface 11 with excessive pressing force, and The second vane is relieved by the large biasing force that strongly presses the side surface of the second vane 3B on the first working chamber R1 side against the guide 21c by the combined biasing force of (Bmsm), (31clmp), (Bmlm), and (31dhpp). The sliding resistance of the sliding surface between the side surface of the 3B first working chamber R1 and the guide 21c is reduced, and wear and energy waste of these sliding surfaces are suppressed.
 図6にみられるように、粗最伸張しつつある第2弾性材4Bの大きな牽引力(Blt)によって第2ベーン3Bはロータ2の内方に向け付勢されている。そして、圧縮行程の初期にある低正圧となっている第2作動室R2に晒されている対向部33dに作用する(33dlpp)は第2ベーン3Bをロータ2の内方に向けて付勢している。第2ベーン3Bをロータ2の内方に向けて付勢する、これら(Blt),(33dlpp)の合成付勢力を、質量が大きい先端側を内周面11側に大きく突出させている第2ベーン3Bに作用する大きな遠心力(Blc)によって、第2ベーン3Bをロータ2の径外方に向かわせている。そして吸入行程の初期にあり低い負圧が作用している第1作動室R1に晒されている第2ベーン3Bをロータ2の外方へ向かわせる低い負圧力が摺接部31cに(31clmp)が作用している。さらに、圧縮行程の終期にあり正高圧が作用している第3作動室R3に晒されている対向部33bに(33bhpp)が作用しており、第2ベーン3Bをロータ2の径外方に向けて付勢している。第2ベーン3Bをロータ2の径外方へ向けて付勢するこれら(Blc),(31clmp),(33dhpp)の合成付勢力が上回り第2ベーン3Bはロータ2の径外方へ向けて付勢され、摺接部31c,31dを内周面11に摺接させる第2ベーン3Bによって第一作動室1Rと第2作動室R2とに区画され、これら第1作動室R1,第2作動室R2はロータ2の回転に伴ってその容積を拡縮する。 6, the second vane 3B is urged toward the inside of the rotor 2 by a large traction force (Blt) of the second elastic member 4B that is being expanded most roughly. Then, acting on the facing portion 33d exposed to the second working chamber R2 having a low positive pressure in the initial stage of the compression stroke (33 dlpp) urges the second vane 3B toward the inside of the rotor 2. is doing. The combined biasing force of these (Blt) and (33 dlpp) that biases the second vane 3B toward the inner side of the rotor 2 is made to protrude largely from the tip side with a large mass toward the inner peripheral surface 11 side. The second vane 3B is directed outwardly of the rotor 2 by a large centrifugal force (Blc) acting on the vane 3B. Then, a low negative pressure that directs the second vane 3B exposed to the first working chamber R1 where a low negative pressure is applied at the beginning of the suction stroke to the outside of the rotor 2 is applied to the sliding contact portion 31c (31clmp). Is working. Further, (33bhpp) acts on the facing portion 33b exposed to the third working chamber R3 in which the positive and high pressures are acting at the end of the compression stroke, and the second vane 3B is moved outwardly of the rotor 2. It is energizing towards. The combined urging force of these (Blc), (31clmp), and (33dhpp) for urging the second vane 3B toward the outer diameter of the rotor 2 exceeds the second vane 3B toward the outer diameter of the rotor 2. The first working chamber 1R and the second working chamber R2 are partitioned by the second vane 3B that slidably contacts the sliding contact portions 31c and 31d with the inner peripheral surface 11, and these first working chamber R1 and second working chamber. R2 expands or contracts its volume as the rotor 2 rotates.
 そして、摺接部31c,31dを内周面11に摺動させる接触圧は、第2ベーン3Bの質量に比例して第2ベーン3Bに発生する遠心力の大きさにしたがって第2ベーン3Bがロータ2の径外方に向かう力の大きさと、第2ベーン3Bをロータ2の径内方に引き戻そうとする第2弾性材4Bの牽引力の差によって内周面11に摺接部31c,31dが摺接する圧接力が定まる。このため第2ベーン3Bの偏心質量と第2弾性材の牽引力の大きさが好適に選定され、内周面11に対する摺接部31c,31dによる過不足のない接触圧力を得ることが可能になり、この行程における第1作動室R1および第2作動室R2のシール性を確保しながら、かつ摺動抵抗の軽減が図られる。 The contact pressure that causes the sliding contact portions 31c and 31d to slide on the inner peripheral surface 11 is such that the second vane 3B is proportional to the mass of the second vane 3B according to the magnitude of the centrifugal force generated in the second vane 3B. The sliding contact portions 31c and 31d are formed on the inner peripheral surface 11 due to the difference between the magnitude of the force toward the radially outer side of the rotor 2 and the pulling force of the second elastic member 4B that attempts to pull the second vane 3B back to the inner diameter of the rotor 2. The pressing force for sliding contact is determined. For this reason, the eccentric mass of the second vane 3B and the magnitude of the traction force of the second elastic member are suitably selected, and it becomes possible to obtain a contact pressure with no excess or deficiency by the sliding contact portions 31c and 31d with respect to the inner peripheral surface 11. The sliding resistance can be reduced while ensuring the sealing performance of the first working chamber R1 and the second working chamber R2 in this stroke.
 図7にみられるように、吸入行程の中期にあり低い負圧が作用している第1作動室R1側に最突出させ流体が作用する面積も最大となっている側面を第1作動室R1に晒されている第2ベーン3Bの側面にはロータ2の回転向きと逆向きの大きいモーメント(Bmlm)が作用している。さらに吸入行程の中期にあり低い負圧が作用している第1作動室R1に晒されている摺接部31cにも低い負圧が作用しており第2ベーン3Bにロータ2の回転向きと逆向きの小さなモーメント(Bmsm)を発生している。一方、圧縮行程の中期にあり正圧となっている第2作動室R2側に最突出させ、流体が作用する面積も最大となっている第2作動室R2に晒されている第1ベーン3Aは、その突出量が最大となっており第2作動室R2内の流体の圧力が作用する面積は最大となっている。このため第2作動室R2に晒されている第1ベーン3Aの側面にロータ2の回転向きと逆向きの大きなモーメント(Amlm)が作用している。この(Amlm)は、第1ベーン3Aの第1作動室R1側側面を介して第2ベーン3Bの第2作動室3B側側面に伝達され、第2ベーン3Bにロータ2の回転向きと逆向きの大きなモーメント(Bmlm)を作用させている。 As shown in FIG. 7, the side surface of the first working chamber R1 that has the maximum area in which the fluid acts is maximized by projecting to the first working chamber R1 side, which is in the middle stage of the suction stroke, and where a low negative pressure is acting. A large moment (Bmlm) in the direction opposite to the rotational direction of the rotor 2 acts on the side surface of the second vane 3B exposed to the surface of the second vane 3B. Further, a low negative pressure is also acting on the sliding contact portion 31c exposed to the first working chamber R1 in the middle stage of the suction stroke where the low negative pressure is acting, and the rotation direction of the rotor 2 is applied to the second vane 3B. A small reverse moment (Bmsm) is generated. On the other hand, the first vane 3A that is exposed to the second working chamber R2 that protrudes most toward the second working chamber R2 that is in the middle of the compression stroke and has a positive pressure and that has the largest area on which the fluid acts. The protrusion amount is the maximum, and the area where the pressure of the fluid in the second working chamber R2 acts is the maximum. For this reason, a large moment (Almm) in the direction opposite to the rotation direction of the rotor 2 acts on the side surface of the first vane 3A exposed to the second working chamber R2. This (Amlm) is transmitted to the second working chamber 3B side surface of the second vane 3B via the first working chamber R1 side surface of the first vane 3A, and is opposite to the rotation direction of the rotor 2 to the second vane 3B. A large moment (Bmlm) is applied.
 さらに圧縮行程の中期にあり正圧となっている第2作動室R2に晒されている摺接部31dは、ロータ2の中心からの距離を最大に位置させた状態で正圧が作用しており、第2ベーン3Bにロータ2の回転向きと逆向きの大きなモーメント(Bmlm)を発生している。これら(Bmlm),(Bmsm),(Bmlm),(Bmlm)の合成付勢力は、第2ベーン3Bの第1作動室R1側の側面を、ガイド21cに強く押し付けられ大きな摺動抵抗を発生させようとしている。 Further, the sliding contact portion 31d exposed to the second working chamber R2 that is in the middle stage of the compression stroke and has a positive pressure has a positive pressure acting in a state where the distance from the center of the rotor 2 is located at the maximum. Thus, a large moment (Bmlm) in the direction opposite to the rotation direction of the rotor 2 is generated in the second vane 3B. The combined biasing force of these (Bmlm), (Bmsm), (Bmlm), and (Bmlm) causes the side surface of the second vane 3B on the first working chamber R1 side to be strongly pressed against the guide 21c to generate a large sliding resistance. I am trying to do.
 これに対して第2弾性材4Bは、図7にみられるように、第2ベーン3Bの重心を偏らせるため中実に形成される先端側がロータ2の中心からの距離が最大となっている。この状態において第2ベーン3Bに作用する最も大きな遠心力に抗して最伸張し、最も大きな牽引力(eBlc)を発生している。 On the other hand, as shown in FIG. 7, the second elastic member 4B has a maximum distance from the center of the rotor 2 on the tip side that is formed solidly in order to bias the center of gravity of the second vane 3B. In this state, the maximum expansion is performed against the largest centrifugal force acting on the second vane 3B, and the largest traction force (eBlc) is generated.
 この(eBlc)は、第2ベーン3Bをロータ2の中心に向けて引き寄せようとする力の成分と、第1ベーン3Aの基端部側および第2ベーン3Bの先端側をガイド21d側に引き付けようとする力の成分を発生している。これにより第2ベーン3Bに作用する最も大きな遠心力を適度に減衰させて摺接部31c,31dが内周面11に過剰な押圧力で摺接するのを回避すると共に、上記合成付勢力(Bmlm),(Bmsm),(Bmlm),(Bmlm)によって第2ベーン3Bの第1作動室R1側の側面をガイド21cに強く押し付けられる大きな付勢力と、上記(eBlc)の第1ベーン3Aの基端部側および第2ベーン3Bの先端側をガイド21d側に引き付けようとする力の成分とが打ち消し合われ、第2ベーン3Bの第1作動室R1側の摺動面とガイド21cとの摺動面の摺動抵抗を軽減してこれら摺動面の磨耗とエネルギーの浪費が抑制される。 This (eBlc) attracts the component of the force that pulls the second vane 3B toward the center of the rotor 2 and the proximal end side of the first vane 3A and the distal end side of the second vane 3B toward the guide 21d. A component of force is generated. As a result, the largest centrifugal force acting on the second vane 3B is moderately attenuated to prevent the sliding contact portions 31c and 31d from sliding on the inner peripheral surface 11 with excessive pressing force, and the combined biasing force (Bmlm) ), (Bmsm), (Bmlm), (Bmlm) and a large biasing force that strongly presses the side surface of the second vane 3B on the first working chamber R1 side against the guide 21c, and the base of the first vane 3A of (eBlc) above. The component of the force that tries to attract the end portion side and the tip end side of the second vane 3B to the guide 21d side cancels each other, and the sliding surface of the second vane 3B on the first working chamber R1 side and the guide 21c slides. The sliding resistance of the moving surface is reduced, and wear and energy waste of these sliding surfaces are suppressed.
 また、上記説明は、例えば、主として燃料電池のセルに空気を供給するコンプレッサーとして使用される場合に、回転数が粗一定の電動モータでロータ2を回転駆動される状況を想定して説明したが、例えば自動車のエンジンに連結されて容積型流体機械Pを冷媒ガス圧縮機として用いられる場合に、ロータ2の回転数は、自動車への負荷の変動或いは出力の増減に伴って大きく変動する。このためエンジンの回転速度にしたがうロータ2の回転数に、第1ベーン3A,第2ベーン3Bおよび第1弾性材4A,第2弾性材4Bに作用する遠心力も比例する。このようにロータ2の回転数の変動が激しい環境で使用される場合の容積型流体機械Pは、次のような機能を有する。 In the above description, for example, when used as a compressor for mainly supplying air to a fuel cell, the rotor 2 is rotationally driven by an electric motor whose rotational speed is roughly constant. For example, when the positive displacement fluid machine P is used as a refrigerant gas compressor connected to an engine of an automobile, the rotational speed of the rotor 2 greatly varies with a load on the automobile or an increase / decrease in output. Therefore, the centrifugal force acting on the first vane 3A, the second vane 3B, the first elastic material 4A, and the second elastic material 4B is also proportional to the rotation speed of the rotor 2 according to the rotation speed of the engine. In this way, the positive displacement fluid machine P when used in an environment in which the rotational speed of the rotor 2 varies greatly has the following functions.
 図6にみられる形態において、第1ベーン3Aによって区画され、圧縮行程の初期にある第2作動室R2に晒されている摺接部31bには低い正圧力(31blpp)が作用している。そして圧縮行程の終期にある第3作動室R3に晒されている摺接部31aには高い正圧力(31ahpp)が作用している。これらの(31blpp),(31ahpp)合成圧力は第1ベーン3Aをロータ2の径内方に向けて押圧し、内周面11から摺接部31a,31bを離間させ、第1ベーン3Aにチャタリングを発生させようとしている。 6, a low positive pressure (31 blpp) is applied to the sliding contact portion 31b that is partitioned by the first vane 3A and is exposed to the second working chamber R2 in the initial stage of the compression stroke. A high positive pressure (31 ahpp) is applied to the sliding contact portion 31a exposed to the third working chamber R3 at the end of the compression stroke. These (31blpp) and (31ahpp) combined pressures press the first vane 3A toward the radially inner side of the rotor 2, separate the sliding contact portions 31a and 31b from the inner peripheral surface 11, and chatter the first vane 3A. Is going to be generated.
 これに対して圧縮行程の終期にある第3作動室R3に晒されている対向部33aには高い正圧力(33ahpp)が作用している。さらに、圧縮行程の初期にある第2作動室R2に晒されている対向部33cには低い正圧力(33clpp)が作用しており、第1ベーン3Aを内周面11に向けて押圧するこれら(33ahpp),(33clpp)の合成圧力は第1ベーン3Aを内周面11に向けて押圧している。 On the other hand, a high positive pressure (33 ahpp) is acting on the facing portion 33a exposed to the third working chamber R3 at the end of the compression stroke. Further, a low positive pressure (33clpp) is acting on the facing portion 33c exposed to the second working chamber R2 in the initial stage of the compression stroke, and these press the first vane 3A toward the inner peripheral surface 11. The combined pressure of (33ahpp) and (33clpp) presses the first vane 3A toward the inner peripheral surface 11.
 そして、この(31blpp),(31ahpp)が作用する受圧面積よりも(33ahpp),(33clpp)が作用する受圧面積が大きく形成されており、第1ベーン3Aは内周面11に向く押圧力が大きく上回り摺接部31a,31bは内周面11に向けて過剰に押し付けられようとしている。この過剰な押圧力を緩和するように第1ベーン3Aをロータ2の径内方に引き戻す第1弾性材4Aが配置される傾斜角と牽引力を最適に設定される。 The pressure receiving area on which (33ahpp), (33clpp) acts is formed larger than the pressure receiving area on which (31blpp), (31ahpp) acts, and the first vane 3A has a pressing force toward the inner peripheral surface 11. The large upper sliding contact portions 31 a and 31 b are about to be pressed excessively toward the inner peripheral surface 11. The inclination angle and tractive force at which the first elastic member 4A for returning the first vane 3A to the radially inner side of the rotor 2 is arranged so as to alleviate this excessive pressing force are set optimally.
 これにより第1ベーン3Aのチャタリングが防止されると共に、内周面11と摺接部31a,31bとの摺動抵抗は低減される。さらに、作動室R2,R3のシール性も確保されるため、入力効率と圧縮効率も高まる。 This prevents chattering of the first vane 3A and reduces the sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31a and 31b. Furthermore, since the sealing performance of the working chambers R2 and R3 is ensured, the input efficiency and the compression efficiency are also increased.
 図6にみられる形態において、第2ベーン3Bによって区画され、吸入行程にある第1作動室R1に晒されている摺接部31cには低い負圧力(31clmp)と、圧縮行程の初期にある第2作動室R2に晒されている対向部33dには低い正圧力(33dlpp)および圧縮行程の終期にある第3作動室R3に晒されている対向部33bには高い正圧力(33bhpp)が作用している。これら(31clmp),(33dlpp),(33bhpp)の合成圧力は第2ベーン3Bを内周面11に向けて強く押圧している。 In the form seen in FIG. 6, the sliding contact portion 31c, which is partitioned by the second vane 3B and is exposed to the first working chamber R1 in the suction stroke, has a low negative pressure (31clmp) and is in the initial stage of the compression stroke. The opposing portion 33d exposed to the second working chamber R2 has a low positive pressure (33 dlpp) and the opposing portion 33b exposed to the third working chamber R3 at the end of the compression stroke has a high positive pressure (33bhpp). It works. The combined pressure of these (31clmp), (33dlpp), and (33bhpp) strongly presses the second vane 3B toward the inner peripheral surface 11.
 これに対して圧縮行程の初期にある第2作動室R2に晒されている摺接部31dには低い正圧力(31dlpp)が作用し、第2ベーン3Bをロータ2の径内方に向けて弱く押圧している。このため、第2ベーン3Bは内周面11に向く押圧力が大きく上回り摺接部31c,31dは内周面11に向けて過剰に押し付けられようとしている。この過剰な押圧力を緩和するように第2ベーン3Bをロータ2の径内方に引き戻す第2弾性材4Bの配置される傾斜角と牽引力を最適に設定される。これにより、内周面11と摺接部31c,31dとの摺動抵抗が低減され、作動室R1,R2のシール性も確保され、入力効率と圧縮効率を高める。 On the other hand, a low positive pressure (31 dlpp) acts on the sliding contact portion 31d exposed to the second working chamber R2 in the initial stage of the compression stroke, and the second vane 3B is directed inwardly of the rotor 2. Pressing weakly. For this reason, the second vane 3 </ b> B has a large pressing force toward the inner peripheral surface 11, and the upward sliding contact portions 31 c and 31 d are about to be pressed excessively toward the inner peripheral surface 11. The inclination angle and traction force of the second elastic member 4B for returning the second vane 3B to the radially inner side of the rotor 2 are set optimally so as to alleviate this excessive pressing force. Thereby, the sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31c and 31d is reduced, the sealing performance of the working chambers R1 and R2 is secured, and the input efficiency and the compression efficiency are increased.
 図6にみられる形態において、圧縮行程の終期にある第3作動室R3に晒されている摺接部31aには高い正圧力(31ahpp)が作用している。さらに、圧縮行程の初期にある第二作動室R2に晒されている摺接部31bには低い正圧(33blpp)が作用している。さらに、圧縮行程の初期にある第二作動室R2に晒されている摺接部31dにも低い正圧(33dlpp)が作用している。これら(31ahpp),(33blpp),(33dlpp)の圧力は、内周面11から摺接部31a,31b,31dを離間させ、第1ベーン3Aおよび第2ベーン3Bにチャタリングを発生させようとしている。 6, a high positive pressure (31 ahpp) is applied to the sliding contact portion 31a exposed to the third working chamber R3 at the end of the compression stroke. Furthermore, a low positive pressure (33 blpp) acts on the sliding contact portion 31b exposed to the second working chamber R2 in the initial stage of the compression stroke. Further, a low positive pressure (33 dlpp) is also acting on the sliding contact portion 31d exposed to the second working chamber R2 in the initial stage of the compression stroke. These (31ahpp), (33blpp), and (33dlpp) pressures cause the sliding contact portions 31a, 31b, and 31d to be separated from the inner peripheral surface 11 and cause chattering in the first vane 3A and the second vane 3B. .
 これに対して、吸入行程にある第1作動室R1に晒されている摺接部31cには低い負圧(31clmp)が作用している。さらに、圧縮行程の終期にある第3作動室R3に晒されている対向部33a,33bには高い正圧(33ahpp),(33bhpp)が作用している。そして、圧縮行程の初期にある第二作動室R2に晒されている対向部33c,33dには低い正圧(33clpp),(33dlpp)が作用している。これらの(31clmp),(33ahpp),(33bhpp),(33clpp),(33dlpp)は内周面11に摺接部31a,31b,31c,31dを押し付けている。これにより、第1ベーン3Aおよび第2ベーン3Bのチャタリング発生は回避され、容積型流体機械Pの圧縮効率を高めると共に、第1作動室R1,第2作動室R2,第3作動室R3の圧力変化に対応して常に内周面11と摺接部31a,31b,31c,31dとの摺接圧力は良好に維持され、内周面11と摺接部31a,31b,31c,31dとの摺動抵抗および磨耗が抑制される。 In contrast, a low negative pressure (31 clmp) is acting on the sliding contact portion 31c exposed to the first working chamber R1 in the suction stroke. Furthermore, high positive pressures (33 ahpp) and (33 bhpp) act on the facing parts 33 a and 33 b exposed to the third working chamber R 3 at the end of the compression stroke. Low positive pressures (33clpp) and (33dlpp) are acting on the opposing portions 33c and 33d exposed to the second working chamber R2 in the initial stage of the compression stroke. These (31clmp), (33ahpp), (33bhpp), (33clpp), and (33dlpp) press the sliding contact portions 31a, 31b, 31c, and 31d against the inner peripheral surface 11. Thus, chattering of the first vane 3A and the second vane 3B is avoided, the compression efficiency of the positive displacement fluid machine P is increased, and the pressure in the first working chamber R1, the second working chamber R2, and the third working chamber R3 is increased. Corresponding to the change, the sliding contact pressure between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d is always maintained well, and the sliding between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d is maintained. Dynamic resistance and wear are suppressed.
 図6にみられるように、ロータ2の回転時には離間する対向部33aと33bおよび33cと33dとで形成される断面略V字状の開口部はロータ2の回転方向前方に開口し、ロータ2の回転に伴う摺動部によって発生し、作動室R1,R2,R3内に飛散する磨耗粉等の集容部として機能する。そして、前記傾斜面に付着した磨耗粉の殆どはロータ2の回転に伴う遠心力によって流体と共に吐出口へと排出される。また、遠心力が働き難い比重の小さい磨耗粉は、ロータ2の回転停止直前に第1弾性材4Aおよび第2弾性材4Bの牽引力によりロータ2の中心に向けて引き寄せられる第1ベーン3Aおよび第ベーン3Bの移動に伴って当接する前記断面略V字状の傾斜面により挟み込み、作動室R1,R2,R3側へ押し出され、容積型流体機械Pの起動時に流体と共に機外へ排出される。 As shown in FIG. 6, the substantially V-shaped opening formed by the facing portions 33 a and 33 b and 33 c and 33 d that are separated when the rotor 2 rotates opens forward in the rotation direction of the rotor 2. It is generated by the sliding part accompanying the rotation of, and functions as a collecting part for wear powder and the like scattered in the working chambers R1, R2, R3. And most of the abrasion powder adhering to the inclined surface is discharged to the discharge port together with the fluid by the centrifugal force accompanying the rotation of the rotor 2. Further, the wear powder having a small specific gravity, which is difficult to work with centrifugal force, is attracted toward the center of the rotor 2 by the traction force of the first elastic material 4A and the second elastic material 4B immediately before the rotation of the rotor 2 is stopped. The vane 3B is sandwiched by the inclined surface having a substantially V-shaped cross section that comes into contact with the movement of the vane 3B, is pushed out toward the working chambers R1, R2, and R3, and is discharged out of the apparatus together with the fluid when the positive displacement fluid machine P is started.
