WO2011145801A2 - Visible ray-active spherical carbon-based porous material, and preparation method thereof - Google Patents

Visible ray-active spherical carbon-based porous material, and preparation method thereof Download PDF

Info

Publication number
WO2011145801A2
WO2011145801A2 PCT/KR2011/001950 KR2011001950W WO2011145801A2 WO 2011145801 A2 WO2011145801 A2 WO 2011145801A2 KR 2011001950 W KR2011001950 W KR 2011001950W WO 2011145801 A2 WO2011145801 A2 WO 2011145801A2
Authority
WO
WIPO (PCT)
Prior art keywords
spherical carbon
visible light
titanium
exchange resin
transition metal
Prior art date
Application number
PCT/KR2011/001950
Other languages
French (fr)
Korean (ko)
Other versions
WO2011145801A3 (en
Inventor
서정권
정원채
홍지숙
정윤호
김범식
박유인
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2011145801A2 publication Critical patent/WO2011145801A2/en
Publication of WO2011145801A3 publication Critical patent/WO2011145801A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present invention relates to a method for preparing visible light-activated spherical carbon-based pore material, and more specifically, titanium ion, which is a photoactive catalyst, is bound to an exchanger of a strongly acidic cation exchange resin by an ion exchange method, and then the same method. After the transition metal is supported on the ion exchange resin by using a heat treatment, the ion exchange resin loaded with the transition metal and titanium ions is heat treated to have a visible light active spherical carbon-based pore material which is active in the visible region and can be applied to the actual commercialization process. It relates to a manufacturing method.
  • Photocatalyst is a material having strong redox ability by light energy, and by such photocatalytic action, it can sterilize, antibacterial, decompose, antifouling, deodorize, and capture adhesion substances on the surface of material, air and contaminants in solution. Therefore, photocatalysts are used in a wide range of applications such as glass, tiles, exterior walls, food, factory walls, metal products, water tanks, marine pollution purification, building materials, mold prevention, UV protection, water purification, atmospheric purification, and hospital infection prevention. Among many photocatalysts used for such applications, titanium dioxide (TiO 2 ) having various advantages such as excellent photoactivity, chemical or biological stability, and durability is mainly used.
  • titanium dioxide shows a very good photocatalytic activity in the ultraviolet region, it is well known that it does not have a photocatalytic activity in the visible region, which occupies most of the sunlight.
  • various studies have been attempted to develop photocatalysts that are active under visible light.
  • a photoactive spherical carbon-based porous material having a favorable shape for application to a commercialization system Domestic Patent No. 672,906
  • the size is about 250 to 450 ⁇ m and the outer density is 1 to 2 g /
  • a spherical carbon-based pore material of ml allows the operation of a photo reactor in a fluidized bed type.
  • the well-developed spherical carbon-based pore material acts as a photocatalyst carrier, which has the advantage of increasing the mass transfer rate.It also shows high efficiency in the ultraviolet region due to the supported titanium dioxide. However, it has a disadvantage in that it does not exhibit photolysis efficiency in the visible light range outside the ultraviolet region.
  • the present inventors have studied to overcome the problems of the prior art as described above, by producing a visible light active spherical carbon-based pore material in which titanium and transition metals are mixed in a strong acid cation exchange resin, the prior art mentioned above Solving the disadvantages of these as well as maintaining a form that is advantageous to apply to the commercialization system has been found to have a high photolysis efficiency in the visible light region as well as ultraviolet light, and completed the present invention.
  • an object of the present invention is to provide a method for producing a visible light active spherical carbon-based pore material having high photolysis efficiency not only in the ultraviolet region but also in the visible region.
  • It relates to a method for producing a visible light active spherical carbon-based pore material comprising a.
  • Visible light-activated spherical carbon-based porous material prepared according to the present invention has the advantage of excellent organic matter removal efficiency in the wavelength range of the visible light region of 365 nm as well as the wavelength range of the strong ultraviolet energy of 254 nm, which has been widely used in general. There is this.
  • the visible light-activated spherical carbon-based porous material prepared according to the present invention exhibits an even surface spherical shape, the diameter is about 300 ⁇ 400 ⁇ m, has a strength of 8 ⁇ 9 kg / a unit to prevent collision between particles in the fluidized bed It can be prevented by the loss, and has the advantage that it has an advantageous form to be applied to the commercialization system.
  • Visible light-activated spherical carbon-based porous material of the present invention is expected to be applicable to the water treatment and air purification industry because it has a high photochemical activity in the visible light range, it is expected to have a tremendous impact when applied to various commercial processes using a photocatalyst do.
  • 1 is a flowchart illustrating a method of manufacturing Ti-M-SCM.
  • FIG. 2 is an SEM image of a visible light active spherical carbon-based pore material prepared from a strongly acidic cation exchange resin.
  • FIG. 3 is an EPMA image of a visible light activated spherical carbon-based pore material prepared from a strongly acidic cation exchange resin.
  • Figure 4 (a) is a graph showing the optical activity at 254nm UV wavelength of the titanium photoactive spherical carbon-based porous material prepared from a strongly acidic cation exchange resin and the visible light activated spherical carbon-based porous material of Examples 1 to 5 (initial humus (HA) ) Concentration 10 ppm).
  • Figure 4 (b) is a graph showing the light activity at 365nm UV wavelength of titanium photoactive spherical carbon-based pore material prepared from a strongly acidic cation exchange resin and the visible light active spherical carbon-based pore material of Examples 1 to 5 (initial humus ( HA) concentration 10 ppm).
  • FIG. 5 is a graph showing optical activity at 254 nm UV wavelength of a visible light active spherical carbon based porous material prepared from a strongly acidic cation exchange resin and a spherical carbon based porous material loaded with a transition metal alone (initial humic (HA) concentration of 10 ppm). ).
  • FIG. 6 is a graph showing optical activity at 365 nm UV wavelength of a visible light active spherical carbon based porous material prepared from a strongly acidic cation exchange resin and a spherical carbon based porous material carrying a transition metal alone (initial humic concentration (HA) concentration of 10 ppm). ).
  • the present invention relates to a visible light active spherical carbon-based pore material and a method of manufacturing the same. More specifically, the present invention ion-exchanged titanium as a photocatalyst ion to a solution phase in an ion exchanger of a strongly acidic cation exchange resin in order to express photoactivity even in the visible light region, and then additionally transition metals to ion-exchanged ions.
  • the present invention provides a visible light activated spherical carbon-based pore material that can be applied to various harmful substances and water treatment materials in the air in various light wavelength ranges as well as maintaining shape and strength by supporting the heat exchanger and heat-treating them.
  • the strong acid cation exchange resin is generally used as a carrier for immobilizing the photoreactive metal ions and then immobilizing it, and can be easily purchased and used.
  • the type of the strongly acidic cation exchange resin is not limited, but may be one including a combination of polystyrene and divinylbenzene (DVB) as a mother.
  • a functional group -SO 3 - can be used with the (sulfonate), it may be selected from the total ion exchange capacity of 2.0 ⁇ 2.3 meq / ml.
  • titanium is used as a basic photocatalyst component for imparting photoactivity
  • the transition metals supported together are preferably used in the form of a precursor such as a water-soluble compound that can be easily dissolved in water, more preferably chloride or It is good to support in the form of nitrate.
  • the titanium is supported by 2 to 9% by weight with respect to the strong acid cation exchange resin in the dry state, there is a problem that the light activity is weak when the supported amount is less than 2% by weight, the decomposition efficiency is more effective when the supported amount exceeds 9% by weight There is a problem that it does not rise.
  • due to the essential use of titanium and transition metal it plays a role of reducing the size of light energy required for photoactivity, and thus exhibits a different feature from that required for high photoactive energy in the existing Korean Patent No. 672,906.
  • the transition metal is used as a means for acting together with titanium to have photoreactive activity in a wider wavelength range, it is preferable to use a transition metal selected from Fe, Ag, Cu, Ni and Co, Most preferably, Fe is used.
  • the transition metal elements are preferably used in the form of precursors such as chloride or nitrate, which are water-soluble compounds that can be easily dissolved in water, and more preferably FeCl 3 , AgNO 3 , CuCl 2 ⁇ 2H 2 O, Ni (NO 3 ) It is preferable to use at least one selected from 2 ⁇ 6H 2 O and Co (NO 3 ) 2 ⁇ 6H 2 O.
  • the transition metal is preferably supported to be 0.2 ⁇ 1.0% by weight with respect to the dry acid strong cation exchange resin, if the supported amount is less than 0.2% by weight there is a problem that does not sufficiently express the photoactivity, the supported amount exceeds 1.0% by weight In this case, there is a problem that the change in efficiency according to the increase of the loading amount does not change much and is almost constant.
  • the titanium and the transition metal are complexly supported, and in particular, titanium is essentially supported.
  • the transition metal contained in the lattice of titanium traps electrons in electrons (e ⁇ ) and holes (h + ) generated by receiving energy above the band gap present in the photocatalyst. Therefore, it is possible to increase the light activity by preventing the recombination of electrons and holes, and there is an important technical significance to increase the wavelength range to the visible light region. Therefore, it selects and supports one type of photocatalyst element, and its technical characteristics are completely different from the existing technology that showed photoactivity only in the ultraviolet region. In addition, existing technologies showing photoactivity in visible light show photoactivity in the visible light region, but there are big problems that they have nano-sizes that are difficult to commercialize.
  • the present invention unlike the present invention, by ion-exchanging titanium and transition metals in the form of an aqueous solution of a precursor sequentially in an ion exchange resin carrier, it is possible to solve the environmental problem by eliminating the use of an organic solvent, as well as to easily support titanium and It has the advantage of freely controlling the amount of transition metal supported. That is, by using an ion exchange resin which is converted to a carbon-based pore material as a carrier starting material, the present invention is to provide a spherical carbon-based pore material and a process for manufacturing the titanium and transition metals having optical activity in the visible light region I am doing it.
  • an ion exchange reaction of titanium in the form of a precursor to the strongly acidic cation exchange resin is used, and titanium in the form of the precursor is used in the form of a water-soluble compound, such as TiCl 3 or TiCl 4 and dissolved in an aqueous solution at 1 to 3% by weight.
  • a strong acid cation exchange resin is reacted for 0.5 to 5 hours, and Ti 3+ or Ti 4+ ions are ion-exchanged on the exchanger of the ion exchange resin.
  • the amount of titanium supported on the carrier can be adjusted by adjusting the concentration of the water-soluble compound.
  • the transition metal in the form of a precursor is supported on the ion exchange resin in which the titanium ion exchange takes place.
  • the transition metal in the form of the precursor is dissolved in an aqueous solution at 0.1 to 0.5% by weight, followed by a strong acid cation exchange resin and 0.5 to 5 The reaction is carried out for a period of time and supported on an ion exchange resin.
  • the ion exchange resin subjected to the ion exchange treatment as described above is then subjected to a drying process, and the drying process is not limited. For example, it may be dried for 5 to 24 hours at 100 ⁇ 150 °C.
  • an incompatibility process is performed.
  • the incompatibility is performed in an air atmosphere for 2 to 8 hours at a temperature of 200 to 400 ° C.
  • the temperature increase rate is preferably 1 to 5 °C / min to reduce the deformation of the sample.
  • a carbonization process is performed to convert the photoactive activated carbon, and the carbonization is performed for 0.1 to 2 hours at a temperature of 400 to 1000 ° C. under an inert gas atmosphere selected from nitrogen, helium, and argon.
  • the temperature increase rate is preferably 1 to 5 °C / min to reduce the deformation of the sample.
  • the temperature increase rate is preferably 1 to 5 °C / min to reduce the deformation of the sample.
  • the form of the visible light-activated spherical carbon-based pore material thus obtained has an even surface spherical shape like that of the initial ion exchange resin, and the diameter is about 300 to 400 ⁇ m.
  • Intensity is a unit of weight that the particles of visible light activated spherical carbon-based porous material prepared can withstand, the visible light active spherical carbon-based porous material of the present invention shows an intensity of 8 ⁇ 9 kg / a unit.
  • the above results can be predicted to prevent the loss caused by the collision between particles in the fluidized bed, which indirectly shows that a commercial process can be applied.
  • the use of the carrier to make it commercially available is designed to perform only the role of the carrier in the conventional case, in this study, not only the role of the carrier but also titanium and transition metals are sequentially ion-exchanged to have a uniform distribution.
  • a carrier in the form of an ion exchange resin is converted to a carbon-based pore material through heat treatment, in addition to the role of a carrier in evaluating the photodegradation efficiency of the organic material, the adsorption of the organic material can be induced to increase the photodegradation efficiency. It also has a function.
  • the obtained visible light activated spherical carbon-based porous material When the obtained visible light activated spherical carbon-based porous material is applied to the water treatment process, it exhibits an organic removal efficiency of about 15 to 50% at a wavelength of 254 nm and an organic removal efficiency of about 40 to 60% at a wavelength of 365 nm. It can be seen that it can be used as a photocatalyst having a photolysis efficiency.
  • a visible light active spherical carbon-based pore material was prepared using a strongly acidic cation exchange resin (SK1BH) as a matrix.
  • SK1BH strongly acidic cation exchange resin
  • titanium ions which are inexpensive, chemically and biologically stable and readily available in the metal, are used as photocatalysts.
  • Titanium was dissolved in water in the form of titanium chloride (TiCl 3 ) and stirred for 1 hour to carry out ion exchange of titanium ions.
  • the content of titanium was adjusted so that the content of titanium per unit weight of the dry ion exchange resin was in the range of 3% by weight.
  • ion exchange was performed at 75 g of TiCl 3 so that the weight ratio of TiCl 3 to ion exchange resin and distilled water was 1: 4: 30. 300 g of resin and 2250 g of distilled water were used.
  • Transition metals Fe 3+ , Ag 3+ , Cu 2+ , Ni 2+ and Co 2+ were supported on the ion exchange resin in which titanium was ion-exchanged in the same manner as the method of titanium ion exchange.
  • Precursor of each transition metal used the form of FeCl 3 , AgNO 3 , CuCl 2 ⁇ 2H 2 O, Ni (NO 3 ) 2 ⁇ 6H 2 O, Co (NO 3 ) 2 ⁇ 6H 2 O ,
  • the content of the transition metal to the content of the dry resin was adjusted to 0.3% by weight, 0.3% by weight, 0.5% by weight, 0.5% by weight, 0.5% by weight, respectively.
  • the ion exchange resin used as a carrier has a spherical carbon-based pore material, and the ion exchanged metal is converted into a photoactive component through a heat treatment process.
  • the total amount of the visible light-activated spherical carbon-based porous material thus obtained was 45.36 g, 46.24 g, 45.82 g, 50.48 g and 51.50 g in order of iron, silver, copper, nickel and cobalt, respectively. burn off) was 55.02%, 53.93%, 54.41%, 49.65%, 48.90%, respectively, and the amount of titanium supported on the visible light spherical carbon-based porous material was 6.14%, 5.71%, 5.60%, 5.97%, 5.13 wt%.
  • Visible light-activated spherical carbon-based porous material prepared using a strong acid cation exchange resin as a matrix was about 350 ⁇ m in size, and its shape had a spherical shape suitable for application to a fluidized bed process as shown in FIG. It was easy to adsorb organic matter.
  • EPMA electron probe micro analyzer
  • Example 1 only the transition metal supporting process was omitted, and all others were the same. That is, titanium was supported alone by an ion exchange method to prepare a photoactive spherical carbon-based pore material.
  • the ion exchange resin on which the transition metals were ion exchanged and supported was dried in an oven at 110 ° C. for 12 hours, and after being infusible at 300 ° C. for 5 hours, The temperature was raised to 1 ° C / min to 700 ° C under a nitrogen atmosphere to carry out a carbonization process.
  • Spherical carbon-based pore materials were prepared after a 0.5 hour activation process at 900 ° C. under nitrogen and water vapor.
  • the photoreactor manufactured 2.4 L cylindrical batch reactors with stainless steel (Stainless) to prevent the transmission of other light from the outside during the reaction.
  • the inner diameter of the reactor was fixed at 10 cm in consideration of UV transmittance and the height was 45 cm.
  • dissolved oxygen (DO) measurement was possible, and in the lower part, a sampling port for collecting analytical samples and an aeration device were installed to facilitate the activity and photocatalytic flow of the photocatalyst.
  • Visible light-activated spherical carbon-based pores were dosed at 20 g / L.
  • the pollutant is the source of DBPs (disinfection by-products) in the existing water treatment disinfection process and selected a HA (humic acid) that plays a decisive role in drinking water quality and affects the bioavailability of compounds such as pesticides in the soil.
  • Standard solution preparation of HA was used after dissolving ALDRICH's first-class reagent in distilled water for 24 hours, filtering with 0.45 ⁇ m membrane filter paper to remove ash components remaining insoluble.
  • the HA concentration in the reactor was fixed at 10 ppm, taking into account the BOD 5 and COD of domestic constant raw water and 4.4 ppm, the average TOC concentration of US surface water.
  • the HA removal efficiency of the visible light activated spherical carbon-based porous material at the wavelength of 254 nm was about 15 to 42% after 6 hours, and the visible light activated spherical carbon at the wavelength of 365 nm.
  • the HA removal efficiency of the pore material showed about 40 ⁇ 53% HA removal efficiency after 6 hours.
  • the treatment efficiency was about 5 to 10% higher than that of other transition metals. The results are shown in Tables 1 and 4 (a) and 4 (b) below.
  • the removal efficiency is high even in the visible region, which indicates that the transition metal contained in the lattice of titanium of the visible light active spherical carbon-based porous material produced by the present invention absorbs energy above the band gap in the photocatalyst. This is the result of enhancing the photoactivity by trapping electrons in the generated electrons and holes to prevent recombination of electrons and holes.
  • Comparative Examples 2 to 6 which are spherical carbon-based pore materials supporting only transition metals, as shown in Table 1 and FIGS. 5-6, changes in initial concentration and concentration after reaction in both wavelength ranges of 254 nm and 365 nm It did not happen that it was found that HA was not removed at all.
  • the visible light-activated spherical carbon-based porous material of the present invention supports titanium and a transition metal element together, and has a catalytic activity of 40% or more in the visible region as well as in the ultraviolet region. Compared to the photoactive spherical carbon-based porous material loaded with transition metal alone, it can be used as a material for removing harmful substances in the air and water treatment materials in a wider light range. Visible light-activated spherical carbon-based pore material according to the present invention is useful compared to the existing catalyst in terms of economics because it exhibits activity in the visible light range, it is expected to bring a large ripple effect when applied to commercial processes.

