WO2011144860A1 - Method for manufacturing and/or repairing multi-layer parts which comprise angled holes and need to be able to withstand high thermal stress - Google Patents

Method for manufacturing and/or repairing multi-layer parts which comprise angled holes and need to be able to withstand high thermal stress Download PDF

Info

Publication number
WO2011144860A1
WO2011144860A1 PCT/FR2011/051103 FR2011051103W WO2011144860A1 WO 2011144860 A1 WO2011144860 A1 WO 2011144860A1 FR 2011051103 W FR2011051103 W FR 2011051103W WO 2011144860 A1 WO2011144860 A1 WO 2011144860A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tbc
underlayer
hooked
composition
Prior art date
Application number
PCT/FR2011/051103
Other languages
French (fr)
Inventor
Antoine Martin
Thac-Si Do
Original Assignee
C.R.M.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C.R.M.A. filed Critical C.R.M.A.
Publication of WO2011144860A1 publication Critical patent/WO2011144860A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention also relates to combustion or industrial turbines, in particular the production of holes or holes in a part made of multilayer materials such as a metal substrate coated with ceramic.
  • Patent application FR 2 909 297 discloses laser drilling techniques for cooling holes for hot parts that must withstand high temperatures, such as combustion chamber walls of a turbojet engine or turbine blades. industrial. These hot parts are protected by a coating layer creating a thermal barrier often ceramic which is attached to the substrate of the hot room by an undercoat
  • the Thermal Barrier Coating (TBC) is also protected by a film of air produced by the cooling holes.
  • Nickel a layer of ceramic powder mixed with a powder of a nickel aluminide intermetallic compound (NiAI) to increase the life of the thermal barrier or the thickness of the layer.
  • NiAI nickel aluminide intermetallic compound
  • this type of wall is replaced by one or more panels ( Figure 5) having a very large number of cooling holes of very small diameters of the order of 0.3 mm to 0.8 mm.
  • This new wall technique makes it possible to obtain a much more homogeneous air film and better protects the thermal barrier coating, thus enabling a considerably increased operating temperature of the combustion chamber.
  • the axis of the holes relative to the surface of the hot room is determined according to the configuration of the air film that is desired. This means that a number of holes will have an axis inclined to the surface.
  • the uncorking technique consists of a thermal projection of the underlayer hooked on the substrate of the hot part and then a laser drilling of the substrate and the underlayer. Plasma spraying of a first thermal barrier layer TBC is then applied followed by uncoupling by an abrasive process. A second layer of TBC is then applied to be followed by a second uncorking by an abrasive process. This technique puts a work a long and unreliable process.
  • the laser drilling technique meanwhile, consists of drilling a laser beam of the substrate, the underlayer hooked and the TBC together thus reducing the steps of the process implemented.
  • the interaction between the high energy laser and the substrate coated with the undercoat and the TBC causes a laser detonation creating a shock wave.
  • This shock wave is associated with the differential expansions of the materials constituting the substrate, the hooked underlayer and the TBC (whose physicochemical properties are different), combined with the phenomena of tension and resolidification of the liquid layers, generates a delamination or even a detachment of the TBC layer in the case of very low incidences of the laser beam, less than 25 °.
  • the delamination of each hole can lead to plate delamination immediately or during operation of the combustion chamber. In the first case, the part is not usable. In the second case, the service life of the part is reduced hence a major risk for the turbojet engine comprising the combustion chamber.
  • the object of the present invention is to overcome these drawbacks by proposing a method for manufacturing parts comprising inclined holes and having to withstand high temperatures.
  • TBC thermal barrier coating layer
  • the gradient layer of variable composition between two materials progressively passes from a composition of 100% hooked underlayer material and 0% TBC material in the area near the underlayer attached to a composition of 0% hooked underlayer material and 100% TBC material in the area near the TBC layer.
  • the defined composition gradient layer is a homogeneous mixture of the materials constituting the hooked underlayer and the TBC layer and is deposited between the hooked underlayer and the TBC layer.
  • the mass proportion of bonded underlayer material is preferably 50% to 75% relative to the total weight of the bonded underlayer and TBC layer forming layers.
  • the TBC layer is ceramic.
  • the hooked underlayer is NiCrAlY type alloy, for a substrate based on cobalt or nickel or chromium.
  • the substrate of the piece is made of alloy based at least on cobalt and chromium.
  • the composition gradient layer has a thickness of between 0.15 mm and 0.30 mm.
  • the hooked underlayer has a thickness of between 0.08 mm and 0.25 mm.
  • the TBC layer has a thickness of between 0.20 mm and 0.60 mm.
  • Another object is achieved by proposing a use of the method of manufacturing multilayer parts having holes whose axes are inclined with a low incidence and having to withstand high temperatures having a hooked underlayer, a gradient composition layer variable or defined and a layer of ceramic material forming TBC for the repair of a combustion chamber of a machine characterized in that it comprises at least the following steps: - A step of cutting a part of the defective part;
  • the use further comprises a step of verifying the efficiency of an air film generated by a flow of air passing through the room through the holes.
  • FIG. 1 shows a section of a piece of the multilayer part along the axes of holes without composition gradient layer
  • FIG. 2 shows a section of a piece of the multilayer piece along axes of holes with the composition gradient layer
  • FIG. 3 shows a schematic section of a turbo reactor having the part according to the invention
  • FIG. 4 shows a cross section of the part forming the walls of the combustion chamber consisting of stepped panels
  • FIG. 5 shows a cross section of the part forming the walls of the combustion chamber consisting of one or more panels having a very large number of cooling holes.
  • FIGS. 1, 2, 3, The invention relates to a method for manufacturing parts shown in FIG. 5 comprising holes (4) whose axes are inclined with a small angle of incidence A included, in a nonlimiting manner, between 15 ° and 25 °, and having to withstand thermal stress or high temperatures.
  • This type of part can be the jacket (0) of a combustion chamber of a turbojet engine (100). But it should be understood that the method according to the invention can be used for other fields such as industrial turbine blades.
  • Figure 4 shows the part as it was made in prior art where the combustion chamber walls consisted of stepped panels (400) separated by zones with cooling holes (401).
