WO2011145547A1 - Power source device - Google Patents

Power source device Download PDF

Info

Publication number
WO2011145547A1
WO2011145547A1 PCT/JP2011/061155 JP2011061155W WO2011145547A1 WO 2011145547 A1 WO2011145547 A1 WO 2011145547A1 JP 2011061155 W JP2011061155 W JP 2011061155W WO 2011145547 A1 WO2011145547 A1 WO 2011145547A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
battery
power supply
supply device
support
Prior art date
Application number
PCT/JP2011/061155
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 亨
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Publication of WO2011145547A1 publication Critical patent/WO2011145547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device including a battery unit having a plurality of electrically connected laminated batteries.
  • NAS batteries sodium-sulfur battery
  • lead storage battery there is a NAS battery (sodium-sulfur battery) as an alternative to this lead storage battery.
  • NAS batteries are more compact and have higher energy density than lead acid batteries.
  • the NAS battery has a high operating temperature range of about 300 ° C., and large-scale incidental equipment including a heater for heating is necessary to operate the NAS battery. Further, since the NAS battery needs to be heated to the operating temperature range in order to operate properly, it takes time to operate.
  • lithium ion secondary batteries have attracted attention as batteries that can replace NAS batteries.
  • Lithium ion secondary batteries can operate at room temperature and have a high energy density.
  • the lithium ion secondary battery has low impedance, it is excellent in responsiveness.
  • lithium ion secondary battery examples include a cylindrical or flat rectangular battery in which a battery element is enclosed in a can-like container, a laminated battery in which a battery element is enclosed in a flexible film, and the like.
  • Laminate batteries are generally flat and positive and negative electrodes are drawn out of a flexible film.
  • Patent Document 1 describes a power supply device to which a laminated battery is applied.
  • a plurality of laminated batteries are arranged in the horizontal direction and the vertical direction.
  • each laminated battery is accommodated in a casing.
  • an object of the present invention is to provide a power supply device including a battery unit that can easily perform maintenance of a laminated battery.
  • a power supply device has a plurality of electrically connected laminate batteries and a tray on which the plurality of laminate batteries are placed, and the tray is provided with a plurality of laminate batteries.
  • a plurality of battery units configured to be stacked on another tray.
  • the power supply device includes a connection member that electrically connects battery units adjacent to each other in the stacking direction of the plurality of stacked trays, and a support device that supports each of the stacked battery units.
  • the support device includes a plurality of fixed shafts for fixing the plurality of trays in a state where the plurality of battery units are stacked, a support base provided with the plurality of fixed shafts, and a plurality of support devices provided on an outer peripheral portion of the plurality of fixed shafts. And a plurality of tray support members that regulate the position of the tray with respect to the direction intersecting the tray stacking direction.
  • the tray is provided with a plurality of insertion holes through which the fixed shaft and the tray support member are inserted.
  • the plurality of tray support members support a plurality of battery units, the tray support members adjacent to each other in the tray stacking direction are in contact with each other, and the tray support member that supports the lowermost battery unit is a support base. Abut.
  • the maintenance of the laminated battery placed on the tray can be easily performed.
  • FIG. 4B is a cross-sectional view taken along line A-A ′ shown in FIG. 4A. It is a perspective view which shows the power supply device of 1st Embodiment.
  • 5B is a cross-sectional view taken along line B-B ′ shown in FIG. 5A. It is a perspective view which shows the power supply device of 1st Embodiment. It is the schematic which shows the ion conduction path
  • FIG. 1A and 1B are perspective views of the battery unit 1 according to the first embodiment as viewed from above.
  • the battery unit 1 is shown from the opposite side of the horizontal direction to the orientation shown in FIG. 1A.
  • the battery unit 1 of the present embodiment includes three flat laminated batteries 2a, 2b, 2c and a tray 3 on which the laminated batteries 2a, 2b, 2c are attached.
  • lithium ion secondary batteries are used as the laminated batteries 2a, 2b, and 2c.
  • the laminated battery is not limited to a lithium ion secondary battery, and other laminated batteries such as a nickel hydride battery may be used.
  • the three laminated batteries 2a, 2b, and 2c are arranged side by side on the tray 3 so that the positive electrode and the negative electrode face each other. That is, the positive and negative electrodes of the laminated batteries 1a and 1c are oriented in the same direction, and the positive and negative electrodes of the laminated battery 1b disposed between the laminated batteries 1a and 1c are the positive and negative electrodes of the laminated batteries 1a and 1c. It faces the opposite direction.
  • the positive electrode of the laminated battery 1a and the negative electrode of the laminated battery 1b are electrically connected by the bus bar 4a, and the positive electrode of the laminated battery 2b and the negative electrode of the laminated battery 2c are electrically connected by the bus bar 4b.
  • the laminated batteries 2a, 2b, 2c are connected in series.
  • a bus bar 4c is provided on the negative electrode of the laminate 1a, and a bus bar 4d is provided on the positive electrode of the laminate 1c. That is, the bus bar 4 c is a positive terminal of the battery unit 1, and the bus bar 4 d is a negative terminal of the battery unit 1.
  • the bus bars 4a, 4b, 4c, and 4d are made of copper or a copper-based compound that has a relatively high electrical conductivity and is relatively inexpensive.
  • the bus bars 4a, 4b, 4c, and 4d are preferably formed of a material having high electrical conductivity, and may be formed of, for example, silver or a silver-based compound.
  • the bus bars 4a, 4b, 4c, and 4d may be formed of inexpensive iron or the like in order to reduce manufacturing costs.
  • the bus bars 4a, 4b, 4c and 4d are screwed to the tray 3 with the positive and negative electrodes of the laminated batteries 2a, 2b and 2c interposed therebetween. Thereby, the bus bars 4a, 4b, 4c, 4d are electrically connected to the positive and negative electrodes of the corresponding laminated batteries 2a, 2b, 2c, respectively, and the laminated batteries 2a, 2b, 2c are mechanically connected to the tray 3. It is fixed to.
  • the laminated batteries 2a, 2b, 2c can be detached from the tray 3 by removing the bus bars 4a, 4b, 4c, 4d, and conversely, can be attached to the tray 3 by the bus bars 4a, 4b, 4c, 4d. It is.
  • the laminated batteries 2a, 2b, 2c can be attached and detached very easily by the bus bars 4a, 4b, 4c, 4d.
  • the battery unit 1 of the present embodiment has a small number of parts when the laminated batteries 2a, 2b, and 2c are attached and detached.
  • FIGS. 2A and 2B are perspective views of the tray 3 as viewed from above.
  • the tray 3 will be described in detail with reference to FIGS. 2A and 2B.
  • the tray 3 is formed of a material having heat resistance and insulating properties.
  • the tray 3 in the present embodiment is made of polycarbonate resin.
  • the material for forming the tray 3 may be any material having insulating properties such as polypropylene polyethylene, nylon, and PET (polyethylene terephthalate).
  • the tray 3 is formed with a stacking portion 9a on which the laminated battery 2a is loaded, a loading portion 9b on which the laminated battery 2b is loaded, and a loading portion 9c on which the laminated battery 2c is loaded.
  • the stacking portions 9a, 9b, and 9c are formed in a concave shape that accommodates the laminated batteries 2a, 2b, and 2c, respectively.
  • Two protrusions 5a protruding upward are formed at the end of the tray 3 on the stacking portion 9a side, and two protrusions 5b protruding upward are formed at the end of the stacking portion 9c side. Yes.
  • the protrusions 5a are formed at wider intervals than the protrusions 5b.
  • the tray 3 Since the tray 3 has an insulating property, parts that insulate the laminated batteries 2a, 2b, and 2c stacked on the stacking portions 9a, 9b, and 9c of the tray 3 become unnecessary. Therefore, in the battery unit 1 of this embodiment, the number of parts can be reduced and a simple configuration can be realized.
  • FIG. 3A shows a top view of the tray 3, and FIG. 3B shows a bottom view of the tray 3.
  • FIG. 3B a hole 6a corresponding to the protrusion 5a and a hole 6a corresponding to the protrusion 5b are formed on the back surface of the tray 3.
  • the tray 3 has the battery unit 1 on the upper surface of the battery unit 1 so that the two protrusions 5a and the two holes 6a are fitted, and the two protrusions 5b and the two holes 6b are fitted.
  • the tray 3 can be overlapped with another tray 3 by rotating 180 ° about the central axis perpendicular to the upper surface and the lower surface with respect to the tray 3 different from the tray 3. It has become.
  • the protrusions 5a and 5b and the holes 6a and 6b function as a restricting portion that restricts movement of the tray 3 in a direction different from the stacking direction by fitting the trays 3 in a stacked state. For this reason, even when a large number of trays 3 are stacked, it is possible to prevent the positions of the respective trays 3 from being displaced and the stacked trays 3 from being collapsed.
  • the trays 3 adjacent to each other in the stacking direction have the end portions on the stacking portion 9a side facing in opposite directions. That is, in the state where the trays 3 are stacked, the trays 3 adjacent to each other in the stacking direction have the stacking unit 9a and the stacking unit 9c adjacent to each other in the stacking direction, and the stacking unit 9b is continuous in the stacking direction. If the trays 3 adjacent to each other in the stacking direction are stacked in the same direction, the protrusions 5a and the holes 6a are not fitted and a normal stacking state is not achieved.
  • the tray 3 can be stacked on each other even when the laminated batteries 2a, 2b, 2c are attached to the tray 3 by the bus bars 4a, 4b, 4c, 4d bus bars 4a, 4b, 4c, 4d. That is, the battery units 1 can be stacked on each other.
  • FIG. 4A shows a perspective view of seven battery units 1 of the present embodiment that are stacked.
  • FIG. 4B shows a cross-sectional view along the line A-A ′ in FIG. 4A. As shown in FIG. 4B, the laminated battery 2 a and the laminated battery 2 c are alternately arranged in the stacking direction of the tray 3 in a state where the battery units 1 are stacked.
  • the bus bar 4c as the positive electrode and the bus bar 4d as the negative electrode are reversed. Therefore, as shown in FIG. 4A, in the adjacent battery units 1, the bus bar 4c and the bus bar 4d are adjacent to each other.
  • an insulating portion 7 is formed on the tray 3.
  • the insulating part 7 is made of the same material as that of the tray 3 and is arranged adjacent to the lower side of the tray 3 where the bus bar 4c is attached. On the other hand, the insulating portion 7 is not provided on the lower side of the tray 3 where the bus bar 4d is attached.
  • an insulating portion 7 is formed between the bus bar 4c and the bus bar 4d adjacent to the lower side of the bus bar 4c.
  • the insulating part 7 having insulation functions to prevent the bus bar 4c and the bus bar 4d adjacent to the lower side of the bus bar 4c from being electrically connected.
  • the insulating portion 7 is not formed between the bus bar 4c and the bus bar 4d adjacent to the upper side of the bus bar 4c.
  • the bus bar 4d when viewed from the side opposite to the direction shown in FIG. 4A, that is, when viewed from the bus bar 4d side of the uppermost battery unit 1, the bus bar 4d is also adjacent to the lower side of the bus bar 4d.
  • FIG. 5A shows a perspective view of a power supply device 10 formed by laminating seven battery units 1 of the present embodiment.
  • FIG. 5B shows a cross-sectional view along the line B-B ′ in FIG. 5A.
  • the power supply device 10 is configured by electrically connecting the battery units 1 shown in FIG.
  • the connecting member 8 is attached to the bus bar 4d and the bus bar 4c adjacent to the lower side of the bus bar 4d by screwing or the like. Thereby, the bus bar 4d and the bus bar 4c adjacent to the lower side of the bus bar 4d are electrically connected and mechanically connected.
  • the bus bar 4 c that is the positive electrode of the adjacent battery unit 1 and the bus bar 4 d that is the negative electrode are adjacent to each other, so that the adjacent battery units can be easily connected by the connecting member 8. Is possible.
  • the battery unit 1 includes three laminated batteries 2a, 2b, and 2c connected in series.
  • the number of laminated batteries included in the battery unit 1 may be an odd number. If the number of laminated batteries provided in the battery unit 1 is an odd number, when the tray 3 is rotated by 180 ° about the central axis orthogonal to the upper surface and the lower surface, the bus bar as the positive electrode and the bus bar as the negative electrode This is because the structure is reversed. On the other hand, when the number of laminated batteries included in the battery unit is an even number, the positive bus bar and the negative bus bar are reversed even if the tray 3 is rotated 180 ° about the central axis orthogonal to the upper and lower surfaces. It is not the structure to do.
  • the connecting member 8 is formed of copper or a copper-based compound that has a high electrical conductivity and is relatively inexpensive, like the bus bars 4a, 4b, 4c, and 4d.
  • the connection member 8 is desirably formed of a material having high electrical conductivity, and may be formed of, for example, silver or a silver-based compound. Further, the connecting member 8 may be formed of inexpensive iron or the like in order to reduce manufacturing costs.
  • the insulating portion 7 may be formed adjacent to the lower side of the tray 3 where the bus bar 4d is attached. In this case, the insulating portion 7 is not formed below the position of the tray 3 where the bus bar 4c is attached, and the connection member 8 is screwed to the bus bar 4c and the bus bar 4d adjacent to the bus bar 4c on the lower side. Attached by.
  • the seven battery units 1 adjacent to each other in the vertical direction of the power supply device 10 are connected in series by being electrically connected by a connecting member 8. That is, in the power supply device 10, since the three laminated batteries 2a, 2b, 2c of each battery unit 1 are connected in series, a total of 21 laminated batteries 1 are connected in series.
  • the bus bar 4d of the lowermost battery unit 1 serves as a positive electrode terminal
  • the bus bar 4c of the uppermost battery unit 1 serves as a negative electrode terminal.
  • the power supply device 10 shown in FIG. 5A needs to include a control board that controls output power from the plurality of battery units 1 and prevents overcharge and overdischarge in order to operate the lithium ion battery safely.
  • FIG. 6 is a perspective view of the power supply device 10 with the control board 11 stacked on the top.
  • the control board 11 has the same outer shape as the battery unit 1 and is formed so as not to protrude greatly in a direction different from the stacking direction of the battery units 1 when stacked on the battery unit 1. Yes.
  • the bus bar 4 d of the lowermost battery unit 1 that is the positive electrode terminal of the power supply device 10 and the bus bar 4 c of the uppermost battery unit 1 that is the negative electrode terminal of the power supply device 10 are electrically connected.