Abstract

The present invention relates to a method for preparing a visible ray-active spherical carbon-based porous material, and more specifically, to a method for preparing a visible ray-active spherical carbon-based porous material (Ti-M-SCM) by supporting a titanium ion, which is a photoactive catalyst, to an ion exchange group of a strongly acidic cation exchange resin by an ion exchange method, additionally supporting transition metals to the ion exchange resin, and heat treating the same. The visible light-active spherical carbon-based porous material according to the present invention has photoactivity in the wavelength range extended to a visible light range and has the shape, size and strength appropriate for application to a commercial system, and thus can be used efficiently as a photocatalyst, an adsorbent and the like for removing an organic pollutant in the wide light wavelength range.

Description

가시광 활성 구형 탄소계 기공소재 및 그의 제조방법Visible light-activated spherical carbon-based porous material and manufacturing method thereof
본 발명은 가시광 활성 구형 탄소계 기공소재의 제조방법에 관한 것으로서, 보다 구체적으로는 광활성을 가지는 촉매인 티타늄 이온을 강산성 양이온 교환수지의 교환기에 이온교환(Ion exchange) 방법으로 결합시킨 다음, 동일한 방법을 이용하여 전이금속을 이온교환수지에 담지 시킨 후, 상기 전이금속과 티타늄 이온이 담지된 이온교환수지를 열처리하여 가시광 영역에서 활성을 가지며 실제 상용화 공정에 적용이 가능한 가시광 활성 구형 탄소계 기공소재를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing visible light-activated spherical carbon-based pore material, and more specifically, titanium ion, which is a photoactive catalyst, is bound to an exchanger of a strongly acidic cation exchange resin by an ion exchange method, and then the same method. After the transition metal is supported on the ion exchange resin by using a heat treatment, the ion exchange resin loaded with the transition metal and titanium ions is heat treated to have a visible light active spherical carbon-based pore material which is active in the visible region and can be applied to the actual commercialization process. It relates to a manufacturing method.

