WO2011144006A1 - 永磁体电磁驱动装置、控制方法及专用控制电路 - Google Patents

永磁体电磁驱动装置、控制方法及专用控制电路 Download PDF

Info

Publication number
WO2011144006A1
WO2011144006A1 PCT/CN2011/073860 CN2011073860W WO2011144006A1 WO 2011144006 A1 WO2011144006 A1 WO 2011144006A1 CN 2011073860 W CN2011073860 W CN 2011073860W WO 2011144006 A1 WO2011144006 A1 WO 2011144006A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
moving magnet
magnet
moving
module
Prior art date
Application number
PCT/CN2011/073860
Other languages
English (en)
French (fr)
Inventor
蹇兴亮
Original Assignee
Jian Xingliang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010175164XA external-priority patent/CN101873045B/zh
Priority claimed from CN201010198078A external-priority patent/CN101873046A/zh
Priority claimed from CN2011100402909A external-priority patent/CN102158038A/zh
Priority claimed from CN2011100409325A external-priority patent/CN102111104A/zh
Application filed by Jian Xingliang filed Critical Jian Xingliang
Publication of WO2011144006A1 publication Critical patent/WO2011144006A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the invention relates to an electromagnetic driving device and a control method in the field of electricity, in particular to a large-stroke permanent magnet electromagnetic driving device and a control method thereof, and to a special control circuit for realizing large-stroke driving.
  • the invention of the present application No. 200910234647.X filed on November 26, 2009 in the present application discloses a permanent magnet electromagnetic driving device which abandons the conventional moving iron based on the closed magnetic circuit. And the static iron structure, and the open magnetic circuit system, does not require the magnetic material to form a closed magnetic circuit, there is no magnetic path gap problem, which can generate a large stroke and provide a relatively balanced electromagnetic force in a large stroke range.
  • the permanent magnet electromagnetic driving device of the original invention adopts fewer coils and the number of moving magnets.
  • the moving magnet When there is only one coil, the moving magnet only moves on one side of the coil; when there are two coils, the moving magnet is only in two The movement between the coils; the original invention is only suitable for occasions where the stroke requirements are not too high.
  • the number of coils and/or moving magnets is increased, the structure is changed to extend the range of motion of the moving magnet to the outside of both ends of the coil, and the appropriate control method can further increase the stroke of the moving magnet and provide greater electromagnetic force.
  • the inventors have developed a permanent magnet electromagnetic driving device capable of providing an arbitrary stroke or more electromagnetic force and a control method thereof based on the original invention, and developed a dedicated control circuit.
  • the technical problem to be solved by the present invention is to overcome the problem that the stroke of the existing electromagnetic driving device is not large enough, and to provide an electromagnetic driving device with simple structure and low power driving.
  • the invention is applicable to a variety of devices requiring large-stroke electromagnetic actuation. It is an alternative to cylinder drives in certain applications.
  • the permanent magnet electromagnetic driving device is composed of N coils fixed on the outside of the plastic base body and M axially magnetized moving magnets fixed on the screw of the output member, the moving magnet It can be moved axially in a cylindrical cavity inside the base body, the stroke is L, and each coil is coaxial with the cylindrical cavity inside the base body, and the coils are spaced apart by an appropriate distance along the axial direction. It is characterized in that the magnetic fields generated by the adjacent moving magnets on the axis are opposite in direction; when the coil is energized, the magnetic fields generated by the adjacent coils on the axis are opposite in direction.
  • each stroke of the drive at least one of the moving magnets passes from one side of the coil across the geometric center of the coil to the other side of the coil.
  • the length of each coil is LN
  • the length of each moving magnet is LM
  • the outer diameter of each moving magnet is LD
  • the ratio of LM to LD is between 0.5 and 2.0
  • the ratio of LM to LN is also between 0.5 and Between 2.0.
  • the distance between the geometric centers of two adjacent coils is equal to the distance between the geometric centers of two adjacent moving magnets, equal to L0; L0 ⁇ LM + LN.
  • the outermost moving magnet is located at the outer end of the outermost coil, and if the distance between the geometric center of the outermost coil and the geometric center of the outermost moving magnet is LY, take LM and The smaller of LN is LX, Then LY ⁇ LX.
  • the invention has an essential difference from a linear motor, that is, the step distance is much larger than that of the permanent magnet linear motor.
  • the magnetizing direction of the moving magnet and the placement of the coil in the present invention are also different from those of the linear motor, and the device does not require an iron core.
  • the stroke L 2 LY + (N - M) L0 ⁇ 2LX + (N - M) L0. Since the range of motion of the moving magnet extends to the outside of both ends of the coil, the stroke is significantly improved.
  • the adjacent coils are usually connected in reverse series in series, and the current strengths of the coils are equal in magnitude, and the magnetic fields generated by the adjacent coils on the axis are opposite in direction.
  • the distance between the geometric centers of adjacent coils is equal to the distance between the geometric centers of adjacent moving magnets in order to obtain optimum driving efficiency, which is the case as claimed in claim 1.
  • the distance between the geometric centers of two adjacent coils is not necessarily equal to the distance between the geometric centers of two adjacent moving magnets. It is only necessary to ensure that the energization directions of the respective coils satisfy the electromagnetic forces that cause the respective moving magnets to generate the same direction.
  • the driving device further includes one or more position sensors.
  • a reed switch installed at both ends of the device can be used to detect whether the moving magnet is at the starting position or the end position;
  • a reed switch or a micro switch distributed on the base can be used to detect whether the moving magnet moves to the vicinity of the geometric center of the coil, It is convenient to control the current in the drive coil to turn on and off and change the current direction.
  • the electromagnetic driving device further comprises a tubular outer casing composed of a ferromagnetic material, which is sleeved outside the coil and the base body, and the outer sleeve is coaxial with the coil or the base body.
  • the jacket is usually made of electrical iron or low carbon steel.
  • a ferromagnetic cover plate or a static magnet is installed at both ends or one end of the device, so that the movable magnet can be sucked and held when it moves to the end.
  • the coil is de-energized or the coil is passed through a low current to enhance the holding force.
  • the shape of the moving magnet is a cylinder, including everything close to the shape of the cylinder, and also includes a cylinder formed by laminating a plurality of axially or annular permanent magnets that are magnetized in the axial direction.
  • the moving magnet is a cylinder that is bored along the axis, so that it is sleeved on the screw of the output member and fixed by a nut.
  • the base body refers to a cavity capable of providing a moving space, that is, a cylindrical shape, for the movable magnet, and at the same time, the main body portion of the coil can be placed or wound outside, and the base body is plastic.
  • Electromagnetic force refers to the force exerted by the energized coil on the moving magnet.
  • Magnetic force refers to the force between a static magnet or a ferromagnetic material and a moving magnet.