  • the control board 11 is provided with an electric circuit (not shown) and the like, and the control board 11 enables safe input / output of power from the power supply device 10.
  • the output voltage can be easily changed by changing the number of stacked battery units 1. That is, in the power supply device 10, when the number of stacked battery units 1 is increased, the output voltage of the power supply device 10 increases, and when the number of stacked battery units 1 is decreased, the output voltage of the power supply device 10 increases. descend.
  • the insulating material such as polycarbonate resin forming the tray 3 of the battery unit 1 is relatively lightweight, even when a large number of battery units 1 are stacked, the load applied to the tray 3 of the lower-layer battery unit 1 is reduced. The battery unit 1 on the lower layer side is not easily damaged. Therefore, in the power supply device 10, it is possible to stack a large number of power supply units 1.
  • Each battery unit 1 can be detached from the battery units adjacent vertically by removing the connecting members 8 from the bus bars 4c and 4d. Therefore, in the power supply device 10 of the present embodiment, even when one of the plurality of battery units 1 has a problem, the battery unit 1 can be removed and easily replaced with a new battery unit 1. is there.
  • the three laminated batteries 2a, 2b, 2c provided in the battery unit 1 are detachable, any of the three laminated batteries 2a, 2b, 2c in which a problem has occurred. It is possible to exchange only two. Therefore, in the power supply device 10, when one of the plurality of battery units 1 has a problem, the defect occurs in the battery unit 1 removed from the power supply device 10 without preparing a new battery unit 1. It is possible to repair by replacing only the arbitrary laminated battery 2 and then returning it to the same position of the power supply device 10 again.
  • the power supply apparatus can easily maintain the laminated battery 2 of the arbitrary battery unit 1.
  • FIG. 7 shows a schematic diagram of the ion conduction path P of the power supply device 10 shown in FIG.
  • the bus bar 4d of the lowermost battery unit 1 that is the positive electrode terminal is connected to the control board 11 via the lead wire 12, and the bus bar 4c of the uppermost battery unit 1 that is the negative electrode terminal is directly connected to the control board 11. Electrically connected.
  • connection path P of the laminated battery can be changed as in the power supply device 10a shown in FIG. 8A by changing the shape and arrangement of the bus bar and the connection member. Also in this case, all the laminated batteries 2a, 2b, 2c in the power supply device 10a are connected in series, and an output voltage equivalent to that of the power supply device 10 shown in FIG. 7 can be obtained. Also in the power supply apparatus 10a, the bus bar 4d of the lowermost battery unit 1a serves as a positive electrode terminal, and the bus bar 4c of the uppermost battery unit 1a serves as a negative electrode terminal.
  • the number of laminated batteries loaded on the tray of one battery unit can be appropriately changed by changing the configuration of the tray. Thereby, the total capacity of one battery unit can be easily changed.
  • FIG. 8B shows a power supply device 10b in which the number of laminated batteries loaded on the tray of one battery unit is changed.
  • Each tray 3b of the power supply device 10b shown in FIG. 8B includes four laminated batteries 2a, 2b, 2c, and 2d.
  • the bus bar 4d of the uppermost battery unit 1b serves as a positive terminal
  • the bus bar 4c of the uppermost battery unit 1b serves as a negative terminal. Therefore, even if the lead wires 12 of the power supply devices 10 and 10a shown in FIGS. 7 and 8A are not provided, the positive terminal and the negative terminal can be electrically connected directly to the control board 11.
  • 8B shows the case where the number of laminated batteries in each battery unit 1b is four, the number of laminated batteries is not limited. If the number of laminated batteries is an even number, the same effect as the embodiment can be obtained.
  • the power supply device changes the configuration of the tray and changes the configuration of the bus bar and the connection member as appropriate according to the configuration of the tray, so that all the laminated batteries can be connected in parallel or a part of the laminated battery can be connected.
  • the power supply device changes the configuration of the tray and changes the configuration of the bus bar and the connection member as appropriate according to the configuration of the tray, so that all the laminated batteries can be connected in parallel or a part of the laminated battery can be connected.
  • a laminated battery is used.
  • a flat battery may be used, and it is needless to say that the battery is not limited to a laminated battery.
  • FIG. 9 shows a side sectional view of the power supply device 20 of the second embodiment.
  • the power supply device 20 of the second embodiment is configured in the same manner as the power supply device 10 of the first embodiment except for the configuration described below.
  • the tray 13 of the battery unit 1c of this embodiment is provided with a partition wall that surrounds the outer periphery of each of the laminated batteries 2a, 2b, 2c.
  • the battery units 1c are stacked, and a private chamber that covers the laminated batteries 1a, 1b, and 1c is formed by the tray 13 and the lower surface of the tray 13 adjacent to the upper side of the tray 13, respectively.
  • Only the uppermost battery unit 1c has no tray 13 adjacent to the upper side of the tray 13, and a lid 14 made of the same material as the tray 13 is provided on the uppermost battery unit 1c.
  • the lid 14 can be substituted by a control board 11 as shown in FIG.
  • the tray 13 is formed of a material having low thermal conductivity, the heat generated by each of the laminated batteries 2a, 2b, 2c is released from the inside of the tray 13 to the outside. Hateful.
  • FIG. 10 shows a side sectional view of a power supply device of a comparative example.
  • the power supply device 20a of the comparative example four battery units 1d are stacked.
  • the laminated batteries 2a, 2b, and 2c are not covered with the tray 13 like the power supply device 20 shown in FIG. Therefore, the heat generated by each laminated battery 2a, 2b, 2c is likely to diffuse around. Therefore, in the power supply device 20a of the comparative example, the central region surrounded by the alternate long and short dash line is likely to be heated from the surrounding laminated battery. Therefore, in the power supply device 20a, the temperature environment between the laminated battery disposed in the central region and the laminated battery disposed in the outer peripheral portion becomes non-uniform, and there is a high possibility that a problem occurs as the power supply device.
  • each laminated battery 2a, 2b, 2c is hard to cause a malfunction.
  • FIG. 11 the perspective view of the power supply device 30 of 3rd Embodiment is shown.
  • the power supply device 30 of the present embodiment is configured in the same manner as the power supply device 10 of the first embodiment except for the configuration described below.
  • the tray 23 of each battery unit 1e is indicated by a broken line.
  • the positive and negative electrodes of the laminated batteries 22a, 22b, and 22c are drawn out in the same direction.
  • the negative electrode of the laminated battery 22a and the positive electrode of the laminated battery 22b are electrically connected by the bus bar 24a
  • the negative electrode of the laminated battery 22b and the positive electrode of the laminated battery 22c are electrically connected by the bus bar 24b.
  • the laminate batteries 22a, 22b, and 22c are connected in series.
  • the negative electrode of the laminate battery 22c is electrically connected to the positive electrode of the laminate battery 22a of the battery unit 1e adjacent to the battery unit 1e on the lower side.
  • the laminated batteries 22a, 22b, and 22c of each battery unit 1e are connected in series, and the battery units 1e are connected in series. Therefore, in the power supply device 30, the positive electrode of the laminated battery 22a of the uppermost battery unit 1e is a positive electrode terminal, and the negative electrode of the laminated battery 22c of the lowermost battery unit 1e is a negative electrode terminal.
  • the power supply device according to the fourth embodiment is different from the power supply device according to the above-described embodiment in that the power supply device includes a support device that supports the plurality of stacked battery units, and the configuration excluding the support device is the first. It is comprised similarly to the power supply device 10 of embodiment. Therefore, in the present embodiment, only the support device that supports the battery unit will be described.
  • FIG. 12 is a perspective view of the power supply device according to the fourth embodiment.
  • FIG. 13 is a cross-sectional view of the power supply device according to the fourth embodiment. In FIG. 14, sectional drawing of the principal part of the support apparatus with which the power supply device of 4th Embodiment is provided is shown.
  • the load of the entire upper battery unit 1 stacked on the battery unit 1 is concentrated on the tray 3 of the battery unit 1 disposed in the lowermost layer of the plurality of stacked battery units 1. I will take it. For this reason, it is necessary to reduce the weight of the battery unit 1 in order to improve the mechanical strength of the tray 3 and reduce the load. Further, in the configuration in which a plurality of battery units 1 are stacked as in the power supply device according to the above-described embodiment, when a relatively large vibration is applied to the tray 3 from the outside due to an earthquake or the like, the position of the stacked trays 3 is determined. May shift in a direction crossing the stacking direction, and the electrical connection state by the connection member 8 may be impaired.
  • the power supply device 40 of the fourth embodiment includes a support device 45 that supports each of the plurality of stacked battery units 41.
  • the battery unit 41 of the present embodiment is the same as the configuration of the battery unit 1 of the above-described embodiment except for a part of the tray 43 on which the laminated battery 2 is placed. explain.
  • the support device 45 includes a tray support ring 48 that regulates the battery unit 41, a fixing bolt 47 that serves as a fixing shaft that fixes a plurality of stacked tray support rings 48 together, and a support that includes a plurality of fixing bolts 47. And a platform 46.
  • insertion holes 51 through which the fixing bolts 47 and the tray support ring 48 are inserted are provided in the vicinity of the four corners of the tray 43 of the battery unit 41.
  • a contact surface with which the tray support ring 48 contacts is formed around the insertion hole 51.
  • the fixing bolt 47 is not formed with a screw portion at the outer peripheral portion that contacts the tray support ring 48, and a screw portion (not shown) is formed only at the lower end portion fixed to the support base 46.
  • FIG. 15 is a perspective view of a tray support ring 48 provided in the support device 45 according to the fourth embodiment.
  • the tray support ring 48 is made of, for example, aluminum, and is reduced in weight.
  • the tray support ring 48 has a shaft hole 52 through which the fixing bolt 47 is inserted, and a flange portion 53 as a support portion that supports the tray 43.
  • the tray support ring 48 attached to the fixing bolt 47 prevents the tray 43 from vibrating.
  • the plurality of tray support rings 48 support the plurality of battery units 41, the tray support rings 48 adjacent to each other in the stacking direction of the tray 43 are in contact with each other, and the lowermost layer A tray support ring 48 that supports the battery unit 41 is in contact with the support base 46.
  • the plurality of stacked tray support rings 48 are fixed together by fixing bolts 47. Therefore, the load of each stacked battery unit 41 is applied to each tray support ring 48 that supports each battery unit 41. Similarly, the tightening axial force by the fixing bolt 47 is also applied to the tray support ring 48. For this reason, in this embodiment, it is avoided that the load of the whole battery unit 41 laminated
  • the tray support ring 48 is disposed between the trays 43 adjacent to each other in the stacking direction, and the plurality of battery units 41 are stacked on each of the trays 43 adjacent to each other in the stacking direction.
  • the flange portion 53 is in contact. For this reason, the tray 43 is sandwiched between the flange portions 53 of the tray support rings 48 adjacent to each other in the stacking direction, thereby preventing the tray 43 from vibrating.
  • connection member 8 the bus bars of the battery units 41 adjacent to each other in the stacking direction are electrically connected by the connection member 8 as in the power supply device of the above-described embodiment. Illustration of the connecting member is omitted.
  • a control unit 55 having control boards 55 a and 55 b that control output power from the plurality of battery units 41 is disposed on the uppermost battery unit 41.
  • the control board 55 a of the control unit 55 is stacked above the tray 43 of the uppermost battery unit 41.
  • the tray support ring 48 is attached on the support base 46, and the tray support ring 48 is brought into contact with the support base 46. Subsequently, the tray 43 of the lowermost battery unit 41 is placed on the flange portion 53 of each tray support ring 48 in contact with the support base 46.
  • next tray support ring 48 is brought into contact with the tray support ring 48 that supports the lowermost battery unit 41.
  • the tray 43 of the next battery unit 41 is brought into contact with the flange portion 53 of the tray support ring 48.
  • the tray support rings 48 and the battery units 41 are alternately attached, and a plurality of battery units 41 are stacked.
  • the fixing bolts 47 are inserted into the shaft holes 52 of the plurality of tray support rings 48 stacked in this manner, and the stacked trays 43 are fixed together.
  • the battery unit 41 is supported by the tray support ring 48 while the position in the direction orthogonal to the stacking direction is regulated.
  • the power supply device 40 of the fourth embodiment by including the support device 45 that supports each of the stacked battery units 41, the lower layer side in the stacking direction of the battery units 41, particularly It can be avoided that the load of the entire battery unit 41 stacked above the lowermost tray 43 is concentrated on the lowermost tray 43. Further, it is possible to avoid the tightening axial force from the fixing bolt 47 from being applied to the battery unit 41. Therefore, the power supply device 40 can prevent the tray 43 of the lowermost battery unit 41 from being damaged by a load, and can improve the reliability of the battery unit 41 and the power supply device 40. Further, according to this embodiment, since the load applied to the tray 43 is reduced, the mechanical strength required for the tray 43 is reduced, and sufficient reliability can be obtained even with the tray 43 formed of a resin material. It becomes possible.
  • each of the stacked battery units 41 is regulated by the tray support ring 48 attached to the plurality of fixing bolts 47, the tray 43 is orthogonal to the stacking direction by external force or vibration. It is possible to prevent the plurality of stacked trays 43 from collapsing in the direction.
  • the flange portion 53 is in contact with each of the trays 43 adjacent in the stacking direction.
  • the tray 43 is sandwiched between the flange portions 53 of the tray support rings 48 adjacent to each other in the stacking direction, so that the tray 43 can be prevented from vibrating. Therefore, the reliability of the battery unit 41 and the power supply device 40 can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

