WO2011145263A1 - 密閉型電池 - Google Patents

密閉型電池 Download PDF

Info

Publication number
WO2011145263A1
WO2011145263A1 PCT/JP2011/002080 JP2011002080W WO2011145263A1 WO 2011145263 A1 WO2011145263 A1 WO 2011145263A1 JP 2011002080 W JP2011002080 W JP 2011002080W WO 2011145263 A1 WO2011145263 A1 WO 2011145263A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
safety valve
pressure
operating pressure
gas
Prior art date
Application number
PCT/JP2011/002080
Other languages
English (en)
French (fr)
Inventor
清水啓介
横山智彦
藤川万郷
杉田康成
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/318,708 priority Critical patent/US8871369B2/en
Priority to CN201180001924.8A priority patent/CN102422460B/zh
Priority to JP2011535820A priority patent/JP4872034B2/ja
Priority to KR1020117026274A priority patent/KR101310559B1/ko
Publication of WO2011145263A1 publication Critical patent/WO2011145263A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sealed battery provided with a safety valve that exhausts gas generated in the battery to the outside when the pressure in the battery increases.
  • a chargeable / dischargeable sealed secondary battery has a high energy density, so when an internal short circuit or external short circuit occurs, or when abnormal heating or abnormal shock occurs, a rapid charge / discharge reaction or chemical reaction occurs inside the battery. A sudden gas generation occurs due to the reaction, which may cause the battery case to expand or even burst. Therefore, many sealed batteries are provided with a safety valve (explosion-proof mechanism) that exhausts gas generated in the battery to the outside when the pressure in the battery reaches a predetermined value.
  • the safety valve provided in the sealed battery has a structure in which the opening of the battery case is sealed using a sealing plate having a valve body that breaks when the pressure in the battery reaches a predetermined value, or a sealed battery There is a structure in which a thin part is provided in a part of the case.
  • the valve body breaks, and the gas generated in the battery is exhausted out of the battery through the exhaust hole provided in the sealing plate.
  • the safety valve of the latter structure when the inside of the battery reaches a predetermined pressure, the thin part provided in the battery case is broken, so that the gas generated in the battery passes through the broken part of the battery case. Exhaust outside the battery.
  • the area of the exhaust hole provided in the sealing plate cannot be made sufficiently large, so when gas exceeding the gas exhaust speed is generated, the safety valve does not function sufficiently and the pressure in the battery The battery case may rise and the battery case may expand or rupture.
  • the breaking pressure of the thin portion that is, the operating pressure of the safety valve must be set high. Therefore, even if the pressure inside the battery rises due to some abnormality, the time until the safety valve operates becomes longer, and during that time, the temperature of the battery rises due to the generation of high temperature gas, which causes thermal damage to the equipment equipped with the battery. There is a risk of giving.
  • Patent Document 1 describes a sealed battery including a safety valve using a sealing plate having a valve body and a safety valve using a battery case having a thin portion.
  • the rupture pressure of the thin wall portion is larger than the rupture pressure of the valve body, when the gas generation rate is slow, the gas can be easily exhausted only by rupture of the valve body. Thereby, the temperature rise of a battery can be suppressed.
  • the thin portion of the battery case is broken, so that the gas can be quickly exhausted, thereby preventing the battery case from bursting.
  • the safety valve described in Patent Document 1 combines two safety valves with different breaking pressures (operating pressures) and gas exhaust rates, thereby increasing the battery temperature according to the gas generation mode (pressure increasing mode). It is excellent in that it can simultaneously solve problems such as battery case rupture.
  • the present invention has been made in view of such problems, and its main purpose is to reliably exhaust the gas generated in the battery to the outside of the battery according to the gas generation mode (pressure increase mode) and to install the battery. It is an object of the present invention to provide a sealed battery excellent in safety capable of minimizing thermal damage given to a manufactured device.
  • the present invention provides a safety valve for releasing the pressure in a battery, a first safety valve having a low operating pressure and a low gas exhaust speed, and a second safety valve having a high operating pressure and a high gas exhaust speed.
  • the first safety valve is closed when the second safety valve is activated.
  • the first safety valve is operated at the initial stage of relatively low temperature and gradual gas generation, and the first safety valve is closed at the stage where the high temperature gas is suddenly generated to accelerate the pressure increase in the battery. Then, the second safety valve is operated. Thereby, while being able to shorten time until a 2nd safety valve act
  • the sealed battery according to the present invention is a sealed battery including a safety valve that exhausts gas generated in the battery to the outside of the battery when the pressure in the battery increases, and the safety valve has a first operating pressure. And a second safety valve that operates at a second operating pressure that is higher than the first operating pressure, and the gas exhaust speed during operation of the second safety valve is the same as that of the first safety valve. It is larger than the gas exhaust speed during operation, and the first safety valve is closed at least during operation of the second safety valve.
  • the first safety valve is provided in the battery, and is broken when the pressure in the battery reaches the first operating pressure, and a sealing plate that seals the opening of the battery case. And a vent hole that opens to the outside of the battery through a valve body that has broken the pressure in the battery. A part of the broken valve body is deformed by an increase in the pressure in the battery, and at least the second The exhaust hole is closed at the operating pressure.
  • the second safety valve is provided at the bottom or side portion of the battery case, and is composed of a thin-walled portion that breaks when the pressure in the battery reaches the second operating pressure.