광촉매는 빛에너지에 의한 강력한 산화 환원 능력을 갖는 물질로써, 이와 같은 광촉매 작용에 의해 재료 표면의 부착물질, 공기 및 용액 중의 오염물질을 살균, 항균, 분해, 방오, 소취 및 포집할 수 있다. 따라서 광촉매는 유리, 타일, 외벽, 식품, 공장내벽, 금속제품, 수조, 해양오염정화, 건자재, 곰팡이 방지, 자외선 차단, 수질정화, 대기정화, 병원 내 감염방지 등 넓은 용도에 이용된다. 이와 같은 용도로 사용되는 많은 광촉매 중에서도 뛰어난 광활성 및 화학적 또는 생물학적 안정성, 내구성 등의 다양한 이점을 가지는 이산화티타늄(TiO2)이 대표적으로 주로 사용되고 있다. 그러나 이산화티타늄은 자외선 영역에서는 매우 우수한 광촉매 활성을 나타내지만, 태양광의 대부분을 차지하고 있는 가시광 영역하에서는 광촉매 활성을 갖지 못한다는 단점은 이미 잘 알려져 있는 바이다. 이와 같은 단점을 극복하기 위하여 가시광 하에서도 활성을 갖는 광촉매를 개발하려는 다양한 연구들이 시도되었다.Photocatalyst is a material having strong redox ability by light energy, and by such photocatalytic action, it can sterilize, antibacterial, decompose, antifouling, deodorize, and capture adhesion substances on the surface of material, air and contaminants in solution. Therefore, photocatalysts are used in a wide range of applications such as glass, tiles, exterior walls, food, factory walls, metal products, water tanks, marine pollution purification, building materials, mold prevention, UV protection, water purification, atmospheric purification, and hospital infection prevention. Among many photocatalysts used for such applications, titanium dioxide (TiO 2 ) having various advantages such as excellent photoactivity, chemical or biological stability, and durability is mainly used. However, although titanium dioxide shows a very good photocatalytic activity in the ultraviolet region, it is well known that it does not have a photocatalytic activity in the visible region, which occupies most of the sunlight. In order to overcome such drawbacks, various studies have been attempted to develop photocatalysts that are active under visible light.
이러한 노력의 일환으로 이산화티타늄에 질소(N)를 도핑하여 가시광에서 활성을 갖는 광촉매를 갖는 연구결과가 보고되었다.(Asahi, R.;Morikawa, T.;Ohwaki, T.;Aoki, K.:Taga, Y. “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science(2001), 293, 269.) 그러나 이러한 방법으로 제조된 광촉매는 가시광에서는 비교적 높은 광활성을 나타내지만 자외선하에서는 순수한 이산화티타늄 자체보다도 광활성이 낮게 나타나는 단점이 있을 뿐만 아니라, 도핑된 질소 등이 장시간 빛에 노출되면, 도핑되었던 질소 성분이 이탈되어 안정성을 유지하기 어렵다는 문제점이 있었다.As part of this effort, studies have been made on doping titanium dioxide with nitrogen (N) to have photocatalysts that are active in visible light (Asahi, R .; Morikawa, T .; Ohwaki, T .; Aoki, K .: Taga, Y. “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science (2001), 293, 269.) However, photocatalysts prepared in this way exhibit relatively high photoactivity in visible light, but are more sensitive than pure titanium dioxide under ultraviolet light. In addition to the disadvantages of low light activity, when the doped nitrogen is exposed to light for a long time, the doped nitrogen component is separated and it is difficult to maintain stability.
또한, 다양한 전이금속 이온을 도핑하여 이산화티타늄 전도대의 위치를 낮추어서 전자전이가 가능한 밴드갭(band gap)을 가시광 영역으로 이동시키고자 하는 다수의 시도가 있었다(국내등록특허 제578,044호, 국내등록특허 제884,018호). 그러나 이러한 방법으로 제조된 광촉매의 경우 비록 가시광 영역에서의 광활성을 나타낸다고 하더라도 광촉매 자체의 크기가 수 nm에서 수백 nm 수준에 불과하므로 실제 시스템에 적용하여 상용화하기에는 어려운 단점을 안고 있었다. In addition, a number of attempts have been made to move the band gap capable of electron transition into the visible region by lowering the position of the titanium dioxide conduction band by doping various transition metal ions (Domestic Patent No. 578,044, Domestic Patent Registration). No. 884,018). However, the photocatalyst prepared by this method has a disadvantage in that it is difficult to be commercially applied to an actual system because the photocatalyst itself is only a few nm to several hundred nm in size even though it exhibits photoactivity in the visible light region.
상용화 시스템에 적용하기 유리한 형태를 가지고 있는 광활성(光活性) 구형(球形)탄소계 기공소재의 경우(국내등록특허 제672,906호), 크기가 약 250 ~ 450 ㎛이고 외형밀도가 1 ~ 2 g/㎖인 구형 탄소계 기공소재로 유동층 형태(fluidized bed type)로의 광반응조(Photo reactor) 운전이 가능하다. 또한 기공이 잘 발달된 구형 탄소계 기공소재가 광촉매 담체로 작용하므로 물질 전달율을 증가시켜 주는 보조적인 역할을 같이 수행한다는 장점을 가지고 있으며 광촉매인 담지된 이산화티타늄에 의하여 자외선 영역에서는 높은 효율을 보여주고 있지만, 자외선 영역을 벗어난 가시광선 범위 등에서는 광분해 효율을 나타내지 못한다는 단점을 가지고 있었다.In the case of a photoactive spherical carbon-based porous material having a favorable shape for application to a commercialization system (Domestic Patent No. 672,906), the size is about 250 to 450 µm and the outer density is 1 to 2 g / A spherical carbon-based pore material of ㎖ allows the operation of a photo reactor in a fluidized bed type. In addition, the well-developed spherical carbon-based pore material acts as a photocatalyst carrier, which has the advantage of increasing the mass transfer rate.It also shows high efficiency in the ultraviolet region due to the supported titanium dioxide. However, it has a disadvantage in that it does not exhibit photolysis efficiency in the visible light range outside the ultraviolet region.

이에 본 발명자는 상기와 같은 종래 기술들의 문제점을 극복하기 위해서 연구한 결과, 강산성 양이온 교환수지에 티타늄과 전이금속이 복합적으로 담지되어 있는 가시광 활성 구형 탄소계 기공소재를 제조함으로써, 상기 언급된 선행기술들의 단점을 해결함은 물론 상용화 시스템에 적용하기 유리한 형태를 유지하면서도 자외선뿐만 아니라 가시광선 영역 하에서도 높은 광분해 효율을 가질 수 있다는 사실을 밝혀내고, 본 발명을 완성하게 되었다.Therefore, the present inventors have studied to overcome the problems of the prior art as described above, by producing a visible light active spherical carbon-based pore material in which titanium and transition metals are mixed in a strong acid cation exchange resin, the prior art mentioned above Solving the disadvantages of these as well as maintaining a form that is advantageous to apply to the commercialization system has been found to have a high photolysis efficiency in the visible light region as well as ultraviolet light, and completed the present invention.
따라서 본 발명은 자외선 영역뿐만 아니라 가시광선 영역 하에서도 높은 광분해 효율을 갖는 가시광 활성 구형 탄소계 기공소재의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for producing a visible light active spherical carbon-based pore material having high photolysis efficiency not only in the ultraviolet region but also in the visible region.

본 발명은, The present invention,
(a) 강산성 양이온 교환수지에 전구물질 형태의 티타늄을 이온 교환시켜 티타늄 이온교환수지를 만드는 단계;(a) ion exchanging titanium in the form of a precursor in a strongly acidic cation exchange resin to form a titanium ion exchange resin;
(b) 상기 티타늄 이온교환수지에 전구물질 형태의 전이금속을 담지하여 티타늄-전이금속 이온교환수지를 만드는 단계;(b) preparing a titanium-transition metal ion exchange resin by supporting a transition metal in a precursor form in the titanium ion exchange resin;
(c) 상기 티타늄-전이금속 이온교환수지를 불융화 처리하는 단계;(c) dissolving the titanium-transition metal ion exchange resin;
(d) 상기 불융화 처리된 티타늄-전이금속 이온교환수지를 탄화시키는 단계; 및(d) carbonizing the incompatible titanium-transition metal ion exchange resin; And
(e) 상기 탄화된 티타늄-전이금속 이온교환수지를 활성화시키는 단계(e) activating the carbonized titanium-transition metal ion exchange resin
를 포함하는 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법에 관한 것이다.It relates to a method for producing a visible light active spherical carbon-based pore material comprising a.

본 발명에 따라 제조된 가시광 활성 구형 탄소계 기공소재는 기존에 범용적으로 많이 사용해 오던 254 nm의 강한 자외선 에너지의 파장 범위 뿐만 아니라 가시광 영역인 365 nm의 파장 범위에서도 탁월한 유기물 제거효율을 가진다는 장점이 있다. Visible light-activated spherical carbon-based porous material prepared according to the present invention has the advantage of excellent organic matter removal efficiency in the wavelength range of the visible light region of 365 nm as well as the wavelength range of the strong ultraviolet energy of 254 nm, which has been widely used in general. There is this.
또한, 본 발명에 따라 제조된 가시광 활성 구형 탄소계 기공소재는 고른 표면의 구형을 나타내며, 직경은 300 ~ 400㎛ 정도이며, 8 ~ 9 kg/a unit의 강도를 가지고 있어 유동상에서 입자간 충돌에 의한 손실을 막을 수 있으며, 상용화 시스템에 적용하기 유리한 형태를 가진다는 장점이 있다.In addition, the visible light-activated spherical carbon-based porous material prepared according to the present invention exhibits an even surface spherical shape, the diameter is about 300 ~ 400㎛, has a strength of 8 ~ 9 kg / a unit to prevent collision between particles in the fluidized bed It can be prevented by the loss, and has the advantage that it has an advantageous form to be applied to the commercialization system.
본 발명의 가시광 활성 구형 탄소계 기공소재는 가시광 영역에서도 높은 광화학 활성을 띄고 있으므로 수처리 및 대기 정화산업에도 적용이 가능할 것으로 예상되며, 광촉매를 사용하는 여러 가지 상업적 공정에 적용 시 엄청난 파급력을 가질 것으로 예상된다.Visible light-activated spherical carbon-based porous material of the present invention is expected to be applicable to the water treatment and air purification industry because it has a high photochemical activity in the visible light range, it is expected to have a tremendous impact when applied to various commercial processes using a photocatalyst do.

도 1은 Ti-M-SCM의 제조방법을 나타낸 순서도이다.1 is a flowchart illustrating a method of manufacturing Ti-M-SCM.
도 2는 강산성 양이온 교환수지로부터 제조된 가시광 활성 구형 탄소계 기공 소재의 SEM 이미지이다.2 is an SEM image of a visible light active spherical carbon-based pore material prepared from a strongly acidic cation exchange resin.
도 3은 강산성 양이온 교환수지로부터 제조된 가시광 활성 구형 탄소계 기공 소재의 EPMA 이미지이다.3 is an EPMA image of a visible light activated spherical carbon-based pore material prepared from a strongly acidic cation exchange resin.
도 4(a)는 강산성 양이온 교환수지로부터 제조된 티타늄 광활성 구형 탄소계 기공소재 및 실시예 1 ~ 5의 가시광 활성 구형 탄소계 기공 소재의 254nm UV 파장에서의 광활성을 나타낸 그래프이다(초기 부식질(HA) 농도 10 ppm).Figure 4 (a) is a graph showing the optical activity at 254nm UV wavelength of the titanium photoactive spherical carbon-based porous material prepared from a strongly acidic cation exchange resin and the visible light activated spherical carbon-based porous material of Examples 1 to 5 (initial humus (HA) ) Concentration 10 ppm).
도 4(b)는 강산성 양이온 교환수지로부터 제조된 티타늄 광활성 구형 탄소계 기공소재와 및 실시예 1 ~ 5의 가시광 활성 구형 탄소계 기공 소재의 365nm UV 파장에서의 광활성을 나타낸 그래프이다(초기 부식질(HA) 농도 10 ppm).Figure 4 (b) is a graph showing the light activity at 365nm UV wavelength of titanium photoactive spherical carbon-based pore material prepared from a strongly acidic cation exchange resin and the visible light active spherical carbon-based pore material of Examples 1 to 5 (initial humus ( HA) concentration 10 ppm).
도 5는 강산성 양이온 교환수지로부터 제조된 가시광 활성 구형 탄소계 기공소재와 전이금속을 단독으로 담지한 구형 탄소계 기공소재의 254nm UV 파장에서의 광활성을 나타낸 그래프이다(초기 부식질(HA) 농도 10 ppm).FIG. 5 is a graph showing optical activity at 254 nm UV wavelength of a visible light active spherical carbon based porous material prepared from a strongly acidic cation exchange resin and a spherical carbon based porous material loaded with a transition metal alone (initial humic (HA) concentration of 10 ppm). ).
도 6은 강산성 양이온 교환수지로부터 제조된 가시광 활성 구형 탄소계 기공소재와 전이금속을 단독으로 담지한 구형 탄소계 기공소재의 365nm UV 파장에서의 광활성을 나타낸 그래프이다(초기 부식질(HA) 농도 10 ppm).FIG. 6 is a graph showing optical activity at 365 nm UV wavelength of a visible light active spherical carbon based porous material prepared from a strongly acidic cation exchange resin and a spherical carbon based porous material carrying a transition metal alone (initial humic concentration (HA) concentration of 10 ppm). ).

본 발명은 가시광 활성 구형 탄소계 기공소재 및 그의 제조방법에 관한 것이다. 더욱 구체적으로, 본 발명은 가시광 영역 하에서도 광활성을 발현시킬 수 있도록 강산성 양이온 교환수지의 이온교환기에 광촉매 이온인 티타늄을 용액상으로 이온교환 시킨 후, 추가적으로 전이금속을 티타늄 이온이 이온교환 되어 있는 이온교환수지에 담지하고, 이를 열처리함으로써 형상 및 강도를 유지하는 것은 물론 다양한 빛 파장 영역에서 대기 중 다양한 유해물질 처리 및 수처리 소재 등으로 적용이 가능한 가시광 활성 구형 탄소계 기공소재를 제공한다.The present invention relates to a visible light active spherical carbon-based pore material and a method of manufacturing the same. More specifically, the present invention ion-exchanged titanium as a photocatalyst ion to a solution phase in an ion exchanger of a strongly acidic cation exchange resin in order to express photoactivity even in the visible light region, and then additionally transition metals to ion-exchanged ions. The present invention provides a visible light activated spherical carbon-based pore material that can be applied to various harmful substances and water treatment materials in the air in various light wavelength ranges as well as maintaining shape and strength by supporting the heat exchanger and heat-treating them.