  • FIG. 3 represents a schematic figure of a section of a turbojet engine.
  • the thrust produced by the turbojet engine (100) is generated by the acceleration of the air flow between the inlet (101) and the outlet (108) at a nozzle (107).
  • the acceleration is obtained by the combustion (105) in a combustion chamber (104) of a fuel, for example kerosene, introduced by injectors (103) with the oxygen of the air entering the turbojet engine.
  • Part of the energy produced is recovered by a turbine (106) which implements a compressor (102) which compresses the air at the inlet of the turbojet engine (100).
  • the temperatures reached at the outlet of the combustion chamber (104) can go up to 2000 ° C.
  • the combustion chamber (104) is delimited by a part (0) called a jacket whose walls are, for example, an alloy based on cobalt or nickel or chromium.
  • the alloy consists of at least 39% cobalt, 22% chromium, 22% nickel, tungsten and iron.
  • the walls of the combustion chamber (104) form a substrate (1) on which at least one underlayer (2) for hanging is deposited so as to hang on the walls a layer (3) of coating of Thermal barrier (TBC) that protects the walls from heat generated by combustion and oxidation ( Figure 1 and Figure 2).
  • TBC Thermal barrier
  • the underlayer (2) hanging is, for example, NiCrAIY alloy material (nickel, chromium, aluminum, yttrium) for a substrate based on cobalt and / or nickel and / or chromium.
  • NiCrAIY alloy material nickel, chromium, aluminum, yttrium
  • the alloy may be composed of 22% chromium, 10% aluminum and 1% yttrium.
  • the TBC layer is made of ceramic material, for example zirconium oxide (ZrO 2 ).
  • ZrO 2 zirconium oxide
  • the underlayer (2) hooked is deposited on the substrate (1), for example, by plasma spraying.
  • Plasma spraying is performed by a plasma torch which projects hot particles injected into the torch and that it is desired to deposit. These soft particles or in melted droplets then crash on the surface to be treated.
  • a layer (5) with a composition gradient between two materials is deposited by plasma spraying.
  • the deposit is made in such a way that the composition gradient layer (5) has a massive lamellar structure.
  • Plasma deposition has the characteristic of allowing to obtain such a layer structure.
  • This massive lamellar structure allows greater adhesion of the layer (5) composition gradient on the underlayer (2) hanging during the drilling of holes by a laser beam.
  • a gradient is a vector whose standard represents the variation of a quantity as a function of the variation of its parameters.
  • the compositional gradient is non-zero.
  • the layer (5) with a composition gradient therefore progressively passes from one composition of 100% hooked underlayer material (2) and 0% TBC material in the area near the underlayer (2) hooked to a composition of 0% underlay material (2) hooked and 100% TBC material in the area near the TBC layer (3).
  • the deposition of the variable composition gradient layer (5) between the two materials is carried out by a plasma torch in which 100% of the particles of material of the underlayer (2) of hooked and 0% of the material are injected. amount of TBC material particles at the start of plasma spraying. Subsequently, the amount of material particles in the underlayer (2) is progressively decreased by progressively increasing the amount of TBC material particles until 0% of material particles are reached.
  • the amount of particles to be sprayed can be adjusted using a device for controlling the plasma torch.
  • a program is implemented by a processor of the control device thus making it possible to adjust the composition and the thickness of the composition gradient layer (5).
  • the composition gradient is zero.
  • the layer (5) with defined composition gradient is therefore a homogeneous mixture of material constituting the underlayer (2) hanging and the layer (3) of TBC. Particles of each material are mixed using a mixer to obtain a homogeneous mixture of particles.
  • the mass proportion of particles of underlayer material (2) hung is preferably 50% to 75% relative to the total mass of the particles forming the layer (5) composition gradient. This layer is deposited between the hooked underlayer (2) and the TBC layer (3).
  • a layer (3) of TBC is deposited, for example, by plasma spraying.
  • the deposit is made in such a way that the TBC layer (3) has a massive lamellar structure.
  • Deposit by Plasma projection has the characteristic of allowing to obtain such a layer structure.
  • This massive lamellar structure allows greater adhesion of the TBC layer (3) to the composition gradient layer (5) when drilling holes by a laser beam.
  • the layer (5) of composition gradient has a thickness between 0.15 mm and 0.30 mm, preferably between 0.20 mm and 0.25 mm.
  • the underlayer (2) hooked has a thickness between 0.08 mm and 0.25 mm, preferably between 0.10 mm and 0.15 mm.
  • the layer (3) of TBC has a thickness of between 0.20 mm and 0.60 mm, preferably between 0.25 mm and 0.55 mm.
  • the holes (4) are pierced by at least one laser beam along an axis (41) calculated so that the air film is optimized for protection of the layer (3) of TBC.
  • the laser beam is directed according to a program contained in a processor which determines the position of the laser beam as a function of the position of each hole (4) and the angle to be made by the axis (41) of each hole (4) relative to the surface of the workpiece (0).
  • each hole has a diameter of the order of 0.3 mm to 0.8 mm, preferably of the order of 0.4 mm.
  • a hole (4) is made in two steps.
  • a second step of trepanning involves cutting the hole (4) by moving the laser beam circularly.
  • This part manufacturing process (0) can be used for the repair of a combustion chamber of a machine for example having a defective part.
  • the defective part is cut, for example, by laser or a torch.
  • a piece of material forming the substrate for example, based on cobalt, chromium and nickel is welded in place of the defective piece cut.
  • This part then undergoes the part manufacturing process described above.
  • a step of checking the efficiency of the air film is performed. An air flow similar to the effective air flow during operation of the turbojet engine is generated. It is thus possible to check the efficiency of the air film generated by the flow of air passing through the room through the holes (4). This succession of layers allows a good grip of the TBC.
  • the TBC layer can not be projected directly onto the substrate because there is no metallurgical affinity between the TBC layer and the substrate.
  • the addition of an underlayment allows the grip of the TBC. But, during laser drilling, it appears a decohesion at the interface between the TBC layer and the underlayer.
  • a composition gradient layer projected directly onto the substrate in place of the underlayer provides better adhesion of the TBC layer, but during laser drilling, the direct substrate / composition gradient layer connection is insufficient. which amounts to moving the decohesion problem to the interface between the substrate and the composition gradient layer. It appears that the weakest decohesions are obtained by preserving the hooked underlayer and adding the composition gradient layer.