A support device (45) comprises: a plurality of fixing bolts (47) which fix a plurality of trays (43) on which a plurality of battery units (41) are stacked; a support base (46) which has the plurality of fixing bolts (47) provided thereon; and a plurality of tray support rings (48) which are provided at the outer peripheral section of the plurality of fixing bolts (47) to respectively support the plurality of battery units (41), and which also regulate the positions of the trays (43) in a direction intersecting the stacking direction of the trays (43). A plurality of insertion holes are provided in the trays (43), and the fixing bolts (47) and the tray support rings (48) are respectively inserted therein. With regard to the plurality of tray support rings (48), tray support rings (48) which are adjacent in the stacking direction of the trays (43) make contact with each another in a state in which the plurality of battery units (41) are respectively supported, and the tray support ring (48) which supports the battery unit (41) of the lowermost layer makes contact with the support base (46).

Description

電源装置Power supply
 本発明は、電気的に接続された複数のラミネート電池を有する電池ユニットを備える電源装置に関する。 The present invention relates to a power supply device including a battery unit having a plurality of electrically connected laminated batteries.
 近年、環境問題の観点から、戸建住宅等の家庭用途や、輸送機器、建設機器等の産業用途に用いることが可能な、風力発電、太陽光発電等から得られるクリーンエネルギが注目されている。しかし、クリーンエネルギは、状況に応じた出力の変動が大きいという問題を有している。例えば、太陽光発電によるエネルギは、太陽が昇っている日中に得られるが、太陽が沈んだ後の夜間に得られない。 In recent years, from the viewpoint of environmental problems, clean energy obtained from wind power generation, solar power generation, etc. that can be used for household use such as detached houses and industrial use such as transportation equipment and construction equipment has attracted attention. . However, the clean energy has a problem that the output varies greatly depending on the situation. For example, energy from solar power is obtained during the day when the sun is rising, but not at night after the sun has set.
 クリーンエネルギの出力を安定化するために、クリーンエネルギを一時的に電池に蓄える技術が用いられる。例えば、電池に蓄えられた太陽光エネルギは、太陽が沈んだ後の夜間にも利用可能となる。このようなクリーンエネルギを蓄えるための電池としては、一般的に鉛蓄電池が使用される。しかし、鉛蓄電池は、一般的に大型であり、エネルギ密度が低いという欠点がある。 In order to stabilize the output of clean energy, technology that temporarily stores clean energy in the battery is used. For example, solar energy stored in a battery can be used at night after the sun goes down. As a battery for storing such clean energy, a lead storage battery is generally used. However, lead-acid batteries are generally large and have the disadvantage of low energy density.
 この鉛蓄電池に代わる電池としてはNAS電池(ナトリウム硫黄電池:sodium-sulfur battery)がある。NAS電池は鉛蓄電池よりもコンパクトでエネルギ密度が高い。しかし、NAS電池は、作動温度域が300℃程度と高く、作動させるために加熱用のヒータ等を含む大規模な付帯設備が必要である。また、NAS電池は、適正に作動するために作動温度域まで加熱される必要があるので、作動するのに時間がかかる。 There is a NAS battery (sodium-sulfur battery) as an alternative to this lead storage battery. NAS batteries are more compact and have higher energy density than lead acid batteries. However, the NAS battery has a high operating temperature range of about 300 ° C., and large-scale incidental equipment including a heater for heating is necessary to operate the NAS battery. Further, since the NAS battery needs to be heated to the operating temperature range in order to operate properly, it takes time to operate.
 近年では、NAS電池に代わる電池としてリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、常温で作動可能であり、エネルギ密度が高い。また、リチウムイオン二次電池は、インピーダンスが低いので、応答性に優れている。 In recent years, lithium ion secondary batteries have attracted attention as batteries that can replace NAS batteries. Lithium ion secondary batteries can operate at room temperature and have a high energy density. Moreover, since the lithium ion secondary battery has low impedance, it is excellent in responsiveness.
 リチウムイオン二次電池としては、缶状の容器に電池要素が封入された円筒型や平板状の角型の電池、可撓性のフィルムの内部に電池要素が封入されているラミネート電池等がある。ラミネート電池は、一般的に平板状であり、正極および負極が可撓性のフィルムの外部に引き出されている。 Examples of the lithium ion secondary battery include a cylindrical or flat rectangular battery in which a battery element is enclosed in a can-like container, a laminated battery in which a battery element is enclosed in a flexible film, and the like. . Laminate batteries are generally flat and positive and negative electrodes are drawn out of a flexible film.
 特許文献1にはラミネート電池が適用された電源装置が記載されている。特許文献1に記載された電源装置では、複数のラミネート電池が水平方向および鉛直方向に並べられている。この電源装置では、各ラミネート電池がケーシングに収容されている。 Patent Document 1 describes a power supply device to which a laminated battery is applied. In the power supply device described in Patent Document 1, a plurality of laminated batteries are arranged in the horizontal direction and the vertical direction. In this power supply device, each laminated battery is accommodated in a casing.
特許第3971684号Japanese Patent No. 3971684
 ところで、特許文献1に記載の電源装置では、複数のラミネート電池のうちの1つのラミネート電池が機能しなくなった場合、不具合を生じることがある。特に、複数のラミネート電池が全て直列接続されている場合には、電源装置自体が使用不能となる。このような場合などに、電源装置のメンテナンスを行う必要がある。 By the way, in the power supply device described in Patent Document 1, a malfunction may occur when one of the plurality of laminated batteries stops functioning. In particular, when all of a plurality of laminated batteries are connected in series, the power supply device itself cannot be used. In such a case, it is necessary to perform maintenance of the power supply device.
 しかし、特許文献1に記載の電源装置では、ケーシングが金属材料によって形成されているので、各ラミネート電池をケーシングから絶縁するための部品点数が多い。そのため、ケーシングに対してラミネート電池の着脱作業等が煩雑になり、メンテナンスに多くの手間がかかる。 However, in the power supply device described in Patent Document 1, since the casing is made of a metal material, the number of parts for insulating each laminated battery from the casing is large. For this reason, the work for attaching and detaching the laminate battery to the casing becomes complicated, and a lot of labor is required for maintenance.
 そこで、本発明の目的は、ラミネート電池のメンテナンスを容易に行うことが可能な電池ユニットを備える電源装置を提供することにある。 Therefore, an object of the present invention is to provide a power supply device including a battery unit that can easily perform maintenance of a laminated battery.
 上記目的を達成するため、本発明に係る電源装置は、電気的に接続された複数のラミネート電池と、複数のラミネート電池が載せられるトレイとを有し、トレイが、複数のラミネート電池が載せられた別のトレイに積層可能に構成された電池ユニットを複数備える。また、電源装置は、積層された複数のトレイの積層方向に隣接する電池ユニットを電気的に接続する接続部材と、積層された複数の電池ユニットのそれぞれを支持する支持装置と、を備える。支持装置は、複数の電池ユニットが積層された状態で複数のトレイを固定する複数の固定軸と、複数の固定軸が設けられた支持台と、複数の固定軸の外周部に設けられて複数の電池ユニットをそれぞれ支持するとともにトレイの積層方向と交差する方向に対するトレイの位置を規制する複数のトレイ支持部材と、を有する。トレイには、固定軸及びトレイ支持部材がそれぞれ挿通される複数の挿通穴が設けられる。複数のトレイ支持部材は、複数の電池ユニットをそれぞれ支持した状態で、トレイの積層方向に隣接するトレイ支持部材が互いに当接され、かつ、最下層の電池ユニットを支持するトレイ支持部材が支持台に当接される。 In order to achieve the above object, a power supply device according to the present invention has a plurality of electrically connected laminate batteries and a tray on which the plurality of laminate batteries are placed, and the tray is provided with a plurality of laminate batteries. A plurality of battery units configured to be stacked on another tray. The power supply device includes a connection member that electrically connects battery units adjacent to each other in the stacking direction of the plurality of stacked trays, and a support device that supports each of the stacked battery units. The support device includes a plurality of fixed shafts for fixing the plurality of trays in a state where the plurality of battery units are stacked, a support base provided with the plurality of fixed shafts, and a plurality of support devices provided on an outer peripheral portion of the plurality of fixed shafts. And a plurality of tray support members that regulate the position of the tray with respect to the direction intersecting the tray stacking direction. The tray is provided with a plurality of insertion holes through which the fixed shaft and the tray support member are inserted. The plurality of tray support members support a plurality of battery units, the tray support members adjacent to each other in the tray stacking direction are in contact with each other, and the tray support member that supports the lowermost battery unit is a support base. Abut.
 本発明によれば、トレイに載せられたラミネート電池のメンテナンスを容易に行うことができる。 According to the present invention, the maintenance of the laminated battery placed on the tray can be easily performed.
第1の実施形態の電池ユニットを示す斜視図である。It is a perspective view which shows the battery unit of 1st Embodiment. 図1Aに示した電池ユニットを示す斜視図である。It is a perspective view which shows the battery unit shown to FIG. 1A. 図1Aに示したトレイを示す斜視図である。It is a perspective view which shows the tray shown to FIG. 1A. 図1Aに示したトレイを示す斜視図である。It is a perspective view which shows the tray shown to FIG. 1A. 図1Aに示したトレイを示す上面図である。It is a top view which shows the tray shown to FIG. 1A. 図1Aに示したトレイを示す下面図である。It is a bottom view which shows the tray shown to FIG. 1A. 図1に示した電池ユニットの積層状態を示す斜視図である。It is a perspective view which shows the lamination | stacking state of the battery unit shown in FIG. 図4Aに示したA-A’線に沿って示す断面図である。FIG. 4B is a cross-sectional view taken along line A-A ′ shown in FIG. 4A. 第1の実施形態の電源装置を示す斜視図である。It is a perspective view which shows the power supply device of 1st Embodiment. 図5Aに示したB-B’線に沿って示す断面図である。FIG. 5B is a cross-sectional view taken along line B-B ′ shown in FIG. 5A. 第1の実施形態の電源装置を示す斜視図である。It is a perspective view which shows the power supply device of 1st Embodiment. 図5Aに示した電源装置のイオン伝導パスを示す概略図である。It is the schematic which shows the ion conduction path | route of the power supply device shown to FIG. 5A. 図7に示した電源装置の変形例としてラミネート電池の接続パスを示す概略図である。It is the schematic which shows the connection path | pass of a laminated battery as a modification of the power supply device shown in FIG. 図7に示した電源装置の変形例としてラミネート電池の接続パスを示す概略図である。It is the schematic which shows the connection path | pass of a laminated battery as a modification of the power supply device shown in FIG. 第2の実施形態の電源装置を示す側断面図である。It is a sectional side view which shows the power supply device of 2nd Embodiment. 図9に示した電源装置の比較例を示す側断面図である。It is a sectional side view which shows the comparative example of the power supply device shown in FIG. 第3の実施形態の電源装置を示す斜視図である。It is a perspective view which shows the power supply device of 3rd Embodiment. 第4の実施形態の電池装置を示す斜視図である。It is a perspective view which shows the battery apparatus of 4th Embodiment. 第4の実施形態の電池装置を示す断面図である。It is sectional drawing which shows the battery apparatus of 4th Embodiment. 第4の実施形態の電池装置が備える支持装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the support apparatus with which the battery apparatus of 4th Embodiment is provided. 第4の実施形態における支持装置が備えるトレイ支持リングを示す斜視図である。It is a perspective view which shows the tray support ring with which the support apparatus in 4th Embodiment is provided.
 以下、本発明に係る実施形態について図面を参照して説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 (第1の実施形態)
 図1Aおよび図1Bに、第1の実施形態の電池ユニット1を上方から見た斜視図を示す。図1Bでは、電池ユニット1を図1Aで示した向きとは水平方向の反対側から示している。
(First embodiment)
1A and 1B are perspective views of the battery unit 1 according to the first embodiment as viewed from above. In FIG. 1B, the battery unit 1 is shown from the opposite side of the horizontal direction to the orientation shown in FIG. 1A.
 本実施形態の電池ユニット1は、平板状の3つのラミネート電池2a,2b,2cと、ラミネート電池2a,2b,2cが取り付けられたトレイ3と、を有している。 The battery unit 1 of the present embodiment includes three flat laminated batteries 2a, 2b, 2c and a tray 3 on which the laminated batteries 2a, 2b, 2c are attached.
 本実施形態では、ラミネート電池2a,2b,2cとして、リチウムイオン二次電池を用いている。なお、ラミネート電池としては、リチウムイオン二次電池に限らず、ニッケル水素電池等の他のラミネート電池が用いられてもよい。 In this embodiment, lithium ion secondary batteries are used as the laminated batteries 2a, 2b, and 2c. The laminated battery is not limited to a lithium ion secondary battery, and other laminated batteries such as a nickel hydride battery may be used.
 3つのラミネート電池2a,2b,2cは、トレイ3にその正極と負極とが互いに反対側に向くように並べて配置されている。すなわち、ラミネート電池1a,1cの正極および負極は同方向を向いており、ラミネート電池1aとラミネート電池1cとの間に配置されたラミネート電池1bの正極および負極はラミネート電池1a,1cの正極および負極とは逆方向を向いている。 The three laminated batteries 2a, 2b, and 2c are arranged side by side on the tray 3 so that the positive electrode and the negative electrode face each other. That is, the positive and negative electrodes of the laminated batteries 1a and 1c are oriented in the same direction, and the positive and negative electrodes of the laminated battery 1b disposed between the laminated batteries 1a and 1c are the positive and negative electrodes of the laminated batteries 1a and 1c. It faces the opposite direction.
 そして、ラミネート電池1aの正極とラミネート電池1bの負極とがバスバー4aで電気的に接続され、ラミネート電池2bの正極とラミネート電池2cの負極とがバスバー4bで電気的に接続されている。これにより、ラミネート電池2a,2b,2cが直列接続されている。さらに、ラミネート1aの負極にはバスバー4cが設けられており、ラミネート1cの正極にはバスバー4dが設けられている。すなわち、バスバー4cは電池ユニット1の正極端子であり、バスバー4dは電池ユニット1の負極端子である。 The positive electrode of the laminated battery 1a and the negative electrode of the laminated battery 1b are electrically connected by the bus bar 4a, and the positive electrode of the laminated battery 2b and the negative electrode of the laminated battery 2c are electrically connected by the bus bar 4b. Thereby, the laminated batteries 2a, 2b, 2c are connected in series. Furthermore, a bus bar 4c is provided on the negative electrode of the laminate 1a, and a bus bar 4d is provided on the positive electrode of the laminate 1c. That is, the bus bar 4 c is a positive terminal of the battery unit 1, and the bus bar 4 d is a negative terminal of the battery unit 1.
 バスバー4a,4b,4c,4dは、電気伝導率が比較的高く比較的安価である銅や銅系化合物で形成されている。しかし、バスバー4a,4b,4c,4dは、電気伝導率が高い材料で形成されることが望ましく、例えば銀や銀系化合物で形成されてもよい。また、バスバー4a,4b,4c,4dは、製造コストを低減するために安価な鉄などで形成されてもよい。 The bus bars 4a, 4b, 4c, and 4d are made of copper or a copper-based compound that has a relatively high electrical conductivity and is relatively inexpensive. However, the bus bars 4a, 4b, 4c, and 4d are preferably formed of a material having high electrical conductivity, and may be formed of, for example, silver or a silver-based compound. Further, the bus bars 4a, 4b, 4c, and 4d may be formed of inexpensive iron or the like in order to reduce manufacturing costs.