이하, 본 발명을 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명의 가시광 활성 구형 탄소계 기공소재의 제조방법은Method for producing visible light active spherical carbon-based porous material of the present invention
(a) 강산성 양이온 교환수지에 전구물질 형태의 티타늄을 이온 교환시켜 티타늄 이온교환수지를 만드는 단계;(a) ion exchanging titanium in the form of a precursor in a strongly acidic cation exchange resin to form a titanium ion exchange resin;
(b) 상기 티타늄 이온교환수지에 전구물질 형태의 전이금속을 다시 담지하여 티타늄-전이금속 이온교환수지를 만드는 단계;(b) re-supporting the transition metal in the form of precursor in the titanium ion exchange resin to form a titanium-transition metal ion exchange resin;
(c) 상기 티타늄-전이금속 이온교환수지를 불융화 처리하는 단계;(c) dissolving the titanium-transition metal ion exchange resin;
(d) 상기 불융화 처리된 티타늄-전이금속 이온교환수지를 탄화시키는 단계; 및(d) carbonizing the incompatible titanium-transition metal ion exchange resin; And
(e) 상기 탄화된 티타늄-전이금속 이온교환수지를 활성화시키는 단계(e) activating the carbonized titanium-transition metal ion exchange resin
를 포함하여 이루어진다.It is made, including.

본 발명에서 강산성 양이온 교환수지는 광반응 금속 이온을 이온교환한 후 고정화시키기 위한 담체로 사용되는 것으로 일반적으로 널리 사용되고 있으며, 쉽게 구입하여 사용할 수 있다. 상기 강산성 양이온 교환수지의 종류는 제한되지 않으나 폴리스티렌(polystyrene)과 디비닐벤젠(divinylbenzene, DVB)의 결합체를 모체로 포함하는 것을 사용할 수 있다. 또한, 작용기로 -SO3 -(sulfonate)를 가지는 것을 사용할 수 있으며, 총 이온교환 용량이 2.0 ~ 2.3 meq/ml인 것을 사용할 수 있다.In the present invention, the strong acid cation exchange resin is generally used as a carrier for immobilizing the photoreactive metal ions and then immobilizing it, and can be easily purchased and used. The type of the strongly acidic cation exchange resin is not limited, but may be one including a combination of polystyrene and divinylbenzene (DVB) as a mother. In addition, a functional group -SO 3 - can be used with the (sulfonate), it may be selected from the total ion exchange capacity of 2.0 ~ 2.3 meq / ml.
본 발명에서 티타늄은 광활성을 부여하기 위한 기본 광촉매 성분으로 사용되며, 함께 담지되는 전이금속들은 물에 쉽게 용해될 수 있는 수용성 화합물과 같은 전구물질 형태로 사용하는 것이 바람직하며, 더욱 바람직하게는 염화물 또는 질산염 등과 같은 형태로 담지시키는 것이 좋다. 상기 티타늄은 건조 상태의 강산성 양이온 교환수지에 대하여 2 ~ 9 중량%로 담지되도록 하는데, 담지량이 2 중량% 미만이면 광활성이 약하다는 문제점이 있으며, 담지량이 9 중량%를 초과하는 경우 분해효율이 효과적으로 높아지지 않는다는 문제점이 있다. 본 발명에서는 티타늄과 전이금속을 필수적으로 함께 사용함으로 인해서, 광활성에 필요한 빛에너지의 크기를 감소시켜주는 역할을 하므로 기존 국내등록특허 제672,906호 등에서 높은 광활성 에너지를 요구하고 있는 것과는 다른 특징을 나타낸다.In the present invention, titanium is used as a basic photocatalyst component for imparting photoactivity, and the transition metals supported together are preferably used in the form of a precursor such as a water-soluble compound that can be easily dissolved in water, more preferably chloride or It is good to support in the form of nitrate. The titanium is supported by 2 to 9% by weight with respect to the strong acid cation exchange resin in the dry state, there is a problem that the light activity is weak when the supported amount is less than 2% by weight, the decomposition efficiency is more effective when the supported amount exceeds 9% by weight There is a problem that it does not rise. In the present invention, due to the essential use of titanium and transition metal, it plays a role of reducing the size of light energy required for photoactivity, and thus exhibits a different feature from that required for high photoactive energy in the existing Korean Patent No. 672,906.
본 발명에서 전이금속은 티타늄과 함께 작용하여 보다 넓은 파장 범위에서 광반응 활성을 갖게 하기 위한 수단으로 사용되며, 바람직하게는 Fe, Ag, Cu, Ni 및 Co 중에서 선택된 전이금속을 사용하는 것이 좋으며, 가장 바람직하게는 Fe를 사용하는 것이 좋다. 상기 전이금속 원소들은 물에 쉽게 용해될 수 있는 수용성 화합물인 염화물 또는 질산염 등의 전구물질 형태로 사용하는 것이 바람직하며, 더욱 바람직하게는 FeCl3, AgNO3, CuCl2·2H2O, Ni(NO3)2·6H2O 및 Co(NO3)2·6H2O 중에서 선택된 어느 하나 이상을 사용하는 것이 좋다. 상기 전이금속은 건조 상태의 강산성 양이온 교환수지에 대하여 0.2 ~ 1.0 중량%가 되도록 담지하는 것이 좋은데, 담지량이 0.2 중량% 미만이면 광활성을 충분히 발현시키지 못하는 문제점이 있으며, 담지량이 1.0 중량%를 초과하는 경우 담지량 증가에 따른 효율의 변화가 크게 달라지지 않고 거의 일정하게 나타나는 문제점이 있다.In the present invention, the transition metal is used as a means for acting together with titanium to have photoreactive activity in a wider wavelength range, it is preferable to use a transition metal selected from Fe, Ag, Cu, Ni and Co, Most preferably, Fe is used. The transition metal elements are preferably used in the form of precursors such as chloride or nitrate, which are water-soluble compounds that can be easily dissolved in water, and more preferably FeCl 3 , AgNO 3 , CuCl 2 · 2H 2 O, Ni (NO 3 ) It is preferable to use at least one selected from 2 · 6H 2 O and Co (NO 3 ) 2 · 6H 2 O. The transition metal is preferably supported to be 0.2 ~ 1.0% by weight with respect to the dry acid strong cation exchange resin, if the supported amount is less than 0.2% by weight there is a problem that does not sufficiently express the photoactivity, the supported amount exceeds 1.0% by weight In this case, there is a problem that the change in efficiency according to the increase of the loading amount does not change much and is almost constant.
본 발명에서는 티타늄과 전이금속을 복합적으로 담지하는 것을 특징으로 하며, 특히 티타늄을 필수적으로 담지한다. 여기에 전이금속을 담지함으로써 티타늄의 격자 내에 포함된 전이금속이 광촉매에 존재하는 밴드갭(band gap) 이상의 에너지를 받아 생성된 전자(e-)와 정공(h+)에서 전자를 트랩(trapping)하여 전자와 정공의 재결합을 방지함으로써 광활성도를 높일 수 있으며, 파장 범위를 가시광선 영역까지 증대시킬 수 있는 것에 중요한 기술적 의의가 있다. 따라서 광촉매 원소 한 종을 선택하여 담지시키고 자외선 영역에서만 광활성을 보이던 기존 기술과는 그 기술적 특징을 전혀 달리한다. 더욱이 가시광선에서 광활성을 보여주고 있는 기존 기술들은 가시광선 영역에서 광활성을 보이기는 하나, 실제로 상용화하기에는 어려운 나노 크기를 가지고 있다는 큰 문제점들이 있었다.In the present invention, the titanium and the transition metal are complexly supported, and in particular, titanium is essentially supported. By supporting the transition metal therein, the transition metal contained in the lattice of titanium traps electrons in electrons (e ) and holes (h + ) generated by receiving energy above the band gap present in the photocatalyst. Therefore, it is possible to increase the light activity by preventing the recombination of electrons and holes, and there is an important technical significance to increase the wavelength range to the visible light region. Therefore, it selects and supports one type of photocatalyst element, and its technical characteristics are completely different from the existing technology that showed photoactivity only in the ultraviolet region. In addition, existing technologies showing photoactivity in visible light show photoactivity in the visible light region, but there are big problems that they have nano-sizes that are difficult to commercialize.
기존 국내등록특허 제672,906호에서는 Zn, Ti, W, Mg, Ca, Cd 및 Ag와 같은 금속이온을 선택하여 사용하는 것을 기재하고 있으나 단일 원소만을 사용하고 있어 각각의 원소들이 광활성을 갖기 위해서는 자외선 영역에 해당되는 높은 빛에너지를 필요로 하기 때문에 상대적으로 낮은 빛에너지 영역인 가시광선 영역에서는 촉매활성을 나타내지 못한다는 문제점이 있었다. 본 발명에서는 티타늄과 함께 Fe, Ag, Cu, Ni, Co와 같은 전이금속 원소를 선택하여 함께 사용함으로써 광활성에 필요한 빛에너지를 감소시키는 효과를 낼 수 있게 되어 가시광선 영역에서도 촉매활성을 나타낼 수 있다는 특징이 있다.Existing Korean Patent No. 672,906 describes the use of metal ions such as Zn, Ti, W, Mg, Ca, Cd and Ag. However, since only a single element is used, each element has a UV region in order to have photoactivity. Since there is a need for a high light energy corresponding to the problem that the catalytic activity is not exhibited in the visible light region, which is a relatively low light energy region. In the present invention, by using a transition metal element such as Fe, Ag, Cu, Ni, Co together with titanium to reduce the light energy required for photoactivity can be exhibited catalytic activity even in the visible region There is a characteristic.
또한, 티타늄과 전이금속을 함께 담지하기 위해서 기존 국내등록특허 제578,044호 및 제884,018호 등에서는 이산화티타늄을 형성시키고 그 메조기공내에 텅스텐등의 금속 원소들을 담지시키는 방법을 제안하고 있다. 그러나 이러한 방법들은 이산화티타늄 및 전이금속 산화물을 제조하는 과정에서 계면활성제와 알코올등의 용매를 사용함으로써 환경적인 문제가 있을 뿐만 아니라, 기공내부에 금속 원소를 담지하는 공정도 함침등의 방법을 사용함으로써 금속 원소들이 물리적으로 담지되어 있으므로 용액중에 존재할 경우 그 안정성을 유지하기가 어렵다는 단점을 가지고 있다. 그러나 본 발명에서는 기존 발명과는 달리 이온교환수지 담체에 티타늄과 전이금속들을 순차적으로 전구체의 수용액 형태로 이온교환시킴으로써 유기용매 사용을 배제하여 환경적인 문제를 해결할 수 있을 뿐만 아니라 담지가 용이하고 티타늄 및 전이금속의 담지량을 자유롭게 조절할 수 있는 장점을 가지고 있다. 즉, 탄소계 기공소재로 전환되는 이온교환 수지를 담체 출발물질로 이용함으로써, 본 발명에서는 티타늄 및 전이금속들이 담지되어 가시광 영역에서 광활성을 갖는 구형 탄소계 기공소재 및 그 제조공정을 제공하는 것을 목적으로 하고 있다. In addition, in order to support titanium and transition metal together, existing Korean Patent Nos. 578,044 and 884,018 have proposed a method of forming titanium dioxide and supporting metal elements such as tungsten in the mesopores. However, these methods not only have environmental problems by using solvents such as surfactants and alcohols in the process of producing titanium dioxide and transition metal oxides, but also by impregnating the process of impregnating metal elements into pores. Since metal elements are physically supported, they have a disadvantage in that they are difficult to maintain when present in a solution. However, in the present invention, unlike the present invention, by ion-exchanging titanium and transition metals in the form of an aqueous solution of a precursor sequentially in an ion exchange resin carrier, it is possible to solve the environmental problem by eliminating the use of an organic solvent, as well as to easily support titanium and It has the advantage of freely controlling the amount of transition metal supported. That is, by using an ion exchange resin which is converted to a carbon-based pore material as a carrier starting material, the present invention is to provide a spherical carbon-based pore material and a process for manufacturing the titanium and transition metals having optical activity in the visible light region I am doing it.