 図7にみられるように第1ベーン3Aは質量が大きい先端側をロータ2に最收没され第1ベーン3Aの重心とロータ2の中心軸線Cとの距離は最も小さくなっている。したがって第1ベーン3Aに作用する遠心力も最小となっている。この状態における第1弾性材4Aも最収縮しており、第1ベーン3Aをロータ2の内方に引き寄せる牽引力も最小となっている。このようにしてロータ2の中心線Cと第1ベーン3Aの重心位置の距離に連動して第1弾性材4Aの牽引力は増減し自律的に制御され、内周面11と摺接部31a,31bとの摺接圧力はロータ2の回転速度が設定された回転数域のとき良好な状態に保持されるものであるが、ロータ2が低速で回転駆動される場合に内周面11と摺接部31a,31bとの摺接圧力が良好な状態となるように設定されると、ロータ2が高速で回転駆動される場合に第1ベーン3Aの遠心力、すなわち第1ベーン3Aの内周面11に向く付勢力が増大するのに対し、第1弾性材4Aを内周面11の径内方に向かわせる牽引力は増大せず、内周面11と摺接部31a,31bとの摺接圧力が過大となり、これらの内周面11と摺接部31a,31bとの摺動抵抗が増加し入力効率を低下させる。この問題を改善するため第1弾性材4Aに、より大きな遠心力が発生するような向きを選定して配置すると共に第1弾性材4Aのバネ部を大質量化して、ロータ2の回転速度に応じて第1弾性材4Aのバネ部に発生する遠心力を第1弾性材4Aの牽引力に付加され、第1弾性材4Aが有するバネ定数を超える牽引力を第1弾性材4Aに作用させる。これによりロータ2の回転速度の変化に対応させて内周面11と摺接部31a,31bとの摺接圧力は常に過不足のない好ましい状態に保たれる。 As shown in FIG. 7, the first vane 3 </ b> A is stored in the rotor 2 at the tip end side where the mass is large, and the distance between the center of gravity of the first vane 3 </ b> A and the central axis C of the rotor 2 is the smallest. Accordingly, the centrifugal force acting on the first vane 3A is also minimized. The first elastic member 4A in this state is also most contracted, and the traction force that pulls the first vane 3A toward the inside of the rotor 2 is also minimum. In this way, the traction force of the first elastic member 4A increases and decreases and is autonomously controlled in conjunction with the distance between the center line C of the rotor 2 and the center of gravity of the first vane 3A, and the inner peripheral surface 11 and the sliding contact portion 31a, The sliding contact pressure with 31b is maintained in a good state when the rotational speed of the rotor 2 is in the set rotational speed range, but when the rotor 2 is driven to rotate at a low speed, the sliding contact pressure with the inner peripheral surface 11 is maintained. If the sliding contact pressure with the contact portions 31a and 31b is set to be in a good state, the centrifugal force of the first vane 3A, that is, the inner circumference of the first vane 3A when the rotor 2 is driven to rotate at high speed. While the urging force toward the surface 11 increases, the traction force that directs the first elastic member 4A toward the inner diameter of the inner peripheral surface 11 does not increase, and the sliding between the inner peripheral surface 11 and the sliding contact portions 31a and 31b does not increase. The contact pressure becomes excessive, and the sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31a and 31b. It increased to lower the input efficiency. In order to improve this problem, the first elastic member 4A is selected and arranged in such a direction that a larger centrifugal force is generated, and the mass of the spring portion of the first elastic member 4A is increased so that the rotational speed of the rotor 2 is increased. Accordingly, the centrifugal force generated in the spring portion of the first elastic member 4A is added to the pulling force of the first elastic member 4A, and the pulling force exceeding the spring constant of the first elastic member 4A is applied to the first elastic member 4A. As a result, the sliding contact pressure between the inner peripheral surface 11 and the sliding contact portions 31a and 31b is always kept in a preferable state with no excess or deficiency corresponding to the change in the rotational speed of the rotor 2.
 一方、第2ベーン3Bは質量が大きい先端側をロータ2から最突出し角速度も最大となっており、この形態における第2ベーン3Bにはロータ2の径外方に向かわせる最も大きな遠心力が作用している。そして第2弾性材4Bは最伸張して最も大きな牽引力を作用させていると共に、ロータ側係止部24Bとベーン側係止部34Bとの距離も最大となっており、バネ部を大質量化された第2弾性材4Bを径外方に撓ませる大きな遠心力が作用している。この大きな遠心力は、第2弾性材4Bの第2弾性材4Bが有する最伸張時のバネ定数を超える牽引力を第2弾性材4Bに作用させ第2弾性材4Bの牽引力をさらに強める。これによりロータ2の回転速度にしたがう第2ベーン3Bに作用する遠心力の大きさに対応して第2弾性材4Bの牽引力が増減され、内周面11と摺接部31c,31dとの摺接圧力は、それぞれの作動室における全ての作動行程において常に好ましい状態に保たれる。 On the other hand, the second vane 3B has the largest mass protruding from the rotor 2 at the maximum and the maximum angular velocity, and the largest centrifugal force acting on the second vane 3B in this configuration is directed to the outer diameter of the rotor 2. is doing. The second elastic member 4B is extended to the maximum and exerts the largest traction force, and the distance between the rotor side locking portion 24B and the vane side locking portion 34B is also maximum, so that the mass of the spring portion is increased. A large centrifugal force is applied to bend the second elastic material 4B that has been bent outward in the diameter. This large centrifugal force acts on the second elastic member 4B with a traction force that exceeds the spring constant of the second elastic member 4B of the second elastic member 4B, and further increases the traction force of the second elastic member 4B. Accordingly, the traction force of the second elastic member 4B is increased or decreased in accordance with the magnitude of the centrifugal force acting on the second vane 3B according to the rotational speed of the rotor 2, and the sliding between the inner peripheral surface 11 and the sliding contact portions 31c and 31d is increased. The contact pressure is always kept favorable in all working strokes in the respective working chambers.
 因みに、従来広く知られるロータ自転型の容積型流体機械では、ロータの回転に伴ってベーンに作用する遠心力にのみ依存してベーン先端摺接部とシリンダ内周面とのシールに必要な接触圧を賄われる場合に、ロータが低速で回転駆動される状態ではベーンに発生する遠心力が不足しベーン先端摺接部とシリンダ内周面の接触圧不足に起因する圧縮効率の低下が懸念され、逆に高速で運転される場合には、遠心力が過大となりベーン先端摺接部とシリンダ内周面との摺動抵抗の増加に伴う入力効率の低下および摺動部の早期磨耗が懸念されるが、本発明の容積型流体機械Pの上記手段によれば、これらの問題を改善することができる。 By the way, in the widely known rotor rotation type positive displacement fluid machine, the contact required for sealing between the vane tip sliding contact portion and the cylinder inner peripheral surface depends only on the centrifugal force acting on the vane as the rotor rotates. When the pressure is covered, the centrifugal force generated in the vane is insufficient when the rotor is rotated at a low speed, and there is a concern that the compression efficiency may decrease due to insufficient contact pressure between the vane tip sliding contact portion and the cylinder inner peripheral surface. On the other hand, when operating at high speed, the centrifugal force becomes excessive, and there is concern about a decrease in input efficiency due to an increase in sliding resistance between the vane tip sliding contact portion and the cylinder inner peripheral surface and early wear of the sliding portion. However, according to the means of the positive displacement fluid machine P of the present invention, these problems can be improved.
 「実施例2の構成」
  図8は、実施例2の容積型流体機械Pのベーン部、分解斜視図であり、図9から図12には、実施例2の容積型流体機械Pの要部断面を示すと共にそれぞれの作動状態を示す。実施例2の記載内容は、例えば、図示しない車両のブレーキブースタの圧力室内の空気を吸引する真空ポンプとして利用される場合に好適に作動する。
“Configuration of Example 2”
FIG. 8 is an exploded perspective view of the vane portion of the positive displacement fluid machine P of the second embodiment, and FIGS. 9 to 12 show cross-sections of essential parts of the positive displacement fluid machine P of the second embodiment and the respective operations. Indicates the state. The contents described in the second embodiment operate suitably when used as, for example, a vacuum pump that sucks air in a pressure chamber of a brake booster of a vehicle (not shown).
 図8および図9にみられるように実施例2では、実施例1におけるベーン3の配置に対し、第1ベーン3Aおよび第2ベーン3Bは、ロータ2の中心を起点にして反転させて配置される。 As shown in FIGS. 8 and 9, in the second embodiment, the first vane 3 </ b> A and the second vane 3 </ b> B are reversed from the center of the rotor 2 with respect to the arrangement of the vanes 3 in the first embodiment. The
 第1ベーン3Aおよび第2ベーン3Bの基端部側にそれぞれ形成される長孔36aおよび36bに挿通されるボルト37を介して第1ベーン3Aおよび第2ベーン3Bはそれぞれ長孔36a,36bの長円の径範囲内の移動を許容され、かつ重ね合わされた状態を保ちながらロータ2を中心とする径方向への移動可能に構成される。これにより第1ベーン3Aおよび第2ベーン3Bをボルト37によって連結されず、分離させて配置される場合に比べ、ベーン3への負荷応力を高めることができる。 The first vane 3A and the second vane 3B are respectively connected to the long holes 36a and 36b through bolts 37 inserted into the long holes 36a and 36b respectively formed on the base end portions of the first vane 3A and the second vane 3B. Movement within the diameter range of the ellipse is allowed, and is configured to be movable in the radial direction around the rotor 2 while maintaining an overlapped state. Thereby, compared with the case where the 1st vane 3A and the 2nd vane 3B are not connected with the volt | bolt 37, but are arrange | positioned separately, the load stress to the vane 3 can be raised.
 第1弾性材4Aおよび第2弾性材4B側の第1ベーン3Aおよび第2ベーン3Bにそれぞれ形成されるベーン側係止部34aおよび係止部34Bに第1弾性材4Aおよび第2弾性材4Bがそれぞれ係止され、実施例1にみられた第1ベーン3Aおよび第2ベーン3Bへの第1弾性材4Aおよび第2弾性材4Bの係止形態に比べ、第1ベーン3Aおよび第2ベーン3Bへの第1弾性材4Aおよび第2弾性材4Bの着脱作業が容易となる。 The first elastic member 4A and the second elastic member 4B are formed on the vane side engaging portion 34a and the engaging portion 34B formed on the first vane 3A and the second vane 3B on the first elastic member 4A and second elastic member 4B side, respectively. The first vane 3A and the second vane are compared with the first elastic member 4A and the second elastic member 4B locked to the first vane 3A and the second vane 3B in the first embodiment. The first elastic member 4A and the second elastic member 4B can be easily attached to and detached from 3B.
 対向部33aと33bおよび対向部33dと33dとで形成される断面略V字状の開口部は、実施例1記載の形態と逆向き、すなわちロータ2の回転方向後方に向けて形成され、後述する負圧力流体を、これらの対向部33a,33b,33d,33dに有効に作用させることができる。 An opening having a substantially V-shaped cross section formed by the facing portions 33a and 33b and the facing portions 33d and 33d is formed in the direction opposite to that described in the first embodiment, that is, toward the rear in the rotational direction of the rotor 2, and will be described later. Thus, the negative pressure fluid can effectively act on these facing portions 33a, 33b, 33d, and 33d.
 図9は、ロータ2が停止している状態を示し、図示しない潤滑油供給手段によって容積型流体機械Pに注油された潤滑油Loがシリンダ1の内周面11内の底部に溜まっている状態を示している。 FIG. 9 shows a state where the rotor 2 is stopped, and a state where the lubricating oil Lo injected into the positive displacement fluid machine P by the lubricating oil supply means (not shown) is accumulated at the bottom of the inner peripheral surface 11 of the cylinder 1. Is shown.
 「実施例2の作用」
 次に、以上のように構成される実施例2の容積型流体機械Pの停止、始動、運転状態における作用を説明する。図9に示すようにロータ2が停止し、第1ベーン3Aおよび第2ベーン3Bの側面が水平の状態では、第1弾性材4Aおよび第2弾性材4Bの互いに均衡する牽引力によってロータ2の中心部に向けて第1ベーン3Aおよび第2ベーン3Bが引き寄せられ第1ベーン3Aおよび第2ベーン3Bはそれぞれロータ2の中央部に位置している。
“Operation of Example 2”
Next, the operation of the positive displacement fluid machine P according to the second embodiment configured as described above in the stop, start, and operation states will be described. As shown in FIG. 9, when the rotor 2 is stopped and the side surfaces of the first vane 3A and the second vane 3B are horizontal, the center of the rotor 2 is caused by the traction force balanced between the first elastic member 4A and the second elastic member 4B. The first vane 3 </ b> A and the second vane 3 </ b> B are drawn toward the part, and the first vane 3 </ b> A and the second vane 3 </ b> B are located at the center of the rotor 2.
 図9の下方に示す拡大図にみられるように、第1ベーン3Aおよび第2ベーン3Bの基端部と先端部とに備える対向部33aと33bおよび33cと33dとで形成される断面略V字状の底部がそれぞれ当接し、ベーン3の長手方向寸法は最縮小化され、内周面11と摺接部31a,31b,31c,31dの間に隙間D1,D2が形成されている。 As can be seen in the enlarged view shown in the lower part of FIG. 9, the cross section approximately V formed by the facing portions 33 a and 33 b and 33 c and 33 d provided at the base end portion and the tip end portion of the first vane 3 A and the second vane 3 B. Each of the letter-shaped bottom portions comes into contact with each other, and the longitudinal dimension of the vane 3 is reduced to the minimum, and gaps D1, D2 are formed between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d.
 図10は、例えば図示しないエンジンのカムシャフトが、図1に示すものと同様のカップリング22に連結され、図9の形態から時計回りに90°ロータ2を回転駆動された始動初期の状態を示している。ロータ2の回転に伴って第1ベーン3Aおよび第2ベーン3Bに作用する遠心力の大きさにしたがって隙間D1,D2は拡大縮小する。ロータ2の始動初期における第1ベーン3Aおよび第2ベーン3Bに作用する遠心力の大きさよりも、弾性材4Aおよび弾性材4Bによって第1ベーン3Aおよび第2ベーン3Bをロータ2の中心に向けて引き寄せる牽引力が上回るように設定されており内周面11と摺接部33a,33bとの隙間D1,D2は確保されており、第1ベーン3Aおよび摺接部31d或いは第2ベーン3Bおよび31aは、潤滑油Loを吐出口13へ一気呵成に移動させることなく、潤滑油Loを攪拌しながら回転位相変化する。 10 shows, for example, an initial state in which a camshaft of an engine (not shown) is connected to a coupling 22 similar to that shown in FIG. 1 and the rotor 2 is rotated 90 ° clockwise from the configuration shown in FIG. Show. As the rotor 2 rotates, the gaps D1 and D2 expand and contract according to the magnitude of the centrifugal force acting on the first vane 3A and the second vane 3B. The first vane 3A and the second vane 3B are directed toward the center of the rotor 2 by the elastic material 4A and the elastic material 4B rather than the magnitude of the centrifugal force acting on the first vane 3A and the second vane 3B in the initial stage of the rotor 2. The pulling force is set so as to exceed, and the gaps D1 and D2 between the inner peripheral surface 11 and the sliding contact portions 33a and 33b are secured, and the first vane 3A and the sliding contact portion 31d or the second vanes 3B and 31a are The rotational phase changes while stirring the lubricating oil Lo without moving the lubricating oil Lo to the discharge port 13 at once.
 ロータ2の回転数上昇に伴って第1ベーン3A,第2ベーン3Bに作用する遠心力の大きさに反比例して隙間D1,D2は除除に小さくなり、ロータ2が所定回転数に達すると、摺接部31a,31b,31c,31dが内周面11に摺接され、第1作動室R1,R2,R3は区画される。潤滑油Loは複数回に分割されて作動流体と共に吐出口へと移動排出される。このようにしてガイド21a,21b,21c,21および第1ベーン3A,第2ベーン3Bに過大な衝撃荷重が加えられることが回避される。このため容積型流体機械Pの始動トルクを軽減でき、原動機およびクラッチ等の駆動力伝達機器の小型化が図れると共に、容積型流体機械Pの回転駆動支持部材の強度を低く設計することが可能になり、容積型流体機械Pの小型軽量化と製造コストを低減することができる。 As the rotational speed of the rotor 2 increases, the gaps D1 and D2 become smaller and smaller in inverse proportion to the centrifugal force acting on the first vane 3A and the second vane 3B, and the rotor 2 reaches a predetermined rotational speed. The sliding contact portions 31a, 31b, 31c, and 31d are slidably contacted with the inner peripheral surface 11, and the first working chambers R1, R2, and R3 are partitioned. The lubricating oil Lo is divided into a plurality of times and moved and discharged to the discharge port together with the working fluid. In this way, it is avoided that an excessive impact load is applied to the guides 21a, 21b, 21c, 21 and the first vane 3A and the second vane 3B. Therefore, the starting torque of the positive displacement fluid machine P can be reduced, the driving force transmission device such as the prime mover and the clutch can be reduced in size, and the strength of the rotary drive support member of the positive displacement fluid machine P can be designed to be low. Thus, the positive displacement fluid machine P can be reduced in size and weight and the manufacturing cost can be reduced.
 図11は、容積型流体機械Pが所定の回転数で運転されている状態を示し、第1作動室R1は膨張行程にあり、例えば、図示しないブレーキブースタの圧力室から伸びる配管を吸入口12に接続され、膨張行程にある第1作動室R1によって、上記、圧力室内の空気が吸引され、圧縮工程にある第2作動室R2に導かれた空気が逆止弁16および吐出口を介して機外へ排出されている。 FIG. 11 shows a state in which the positive displacement fluid machine P is operated at a predetermined rotational speed. The first working chamber R1 is in an expansion stroke. For example, a pipe extending from a pressure chamber of a brake booster (not shown) is connected to the suction port 12. The air in the pressure chamber is sucked by the first working chamber R1 in the expansion stroke and is guided to the second working chamber R2 in the compression process via the check valve 16 and the discharge port. It is discharged outside the machine.
 図11に示すように、吸入行程にある第1作動室R1は負圧となっている。内周面11側に最突出させ、第1作動室R1に晒されている第1ベーン3Aおよび第2ベーン3Bの側面にはロータ2の回転向きと逆向きの大きなモーメント(Amlm)および(Bmlm)が作用している。そして、圧縮行程にあり、内周面11側に最突出し第2作動室R2側に晒さる面積が最大となっている第1ベーン3Aにロータ2の回転向きと逆向きの大きなモーメント(Amlm)を作用させている。これら(Amlm),(Bmlm),(Amlm)の合成モーメントと、ロータ2の回転向きと逆向きのモーメントを発生させる内周面11に摺接している摺接部31c,31dの摺接反力とで、第2ベーン3Bのガイド21c側側面をガイド21cに最も大きな力で押し付けようとしている。 As shown in FIG. 11, the first working chamber R1 in the suction stroke has a negative pressure. The side surfaces of the first vane 3A and the second vane 3B that protrude most toward the inner peripheral surface 11 and are exposed to the first working chamber R1 have large moments (Amlm) and (Bmlm) that are opposite to the rotational direction of the rotor 2. ) Is working. The first vane 3A, which is in the compression stroke and protrudes most toward the inner peripheral surface 11 side and is exposed to the second working chamber R2 side, has a large moment (Almm) in the direction opposite to the rotational direction of the rotor 2. Is acting. The combined moment of these (Amlm), (Bmlm), and (Amlm) and the sliding contact reaction force of the sliding contact portions 31c and 31d that are in sliding contact with the inner peripheral surface 11 that generates a moment opposite to the rotational direction of the rotor 2 Thus, the side surface of the second vane 3B on the guide 21c side is pressed against the guide 21c with the greatest force.
 これに対して第1弾性材4Aは最伸張した状態となっており大きな牽引力(Alt)を発生させていると共に第1弾性材4Aには大きな遠心力(eAlc)が作用している。この(eAlc)は、第1弾性材4Aをロータ2の径外方に撓ませて第1弾性材4Aが有する牽引バネ定数にさらなる牽引力を付加された第1弾性材4Aの(Alt)は、第1ベーン3Aおよび第2ベーン3Bをガイド21d側に引き付けようとしている。この牽引力は、第1ベーン3Aおよび第2ベーン3Bにロータ2の回転向きの大きなモーメント(Aplm)および(Bplm)を発生している。これにより(Amlm),(Bmlm),(Amsm)の合成モーメントと(Aplm),(Bplm)は打ち消し合われ、第1ベーン3Aおよび第2ベーン3Bの側面と、ガイド21cおよびガイド21dとの摺動抵抗は緩和され、これら摺動面の磨耗が抑制される。 On the other hand, the first elastic member 4A is in the most extended state, generating a large traction force (Alt) and a large centrifugal force (eAlc) acting on the first elastic member 4A. This (eAlc) is the (Alt) of the first elastic member 4A in which the first elastic member 4A is bent outward in the diameter of the rotor 2 and further traction force is added to the traction spring constant of the first elastic member 4A. The first vane 3A and the second vane 3B are about to be attracted to the guide 21d side. This traction force generates large moments (Aplm) and (Bplm) in the rotation direction of the rotor 2 in the first vane 3A and the second vane 3B. As a result, the combined moment of (Amlm), (Bmlm), and (Amsm) and (Aplm), (Bplm) cancel each other, and the side surfaces of the first vane 3A and the second vane 3B and the guide 21c and the guide 21d slide. The dynamic resistance is relaxed, and wear of these sliding surfaces is suppressed.
 一方、ガイド21bに側面を摺接させて最没入し、圧縮行程にある第2作動室R2側に晒されている第2ベーン3Bの側面および摺接部31b,対向部33a,には、第1ベーン3Aおよび第2ベーン3Bに、ロータ2の回転向きのモーメントを付与する(Bpsm),(31blpp),(33ahmp)が作用している。そして、ガイド21aに側面を摺接させて最没入し、膨張行程にある第1作動室R1側に晒されている摺接部31aにも第1ベーン3Aおよび第2ベーン3Bに、ロータ2の回転向きのモーメントを付与する高い負圧力(31ahmp)が作用している。 On the other hand, the side surface of the second vane 3B, the side surface of the second vane 3B exposed to the second working chamber R2 side in the compression stroke, the sliding contact portion 31b, and the opposing portion 33a are inserted into the guide 21b. (Bpsm), (31blpp), and (33ahmp) are applied to the 1 vane 3A and the second vane 3B. Then, the side of the guide 21a is in sliding contact with the first vane 3A and the second vane 3B in the sliding contact portion 31a exposed to the first working chamber R1 side in the expansion stroke. A high negative pressure (31 amph) is applied to give a rotational moment.
 さらに、最収縮している第2弾性材4Bも第1ベーン3Aおよび第2ベーン3Bに、ロータ2の回転向きの小さなモーメントを付与する牽引力(Bst)を発生させている。このようにしてロータ2の回転向きのモーメントを発生するこれら(Bpsm),(31blpp),(33ahmp),(31ahmp),(Bst)の合成モーメントと、内周面11に摺接しロータ2の回転向きと逆向きのモーメントを第1ベーン3Aおよび第2ベーン3Bに発生させる摺接部31a,31bの摺接反力とが互いに打ち消し合われ、ガイド21aおよびガイド21dと、第1ベーン3Aおよび第2ベーン3Bの側部摺動面との摺動抵抗と磨耗が抑制される。 Furthermore, the second elastic material 4B that has contracted the most also generates a traction force (Bst) that imparts a small moment in the rotational direction of the rotor 2 to the first vane 3A and the second vane 3B. The combined moments of these (Bpsm), (31blpp), (33ahmp), (31ahmp), and (Bst) that generate moments in the direction of rotation of the rotor 2 in this way, and the rotation of the rotor 2 in sliding contact with the inner peripheral surface 11 The sliding contact reaction forces of the sliding contact portions 31a and 31b that generate moments in opposite directions to the first vane 3A and the second vane 3B cancel each other, and the guide 21a and the guide 21d and the first vane 3A and the first vane 3A Sliding resistance and wear with the side sliding surface of the two vanes 3B are suppressed.
 以上に説明した実施例2の容積型流体機械Pを、例えば、自動車に搭載され、ブレーキブースタの圧力室の空気を吸引する真空ポンプとして用いられる場合に、通常、エンジンのカムシャフトに駆動軸20が連結され、自動車が運転されている間中ロータ2は回転駆動される。一般に、ブレーキの使用頻度が極端に少なくなり負圧力の消費が減少するとされる高速道路を走行中、第1作動室R1および上記圧力室が所定の負圧に達しても容積型流体機械Pは真空ポンプ作用を継続する。そのため、内周面11と摺接部31a,31b,31c,31dとの間で発生する摩擦により、これら摺接部の磨耗を早めると共に、エンジントルクを浪費し、特にエンジンが高回転で長時間運転される傾向にある高速道路を走行する場合特に燃費を悪化させる要因となっている。そこで、実施例2の容積型流体機械Pによれば、次のような動作によって、上記問題の解決が図られる。 When the positive displacement fluid machine P according to the second embodiment described above is mounted on, for example, an automobile and used as a vacuum pump that sucks air in a pressure chamber of a brake booster, the drive shaft 20 is usually attached to the camshaft of the engine. Are connected and the rotor 2 is driven to rotate while the automobile is in operation. In general, while traveling on a highway where the frequency of use of the brake is extremely low and consumption of negative pressure is reduced, the positive displacement fluid machine P is capable of operating even when the first working chamber R1 and the pressure chamber reach a predetermined negative pressure. Continue the vacuum pump action. Therefore, the friction generated between the inner peripheral surface 11 and the sliding contact portions 31a, 31b, 31c, 31d accelerates the wear of these sliding contact portions and wastes engine torque. When driving on a highway that tends to be driven, this is a factor that deteriorates fuel consumption. Therefore, according to the positive displacement fluid machine P of the second embodiment, the above problem can be solved by the following operation.