 バスバー4a,4b,4c,4dは、各ラミネート電池2a,2b,2cの正極や負極を挟んでトレイ3にねじ止めされている。これにより、バスバー4a,4b,4c,4dは、それぞれ対応するラミネート電池2a,2b,2cの正極や負極に電気的に接続されているとともに、トレイ3にラミネート電池2a,2b,2cを機械的に固定している。 The bus bars 4a, 4b, 4c and 4d are screwed to the tray 3 with the positive and negative electrodes of the laminated batteries 2a, 2b and 2c interposed therebetween. Thereby, the bus bars 4a, 4b, 4c, 4d are electrically connected to the positive and negative electrodes of the corresponding laminated batteries 2a, 2b, 2c, respectively, and the laminated batteries 2a, 2b, 2c are mechanically connected to the tray 3. It is fixed to.
 そのため、ラミネート電池2a,2b,2cは、バスバー4a,4b,4c,4dを取り外すことによってトレイ3から取り外すことが可能であり、逆に、バスバー4a,4b,4c,4dによってトレイ3に取り付け可能である。このように、ラミネート電池2a,2b,2cは、バスバー4a,4b,4c,4dによって非常に容易に着脱可能である。換言すると、本実施形態の電池ユニット1は、ラミネート電池2a,2b,2cを着脱する際の部品点数が少ない。 Therefore, the laminated batteries 2a, 2b, 2c can be detached from the tray 3 by removing the bus bars 4a, 4b, 4c, 4d, and conversely, can be attached to the tray 3 by the bus bars 4a, 4b, 4c, 4d. It is. Thus, the laminated batteries 2a, 2b, 2c can be attached and detached very easily by the bus bars 4a, 4b, 4c, 4d. In other words, the battery unit 1 of the present embodiment has a small number of parts when the laminated batteries 2a, 2b, and 2c are attached and detached.
 図2Aおよび図2Bに、トレイ3を上方から見た斜視図を示す。図2Aおよび図2Bを参照してトレイ3について詳細に説明する。 2A and 2B are perspective views of the tray 3 as viewed from above. The tray 3 will be described in detail with reference to FIGS. 2A and 2B.
 トレイ3は、耐熱性および絶縁性を有する材料によって形成されている。本実施形態におけるトレイ3は、ポリカーボネート樹脂で形成されている。しかし、トレイ3を形成する材料としては、例えばポリプロピレンポリエチレン、ナイロン、PET(ポリエチレンテレフタラート)などの絶縁性を有する材料であればよい。 The tray 3 is formed of a material having heat resistance and insulating properties. The tray 3 in the present embodiment is made of polycarbonate resin. However, the material for forming the tray 3 may be any material having insulating properties such as polypropylene polyethylene, nylon, and PET (polyethylene terephthalate).
 トレイ3には、ラミネート電池2aが積載される積載部9aと、ラミネート電池2bが積載される積載部9bと、ラミネート電池2cが積載される積載部9cと、が形成されている。積載部9a,9b,9cは、ラミネート電池2a,2b,2cがそれぞれ収容される凹状に形成されている。トレイ3の、積載部9a側の端部には上方に突出した2つの突起部5aが形成されており、積載部9c側の端部には上方に突出した2つの突起部5bが形成されている。突起部5aは、突起部5bに比べて広い間隔で形成されている。 The tray 3 is formed with a stacking portion 9a on which the laminated battery 2a is loaded, a loading portion 9b on which the laminated battery 2b is loaded, and a loading portion 9c on which the laminated battery 2c is loaded. The stacking portions 9a, 9b, and 9c are formed in a concave shape that accommodates the laminated batteries 2a, 2b, and 2c, respectively. Two protrusions 5a protruding upward are formed at the end of the tray 3 on the stacking portion 9a side, and two protrusions 5b protruding upward are formed at the end of the stacking portion 9c side. Yes. The protrusions 5a are formed at wider intervals than the protrusions 5b.
 トレイ3は、絶縁性を有するので、トレイ3の積載部9a,9b,9cに積載されるラミネート電池2a,2b,2c間を絶縁する部品が不要になる。したがって、本実施形態の電池ユニット1では、部品点数を削減し、簡素な構成を実現できる。 Since the tray 3 has an insulating property, parts that insulate the laminated batteries 2a, 2b, and 2c stacked on the stacking portions 9a, 9b, and 9c of the tray 3 become unnecessary. Therefore, in the battery unit 1 of this embodiment, the number of parts can be reduced and a simple configuration can be realized.
 図3Aに、トレイ3の上面図を示し、図3Bに、トレイ3の下面図を示す。図3Bに示すように、トレイ3の裏面には、突起部5aに対応する穴部6aと、突起部5bに対応する穴部6aと、が形成されている。トレイ3は、2つの突起部5aと2つの穴部6aとが嵌合し、2つの突起部5bと2つの穴部6bとが嵌合するように、電池ユニット1の上面にこの電池ユニット1とは異なる別の電池ユニット1の裏面を重ね合わせることにより、正常な積層状態を構成することができる。 3A shows a top view of the tray 3, and FIG. 3B shows a bottom view of the tray 3. FIG. As shown in FIG. 3B, a hole 6a corresponding to the protrusion 5a and a hole 6a corresponding to the protrusion 5b are formed on the back surface of the tray 3. The tray 3 has the battery unit 1 on the upper surface of the battery unit 1 so that the two protrusions 5a and the two holes 6a are fitted, and the two protrusions 5b and the two holes 6b are fitted. By stacking the back surfaces of different battery units 1 different from the above, a normal stacked state can be configured.
 すなわち、トレイ3は、このトレイ3とは別のトレイ3に対して、上面および下面に直交する中心軸を中心として180°回転させることによって、別のトレイ3に重ね合わせることが可能な構成となっている。 That is, the tray 3 can be overlapped with another tray 3 by rotating 180 ° about the central axis perpendicular to the upper surface and the lower surface with respect to the tray 3 different from the tray 3. It has become.
 突起部5a,5bおよび穴部6a,6bは、トレイ3が積層された状態で互いに嵌合することで、トレイ3の積層方向とは異なる方向への移動を規制する規制部として機能する。そのため、多数のトレイ3が積層された場合であっても、各トレイ3の位置がずれたり、積層されたトレイ3が崩れたりすることが防止される。 The protrusions 5a and 5b and the holes 6a and 6b function as a restricting portion that restricts movement of the tray 3 in a direction different from the stacking direction by fitting the trays 3 in a stacked state. For this reason, even when a large number of trays 3 are stacked, it is possible to prevent the positions of the respective trays 3 from being displaced and the stacked trays 3 from being collapsed.
 各トレイ3が積層された状態で、積層方向に隣接するトレイ3は、積載部9a側の端部を互いに反対方向に向けている。すなわち、各トレイ3が積層された状態で、積層方向に隣接するトレイ3は、積載部9aと積載部9cとが積層方向に隣接し、積載部9bが積層方向に連なっている。仮に、積層方向に隣接するトレイ3が互いに同方向に積層された場合には、突起部5aと穴部6aが嵌合せず、正常な積層状態とはならない。 In the state where the trays 3 are stacked, the trays 3 adjacent to each other in the stacking direction have the end portions on the stacking portion 9a side facing in opposite directions. That is, in the state where the trays 3 are stacked, the trays 3 adjacent to each other in the stacking direction have the stacking unit 9a and the stacking unit 9c adjacent to each other in the stacking direction, and the stacking unit 9b is continuous in the stacking direction. If the trays 3 adjacent to each other in the stacking direction are stacked in the same direction, the protrusions 5a and the holes 6a are not fitted and a normal stacking state is not achieved.
 トレイ3は、ラミネート電池2a,2b,2cがバスバー4a,4b,4c,4dバスバー4a,4b,4c,4dによってトレイ3に取り付けられた状態であっても互いに積層可能である。すなわち、電池ユニット1は互いに積層可能である。 The tray 3 can be stacked on each other even when the laminated batteries 2a, 2b, 2c are attached to the tray 3 by the bus bars 4a, 4b, 4c, 4d bus bars 4a, 4b, 4c, 4d. That is, the battery units 1 can be stacked on each other.
 図4Aに、積層された7個の本実施形態の電池ユニット1の斜視図を示す。図4Bに、図4A中のA-A’線に沿った断面図を示す。図4Bに示すように、電池ユニット1が積層された状態で、ラミネート電池2aとラミネート電池2cとがトレイ3の積層方向に交互に配列されている。 FIG. 4A shows a perspective view of seven battery units 1 of the present embodiment that are stacked. FIG. 4B shows a cross-sectional view along the line A-A ′ in FIG. 4A. As shown in FIG. 4B, the laminated battery 2 a and the laminated battery 2 c are alternately arranged in the stacking direction of the tray 3 in a state where the battery units 1 are stacked.
 本実施形態の電池ユニット1は、上面および下面に直交する中心軸を中心として180°回転させたときに、正極であるバスバー4cと、負極であるバスバー4dとが反転する。したがって、図4Aに示すように、隣接する電池ユニット1においてバスバー4cとバスバー4dとは隣接している。 When the battery unit 1 of the present embodiment is rotated by 180 ° about the central axis orthogonal to the upper surface and the lower surface, the bus bar 4c as the positive electrode and the bus bar 4d as the negative electrode are reversed. Therefore, as shown in FIG. 4A, in the adjacent battery units 1, the bus bar 4c and the bus bar 4d are adjacent to each other.
 次に、図1A~図3Bに示すように、トレイ3には絶縁部7が形成されている。絶縁部7は、トレイ3と同様の材料で形成されており、トレイ3の、バスバー4cが取り付けられる位置の下側に隣接して配されている。一方、トレイ3の、バスバー4dが取り付けられる位置の下側には絶縁部7が設けられていない。 Next, as shown in FIGS. 1A to 3B, an insulating portion 7 is formed on the tray 3. The insulating part 7 is made of the same material as that of the tray 3 and is arranged adjacent to the lower side of the tray 3 where the bus bar 4c is attached. On the other hand, the insulating portion 7 is not provided on the lower side of the tray 3 where the bus bar 4d is attached.
 図4Bに示すように、バスバー4cとこのバスバー4cの下側に隣接するバスバー4dとの間には絶縁部7が形成されている。絶縁性を有する絶縁部7は、バスバー4cとこのバスバー4cの下側に隣接するバスバー4dとが電気的に接続されることを防止する役割をする。一方、バスバー4cとこのバスバー4cの上側に隣接するバスバー4dとの間には、絶縁部7が形成されていない。なお、図4Aに示す向きとは反対側から見た場合、つまり最上層の電池ユニット1のバスバー4d側から見た場合にも、同様に、バスバー4dと、このバスバー4dの下側に隣接するバスバー4cとの間には絶縁部7があり、バスバー4dの上側に隣接するバスバー4cとの間には絶縁部7がない。 As shown in FIG. 4B, an insulating portion 7 is formed between the bus bar 4c and the bus bar 4d adjacent to the lower side of the bus bar 4c. The insulating part 7 having insulation functions to prevent the bus bar 4c and the bus bar 4d adjacent to the lower side of the bus bar 4c from being electrically connected. On the other hand, the insulating portion 7 is not formed between the bus bar 4c and the bus bar 4d adjacent to the upper side of the bus bar 4c. Similarly, when viewed from the side opposite to the direction shown in FIG. 4A, that is, when viewed from the bus bar 4d side of the uppermost battery unit 1, the bus bar 4d is also adjacent to the lower side of the bus bar 4d. There is an insulating part 7 between the bus bar 4c and no insulating part 7 between the bus bar 4c adjacent to the upper side of the bus bar 4d.
 図5Aに、7枚の本実施形態の電池ユニット1を積層して形成された電源装置10の斜視図を示す。図5Bに、図5A中のB-B’線に沿った断面図を示す。電源装置10は、図5Aに示した各電池ユニット1が接続部材8によって電気的に接続されて構成されている。接続部材8は、バスバー4dとこのバスバー4dの下側に隣接するバスバー4cとに、ねじ止め等によって取り付けられている。これにより、バスバー4dとこのバスバー4dの下側に隣接するバスバー4cとを電気的に接続されるとともに機械的に接続される。 FIG. 5A shows a perspective view of a power supply device 10 formed by laminating seven battery units 1 of the present embodiment. FIG. 5B shows a cross-sectional view along the line B-B ′ in FIG. 5A. The power supply device 10 is configured by electrically connecting the battery units 1 shown in FIG. The connecting member 8 is attached to the bus bar 4d and the bus bar 4c adjacent to the lower side of the bus bar 4d by screwing or the like. Thereby, the bus bar 4d and the bus bar 4c adjacent to the lower side of the bus bar 4d are electrically connected and mechanically connected.
 電源装置10では、上述したように、隣接する電池ユニット1の正極であるバスバー4cと負極であるバスバー4dとが隣接しているので、隣接する電池ユニットを接続部材8によって簡単に接続することが可能である。 In the power supply device 10, as described above, the bus bar 4 c that is the positive electrode of the adjacent battery unit 1 and the bus bar 4 d that is the negative electrode are adjacent to each other, so that the adjacent battery units can be easily connected by the connecting member 8. Is possible.
 なお、本実施形態では、電池ユニット1が直列接続された3つのラミネート電池2a,2b,2cを備えているが、電池ユニット1が備えるラミネート電池の個数は奇数であればよい。これは、電池ユニット1が備えるラミネート電池の個数が奇数であれば、トレイ3を上面および下面に直交する中心軸を中心として180°回転させたときに、正極であるバスバーと負極であるバスバーとが反転する構成となるからである。一方、電池ユニットが備えるラミネート電池の個数が偶数の場合には、トレイ3を上面および下面に直交する中心軸を中心として180°回転させても、正極であるバスバーと負極であるバスバーとが反転する構成とはならない。 In this embodiment, the battery unit 1 includes three laminated batteries 2a, 2b, and 2c connected in series. However, the number of laminated batteries included in the battery unit 1 may be an odd number. If the number of laminated batteries provided in the battery unit 1 is an odd number, when the tray 3 is rotated by 180 ° about the central axis orthogonal to the upper surface and the lower surface, the bus bar as the positive electrode and the bus bar as the negative electrode This is because the structure is reversed. On the other hand, when the number of laminated batteries included in the battery unit is an even number, the positive bus bar and the negative bus bar are reversed even if the tray 3 is rotated 180 ° about the central axis orthogonal to the upper and lower surfaces. It is not the structure to do.
 接続部材8は、バスバー4a,4b,4c,4dと同様に、電気伝導率が高く比較的安価である銅や銅系化合物で形成されている。しかし、接続部材8は、電気伝導率が高い材料によって形成されることが望ましく、例えば銀や銀系化合物で形成されてもよい。また、接続部材8は、製造コストを低減するために安価な鉄などで形成されてもよい。 The connecting member 8 is formed of copper or a copper-based compound that has a high electrical conductivity and is relatively inexpensive, like the bus bars 4a, 4b, 4c, and 4d. However, the connection member 8 is desirably formed of a material having high electrical conductivity, and may be formed of, for example, silver or a silver-based compound. Further, the connecting member 8 may be formed of inexpensive iron or the like in order to reduce manufacturing costs.
 なお、絶縁部7は、トレイ3の、バスバー4dが取り付けられる位置の下側に隣接して形成されてもよい。この場合、トレイ3の、バスバー4cが取り付けられる位置の下側に絶縁部7が形成されず、接続部材8は、バスバー4cと、このバスバー4cに下側に隣接するバスバー4dとにねじ止め等によって取り付けられる。 The insulating portion 7 may be formed adjacent to the lower side of the tray 3 where the bus bar 4d is attached. In this case, the insulating portion 7 is not formed below the position of the tray 3 where the bus bar 4c is attached, and the connection member 8 is screwed to the bus bar 4c and the bus bar 4d adjacent to the bus bar 4c on the lower side. Attached by.
 図5Aに示すように、電源装置10の鉛直方向に隣接する7つの各電池ユニット1は、接続部材8によって電気的に接続されることで直列接続されている。すなわち、電源装置10では、各電池ユニット1の3つのラミネート電池2a,2b,2cが直列接続されているので、合計21個のラミネート電池1が直列接続されている。また、電源装置10では、最下層の電池ユニット1のバスバー4dが正極端子となり、最上層の電池ユニット1のバスバー4cが負極端子となっている。 As shown in FIG. 5A, the seven battery units 1 adjacent to each other in the vertical direction of the power supply device 10 are connected in series by being electrically connected by a connecting member 8. That is, in the power supply device 10, since the three laminated batteries 2a, 2b, 2c of each battery unit 1 are connected in series, a total of 21 laminated batteries 1 are connected in series. In the power supply device 10, the bus bar 4d of the lowermost battery unit 1 serves as a positive electrode terminal, and the bus bar 4c of the uppermost battery unit 1 serves as a negative electrode terminal.