본 발명의 가시광 활성 구형 탄소계 기공소재의 제조방법을 상세하게 설명하면 다음과 같다.Referring to the method of manufacturing the visible light active spherical carbon-based porous material of the present invention in detail.
먼저, 상기 강산성 양이온 교환수지에 전구물질 형태의 티타늄을 이온교환 반응시키는데, 상기 전구물질 형태의 티타늄은 수용성 화합물인 TiCl3나 TiCl4 등의 형태로 사용하며 이를 1 ~ 3 중량%로 수용액에 용해시킨 후, 강산성 양이온 교환수지와 0.5 ~ 5 시간 동안 반응시켜 Ti3+ 또는 Ti4+ 이온을 이온교환수지의 교환기에 이온교환 시켜 담지한다. 상기한 수용성 화합물의 농도 조절을 통하여 담체에 담지되는 티타늄의 담지량을 조절할 수 있다. First, an ion exchange reaction of titanium in the form of a precursor to the strongly acidic cation exchange resin is used, and titanium in the form of the precursor is used in the form of a water-soluble compound, such as TiCl 3 or TiCl 4 and dissolved in an aqueous solution at 1 to 3% by weight. After the reaction, a strong acid cation exchange resin is reacted for 0.5 to 5 hours, and Ti 3+ or Ti 4+ ions are ion-exchanged on the exchanger of the ion exchange resin. The amount of titanium supported on the carrier can be adjusted by adjusting the concentration of the water-soluble compound.
티타늄 이온을 이온교환 시킨 후, 남아 있는 염소 이온을 제거하기 위하여 이온교환수지의 pH가 7 ~ 8이 되도록 증류수를 이용하여 8 ~ 10회 이상 세척하여 주는 것이 좋다.After ion exchange of titanium ions, it is preferable to wash 8 to 10 times with distilled water so that the pH of the ion exchange resin is 7 to 8 to remove the remaining chlorine ions.
이후 전구물질 형태의 전이금속을 상기 티타늄 이온교환이 일어난 이온교환수지에 담지하는데, 이때 상기 전구물질 형태의 전이금속은 0.1 ~ 0.5 중량%로 수용액에 용해시킨 후, 강산성 양이온 교환수지와 0.5 ~ 5 시간 동안 반응시켜 이온교환수지에 담지시킨다.Thereafter, the transition metal in the form of a precursor is supported on the ion exchange resin in which the titanium ion exchange takes place. In this case, the transition metal in the form of the precursor is dissolved in an aqueous solution at 0.1 to 0.5% by weight, followed by a strong acid cation exchange resin and 0.5 to 5 The reaction is carried out for a period of time and supported on an ion exchange resin.
상기와 같이 이온교환 처리된 이온교환수지는 이후 건조과정을 거치며, 상기 건조과정에는 별도의 제한을 두지 않는다. 예를 들면, 100 ~ 150℃에서 5 ~ 24 시간 동안 건조시킬 수 있다.The ion exchange resin subjected to the ion exchange treatment as described above is then subjected to a drying process, and the drying process is not limited. For example, it may be dried for 5 to 24 hours at 100 ~ 150 ℃.
충분한 건조가 이루어지면 이후 열처리 단계인 불융화, 탄화 및 활성화 공정을 거친다.After sufficient drying, it undergoes heat treatment steps of incompatibility, carbonization and activation.
먼저 불융화 공정을 거치게 되는데 상기 불융화는 대기 분위기에서, 200 ~ 400 ℃ 온도 조건으로 2 ~ 8 시간 동안 수행한다. 이때 승온속도는 1 ~ 5 ℃/min으로 승온하는 것이 시료의 변형을 줄이기 위해 바람직하다. First, an incompatibility process is performed. The incompatibility is performed in an air atmosphere for 2 to 8 hours at a temperature of 200 to 400 ° C. At this time, the temperature increase rate is preferably 1 to 5 ℃ / min to reduce the deformation of the sample.
이후, 광활성 활성탄으로 변환시키기 위하여 탄화공정을 거치는데, 상기 탄화는 질소, 헬륨, 아르곤 중에서 선택된 불황성 가스 분위기 하에서, 400 ~ 1000 ℃ 온도 조건으로 0.1 ~ 2 시간 동안 수행한다. 이때 승온속도는 1 ~ 5 ℃/min으로 승온하는 것이 시료의 변형을 줄이기 위해 바람직하다.Thereafter, a carbonization process is performed to convert the photoactive activated carbon, and the carbonization is performed for 0.1 to 2 hours at a temperature of 400 to 1000 ° C. under an inert gas atmosphere selected from nitrogen, helium, and argon. At this time, the temperature increase rate is preferably 1 to 5 ℃ / min to reduce the deformation of the sample.
상기 탄화 공정에 의해 형성된 구형 탄화물에 미세 기공을 활성화시키기 위하여 수증기가 함유된 불활성 가스 분위기에서, 800 ~ 1100 ℃ 온도 조건으로 0.1 ~ 2 시간 동안 활성화 시킨다. 이때 승온속도는 1 ~ 5 ℃/min으로 승온하는 것이 시료의 변형을 줄이기 위해 바람직하다.In order to activate the micropores in the spherical carbide formed by the carbonization process, in the inert gas atmosphere containing water vapor, it is activated for 0.1 ~ 2 hours at 800 ~ 1100 ℃ temperature conditions. At this time, the temperature increase rate is preferably 1 to 5 ℃ / min to reduce the deformation of the sample.
상기 제조과정을 거쳐 가시광 활성 구형 탄소계 기공소재를 제조할 수 있다.Through the manufacturing process it can be produced visible light active spherical carbon-based pore material.
상기 얻어진 가시광 활성 구형 탄소계 기공소재의 형태는 초기 이온교환수지의 형태와 같이 고른 표면의 구형을 나타내며, 직경은 300 ~ 400㎛ 정도이다. 강도는 제조된 가시광 활성 구형 탄소계 기공소재 한 개 입자가 견딜 수 있는 무게단위로, 본 발명의 가시광 활성 구형 탄소계 기공소재는 8 ~ 9 kg/a unit의 강도를 보여준다. 상기 결과는 유동상에서의 입자간 충돌에 의한 손실을 막을 수 있는 결과를 예측할 수 있는 수치이며, 이로써 상용 공정 적용이 가능하다는 것을 간접적으로 보여 준다고 할 수 있다. 국내등록특허 제578,044호와 국내등록특허 제884,018호의 경우에는 담체의 사용 없이 이산화티타늄 기공 내에 함침시키거나 이산화티타늄 및 전이금속 산화물을 열처리하여 단순히 복합화하는 과정을 거치기 때문에 가시광선 영역에서 광활성을 가진다하더라도 상용화하기 어려운 나노크기로 밖에 제조할 수 없었지만, 본 발명에서는 티타늄 및 전이금속을 담지하기 위한 담체로 이온교환수지를 선택하고 이를 열처리 과정을 통해 구형의 탄소계 기공소재로 제조하였기 때문에 상용화 가능한 형태, 직경 및 강도를 가질 수 있는 가시광 활성 구형 탄소계 기공소재를 제조할 수 있다. 더욱이 상용화 가능하도록 하는 담체의 사용은 기존의 경우에는 단순히 담체의 역할만을 수행할 수 있도록 설계되었으나, 본 연구에서는 담체의 역할뿐만 아니라 티타늄 및 전이금속들이 순차적으로 이온교환되어 고른 분포를 가지며 담지될 수 있도록 하는 역할과 이온교환 수지 형태의 담체가 열처리 과정을 거쳐 탄소계 기공 소재로 전환됨으로써 실제 유기물질의 광분해 효율을 평가함에 있어 담체의 역할뿐만 아니라 유기물질을 흡착을 유도하여 광분해 효율을 높을 수 있는 기능도 함께 가지게 된다. The form of the visible light-activated spherical carbon-based pore material thus obtained has an even surface spherical shape like that of the initial ion exchange resin, and the diameter is about 300 to 400 μm. Intensity is a unit of weight that the particles of visible light activated spherical carbon-based porous material prepared can withstand, the visible light active spherical carbon-based porous material of the present invention shows an intensity of 8 ~ 9 kg / a unit. The above results can be predicted to prevent the loss caused by the collision between particles in the fluidized bed, which indirectly shows that a commercial process can be applied. In the case of Korean Patent No. 578,044 and Korean Patent No. 884,018, even though they have photoactivity in the visible region because they are impregnated in the pores of titanium dioxide without the use of a carrier, or simply heat treated with titanium dioxide and transition metal oxides. Although it could not be manufactured only in nano-size difficult to commercialize, in the present invention, since the ion-exchange resin was selected as a carrier for supporting titanium and transition metal and manufactured into a spherical carbon-based porous material through heat treatment, Visible active spherical carbon-based porous material that can have a diameter and strength can be prepared. In addition, the use of the carrier to make it commercially available is designed to perform only the role of the carrier in the conventional case, in this study, not only the role of the carrier but also titanium and transition metals are sequentially ion-exchanged to have a uniform distribution. As a carrier in the form of an ion exchange resin is converted to a carbon-based pore material through heat treatment, in addition to the role of a carrier in evaluating the photodegradation efficiency of the organic material, the adsorption of the organic material can be induced to increase the photodegradation efficiency. It also has a function.
상기 얻어진 가시광 활성 구형 탄소계 기공소재는 수처리 과정에 적용될 시, 254 nm의 파장에서 약 15 ~ 50 %의 유기물 제거효율을 보이며, 365 nm의 파장에서 약 40 ~ 60 %의 유기물 제거 효율을 보여 우수한 광분해 효율을 가지는 광촉매로 사용될 수 있다는 것을 알 수 있다.When the obtained visible light activated spherical carbon-based porous material is applied to the water treatment process, it exhibits an organic removal efficiency of about 15 to 50% at a wavelength of 254 nm and an organic removal efficiency of about 40 to 60% at a wavelength of 365 nm. It can be seen that it can be used as a photocatalyst having a photolysis efficiency.