  • the gas generated in the battery is surely exhausted to the outside of the battery, and the sealed battery excellent in safety capable of minimizing the thermal damage given to the device to which the battery is mounted. Can be provided.
  • FIG. 1 It is a perspective view of the cylindrical nonaqueous electrolyte secondary battery in one embodiment of the present invention. It is sectional drawing of the cylindrical nonaqueous electrolyte secondary battery in one Embodiment of this invention. It is a bottom view of the cylindrical nonaqueous electrolyte secondary battery in one Embodiment of this invention.
  • (A)-(c) is a fragmentary sectional view explaining the action
  • (A)-(c) is a fragmentary sectional view explaining the action
  • (A)-(c) is a fragmentary sectional view explaining the action
  • FIG. 1 to 3 are views showing the configuration of a cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a perspective view
  • FIG. 2 is a sectional view
  • FIG. 3 is a bottom view.
  • an electrode group 4 in which a positive electrode 1 and a negative electrode 2 are wound through a separator (porous insulating layer) 3 is a bottomed cylindrical battery case together with a non-aqueous electrolyte (not shown). 15 is housed.
  • a ring-shaped insulating plate 7 and an insulating plate 8 are disposed above and below the electrode group 4, the positive electrode 1 is joined to the filter 13 via the positive electrode lead 5, and the negative electrode 2 is connected to the negative electrode via the negative electrode lead 6. It is joined to the bottom of the battery case 15 which also serves as a terminal.
  • the filter 13 is connected to the inner cap 12, and the protrusion of the inner cap 12 is joined to the metal valve body 10. Furthermore, the valve body 10 is connected to a sealing plate 9 that also serves as a positive electrode terminal. The sealing plate 9, the valve body 10, the inner cap 12, and the filter 13 are integrated to seal the opening of the battery case 15 through the gasket 14.
  • the valve body 10 is formed with a thin portion 10a that breaks when the pressure in the battery reaches a predetermined value (first operating pressure), and the sealing plate 9 breaks the gas generated in the battery.
  • An exhaust hole 9a for exhausting outside the battery is formed through the valve body 10, and the valve body 10 and the exhaust hole 9a constitute a first safety valve.
  • a thin-walled portion 15 a that breaks when the pressure in the battery reaches a predetermined value (second operating pressure) is formed at the bottom of the battery case 15.
  • the thin safety part 15a formed in the bottom part constitutes a second safety valve.
  • the breaking pressure of the thin portion 15a formed at the bottom of the battery case 15 is formed to be larger than the breaking pressure of the thin portion 10a formed on the valve body 10. That is, the second operating pressure of the second safety valve is set higher than the first operating pressure of the first safety valve. Further, the thin wall portion 15a formed at the bottom of the battery case 15 has an opening area formed in the battery case 15 when the thin wall portion 15a is broken, rather than an opening area of the exhaust holes 9a formed in the sealing plate 9. It is formed to be large. That is, the gas exhaust speed at the time of operation of the second safety valve is set larger than the gas exhaust speed at the time of operation of the first safety valve.
  • the fracture area formed in the valve body 10 is larger than the opening area of the exhaust hole 9a formed in the sealing plate 9, so that the first safety valve
  • the gas exhaust speed is governed by the opening area of the exhaust hole 9 a formed in the sealing plate 9.
  • FIG. 4 (a) is a diagram showing a state in which the first safety valve is activated in the initial stage of gas generation. If the battery temperature gradually rises due to overcharge or the like, and the pressure in the battery exceeds the first operating pressure due to evaporation or decomposition of the electrolyte in the sealed battery case 15, the thin portion 10 a of the valve body 10. Breaks. As a result, the pressure in the battery is released to the outside of the battery through the opening 13 a of the filter 13, the opening 12 a of the inner cap 12, the broken part of the valve body 10, and the exhaust hole 9 a of the sealing plate 9. The gas generation at this stage is relatively low temperature and gentle, and the valve body 10 is broken, so that the electrolyte and the combustible gas are exhausted out of the battery through the exhaust hole 9a of the sealing plate 9.
  • FIG. 4B is a diagram showing a state in which the first safety valve is closed at a stage where the battery is in a higher temperature state, a rapid chemical reaction occurs inside the battery, and a high temperature gas is generated abruptly. .
  • a part of the ruptured valve body 10 is deformed due to an increase in pressure due to a high-temperature gas ejected in a large amount, and is pushed up toward the sealing plate 9 to close the exhaust hole 9a.
  • the end of the broken part of the valve body 10 needs to be in contact with the sealing plate 9. Therefore, the size of the exhaust hole 9a is considered.
  • the distance between the sealing plate 9 and the valve body 10, the position where the thin portion 10a of the valve body 10 is formed, etc. may be determined as appropriate.
  • FIG. 4 (c) is a diagram showing a state in which the second safety valve is activated when the pressure in the battery is further increased while the first safety valve is closed. Since the gas exhaust from the first safety valve is hindered, the pressure in the battery rises rapidly, and when the pressure in the battery exceeds the second operating pressure, the thin portion 15a of the battery case 15 breaks. The high-temperature gas generated in the battery is discharged out of the battery through the broken part of the battery case 15.
  • the safety valve for a sealed battery includes the first safety valve that operates at the first operating pressure, and the second safety valve that operates at the second operating pressure higher than the first operating pressure.
  • the gas exhaust speed during operation of the second safety valve is greater than the gas exhaust speed during operation of the first safety valve, and the first safety valve is closed at least during operation of the second safety valve.
  • the first safety valve is operated at the initial stage of relatively low temperature and gentle gas generation, and further, the first safety valve is closed at the stage where the high temperature gas is suddenly generated. Can be activated.