 図12は、実施例2の容積型流体機械Pが所定の回転数で運転されている状態を示し、上述の、例えば、図示しない車両のブレーキブースタの圧力室内の空気が容積型流体機械Pによって吸引され、上記圧力室内の負圧力が所定の基準に達すると、第1ベーン3Aに作用している大きな遠心力(Alc)と、膨張行程の初期にあり高い負圧となっている第1作動室R1に晒され、ロータ2および第1ベーン3Aの回転によって攪拌され、内周面11に張り付き内周面11と摺接部31cとの間に介在する潤滑油Loの油層Llによりその一部を覆われ、高い負圧力が作用する面積を狭められている摺接部31cに作用している(31chmp)および膨張行程の終期にあり低い負圧となっている第2作動室R2に晒され、ロータ2および第2ベーン3Bの回転によって攪拌され、内周面11に張り付き内周面11と摺接部31dとの間に介在する油層Llによりその一部を覆われ、低い負圧力が作用する面積を狭められている摺接部31dに作用する(31dlmp)とによって第1ベーン3Aをロータ2の径外方に向かわせるこれら(Alc),(31chmp),(31dlmp)の合成付勢力よりも、第1弾性材4Aの大きな牽引力(Alt)と対向部33dに作用する高い負圧力(33dhmp)および膨張行程の終期にあり低い負圧となっている第2作動室R2に晒されている対向部33bに作用している低い負圧力(33blmp)のこれら第1ベーン3Aをロータ2の径内方に向かわせる合成付勢力が上回るようになり、内周面11と摺接部31c,31dとの間に油層Llを介在させ、内周面11から摺接部31c,31dは離間した状態で第1ベーン3Aはロータ2の回転に伴って位相変化する。これにより、内周面11と摺接部31c,31dとの摺動抵抗は発生せず、これら摺接部の磨耗とエネルギーの浪費が回避されると共に、第1作動室R1と第2作動室R2は区画されず第1作動室R1および第2作動室R2によるポンプ作用も行われないため、第1ベーン3Aによる流体の拡縮動作に伴うエネルギーの消費も軽減される。 FIG. 12 shows a state in which the positive displacement fluid machine P of the second embodiment is operated at a predetermined rotational speed. For example, the air in the pressure chamber of the brake booster of the vehicle (not shown) is moved by the positive displacement fluid machine P. When the negative pressure in the pressure chamber reaches a predetermined reference, the first centrifugal operation (Alc) acting on the first vane 3A and the first operation at a high negative pressure in the initial stage of the expansion stroke. Part of the oil layer Ll of the lubricating oil Lo that is exposed to the chamber R1, stirred by the rotation of the rotor 2 and the first vane 3A, and stuck to the inner peripheral surface 11 and interposed between the inner peripheral surface 11 and the sliding contact portion 31c. Is exposed to the second working chamber R2 which is acting on the sliding contact portion 31c where the area where high negative pressure acts is narrowed (31 chmp) and which is at the end of the expansion stroke and has a low negative pressure. , Rotor 2 and second A part of the oil layer Ll that is stirred by the rotation of the vane 3B and sticks to the inner peripheral surface 11 and is interposed between the inner peripheral surface 11 and the sliding contact portion 31d, and the area where the low negative pressure acts is narrowed. The first elastic member than the combined urging force of these (Alc), (31chmp), and (31dlmp) that causes the first vane 3A to be directed radially outward of the rotor 2 by acting on the slidable contact portion 31d (31dlmp) 4A large traction force (Alt) and high negative pressure (33 dhmp) acting on the opposing portion 33d and the opposing portion 33b exposed to the second working chamber R2 at the end of the expansion stroke and having a low negative pressure. The combined urging force that directs the first vane 3A having a low negative pressure (33blmp) toward the inner diameter of the rotor 2 is increased, and the gap between the inner peripheral surface 11 and the sliding contact portions 31c and 31d is increased. The oil layer Ll is interposed, the inner peripheral surface 11 from the sliding contact portion 31c, 31d are first vane 3A in a state of being separated from phase changes with the rotation of the rotor 2. As a result, sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31c and 31d does not occur, wear of these sliding contact portions and waste of energy are avoided, and the first working chamber R1 and the second working chamber. Since R2 is not partitioned and the pumping action by the first working chamber R1 and the second working chamber R2 is not performed, energy consumption associated with the fluid expansion / contraction operation by the first vane 3A is also reduced.
 さらに、第2ベーン3Bに作用している大きな遠心力(Blc)と、膨張行程の終期にあり低い負圧となっている第2作動室R2に晒され、ロータ2および第1ベーンの回転によって攪拌され、内周面11に張り付き内周面11と摺接部31cとの間に介在する潤滑油Loの油層Llによりその一部を覆われ、低い負圧力が作用する面積を狭められている摺接部31cに作用している(31blmp)および膨張行程の最終期にあり低い負圧となっている第3作動室R3に晒され、ロータ2および第2ベーン3Bの回転によって攪拌され、内周面11に張り付き内周面11と摺接部31dとの間に介在する油層Llによりその一部を覆われ、低い負圧力が作用する面積を狭められている摺接部31aに作用する(31almp)とによって第2ベーン3Bをロータ2の径外方に向かわせるこれら(Blc),(31bhmp),(31almp)の合成付勢力よりも、第1弾性材4Aの大きな牽引力(Alt)と対向部33aに作用する低い負圧力(33almp)および膨張行程の初期にあり高い負圧となっている第1作動室R1に晒されている対向部33cに作用している高い負圧力(33chmp)のこれら第2ベーン3Bをロータ2の径内方に向かわせる合成付勢力が上回るようになり、内周面11と摺接部31b,31aとの間に油層Llを介在させ、内周面11から摺接部31b,31aは離間した状態で第2ベーン3Bはロータ2の回転に伴って位相変化する。これにより、内周面11と摺接部31b,31aとの摺動抵抗は発生せず、省エネルギー化が実現されると共に、内周面11および摺接部31b,31aの磨耗も回避される。そして、第2ベーン3Bによる第2作動室R2と第3作動室R3は区画されず、第2作動室R2および第3作動室R3によるポンプ作用は行われない。このため、第2ベーン3Bによって流体を拡縮させる動作に伴うエネルギーの消費が軽減される。 Furthermore, it is exposed to the large centrifugal force (Blc) acting on the second vane 3B and the second working chamber R2 which is at the end of the expansion stroke and has a low negative pressure, and the rotor 2 and the first vane rotate. A part of the oil layer L1 of the lubricating oil Lo which is stirred and sticks to the inner peripheral surface 11 and is interposed between the inner peripheral surface 11 and the sliding contact portion 31c is covered, and the area where the low negative pressure acts is narrowed. It is exposed to the third working chamber R3 acting on the sliding contact portion 31c (31blmp) and in the final stage of the expansion stroke and having a low negative pressure, and is stirred by the rotation of the rotor 2 and the second vane 3B. A part of the oil layer Ll is attached between the inner peripheral surface 11 and the sliding contact portion 31d, which is attached to the peripheral surface 11, and acts on the sliding contact portion 31a in which the area where the low negative pressure acts is narrowed ( 31almp) The traction force (Alt) of the first elastic member 4A acts on the opposing portion 33a rather than the combined urging force of these (Blc), (31bhmp), and (31almp) that causes the two vanes 3B to be directed outward of the diameter of the rotor 2. These second vanes 3B having a low negative pressure (33almp) and a high negative pressure (33chmp) acting on the facing portion 33c exposed to the first working chamber R1 which is at the beginning of the expansion stroke and has a high negative pressure. Of the rotor 2 is increased, the oil layer Ll is interposed between the inner peripheral surface 11 and the sliding contact portions 31b and 31a, and the sliding contact portion 31b, The phase of the second vane 3 </ b> B changes as the rotor 2 rotates while 31 a is separated. Thereby, sliding resistance between the inner peripheral surface 11 and the sliding contact portions 31b and 31a does not occur, energy saving is realized, and wear of the inner peripheral surface 11 and the sliding contact portions 31b and 31a is also avoided. The second working chamber R2 and the third working chamber R3 are not partitioned by the second vane 3B, and the pumping action by the second working chamber R2 and the third working chamber R3 is not performed. For this reason, the energy consumption accompanying the operation | movement which expands / contracts the fluid by the 2nd vane 3B is reduced.
 「実施例3の構成」
 図13は、第3実施例の容積型流体機械Pのロータ2が時計回りに低速で回転駆動されている状態を示す要部の軸横断面図である。第3実施例の容積型流体機械Pは、例えば潤滑油などの非圧縮性流体を圧送するポンプとして用いられる。
“Configuration of Example 3”
FIG. 13 is an axial cross-sectional view of the main part showing a state where the rotor 2 of the positive displacement fluid machine P of the third embodiment is driven to rotate clockwise at a low speed. The positive displacement fluid machine P of the third embodiment is used as a pump that pumps incompressible fluid such as lubricating oil.
 第3実施例では、第1実施例および第2実施例にみられる吐出口13側に配置されていた逆止弁16は省略され、第2作動室R2および第3作動室R3と吐出口13とに連なる円弧溝13aが形成され、容積型流体機械Pの運転時には非圧縮性流体を間断なく吸入、吐出される。 In the third embodiment, the check valve 16 disposed on the discharge port 13 side in the first and second embodiments is omitted, and the second working chamber R2, the third working chamber R3, and the discharge port 13 are omitted. Are formed, and the incompressible fluid is sucked and discharged without interruption during the operation of the positive displacement fluid machine P.
 第1弾性材4Aの一端部は、断面略L字状の支持部材39aを第2ベーン3Bに形成される長孔38bを挿通され一端部を第1ベーン3Aの先端部側に形成される係止部34aに挿入固定され、ロータ2の中空部に突出される他端部に係止されている。そして、第1弾性材4Aの他端部はロータ2に形成される係止部24aに挿入固定される。第2弾性材4Bの一端部は、断面略L字状の支持部材39bを第1ベーン3Aに形成される長孔38aを挿通され一端部を第2ベーン3Bの先端部側に形成される係止部34Bに挿入固定され、ロータ2の中空部に突出される他端部に係止され、第2弾性材4Bの他端部はロータ2に形成される係止部24Bに挿入固定される。これらの第1弾性材4Aおよび第2弾性材4Bのそれぞれはベーン3の側面に対して略平行に配置され、ロータ2の中空部スペースをより有効に活用され、かつ、ベーン3の軸から一側面方向、他側面方向へ支持部材39a,39bの先端部側に係止され、大きくずれた位置から第1弾性材4Aおよび第2弾性材4Bによって第1ベーン3Aおよび第2ベーン3Bがそれぞれ2枚重ね合わせられた状態で弾性支持され、後述する大質量かつ、高圧の非圧縮性流体によりベーン3に作用する曲げ応力およびロータ2の回転向きと逆向きの大きなモーメントに対応可能になる。その他の構成は実施例1と同様である。 One end of the first elastic member 4A is inserted into a long hole 38b formed in the second vane 3B through a support member 39a having a substantially L-shaped cross section, and one end is formed on the tip end side of the first vane 3A. It is inserted and fixed to the stop portion 34 a and is locked to the other end protruding from the hollow portion of the rotor 2. The other end portion of the first elastic member 4A is inserted and fixed to a locking portion 24a formed on the rotor 2. One end portion of the second elastic member 4B is inserted into a long hole 38a formed in the first vane 3A through a support member 39b having a substantially L-shaped cross section, and one end portion is formed on the distal end side of the second vane 3B. The second elastic member 4B is inserted and fixed to a locking portion 24B formed on the rotor 2 and is fixed to the locking portion 34B and locked to the other end protruding from the hollow portion of the rotor 2. . Each of the first elastic member 4A and the second elastic member 4B is disposed substantially parallel to the side surface of the vane 3 so that the space of the hollow portion of the rotor 2 can be used more effectively. The first vane 3A and the second vane 3B are respectively held by the first elastic member 4A and the second elastic member 4B from the positions shifted from the positions shifted from the front end side of the support members 39a and 39b in the lateral direction and the other lateral direction. It is elastically supported in a state where the sheets are overlapped, and can cope with a bending stress acting on the vane 3 and a large moment opposite to the rotation direction of the rotor 2 due to a large mass and high-pressure incompressible fluid described later. Other configurations are the same as those of the first embodiment.
 「実施例3の作用」
 図13に示す実施例3の容積型流体機械Pでは、ロータ2が時計回りに低速で回転駆動されている。この状態における第1ベーン3Aおよび第2ベーン3Bをロータ2の径外方に向かわせる小さな遠心力(Asc),(Bsc)よりも、第1ベーン3Aおよび第2ベーン3Bをロータ2の径内方に向かわせる第1弾性材4Aおよび第2弾性材4Bの大きな牽引力(Alt),(Blt)が上回り第1ベーン3Aおよび第2ベーン3Bのそれぞれはロータ2の中心に引き寄せられ内周面11と摺接部31a,31b,31c,31dとの間には隙間D1,D2が形成されている。このようにして第1作動室R1,第2作動室R2,第3作動室R3のそれぞれは区画されず連通状態にあるものの、第1ベーン3Aおよび第2ベーン3Bによって質量が大きい作動流体(潤滑油)は、内周面11に沿って攪拌され徐々に遠心力を増大させ、白抜きの矢印で示すように吸入口12および吸入溝12aから吸入された作動流体は第1作動室R1に導かれ第2作動室R2,第3作動室R3に移動され、吐出溝13aおよび吐出口13を介して低圧の作動流体が機外へと排出される。
“Operation of Example 3”
In the positive displacement fluid machine P of the third embodiment shown in FIG. 13, the rotor 2 is rotationally driven at a low speed in the clockwise direction. In this state, the first vane 3A and the second vane 3B are located within the diameter of the rotor 2 rather than the small centrifugal forces (Asc) and (Bsc) that direct the first vane 3A and the second vane 3B to the outside of the diameter of the rotor 2. The large traction forces (Alt) and (Blt) of the first elastic member 4A and the second elastic member 4B directed toward the upper side are increased, and each of the first vane 3A and the second vane 3B is attracted to the center of the rotor 2 and the inner peripheral surface 11 Clearances D1, D2 are formed between the sliding contact portions 31a, 31b, 31c, 31d. Thus, although each of the first working chamber R1, the second working chamber R2, and the third working chamber R3 is in a communication state without being partitioned, a working fluid (lubricant) having a large mass by the first vane 3A and the second vane 3B. Oil) is stirred along the inner peripheral surface 11 to gradually increase the centrifugal force, and the working fluid sucked from the suction port 12 and the suction groove 12a is guided to the first working chamber R1 as indicated by the white arrows. It is moved to the second working chamber R2 and the third working chamber R3, and the low-pressure working fluid is discharged out of the machine through the discharge groove 13a and the discharge port 13.
 そして、ロータ2の回転数を上昇させると第1ベーン3Aおよび第2ベーン3Bに作用する遠心力が、第1弾性材4Aおよび第2弾性材4Bの大きな牽引力(Alt),(Blt)を上回り摺接部31a,31b,31c,31dが内周面11に摺接され、第1作動室R1,第2作動室R2,第3作動室R3は区画され(図省略)吸入口12および吸入溝12aから吸入された作動流体は第1作動室R1に導かれ第2作動室R2,第3作動室R3に順次移動され、吐出溝13aおよび吐出口13を介して高圧の作動流体が機外へと排出される。このようにして、実施例3の容積型流体機械Pによれば、ロータ2の回転数を増減することにより吐出される流体の量と圧力を制御できる。 When the rotational speed of the rotor 2 is increased, the centrifugal force acting on the first vane 3A and the second vane 3B exceeds the large traction force (Alt), (Blt) of the first elastic material 4A and the second elastic material 4B. The sliding contact portions 31a, 31b, 31c, 31d are slidably contacted with the inner peripheral surface 11, and the first working chamber R1, the second working chamber R2, and the third working chamber R3 are partitioned (not shown). The working fluid sucked from 12a is guided to the first working chamber R1 and sequentially moved to the second working chamber R2 and the third working chamber R3, and the high-pressure working fluid is discharged to the outside through the discharge groove 13a and the discharge port 13. And discharged. In this way, according to the positive displacement fluid machine P of the third embodiment, the amount and pressure of the discharged fluid can be controlled by increasing or decreasing the rotation speed of the rotor 2.
 なお、第3実施例における各作動室の作動形態は基本的には、第1実施例の図5~図7に記載の作動形態と同様であるので、当該第3実施例におけるロータ2の回転位相変化に伴うそれぞれの作動形態図は省略し、図13を代用して説明する。ロータ2が高速で回転駆動される場合に、非圧縮性流体による高圧の流体圧力が作用する第2作動室R2に晒される第1ベーン3Aの基端部側側面にはロータ2の回転向きと逆向きの大きなモーメント(Amlm)が作用している。同様に高い正圧が作用している第2作動室R2に晒される対向部33dには(33dhpp)と摺接部31dにも高い正圧(31dhmp)が作用している。これらロータ2の回転向きと逆向きの(Amlm),(33dhpp),(31dhmp)の合成付勢力は、第2ベーン3Bのガイド21c側側面をガイド21cに強く押し付けようとしている。これに対して、限られたロータ2の中空部を有効に活用して配置され、第2ベーン3Bに大きな対向付勢力を発生させるように、支持部材39bを介して第1ベーン3Aの側面からロータ2の径外方に大きくずれた位置から牽引する第2弾性材4Bの大きな牽引力は、第2ベーン3Bをロータ2の中心に向けて牽引する力の成分よりも、第2ベーン3Bの基端部側を支点とするロータ2の回転向きの大きなモーメントを発生する成分が大きくなり、この大きなモーメントは、第1ベーン3Aに、ロータ2の回転向きの大きなモーメント(Aplm)を付与している。これにより、上記(Amlm),(33dhpp),(31dhmp)の合成付勢力と(Aplm)とが打ち消し合われ第1ベーン3Aのガイド21c側側面とガイド21cとの摺動抵抗と磨耗は軽減される。 The operation mode of each working chamber in the third embodiment is basically the same as the operation mode described in FIGS. 5 to 7 of the first embodiment, and therefore the rotation of the rotor 2 in the third embodiment is not limited. Each operation form diagram accompanying the phase change is omitted, and FIG. 13 is used instead. When the rotor 2 is rotationally driven at a high speed, the rotation direction of the rotor 2 is set on the side surface on the base end side of the first vane 3A exposed to the second working chamber R2 on which a high fluid pressure by the incompressible fluid acts. A large reverse moment (Amlm) is acting. Similarly, a high positive pressure (31 dhmp) is applied to the facing portion 33d exposed to the second working chamber R2 to which a high positive pressure is applied (33dhp) and the sliding contact portion 31d. The combined biasing force of (Amlm), (33dhpp), and (31dhmp) opposite to the rotation direction of the rotor 2 tries to strongly press the side surface of the second vane 3B on the guide 21c side against the guide 21c. On the other hand, it is arranged by effectively utilizing the limited hollow portion of the rotor 2, and from the side surface of the first vane 3A via the support member 39b so as to generate a large counter biasing force on the second vane 3B. The large traction force of the second elastic member 4B that is pulled from a position greatly deviated from the diameter of the rotor 2 is larger than the component of the force that pulls the second vane 3B toward the center of the rotor 2. A component that generates a large moment in the rotational direction of the rotor 2 with the end side as a fulcrum increases, and this large moment imparts a large moment (Aplm) in the rotational direction of the rotor 2 to the first vane 3A. . As a result, the combined urging force of (Amlm), (33dhpp), and (31dhmp) and (Aplm) cancel each other, and the sliding resistance and wear between the side surface of the first vane 3A on the guide 21c side and the guide 21c are reduced. The
 さらに、ロータ2が回転駆動される速度と、ロータ2の中心から径外方に突出する第1ベーン3Aおよび第2ベーン3Bの距離と、ロータ2の回転速度にしたがって、ロータ2の径外方へ、第1弾性材4Aおよび第2弾性材4Bのバネ部の撓み量は変化する。この撓みは、第1ベーン3Aおよび第2ベーン3Bをロータ2の内方に向く牽引力を発生させ、この牽引力は第1弾性材4Aおよび第2弾性材4Bに付加され、第1弾性材4Aおよび第2弾性材4Bが有するバネ定数を超える牽引力を第1弾性材4Aおよび第2弾性材4Bに発生させ、その牽引力を増減する。これによりロータ2の回転駆動される速度、すなわち、第1ベーン3Aおよび第2ベーン3Bに作用する遠心力の大きさと、ロータ2の中心から径外方に突出する第1ベーン3Aおよび第2ベーン3Bの距離にしたがって、第1弾性材4Aおよび第2弾性材4Bの牽引力は好適に調節され内周面11と摺接部31a,31b,31c,31dおよびガイド21b,21cと第1ベーン3Aおよび第2ベーン3Bのガイド21b,21c側摺接面との摺動抵抗が軽減されると共に磨耗も抑制される。 Further, the outer diameter of the rotor 2 is increased in accordance with the speed at which the rotor 2 is rotationally driven, the distance between the first vane 3A and the second vane 3B projecting radially outward from the center of the rotor 2, and the rotational speed of the rotor 2. The amount of bending of the spring portions of the first elastic member 4A and the second elastic member 4B changes. This bending generates a traction force that directs the first vane 3A and the second vane 3B inward of the rotor 2, and this traction force is applied to the first elastic material 4A and the second elastic material 4B, and the first elastic material 4A and A traction force exceeding the spring constant of the second elastic material 4B is generated in the first elastic material 4A and the second elastic material 4B, and the traction force is increased or decreased. Thereby, the rotational speed of the rotor 2, that is, the magnitude of the centrifugal force acting on the first vane 3 </ b> A and the second vane 3 </ b> B, and the first vane 3 </ b> A and the second vane protruding radially outward from the center of the rotor 2. The traction force of the first elastic member 4A and the second elastic member 4B is suitably adjusted according to the distance 3B, and the inner peripheral surface 11, the sliding contact portions 31a, 31b, 31c, 31d, the guides 21b, 21c, the first vane 3A, The sliding resistance of the second vane 3B with the sliding contact surfaces of the guides 21b and 21c is reduced and wear is also suppressed.
 また、上記各実施例において第1弾性材4Aおよび第2弾性材4Bのバネ部は、通常のコイルバネを用いた例を示していているが、ピンセット形のバネ或いはねじりバネまたは第1弾性材4Aおよび第2弾性材4Bのそれぞれにバネ定数を高めることなく、第1弾性材4Aおよび第2弾性材4Bのバネ部の質量を大きくして、バネ部により大きな遠心力を発生させるため、ゴム被服バネまたは線状バネ材の側部断面形状を鎖状または数珠状に形成されるものを用いてもよい。そして、対向部33a,33b,33c,33dによって形成される形状と角度およびこれら対向部33a,33b,33c,33dに流体が作用する面積は適宜の大きさに形成され、対向部33a,33b,33c,33dのそれぞれに発生する付勢力を最適に設定することもできる。 In each of the above embodiments, the spring portions of the first elastic member 4A and the second elastic member 4B are examples using normal coil springs. However, tweezer springs or torsion springs or first elastic members 4A are shown. In order to increase the mass of the spring portions of the first elastic member 4A and the second elastic member 4B without generating a spring constant in each of the second elastic members 4B and generate a large centrifugal force in the spring portions, You may use what formed the side part cross-sectional shape of a spring or a linear spring material in the shape of a chain or a bead. The shape and angle formed by the facing portions 33a, 33b, 33c, and 33d and the area where the fluid acts on the facing portions 33a, 33b, 33c, and 33d are formed in an appropriate size, and the facing portions 33a, 33b, The urging force generated in each of 33c and 33d can be set optimally.
 その他本発明は、上述した実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜構成の組み換え、組み合わせが可能である。 Others The present invention is not limited to the above-described embodiments, and can be appropriately recombined and combined without departing from the spirit of the present invention.
 例えば、図14に示すように、実施例3の第1弾性材4Aおよび第2弾性材4Bに、ねじりバネを用いることもできる。また、作動室内に取り込まれた流体に含まれる化合物とバネとが化学反応を起こし、バネの材質が変質するなどの事態が発生する。このような事態を回避するため、第1弾性材4Aおよび第2弾性材4Bに、高分子バネ、セラミックバネ、磁力バネ、流体バネなどを用いてもよい。 For example, as shown in FIG. 14, a torsion spring can be used for the first elastic member 4A and the second elastic member 4B of the third embodiment. In addition, a chemical reaction occurs between the compound contained in the fluid taken into the working chamber and the spring, and the spring material changes in quality. In order to avoid such a situation, a polymer spring, a ceramic spring, a magnetic spring, a fluid spring, or the like may be used for the first elastic member 4A and the second elastic member 4B.
 実施例1に記載の容積型流体機械Pを燃料電池へ流体を供給するコンプレッサーとして用いる場合には、ロータ2に複数のベーン3を配設する構成とし、或いは、駆動軸20上の軸方向に複数の作動室を形成し、それぞれの吐出口13を連通する構成とすることもできる。前記構成のいずれか又は両方を採用することにより、吐出流体の平滑化(燃料電池のセルに悪影響を及ぼす流体の脈動の抑制)を図ることが可能となる。その結果、吐出流体の脈動を抑える圧力容器などを必要としない軽量でコンパクトなコンプレッサーが提供される。
 