이와 같은 본 발명을 다음의 실시예에 의거하여 더욱 상세하게 설명하겠는 바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Although this invention is demonstrated in more detail based on the following Example, this invention is not limited by the following Example.
<실시예 1 ~ 5> Fe3+, Ag3+, Cu2+, Ni2+, Co2+ 각각의 전이금속을 이용한 가시광 활성 구형 탄소계 기공소재의 제조<Examples 1-5> Fe3+, Ag3+, Cu2+, Ni2+, Co2+Each Fabrication of Visible Light-activated Spherical Carbon-based Porous Materials Using Transition Metals
강산성 양이온교환수지(SK1BH)를 모체로 하여 가시광 활성 구형 탄소계 기공소재를 제조하였다. 광촉매로는 광활성의 성질을 띄는 금속 중 가격원가가 저렴하고, 화학적 및 생물학적으로 안정하며, 주위에서 쉽게 구할 수 있는 티타늄 이온을 사용하였다. 티타늄은 염화티타늄(TiCl3)의 형태로 물에 용해시킨 후 1시간 동안 교반하여 티타늄 이온을 이온교환 시켜 담지하였다. 티타늄의 함량은 건조 이온 교환수지 단위 무게 당 티타늄의 함량을 3 중량% 범위가 되도록 조절하였으며, 이를 위하여 TiCl3과 이온교환수지 그리고 증류수의 무게비가 1 : 4 : 30이 되도록 TiCl3 75g에 이온교환수지 300g 그리고 증류수 2250g을 사용하였다.A visible light active spherical carbon-based pore material was prepared using a strongly acidic cation exchange resin (SK1BH) as a matrix. As a photocatalyst, titanium ions, which are inexpensive, chemically and biologically stable and readily available in the metal, are used as photocatalysts. Titanium was dissolved in water in the form of titanium chloride (TiCl 3 ) and stirred for 1 hour to carry out ion exchange of titanium ions. The content of titanium was adjusted so that the content of titanium per unit weight of the dry ion exchange resin was in the range of 3% by weight. For this purpose, ion exchange was performed at 75 g of TiCl 3 so that the weight ratio of TiCl 3 to ion exchange resin and distilled water was 1: 4: 30. 300 g of resin and 2250 g of distilled water were used.
티타늄 이온을 이온교환 시킨 후, 남아 있는 염소 이온을 제거하기 위하여 이온교환수지의 pH가 7이 되도록 증류수를 이용하여 10 회 세척하였다. After ion exchange of the titanium ions, 10 times was washed with distilled water so that the pH of the ion exchange resin to 7 to remove the remaining chlorine ions.
티타늄을 이온 교환 시킨 방법과 동일한 방법으로 티타늄이 이온교환 되어 있는 이온교환 수지에 전이금속인 Fe3+, Ag3+, Cu2+, Ni2+, Co2+을 각각 담지하였다. 각각의 전이금속의 전구물질(precursor)은 FeCl3, AgNO3, CuCl2·2H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O의 형태를 사용하였으며, 건조 수지의 함량 대비 전이금속의 함량이 각각 0.3 중량%, 0.3 중량%, 0.5 중량%, 0.5 중량%, 0.5 중량%가 되도록 조절하였다.Transition metals Fe 3+ , Ag 3+ , Cu 2+ , Ni 2+ and Co 2+ were supported on the ion exchange resin in which titanium was ion-exchanged in the same manner as the method of titanium ion exchange. Precursor of each transition metal used the form of FeCl 3 , AgNO 3 , CuCl 2 · 2H 2 O, Ni (NO 3 ) 2 · 6H 2 O, Co (NO 3 ) 2 · 6H 2 O , The content of the transition metal to the content of the dry resin was adjusted to 0.3% by weight, 0.3% by weight, 0.5% by weight, 0.5% by weight, 0.5% by weight, respectively.
이온교환 처리 과정이 모두 끝난 후, 110℃에서 12시간 동안 건조기(oven)에서 건조하였다. 건조된 이온교환수지 100g을 얻어 대기 분위기에서 1℃/min으로 승온하여 300℃의 온도에서 5시간 동안 불융화 하였으며, 불융화 처리를 거친 시료를 광활성 활성탄으로 변환시키기 위하여 질소 분위기 하에서 700℃까지 1℃/min으로 승온하여 탄화 시켰으며, 활성탄의 기공을 활성화시키기 위하여 질소분위기에서 수증기와 함께 900℃의 온도에서 0.5시간 활성화 시켰다. 이와 같은 과정을 거쳐 담체로 사용된 이온교환수지는 구형(球形)의 탄소계 기공소재 형태를 가지게 되었으며, 이온교환된 금속은 열처리 과정을 거치면서 광활성을 띠는 성분으로 전환되었다.After the ion exchange process was completed, it was dried in an oven for 12 hours at 110 ℃. 100 g of the dried ion-exchange resin was obtained, and the temperature was raised to 1 ° C./min in an air atmosphere, and the mixture was infused at a temperature of 300 ° C. for 5 hours. It was carbonized by raising the temperature to ℃ / min, and activated for 0.5 hours at a temperature of 900 ℃ with water vapor in a nitrogen atmosphere to activate the pores of activated carbon. Through such a process, the ion exchange resin used as a carrier has a spherical carbon-based pore material, and the ion exchanged metal is converted into a photoactive component through a heat treatment process.
이와 같이 얻어진 가시광 활성 구형 탄소계 기공소재의 총량은 철, 은, 구리, 니켈 및 코발트의 순으로 각각 45.36g, 46.24g, 45.82g, 50.48g, 51.50g이며, 열처리에 의해 발생한 총 열처리 손실(burn off)은 각각 55.02%, 53.93%, 54.41%, 49.65%, 48.90%로 가시광 활성 구형 탄소계 기공소재에 담지된 티타늄의 양은 각각 6.14중량%, 5.71중량%, 5.60중량%, 5.97중량%, 5.13중량%로 나타났다.The total amount of the visible light-activated spherical carbon-based porous material thus obtained was 45.36 g, 46.24 g, 45.82 g, 50.48 g and 51.50 g in order of iron, silver, copper, nickel and cobalt, respectively. burn off) was 55.02%, 53.93%, 54.41%, 49.65%, 48.90%, respectively, and the amount of titanium supported on the visible light spherical carbon-based porous material was 6.14%, 5.71%, 5.60%, 5.97%, 5.13 wt%.
강산성 양이온교환수지를 모체로 하여 제조된 가시광 활성 구형 탄소계 기공소재는 그 크기가 약 350 ㎛ 였으며, 그 형태는 도 2에서 보는 것과 같이 유동층 공정에 적용이 적합한 구형 형태를 가지고 있었으며, 표면 역시 균일하여 유기물 흡착이 용이하였다. 또한, 광촉매 표면에서 티타늄과 전이금속의 분포도를 관찰하고자 EPMA(electron probe micro analyzer)를 사용하여 가시광 활성 구형 탄소계 기공소재를 관찰한 결과, 도 3과 같이 티타늄은 전체적으로 표면에 균등하게 분포되어 있었으나, 각각의 전이금속의 분포도를 관찰했을 때, Fe가 다른 전이금속에 비하여 더 균일하게 분포되어 있음을 확인하였으며, 이는 유기물질 제거 효율에 영향을 끼친 하나의 요인이 되었을 것으로 판단되었다.Visible light-activated spherical carbon-based porous material prepared using a strong acid cation exchange resin as a matrix was about 350 μm in size, and its shape had a spherical shape suitable for application to a fluidized bed process as shown in FIG. It was easy to adsorb organic matter. In addition, when observing the visible light activated spherical carbon-based pores using an EPMA (electron probe micro analyzer) to observe the distribution of titanium and transition metal on the surface of the photocatalyst, as shown in FIG. When the distribution of each transition metal was observed, it was confirmed that Fe was more uniformly distributed than other transition metals, which may be one factor that influenced the efficiency of organic material removal.

<비교예 1> 티타늄이 단독으로 담지된 광활성 구형 탄소계 기공소재의 제조Comparative Example 1 Preparation of Photoactive Spherical Carbon-Based Porous Materials Supported Titanium Alone
본 발명에 의해 제조된 가시광 활성 구형 탄소계 기공소재의 UV 파장에 따른 광화학적 활성도를 비교하기 위하여 전이금속을 배제하고 티타늄 성분만 담지한 광활성 구형 탄소계 기공소재를 제조하였다.In order to compare the photochemical activity according to the UV wavelength of the visible light-activated spherical carbon-based pore material prepared by the present invention, a photoactive spherical carbon-based pore material excluding a transition metal was supported.
실시예 1에서 전이금속 담지과정만을 생략하고 나머지는 모두 동일하게 하여, 즉 티타늄을 단독으로 이온교환 방법을 통해 담지하여 광활성 구형 탄소계 기공소재를 제조하였다.In Example 1, only the transition metal supporting process was omitted, and all others were the same. That is, titanium was supported alone by an ion exchange method to prepare a photoactive spherical carbon-based pore material.

<비교예 2 ~ 6> 전이금속이 단독으로 담지된 광활성 구형 탄소계 기공소재의 제조<Comparative Examples 2 to 6> Preparation of a photoactive spherical carbon-based pore material supported by a transition metal alone
본 발명에 의해 제조된 가시광 활성 구형 탄소계 기공소재의 UV 파장에 따른 광화학적 활성도를 비교하기 위하여 티타늄이 배제된 전이금속만 담지된 광활성 구형 탄소계 기공소재를 제조하였다.In order to compare the photochemical activity according to the UV wavelength of the visible light-activated spherical carbon-based pore material prepared by the present invention, a photoactive spherical carbon-based pore material supporting only transition metals without titanium was prepared.
강산성 양이온교환수지를 모체로 하여 FeCl3, AgNO3, CuCl2·2H2O, Ni(NO3)2·6H2O, Co(NO3)·6H2O의 형태로 물에 용해시킨 후 1시간 동안 교반하여 이온교환 시켰다. 건조 이온교환수지 단위 무게당 철의 함량은 3.3 중량%, 은의 함량은 3.3 중량%, 구리의 함량은 3.4 중량%, 니켈의 함량은 3.4 중량%, 코발트의 함량은 3.4 중량%가 되도록 조절하였다.Dissolve in water in the form of FeCl 3 , AgNO 3 , CuCl 2 · 2H 2 O, Ni (NO 3 ) 2 · 6H 2 O, Co (NO 3 ) · 6H 2 O, using the strongly acidic cation exchange resin as a parent It was stirred for an hour and ion exchanged. Iron content per unit weight of the dry ion exchange resin was 3.3% by weight, silver content of 3.3% by weight, copper content of 3.4% by weight, nickel content of 3.4% by weight, cobalt content of 3.4% by weight.
각각의 금속 이온을 이온교환 시킨 후, 이온교환수지의 pH가 7이 되도록 증류수를 이용하여 10회 세척하였다.After each metal ion was ion exchanged, it was washed 10 times with distilled water so that the pH of the ion exchange resin became 7.
이후에는 실시예 1과 동일한 방법으로 전이금속 등이 이온교환되어 담지되어 있는 이온교환수지는 110℃의 건조기(oven)에서 12시간 동안 건조되었으며, 300℃의 온도에서 5시간 동안 불융화 시킨 후, 질소 분위기 하에서 700℃까지 1℃/min으로 승온하여 탄화 공정을 실시하였다. 그리고 질소와 수증기 분위기 하에서 900℃에서 0.5시간 활성화 과정을 거친 후 구형 탄소계 기공소재를 제조하였다. Thereafter, in the same manner as in Example 1, the ion exchange resin on which the transition metals were ion exchanged and supported was dried in an oven at 110 ° C. for 12 hours, and after being infusible at 300 ° C. for 5 hours, The temperature was raised to 1 ° C / min to 700 ° C under a nitrogen atmosphere to carry out a carbonization process. Spherical carbon-based pore materials were prepared after a 0.5 hour activation process at 900 ° C. under nitrogen and water vapor.