Abstract

The present invention relates to a method for manufacturing multi-layer parts (0) which comprise holes (4) with angled axes (41), which must be able to withstand high temperatures, having a catching sub-layer (2) and a thermal barrier cover (TBC) layer (3), comprising at least one step of depositing the catching sub-layer (2) on the substrate (1) of the part (0), a step of depositing the TBC layer (3), a step of depositing a layer (5) having a gradient with variable or predefined composition between the TBC layer and the catching sub-layer by plasma spraying after the step of depositing the catching sub-layer (2) and a step of making holes (4) using a laser beam. The invention also relates to a method for repairing a defective part.

Description

PROCEDE DE FABRICATION ET/OU REPARATION DE PIECES MULTICOUCHES COMPORTANT DES TROUS INCLINES ET DEVANT RESISTER A DES CONTRAINTES THERMIQUES ELEVEES  PROCESS FOR MANUFACTURING AND / OR REPAIR OF MULTILAYER PARTS HAVING INCLINED HOLES WHICH MUST BE RESISTANT TO HIGH THERMAL CONSTRAINTS
La présente invention concerne le domaine des chambres deThe present invention relates to the field of chambers of
5 combustion ou des turbines industrielles, en particulier la réalisation de perçages ou trous dans une pièce en matériaux multicouches tel qu'un substrat métallique revêtu de céramique. The invention also relates to combustion or industrial turbines, in particular the production of holes or holes in a part made of multilayer materials such as a metal substrate coated with ceramic.
Il est connu par la demande de brevet FR 2 909 297 des techniques de perçage par laser de trous de refroidissement pour des pièces chaudes îo devant résister à des températures importantes telles que des parois de chambre de combustion d'un turboréacteur ou des aubes de turbines industrielles. Ces pièces chaudes sont protégées par une couche de revêtement créant une barrière thermique souvent en céramique qui est accrochée sur le substrat de la pièce chaude par une sous-couche Patent application FR 2 909 297 discloses laser drilling techniques for cooling holes for hot parts that must withstand high temperatures, such as combustion chamber walls of a turbojet engine or turbine blades. industrial. These hot parts are protected by a coating layer creating a thermal barrier often ceramic which is attached to the substrate of the hot room by an undercoat
15 d'accroché. Le revêtement de barrière thermique (TBC : Thermal Barrier Coating en anglais) est également protégé par un film d'air produit par les trous de refroidissement. 15 hanging. The Thermal Barrier Coating (TBC) is also protected by a film of air produced by the cooling holes.
Il est également connu par la demande de brevet US 2008/0241560 de déposer, par diffusion au plasma sur un substrat en superalliage à base It is also known from the patent application US 2008/0241560 to deposit, by plasma diffusion on a substrate based on a superalloy base.
20 de nickel, une couche de poudre de céramique mélangée avec une poudre d'un composé intermétallique de nickel aluminure (NiAI) pour augmenter la durée de vie de la barrière thermique ou l'épaisseur de la couche. Nickel, a layer of ceramic powder mixed with a powder of a nickel aluminide intermetallic compound (NiAI) to increase the life of the thermal barrier or the thickness of the layer.
Il est également connu par la demande de brevet EP 0 799 904 de déposer par dépôt physique en phase vapeur sous faisceau d'électrons (EB- It is also known from patent application EP 0 799 904 to deposit by physical vapor deposition under an electron beam (EB-
25 PVD ou Electron Beam Physical Vapor Déposition en anglais) d'une couche dont les différents composés constitués de céramique et de mélange d'oxydes d'aluminium, chrome, nickel, yttrium et zirconium sont répartis dans l'épaisseur selon un gradient pour améliorer la fiabilité de liaison de couche (page 4, 3e exemple). La technologie de fabrication de chambre de combustion évolue. Pendant longtemps, les parois de chambre de combustion étaient constituées de panneaux étagés (figure 4) séparés par des zones comportant des trous de refroidissement de diamètre de l'ordre de 1 ,2 mm à quelques millimètres. Un film d'air circule par ces trous de refroidissement ce qui crée un écran protecteur. Maintenant, ce type de parois est remplacé par un ou plusieurs panneaux (figure 5) possédant un très grand nombre de trous de refroidissement de très petits diamètres de l'ordre de 0,3 mm à 0,8 mm. Cette nouvelle technique de parois permet d'obtenir un film d'air beaucoup plus homogène et protège mieux le revêtement de barrière thermique autorisant ainsi une température de fonctionnement de la chambre de combustion considérablement accrue. L'axe des trous par rapport à la surface de la pièce chaude est déterminé selon la configuration du film d'air que l'on désire obtenir. Cela veut dire qu'un certain nombre de trous auront un axe incliné par rapport à la surface. 25 PVD or Electron Beam Physical Vapor Deposition in English) of a layer whose different compounds consisting of ceramic and a mixture of oxides of aluminum, chromium, nickel, yttrium and zirconium are distributed in the thickness along a gradient to improve the layer of bonding reliability (page 4, 3rd example). The combustion chamber manufacturing technology is evolving. For a long time, the combustion chamber walls consisted of stepped panels (FIG. 4) separated by zones having cooling holes of diameter of the order of 1.2 mm to a few millimeters. A film of air circulates through these cooling holes which creates a protective screen. Now, this type of wall is replaced by one or more panels (Figure 5) having a very large number of cooling holes of very small diameters of the order of 0.3 mm to 0.8 mm. This new wall technique makes it possible to obtain a much more homogeneous air film and better protects the thermal barrier coating, thus enabling a considerably increased operating temperature of the combustion chamber. The axis of the holes relative to the surface of the hot room is determined according to the configuration of the air film that is desired. This means that a number of holes will have an axis inclined to the surface.
Différentes techniques permettent le perçage de trous telles que la technique de débouchage et la technique de perçage laser.  Various techniques allow the drilling of holes such as the uncorking technique and the laser drilling technique.
La technique de débouchage consiste en une projection thermique de la sous-couche d'accroché sur le substrat de la pièce chaude puis d'un perçage laser du substrat et de la sous-couche. Une projection au plasma d'une première couche de barrière thermique TBC est alors appliquée suivie d'un débouchage par un procédé abrasif. Une seconde couche de TBC est ensuite appliquée pour être suivie d'un second débouchage par un procédé abrasif. Cette technique met un œuvre un procédé long et peu fiable.  The uncorking technique consists of a thermal projection of the underlayer hooked on the substrate of the hot part and then a laser drilling of the substrate and the underlayer. Plasma spraying of a first thermal barrier layer TBC is then applied followed by uncoupling by an abrasive process. A second layer of TBC is then applied to be followed by a second uncorking by an abrasive process. This technique puts a work a long and unreliable process.
La technique de perçage laser, quant à elle, consiste en un perçage par un faisceau laser du substrat, de la sous-couche d'accroché et de la TBC ensemble permettant ainsi de réduire les étapes du procédé mis en œuvre. Cependant, l'interaction entre le laser hautement énergétique et le substrat revêtu de la sous-couche d'accroché et de la TBC provoque une détonation laser créant une onde de choc. Cette onde de choc associée aux dilatations différentielles des matériaux constituant le substrat, la sous-couche d'accroché et la TBC (dont les propriétés physico-chimiques sont différentes), combinée aux phénomènes de tension et de resolidification des couches liquides, génère un délaminage voire un décollement de la couche de TBC dans le cas de très faibles incidences du faisceau laser, inférieures à 25°. Le délaminage de chaque trou peut conduire à un décollement par plaque de façon immédiate ou pendant le fonctionnement de la chambre de combustion. Dans le premier cas, la pièce n'est pas utilisable. Dans le second cas, la durée de vie de la pièce est réduite d'où un risque majeur pour le turboréacteur comportant la chambre de combustion. The laser drilling technique, meanwhile, consists of drilling a laser beam of the substrate, the underlayer hooked and the TBC together thus reducing the steps of the process implemented. However, the interaction between the high energy laser and the substrate coated with the undercoat and the TBC causes a laser detonation creating a shock wave. This shock wave is associated with the differential expansions of the materials constituting the substrate, the hooked underlayer and the TBC (whose physicochemical properties are different), combined with the phenomena of tension and resolidification of the liquid layers, generates a delamination or even a detachment of the TBC layer in the case of very low incidences of the laser beam, less than 25 °. The delamination of each hole can lead to plate delamination immediately or during operation of the combustion chamber. In the first case, the part is not usable. In the second case, the service life of the part is reduced hence a major risk for the turbojet engine comprising the combustion chamber.