  • a 2nd safety valve act operates, mixing of the electrolyte solution and combustible gas exhausted from a 1st safety valve, and the hot gas exhausted from a 2nd safety valve is carried out. Can be prevented.
  • the gas generated inside the battery is surely exhausted to the outside of the battery, and a highly safe sealed battery that can minimize the thermal damage to the device on which the battery is mounted is realized. be able to.
  • the first safety valve may be closed at least when the second safety valve is operated, but is preferably closed when the pressure in the battery rises due to generation of high-temperature gas of 400 ° C. or higher. . This is because when the temperature in the battery is 400 ° C. or higher, a rapid chemical reaction occurs and a high-temperature gas is rapidly generated.
  • blocking of the first safety valve does not necessarily mean complete blocking, but the first safety valve is sufficiently effective to shorten the time until the second safety valve operates. It is only necessary that gas exhaust from the safety valve is sufficiently prevented.
  • the first operating pressure of the first safety valve and the second operating pressure of the second safety valve are not uniquely determined, and the type of battery used and the assumed gas generation mode (pressure increase) Mode) and the like may be determined as appropriate.
  • the second operating pressure is set lower than the pressure resistance of the battery case (or the pressure resistance of the sealing plate), but is preferably set in the range of 4 to 8 MPa for the following reason.
  • the second operating pressure is set to less than 4 MPa, the thin part at the bottom of the case may break and the electrolyte may flow out from the battery simply by receiving some weak impact (for example, dropping).
  • the second operating pressure is set to 8 MPa or more, there is a risk that the thin portion at the bottom of the case will not break in time for sudden gas generation, and the sealing portion may be deformed to cause rupture.
  • the “safety valve” includes a mechanism having a function of exhausting the gas generated in the battery to the outside of the battery when the pressure in the battery increases, and is not necessarily limited to the form exemplified in the present embodiment.
  • the battery is sealed with a gasket or packing that is cleaved at a specific pressure, or the battery is sealed with an elastic body such as a resin or a spring pressed against the opening of the battery case. It is possible to employ a configuration in which gas is exhausted to the outside through a gap generated by deformation of the elastic body due to pressure increase.
  • FIGS. 5A to 5C are partial cross-sectional views showing other forms of a mechanism for closing the first safety valve.
  • FIG. 5A is a view showing a state in which the thin portion 10a of the valve body 10 is broken and the first safety valve is activated in the initial stage of gas generation. The state shown in FIG. The same.
  • FIG. 5B is a diagram showing a state in which the first safety valve is closed at a stage where the battery is in a higher temperature state, a rapid chemical reaction occurs inside the battery, and a high temperature gas is generated abruptly. .
  • the central portion of the filter 13 is deformed by the increase in pressure due to the high-temperature gas ejected in large quantities, and is pushed up to the inner cap 12 side, so that the opening 13a of the filter 13 becomes the protruding portion of the inner cap 12. As a result, the gas discharge path is closed.
  • FIG. 5C is a diagram showing a state in which the second safety valve is activated when the pressure in the battery is further increased while the first safety valve is closed, and is shown in FIG. 4C. It is the same as the state.
  • FIG. 6 is a perspective view of a prismatic nonaqueous electrolyte secondary battery
  • FIGS. 7A to 7C are partial cross-sectional views illustrating how the first safety valve and the second safety valve operate. is there, As shown in FIGS.
  • the electrode group 4 wound in a flat shape is accommodated in a rectangular battery case 15, and the positive electrode lead 5 joined to the end of a positive electrode (not shown)
  • the negative electrode lead 6 connected to the lid body 9 also serving as the positive electrode terminal and joined to the end of the negative electrode (not shown) is connected to the negative electrode terminal 22 formed in the opening of the lid body 9 via the negative electrode connection plate 21. It is connected.
  • the negative electrode connection plate 21 is electrically insulated from the lid 9 by the insulating plate 20.
  • the electrolyte injection hole formed in the lid 9 is sealed with a plug 23.
  • a thin portion 9a is formed in a part of the lid 9, and this constitutes a first safety valve that operates at a first operating pressure.
  • the thin part 15a is formed in the side part of the battery case 15, and this comprises the 2nd safety valve which operate
  • FIG. 7 (b) shows a state in which the first safety valve is activated when the pressure in the battery exceeds the first operating pressure and the thin portion 9a of the lid body 9 is broken at the initial stage of gas generation.
  • FIG. 7 (c) shows the pressure in the battery in a state where the first safety valve is closed and the first safety valve is closed at a stage where the battery is in a higher temperature state and a high temperature gas is rapidly generated.
  • FIG. 8 is a diagram showing a state where the second safety valve is activated when the pressure exceeds the second operating pressure.
  • the end portion of the negative electrode connection plate 21 extends from the end portion of the insulating plate 20 to a position below the thin portion 9a of the lid body 9, and the extension portion of the negative electrode connection plate 21 is pressured by a high-temperature gas ejected in a large amount.
  • a nonaqueous electrolyte secondary battery has been described as an example of a sealed battery.
  • the present invention is not limited to this, for example, a lead storage battery, a nickel cadmium secondary battery, a nickel hydride secondary battery, an alkaline dry battery, or the like. It can also be applied to.
  • the type of the nonaqueous electrolyte secondary battery is not particularly limited, and can be applied to, for example, a lithium ion secondary battery, a lithium primary battery, or the like.
  • the sealed battery according to the present invention is suitably used for electronic devices such as personal computers and mobile phones, and electric power sources such as electric vehicles and electric tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