When the positive displacement fluid machine P described in the first embodiment is used as a compressor for supplying fluid to the fuel cell, the rotor 2 is provided with a plurality of vanes 3 or in the axial direction on the drive shaft 20. A plurality of working chambers may be formed and the discharge ports 13 may be communicated with each other. By adopting either or both of the above configurations, it is possible to smooth the discharged fluid (suppress the pulsation of the fluid that adversely affects the cells of the fuel cell). As a result, a lightweight and compact compressor that does not require a pressure vessel or the like that suppresses pulsation of the discharged fluid is provided.

Claims (7)

  1. [規則91に基づく訂正 09.02.2011] 
     容積型流体機械(P)は、
    シリンダ(1)とロータ(2)と複数の作動室(R1,R2,R3)
    を 有しており、
     前記シリンダ(1)は、略円形であり、
    吸入口(12)と吐出口(13)とが設けられており、
     前記ロータ(2)は、
    内周面(11)内の偏心した位置で回転するものであり、
    ベーン(3)を備え、
     前記ベーン(3)は、
    前記ロータ(2)内に収容され、
    前記ロータ(2)の径方向へ往復摺動可能に設けられており、
     複数の作動室(R1,R2,R3)は、
    前記内周面(11)が区画されたものであり、
     前記区画は、
    前記ベーン(3)の一端および他端が突出してなされるものであり、
     前記突出は、
    前記ロータ(2)の周面からなされるものであり、
     前記ベーン(3)の一端および他端には、
    第1ベーン(3A)および第2ベーン(3B)が設けられており、
     前記第1ベーン(3A)および第2ベーン(3B)は、
    プレート状であり、プレート側面を有し、
    摺接部(31a,31b,31c,31d)を有し、
     前記摺接部(31a,31b,31c,31d)は、
    前記内周面(11)へ摺接するものであり、
     前記第1ベーン(3A)および第2ベーン(3B)それぞれは、
    第1弾性材(4A)、第2弾性材(4B)それぞれによって弾性支持されており、
     前記第1弾性材(4A)、第2弾性材(4B)は、
    前記ロータ(2)内に備えられており、
     前記第1ベーン(3A)と第2ベーン(3B)の弾性支持は、
    前記プレート側面をずらした方向で支持するものであり、
     前記ロータ(2)は、
    回転および停止するものであり、
     前記ロータ(2)の停止時は、
    前記摺接部(31a,31b,31c,31d)が
    前記内周面(11)から離間するものであり、
     前記離間は、
    第1ベーン(3A)と第2ベーン(3B)を
    ロータ(2)の径内方に引き寄せることでなされ、
     前記第1ベーン(3A)と第2ベーン(3B)の引き寄せは、
    前記第1弾性材(4A)と第2弾性材(4B)によってなされるものであり、
     前記ロータ(2)の回転時は、
    第1ベーン(3A)および第2ベーン(3B)が
    前記内周面(11)に摺接するものであり、
     前記内周面(11)への摺接は、
    押圧しつつ移動するものであり、
     前記押圧と移動は、
    前記ロータ(2)のモーメントによってなされるものであり、
     前記モーメントは、
    駆動モーメントと圧力差に基づくモーメントからなり、
     前記圧力差に基づくモーメントは、
    区画される作動室(R1,R2,R3)間の圧力差によって生じる
    第1ベーン(3A)および第2ベーン(3B)へのモーメントであり、
     前記第1弾性材(4A)と第2弾性材(4B)が、
    第1ベーン(3A)と第2ベーン(3B)をロータ(2)の径内方に引き寄せることにより
    これらのモーメントによる過剰な摺接力および押圧力を打ち消す付勢力を 付与すること
    を特徴とする容積型流体機械。
     