  • the output member usually contains a screw for fixing the moving magnet. It can be any material, usually a stainless steel screw rod. It must be smooth at the sleeve part passing through the two ends of the base body, or a smooth plastic tube is tightly placed outside the screw to make the output piece expand and contract. freely.
  • control driving method of the present invention comprises: determining the energizing and energizing direction of the coil according to the relative position of the current coil and the moving magnet and the direction of the planned control motion; each time the moving magnet passes over a geometric center of the coil The direction of energization of the coil must be changed.
  • the distance between the geometric center of a moving magnet and the geometric center of the coil to be reached is less than 1/5 of the length LN of the coil and less than 1/ of the length LM of the moving magnet.
  • the coil is de-energized. Since the electromagnetic center of the moving magnet is close to the geometric center of the coil, the electromagnetic force is small, the coil continues to be energized, and the efficiency is very low, so the coil should be powered off; the value 1/5 here is not necessary, but a preferred solution.
  • the coil is energized in the opposite direction to continue to exert electromagnetic force on the moving magnet.
  • the direction in which the coil is energized should be such that the direction of the electromagnetic force generated by the moving magnet near the coil is the same as the direction of the planned control motion.
  • the timeout detection program is also included, that is, after a period of time, according to the normal procedure, the moving magnet should move to the terminal of the stroke without actually reaching, indicating that the resistance is too large or the electromagnetic force is too small during the movement.
  • the moving magnet is stopped or not driven; this happens, or an alarm, or each coil is powered off and an alarm is issued.
  • the manual magnet can be used to move the moving magnet to the normal position.
  • the control method it is necessary to determine the position of the moving magnet, and change the energizing state of the coil according to the relative position change between the moving magnet and the coil.
  • the required time is reached, the moving magnet reaches a certain position; the advantage of this method is simple and convenient to control; the disadvantage is that the control reliability is poor, and the control is inaccurate when the load changes.
  • Another method is to add a component or sensor or circuit that detects the position of the moving magnet to the permanent magnet electromagnetic drive.
  • the position of the moving magnet can be determined by any suitable means such as a reed switch, a switching Hall element, a linear Hall element, a phototube, a coil, a micro-position position switch, a code disc, and any other method.
  • One or more moving magnet position detecting members are mounted on the permanent magnet electromagnetic driving device to make the motion control accurate. In addition, it can be determined according to the current change.
  • the circuit includes a power supply module that supplies power to the other modules and can supply a large current for the output drive module for a short period of time, thus containing a storage capacitor.
  • the single chip module receives the control signal from the outside and the position signal of the moving magnet position detecting module, executes the single chip program, and sends a control signal to the output driving module to provide a correct driving current to the permanent magnet electromagnetic driving device.
  • the moving magnet position detecting module provides the current moving magnet position information for the single chip module.
  • the output driving module includes a high-power semiconductor switching element that supplies a driving current to the coil of the controlled permanent magnet electromagnetic driving device through the high-power semiconductor switching element.
  • the dedicated control circuit further includes a jumper for working mode selection and a driving current detecting module.
  • the jumper is connected to the I/O port of the MCU through a resistor, and the state of the jumper can be changed to change the level of the corresponding I/O port; the jumper is set according to the number of coils of the permanent magnet electromagnetic driving device and the control driving mode.
  • the state of the device enables the MCU to execute the corresponding program according to the state of the jumper; it is possible to provide a corresponding driving current for the permanent magnet electromagnetic driving devices of different structures by using only one hardware circuit.
  • the driving current detecting module has a sampling resistor connected in series between the output driving module and the ground, and the current in the coil of the permanent magnet electromagnetic driving device is equal to the current in the sampling resistor; the voltage signal on the sampling resistor is amplified and sent to an I of the single chip microcomputer. /O port.
  • the DC power supplies (such as VCC1, VCC4, and VCC5) of various voltages in the power module can be converted from the externally supplied DC power supply (VCC2) or from the conventional AC to DC power supply circuit.
  • VCC2 DC power supply
  • VCC2 DC power supply
  • the input terminal of the three-terminal regulator integrated block (VR1) is connected to the main power supply (VCC1), and the low-voltage storage capacitor is connected in parallel between the main power supply (VCC1) and the ground.
  • the MCU module includes a plurality of I/O ports, and several I/O ports are connected to the position detecting module.
  • the pin level also changes accordingly, and the MCU detects the level change.
  • Execute the corresponding program several I/O ports are used to generate the drive control signal to connect with the output drive module, the I/O port outputs different levels, and the corresponding drive drive channel generates different drive currents; one or two I/O ports Used to receive external control signals; one or two I/O ports are used to output an alarm indication, connected to a light-emitting diode or buzzer.
  • the position detection module includes a plurality of position sensors that provide switching signals that are mounted on the driven permanent magnet electromagnetic drive.
  • the output driving module includes a plurality of output channels, each of which can provide a driving current to the outside through a high power semiconductor switching element. Some output channels only provide unidirectional current; some output channels can provide drive current in any direction, in which case a bridge drive circuit is required.
  • the moving magnet position detecting module in the dedicated control circuit can eliminate unnecessary. For example, when the output member is only used to vibrate back and forth, its initial position does not matter.
  • the invention has the following positive effects: the moving magnet has a large stroke, and the stroke can be arbitrarily designed according to requirements, and as long as the number of coils is sufficient, an arbitrarily large stroke can be obtained. When the number of moving magnets is also large, a larger electromagnetic force can be obtained.
  • Figure 2 is a connection diagram between the cylindrical moving magnet and the output member screw which are bored along the axis, a sectional view;
  • Figure 8 is a block diagram showing the composition of a dedicated control circuit
  • Figure 9 is a schematic diagram of a dedicated control circuit
  • Figure 10 is a schematic diagram of another dedicated control circuit
  • the cylindrical cavity 0 for moving the magnet in the base the moving magnet 1, the No. 1 moving magnet 11, the No. 2 moving magnet 12, the No. 3 moving magnet 13, and the No. 4 moving magnet in the multi-magnet structure No. 5, No. 5 moving magnet 15; Coil 2, No. 1 coil 21, No. 2 coil 22, No. 3 coil 23, No. 4 coil 24, No.
  • Embodiment 1 A dedicated control circuit.
  • Figure 8 is a block diagram of the system configuration of the dedicated control circuit
  • Figure 9 is a circuit schematic diagram of the power supply from the external DC power supply VCC2.
  • VCC2 is filtered by inductor L1 to obtain the main power supply VCC1.
  • the three-terminal regulator block VR1 outputs 5V stable voltage VDD to supply power to the MCU and the position detection module.
  • the power module also includes a step-up transformer T1, which is a high-frequency switching transformer. The primary winding of the transformer T1 is connected to the main power supply VCC1 at one end and the drain of the N-channel enhancement type power FET Q15 at the other end.