La présente invention a pour but de remédier à ces inconvénients en proposant un procédé de fabrication de pièces comportant des trous inclinés et devant résister à des températures élevées.  The object of the present invention is to overcome these drawbacks by proposing a method for manufacturing parts comprising inclined holes and having to withstand high temperatures.
Ce but est atteint par un procédé de fabrication de pièce multicouches comportant des trous dont les axes sont inclinés et devant résister à des contraintes thermiques élevées possédant une sous-couche d'accroché et une couche de revêtement de barrière thermique (TBC) comportant au moins les étapes suivantes :  This object is achieved by a multi-layer component manufacturing method having holes whose axes are inclined and must withstand high thermal stresses having a hooked underlayer and a thermal barrier coating layer (TBC) comprising at least the following steps:
- une étape de dépôt de la sous-couche d'accroché sur le substrat de la pièce ;  a step of depositing the underlayer of hanging on the substrate of the part;
- une étape de dépôt de la couche de TBC.  a step of depositing the TBC layer.
Le procédé est caractérisé en ce qu'il comporte en outre les étapes suivantes :  The method is characterized in that it further comprises the following steps:
- une étape de dépôt d'une couche à gradient de composition variable ou définie entre deux matériaux par projection plasma après l'étape de dépôt de la sous-couche d'accroché ;  a step of depositing a gradient layer of variable or defined composition between two materials by plasma spraying after the step of depositing the hooked underlayer;
- une étape de perçage des trous par un faisceau laser.  a step of drilling the holes by a laser beam.
Selon une autre particularité, la couche à gradient de composition variable entre deux matériaux passe progressivement d'une composition de 100% de matériau de sous-couche d'accroché et 0% de matériau de TBC dans la zone proche de la sous-couche d'accroché à une composition de 0% de matériau de sous-couche d'accroché et 100% de matériau de TBC dans la zone proche de la couche de TBC. Selon une autre particularité, la couche de gradient de composition définie est un mélange homogène des matériaux constituant la sous-couche d'accroché et la couche de TBC et est déposée entre la sous-couche d'accroché et la couche de TBC. Selon une autre particularité, la proportion en masse de matériau de sous-couche d'accroché est préférentiellement de 50% à 75% par rapport à la masse totale des matériaux de sous-couche d'accroché et de couche de TBC formant la couche à gradient de composition According to another feature, the gradient layer of variable composition between two materials progressively passes from a composition of 100% hooked underlayer material and 0% TBC material in the area near the underlayer attached to a composition of 0% hooked underlayer material and 100% TBC material in the area near the TBC layer. According to another feature, the defined composition gradient layer is a homogeneous mixture of the materials constituting the hooked underlayer and the TBC layer and is deposited between the hooked underlayer and the TBC layer. According to another particular feature, the mass proportion of bonded underlayer material is preferably 50% to 75% relative to the total weight of the bonded underlayer and TBC layer forming layers. composition gradient
Selon une autre particularité, la couche de TBC est en céramique. Selon une autre particularité, la sous-couche d'accroché est en alliage de type NiCrAIY, pour un substrat à base de cobalt ou de nickel ou de chrome. According to another feature, the TBC layer is ceramic. According to another feature, the hooked underlayer is NiCrAlY type alloy, for a substrate based on cobalt or nickel or chromium.
Selon une autre particularité, le substrat de la pièce est en alliage à base au moins de cobalt et de chrome. Selon une autre particularité, la couche à gradient de composition a une épaisseur comprise entre 0,15 mm et 0,30 mm. According to another feature, the substrate of the piece is made of alloy based at least on cobalt and chromium. According to another feature, the composition gradient layer has a thickness of between 0.15 mm and 0.30 mm.
Selon une autre particularité, la sous-couche d'accroché a une épaisseur comprise entre 0,08 mm et 0,25 mm. According to another feature, the hooked underlayer has a thickness of between 0.08 mm and 0.25 mm.
Selon une autre particularité, la couche de TBC a une épaisseur comprise entre 0,20 mm et 0,60 mm. According to another feature, the TBC layer has a thickness of between 0.20 mm and 0.60 mm.
Un autre but est atteint en proposant une utilisation du procédé de fabrication de pièces multicouche comportant des trous dont les axes sont inclinés avec une faible incidence et devant résister à des températures élevées possédant une sous-couche d'accroché, une couche à gradient de composition variable ou définie et une couche de matériau céramique formant TBC pour la réparation d'une chambre de combustion d'un engin caractérisée en ce qu'elle comporte au moins les étapes suivantes : - une étape de découpe d'une partie de la pièce défectueuse ;Another object is achieved by proposing a use of the method of manufacturing multilayer parts having holes whose axes are inclined with a low incidence and having to withstand high temperatures having a hooked underlayer, a gradient composition layer variable or defined and a layer of ceramic material forming TBC for the repair of a combustion chamber of a machine characterized in that it comprises at least the following steps: - A step of cutting a part of the defective part;
- une étape de soudure à la place de la partie de la pièce défectueuse d'une pièce en substrat métallique à base de cobalt et de chrome ; - A welding step instead of the part of the defective part of a metal substrate part based on cobalt and chromium;
- une étape de dépôt d'un matériau formant la sous-couche d'accroché sur le substrat de la pièce ;  a step of depositing a material forming the underlayer of hanging on the substrate of the part;
- une étape de dépôt par projection plasma d'une couche à gradient de composition variable ou définie entre les deux matériaux ;  a plasma projection deposition step of a gradient layer of variable or defined composition between the two materials;
- une étape de dépôt de la couche de matériau formant TBC ; a step of depositing the TBC material layer;
- une étape de perçage des trous par un faisceau laser. a step of drilling the holes by a laser beam.
Selon une autre particularité, l'utilisation comporte en outre une étape de vérification de l'efficacité d'un film d'air généré par un débit d'air traversant la pièce par les trous. According to another feature, the use further comprises a step of verifying the efficiency of an air film generated by a flow of air passing through the room through the holes.
D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après, faite en référence aux dessins annexés, dans lesquels :  Other features and advantages of the present invention will appear more clearly on reading the description below, made with reference to the accompanying drawings, in which:
- la figure 1 représente une coupe d'un morceau de la pièce multicouches selon des axes de trous sans couche de gradient de composition ;  - Figure 1 shows a section of a piece of the multilayer part along the axes of holes without composition gradient layer;
- la figure 2 représente une coupe d'un morceau de la pièce multicouches selon des axes de trous avec la couche de gradient de composition ;- Figure 2 shows a section of a piece of the multilayer piece along axes of holes with the composition gradient layer;
- la figure 3 représente une coupe schématique d'un turbo réacteur possédant la pièce selon l'invention ; - Figure 3 shows a schematic section of a turbo reactor having the part according to the invention;
- la figure 4 représente une coupe transversale de la pièce formant les parois de la chambre de combustion constituées de panneaux étagés ; - Figure 4 shows a cross section of the part forming the walls of the combustion chamber consisting of stepped panels;
- la figure 5 représente une coupe transversale de la pièce formant les parois de la chambre de combustion constituées d'un ou plusieurs panneaux possédant un très grand nombre de trous de refroidissement. - Figure 5 shows a cross section of the part forming the walls of the combustion chamber consisting of one or more panels having a very large number of cooling holes.