<실험예 1> 광활성 구형 탄소계 기공소재를 광반응용 수처리 공정에 적용 시 유기물 제거효율 측정 및 비교Experimental Example 1 Measurement and Comparison of Organic Matter Removal Efficiency in Application of Photoactive Spherical Carbon-based Porous Materials to Water Reaction Process
상기 실시예 1 ~ 5 및 비교예 1 ~ 6에 의하여 제조된 광활성 구형 탄소계 기공소재를 실제 광반응용 수처리 공정으로의 적용 여부를 판단해 보기 위하여 다음과 같은 광반응조를 제작하여 유기물 제거 실험을 실시하였다.In order to determine whether or not the photoactive spherical carbon-based pore material prepared in Examples 1 to 5 and Comparative Examples 1 to 6 is applied to the water treatment process for the actual photoreaction, the following photoreactor was manufactured to perform organic matter removal experiment. Was carried out.
광반응기는 반응하는 동안 외부로부터 다른 빛이 투과하지 못하도록 하기 위하여 스테인리스(Stainless)를 이용한 유효 용적 2.4 L의 원통형 회분식 반응조를 제작하였고, 반응조의 내경은 UV 투과도를 고려하여 10 cm로 고정하고 높이는 45 cm로 하였다. UV광원은 LIGHTTECH 社에서 제조한 G18T5C 모델의 low pressure mercury lamp UV-C (λmax= 254 nm)와 YOUNGHWA 社에서 제조한 F8T5BL모델의 low pressure mercury lamp UV-A (λmax= 365 nm)를 반응조 중앙부에 각각 설치하여 사용하였다. 반응조의 상부는 용존산소(DO) 측정이 가능하도록 하였으며, 하단부에는 분석 시료의 채취를 위한 시료 채취구(sampling port) 및 광촉매의 활성과 광촉매 유동을 원활하게 하기 위해 폭기(aeration) 장치를 설치하였다. 가시광 활성 구형 탄소계 기공소재 투여량은 20 g/L로 고정하여 실험을 실시하였다.The photoreactor manufactured 2.4 L cylindrical batch reactors with stainless steel (Stainless) to prevent the transmission of other light from the outside during the reaction. The inner diameter of the reactor was fixed at 10 cm in consideration of UV transmittance and the height was 45 cm. The UV light source reacts with the low pressure mercury lamp UV-C (λ max = 254 nm) of G18T5C model manufactured by LIGHTTECH and the low pressure mercury lamp UV-A (λ max = 365 nm) of F8T5BL model manufactured by YOUNGHWA. It was installed and used in the center part, respectively. In the upper part of the reactor, dissolved oxygen (DO) measurement was possible, and in the lower part, a sampling port for collecting analytical samples and an aeration device were installed to facilitate the activity and photocatalytic flow of the photocatalyst. . Visible light-activated spherical carbon-based pores were dosed at 20 g / L.
오염 대상 물질은 기존 상수처리 소독 공정에서 DBPs(disinfection by-products)의 원인 물질이며 음용수 수질에 결정적인 역할을 하고, 토양 속의 살충제 같은 화합물의 생물학적 활용도에 영향을 주는 HA(humic acid)를 선정하였다. HA의 표준 용액 제조는 ALDRICH 社의 1급 시약을 24 시간 동안 증류수에 용해한 후, 0.45 ㎛의 멤브레인 여과지(membrane filter paper)로 여과하여 녹지 않고 남아 있는 재(ash) 성분들을 제거한 후 사용하였다. 반응조에 투입한 HA 농도는 국내 상수 원수의 BOD5와 COD 및 미국 지표수의 평균 TOC농도인 4.4 ppm을 고려하여 설정한 10 ppm으로 고정시켜 실시하였다. The pollutant is the source of DBPs (disinfection by-products) in the existing water treatment disinfection process and selected a HA (humic acid) that plays a decisive role in drinking water quality and affects the bioavailability of compounds such as pesticides in the soil. Standard solution preparation of HA was used after dissolving ALDRICH's first-class reagent in distilled water for 24 hours, filtering with 0.45 μm membrane filter paper to remove ash components remaining insoluble. The HA concentration in the reactor was fixed at 10 ppm, taking into account the BOD 5 and COD of domestic constant raw water and 4.4 ppm, the average TOC concentration of US surface water.
상기 실험에 따른 유기물 제거효율 측정 결과를 하기 표 1에 정리하여 나타내었다. 유기물의 제거효율은 CODCr법을 사용하여 측정하였다.The organic matter removal efficiency measurement results according to the above experiments are summarized in Table 1 below. The removal efficiency of organic matter was measured using the COD Cr method.
실시예 1 ~ 5의 경우, 254 nm의 파장에서 가시광 활성 구형 탄소계 기공소재의 HA 제거효율은 6시간 경과 후 약 15 ~ 42 %의 제거효율을 보였으며, 365 nm의 파장에서 가시광 활성 구형 탄소계 기공소재의 HA 제거효율의 경우 6시간 경과 후 전체적으로 약 40 ~ 53 %의 HA 제거 효율을 보여 주었다. 특히 실시예 1의 Fe를 담지한 가시광 활성 구형 탄소계 기공소재의 경우, 다른 전이금속들과 비교하여 약 5 ~ 10% 정도 처리효율이 더 높게 나타났다. 상기 결과는 하기 표 1 및 도 4(a), 4(b) 그래프에 나타나 있다.In Examples 1 to 5, the HA removal efficiency of the visible light activated spherical carbon-based porous material at the wavelength of 254 nm was about 15 to 42% after 6 hours, and the visible light activated spherical carbon at the wavelength of 365 nm. The HA removal efficiency of the pore material showed about 40 ~ 53% HA removal efficiency after 6 hours. In particular, in the case of the visible light activated spherical carbon-based porous material carrying Fe of Example 1, the treatment efficiency was about 5 to 10% higher than that of other transition metals. The results are shown in Tables 1 and 4 (a) and 4 (b) below.
본 발명의 경우 가시광 영역에서도 높은 제거효율을 나타내는데, 이는 본 발명에 의해 제조된 가시광 활성 구형 탄소계 기공소재의 티타늄의 격자 내에 포함된 전이금속이 광촉매에 존재하는 밴드갭(band gap) 이상의 에너지를 받아 생성된 전자와 정공에서 전자를 트랩(trapping)하여 전자와 정공의 재결합을 방지함으로써 광활성도를 높인 결과이다.In the case of the present invention, the removal efficiency is high even in the visible region, which indicates that the transition metal contained in the lattice of titanium of the visible light active spherical carbon-based porous material produced by the present invention absorbs energy above the band gap in the photocatalyst. This is the result of enhancing the photoactivity by trapping electrons in the generated electrons and holes to prevent recombination of electrons and holes.
반면 비교예 1을 이용하여 초기 농도가 10 ppm인 HA의 파장에 따른 제거효율을 평가한 결과, 파장이 254 nm일 경우에는 42 % 이상의 HA 제거효율을 보였으나, 365 nm의 파장에서는 유기물질의 분해가 전혀 이루어지지 않았다.On the other hand, as a result of evaluating the removal efficiency according to the wavelength of HA having an initial concentration of 10 ppm using Comparative Example 1, when the wavelength is 254 nm, the HA removal efficiency was more than 42%. No decomposition occurred.
또한 전이금속을 단독으로 담지한 구형 탄소계 기공소재인 비교예 2 ~ 6의 경우 하기 표 1 및 도 5-6에서 보는 바와 같이 254 nm와 365 nm의 파장범위 모두에서 초기 농도와 반응 후 농도의 변화가 일어나지 않아 HA가 전혀 제거되지 않았다는 것을 알 수 있었다. In addition, in Comparative Examples 2 to 6, which are spherical carbon-based pore materials supporting only transition metals, as shown in Table 1 and FIGS. 5-6, changes in initial concentration and concentration after reaction in both wavelength ranges of 254 nm and 365 nm It did not happen that it was found that HA was not removed at all.
유기물 제거효율 실험 결과Organic matter removal efficiency test result
종 류Kinds 제거효율(%)Removal efficiency (%)
λ max = 254 nm
(자외선 영역)
λ max = 254 nm
(Ultraviolet region)
λ max = 365 nm
(가시광선 영역)
λ max = 365 nm
(Visible light range)
실시예 1Example 1 Ti-Fe-SCMTi-Fe-SCM 38.138.1 53.653.6
실시예 2Example 2 Ti-Ag-SCMTi-Ag-SCM 27.727.7 47.447.4
실시예 3Example 3 Ti-Cu-SCMTi-Cu-SCM 15.215.2 46.846.8
실시예 4Example 4 Ti-Ni-SCMTi-Ni-SCM 22.122.1 40.640.6
실시예 5Example 5 Ti-Co-SCMTi-Co-SCM 34.534.5 40.940.9
비교예 1Comparative Example 1 Ti-SCMTi-SCM 42.142.1 --
비교예 2Comparative Example 2 Fe-SCMFe-SCM -- --
비교예 3Comparative Example 3 Ag-SCMAg-SCM -- --
비교예 4Comparative Example 4 Cu-SCMCu-SCM -- --
비교예 5Comparative Example 5 Ni-SCMNi-SCM -- --
비교예 6Comparative Example 6 Co-SCMCo-SCM -- --

상기 표 1에서 보는 바와 같이, 본 발명의 가시광 활성 구형 탄소계 기공소재는 티타늄과 전이금속 원소를 함께 담지함으로써, 자외선 영역에서 뿐만 아니라 가시광선 영역에서도 40 % 이상의 촉매 활성을 가져, 티타늄 단독 담지 또는 전이금속 단독 담지된 광활성 구형 탄소계 기공소재에 비하여 매우 넓은 파장의 빛 영역에서 대기 중 유해물질 제거 및 수처리 소재 등으로 사용이 가능하다. 본 발명에 따른 가시광 활성 구형 탄소계 기공소재는 가시광 영역에서까지 활성을 나타냄으로 인해 경제적인 측면에서 기존 촉매에 비해 유용하며, 상업적 공정에 적용시 큰 파급효과를 가져올 것으로 예상된다.As shown in Table 1, the visible light-activated spherical carbon-based porous material of the present invention supports titanium and a transition metal element together, and has a catalytic activity of 40% or more in the visible region as well as in the ultraviolet region. Compared to the photoactive spherical carbon-based porous material loaded with transition metal alone, it can be used as a material for removing harmful substances in the air and water treatment materials in a wider light range. Visible light-activated spherical carbon-based pore material according to the present invention is useful compared to the existing catalyst in terms of economics because it exhibits activity in the visible light range, it is expected to bring a large ripple effect when applied to commercial processes.

Claims (16)

  1. (a) 강산성 양이온 교환수지에 전구물질 형태의 티타늄을 이온 교환시켜 티타늄 이온교환수지를 만드는 단계;
    (b) 상기 티타늄 이온교환수지에 전구물질 형태의 전이금속을 담지하여 티타늄-전이금속 이온교환수지를 만드는 단계;
    (c) 상기 티타늄-전이금속 이온교환수지를 불융화 처리하는 단계;
    (d) 상기 불융화 처리된 티타늄-전이금속 이온교환수지를 탄화시키는 단계; 및
    (e) 상기 탄화된 티타늄-전이금속 이온교환수지를 활성화시키는 단계
    를 포함하는 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    (a) ion exchanging titanium in the form of a precursor in a strongly acidic cation exchange resin to form a titanium ion exchange resin;
    (b) preparing a titanium-transition metal ion exchange resin by supporting a transition metal in a precursor form in the titanium ion exchange resin;
    (c) dissolving the titanium-transition metal ion exchange resin;
    (d) carbonizing the incompatible titanium-transition metal ion exchange resin; And
    (e) activating the carbonized titanium-transition metal ion exchange resin
    Method for producing a visible light active spherical carbon-based pore material comprising a.

  2. 제 1 항에 있어서, 상기 (a) 단계의 강산성 양이온 교환수지는 폴리스티렌과 디비닐벤젠의 결합체를 모체로 하는 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.



    The method of claim 1, wherein the strongly acidic cation exchange resin of step (a) comprises a combination of polystyrene and divinylbenzene as a matrix.



  3. 제 1 항에 있어서, 상기 (a) 단계의 강산성 양이온 교환수지는 작용기로 -SO3 -를 가지는 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method of claim 1, wherein the strongly acidic cation exchange resin of step (a) has -SO 3 - as a functional group.