  • the source of the power FET Q15 is grounded; the gate of the power FET Q15 is connected to the collector of a transistor Q16, and is also connected to the main power source VCC1 through a resistor R44.
  • An I/O port P1.3 of the MCU outputs a rectangular wave periodic signal of a certain duty ratio and frequency to the base of the transistor Q16, so that the primary coil of the transformer T1 obtains a periodic current, and the secondary also generates periodicity.
  • the voltage, after rectification and filtering, obtains a higher DC voltage, that is, high voltage power supplies VCC5 and VCC4.
  • the high voltage driving power supply VCC4 is connected to the drain of a power FET Q14, the source of the power FET Q14 is connected to the driving power supply VCC3, and the gate of the power FET Q14 is outputted by an I/O port P1.2 of the single chip microcomputer. Flat control.
  • the driving power source VCC3 is also connected to the cathode of a diode D13, and the anode of the diode D13 is connected to the main power source VCC1.
  • the driving power supply VCC3 is equal to the high voltage VCC4, and the high current driving is realized; when the power FET Q14 is turned off, the diode D13 is turned on, and the driving power supply VCC3 is equal to the main voltage VCC1 minus the positive of the diode D13. A voltage drop of 0.7V is achieved to achieve small current retention.
  • the circuit provides three output drive channels: two output channels can only provide single-direction drive current from output sockets OUT1 and OUT2, and output socket OUT13 can provide drive current in both directions.
  • One of the output sockets or several output sockets is selected depending on the structure of the driven device.
  • the driving components are all N-channel enhancement type power FETs, wherein Q21, Q22, Q23 and Q24 form a bridge driving circuit.
  • the moving magnet position detecting module sends the switching signals from the input sockets IN1 and IN2 through the position sensor mounted on the driven device, and respectively connects the two I/O ports P3.1 and P3.0 of the single chip microcomputer.
  • the single chip can at least detect the starting position and the end position of the moving magnet in the controlled permanent magnet electromagnetic driving device.
  • the one-chip computer adopts AT89C2051.
  • the external control signal is sent to the I/O port P3.3 of the microcontroller through the control socket CONTROL.
  • the difference in the port level indicates different external control commands.
  • the jumpers JUP1, JUP2, and JUP3 can be set according to the specific structure of the driven permanent magnet electromagnetic driving device.
  • the MCU executes the corresponding program according to the state of the current jumper and position sensor in combination with an external control command.
  • the driving current detecting module is composed of a sampling resistor R58, a transistor Q13, resistors R55, R59, and R60.
  • the current in the coil of the permanent magnet electromagnetic drive is equal to the current in the sampling resistor R58.
  • the voltage signal on the sampling resistor R58 is amplified and sent to an I/O port P3.2 of the microcontroller.
  • the sampling resistor R58 has two main functions. First, it acts as a fuse resistor. When the output drive circuit or the driven coil fails, the output drive current is too large for a long time, and the resistor is blown to protect the output drive module from expanding. The second is to monitor the change of the output current according to the needs, so that the program can perform the corresponding control. For example, when the port P3.2 is at a low level for a long time, the program can judge that the output driver module has a fault, so that the P1 port is at a high level, and the output drive is stopped to prevent the fault from further expanding.
  • the circuit shown in Figure 9 is suitable for use when externally providing a suitable DC power supply, VCC2.
  • VCC2 DC power supply
  • the circuit shown in FIG. 10 can be used, and the external power frequency AC power is connected through the power input socket POWER.
  • Figure 10 compares with Figure 9, the only difference is the power module.
  • the AC mains is filtered by the bridge rectifier circuits D21 to D24 and the capacitor C21 to obtain a DC power DC+.
  • a typical AC-to-DC switching power supply circuit consisting of a three-terminal intelligent power module IC2 and a switching transformer Tr can provide various voltage sources for the dedicated control circuit, such as the main power supply VCC1, the power supply VDD of the single-chip microcomputer, and the high-voltage power supply VCC4. , VCC5, etc.
  • the rest of the circuit is the same as that of Figure 9, and will not be described again.
  • Embodiment 2 An electromagnetic driving device composed of only one coil and one moving magnet.
  • 1A and 1B are the present embodiment, respectively showing the moving magnets at the start and end positions of the device, where the starting position and the ending position are only relative, and we assume that the moving magnet is located at the leftmost end of the figure, Start position; the right end is the end position.
  • the integrated plastic base 3 has a cylindrical cavity 0 inside to facilitate movement of the moving magnet 1 of the cylinder therein. A groove is formed on the outside of the base 3 for winding the coil 2.
  • the length of the moving magnet is equal to the diameter of the moving magnet equal to the length of the coil, and the base 3, the coil 2 and the moving magnet 1 magnetized in the axial direction are coaxial, and the moving magnet is a neodymium iron boron magnet.
  • the movable magnet 1 is bored along the axis to be fixed on the screw of the output member 5.
  • the fixing manner is shown in FIG. 2, wherein the soft gasket 63 is used to protect the moving magnet from damage, and the moving magnet is fixed by the spacer 64 and the nut 65. In a suitable position on the screw, the soft gasket 63, the hard gasket 64 and the nut 65 are brought together to form the fixing member 6.
  • the soft gasket 71 fixed at both ends of the cavity 0 can reduce the impact force of the moving magnet and reduce noise.
  • the cover plate 7 of the intermediate opening is fixed to both ends of the base body 3 by screws 8, and the movable magnet is restricted to move only in the cavity.
  • the cover plate 7 is made of a ferromagnetic material, the movable magnet can be provided with a suction holding force to realize a bistable function, and the magnitude of the holding force can be changed by adjusting the thickness of the soft gasket 71.
  • Dynamic magnet position detecting sensors 91 and 99 are also attached to both ends of the base 3 to detect whether the moving magnet is located at the start or end position, and is constituted by a reed switch.
  • the two reed switches are in the off state, and the single-chip microcomputer program sends a power-off command according to which the output drive current is cut off, and the moving magnet continues to move by inertia and passes over.
  • the geometric center of the coil then the coil is re-energized to continue to drive the moving magnet to move or not to energize and to move to the other end of the stroke by inertial motion.
  • the connection and control method of the coil 2 and the dedicated control circuit may be different depending on the needs.
  • the position detecting sensors 91 and 99 are respectively connected to the input jacks IN1 and IN2 in the dedicated control circuit; the coil 2 is connected to the output jack OUT1 or OUT2 in the circuit, assuming connection with OUT1, at which time the direction of current flow in the coil cannot be changed.
  • the first MCU detects that P3.1 is low, indicating that the moving magnet is at the starting end; P1.7 outputs a low level, and the power FET of the output channel is Q5.