 電池内の圧力が上昇したときに、電池内に発生したガスを電池外に排気する安全弁を備えた密閉型電池であって、第1の作動圧で作動する第1の安全弁9a、10と、第1の作動圧よりも高い第2の作動圧で作動する第2の安全弁15aを備え、第2の安全弁15aの作動時におけるガス排気速度は、第1の安全弁9a、10の作動時におけるガス排気速度よりも大きく、第1の安全弁9a、10は、少なくとも第2の安全弁15aの作動時に閉塞している。

Description

密閉型電池
 本発明は、電池内の圧力が上昇したときに、電池内に発生したガスを電池外に排気する安全弁を備えた密閉型電池に関する。
 充放電可能な密閉型二次電池は、エネルギー密度が高いため、内部短絡または外部短絡が発生した場合、あるいは、異常加熱や異常衝撃等が発生した場合、電池内部で急激な充放電反応または化学反応により急激なガス発生が起こり、これにより、電池ケースが膨張したり、さらには破裂するおそれがある。そのため、多くの密閉型電池には、電池内の圧力が所定値に達すると、電池内に発生したガスを電池外に排気する安全弁(防爆機構)が設けられている。
 密閉型電池に設けられる安全弁としては、電池内の圧力が所定値に達したときに破断する弁体を備えた封口板を用いて電池ケースの開口部を密閉した構造のものや、密閉した電池ケースの一部に薄肉部を設けた構造のものがある。前者の構造の安全弁では、電池内が所定の圧力に達したとき、弁体が破断することにより、電池内に発生したガスが、封口板に設けられた排気孔を通って電池外に排気される。また、後者の構造の安全弁では、電池内が所定の圧力に達したとき、電池ケースに設けられた薄肉部が破断することにより、電池内に発生したガスが、電池ケースの破断部を通って電池外に排気される。
 しかしながら、前者の構造の安全弁では、封口板に設けられた排気孔の面積を十分に大きくできないため、ガス排気速度を超えるガスが発生した場合、安全弁が十分に機能せず、電池内の圧力が上昇して、電池ケースが膨張または破裂するおそれがある。一方、後者の構造の安全弁では、電池ケースの強度を確保するために、薄肉部の破断圧力、すなわち、安全弁の作動圧を高く設定せざるを得ない。そのため、何らかの異常で電池内の圧力が上昇しても、安全弁が作動するまでの時間が長くなり、その間、高温ガスの発生により電池の温度が上昇して、電池を装着した機器に熱的ダメージを与えるおそれがある。
 このような問題に対して、特許文献1には、弁体を備えた封口板による安全弁と、薄肉部を備えた電池ケースによる安全弁とを備えた密閉型電池が記載されている。ここでは、薄肉部の破断圧力を、弁体の破断圧力よりも大きくしているため、ガスの発生速度が遅い場合には、弁体の破断のみでガスを容易に排気することができ、これにより、電池の温度上昇を抑制することができる。一方、急激なガス発生が生じた場合には、電池ケースの薄肉部が破断することにより、ガスを速やかに排気することができ、これにより、電池ケースの破裂を防止することができる。
特開平6-333548号公報
 特許文献1に記載された安全弁は、破断圧力(作動圧力)とガス排気速度とがそれぞれ異なる2つの安全弁を複合することによって、ガス発生モード(圧力上昇モード)に応じて、電池温度の上昇や、電池ケースの破裂といった問題を同時に解決できる点で優れている。
 しかしながら、特許文献1に記載された複合安全弁では、作動圧力の低い安全弁(弁体を備えた封口板)が作動した状態で、電池内の圧力が上昇するため、作動圧力の高い安全弁(電池ケースの薄肉部)が作動するまでの時間が長くなり、電池の温度が過度に上昇し、電池を装着した機器に熱的ダメージを与えるおそれがある。加えて、ガス発生の初期段階で作動圧の低い安全弁から排気される電解液や可燃ガスと、急激なガス発生段階で作動圧の高い安全弁から排気される高温ガスとが混合するため、電池を装着した機器内において、電解液や可燃ガスと高温ガスとの反応が起こり、電池を装着した機器に熱的ダメージを与えるおそれがある。
 本発明は、かかる課題に鑑みなされたもので、その主な目的は、ガス発生モード(圧力上昇モード)に応じて、電池内で発生したガスを確実に電池外に排気するとともに、電池が装着された機器に与える熱的ダメージを最小限に抑制することのできる、安全性に優れた密閉電池を提供することにある。
 上記課題を解決するために、本発明は、電池内の圧力を開放する安全弁として、作動圧が低くガス排気速度の小さな第1の安全弁と、作動圧が高くガス排気速度の大きな第2の安全弁とを備え、第1の安全弁を、第2の安全弁の作動時に閉塞する構成を採用する。
 すなわち、比較的低温かつ緩やかなガス発生の初期段階で第1の安全弁を作動させるとともに、高温ガスが急激に発生する段階で第1の安全弁を閉塞して、電池内の圧力上昇を加速することで、第2の安全弁を作動させる。これにより、第2の安全弁が作動するまでの時間を短くすることができるとともに、第1の安全弁から排気される電解液や可燃ガスと、第2の安全弁から排気される高温ガスとの混合を防止することができる。その結果、電池内で発生したガスを確実に電池外に排気するとともに、電池が装着された機器に与える熱的ダメージを最小限に抑制することができる。
 本発明に係る密閉型電池は、電池内の圧力が上昇したときに、電池内に発生したガスを電池外に排気する安全弁を備えた密閉型電池であって、安全弁は、第1の作動圧で作動する第1の安全弁と、第1の作動圧よりも高い第2の作動圧で作動する第2の安全弁を備え、第2の安全弁の作動時におけるガス排気速度は、第1の安全弁の作動時におけるガス排気速度よりも大きく、第1の安全弁は、少なくとも第2の安全弁の作動時に閉塞していることを特徴とする。
 ある好適な実施形態において、第1の安全弁は、電池内に設けられ、電池内の圧力が第1の作動圧に達したときに破断する弁体と、電池ケースの開口部を封口する封口板に設けられ、電池内の圧力を破断した弁体を介して電池外に開放する排気孔とからなり、破断した弁体の一部は、電池内の圧力の上昇によって変形し、少なくとも第2の作動圧において排気孔を閉塞する。
 ある好適な実施形態において、第2の安全弁は、電池ケースの底部又は側部に設けられ、電池内の圧力が第2の作動圧に達したときに破断する薄肉部からなる。