 図5Aに示した電源装置10は、リチウムイオン電池を安全に作動させるために、複数の電池ユニット1による出力電力を制御し、過充電や過放電を防止する制御基板を備える必要がある。図6に、制御基板11が最上部に積載された電源装置10の斜視図を示す。制御基板11は、電池ユニット1と同様の外形を有し、電池ユニット1の上に積載されたときに、電池ユニット1の積層方向とは異なる方向に大きく突出することがないように形成されている。制御基板11では、電源装置10の正極端子である最下層の電池ユニット1のバスバー4dと、電源装置10の負極端子である最上層の電池ユニット1のバスバー4cと、が電気的に接続されている。制御基板11には電気回路(不図示)等が設けられており、制御基板11が電源装置10から電力の安全な入出力を可能としている。 The power supply device 10 shown in FIG. 5A needs to include a control board that controls output power from the plurality of battery units 1 and prevents overcharge and overdischarge in order to operate the lithium ion battery safely. FIG. 6 is a perspective view of the power supply device 10 with the control board 11 stacked on the top. The control board 11 has the same outer shape as the battery unit 1 and is formed so as not to protrude greatly in a direction different from the stacking direction of the battery units 1 when stacked on the battery unit 1. Yes. In the control board 11, the bus bar 4 d of the lowermost battery unit 1 that is the positive electrode terminal of the power supply device 10 and the bus bar 4 c of the uppermost battery unit 1 that is the negative electrode terminal of the power supply device 10 are electrically connected. Yes. The control board 11 is provided with an electric circuit (not shown) and the like, and the control board 11 enables safe input / output of power from the power supply device 10.
 なお、電源装置10では、積層される電池ユニット1の個数を変更することによって、出力電圧を容易に変更することが可能である。すなわち、電源装置10において、積層される電池ユニット1の個数を増やした場合、電源装置10の出力電圧が上昇し、積層される電池ユニット1の個数を減らした場合、電源装置10の出力電圧が低下する。 In the power supply device 10, the output voltage can be easily changed by changing the number of stacked battery units 1. That is, in the power supply device 10, when the number of stacked battery units 1 is increased, the output voltage of the power supply device 10 increases, and when the number of stacked battery units 1 is decreased, the output voltage of the power supply device 10 increases. descend.
 さらに、電池ユニット1のトレイ3を形成するポリカーボネート樹脂などの絶縁材料は比較的軽量であるので、多数の電池ユニット1を積層する場合にも、下層側の電池ユニット1のトレイ3にかかる荷重が小さく抑えられ、下層側の電池ユニット1が損傷を受けにくい。そのため、電源装置10では、多数の電源ユニット1を積層することが可能である。 Furthermore, since the insulating material such as polycarbonate resin forming the tray 3 of the battery unit 1 is relatively lightweight, even when a large number of battery units 1 are stacked, the load applied to the tray 3 of the lower-layer battery unit 1 is reduced. The battery unit 1 on the lower layer side is not easily damaged. Therefore, in the power supply device 10, it is possible to stack a large number of power supply units 1.
 各電池ユニット1はバスバー4c,4dからそれぞれ接続部材8を取り外すことによって上下にそれぞれ隣接する電池ユニットから取り外し可能となる。したがって、本実施形態の電源装置10では、複数の電池ユニット1のうちの1つに不具合が生じた場合にも、その電池ユニット1を取り外して新しい電池ユニット1に容易に交換することが可能である。 Each battery unit 1 can be detached from the battery units adjacent vertically by removing the connecting members 8 from the bus bars 4c and 4d. Therefore, in the power supply device 10 of the present embodiment, even when one of the plurality of battery units 1 has a problem, the battery unit 1 can be removed and easily replaced with a new battery unit 1. is there.
 また、上述したとおり、電池ユニット1に設けられた3つのラミネート電池2a,2b,2cはそれぞれ着脱可能であるので、3つのラミネート電池2a,2b,2cのうち、不具合が生じた任意のラミネート電池2のみを交換することが可能である。したがって、電源装置10では、複数の電池ユニット1のうちの1つに不具合が生じた場合に、新しい電池ユニット1を用意しなくても、電源装置10から取り外した電池ユニット1のうち不具合が生じた任意のラミネート電池2のみを交換した後に再び電源装置10の同じ位置に戻すことで修復可能である。 Further, as described above, since the three laminated batteries 2a, 2b, 2c provided in the battery unit 1 are detachable, any of the three laminated batteries 2a, 2b, 2c in which a problem has occurred. It is possible to exchange only two. Therefore, in the power supply device 10, when one of the plurality of battery units 1 has a problem, the defect occurs in the battery unit 1 removed from the power supply device 10 without preparing a new battery unit 1. It is possible to repair by replacing only the arbitrary laminated battery 2 and then returning it to the same position of the power supply device 10 again.
 このように、本実施形態の電源装置は、任意の電池ユニット1のラミネート電池2を容易にメンテナンス可能である。 As described above, the power supply apparatus according to the present embodiment can easily maintain the laminated battery 2 of the arbitrary battery unit 1.
 図7に、図6に示した電源装置10のイオン伝導パスPの概略図を示す。正極端子である、最下層の電池ユニット1のバスバー4dが、制御基板11にリード線12を介して接続され、負極端子である、最上層の電池ユニット1のバスバー4cが、直接制御基板11に電気的に接続されている。 FIG. 7 shows a schematic diagram of the ion conduction path P of the power supply device 10 shown in FIG. The bus bar 4d of the lowermost battery unit 1 that is the positive electrode terminal is connected to the control board 11 via the lead wire 12, and the bus bar 4c of the uppermost battery unit 1 that is the negative electrode terminal is directly connected to the control board 11. Electrically connected.
 本実施形態の変形例として、バスバーおよび接続部材の形状や配置を変更することにより、図8Aに示す電源装置10aのようにラミネート電池の接続パスPを変更することが可能である。この場合にも、電源装置10aにおける全てのラミネート電池2a,2b,2cが直列接続されており、図7に示した電源装置10と同等の出力電圧を得ることができる。電源装置10aにおいても、最下層の電池ユニット1aのバスバー4dが正極端子となり、最上層の電池ユニット1aのバスバー4cが負極端子となる。 As a modification of the present embodiment, the connection path P of the laminated battery can be changed as in the power supply device 10a shown in FIG. 8A by changing the shape and arrangement of the bus bar and the connection member. Also in this case, all the laminated batteries 2a, 2b, 2c in the power supply device 10a are connected in series, and an output voltage equivalent to that of the power supply device 10 shown in FIG. 7 can be obtained. Also in the power supply apparatus 10a, the bus bar 4d of the lowermost battery unit 1a serves as a positive electrode terminal, and the bus bar 4c of the uppermost battery unit 1a serves as a negative electrode terminal.
 また、本実施形態の変形例として、トレイの構成を変更することによって、1つの電池ユニットのトレイに積載するラミネート電池の個数を適宜変更することが可能である。これにより、1つの電池ユニットの総容量を容易に変更することができる。 Further, as a modification of the present embodiment, the number of laminated batteries loaded on the tray of one battery unit can be appropriately changed by changing the configuration of the tray. Thereby, the total capacity of one battery unit can be easily changed.
 図8Bに、1つの電池ユニットのトレイに積載するラミネート電池の個数を変更した電源装置10bを示す。図8Bに示した電源装置10bの各トレイ3bは、4つのラミネート電池2a,2b,2c,2dを備えている。電源装置10bでは、最上層の電池ユニット1bのバスバー4dが正極端子となり、最上層の電池ユニット1bのバスバー4cが負極端子となる。そのため、図7および図8Aに示した電源装置10,10aのリード線12が設けられなくても、正極端子および負極端子を、直接制御基板11に電気的に接続させることが可能である。これにより、電源装置の内部抵抗の低下や、製造工程の削減および製造コストの低減が可能である。なお、図8Bでは、各電池ユニット1bのラミネート電池の個数が4つである場合を示したが、ラミネート電池の個数を限定するものではない。ラミネート電池の個数は偶数であれば、実施形態と同様の効果が得られる。 FIG. 8B shows a power supply device 10b in which the number of laminated batteries loaded on the tray of one battery unit is changed. Each tray 3b of the power supply device 10b shown in FIG. 8B includes four laminated batteries 2a, 2b, 2c, and 2d. In the power supply device 10b, the bus bar 4d of the uppermost battery unit 1b serves as a positive terminal, and the bus bar 4c of the uppermost battery unit 1b serves as a negative terminal. Therefore, even if the lead wires 12 of the power supply devices 10 and 10a shown in FIGS. 7 and 8A are not provided, the positive terminal and the negative terminal can be electrically connected directly to the control board 11. As a result, the internal resistance of the power supply device can be reduced, the manufacturing process can be reduced, and the manufacturing cost can be reduced. 8B shows the case where the number of laminated batteries in each battery unit 1b is four, the number of laminated batteries is not limited. If the number of laminated batteries is an even number, the same effect as the embodiment can be obtained.
 なお、本実施形態の電源装置では、各電池ユニットの各ラミネート電池が全て直列接続されている。しかし、電源装置は、トレイの構成を変更し、トレイの構成に応じてバスバーや接続部材の構成を適宜変更することによって、各ラミネート電池を全て並列に接続することや、ラミネート電池の一部を直列接続し、他のラミネート電池を並列接続することが可能であることは当然である。 In addition, in the power supply device of this embodiment, all the laminated batteries of each battery unit are all connected in series. However, the power supply device changes the configuration of the tray and changes the configuration of the bus bar and the connection member as appropriate according to the configuration of the tray, so that all the laminated batteries can be connected in parallel or a part of the laminated battery can be connected. Of course, it is possible to connect in series and connect other laminated batteries in parallel.
 また、本実施形態の電源装置では、ラミネート電池が用いられているが、平板状の電池であればよく、ラミネート電池に限定されないことは勿論である。 In the power supply device of this embodiment, a laminated battery is used. However, a flat battery may be used, and it is needless to say that the battery is not limited to a laminated battery.
 (第2の実施形態)
 図9に、第2の実施形態の電源装置20の側断面図を示す。電源装置20では、4つの電池ユニット1cが積層されている。第2の実施形態の電源装置20は、以下に説明する構成を除いて第1の実施形態の電源装置10と同様に構成されている。
(Second Embodiment)
FIG. 9 shows a side sectional view of the power supply device 20 of the second embodiment. In the power supply device 20, four battery units 1c are stacked. The power supply device 20 of the second embodiment is configured in the same manner as the power supply device 10 of the first embodiment except for the configuration described below.
 本実施形態の電池ユニット1cのトレイ13には、ラミネート電池2a,2b,2cのそれぞれの外周を包囲する隔壁が設けられている。そして、電池ユニット1cが積層され、トレイ13と、このトレイ13の上側に隣接するトレイ13の下面とによって、ラミネート電池1a,1b,1cをそれぞれ覆う個室が形成されている。最上層の電池ユニット1cのみ、トレイ13の上側に隣接するトレイ13が無く、最上層の電池ユニット1c上には、トレイ13と同様の材料で形成された蓋14が設けられている。なお、蓋14は、図6に示すような制御基板11によって代用することも可能である。 The tray 13 of the battery unit 1c of this embodiment is provided with a partition wall that surrounds the outer periphery of each of the laminated batteries 2a, 2b, 2c. The battery units 1c are stacked, and a private chamber that covers the laminated batteries 1a, 1b, and 1c is formed by the tray 13 and the lower surface of the tray 13 adjacent to the upper side of the tray 13, respectively. Only the uppermost battery unit 1c has no tray 13 adjacent to the upper side of the tray 13, and a lid 14 made of the same material as the tray 13 is provided on the uppermost battery unit 1c. The lid 14 can be substituted by a control board 11 as shown in FIG.
 第1の実施形態で述べたように、トレイ13は、熱伝導率が低い材料で形成されているので、各ラミネート電池2a,2b,2cが発する熱が、トレイ13の内部から外部に放出されにくい。 As described in the first embodiment, since the tray 13 is formed of a material having low thermal conductivity, the heat generated by each of the laminated batteries 2a, 2b, 2c is released from the inside of the tray 13 to the outside. Hateful.
 図10に、比較例の電源装置の側断面図を示す。比較例の電源装置20aでは、4つの電池ユニット1dが積層されている。電源装置20aは、図9に示した電源装置20のようにラミネート電池2a,2b,2cがトレイ13によって覆われていない。そのため、各ラミネート電池2a,2b,2cが発する熱は周囲に拡散しやすい。したがって、比較例の電源装置20aでは、周囲のラミネート電池から熱が加わりやすい一点鎖線で囲んだ中央領域が高温となってしまう。そのため、電源装置20aでは、中央領域に配されたラミネート電池と、外周部に配されたラミネート電池との温度環境が不均一となり、電源装置として不具合が生じる可能性が高い。 FIG. 10 shows a side sectional view of a power supply device of a comparative example. In the power supply device 20a of the comparative example, four battery units 1d are stacked. In the power supply device 20a, the laminated batteries 2a, 2b, and 2c are not covered with the tray 13 like the power supply device 20 shown in FIG. Therefore, the heat generated by each laminated battery 2a, 2b, 2c is likely to diffuse around. Therefore, in the power supply device 20a of the comparative example, the central region surrounded by the alternate long and short dash line is likely to be heated from the surrounding laminated battery. Therefore, in the power supply device 20a, the temperature environment between the laminated battery disposed in the central region and the laminated battery disposed in the outer peripheral portion becomes non-uniform, and there is a high possibility that a problem occurs as the power supply device.
 一方、図9に示した電源装置20では、各ラミネート電池2a,2b,2cが発する熱がトレイ13の各個室内に留まりやすいので、各トレイ13のいずれの個室もほぼ一定の温度となる。換言すると、各ラミネート電池2a,2b,2c間で周囲温度の分布が生じにくい。そのため、本実施形態の電源装置20では各ラミネート電池2a,2b,2cが不具合を起こしにくい。 On the other hand, in the power supply device 20 shown in FIG. 9, the heat generated by each laminated battery 2a, 2b, 2c tends to stay in each individual chamber of the tray 13, so that each individual chamber of each tray 13 has a substantially constant temperature. In other words, it is difficult for the ambient temperature distribution to occur between the laminated batteries 2a, 2b, and 2c. Therefore, in the power supply device 20 of this embodiment, each laminated battery 2a, 2b, 2c is hard to cause a malfunction.
 また、1つのラミネート電池が熱暴走に至った場合、1つのラミネート電池が発生した熱によって、隣接するラミネート電池も次々に熱暴走に至るいわゆる誘爆の現象が発生するおそれがある。一方、図9に示した電源装置20では、各個室の外方に熱が伝わりにくいので、1つのラミネート電池が熱暴走に至った場合であっても誘爆に至るのを防ぐことができる。 In addition, when one laminated battery reaches a thermal runaway, the heat generated by one laminated battery may cause a so-called explosion phenomenon in which adjacent laminated batteries are successively brought into thermal runaway. On the other hand, in the power supply device 20 shown in FIG. 9, since heat is not easily transmitted to the outside of each individual room, it is possible to prevent an explosion from occurring even when one laminated battery reaches a thermal runaway.
 (第3の実施形態)
 図11に、第3の実施形態の電源装置30の斜視図を示す。電源装置30では、複数の電池ユニット1eが積層されている。本実施形態の電源装置30は、以下に説明する構成を除いて第1の実施形態の電源装置10と同様に構成されている。図面に示す便宜上、各電池ユニット1eのトレイ23を破線で示す。
(Third embodiment)
In FIG. 11, the perspective view of the power supply device 30 of 3rd Embodiment is shown. In the power supply device 30, a plurality of battery units 1e are stacked. The power supply device 30 of the present embodiment is configured in the same manner as the power supply device 10 of the first embodiment except for the configuration described below. For convenience shown in the drawing, the tray 23 of each battery unit 1e is indicated by a broken line.