Dans la présente description, il sera fait référence aux figures 1 , 2, 3, L'invention concerne un procédé de fabrication de pièces représentée sur la figure 5 comportant des trous (4) dont les axes sont inclinés avec une faible incidence  comprise, de manière non limitative, entre 15° et 25°, et devant résister à des contraintes thermiques ou des températures élevées. Ce type de pièce peut être la chemise (0) d'une chambre de combustion d'un turboréacteur (100). Mais on doit comprendre que le procédé selon l'invention peut être employé pour d'autres domaines tels que les aubes de turbines industrielles. La figure 4 représente la pièce telle qu'elle était réalisée dans une technologie antérieure où les parois de chambre de combustion étaient constituées de panneaux (400) étagés séparés par des zones comportant des trous (401 ) de refroidissement. In the present description, reference will be made to FIGS. 1, 2, 3, The invention relates to a method for manufacturing parts shown in FIG. 5 comprising holes (4) whose axes are inclined with a small angle of incidence A included, in a nonlimiting manner, between 15 ° and 25 °, and having to withstand thermal stress or high temperatures. This type of part can be the jacket (0) of a combustion chamber of a turbojet engine (100). But it should be understood that the method according to the invention can be used for other fields such as industrial turbine blades. Figure 4 shows the part as it was made in prior art where the combustion chamber walls consisted of stepped panels (400) separated by zones with cooling holes (401).
La figure 3 représente une figure schématique d'une coupe d'un turboréacteur. La poussée produite par le turboréacteur (100) est générée par l'accélération du débit d'air entre l'entrée (101 ) et la sortie (108) au niveau d'une tuyère (107). L'accélération est obtenue par la combustion (105) dans une chambre (104) de combustion d'un carburant, par exemple du kérosène, introduit par des injecteurs (103) avec l'oxygène de l'air entrant dans le turboréacteur. Une partie de l'énergie produite est récupérée par une turbine (106) qui met en œuvre un compresseur (102) qui comprime l'air à l'entrée du turboréacteur (100). Les températures atteintes à la sortie de la chambre (104) de combustion peuvent monter jusqu'à 2000 °C. FIG. 3 represents a schematic figure of a section of a turbojet engine. The thrust produced by the turbojet engine (100) is generated by the acceleration of the air flow between the inlet (101) and the outlet (108) at a nozzle (107). The acceleration is obtained by the combustion (105) in a combustion chamber (104) of a fuel, for example kerosene, introduced by injectors (103) with the oxygen of the air entering the turbojet engine. Part of the energy produced is recovered by a turbine (106) which implements a compressor (102) which compresses the air at the inlet of the turbojet engine (100). The temperatures reached at the outlet of the combustion chamber (104) can go up to 2000 ° C.
La chambre (104) de combustion est délimitée par une pièce (0) appelée chemise dont les parois est, par exemple, un alliage à base de cobalt ou de nickel ou de chrome. De façon non limitative, l'alliage est constitué au moins de 39% de cobalt, 22% de chrome, 22% de nickel, du tungstène et du fer. The combustion chamber (104) is delimited by a part (0) called a jacket whose walls are, for example, an alloy based on cobalt or nickel or chromium. Without limitation, the alloy consists of at least 39% cobalt, 22% chromium, 22% nickel, tungsten and iron.
Les parois de la chambre (104) de combustion forment un substrat (1 ) sur lequel sont déposées au moins une sous-couche (2) d'accroché permettant d'accrocher sur les parois une couche (3) de revêtement de barrière thermique (TBC) qui protège les parois de la chaleur générée par la combustion et de l'oxydation (figure 1 et figure 2). The walls of the combustion chamber (104) form a substrate (1) on which at least one underlayer (2) for hanging is deposited so as to hang on the walls a layer (3) of coating of Thermal barrier (TBC) that protects the walls from heat generated by combustion and oxidation (Figure 1 and Figure 2).
La sous-couche (2) d'accroché est, par exemple, en matériau de type alliage NiCrAIY (Nickel, Chrome, Aluminium, Yttrium) pour un substrat à base de cobalt et/ou de nickel et/ou de chrome. Par exemple, pour un substrat en base nickel, l'alliage peut être composé de 22% de chrome, 10% l'aluminium et 1 % d'Yttrium. The underlayer (2) hanging is, for example, NiCrAIY alloy material (nickel, chromium, aluminum, yttrium) for a substrate based on cobalt and / or nickel and / or chromium. For example, for a nickel base substrate, the alloy may be composed of 22% chromium, 10% aluminum and 1% yttrium.
La couche de TBC est en matériau céramique, par exemple, en oxyde de zirconium (ZrO2). Les dépôts des différentes couches suivent la procédure suivante. The TBC layer is made of ceramic material, for example zirconium oxide (ZrO 2 ). The deposits of the different layers follow the following procedure.
Dans une première étape, la sous-couche (2) d'accroché est déposée sur le substrat (1 ), par exemple, par projection plasma. La projection plasma est réalisée par une torche plasma qui projette à chaud des particules injectées dans la torche et que l'on désire déposer. Ces particules molles ou en gouttelettes fondues s'écrasent alors sur la surface à traiter. In a first step, the underlayer (2) hooked is deposited on the substrate (1), for example, by plasma spraying. Plasma spraying is performed by a plasma torch which projects hot particles injected into the torch and that it is desired to deposit. These soft particles or in melted droplets then crash on the surface to be treated.
Dans une étape suivante, une couche (5) à gradient de composition entre deux matériaux est déposée par projection plasma. Le dépôt est réalisé de telle manière que la couche (5) de gradient de composition a une structure lamellaire massive. Le dépôt par projection plasma a la caractéristique de permettre d'obtenir une telle structure de couche. In a next step, a layer (5) with a composition gradient between two materials is deposited by plasma spraying. The deposit is made in such a way that the composition gradient layer (5) has a massive lamellar structure. Plasma deposition has the characteristic of allowing to obtain such a layer structure.
Cette structure lamellaire massive permet une accroche plus importante de la couche (5) à gradient de composition sur la sous-couche (2) d'accroché lors du perçage de trous par un faisceau laser. This massive lamellar structure allows greater adhesion of the layer (5) composition gradient on the underlayer (2) hanging during the drilling of holes by a laser beam.
Un gradient est un vecteur dont la norme représente la variation d'une grandeur en fonction de la variation de ses paramètres. A gradient is a vector whose standard represents the variation of a quantity as a function of the variation of its parameters.
Selon une configuration, le gradient de composition est non nul. La couche (5) à gradient de composition passe donc progressivement d'une composition de 100% de matériau de sous-couche (2) d'accroché et 0% de matériau de TBC dans la zone proche de la sous-couche (2) d'accroché à une composition de 0% de matériau de sous-couche (2) d'accroché et 100% de matériau de TBC dans la zone proche de la couche (3) de TBC. Le dépôt de la couche (5) à gradient de composition variable entre les deux matériaux est réalisé par une torche plasma dans laquelle on injecte 100% de quantité de particules de matériau de la sous-couche (2) d'accroché et 0% de quantité de particules de matériau de la TBC au début de la projection plasma. Puis, on diminue progressivement la quantité de particules de matériau de la sous-couche (2) d'accroché en augmentant progressivement la quantité de particules de matériau de TBC jusqu'à ce que l'on atteigne 0% de quantité de particules de matériau de la sous-couche (2) d'accroché et 100% de quantité de particules de matériau de TBC. Le réglage des quantités de particules à projeter peut être effectué à l'aide d'un dispositif de commande de la torche plasma. Un programme est mis en œuvre par un processeur du dispositif de commande permettant ainsi de régler la composition et l'épaisseur de la couche (5) à gradient de composition. In one configuration, the compositional gradient is non-zero. The layer (5) with a composition gradient therefore progressively passes from one composition of 100% hooked underlayer material (2) and 0% TBC material in the area near the underlayer (2) hooked to a composition of 0% underlay material (2) hooked and 100% TBC material in the area near the TBC layer (3). The deposition of the variable composition gradient layer (5) between the two materials is carried out by a plasma torch in which 100% of the particles of material of the underlayer (2) of hooked and 0% of the material are injected. amount of TBC material particles at the start of plasma spraying. Subsequently, the amount of material particles in the underlayer (2) is progressively decreased by progressively increasing the amount of TBC material particles until 0% of material particles are reached. hooked underlayer (2) and 100% amount of TBC material particles. The amount of particles to be sprayed can be adjusted using a device for controlling the plasma torch. A program is implemented by a processor of the control device thus making it possible to adjust the composition and the thickness of the composition gradient layer (5).