 本発明によれば、電池内で発生したガスを確実に電池外に排気するとともに、電池が装着された機器に与える熱的ダメージを最小限に抑制することのできる、安全性に優れた密閉電池を提供することができる。
本発明の一実施形態における円筒形非水電解質二次電池の斜視図である。 本発明の一実施形態における円筒形非水電解質二次電池の断面図である。 本発明の一実施形態における円筒形非水電解質二次電池の底面図である。 (a)~(c)は、本発明の一実施形態における安全弁の作動を説明する部分断面図である。 (a)~(c)は、本発明の他の実施形態における安全弁の作動を説明する部分断面図である。 本発明の他の実施形態における角形非水電解質二次電池の斜視図である。 (a)~(c)は、本発明の他の実施形態における角形非水電解質二次電池の安全弁の作動を説明する部分断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 図1~図3は、本発明の一実施形態における円筒形非水電解質二次電池の構成を示した図で、図1は斜視図、図2は断面図、図3は底面図である。
 図2に示すように、正極1及び負極2がセパレータ(多孔質絶縁層)3を介して捲回された電極群4が、非水電解液(不図示)とともに、有底円筒形の電池ケース15に収納されている。電極群4の上下には、それぞれリング状の絶縁板7、絶縁板8が配置され、正極1は、正極リード5を介してフィルタ13に接合され、負極2は、負極リード6を介して負極端子を兼ねる電池ケース15の底部に接合されている。
 フィルタ13は、インナーキャップ12に接続され、インナーキャップ12の突起部は、金属製の弁体10に接合されている。さらに、弁体10は、正極端子を兼ねる封口板9に接続されている。そして、封口板9、弁体10、インナーキャップ12、及びフィルタ13が一体となって、ガスケット14を介して、電池ケース15の開口部を封口している。
 弁体10には、電池内の圧力が所定値(第1の作動圧)に達したときに破断する薄肉部10aが形成され、封口板9には、電池内に発生したガスを、破断した弁体10を介して電池外に排気する排気孔9aが形成されており、この弁体10と排気孔9aとで、第1の安全弁が構成されている。
 また、図3に示すように、電池ケース15の底部には、電池内の圧力が所定値(第2の作動圧)に達したときに破断する薄肉部15aが形成され、この電池ケース15の底部に形成された薄肉部15aで第2の安全弁が構成されている。
 ここで、電池ケース15の底部に形成された薄肉部15aの破断圧力は、弁体10に形成された薄肉部10aの破断圧力よりも大きくなるように形成されている。すなわち、第2の安全弁の第2の作動圧は、第1の安全弁の第1の作動圧よりも高く設定されている。また、電池ケース15の底部に形成された薄肉部15aは、薄肉部15aが破断したときに電池ケース15に形成される開口面積が、封口板9に形成された排気孔9aの開口面積よりも大きくなるように形成されている。すなわち、第2の安全弁の作動時におけるガス排気速度は、第1の安全弁の作動時におけるガス排気速度よりも大きく設定されている。なお、通常、弁体10の薄肉部10aが破断したときに弁体10に形成される破断面積は、封口板9に形成された排気孔9aの開口面積よりも大きくなるため、第1の安全弁のガス排気速度は、封口板9に形成された排気孔9aの開口面積で律則される。
 次に、図4(a)~(c)を参照しながら、本実施形態における第1の安全弁及び第2の安全弁がどのように作動するかを説明する。
 図4(a)は、ガス発生の初期段階において、第1の安全弁が作動した状態を示した図である。過充電等により電池温度が次第に上昇し、密閉された電池ケース15内で電解液が気化あるいは分解する等により、電池内の圧力が第1の作動圧を超えると、弁体10の薄肉部10aが破断する。これにより、電池内の圧力が、フィルタ13の開口部13a、インナーキャップ12の開口部12a、弁体10の破断部、及び封口板9の排気孔9aを介して、電池外に開放される。この段階におけるガス発生は比較的低温かつ緩やかであり、弁体10が破断することにより、電解液や可燃性のガスが封口板9の排気孔9aを通って電池外に排気される。
 図4(b)は、電池がさらに高温状態となって、電池内部で急速な化学反応が起こり、高温ガスが急激に発生した段階において、第1の安全弁が閉塞した状態を示した図である。この段階において、破断した弁体10の一部は、大量に噴出する高温ガスによる圧力の上昇によって変形して、封口板9側に押上げられることによって、排気孔9aを閉塞する。なお、排気孔9aを破断した弁体10の一部で閉塞するには、弁体10の破断部端部が封口板9に当接される必要があるため、排気孔9aの大きさを考慮して、封口板9と弁体10との距離や、弁体10の薄肉部10aを形成する位置等を適宜決めればよい。
 図4(c)は、第1の安全弁が閉塞した状態で、電池内の圧力がさらに上昇した段階において、第2の安全弁が作動した状態を示した図である。第1の安全弁からのガス排気が妨げられているため、電池内の圧力は急激に上昇し、電池内の圧力が第2の作動圧を超えると、電池ケース15の薄肉部15aが破断して、電池内で発生した高温ガスが、電池ケース15の破断部を介して電池外に排出される。
 このように、本発明における密閉型電池の安全弁は、第1の作動圧で作動する第1の安全弁と、第1の作動圧よりも高い第2の作動圧で作動する第2の安全弁を備え、第2の安全弁の作動時におけるガス排気速度は、第1の安全弁の作動時におけるガス排気速度よりも大きく、第1の安全弁は、少なくとも第2の安全弁の作動時に閉塞していることを特徴とする。
 このような構成により、比較的低温かつ緩やかなガス発生の初期段階で第1の安全弁を作動させ、さらに、高温ガスが急激に発生する段階で第1の安全弁を閉塞して、第2の安全弁を作動させることができる。これにより、第2の安全弁が作動するまでの時間を短くすることができるとともに、第1の安全弁から排気される電解液や可燃ガスと、第2の安全弁から排気される高温ガスとの混合を防止することができる。その結果、電池内で発生したガスを確実に電池外に排気するとともに、電池が装着された機器に与える熱的ダメージを最小限に抑制することのできる、安全性に優れた密閉電池を実現することができる。