 本実施形態の電源装置30の各電池ユニット1eでは、ラミネート電池22a,22b,22cの各正極および負極が、同一方向に引き出されている。電源装置30は、ラミネート電池22aの負極とラミネート電池22bの正極とがバスバー24aで電気的に接続され、ラミネート電池22bの負極とラミネート電池22cの正極とがバスバー24bで電気的に接続されている。これにより、ラミネート電池22a,22b,22cは直列接続されている。さらに、ラミネート電池22cの負極が、この電池ユニット1eに下側に隣接する電池ユニット1eのラミネート電池22aの正極と電気的に接続されている。 In each battery unit 1e of the power supply device 30 of the present embodiment, the positive and negative electrodes of the laminated batteries 22a, 22b, and 22c are drawn out in the same direction. In the power supply device 30, the negative electrode of the laminated battery 22a and the positive electrode of the laminated battery 22b are electrically connected by the bus bar 24a, and the negative electrode of the laminated battery 22b and the positive electrode of the laminated battery 22c are electrically connected by the bus bar 24b. . Thereby, the laminate batteries 22a, 22b, and 22c are connected in series. Furthermore, the negative electrode of the laminate battery 22c is electrically connected to the positive electrode of the laminate battery 22a of the battery unit 1e adjacent to the battery unit 1e on the lower side.
 このように、電源装置30では、各電池ユニット1eのラミネート電池22a,22b,22cが直列接続され、さらに各電池ユニット1e同士が直列接続されている。したがって、電源装置30では、最上層の電池ユニット1eのラミネート電池22aの正極が正極端子となり、最下層の電池ユニット1eのラミネート電池22cの負極が負極端子となる。 Thus, in the power supply device 30, the laminated batteries 22a, 22b, and 22c of each battery unit 1e are connected in series, and the battery units 1e are connected in series. Therefore, in the power supply device 30, the positive electrode of the laminated battery 22a of the uppermost battery unit 1e is a positive electrode terminal, and the negative electrode of the laminated battery 22c of the lowermost battery unit 1e is a negative electrode terminal.
 (第4の実施形態)
 第4の実施形態の電源装置は、積層された複数の電池ユニットをそれぞれ支持する支持装置を備えている点が、上述した実施形態の電源装置と異なっており、支持装置を除く構成が第1の実施形態の電源装置10と同様に構成されている。このため、本実施形態では電池ユニットを支持する支持装置についてのみ説明する。図12に、第4の実施形態の電源装置の斜視図を示す。図13に、第4の実施形態の電源装置の断面図を示す。図14に、第4の実施形態の電源装置が備える支持装置の要部の断面図を示す。
(Fourth embodiment)
The power supply device according to the fourth embodiment is different from the power supply device according to the above-described embodiment in that the power supply device includes a support device that supports the plurality of stacked battery units, and the configuration excluding the support device is the first. It is comprised similarly to the power supply device 10 of embodiment. Therefore, in the present embodiment, only the support device that supports the battery unit will be described. FIG. 12 is a perspective view of the power supply device according to the fourth embodiment. FIG. 13 is a cross-sectional view of the power supply device according to the fourth embodiment. In FIG. 14, sectional drawing of the principal part of the support apparatus with which the power supply device of 4th Embodiment is provided is shown.
 上述した実施形態の電源装置では、積層された複数の電池ユニット1における最下層に配置された電池ユニット1のトレイ3に、この電池ユニット1に積層された上方の電池ユニット1全体の荷重が集中してかかってしまう。またこのため、トレイ3の機械的強度を向上するとともに、荷重を減らすために電池ユニット1を軽量化する必要がある。また、上述した実施形態の電源装置のように、複数の電池ユニット1を積層した構成では、例えば地震などによって外部から比較的大きな振動がトレイ3に加わったときに、積層されたトレイ3の位置が積層方向と交差する方向にずれて、接続部材8による電気的な接続状態が損なわれるおそれがある。 In the power supply device according to the above-described embodiment, the load of the entire upper battery unit 1 stacked on the battery unit 1 is concentrated on the tray 3 of the battery unit 1 disposed in the lowermost layer of the plurality of stacked battery units 1. I will take it. For this reason, it is necessary to reduce the weight of the battery unit 1 in order to improve the mechanical strength of the tray 3 and reduce the load. Further, in the configuration in which a plurality of battery units 1 are stacked as in the power supply device according to the above-described embodiment, when a relatively large vibration is applied to the tray 3 from the outside due to an earthquake or the like, the position of the stacked trays 3 is determined. May shift in a direction crossing the stacking direction, and the electrical connection state by the connection member 8 may be impaired.
 そこで、図12及び図13に示すように、第4の実施形態の電源装置40は、積層された複数の電池ユニット41のそれぞれを支持する支持装置45を備えている。また、本実施形態の電池ユニット41は、ラミネート電池2が載せられるトレイ43の一部を除いて、上述した実施形態の電池ユニット1の構成と同様であるので、トレイ43の構成についてのみ簡単に説明する。 Therefore, as shown in FIGS. 12 and 13, the power supply device 40 of the fourth embodiment includes a support device 45 that supports each of the plurality of stacked battery units 41. The battery unit 41 of the present embodiment is the same as the configuration of the battery unit 1 of the above-described embodiment except for a part of the tray 43 on which the laminated battery 2 is placed. explain.
 支持装置45は、電池ユニット41を規制するトレイ支持リング48と、積層された複数のトレイ支持リング48をまとめて固定する固定軸としての固定ボルト47と、複数の固定ボルト47が設けられた支持台46とを有している。 The support device 45 includes a tray support ring 48 that regulates the battery unit 41, a fixing bolt 47 that serves as a fixing shaft that fixes a plurality of stacked tray support rings 48 together, and a support that includes a plurality of fixing bolts 47. And a platform 46.
 また、電池ユニット41のトレイ43の四隅近傍には、図14に示すように、固定ボルト47及びトレイ支持リング48が挿通される挿通穴51がそれぞれ設けられている。挿通穴51の周囲には、トレイ支持リング48が当接される当接面が形成されている。また、固定ボルト47は、トレイ支持リング48に当接する外周部にネジ部が形成されておらず、支持台46に固定される下端部のみにネジ部(不図示)が形成されている。 Further, as shown in FIG. 14, insertion holes 51 through which the fixing bolts 47 and the tray support ring 48 are inserted are provided in the vicinity of the four corners of the tray 43 of the battery unit 41. A contact surface with which the tray support ring 48 contacts is formed around the insertion hole 51. In addition, the fixing bolt 47 is not formed with a screw portion at the outer peripheral portion that contacts the tray support ring 48, and a screw portion (not shown) is formed only at the lower end portion fixed to the support base 46.
 図15に、第4の実施形態における支持装置45が備えるトレイ支持リング48の斜視図を示す。図14及び図15に示すように、トレイ支持リング48は、例えばアルミニウムによって形成されており、軽量化が図られている。トレイ支持リング48は、固定ボルト47が挿通される軸穴52と、トレイ43を支持する支持部としてのフランジ部53を有している。固定ボルト47に取り付けられたトレイ支持リング48によってトレイ43に振動が生じるのが抑えられている。 FIG. 15 is a perspective view of a tray support ring 48 provided in the support device 45 according to the fourth embodiment. As shown in FIGS. 14 and 15, the tray support ring 48 is made of, for example, aluminum, and is reduced in weight. The tray support ring 48 has a shaft hole 52 through which the fixing bolt 47 is inserted, and a flange portion 53 as a support portion that supports the tray 43. The tray support ring 48 attached to the fixing bolt 47 prevents the tray 43 from vibrating.
 図14に示すように、複数のトレイ支持リング48は、複数の電池ユニット41をそれぞれ支持した状態で、トレイ43の積層方向に隣接するトレイ支持リング48が互いに当接され、かつ、最下層の電池ユニット41を支持するトレイ支持リング48が支持台46に当接されている。また、積層された複数のトレイ支持リング48は、固定ボルト47によって、まとめて固定されている。したがって、積層された各電池ユニット41の荷重は、各電池ユニット41を支持する各トレイ支持リング48にそれぞれかかることになる。また、固定ボルト47による締め付け軸力も同様に、トレイ支持リング48にかかることになる。このため、本実施形態では、最下層の電池ユニット41のトレイ43に、この電池ユニット41の上方に積層された電池ユニット41全体の荷重及び固定ボルト47の締め付け軸力がかかることが避けられている。 As shown in FIG. 14, the plurality of tray support rings 48 support the plurality of battery units 41, the tray support rings 48 adjacent to each other in the stacking direction of the tray 43 are in contact with each other, and the lowermost layer A tray support ring 48 that supports the battery unit 41 is in contact with the support base 46. The plurality of stacked tray support rings 48 are fixed together by fixing bolts 47. Therefore, the load of each stacked battery unit 41 is applied to each tray support ring 48 that supports each battery unit 41. Similarly, the tightening axial force by the fixing bolt 47 is also applied to the tray support ring 48. For this reason, in this embodiment, it is avoided that the load of the whole battery unit 41 laminated | stacked above this battery unit 41 and the fastening axial force of the fixing bolt 47 are applied to the tray 43 of the battery unit 41 of the lowest layer. Yes.
 図14に示すように、トレイ支持リング48は、積層方向に隣接するトレイ43の間に配置されており、複数の電池ユニット41が積層された状態で、積層方向に隣接するトレイ43のそれぞれにフランジ部53が当接されている。このため、積層方向に隣接するトレイ支持リング48のフランジ部53の間にトレイ43が挟み込まれており、トレイ43に振動が生じるのを防いでいる。 As shown in FIG. 14, the tray support ring 48 is disposed between the trays 43 adjacent to each other in the stacking direction, and the plurality of battery units 41 are stacked on each of the trays 43 adjacent to each other in the stacking direction. The flange portion 53 is in contact. For this reason, the tray 43 is sandwiched between the flange portions 53 of the tray support rings 48 adjacent to each other in the stacking direction, thereby preventing the tray 43 from vibrating.
 また、第4の実施形態においても、上述した実施形態の電源装置と同様に、積層方向に隣接する電池ユニット41のバスバーは、接続部材8によって電気的に接続されるが、便宜上、図12において接続部材の図示を省略している。 Also in the fourth embodiment, the bus bars of the battery units 41 adjacent to each other in the stacking direction are electrically connected by the connection member 8 as in the power supply device of the above-described embodiment. Illustration of the connecting member is omitted.
 また、電源装置40は、図13に示すように、複数の電池ユニット41による出力電力を制御する制御基板55a,55bを有する制御ユニット55が、最上層の電池ユニット41の上に配置されている。制御ユニット55の制御基板55aは、最上層の電池ユニット41のトレイ43の上方に積載されている。 As shown in FIG. 13, in the power supply device 40, a control unit 55 having control boards 55 a and 55 b that control output power from the plurality of battery units 41 is disposed on the uppermost battery unit 41. . The control board 55 a of the control unit 55 is stacked above the tray 43 of the uppermost battery unit 41.
 以上のように構成された電源装置40において、支持装置45によって複数の電池ユニット41がそれぞれ支持される状態を説明する。 A state in which the plurality of battery units 41 are respectively supported by the support device 45 in the power supply device 40 configured as described above will be described.
 まず、トレイ支持リング48が支持台46の上に取り付けられ、トレイ支持リング48が支持台46上に当接される。続いて、支持台46上に当接された各トレイ支持リング48のフランジ部53の上に、最下層の電池ユニット41のトレイ43が載せられる。 First, the tray support ring 48 is attached on the support base 46, and the tray support ring 48 is brought into contact with the support base 46. Subsequently, the tray 43 of the lowermost battery unit 41 is placed on the flange portion 53 of each tray support ring 48 in contact with the support base 46.
 引き続き、次のトレイ支持リング48が、最下層の電池ユニット41を支持するトレイ支持リング48に当接される。同様に、次の電池ユニット41のトレイ43が、トレイ支持リング48のフランジ部53の上に当接される。 Subsequently, the next tray support ring 48 is brought into contact with the tray support ring 48 that supports the lowermost battery unit 41. Similarly, the tray 43 of the next battery unit 41 is brought into contact with the flange portion 53 of the tray support ring 48.
 以降、上述と同様に、トレイ支持リング48と電池ユニット41が交互に取り付けられ、複数の電池ユニット41が積層される。このように積層された複数のトレイ支持リング48の軸穴52に固定ボルト47を挿通させ、積層されたトレイ43をまとめて固定する。これにより電池ユニット41は、トレイ支持リング48によって積層方向に直交する方向の位置が規制されるとともにそれぞれ支持される。 Thereafter, similarly to the above, the tray support rings 48 and the battery units 41 are alternately attached, and a plurality of battery units 41 are stacked. The fixing bolts 47 are inserted into the shaft holes 52 of the plurality of tray support rings 48 stacked in this manner, and the stacked trays 43 are fixed together. Thereby, the battery unit 41 is supported by the tray support ring 48 while the position in the direction orthogonal to the stacking direction is regulated.
 上述したように、第4の実施形態の電源装置40によれば、積層された各電池ユニット41のそれぞれが支持される支持装置45を備えることで、電池ユニット41の積層方向の下層側、特に最下層のトレイ43に、この最下層のトレイ43の上方に積層された電池ユニット41全体の荷重が集中してかかることを避けることができる。また、固定ボルト47による締め付け軸力が電池ユニット41にかかることも避けられる。したがって、電源装置40は、最下層の電池ユニット41のトレイ43が荷重によって破損することを防ぐことが可能になり、電池ユニット41及び電源装置40の信頼性を向上することができる。また、本実施形態によれば、トレイ43にかかる荷重が減少するので、トレイ43に要求される機械的強度が小さくなり、樹脂材料で形成されたトレイ43であっても充分な信頼性を得ることが可能になる。 As described above, according to the power supply device 40 of the fourth embodiment, by including the support device 45 that supports each of the stacked battery units 41, the lower layer side in the stacking direction of the battery units 41, particularly It can be avoided that the load of the entire battery unit 41 stacked above the lowermost tray 43 is concentrated on the lowermost tray 43. Further, it is possible to avoid the tightening axial force from the fixing bolt 47 from being applied to the battery unit 41. Therefore, the power supply device 40 can prevent the tray 43 of the lowermost battery unit 41 from being damaged by a load, and can improve the reliability of the battery unit 41 and the power supply device 40. Further, according to this embodiment, since the load applied to the tray 43 is reduced, the mechanical strength required for the tray 43 is reduced, and sufficient reliability can be obtained even with the tray 43 formed of a resin material. It becomes possible.
 また、本実施形態では、積層された複数の電池ユニット41のそれぞれが複数の固定ボルト47に取り付けられたトレイ支持リング48で規制されているので、外力や振動によってトレイ43が積層方向と直交する方向にずれて、積層された複数のトレイ43が崩れることを防ぐことができる。 In the present embodiment, since each of the stacked battery units 41 is regulated by the tray support ring 48 attached to the plurality of fixing bolts 47, the tray 43 is orthogonal to the stacking direction by external force or vibration. It is possible to prevent the plurality of stacked trays 43 from collapsing in the direction.
 また、本実施形態では、積層方向に隣接するトレイ43のそれぞれにフランジ部53が当接されている。このように積層方向に隣接するトレイ支持リング48のフランジ部53の間にトレイ43が挟み込まれることで、このトレイ43が振動するのを防ぐことができる。したがって、電池ユニット41及び電源装置40の信頼性を更に向上することができる。 In this embodiment, the flange portion 53 is in contact with each of the trays 43 adjacent in the stacking direction. As described above, the tray 43 is sandwiched between the flange portions 53 of the tray support rings 48 adjacent to each other in the stacking direction, so that the tray 43 can be prevented from vibrating. Therefore, the reliability of the battery unit 41 and the power supply device 40 can be further improved.
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細に対して、本発明のスコープ内で当業者が理解し得る様々な変更を行うことができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2010年5月19日に出願された日本出願特願2010-115357を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-115357 filed on May 19, 2010, the entire disclosure of which is incorporated herein.
  2(2a,2b,2c,2d) ラミネート電池
  8 接続部材
 40 電源装置
 41 電池ユニット
 43 トレイ
 45 支持装置
 46 支持台
 47 固定ボルト
 48 トレイ支持リング
 51 挿通穴
 52 軸穴
 53 フランジ部
2 (2a, 2b, 2c, 2d) Laminated battery 8 Connection member 40 Power supply device 41 Battery unit 43 Tray 45 Support device 46 Support base 47 Fixing bolt 48 Tray support ring 51 Insertion hole 52 Shaft hole 53 Flange