    [Correction based on Rule 91 09.02.2011]
    The positive displacement fluid machine (P)
    Cylinder (1), rotor (2) and a plurality of working chambers (R1, R2, R3)
    Have
    The cylinder (1) is substantially circular,
    A suction port (12) and a discharge port (13) are provided;
    The rotor (2)
    Rotating at an eccentric position in the inner peripheral surface (11),
    With vane (3),
    Said vane (3)
    Housed in the rotor (2),
    The rotor (2) is provided so as to be slidable in the radial direction,
    The plurality of working chambers (R1, R2, R3)
    The inner peripheral surface (11) is partitioned,
    The compartment is
    One end and the other end of the vane (3) are protruded,
    The protrusion is
    It is made from the peripheral surface of the rotor (2),
    At one end and the other end of the vane (3),
    A first vane (3A) and a second vane (3B) are provided;
    The first vane (3A) and the second vane (3B) are:
    It is plate-shaped, has a plate side,
    Having sliding portions (31a, 31b, 31c, 31d),
    The sliding contact portions (31a, 31b, 31c, 31d)
    Slidably contacts the inner peripheral surface (11),
    Each of the first vane (3A) and the second vane (3B)
    Elastically supported by each of the first elastic material (4A) and the second elastic material (4B),
    The first elastic material (4A) and the second elastic material (4B)
    Provided in the rotor (2),
    The elastic support of the first vane (3A) and the second vane (3B) is as follows:
    The plate side surface is supported in a shifted direction,
    The rotor (2)
    Rotate and stop,
    When the rotor (2) is stopped,
    The sliding contact portions (31a, 31b, 31c, 31d) are separated from the inner peripheral surface (11),
    The spacing is
    It is made by drawing the first vane (3A) and the second vane (3B) toward the inner diameter of the rotor (2),
    The drawing of the first vane (3A) and the second vane (3B)
    The first elastic material (4A) and the second elastic material (4B),
    When the rotor (2) rotates,
    The first vane (3A) and the second vane (3B) are in sliding contact with the inner peripheral surface (11),
    The sliding contact with the inner peripheral surface (11) is as follows:
    It moves while pressing,
    The pressing and moving
    Is made by the moment of the rotor (2),
    The moment is
    It consists of a moment based on the driving moment and the pressure difference,
    The moment based on the pressure difference is
    A moment to the first vane (3A) and the second vane (3B) caused by the pressure difference between the partitioned working chambers (R1, R2, R3);
    The first elastic material (4A) and the second elastic material (4B)
    A volume characterized in that the first vane (3A) and the second vane (3B) are attracted toward the inner diameter of the rotor (2), thereby applying an excessive sliding contact force and an urging force that counteracts the pressing force due to these moments. Type fluid machine.
  2. [規則91に基づく訂正 09.02.2011] 
     前記第1ベーン(3A)と第2ベーン(3B)は、
    先端側の摺接部(31a,31b,31c,31d)と
    基端側の対向部(33b,33c)とを有し、
     前記摺接部(31a,31b,31c,31d)を有する先端側が、
    前記対向部(33b,33c)を有する基端側よりも
    大きい質量で形成されることを特徴とする
    請求項1記載の容積型流体機械。
    [Correction based on Rule 91 09.02.2011]
    The first vane (3A) and the second vane (3B) are:
    It has a sliding contact portion (31a, 31b, 31c, 31d) on the distal end side and a facing portion (33b, 33c) on the proximal end side,
    The front end side having the sliding contact portions (31a, 31b, 31c, 31d)
    2. The positive displacement fluid machine according to claim 1, wherein the positive displacement fluid machine is formed with a mass larger than that of the base end side having the facing portions (33 b, 33 c).
  3.  前記摺接部(31a,31b,31c,31d)は、
    膨出した摺接部(31a,31d)を有し、
     前記膨出した摺接部(31a,31d)それぞれは、
    前記第1ベーン(3A)と第2ベーン(3B)先端側のプレート側面それぞれに
    側方膨出する態様で設けられており、
     前記第1ベーン(3A)と第2ベーン(3B)の配置は、
    第1ベーン(3A)の膨出した摺接部(31a)と
    第2ベーン(3B)の膨出した摺接部(31d)とを
    離間するものであり、かつ
    膨出方向のプレート内側面同士が対向するように、
    重ね合わせる態様としたものであり、
     前記配置によって、前記各プレート内側面は
    相互にロータ(2)の径方向へ往復摺動可能に構成される
    ことを特徴とする
    請求項1又は2記載の容積型流体機械。
     