Selon une autre configuration, le gradient de composition est nul. La couche (5) à gradient de composition définie est donc un mélange homogène de matériau constituant la sous-couche (2) d'accroché et la couche (3) de TBC. Des particules de chaque matériau sont mélangées à l'aide d'un mélangeur afin d'obtenir un mélange homogène de particules. De façon non limitative, la proportion en masse de particules de matériau de sous-couche (2) d'accroché est préférentiellement de 50% à 75% par rapport à la masse totale des particules formant la couche (5) de gradient de composition. Cette couche est déposée entre la sous-couche (2) d'accroché et la couche (3) de TBC. According to another configuration, the composition gradient is zero. The layer (5) with defined composition gradient is therefore a homogeneous mixture of material constituting the underlayer (2) hanging and the layer (3) of TBC. Particles of each material are mixed using a mixer to obtain a homogeneous mixture of particles. Without limitation, the mass proportion of particles of underlayer material (2) hung is preferably 50% to 75% relative to the total mass of the particles forming the layer (5) composition gradient. This layer is deposited between the hooked underlayer (2) and the TBC layer (3).
Dans une étape suivante, une couche (3) de TBC est déposée, par exemple, par projection plasma. Le dépôt est réalisé de telle manière que la couche (3) de TBC a une structure lamellaire massive. Le dépôt par projection plasma a la caractéristique de permettre d'obtenir une telle structure de couche. In a next step, a layer (3) of TBC is deposited, for example, by plasma spraying. The deposit is made in such a way that the TBC layer (3) has a massive lamellar structure. Deposit by Plasma projection has the characteristic of allowing to obtain such a layer structure.
Cette structure lamellaire massive permet une accroche plus importante de la couche (3) de TBC sur la couche (5) à gradient de composition lors du perçage de trous par un faisceau laser. This massive lamellar structure allows greater adhesion of the TBC layer (3) to the composition gradient layer (5) when drilling holes by a laser beam.
De façon non limitative, la couche (5) de gradient de composition a une épaisseur comprise entre 0,15 mm et 0,30 mm, de préférence entre 0,20 mm et 0,25 mm. Without limitation, the layer (5) of composition gradient has a thickness between 0.15 mm and 0.30 mm, preferably between 0.20 mm and 0.25 mm.
De façon non limitative, la sous-couche (2) d'accroché a une épaisseur comprise entre 0,08 mm et 0,25 mm, de préférence entre 0,10 mm et 0,15 mm. In a nonlimiting manner, the underlayer (2) hooked has a thickness between 0.08 mm and 0.25 mm, preferably between 0.10 mm and 0.15 mm.
De façon non limitative, la couche (3) de TBC a une épaisseur comprise entre 0,20 mm et 0,60 mm, de préférence entre 0,25 mm et 0,55 mm. Dans une étape suivante, les trous (4) sont percés par au moins un faisceau laser selon un axe (41 ) calculé afin que le film d'air soit optimisé pour une protection de la couche (3) de TBC. Le faisceau laser est dirigé selon un programme contenu dans un processeur qui détermine la position du faisceau laser en fonction de la position de chaque trou (4) et de l'angle que doit faire l'axe (41 ) de chaque trou (4) par rapport à la surface de la pièce (0). De façon non limitative, chaque trou a un diamètre de l'ordre de 0,3 mm à 0,8 mm, de préférence de l'ordre de 0,4 mm. Without limitation, the layer (3) of TBC has a thickness of between 0.20 mm and 0.60 mm, preferably between 0.25 mm and 0.55 mm. In a next step, the holes (4) are pierced by at least one laser beam along an axis (41) calculated so that the air film is optimized for protection of the layer (3) of TBC. The laser beam is directed according to a program contained in a processor which determines the position of the laser beam as a function of the position of each hole (4) and the angle to be made by the axis (41) of each hole (4) relative to the surface of the workpiece (0). Without limitation, each hole has a diameter of the order of 0.3 mm to 0.8 mm, preferably of the order of 0.4 mm.
De façon non limitative, un trou (4) est réalisé en deux étapes. Une première étape de percussion qui consiste à utiliser le faisceau laser fixe avec une incidence  comprise, par exemple, entre 15° et 25° dans un mode puisé afin de pénétrer l'épaisseur de la pièce (0) et des couches (2, 3, 5) de protection. Une seconde étape de trépanage consiste à découper le trou (4) en déplaçant circulairement le faisceau laser. Ce procédé de fabrication de pièce (0) peut être utilisé pour la réparation d'une chambre de combustion d'un engin par exemple ayant une pièce défectueuse. Without limitation, a hole (4) is made in two steps. A first percussion step of using the fixed laser beam with an incidence Å of, for example, between 15 ° and 25 ° in a pulsed mode to penetrate the thickness of the workpiece (0) and the layers (2, 3, 5). A second step of trepanning involves cutting the hole (4) by moving the laser beam circularly. This part manufacturing process (0) can be used for the repair of a combustion chamber of a machine for example having a defective part.
Dans une première étape, la pièce défectueuse est découpée, par exemple, par laser ou par un chalumeau. In a first step, the defective part is cut, for example, by laser or a torch.
Dans une étape suivante, une pièce en matériau formant le substrat, par exemple, à base de cobalt, de chrome et de nickel est soudée à la place de la pièce défectueuse découpée. Cette pièce subit alors le procédé de fabrication de pièce précédemment décrite. Après ce procédé, une étape de vérification de l'efficacité du film d'air est effectuée. Un débit d'air semblable au débit d'air effectif pendant le fonctionnement du turboréacteur est généré. Il est ainsi possible de vérifier l'efficacité du film d'air généré par le débit d'air traversant la pièce par les trous (4). Cette succession de couche permet une bonne accroche de la TBC.In a next step, a piece of material forming the substrate, for example, based on cobalt, chromium and nickel is welded in place of the defective piece cut. This part then undergoes the part manufacturing process described above. After this process, a step of checking the efficiency of the air film is performed. An air flow similar to the effective air flow during operation of the turbojet engine is generated. It is thus possible to check the efficiency of the air film generated by the flow of air passing through the room through the holes (4). This succession of layers allows a good grip of the TBC.
En effet, la couche de TBC ne peut être projetée directement sur le substrat car il n'y a pas d'affinité métallurgique entre la couche de TBC et le substrat. L'ajout d'une sous-couche permet l'accroche de la TBC. Mais, lors du perçage au laser, il apparaît une décohésion au niveau de l'interface entre la couche de TBC et la sous-couche. Une couche à gradient de composition projetée directement sur le substrat à la place de la sous-couche permet une meilleure adhésion de la couche de TBC mais lors d'un perçage au laser, la liaison directe substrat/couche à gradient de composition est insuffisante ce qui revient à déplacer le problème de décohésion vers l'interface entre le substrat et la couche à gradient de composition. Il apparaît que les plus faibles décohésions sont obtenues en conservant la sous-couche d'accroché et en ajoutant la couche à gradient de composition. Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, mais peuvent être modifiés dans le domaine défini par la portée des revendications jointes, et l'invention ne doit pas être limitée aux détails donnés ci-dessus. Indeed, the TBC layer can not be projected directly onto the substrate because there is no metallurgical affinity between the TBC layer and the substrate. The addition of an underlayment allows the grip of the TBC. But, during laser drilling, it appears a decohesion at the interface between the TBC layer and the underlayer. A composition gradient layer projected directly onto the substrate in place of the underlayer provides better adhesion of the TBC layer, but during laser drilling, the direct substrate / composition gradient layer connection is insufficient. which amounts to moving the decohesion problem to the interface between the substrate and the composition gradient layer. It appears that the weakest decohesions are obtained by preserving the hooked underlayer and adding the composition gradient layer. It should be obvious to those skilled in the art that the present invention allows embodiments in many other specific forms without departing from the scope of the invention as claimed. Therefore, the present embodiments should be considered by way of illustration, but may be modified within the scope defined by the scope of the appended claims, and the invention should not be limited to the details given above.