  • the coil 2 When the coil 2 is turned on, the coil 2 obtains a current, and the moving magnet 1 generates an attracting electromagnetic force to cause the moving magnet 1 to start moving; the single chip monitors the P3.1 and P3.0 level changes, and when both are high, the P1.7 output At a high level, the coil 2 is de-energized; the moving magnet 1 passes the geometric center of the coil 2 by inertia and continues to move until the end point is attracted and held by the ferromagnetic cover plate 7, at which time P3.0 is detected to be low.
  • the first chip detects that P3.0 is low, indicating that the moving magnet is at the end position; P1.7 outputs low level, and the power field effect transistor Q5 of the output channel Turning on again, the coil 2 obtains current, and the moving magnet 1 generates an electromagnetic force attracted to the left, so that the moving magnet 1 starts to move to the left; the single chip monitors the level changes of P3.1 and P3.0, when both are high. Normally, P1.7 outputs a high level, and coil 2 is de-energized; the moving magnet 1 passes the geometric center of the coil 2 by inertia and continues to move until the starting position back to the left end is attracted and held by the ferromagnetic cover 7 at this time. P3.1 is detected as low.
  • the current in the coil 2 can change direction, and the electromagnetic force to the moving magnet 1 can be changed from the attractive force to the thrust.
  • the moving magnet needs to move from the left end to the right end, and is driven by a large current, the small current is maintained.
  • the control method is: first, the single chip detects that P3.1 is low, and the moving magnet 1 is kept at the left end by a small current; P1.4 output Low level, P1.5 output high level, P1.2 output high level, power FET Q22, Q23 and Q14 are turned on, Q21 and Q24 are turned off, high voltage VCC4 supplies power to the driving module, and coil 2 gains positive High current, the electromagnetic force of the moving magnet 1 is attracted to the right, the moving magnet 1 starts to move to the right; the single chip monitors the level change of P3.1 and P3.0, when both are high level, P1.4 and P1.5 Both output high level, the coil 2 is powered off; the moving magnet 1 passes the geometric center of the coil 2 by inertia, and the required time is about 5 milliseconds; P1.4 outputs a high level, P1.5 outputs a low level, and the power FET Q21 and Q24 are turned on, Q22 and Q23 are turned off, coil 2 is energized in the reverse direction, and the electromagnetic force of the moving magnet 1
  • Embodiment 3 A permanent magnet electromagnetic driving device composed of three coils and three moving magnets.
  • 3A and 3B show the present embodiment, respectively showing the moving magnets at the start and end positions of the apparatus.
  • the outer surface of the plastic base 3 is wound with three coils 21, 22 and 23, and the three moving magnets 11, 12 and 13 are fixed on the screw of the output member 5, and the outer diameter of each of the cylindrical moving magnets is equal to its axial direction.
  • the length is also equal to the length of each coil along the axis.
  • the distance between the geometric centers of two adjacent moving magnets is equal to the distance between the geometric centers of two adjacent coils, which is equal to 2.5 times the length of each coil.
  • the two adjacent coils are connected in series in anti-phase, so that only two wires are connected to the dedicated driving circuit after the series connection.
  • the magnetic fields generated by the adjacent coils on the axis are opposite in direction;
  • the direction of the magnetic field generated by the magnet on the axis is also opposite, as in the subsequent embodiments, and the description will not be repeated later.
  • a soft spacer 71 is provided for reducing impact noise, and the annular static magnet 41 is magnetized in the axial direction to generate a magnetic field force to the movable magnet to achieve suction retention.
  • the slider of the output member 5 passes through the center hole of the sleeve 75 and is expandable and contractible.
  • a tubular outer casing 100 of ferromagnetic material is provided on the outer side of the base body 3 and the coil, and external threads are provided at both ends to facilitate the inner screw of the same end cover 77 to be tightened.
  • the outer sleeve 100 and the end cap 77 are made of high magnetic permeability electrical iron or ordinary low carbon steel.
  • the outer side of the outer sleeve 100 is provided with a small hole for facilitating the lead wire of the coil and the lead wire of the sensors 91 and 99 to be connected from the small hole to the dedicated control circuit.
  • the end surface of the end cover 77 has a screw hole for fixing and mounting the permanent magnet electromagnetic driving device.
  • the device has three coils and three moving magnets, the number of coils that each moving magnet needs to pass in each stroke is the same as in the second embodiment, that is, only one. Therefore, the connection and control method of the device and the dedicated control circuit are completely the same as those of the second embodiment.
  • the coil lead wires are connected to the output socket OUT13 of the circuit to realize controlled driving in a variable current direction, and the position sensors 91 and 99 are respectively connected to the input jacks IN1 and IN2 of the circuit.
  • the moving magnet needs to move from the left end to the right end, and is driven by a large current, the small current is maintained.
  • the control method is: first, the single chip detects that P3.1 is low, and the moving magnet is kept at the left end by a small current (maintaining no current However, the attraction force of the static magnet 41 on the left end to the moving magnet 11 is maintained; if it is held by the static magnet and held by a small current, it can provide a larger holding force); P1.4 outputs a low level, P1 .5 output high level, P1.2 output high level, power FETs Q22, Q23 and Q14 are turned on, Q21 and Q24 are turned off, high voltage VCC4 supplies power to the driving module, and coil 21 generates rightward attraction to the moving magnet 11 At the same time, the coil 21 also generates an electromagnetic force that pushes the right magnet 12 to the right, and the coil 22 generates an electromagnetic force that attracts the right to the right magnet 12, and also generates an electromagnetic force that pushes the right magnet 13 to the right, and the coil 23 The moving magnet 13 generates an electromagnetic force attracted to the right, the resultant force of the output member
  • the timeout detection alarm program can also be added during the control process. Normally, when the moving magnet moves to the right end, P3.0 is low. If the coil is driven to the right by the coil for 200 milliseconds, and P3.0 has not yet become low, it means that the resistance is too large or the electromagnetic force is too small, and the moving magnet is not driven. At this time, the single-chip signal of the single-chip microcomputer P1.0 is 1 second, the light-emitting diode D15 flashes the alarm, and the coil is powered off, waiting for manual processing.
  • connection and control method can be identical to the second embodiment.
  • Embodiment 4 A permanent magnet electromagnetic driving device composed of 5 coils and 3 moving magnets. 4A, 4B, and 5 are the present embodiment, and the difference between FIG. 5 and the former is that the ferromagnetic outer casing 100 is added. Compared with the third embodiment, the present embodiment adds two coils 24 and 25, so that the length of the cavity 0 is increased and the stroke is also increased. The other parameters of the coil and the moving magnet are the same as in the third embodiment. In the stroke of the moving magnet moving from one end to the other, each moving magnet has to cross three coils, and the direction of the coil current needs to be changed multiple times. The adjacent two coils are connected in anti-phase series, and the lead wires are connected to the output socket OUT13 of the dedicated control circuit.