    The sliding contact portions (31a, 31b, 31c, 31d)
    Having swelled sliding contact portions (31a, 31d),
    Each of the swollen sliding contact portions (31a, 31d)
    The first vane (3A) and the second vane (3B) are provided in such a manner that they bulge laterally on the respective plate side surfaces on the tip side,
    The arrangement of the first vane (3A) and the second vane (3B) is as follows:
    The swelled contact portion (31a) of the first vane (3A) and the swelled contact portion (31d) of the second vane (3B) are separated from each other, and the inner surfaces of the plates in the bulging direction are separated from each other. So that
    It is a mode to superimpose,
    3. The positive displacement fluid machine according to claim 1, wherein the inner surface of each plate is configured to be reciprocally slidable in the radial direction of the rotor by the arrangement.
  4.  ロータ(2)は、
    中空部と2つのロータ側係止部(24a,24b)とを有し、
     前記2つのロータ側係止部(24a,24b)は、
    前記ロータ(2)内に形成されたものであり、
     2つのベーン側係止部(34a,34b)それぞれは、
    第1ベーン(3A)と第2ベーン(3B)の側面それぞれに
    形成されたものであり、
     第1弾性材(4A)および第2弾性材(4B)は、
    少なくとも2つの牽引バネであって、
     前記少なくとも2つの牽引バネは、
    前記ロータ(2)の中空部内に対向配設されており、
    一端と他端とを有しており、
     前記牽引バネの一端それぞれが、
    2つのベーン側係止部(34a,34b)それぞれに係止され、
     前記牽引バネの他端それぞれが、
    2つのロータ側係止部(24a,24b)それぞれに係止される
    ことを特徴とする
    請求項3記載の容積型流体機械。
     