Claims

REVENDICATIONS
1 . Procédé de fabrication de pièce (0) multicouches comportant des trous (4) dont les axes (41 ) sont inclinés et devant résister à des contraintes thermiques élevées possédant une sous-couche (2) d'accroché et une couche (3) de revêtement de barrière thermique (TBC) comportant au moins les étapes suivantes : 1. Method for manufacturing a multilayer workpiece (0) comprising holes (4) whose axes (41) are inclined and must withstand high thermal stresses having a hooked underlayer (2) and a coating layer (3) thermal barrier (TBC) comprising at least the following steps:
- une étape de dépôt de la sous-couche (2) d'accroché sur le substrat (1 ) de la pièce (0) ;  a deposition step of the underlayer (2) hanging on the substrate (1) of the part (0);
- une étape de dépôt de la couche (3) de TBC ;  a deposition step of the TBC layer (3);
- une étape de perçage des trous (4) par un faisceau laser ;  a step of drilling the holes (4) by a laser beam;
caractérisé en ce qu'il comporte en outre une étape de dépôt d'une couche (5) à gradient de composition variable ou définie entre deux matériaux par projection plasma après l'étape de dépôt de la sous-couche (2) d'accroché ;  characterized in that it further comprises a step of depositing a layer (5) with a gradient of variable or defined composition between two materials by plasma spraying after the step of depositing the underlayer (2) of hooked ;
la composition de la couche (5) à gradient de composition étant composée des matériaux composant la sous-couche (2) d'accroché et la couche (3) de TBC ;  the composition of the composition gradient layer (5) being composed of the materials composing the hooked underlayer (2) and the TBC layer (3);
la couche (3) de TBC et la couche (5) à gradient de composition ayant une structure lamellaire massive.  the TBC layer (3) and the composition gradient layer (5) having a massive lamellar structure.
2. Procédé selon la revendication 1 , caractérisé en ce que la couche (5) à gradient de composition variable entre deux matériaux passe progressivement d'une composition de 100% de matériau de sous-couche (2) d'accroché et 0% de matériau de TBC (3) dans la zone proche de la sous-couche (2) d'accroché à une composition de 0% de matériau de sous- couche (2) d'accroché et 100% de matériau de TBC (3) dans la zone proche de la couche (3) de TBC. 2. Method according to claim 1, characterized in that the layer (5) gradient of variable composition between two materials passes gradually from a composition of 100% hooked underlayer material (2) and 0% of TBC material (3) in the area near the underlayer (2) hooked to a composition of 0% hooked underlayer material (2) and 100% TBC material (3) in the area close to the layer (3) of TBC.
3. Procédé selon la revendication 1 , caractérisé en ce que la couche (5) à gradient de composition définie est un mélange homogène des matériaux constituant la sous-couche (2) d'accroché et la couche (3) de TBC et est déposée entre la sous-couche (2) d'accroché et la couche (3) de TBC. 3. Method according to claim 1, characterized in that the layer (5) with defined composition gradient is a homogeneous mixture of materials constituting the hooked underlayer (2) and the TBC layer (3) and is deposited between the hooked underlayer (2) and the TBC layer (3).
4. Procédé selon la revendication 3, caractérisé en ce que la proportion en masse de matériau de sous-couche d'accroché est préférentiellement de 50% à 75% par rapport à la masse totale des matériaux de sous-couche (2) d'accroché et de couche (3) de TBC formant la couche (5) à gradient de composition 4. Method according to claim 3, characterized in that the proportion by weight of hooked underlayer material is preferably 50% to 75% relative to the total mass of the undercoat material (2). hooked and layer (3) of TBC forming the layer (5) composition gradient
5. Procédé selon la revendication 1 , caractérisé en ce que la couche (3) de TBC est en céramique. 5. Method according to claim 1, characterized in that the layer (3) of TBC is ceramic.
6. Procédé selon la revendication 1 , caractérisé en ce que la sous- couche (2) d'accroché est en alliage de type NiCrAIY, pour un substrat à base au moins de cobalt ou de nickel ou de chrome. 6. Method according to claim 1, characterized in that the underlayer (2) hanging is made of NiCrAlY type alloy, for a substrate based at least cobalt or nickel or chromium.
7. Procédé selon la revendication 1 , caractérisé en ce que le substrat (1 ) de la pièce (0) est en alliage à base au moins de cobalt ou de nickel ou de chrome. 7. Method according to claim 1, characterized in that the substrate (1) of the part (0) is alloy based at least cobalt or nickel or chromium.
8. Procédé selon la revendication 1 , caractérisé en ce que la couche (5) à gradient de composition a une épaisseur comprise entre 0,15 mm et 0,30 mm. 8. The method of claim 1, characterized in that the layer (5) composition gradient has a thickness of between 0.15 mm and 0.30 mm.
9. Procédé selon la revendication 1 , caractérisé en ce que la sous- couche (2) d'accroché a une épaisseur comprise entre 0,08 mm et 0,25 mm. 9. Method according to claim 1, characterized in that the underlayer (2) hooked has a thickness between 0.08 mm and 0.25 mm.
10. Procédé selon la revendication 1 , caractérisé en ce que la couche (3) de TBC a une épaisseur comprise entre 0,20 mm et 0,60 mm. 10. The method of claim 1, characterized in that the layer (3) of TBC has a thickness of between 0.20 mm and 0.60 mm.
1 1 . Utilisation d'un procédé de fabrication de pièces (0) comportant des trous (4) dont les axes (41 ) sont inclinés avec une faible incidence et devant résister à des contraintes thermiques élevées possédant une sous- couche (2) d'accroché, une couche (5) à gradient de composition variable ou définie et une couche (3) de matériau céramique formant TBC pour la réparation d'une chambre de combustion d'un engin caractérisée en ce qu'elle comporte au moins les étapes suivantes : 1 1. Use of a production process of parts (0) having holes (4) whose axes (41) are inclined with a low incidence and must withstand high thermal stresses having an underlayer (2) hooked, a layer (5) with a gradient of variable composition or defined and a layer (3) of ceramic material forming TBC for the repair of a combustion chamber of a machine characterized in that it comprises at least the following steps:
- une étape de découpe d'une partie de la pièce (0) défectueuse ;  - A step of cutting a part of the part (0) defective;
- une étape de soudure à la place de la partie de la pièce défectueuse d'une pièce (0) en substrat métallique à base de cobalt et de chrome ;  - A welding step instead of the part of the defective part of a part (0) metal substrate based on cobalt and chromium;
- une étape de dépôt d'un matériau formant la sous-couche (2) d'accroché sur le substrat (1 ) de la pièce (0) ;  a deposition step of a material forming the underlayer (2) hooked on the substrate (1) of the part (0);
- une étape de dépôt par projection plasma d'une couche (5) à gradient de composition définie ou variable à structure lamellaire massive entre les deux matériaux ;  a step of depositing by plasma spraying a layer (5) with defined or variable composition gradient with a massive lamellar structure between the two materials;
- une étape de dépôt de la couche (3) de matériau formant TBC à structure lamellaire massive ;  a deposition step of the layer (3) of TBC material with a massive lamellar structure;
- une étape de perçage des trous (4) par un faisceau laser.  a step of drilling the holes (4) by a laser beam.
12. Utilisation selon la revendication 1 1 , caractérisée en ce qu'elle comporte en outre une étape de vérification de l'efficacité d'un film d'air généré par un débit d'air traversant la pièce (0) par les trous (4). 12. Use according to claim 1 1, characterized in that it further comprises a step of verifying the efficiency of an air film generated by a flow of air passing through the workpiece (0) through the holes ( 4).
PCT/FR2011/051103 2010-05-18 2011-05-17 Method for manufacturing and/or repairing multi-layer parts which comprise angled holes and need to be able to withstand high thermal stress WO2011144860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1053837 2010-05-18
FR1053837A FR2960242B1 (en) 2010-05-18 2010-05-18 PROCESS FOR MANUFACTURING MULTI-LAYER COMPONENTS HAVING INCLINED HOLES AND RESISTANT TO HIGH THERMAL CONSTRAINTS AND USE OF THE PROCESS FOR REPAIRING WORKPIECES