  4. 제 1 항에 있어서, 상기 (a) 단계의 전구물질 형태의 티타늄은 TiCl3또는 TiCl4인 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method of claim 1, wherein the titanium in the form of the precursor of step (a) is TiCl 3 or TiCl 4 method for producing a visible light activated spherical carbon-based pore material.

  5. 제 1 항에 있어서, 상기 (b) 단계의 전이금속은 Fe, Ag, Cu, Ni 및 Co 중에서 선택된 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method of claim 1, wherein the transition metal of step (b) is Fe, Ag, Cu, Ni and Co Method for producing a visible light active spherical carbon-based porous material, characterized in that selected from.
                    
                
  6. 제 1 항에 있어서, 상기 (b) 단계의 전구물질 형태의 전이금속은 FeCl3, AgNO3, CuCl2·2H2O, Ni(NO3)2·6H2O 및 Co(NO3)2·6H2O 중에서 선택된 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    According to claim 1, wherein the transition metal in the form of the precursor of step (b) is FeCl 3 , AgNO 3 , CuCl 2 · 2H 2 O, Ni (NO 3 ) 2 · 6H 2 O and Co (NO 3 ) 2 · Method for producing a visible light active spherical carbon-based pore material, characterized in that selected from 6H 2 O.

  7. 제 1 항에 있어서, 상기 (c) 단계의 불융화 처리는 대기 분위기에서, 200 ~ 400 ℃ 온도 조건으로 2 ~ 8 시간 동안 수행하는 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method of claim 1, wherein the incompatibility treatment of step (c) is performed in an air atmosphere at 200 to 400 ° C. for 2 to 8 hours.

  8. 제 1 항에 있어서, 상기 (d) 단계의 탄화는 불활성 가스 분위기 하에서, 400 ~ 1000 ℃ 온도 조건으로 0.1 ~ 2 시간 동안 수행하는 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method of claim 1, wherein the carbonization of the step (d) is performed in the inert gas atmosphere, 400 ~ 1000 ℃ temperature conditions for 0.1 to 2 hours, characterized in that the visible light activated spherical carbon-based porous material manufacturing method.

  9. 제 1 항에 있어서, 상기 (e) 단계의 활성화는 수증기가 함유된 불활성 가스 분위기에서, 800 ~ 1100 ℃ 온도 조건으로 0.1 ~ 2 시간 동안 수행하는 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method of claim 1, wherein the activation of the step (e) is prepared in the visible light activated spherical carbon-based porous material, characterized in that performed for 0.1 to 2 hours at 800 ~ 1100 ℃ temperature conditions in an inert gas atmosphere containing water vapor Way.

  10. 제 1 항 내지 제 9 항 중 선택된 어느 한 항에 있어서, 상기 티타늄은 건조 강산성 양이온 교환수지 중 2 ~ 9 중량% 비율로 담지된 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method according to any one of claims 1 to 9, wherein the titanium is supported at a ratio of 2 to 9% by weight in a dry strongly acidic cation exchange resin.

  11. 제 1 항 내지 제 9 항 중 선택된 어느 한 항에 있어서, 상기 전이금속은 건조 강산성 양이온 교환수지 중 0.2 ~ 1.0 중량% 비율로 담지된 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    The method according to any one of claims 1 to 9, wherein the transition metal is supported by 0.2 to 1.0% by weight in a dry strongly acidic cation exchange resin.

  12. 제 1 항 내지 제 9 항 중 선택된 어느 한 항에 있어서, 상기 가시광 활성 구형 탄소계 기공소재는 직경이 300 ~ 400 ㎛이며, 강도가 8 ~ 9 kg/a unit인 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    10. The visible light active spherical carbon according to any one of claims 1 to 9, wherein the visible light active spherical carbon-based porous material has a diameter of 300 to 400 µm and an intensity of 8 to 9 kg / a unit. Method of manufacturing pore material.

  13. 제 1 항 내지 제 9 항 중 선택된 어느 한 항에 있어서, 상기 가시광 활성 구형 탄소계 기공소재는 365nm 파장에서 유기물 제거효율이 40 ~ 60% 인 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재의 제조방법.

    10. The method of claim 1, wherein the visible light spherical carbon-based pore material has an organic material removal efficiency of 40 to 60% at a wavelength of 365 nm. .

  14. 티타늄과 전이금속원소를 강산성 양이온 교환수지에 함께 담지한 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재.

    Visible light-activated spherical carbon-based porous material characterized in that the titanium and transition metal elements are supported together in a strong acid cation exchange resin.

  15. 제 14 항에 있어서, 상기 가시광 활성 구형 탄소계 기공소재는 직경이 300 ~ 400 ㎛이며, 강도가 8 ~ 9 kg/a unit인 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재.

    15. The visible light active spherical carbon-based porous material according to claim 14, wherein the visible light active spherical carbon-based porous material has a diameter of 300 to 400 µm and an intensity of 8 to 9 kg / a unit.

  16. 제 14 항에 있어서, 상기 티타늄과 전이금속이 함께 존재함으로써 티타늄의 전자 전이 에너지 갭(gap)을 전이금속의 에너지 준위(energy level)가 보완해줌으로써 여기되어 있는(excited) 전자를 전이금속이 전자를 트랩(trapping)하여 전자와 정공의 재결합을 방지함으로써 광활성도를 높인 것을 특징으로 하는 가시광 활성 구형 탄소계 기공소재.

    15. The transition metal of claim 14, wherein the titanium and the transition metal are present together to complement the electron transition energy gap of the titanium to compensate for the energy level of the transition metal. Visible light-activated spherical carbon-based pore material, characterized in that to increase the photoactivity by trapping the (prevent recombination of electrons and holes).

PCT/KR2011/001950 2010-05-17 2011-03-22 Visible ray-active spherical carbon-based porous material, and preparation method thereof WO2011145801A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100045899A KR101183518B1 (en) 2010-05-17 2010-05-17 Visible-light photoactive spherical carbon porous material and its manufacturing method
KR10-2010-0045899 2010-05-17

Publications (2)

Publication Number Publication Date
WO2011145801A2 true WO2011145801A2 (en) 2011-11-24
WO2011145801A3 WO2011145801A3 (en) 2012-01-26

Family

ID=44992155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001950 WO2011145801A2 (en) 2010-05-17 2011-03-22 Visible ray-active spherical carbon-based porous material, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101183518B1 (en)
WO (1) WO2011145801A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394354A (en) * 2013-08-22 2013-11-20 神华集团有限责任公司 Catalyst loaded on carbon sphere and preparation method of catalyst
CN111715308A (en) * 2020-06-10 2020-09-29 安庆师范大学 ZnO/carbonized ion exchange resin and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445575B (en) * 2014-12-09 2016-04-20 江南大学 A kind of deep oxidation treatment process of steroid hormone medicine waste water
CN108383103B (en) * 2018-06-04 2020-05-22 高彪峰 Preparation method of hollow carbon cage
KR102267776B1 (en) 2019-07-04 2021-06-21 고려대학교 산학협력단 Indoor-light-driven photocatalyst and method for preparing the same
WO2021107740A1 (en) * 2019-11-29 2021-06-03 고려대학교 산학협력단 Method for manufacturing iron-chromium oxide using ion exchange resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135975A (en) * 2001-10-31 2003-05-13 Chiyoda Corp Catalyst for hydrogenation of hydrocarbon oil and method for manufacturing the same
KR100672906B1 (en) * 2005-09-07 2007-01-22 한국화학연구원 Preparing method for spherical activated carbon having photoactivity
KR20070065978A (en) * 2005-12-21 2007-06-27 이화여자대학교 산학협력단 Visible light active nanohybrid photocatalyst and manufacuring method thereof
JP2008230950A (en) * 2007-02-21 2008-10-02 Kyushu Institute Of Technology N- and/or s-doped tubular titanium oxide particle and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135975A (en) * 2001-10-31 2003-05-13 Chiyoda Corp Catalyst for hydrogenation of hydrocarbon oil and method for manufacturing the same
KR100672906B1 (en) * 2005-09-07 2007-01-22 한국화학연구원 Preparing method for spherical activated carbon having photoactivity
KR20070065978A (en) * 2005-12-21 2007-06-27 이화여자대학교 산학협력단 Visible light active nanohybrid photocatalyst and manufacuring method thereof
JP2008230950A (en) * 2007-02-21 2008-10-02 Kyushu Institute Of Technology N- and/or s-doped tubular titanium oxide particle and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394354A (en) * 2013-08-22 2013-11-20 神华集团有限责任公司 Catalyst loaded on carbon sphere and preparation method of catalyst
CN103394354B (en) * 2013-08-22 2015-08-05 神华集团有限责任公司 A kind of load Synthetic holography Fe-series catalyst on carbon ball and preparation method thereof
CN111715308A (en) * 2020-06-10 2020-09-29 安庆师范大学 ZnO/carbonized ion exchange resin and preparation method thereof

Also Published As

Publication number Publication date
WO2011145801A3 (en) 2012-01-26
KR20110126300A (en) 2011-11-23
KR101183518B1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
Jiang et al. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon
Shen et al. Boosting photocatalytic degradation of tetracycline under visible light over hierarchical carbon nitride microrods with carbon vacancies
Ahmadpour et al. A hierarchical Ca/TiO 2/NH 2-MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in water
Gao et al. Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate
KR101183518B1 (en) Visible-light photoactive spherical carbon porous material and its manufacturing method
Jiang et al. Role of adsorption and oxidation in porous carbon aerogel/persulfate system for non-radical degradation of organic contaminant
CN102198405B (en) Composite catalyst for purifying indoor formaldehyde and preparation method of composite catalyst
Qin et al. Organic-acid-directed assembly of iron–carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation
Li et al. Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light
Payra et al. A trade-off between adsorption and photocatalysis over ZIF-derived composite
CN109876848B (en) Limited CoCNx @ C composite catalyst and preparation method and application thereof
KR20130092592A (en) Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
Lan et al. Decomplexation of Cu (II)-EDTA over oxygen-doped g-C3N4: An available resource towards environmental sustainability
Wu et al. Well-designed TiO2@ UiO-66-NH2 nanocomposite with superior photocatalytic activity for tetracycline under restricted space
Mehmood et al. Immobilizing a visible light-responsive photocatalyst on a recyclable polymeric composite for floating and suspended applications in water treatment
Liu et al. Cu atoms on UiO-66-NH2/ZnIn2S4 nanosheets enhance photocatalytic performance for recovering hydrogen energy from organic wastewater treatment
CN102600838A (en) Nano silver-titanium dioxide loaded porous cordierite foamed ceramic catalyst and preparation
CN111359650A (en) Preparation method, product and application of iron, nickel and palladium co-doped graphite-phase carbon nitride composite catalyst
Zendehzaban et al. Preparation of floatable TiO2/poly (vinyl alcohol)‐alginate composite for the photodegradation of ammonia wastewater
Yang et al. Synthesis of cake-like Ti-Bi bimetallic MOFs-derived OV-rich A-TiO2/β-Bi2O3 heterojunctions for photodegradation of ciprofloxacin
He et al. Solar light photocatalytic degradation of nitrite in aqueous solution over CdS embedded on metal–organic frameworks
Song et al. The comparative study on inhibitory effect of natural organic matters on the TiO2 and activated carbon/TiO2 composites for the removal of 17α-ethinylestradiol
Lv et al. Electron transfer channel in BiOBr/Bi2O3 heterojunction enhanced photocatalytic removal for fluoroquinolone antibiotics
KR20180051250A (en) Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide
KR20120103539A (en) Method for photocatalytic water purification

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783683

Country of ref document: EP

Kind code of ref document: A2