    The rotor (2)
    A hollow portion and two rotor side locking portions (24a, 24b);
    The two rotor side locking portions (24a, 24b)
    Formed in the rotor (2),
    Each of the two vane side locking portions (34a, 34b)
    Formed on the side surfaces of the first vane (3A) and the second vane (3B),
    The first elastic material (4A) and the second elastic material (4B)
    At least two traction springs,
    The at least two traction springs are
    The rotor (2) is disposed opposite to the hollow portion,
    One end and the other end,
    Each end of the traction spring
    It is locked to each of the two vane side locking portions (34a, 34b),
    Each of the other ends of the traction springs
    The positive displacement fluid machine according to claim 3, wherein the positive displacement fluid machine is locked to each of the two rotor side locking portions (24 a, 24 b).
  5.  ロータ(2)は、
    中空部と2つのロータ側係止部(24a,24b)とを有し、
     前記2つのロータ側係止部(24a,24b)は、
    前記ロータ(2)内に形成されたものであり、
     第1ベーン(3A)および第2ベーン(3B)には
    長孔(35a,35b)とベーン側係止部(34b,34a)が、
    形成されており、
     前記長孔(35a,35b)それぞれは、
    第1ベーン(3A)と第2ベーン(3B)のプレート状部それぞれを
    厚さ方向に貫通するものであり、
     前記ベーン側係止部(34a,34b)それぞれは、
    第1ベーン(3A)、第2ベーン(3B)の側面それぞれに、形成されたものであり、
    前記長孔(35a,35b)の先側および
    重ね合わされて対向するプレート内側面それぞれに
    設けられるものであり、
     前記ロータ側係止部(24b,24a)それぞれは、
    重ね合わされた第1ベーン(3A)と第2ベーン(3B)のプレート状部外方および
    前記長孔(35a,35b)の先側方向それぞれに
    設けられるものであり、
     第1弾性材(4A)は、一端と他端とを有しており、
     第2弾性材(4B)は、一端と他端とを有しており、
     第1弾性材(4A)と第2弾性材(4B)の一端それぞれは、
    前記長孔(35b,35a)それぞれを挿通し、
    その先側にある前記ベーン側係止部(34b,34a)に係止されるものであり、
     第1弾性材(4A)と第2弾性材(4B)の他端それぞれは、
    前記ロータ側係止部(24a,24b)それぞれに係止されるものであり、
     第1弾性材(4A)と第2弾性材(4B)が
    ベーン(3)の往復摺動方向に対し傾斜して配置される
    ことを特徴とする
    請求項3記載の容積型流体機械。
     