Publications (1)

Publication Number Publication Date
WO2011144860A1 true WO2011144860A1 (en) 2011-11-24

Family

ID=43014431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051103 WO2011144860A1 (en) 2010-05-18 2011-05-17 Method for manufacturing and/or repairing multi-layer parts which comprise angled holes and need to be able to withstand high thermal stress

Country Status (2)

Country Link
FR (1) FR2960242B1 (en)
WO (1) WO2011144860A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015082818A1 (en) 2013-12-02 2015-06-11 Office National D'etudes Et De Recherches Aérospatiales (Onera) Method for locally repairing thermal barriers
CN106835000A (en) * 2016-12-09 2017-06-13 武汉船用机械有限责任公司 A kind of supersonic flame spraying method suitable for thin and long units
US11407067B2 (en) 2018-06-29 2022-08-09 Pratt & Whitney Canada Corp. Method for repairing a part

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
EP0799904A1 (en) 1996-04-04 1997-10-08 International Center for Electron Beam Technologies of E.O. Paton Electric Welding Institute Method of producing a graded coating with a top ceramic layer
EP1286020A2 (en) * 2001-08-23 2003-02-26 United Technologies Corporation Method for repairing an apertured gas turbine component
US20060016191A1 (en) * 2004-07-23 2006-01-26 Honeywell International Inc. Combined effusion and thick TBC cooling method
WO2007037773A2 (en) * 2003-07-16 2007-04-05 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
FR2909297A1 (en) 2006-11-30 2008-06-06 Snecma Sa METHOD FOR LASER DRILLING OF A PIECE OF COMPOSITE MATERIAL WITH CERAMIC MATRIX, HOLE OBTAINED BY THIS PROCESS, PIECE OF COMPOSITE MATERIAL WITH CERAMIC MATRIX COMPRISING IT, TURBOREACTOR COMPRISING SUCH A PIECE
US20080241560A1 (en) 2005-07-12 2008-10-02 Mohamed Youssef Nazmy Ceramic Thermal Barrier Coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
EP0799904A1 (en) 1996-04-04 1997-10-08 International Center for Electron Beam Technologies of E.O. Paton Electric Welding Institute Method of producing a graded coating with a top ceramic layer
EP1286020A2 (en) * 2001-08-23 2003-02-26 United Technologies Corporation Method for repairing an apertured gas turbine component
WO2007037773A2 (en) * 2003-07-16 2007-04-05 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
US20060016191A1 (en) * 2004-07-23 2006-01-26 Honeywell International Inc. Combined effusion and thick TBC cooling method
US20080241560A1 (en) 2005-07-12 2008-10-02 Mohamed Youssef Nazmy Ceramic Thermal Barrier Coating
FR2909297A1 (en) 2006-11-30 2008-06-06 Snecma Sa METHOD FOR LASER DRILLING OF A PIECE OF COMPOSITE MATERIAL WITH CERAMIC MATRIX, HOLE OBTAINED BY THIS PROCESS, PIECE OF COMPOSITE MATERIAL WITH CERAMIC MATRIX COMPRISING IT, TURBOREACTOR COMPRISING SUCH A PIECE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015082818A1 (en) 2013-12-02 2015-06-11 Office National D'etudes Et De Recherches Aérospatiales (Onera) Method for locally repairing thermal barriers
CN106835000A (en) * 2016-12-09 2017-06-13 武汉船用机械有限责任公司 A kind of supersonic flame spraying method suitable for thin and long units
CN106835000B (en) * 2016-12-09 2019-05-17 武汉船用机械有限责任公司 A kind of supersonic flame spraying method suitable for thin and long units
US11407067B2 (en) 2018-06-29 2022-08-09 Pratt & Whitney Canada Corp. Method for repairing a part

Also Published As

Publication number Publication date
FR2960242B1 (en) 2015-05-01
FR2960242A1 (en) 2011-11-25

Similar Documents

Publication Publication Date Title
FR2967168A1 (en) COMPONENTS WITH RETAINING SHAPE COOLING CHANNELS AND METHODS OF MAKING THE SAME
JP5554488B2 (en) Alumina-based protective coating for thermal barrier coating
FR2967169B1 (en) COMPONENT AND METHODS OF MANUFACTURING AND COATING A COMPONENT
US20150030871A1 (en) Functionally graded thermal barrier coating system
FR2969521A1 (en) METHOD FOR FORMING PASSAGE HOLES IN A HIGH TEMPERATURE SUBSTRATE
US20080011813A1 (en) Repair process for coated articles
US20100237134A1 (en) Repair process for coated articles
FR2967204A1 (en) METHOD FOR MANUFACTURING A COMPONENT USING A FUGITIVE COATING
EP1881154B1 (en) Repair process for coated articles
EA022427B1 (en) Method for manufacturing insulating glazing
FR2895741A1 (en) LAMINATE SYSTEM WITH PYROCHLORINE PHASE
CA2844240A1 (en) Method for producing a protective reinforcement of the leading edge of a vane
EP2396446B1 (en) Method for producing a thermal barrier covering a metal substrate made of a superalloy, and thermomechanical part resulting from said production method
CA3066848A1 (en) Coated turbomachine part and associated method of production
US20060042082A1 (en) Turbine component restoration using cathodic ARC/LPPS
WO2011144860A1 (en) Method for manufacturing and/or repairing multi-layer parts which comprise angled holes and need to be able to withstand high thermal stress
US20110287191A1 (en) Production method of multilayer pieces comprising inclined holes and resistant to high thermal stresses, and use of the method for repairing pieces
WO2003006712A1 (en) Method of globally repairing a part covered with a thermal barrier
CA2930180C (en) Integrated sintering process for microcracking and erosion resistance of thermal barriers
EP3732352A1 (en) Part coated with a composition for protection against cmas with controlled cracking, and corresponding treatment method
WO2012146864A1 (en) Part comprising a coating over a metal substrate made of a superalloy, said coating including a metal sublayer
EP3685018B1 (en) Turbine part made of superalloy comprising rhenium and/or ruthenium and associated manufacturing method
EP3698020B1 (en) Turbine component made from superalloy comprising rhenium and associated manufacturing process
EP2591138B1 (en) Thermal barrier for turbine blades, having a columnar structure with spaced-apart columns
FR3047269A1 (en) CENTRIFUGAL DIFFUSER FOR TURBOMOTEUR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728320

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11728320

Country of ref document: EP

Kind code of ref document: A1