  • the coil 21 When the moving magnet is at the home position, that is, the left end, when the OUT13 outputs a forward current, the coil 21 generates a rightward attraction force to the moving magnet 11, and generates a rightward thrust to the moving magnet 12; the coil 22 generates the moving magnet 12 The attraction to the right generates a thrust to the right of the movable magnet 13; the coil 23 generates a rightward attraction to the movable magnet 13. Then, when OUT13 outputs a reverse current, the force of each coil to the corresponding moving magnet will be to the left. To move the moving magnet from the left end to the right end, the control process is as follows:
  • OUT13 outputs a forward current, and each moving magnet is subjected to a rightward electromagnetic force to start moving to the right; when the geometric center of the moving magnet 11 is close to the geometric center of the coil 21, the geometric center of the moving magnet 12 is close to the geometric center of the coil 22, When the geometric center of the magnet 13 is close to the geometric center of the coil 23, the OUT13 stops outputting the current, the coil is de-energized, the moving magnet passes the geometric center of the corresponding coil by inertia; the OUT13 outputs the reverse current, and the moving magnet 11 is pushed to the right by the coil 21.
  • the electromagnetic force is electromagnetic force attracted to the right by the coil 22, and the other moving magnets are also subjected to the electromagnetic force of the corresponding coil to the right, and the moving magnet continues to move to the right; when the geometric center of the moving magnet 11 approaches the geometric center of the coil 22, the moving magnet When the geometric center of 12 is close to the geometric center of the coil 23, OUT13 stops outputting current, the coil is de-energized, and the moving magnets pass over the geometric center of each coil by inertia; OUT13 outputs forward current, and the moving magnet 11 is pushed to the right by the coil 22 The force is attracted by the electromagnetic force of the coil 23 to the right. At this time, the moving magnet 13 is attracted to the right by the coil 24, and is attracted to the right by the coil 25.
  • Electromagnetic force the moving magnet continues to move to the right; when the geometric center of the moving magnet 11 is close to the geometric center of the coil 23, and the geometric center of the moving magnet 13 is close to the geometric center of the coil 25, the coil is de-energized, and the moving magnet is close to each other by inertia.
  • the static magnet 41 at the right end is attracted to the moving magnet 13 and is held. If P1.2 outputs a low level and OUT13 continues to output a reverse small current, the electromagnetic force also goes to the right, further increasing the holding force.
  • the control method of the permanent magnet electromagnetic driving device in which the number of coils is two more than the number of moving magnets is completely the same as that of the present embodiment.
  • Embodiment 5 A permanent magnet electromagnetic driving device composed of three coils and four moving magnets. 6A and 6B are the present embodiment. The parameters of the coil and the moving magnet are the same as those in the third embodiment except for the number. Or the adjacent coils are connected in reverse phase and connected to the circuit output socket OUT13. To move the moving magnet from the left end to the right end, the control process is as follows:
  • OUT13 outputs the forward current, and each moving magnet is subjected to the electromagnetic force attracted to the right by the coil on the right side of the coil. At the same time, the electromagnetic force is pushed to the right by the coil near the left side of the coil, and the moving magnet starts to move to the right; when the geometric center of the moving magnet is close to the right When the geometric center of the coil is nearby, the coil is de-energized, the moving magnet passes the inertia over the geometric center of the corresponding coil; OUT13 outputs the reverse current, and each moving magnet is moved by the electromagnetic force to the right; when the geometric center of the moving magnet 12 is close to the coil 22 At the geometric center, the coil is de-energized, the moving magnet passes the inertia over the geometric center of the corresponding coil; OUT13 outputs the forward current, and each moving magnet continues to be moved by the right-side electromagnetic force until the right end.
  • the magnet magnet 41 at the right end Upon reaching the right end, the magnet magnet 41 at the right end is attractive to the magnetic force of the moving magnet 14, providing a holding force. If P1.2 outputs a low level, OUT13 continues to output a positive small current, and the electromagnetic force also goes to the right, further increasing the holding force.
  • Embodiment 6 A permanent magnet electromagnetic driving device composed of 5 coils and 5 moving magnets.
  • Fig. 7 shows the embodiment in which the restoring force mechanism is constituted by the spring 4 at the left end of the cavity 0.
  • the moving magnet is held at the right end of the cavity, and the static magnet 41 at the right end is attracted to the moving magnet 15, and the spring 4 provides a restoring force to the right elastic force of the moving magnet.
  • the spring 4 is made of a non-ferromagnetic material, and the output member 5 can be made of any material.
  • the device can be applied in fields requiring pulse impact, such as automatic production lines, and rejecting defective products.
  • the slider of the output member 5 moves to the left to remove the defective product, and then the coil is de-energized, and returns to the right end under the restoring force of the spring 4.
  • the five coils are connected in reverse in series and then connected to the output socket of the dedicated control circuit. If necessary, if a larger stroke and driving force is required, it is connected to the outlet OUT13; if the required stroke is not too large and the driving force is not too large, it is connected to the outlet OUT1 or OUT2.
  • the OUT13 outputs a forward current, and each of the moving magnets is moved to the left by the electromagnetic force to the left, and is turned off when the dynamic magnet and the corresponding coil geometric center are close; 5 ms later OUT13 outputs reverse current and powers off after 20 milliseconds; under the spring force of spring 4, the moving magnet returns to the right end and waits for the next drive.
  • the device can also work according to the third embodiment, and details are not described herein again.