 なお、本発明において、第1の安全弁は、少なくとも第2の安全弁の作動時に閉塞していればよいが、電池内の圧力が400℃以上の高温ガス発生によって上昇したときに閉塞することが好ましい。電池内の温度が400℃以上になると、急速な化学反応が起こり、高温ガスが急激に発生するようになるからである。
 また、本発明において、第1の安全弁の「閉塞」は、必ずしも完全な閉塞を意味するものではなく、第2の安全弁が作動するまでの時間を短縮する効果が奏される程度に、第1の安全弁からのガス排気が十分に妨げられていればよい。
 また、第1の安全弁の第1の作動圧、及び第2の安全弁の第2の作動圧は、一義的に決まるものではなく、使用する電池の種類や、想定されるガス発生モード(圧力上昇モード)等を考慮して、適宜決めればよい。なお、第2の作動圧は、電池ケースの耐圧(若しくは、封口板の耐圧)よりも低く設定されるが、以下の理由により、4~8MPaの範囲に設定することが好ましい。第2の作動圧を4MPa未満に設定した場合、電池が何らかの弱い衝撃(例えば、落下等)を受けただけで、ケース底部の薄肉部が破断し、電池内部から電解液が流出する恐れがある。また、第2の作動圧を8MPa以上に設定した場合、急激なガス発生に対してケース底部の薄肉部の破断が間に合わず、封口部が変形して破裂が発生する恐れがある。
 また、本発明において「安全弁」は、電池内の圧力が上昇したときに、電池内に発生したガスを電池外に排気する機能を備えた機構を含み、本実施形態で例示した形態に必ずしも限定されない。例えば、他の安全弁の構成として、特定圧力で開裂するガスケットやパッキンで電池を密閉する構成や、電池ケースの開口部に押しつけられた樹脂やスプリング等の弾性体で電池を密閉し、電池内の圧力上昇による弾性体の変形で生じる隙間からガスを外部に排気する構成等を採用することができる。
 また、本発明における「安全弁を閉塞する機構」は、本実施形態で例示した形態に特に制限されない。例えば、図5(a)~(c)は、第1の安全弁を閉塞する機構の他の形態を示した部分断面図である。
 図5(a)は、ガス発生の初期段階において、弁体10の薄肉部10aが破断して、第1の安全弁が作動した状態を示した図で、図4(a)に示した状態と同じである。
 図5(b)は、電池がさらに高温状態となって、電池内部で急速な化学反応が起こり、高温ガスが急激に発生した段階において、第1の安全弁が閉塞した状態を示した図である。この段階において、フィルタ13の中央部は、大量に噴出する高温ガスによる圧力の上昇によって変形して、インナーキャップ12側に押上げられることによって、フィルタ13の開口部13aがインナーキャップ12の突起部によって閉塞され、その結果、ガス排出経路が閉塞される。
 図5(c)は、第1の安全弁が閉塞した状態で、電池内の圧力がさらに上昇した段階において、第2の安全弁が作動した状態を示した図で、図4(c)に示した状態と同じである。
 次に、図6、図7(a)~(c)を参照しながら、本発明における密閉型電池として、角形非水電解質二次電池を適用した場合を説明する。図6は、角形非水電解質二次電池の斜視図で、図7(a)~(c)は、第1の安全弁及び第2の安全弁がどのように作動するかを説明した部分断面図である、
 図6、図7(a)に示すように、扁平状に捲回された電極群4が角形電池ケース15内に収容され、正極(不図示)の端部に接合された正極リード5は、正極端子を兼ねる蓋体9に接続され、負極(不図示)の端部に接合された負極リード6は、負極接続板21を介して、蓋体9の開口部に形成された負極端子22に接続されている。なお、負極接続板21は、絶縁板20によって、蓋体9と電気的に絶縁されている。また、蓋体9に形成された電解液の注液孔は、栓23で封口されている。
 図7(a)に示すように、蓋体9の一部には薄肉部9aが形成されており、これが、第1の作動圧で作動する第1の安全弁を構成する。また、図6に示すように、電池ケース15の側部には、薄肉部15aが形成され、これが、第2の作動圧で作動する第2の安全弁を構成する。
 図7(b)は、ガス発生の初期段階において、電池内の圧力が第1の作動圧を超えて、蓋体9の薄肉部9aが破断することにより、第1の安全弁が作動した状態を示した図である。
 図7(c)は、電池がさらに高温状態となって、高温ガスが急激に発生した段階において、第1の安全弁が閉塞し、さらに、第1の安全弁が閉塞した状態で、電池内の圧力が第2の作動圧を超えて、第2の安全弁が作動した状態を示した図である。負極接続板21の端部は、絶縁板20の端部から蓋体9の薄肉部9aの下方まで延出しており、この負極接続板21の延出部が、大量に噴出する高温ガスによる圧力の上昇によって変形して、蓋体9側に押上げられることによって、蓋体9の薄肉部9aが破断した開口部が閉塞される。その後、電池内の圧力がさらに上昇し、電池内の圧力が第2の作動圧を超えると、電池ケース15の薄肉部15aが破断して、電池内で発生した高温ガスが、電池ケース15の破断部を介して電池外に排出される。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態においては、密閉型電池として非水電解質二次電池を例に説明したが、これに限らず、例えば、鉛蓄電池、ニッケルカドミウム二次電池、ニッケル水素二次電池、アルカリ乾電池等にも適用することができる。また、非水電解質二次電池も、その種類は特に限定されず、例えば、リチウムイオン二次電池、リチウム一次電池等に適用することができる。
 本発明による密閉型電池は、パーソナルコンピュータ、携帯電話等の電子機器や、電気自動車や電動工具等の電源に好適に用いられる。
 1   正極 
 2   負極 
 3   セパレータ
 4   電極群 
 5   正極リード 
 6   負極リード 
 7、8   絶縁板 
 9   封口体(蓋体)
 9a  排気孔(薄肉部)
 10  弁体 
 10a 薄肉部 
 12  インナーキャップ 
 12a 開口部 
 13  フィルタ 
 13a 開口部 
 14  ガスケット 
 15  電池ケース 
 15a 薄肉部 
 20  絶縁板 
 21  負極接続板 
 22  負極端子 
 23  栓 