Claims (3)

  1.  電気的に接続された複数のラミネート電池と、前記複数のラミネート電池が載せられるトレイとを有し、前記トレイが、前記複数のラミネート電池が載せられた別のトレイに積層可能に構成された、複数の電池ユニットと、
     積層された複数の前記トレイの積層方向に隣接する前記電池ユニットを電気的に接続する接続部材と、
     積層された前記複数の電池ユニットのそれぞれを支持する支持装置と、を備え、
     前記支持装置は、前記複数の電池ユニットが積層された状態で複数の前記トレイを固定する複数の固定軸と、前記複数の固定軸が設けられた支持台と、前記複数の固定軸の外周部に設けられて前記複数の電池ユニットをそれぞれ支持するとともに前記トレイの積層方向と交差する方向に対する前記トレイの位置を規制する複数のトレイ支持部材と、を有し、
     前記トレイには、前記固定軸及び前記トレイ支持部材がそれぞれ挿通される複数の挿通穴が設けられ、
     前記複数のトレイ支持部材は、前記複数の電池ユニットをそれぞれ支持した状態で、前記トレイの積層方向に隣接する前記トレイ支持部材が互いに当接され、かつ、最下層の前記電池ユニットを支持する前記トレイ支持部材が前記支持台に当接される、電源装置。
    A plurality of electrically connected laminate batteries, and a tray on which the plurality of laminate batteries are placed, and the tray is configured to be stacked on another tray on which the plurality of laminate batteries are placed, A plurality of battery units;
    A connection member for electrically connecting the battery units adjacent to each other in the stacking direction of the plurality of stacked trays;
    A support device for supporting each of the plurality of battery units stacked,
    The support device includes a plurality of fixed shafts for fixing the plurality of trays in a state where the plurality of battery units are stacked, a support base provided with the plurality of fixed shafts, and an outer peripheral portion of the plurality of fixed shafts. A plurality of tray support members that respectively support the plurality of battery units and regulate the position of the tray with respect to the direction intersecting the stacking direction of the trays,
    The tray is provided with a plurality of insertion holes through which the fixed shaft and the tray support member are respectively inserted.
    The plurality of tray support members support the plurality of battery units, the tray support members adjacent to each other in the tray stacking direction are in contact with each other, and support the battery unit in the lowermost layer. A power supply apparatus in which a tray support member is brought into contact with the support base.
  2.  前記トレイ支持部材は、前記固定軸が挿通される軸穴と、前記トレイを支持する支持部とを有し、前記積層方向に隣接する前記トレイのそれぞれに前記支持部が当接される、請求項1に記載の電源装置。 The tray support member includes a shaft hole through which the fixed shaft is inserted, and a support portion that supports the tray, and the support portion is in contact with each of the trays adjacent in the stacking direction. Item 2. The power supply device according to Item 1.
  3.  前記トレイに積層可能に構成され、前記複数の電池ユニットによる出力電力を制御する制御基板を備える、請求項1または2に記載の電源装置。 The power supply device according to claim 1 or 2, further comprising a control board configured to be capable of being stacked on the tray and controlling output power from the plurality of battery units.
PCT/JP2011/061155 2010-05-19 2011-05-16 Power source device WO2011145547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010115357A JP5626852B2 (en) 2010-05-19 2010-05-19 Power supply
JP2010-115357 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011145547A1 true WO2011145547A1 (en) 2011-11-24