  • the device can be applied to the field of fast linear driving requiring large strokes, and can replace the conventional cylinder driving device when the driving force requirement is not too large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)

Description

永磁体电磁驱动装置、控制方法及专用控制电路 技术领域
本发明涉及电学领域中的电磁驱动装置及控制方法,特别涉及一种大行程永磁体电磁驱动装置及其控制方法,还涉及实现大行程驱动的专用控制电路。
背景技术
本发明人于2009年11月26日在中国申请的申请号为200910234647.X的发明公开了一种永磁体电磁驱动装置,这种电磁驱动装置抛弃了传统上的基于闭合磁路的采用动铁和静铁结构,而采用开放的磁路***,无需导磁材料构成闭合磁路,不存在磁路间隙问题,从而能产生较大的行程,并在大行程范围内提供比较均衡的电磁力。
原发明的永磁体电磁驱动装置所采用的线圈个数和动磁铁个数较少,当只有一个线圈时,动磁铁只在线圈的一侧运动;当有两个线圈时,动磁铁只在两个线圈之间运动;原发明只适合于对行程要求不太高的场合。当增加线圈和(或)动磁铁个数,改变结构使动磁铁的运动范围扩展到线圈两端外侧,并采用适当的控制方法时可以进一步增大动磁铁的行程和提供更大的电磁力。由此本发明人在原发明的基础上研制出能提供任意行程的或更大电磁力的永磁体电磁驱动装置及其控制方法,并研制出专用控制电路。
技术问题
本发明所要解决的技术问题是克服现有电磁驱动装置行程还不够大的问题,提供一种结构简单、低功率驱动的电磁驱动装置。本发明可应用到各种需要大行程电磁驱动的设备中。在某些应用领域可替代汽缸驱动装置。
技术解决方案
本发明是通过以下技术方案实现的:所述永磁体电磁驱动装置是由固定在塑料基体外面的N个线圈和固定在输出件螺杆上的M个沿轴向充磁的动磁铁组成,动磁铁可以在基体内部的圆柱形空腔中沿轴向运动,行程为L,每个线圈都与基体内部的圆柱形空腔同轴,沿轴线方向各线圈间隔适当距离。其特征在于:相邻动磁铁在轴线上产生的磁场方向相反;线圈通电时,相邻线圈在轴线上产生的磁场方向相反。在每次驱动的行程中,至少有一个动磁铁要从一个线圈的一侧越过该线圈的几何中心到该线圈的另一侧。每个线圈的长度为LN,每个动磁铁的长度为LM,每个动磁铁的外直径为LD,LM与LD的比值介于0.5到2.0之间,LM与LN的比值也介于0.5到2.0之间。综合考虑各方面因素,当LM=LN=LD时,效果最好,所以线圈长度LN和动磁铁的长度LM以及动磁铁外直径LD三者尽量接近。相邻两个线圈几何中心之间的距离等于相邻两个动磁铁几何中心之间的距离,等于L0;L0≥LM+LN。在行程的起始位置或终点位置,最外端的动磁铁位于最外端的线圈的外端,而且若最外端的线圈几何中心与最外端的动磁铁几何中心之间的距离为LY,取LM和LN中较小者为LX, 则LY≥LX。 本发明与直线电机有本质区别,即步距远大于永磁直线电机。本发明中的动磁铁充磁方向以及线圈的放置情况也与直线电机不相同,本装置无需铁芯。
满足上述条件后,行程L=2LY+(N-M)L0≥2LX+(N-M)L0。由于动磁铁的运动范围扩展到线圈两端的外侧,所以行程显著提高。当N=M=1时,不存在相邻线圈或相邻动磁铁的情况,这时L0=0。当M=1,且N≥3时,相邻两个线圈几何中心之间的距离可以不相等。当N=1,且M≥3时,相邻两个动磁铁几何中心之间的距离可以不相等。
当M≥2,且N≥2时,为了简化驱动连接线路,通常将相邻线圈依次反相串联连接,各线圈电流强度大小相等,在轴线上相邻线圈所产生的磁场方向相反。这时相邻线圈几何中心之间的距离等于相邻动磁铁几何中心之间的距离才能获得最佳的驱动效率,这就是权利要求1中所要求的情况。当各个线圈单独通电工作时,并不一定要求相邻两个线圈几何中心之间的距离等于相邻两个动磁铁几何中心之间的距离。只要保证各个线圈通电方向满足使各个动磁铁产生相同方向的电磁力即可。特别是当相邻的两个动磁铁几何中心之间的距离与相邻的两个线圈几何中心之间的距离的比值等于2/3或3/2时,控制不存在死区,可在整个行程中获得比较均衡的电磁力,实现无零电磁力的点,但是控制方法和控制电路复杂。
为了使程序根据当前动磁铁的位置而进行控制,驱动装置还包含1个或多个位置传感器。例如安装在装置两端的干簧管可用来检测动磁铁是否在起始位置或终点位置;分布安装在基体上的干簧管或微动开关可用来检测动磁铁是否运动到线圈的几何中心附近,便于控制驱动线圈中的电流通断及改变电流方向。
为了减弱外部铁磁性物体对动磁铁的干扰,同时也可稍微增加一些电磁力,电磁驱动装置还包含由铁磁性材料构成的管状外套,套在线圈和基体的外面,外套与线圈或基体同轴。外套通常采用电工铁或者低碳钢管制作。当在相邻线圈之间填充铁磁性材料时,虽然能增加电磁力,但是会显著减小行程。
为了节电,在装置的两端或一端安装有铁磁性盖板或静磁铁,使得动磁铁运动到该端时能吸保持。吸保持时,线圈断电或者线圈通低电流增强保持力。
所述动磁铁的形状为圆柱体,包括一切接近圆柱体的形状,也包括由多个沿轴向充磁的圆片状或圆环状永磁铁叠合而成的圆柱体。通常动磁铁为沿轴线开孔的圆柱体,便于它套在输出件的螺杆上,并用螺母固定。所述的基体,是指能为动磁铁提供运动空间即圆柱形的空腔,同时外面能放置或缠绕线圈的主体部分,基体为塑料。电磁力是指通电线圈对动磁铁产生的作用力。磁场力是指静磁铁或铁磁性材料与动磁铁之间的作用力。输出件通常包含螺杆,便于固定动磁铁,可为任意材料,通常是不锈钢的螺丝杆,在穿过基体两端的轴套部分必须光滑,或者螺杆外面紧套一个光滑的塑料管,使输出件伸缩自如。
为了使永磁体电磁驱动装置正常工作,本发明控制驱动方法包括:根据当前线圈和动磁铁的相对位置及计划控制运动的方向判断对线圈通电及通电方向;每次动磁铁越过一个线圈几何中心后,线圈的通电方向都要改变,具体步骤及原则如下:
(1)在动磁铁运动过程中,当某个动磁铁的几何中心与即将到达的线圈几何中心之间的距离既小于该线圈长度LN的1/5,又小于该动磁铁长度LM的1/5时,该线圈断电。由于当动磁铁几何中心与线圈的几何中心接近时,电磁力很小,线圈继续通电,效率很低,所以线圈应该断电;这里的数值1/5并不是必须的,只是一个优选方案。动磁铁依靠惯性继续运动并越过线圈的几何中心后,线圈反方向通电,继续对动磁铁产生驱动的电磁力作用。