Claims (6)

  1.  電池内の圧力が上昇したときに、電池内に発生したガスを電池外に排気する安全弁を備えた密閉型電池であって、
     前記安全弁は、第1の作動圧で作動する第1の安全弁と、前記第1の作動圧よりも高い第2の作動圧で作動する第2の安全弁を備え、
     前記第2の安全弁の作動時におけるガス排気速度は、前記第1の安全弁の作動時におけるガス排気速度よりも大きく、
     前記第1の安全弁は、少なくとも前記第2の安全弁の作動時に閉塞している、密閉型電池。
  2.  前記第1の安全弁は、電池内に設けられ、電池内の圧力が前記第1の作動圧に達したときに破断する弁体と、電池ケースの開口部を封口する封口板に設けられ、電池内に発生したガスを前記破断した弁体を介して電池外に排気する排気孔とからなり、
     前記破断した弁体の一部は、電池内の圧力の上昇によって変形し、少なくとも前記第2の作動圧において、前記排気孔を閉塞する、請求項1に記載の密閉型電池。
  3.  前記第2の安全弁は、電池ケースの底部又は側部に設けられ、電池内の圧力が前記第2の作動圧に達したときに破断する薄肉部からなる、請求項2に記載の密閉型電池。
  4.  前記密閉型電池は、非水電解液二次電池であって、
     前記第1の安全弁は、電池内の圧力が400℃以上の高温ガス発生によって上昇したときに閉塞する、請求項1に記載の密閉型電池。
  5.  前記第2の安全弁の前記第2の作動圧は、4~8Paの範囲にある、請求項1に記載の密閉型電池。
  6.  前記密閉型電池は、円筒形または角形の非水電解質二次電池である、請求項1に記載の密閉型電池。
PCT/JP2011/002080 2010-05-17 2011-04-07 密閉型電池 WO2011145263A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/318,708 US8871369B2 (en) 2010-05-17 2011-04-07 Hermetic battery
CN201180001924.8A CN102422460B (zh) 2010-05-17 2011-04-07 密闭型电池
JP2011535820A JP4872034B2 (ja) 2010-05-17 2011-04-07 密閉型電池
KR1020117026274A KR101310559B1 (ko) 2010-05-17 2011-04-07 밀폐형 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-112760 2010-05-17
JP2010112760 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011145263A1 true WO2011145263A1 (ja) 2011-11-24

Family

ID=44991386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002080 WO2011145263A1 (ja) 2010-05-17 2011-04-07 密閉型電池

Country Status (5)

Country Link
US (1) US8871369B2 (ja)
JP (1) JP4872034B2 (ja)
KR (1) KR101310559B1 (ja)
CN (1) CN102422460B (ja)
WO (1) WO2011145263A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006883A1 (ja) * 2012-07-02 2014-01-09 パナソニック株式会社 密閉型二次電池
WO2014045569A1 (ja) * 2012-09-24 2014-03-27 三洋電機株式会社 密閉型二次電池
JP2014220150A (ja) * 2013-05-09 2014-11-20 株式会社豊田自動織機 蓄電装置、蓄電モジュール、及び蓄電ユニット
WO2016084358A1 (ja) * 2014-11-27 2016-06-02 三洋電機株式会社 円筒形非水電解質二次電池
JP2017073211A (ja) * 2015-10-05 2017-04-13 トヨタ自動車株式会社 密閉型電池
WO2017164000A1 (ja) * 2016-03-25 2017-09-28 三洋電機株式会社 円筒形電池
JP2019530962A (ja) * 2017-04-13 2019-10-24 エルジー・ケム・リミテッド 二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509856B2 (ja) * 2014-07-15 2019-05-08 三洋電機株式会社 蓄電デバイス
WO2016067510A1 (ja) * 2014-10-31 2016-05-06 三洋電機株式会社 電池
KR101768656B1 (ko) * 2014-10-31 2017-08-16 주식회사 엘지화학 캡 조립체 및 이를 포함하는 이차 전지
CN107394063B (zh) * 2016-05-16 2023-06-06 宁德时代新能源科技股份有限公司 二次电池
KR102246483B1 (ko) * 2016-10-21 2021-04-30 주식회사 엘지화학 측면 벤트를 포함하는 원통형 전지
EP3316344B1 (en) * 2016-11-01 2018-09-26 Samsung SDI Co., Ltd. Battery module
KR102308017B1 (ko) 2017-12-01 2021-09-30 주식회사 엘지에너지솔루션 열전도성 수지로 채워진 중공을 가지는 이차전지
US10804515B2 (en) * 2018-08-08 2020-10-13 Duracell U.S. Operations, Inc. Batteries having vents