    The rotor (2)
    A hollow portion and two rotor side locking portions (24a, 24b);
    The two rotor side locking portions (24a, 24b)
    Formed in the rotor (2),
    The first vane (3A) and the second vane (3B) have long holes (35a, 35b) and vane side locking portions (34b, 34a),
    Formed,
    Each of the long holes (35a, 35b)
    Each of the first vane (3A) and the second vane (3B) plate-like portions are penetrated in the thickness direction,
    Each of the vane side locking portions (34a, 34b)
    It is formed on each side surface of the first vane (3A) and the second vane (3B),
    The long hole (35a, 35b) is provided on each of the front side and the plate inner surface facing each other by being overlapped,
    Each of the rotor side locking portions (24b, 24a)
    The first vane (3A) and the second vane (3B) that are overlapped are provided on the outside of the plate-like portion and on the front side direction of the long holes (35a, 35b), respectively.
    The first elastic material (4A) has one end and the other end,
    The second elastic material (4B) has one end and the other end,
    One end of each of the first elastic material (4A) and the second elastic material (4B)
    Through each of the elongated holes (35b, 35a),
    It is locked to the vane side locking portion (34b, 34a) on its front side,
    The other ends of the first elastic material (4A) and the second elastic material (4B)
    The rotor side locking portions (24a, 24b) are respectively locked.
    4. The positive displacement fluid machine according to claim 3, wherein the first elastic member (4A) and the second elastic member (4B) are arranged to be inclined with respect to the reciprocating sliding direction of the vane (3).
  6.  第1ベーン(3A)および第2ベーン(3B)には
    ベーン側係止部(34b,34a)が、
    形成されており、
     前記ベーン側係止部(34a,34b)は、
    重ね合わされた第1ベーン(3A)のプレート状部の外側面と
    重ね合わされた第2ベーン(3B)のプレート状部の外側面に
    形成されており、
     ロータ(2)は、
    中空部と2つのロータ側係止部(24a,24b)とを有し、
     前記2つのロータ側係止部(24a,24b)は、
    前記ロータ(2)内に形成されたものであり、
     前記ロータ側係止部(24a,24b)は、
    重ね合わされた前記第1ベーン(3A)のプレート状部外方であって
    前記ベーン側係止部(34a)よりもずれた位置と、
    重ね合わされた前記第2ベーン(3B)のプレート状部外方であって
    前記ベーン側係止部(34b)よりもずれた位置に、
    形成されており、
     第1弾性材(4A)は、一端と他端とを有しており、
     第2弾性材(4B)は、一端と他端とを有しており、
     第1弾性材(4A)と第2弾性材(4B)の、一端それぞれは、
    前記ベーン側係止部(34a,34b)それぞれに係止され、
     第1弾性材(4A)と第2弾性材(4B)の、他端それぞれは、
    ロータ(2)内の前記ロータ側係止部(24a,24b)それぞれに係止されるものであり
     第1弾性材(4A)と第2弾性材(4B)が
    ベーン(3)の往復摺動方向に対し傾斜して配置される
    ことを特徴とする
    請求項3記載の容積型流体機械。
     
    The first vane (3A) and the second vane (3B) have vane side locking portions (34b, 34a),
    Formed,
    The vane side locking portions (34a, 34b)
    Formed on the outer surface of the plate-shaped portion of the second vane (3B) superimposed on the outer surface of the plate-shaped portion of the superimposed first vane (3A);
    The rotor (2)
    A hollow portion and two rotor side locking portions (24a, 24b);
    The two rotor side locking portions (24a, 24b)
    Formed in the rotor (2),
    The rotor side locking portions (24a, 24b)
    A position outside the plate-like portion of the superimposed first vane (3A) and shifted from the vane side locking portion (34a);
    At the position outside the plate-like part of the second vane (3B) that is superimposed and shifted from the vane side locking part (34b),
    Formed,
    The first elastic material (4A) has one end and the other end,
    The second elastic material (4B) has one end and the other end,
    One end of each of the first elastic material (4A) and the second elastic material (4B)
    Locked to each of the vane side locking portions (34a, 34b),
    The other ends of the first elastic material (4A) and the second elastic material (4B)
    The first elastic member (4A) and the second elastic member (4B) are reciprocally slidable by the vane (3). The first elastic member (4A) and the second elastic member (4B) are engaged with the rotor side engaging portions (24a, 24b) in the rotor (2). The positive displacement fluid machine according to claim 3, wherein the positive displacement fluid machine is inclined with respect to a direction.
  7.  ロータ(2)は、
    中空部と2つのロータ側係止部(24a,24b)とを有し、
     前記2つのロータ側係止部(24a,24b)は、
    前記ロータ(2)内に形成されたものであり、
     第1ベーン(3A)および第2ベーン(3B)は
    支持部材(39a,39b)を有し、
    長孔(38a,38b)とベーン側係止部(34b,34a)とが、
    形成されており、
     前記支持部材(39a,39b)それぞれは、
    断面略L字状であって、前記長孔(38a,38b)それぞれを
    挿通するものであり、
    一端と他端とを有しており、
     前記長孔(38a,38b)と前記ベーン側係止部(34b,34a)は、
    第1ベーン(3A)および第2ベーン(3B)に形成されており、
     前記長孔(38a,38b)それぞれは、
    第1ベーン(3A)と第2ベーン(3B)のプレート状部のそれぞれを
    厚さ方向に貫通するものであり、
     前記ベーン側係止部(34b,34a)は、
    前記長孔(38a,38b)の先側および
    重ね合わされて対向する前記プレート状部の内側面に
    設けられるものであり、
     前記各支持部材(39a,39b)は、
    一端と他端とを有しており、
    前記一端は前記長孔(38a,38b)のどちらかを挿通しており、
    前記他端は前記長孔(38a,38b)を挿通していないものであり、
     前記各支持部材(39a,39b)それぞれの一端部は、
    プレート状部の内側面の前記ベーン側係止部(34a,34b)それぞれに固定され、
     前記ロータ側係止部(24b,24a)は、
    第1ベーン(3A)および第2ベーン(3B)の重ね合わされたプレート状部外方であり
    且つ前記各支持部材(39a,39b)の他端部側方向に
    設けられるものであり、
     第1弾性材(4A)は、一端と他端とを有しており、
     第2弾性材(4B)は、一端と他端とを有しており、
     第1弾性材(4A)と第2弾性材(4B)の一端それぞれは、
    前記各支持部材(39a,39b)の他端それぞれに係止され、
     第1弾性材(4A)と第2弾性材(4B)の、他端それぞれは、
    前記ロータ側係止部(24a,24b)それぞれに係止され、
     第1弾性材(4A)と第2弾性材(4B)は
    ベーン(3)の往復摺動方向に対し略平行に配置される
    ことを特徴とする
    請求項3記載の容積型流体機械。
     
     
    The rotor (2)
    A hollow portion and two rotor side locking portions (24a, 24b);
    The two rotor side locking portions (24a, 24b)
    Formed in the rotor (2),
    The first vane (3A) and the second vane (3B) have support members (39a, 39b),
    The long holes (38a, 38b) and the vane side locking portions (34b, 34a)
    Formed,
    Each of the support members (39a, 39b)
    It has a substantially L-shaped cross section and is inserted through each of the long holes (38a, 38b).
    One end and the other end,
    The elongated holes (38a, 38b) and the vane side locking portions (34b, 34a)
    Formed in the first vane (3A) and the second vane (3B),
    Each of the long holes (38a, 38b)
    Each of the plate-like portions of the first vane (3A) and the second vane (3B) penetrates in the thickness direction,
    The vane side locking portions (34b, 34a)
    Provided on the front side of the elongated hole (38a, 38b) and the inner side surface of the plate-like part that is overlapped and opposed,
    Each of the support members (39a, 39b)
    One end and the other end,
    The one end is inserted through one of the long holes (38a, 38b),
    The other end is not inserted through the long hole (38a, 38b),
    One end of each of the support members (39a, 39b)
    It is fixed to each of the vane side locking portions (34a, 34b) on the inner surface of the plate-like portion,
    The rotor side locking portions (24b, 24a)
    The first vane (3A) and the second vane (3B) are arranged on the outer side of the plate-like portion and provided in the direction of the other end of each of the support members (39a, 39b),
    The first elastic material (4A) has one end and the other end,
    The second elastic material (4B) has one end and the other end,
    One end of each of the first elastic material (4A) and the second elastic material (4B)
    Locked to the other end of each of the support members (39a, 39b),
    The other ends of the first elastic material (4A) and the second elastic material (4B)
    Locked to each of the rotor side locking portions (24a, 24b),
    The positive displacement fluid machine according to claim 3, wherein the first elastic member (4A) and the second elastic member (4B) are arranged substantially parallel to the reciprocating sliding direction of the vane (3).

PCT/JP2010/073561 2010-05-27 2010-12-27 Positive-displacement fluid machine WO2011148533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010122151A JP4596339B1 (en) 2010-05-27 2010-05-27 Positive displacement fluid machinery
JP2010-122151 2010-05-27

Publications (1)

Publication Number Publication Date
WO2011148533A1 true WO2011148533A1 (en) 2011-12-01

Family

ID=43425727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073561 WO2011148533A1 (en) 2010-05-27 2010-12-27 Positive-displacement fluid machine

Country Status (2)

Country Link
JP (1) JP4596339B1 (en)
WO (1) WO2011148533A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507705U (en) * 1973-05-19 1975-01-27
JPS61142384A (en) * 1984-12-14 1986-06-30 Diesel Kiki Co Ltd Vane type compressor
JP2008255984A (en) * 2007-03-15 2008-10-23 Matsushita Electric Works Ltd Vane pump
JP2009127553A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Vacuum pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507705U (en) * 1973-05-19 1975-01-27
JPS61142384A (en) * 1984-12-14 1986-06-30 Diesel Kiki Co Ltd Vane type compressor
JP2008255984A (en) * 2007-03-15 2008-10-23 Matsushita Electric Works Ltd Vane pump
JP2009127553A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Vacuum pump

Also Published As

Publication number Publication date
JP4596339B1 (en) 2010-12-08
JP2011247199A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
US20110165010A1 (en) Vane pump
JP4407771B2 (en) Rotary fluid machine
US9261063B2 (en) Vehicle oil pump
JP2012026294A (en) Fluid pump
JP5516542B2 (en) Compressor
WO2011135747A1 (en) Vane pump
JP2022529922A (en) Vane pump with improved seal assembly for control chamber
JP5887243B2 (en) Variable displacement vane pump
JP2017166372A (en) Oil pump
EP3228868B1 (en) Low-backpressure rotary compressor
JP2009036137A (en) Variable displacement vane pump
WO2011148533A1 (en) Positive-displacement fluid machine
WO2017013932A1 (en) Pump device
JP4609496B2 (en) Rotary fluid machine
CN115807749A (en) Fluid machine and construction machine
JP2009108762A (en) Rotary fluid machine
JP6031311B2 (en) Variable displacement vane pump
KR101382073B1 (en) Engine oil variable vane pump for the engine oil according to engine speed
JP4572995B1 (en) Positive displacement fluid device
WO2023189944A1 (en) Rotating swashplate hydraulic pump
AU2010297740B2 (en) Rotary pump
JP6615051B2 (en) Internal combustion engine
US8657592B2 (en) Pumping apparatus with a hollow shaft acting as a valve
EP3617501A1 (en) Hydraulic system
JP4832178B2 (en) Variable capacity swash plate type hydraulic rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852198

Country of ref document: EP

Kind code of ref document: A1