(2)线圈通电的方向应满足:对该线圈附近的动磁铁产生的电磁力方向与计划控制运动的方向相同。
(3)在电磁力作用下,动磁铁向计划方向运动,在运动过程中随时检测或判断线圈与动磁铁之间的相对位置,并根据上述(1)(2)原则确定通电的线圈及改变通电方向,直到动磁铁运动到达目的地。
(4)动磁铁运动到达目的地后,根据驱动装置的结构或控制电路的功能,决定是否线圈继续通电或低电流通电保持,或者线圈断电。
为了安全,在控制过程中,还包含超时检测程序,即经过一段时间,按正常程序动磁铁应当运动到达行程的终端而实际上未到达,则说明运动中受到阻力过大或电磁力太小,动磁铁被停在途中或未被驱动;出现这种情况,或者报警,或者各线圈断电同时报警。报警后可以采取人工手动的方法,将动磁铁移动到正常位置。
在控制方法中需要确定动磁铁的位置,根据动磁铁和线圈之间相对位置变化改变线圈的通电状态,获取动磁铁位置的方法主要有两种:一种方法是根据试验确定,即对于固定负载和给定结构的线圈和固定的工作电流情况下,通过反复试验测量动磁铁从一个位置运动到另一个位置所需时间,从一个线圈几何中心运动到另一个线圈几何中心所需时间,以这些时间为参考,采用固定时间法,到了所需时间就认为动磁铁到达了某个位置;这种方法的优点是简单,控制方便;其缺点是控制可靠性差,负载变化时控制不准确。另一种方法是在永磁体电磁驱动装置上加装检测动磁铁位置的部件或传感器或电路。可采用干簧管、开关霍尔元件、线性霍尔元件、光电管、线圈、微动位置开关、编码盘等任何元件、任何方法配合适当电路确定动磁铁的位置。在永磁体电磁驱动装置上安装1个或多个动磁铁位置检测部件,可使运动控制准确。除此之外,还可根据电流变化情况确定。
为了使本发明装置按照预定的控制方法正常工作,需要采用专用控制电路,该电路包含:电源模块,它对其他各模块供电,能够为输出驱动模块短时间提供大电流,因此含有储能电容。单片机模块,它接收来自外部的控制信号和动磁铁位置检测模块的位置信号,执行单片机程序,向输出驱动模块发出控制信号,使其对永磁体电磁驱动装置提供正确的驱动电流。动磁铁位置检测模块,为单片机模块提供当前动磁铁位置信息。输出驱动模块,含有大功率半导体开关元件,通过大功率半导体开关元件对所控制的永磁体电磁驱动装置的线圈提供驱动电流。
为了适应不同需要,该专用控制电路,还包含用于工作方式选择的跳线器和一个驱动电流检测模块。跳线器通过电阻与单片机的I/O端口连接,设置跳线器状态可改变对应I/O端口的电平;根据所驱动的永磁体电磁驱动装置线圈的个数、控制驱动方式设置跳线器的状态,使单片机根据跳线器的状态执行相应的程序;达到只用一个硬件电路就能对各种不同结构的永磁体电磁驱动装置提供相应的驱动电流。驱动电流检测模块有一个取样电阻串联在输出驱动模块与地之间,永磁体电磁驱动装置线圈中的电流等于该取样电阻中的电流;取样电阻上的电压信号经过放大后送给单片机的一个I/O端口。
电源模块中各种不同电压的直流电源(例如VCC1、VCC4和VCC5)既可以由外界提供的直流电源(VCC2)变换而来,也可以由工频交流电经过常规交流变直流的电源电路得到。当本专用控制电路的电源是由外部直接提供一个直流电压(VCC2)时,电路所需的其他各种电压由此变换而来。电源模块包含一个三端稳压集成块(VR1),由直流电源(VCC1)经变换得到输出稳定的直流电压(VDD)为单片机模块和位置检测模块供电;直流电源(VCC2)经电感(L1)后成为本电路主电源(VCC1),三端稳压集成块(VR1)的输入端接主电源(VCC1),低压储能电容并联在主电源(VCC1)和地之间。
单片机模块包含多个I/O端口,其中几个I/O端口与位置检测模块连接,当对应位置传感器信号变化时,该引脚电平也发生相应变化,单片机检测到这种电平变化从而执行相应程序;几个I/O端口用于产生驱动控制信号与输出驱动模块连接,I/O端口输出不同的电平,对应输出驱动通道产生不同的驱动电流;一个或两个I/O端口用于接收外部控制信号;一个或两个I/O端口用于输出报警指示,连接发光二极管或蜂鸣器。
所述位置检测模块包含多个提供开关信号的位置传感器,这些位置传感器安装在被驱动的永磁体电磁驱动装置上。
为了对不同的永磁体驱动装置提供不同的驱动电流,所述输出驱动模块包含多个输出通道,每个输出通道都能通过大功率半导体开关元件对外提供驱动电流。有些输出通道只提供单方向的电流;有的输出通道则能提供任意方向的驱动电流,这时需采用桥式驱动电路。
当本发明被应用的领域不需要知道动磁铁的起始或终点位置时,专用控制电路中的动磁铁位置检测模块可以省掉不要。例如,当输出件仅用于来回振动,其初始位置无关紧要时。
有益效果
本发明与现有技术相比有如下的积极效果:动磁铁行程大,行程可以根据需要任意设计,只要线圈个数足够多,就能获得任意大的行程。当动磁铁数量也多时,能获得更大的电磁力。
附图说明
图1A和图1B是M=N=1时,装置分别处于起始和终点位置时的剖视图;
图2是沿轴线开孔的圆柱体动磁铁和输出件螺杆之间的连接图,剖视图;
图3A和图3B是M=N=3时,装置分别处于起始和终点位置时的剖视图;
图4A和图4B是M=3, N=5时,装置分别处于起始和终点位置时的剖视图;
图5是M=3, N=5时,装置包含有铁磁性外套时剖视图 ;
图6A和图6B是M=4, N=3时,装置分别处于起始和终点位置时的剖视图 ;
图7是M=N=5时,一种永磁体电磁驱动装置结构的剖视图 ;
图8是专用控制电路的组成方框图;
图9是一种专用控制电路原理图;
图10是另一种专用控制电路原理图;
上述各图中:基体内供动磁铁运动的圆柱形空腔0;动磁铁1,多动磁铁结构中的1号动磁铁11、2号动磁铁12、3号动磁铁13、4号动磁铁14、5号动磁铁15;线圈2,多线圈结构中的1号线圈21、2号线圈22、3号线圈23、4号线圈24、5号线圈25;基体3;弹簧4,静磁铁41;输出件5;动磁铁两边的软质垫片63、硬质垫片64、螺母65,它们统称为动磁铁固定件6;中间开孔的盖板7,空腔两端的软质垫片71,垫圈72,轴套75,带内螺纹的端盖77;螺钉8,检测动磁铁起始位置的干簧管91,检测动磁铁终点位置的干簧管99,由铁磁性材料构成的外套100。
本发明的最佳实施方式
下述实施例三为最佳实施方式。
本发明的实施方式
下面结合附图和具体实施方式对本发明作详细描述,先介绍专用控制电路。