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155174U (ja) * 1984-03-24 1985-10-16 日本電池株式会社 密閉式円筒形アルカリ蓄電池
JPH09120811A (ja) * 1995-10-24 1997-05-06 Sanyo Electric Co Ltd 密閉型蓄電池
JP2001185113A (ja) * 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd 密閉型非水電解液二次電池
JP2003297324A (ja) * 2002-03-29 2003-10-17 Toyota Motor Corp 蓄電素子の安全弁構造および蓄電素子
JP2003297323A (ja) * 2002-04-04 2003-10-17 Alps Electric Co Ltd 二次電池の安全装置
JP2004063254A (ja) * 2002-07-29 2004-02-26 Sanyo Electric Co Ltd 密閉型電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155174A (ja) * 1984-01-23 1985-08-15 Yuki Gosei Yakuhin Kogyo Kk アスコルビン酸脂肪酸エステル製剤
JPH06333548A (ja) * 1993-05-19 1994-12-02 Matsushita Electric Ind Co Ltd 防爆型電池
JPH09115498A (ja) 1995-10-19 1997-05-02 Sanyo Electric Co Ltd 密閉型蓄電池
TWI224881B (en) * 2000-01-14 2004-12-01 Sony Corp Nonaqueous electrolyte solution secondary battery
US7491464B2 (en) * 2003-01-03 2009-02-17 The Gillette Company Alkaline cell with flat housing
KR100966549B1 (ko) * 2008-10-14 2010-06-29 주식회사 엘지화학 안전성이 향상된 캡 어셈블리 및 이를 포함하고 있는 원통형 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155174U (ja) * 1984-03-24 1985-10-16 日本電池株式会社 密閉式円筒形アルカリ蓄電池
JPH09120811A (ja) * 1995-10-24 1997-05-06 Sanyo Electric Co Ltd 密閉型蓄電池
JP2001185113A (ja) * 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd 密閉型非水電解液二次電池
JP2003297324A (ja) * 2002-03-29 2003-10-17 Toyota Motor Corp 蓄電素子の安全弁構造および蓄電素子
JP2003297323A (ja) * 2002-04-04 2003-10-17 Alps Electric Co Ltd 二次電池の安全装置
JP2004063254A (ja) * 2002-07-29 2004-02-26 Sanyo Electric Co Ltd 密閉型電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014006883A1 (ja) * 2012-07-02 2016-06-02 パナソニックIpマネジメント株式会社 密閉型二次電池
WO2014006883A1 (ja) * 2012-07-02 2014-01-09 パナソニック株式会社 密閉型二次電池
WO2014045569A1 (ja) * 2012-09-24 2014-03-27 三洋電機株式会社 密閉型二次電池
CN104126238A (zh) * 2012-09-24 2014-10-29 三洋电机株式会社 封闭式二次电池
CN104126238B (zh) * 2012-09-24 2016-02-24 三洋电机株式会社 封闭式二次电池
JP2014220150A (ja) * 2013-05-09 2014-11-20 株式会社豊田自動織機 蓄電装置、蓄電モジュール、及び蓄電ユニット
WO2016084358A1 (ja) * 2014-11-27 2016-06-02 三洋電機株式会社 円筒形非水電解質二次電池
JP2017073211A (ja) * 2015-10-05 2017-04-13 トヨタ自動車株式会社 密閉型電池
US10128476B2 (en) 2015-10-05 2018-11-13 Toyota Jidosha Kabushiki Kaisha Sealed battery
WO2017164000A1 (ja) * 2016-03-25 2017-09-28 三洋電機株式会社 円筒形電池
JPWO2017164000A1 (ja) * 2016-03-25 2019-01-31 三洋電機株式会社 円筒形電池
US11069916B2 (en) 2016-03-25 2021-07-20 Sanyo Electric Co., Ltd. Cylindrical battery
JP7077940B2 (ja) 2016-03-25 2022-05-31 三洋電機株式会社 円筒形電池
JP2019530962A (ja) * 2017-04-13 2019-10-24 エルジー・ケム・リミテッド 二次電池
US10971781B2 (en) 2017-04-13 2021-04-06 Lg Chem, Ltd. Secondary battery

Also Published As

Publication number Publication date
CN102422460A (zh) 2012-04-18
KR20120017419A (ko) 2012-02-28
CN102422460B (zh) 2014-11-12
US8871369B2 (en) 2014-10-28
JP4872034B2 (ja) 2012-02-08
JPWO2011145263A1 (ja) 2013-07-22
KR101310559B1 (ko) 2013-09-23
US20120196163A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP4872034B2 (ja) 密閉型電池
US10164228B2 (en) Sealed type battery
KR100351608B1 (ko) 방폭형 비수전해액 이차전지 및 그 파단압력 설정방법
JP6490053B2 (ja) 円筒形密閉電池及び電池パック
JP4297892B2 (ja) 安全ベントを有するリチウムイオン二次電池
KR101768656B1 (ko) 캡 조립체 및 이를 포함하는 이차 전지
US6620544B1 (en) Sealed battery
JP2011070871A (ja) 電池モジュールとそれを用いた電池パック
JP5776005B2 (ja) 密閉型二次電池
JP2006128091A (ja) 二次電池
JPH0562664A (ja) 防爆型非水二次電池
KR101704162B1 (ko) 과충전 안전성이 향상된 파우치 전지
KR102331123B1 (ko) 탄성 부재를 포함하는 원통형 전지셀의 캡 어셈블리
WO2015079672A1 (ja) 円筒形電池
JP3603283B2 (ja) 非水電解質二次電池用安全弁
WO2023050391A1 (zh) 电池单体、电池以及用电装置
WO2010131520A1 (ja) 密閉型二次電池
JP3527548B2 (ja) 二次電池用安全装置および安全装置付き非水電解質二次電池
JP2007287625A (ja) 密閉型電池およびその製造方法
JP2000067841A (ja) 密閉型電池ケース
JPH06260161A (ja) 非水電解質二次電池用安全弁
KR20060085443A (ko) 이차 전지
KR20050052218A (ko) 가스켓과 이를 이용한 이차전지
JPH0836999A (ja) 蓄電池安全装置及びそれを備えた密閉型蓄電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001924.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011535820

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117026274

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13318708

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783202

Country of ref document: EP

Kind code of ref document: A1