Family

ID=44991650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061155 WO2011145547A1 (en) 2010-05-19 2011-05-16 Power source device

Country Status (2)

Country Link
JP (1) JP5626852B2 (en)
WO (1) WO2011145547A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013060315A1 (en) * 2011-10-28 2013-05-02 Li-Tec Battery Gmbh Cell frame of an electrochemical cell, electrochemical cell comprising a cell frame, and battery comprising corresponding electrochemical cells
CN104037370A (en) * 2014-05-20 2014-09-10 上海同灿新能源科技有限公司 Storage battery pack
WO2015190018A1 (en) * 2014-06-09 2015-12-17 ソニー株式会社 Battery module, electricity storage device, electricity storage system, electronic instrument, electric vehicle, and electric power system
CN107851756A (en) * 2015-09-30 2018-03-27 松下知识产权经营株式会社 Battery module
EP3306704A4 (en) * 2016-02-05 2018-05-23 LG Chem, Ltd. Battery module and battery pack comprising same
US10256453B2 (en) 2016-07-20 2019-04-09 East Penn Manufacturing Co. Lead acid battery cell connecting assembly
CN115571498A (en) * 2022-09-29 2023-01-06 无锡普天铁心股份有限公司 Integral packaging method and packaging equipment for distribution transformer core limb

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045757A1 (en) 2012-09-19 2014-03-27 日産自動車株式会社 Battery assembly
CN108550727A (en) * 2018-05-04 2018-09-18 芜湖盛科环保技术有限公司 A kind of mounting device being conveniently replaceable new energy car battery
DE202019101794U1 (en) * 2018-06-27 2019-10-09 Murata Machinery, Ltd. Devices for at least one of substrate handling, substrate storage, substrate treatment, and substrate processing
DE202019101793U1 (en) * 2018-06-27 2019-10-09 Murata Machinery, Ltd. Devices for at least one of substrate handling, substrate storage, substrate treatment, and substrate processing
JP7193372B2 (en) 2019-02-19 2022-12-20 株式会社ジェイテクト Power supply and method of providing power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116445A (en) * 2003-10-10 2005-04-28 Nissan Motor Co Ltd Battery pack
JP2005285625A (en) * 2004-03-30 2005-10-13 Nissan Motor Co Ltd Frame for battery pack and battery pack
JP2006127938A (en) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd Package structure of storage capacitor cell
WO2007043510A1 (en) * 2005-10-14 2007-04-19 Nec Corporation System for receiving film-coated electric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116445A (en) * 2003-10-10 2005-04-28 Nissan Motor Co Ltd Battery pack
JP2005285625A (en) * 2004-03-30 2005-10-13 Nissan Motor Co Ltd Frame for battery pack and battery pack
JP2006127938A (en) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd Package structure of storage capacitor cell
WO2007043510A1 (en) * 2005-10-14 2007-04-19 Nec Corporation System for receiving film-coated electric device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013060315A1 (en) * 2011-10-28 2013-05-02 Li-Tec Battery Gmbh Cell frame of an electrochemical cell, electrochemical cell comprising a cell frame, and battery comprising corresponding electrochemical cells
CN104037370A (en) * 2014-05-20 2014-09-10 上海同灿新能源科技有限公司 Storage battery pack
WO2015190018A1 (en) * 2014-06-09 2015-12-17 ソニー株式会社 Battery module, electricity storage device, electricity storage system, electronic instrument, electric vehicle, and electric power system
US10637018B2 (en) 2014-06-09 2020-04-28 Murata Manufacturing Co., Ltd. Battery module, electricity storage device, electricity storage system, electronic device, electric-powered vehicle, and power system
CN107851756A (en) * 2015-09-30 2018-03-27 松下知识产权经营株式会社 Battery module
EP3306704A4 (en) * 2016-02-05 2018-05-23 LG Chem, Ltd. Battery module and battery pack comprising same
US10396325B2 (en) 2016-02-05 2019-08-27 Lg Chem, Ltd. Battery module and battery pack comprising same
US10256453B2 (en) 2016-07-20 2019-04-09 East Penn Manufacturing Co. Lead acid battery cell connecting assembly
CN115571498A (en) * 2022-09-29 2023-01-06 无锡普天铁心股份有限公司 Integral packaging method and packaging equipment for distribution transformer core limb
CN115571498B (en) * 2022-09-29 2023-06-30 无锡普天铁心股份有限公司 Integral packaging method and packaging equipment for distribution transformer core column

Also Published As

Publication number Publication date
JP5626852B2 (en) 2014-11-19
JP2011243449A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5626852B2 (en) Power supply
JP5618356B2 (en) Battery unit and power supply
JP5784136B2 (en) Bus bar assembly with new structure
US9214650B2 (en) Battery module case
JP5374979B2 (en) Batteries and batteries
JP5506692B2 (en) Secondary battery, electric vehicle and power storage system
JP5230801B2 (en) Secondary battery and battery system
JP2011243561A (en) Battery pack
JP5244918B2 (en) Secondary battery and battery system
JP6679717B2 (en) Terminal device for energy storage device
JP5748190B2 (en) Battery unit and power supply device using the same
JP2022523847A (en) Battery module
JP2010061998A (en) Battery, and battery pack
US10068714B2 (en) Energy storage module comprising a plurality of energy storage assemblies
JP2018531491A6 (en) Terminal device for energy storage device
US20150050523A1 (en) Battery pack
JP2010135148A (en) Cell unit, battery module, and battery pack
JP2013164975A (en) Power storage device
JP2014002907A (en) Battery pack
WO2013129074A1 (en) Power supply device
JP2014175152A (en) Battery module
JP2014139867A (en) Battery pack
JP2014022239A (en) Battery pack
WO2018180254A1 (en) Battery pack
JP2013004402A (en) Secondary battery cell, secondary battery device, vehicle, electric device, and method for manufacturing secondary battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783481

Country of ref document: EP

Kind code of ref document: A1