实施例一:专用控制电路。 图8是专用控制电路的***组成框图,图9是电路原理图,该电路的供电来自外部直流电源VCC2。VCC2经电感L1滤波得到主电源VCC1,经三端稳压块VR1输出5V稳定电压VDD对单片机及位置检测模块供电。电源模块还包含一个升压变压器T1,为高频开关变压器。变压器T1的初级线圈一端接主电源VCC1,另一端接一个N沟道增强型功率场效应管Q15的漏极。功率场效应管Q15的源极接地;功率场效应管Q15的栅极接一个晶体三极管Q16的集电极,还通过一个电阻R44接主电源VCC1。单片机的一个I/O端口P1.3输出一定占空比和频率的矩形波周期信号送给晶体三极管Q16的基极,使变压器T1的初级线圈获得周期性的电流,次级也产生周期性的电压,经过整流滤波后获得较高的直流电压,即高电压电源VCC5和VCC4。高电压驱动电源VCC4接一个功率场效应管Q14的漏极,功率场效应管Q14的源极接驱动电源VCC3,功率场效应管Q14的栅极受到单片机的一个I/O端口P1.2输出电平的控制。驱动电源VCC3还连接一个二极管D13的阴极,二极管D13的阳极接主电源VCC1。当功率场效应管Q14导通时,驱动电源VCC3等于高电压VCC4,实现大电流驱动;当功率场效应管Q14截止时,二极管D13导通,驱动电源VCC3等于主电压VCC1减去二极管D13的正向压降0.7V,实现小电流保持。
电路提供了3个输出驱动通道:两个输出通道由输出插座OUT1和OUT2只能提供单方向的驱动电流,输出插座OUT13能提供双方向的驱动电流。根据被驱动装置的结构选择使用其中的某一个输出插座或几个输出插座。驱动元件均为N沟道增强型功率场效应管,其中Q21、Q22、Q23和Q24组成桥式驱动电路。
动磁铁位置检测模块是通过安装在被驱动装置上的位置传感器将开关信号由输入插座IN1和IN2送入,并分别接单片机的两个I/O端口P3.1和P3.0。使单片机至少可检测出所控制的永磁体电磁驱动装置中动磁铁的起始位置和终点位置。单片机采用AT89C2051。
外部控制信号通过控制插座CONTROL送给单片机的I/O端口P3.3,该端口电平的不同表示不同的外部控制命令。跳线器JUP1、JUP2和JUP3可根据被驱动永磁体电磁驱动装置的具体结构进行设置。单片机根据当前跳线器、位置传感器的状态,结合外部控制命令执行相应程序。
驱动电流检测模块是由取样电阻R58、晶体管Q13、电阻R55、R59和R60等组成。永磁体电磁驱动装置线圈中的电流等于取样电阻R58中的电流。取样电阻R58上的电压信号经过放大后送给单片机的一个I/O端口P3.2。取样电阻R58主要有两个作用,一是起着保险电阻的作用,当输出驱动电路或被驱动线圈出现故障时,输出驱动电流长时间过大,烧断该电阻,保护输出驱动模块故障扩大。二是根据需要监控输出电流的变化情况,便于程序执行相应的控制。例如,当端口P3.2长时间处于低电平时,程序就可判断输出驱动模块出现了故障,从而使P1端口均为高电平,停止输出驱动,避免故障进一步扩大。
图9所示的电路适用于外部能提供合适的直流电源VCC2时的情况。当外部无直流电源提供时,可采用图10所示的电路,外部工频交流电通过电源输入插座POWER接入。图10与图9比较,区别仅在于电源模块。图10电路中,交流市电经桥式整流电路D21~D24及电容C21滤波得到直流电DC+。由三端智能电源模块IC2和开关变压器Tr等组成典型的交流变直流的开关电源电路,能为本专用控制电路提供各种电压的电源,如主电源VCC1、单片机工作的电源VDD、高压电源VCC4、VCC5等。电路中其他部分与图9相同,不再赘述。
实施例二:一种只有一个线圈和一个动磁铁构成的电磁驱动装置。 图1A和图1B是本实施例,分别表示动磁铁位于装置的起始和终点位置,这里起始位置和终点位置只是相对来说的,我们假定动磁铁位于图中最左端时,称为起始位置;最右端则为终点位置。一体化的塑料基体3内部有圆柱形空腔0,便于圆柱体的动磁铁1在其中运动。基体3的外面有凹槽用于缠绕线圈2。动磁铁的长度等于动磁铁的直径等于线圈的长度,基体3、线圈2和沿轴向充磁的动磁铁1同轴,动磁铁为钕铁硼磁铁。动磁铁1沿轴线开孔便于固定在输出件5的螺杆上,固定方式见图2,其中软质垫片63用于保护动磁铁,避免破损,通过垫片64、螺母65将动磁铁固定在螺杆上适当位置,软质垫片63、硬质垫片64和螺母65合在一起构成固定件6。固定在空腔0两端的软质垫片71可减缓动磁铁的撞击力,减小噪声。中间开孔的盖板7通过螺钉8固定在基体3的两端,限制动磁铁只在空腔内运动。当盖板7为铁磁性材料时,可以对动磁铁提供吸保持力,实现双稳态功能,保持力的大小可通过调整软质垫片71的厚度改变。在基体3两端还安装有动磁铁位置检测传感器91和99,分别检测动磁铁是否位于起始或终点位置,由干簧管构成。当动磁铁1的几何中心与线圈2的几何中心接近时,两个干簧管均处于断开状态,单片机程序就据此发出断电指令,切断输出驱动电流,动磁铁靠惯性继续运动并越过线圈的几何中心,然后线圈再反相通电继续驱动动磁铁运动或者不通电而靠惯性运动到达行程的另一端。
根据需要不同,线圈2与专用控制电路的连接及控制方法可以不同。位置检测传感器91和99分别连接到专用控制电路中的输入插座IN1和IN2;线圈2与电路中的输出插座OUT1或OUT2连接,假定与OUT1连接,这时线圈中的电流方向不能变化。当需要动磁铁由起始位置向终点位置运动时,首先单片机检测到P3.1为低电平,表示动磁铁位于起始端;P1.7输出低电平,该输出通道的功率场效应管Q5导通,线圈2获得电流,对动磁铁1产生吸引的电磁力作用,使动磁铁1开始运动;单片机监测P3.1和P3.0电平变化,当都为高电平时,P1.7输出高电平,线圈2断电;动磁铁1靠惯性越过线圈2的几何中心并继续运动,直到终点被铁磁性盖板7吸引并保持,这时检测到P3.0为低电平。当需要动磁铁由终点位置向起始位置运动时,首先单片机检测到P3.0为低电平,表示动磁铁位于终点位置;P1.7输出低电平,该输出通道的功率场效应管Q5再次导通,线圈2获得电流,对动磁铁1又产生向左吸引的电磁力作用,使动磁铁1开始向左运动;单片机监测P3.1和P3.0电平变化,当都为高电平时,P1.7输出高电平,线圈2断电;动磁铁1靠惯性越过线圈2的几何中心并继续运动,直到回到左端的起始位置被铁磁性盖板7吸引并保持,这时检测到P3.1为低电平。
当线圈2与电路输出插座OUT13连接时,线圈2中的电流可改变方向,对动磁铁1的电磁力可以由吸引力变为推力。当需要动磁铁由左端运动到右端,并且是大电流驱动,小电流保持,控制方法是:首先单片机检测到P3.1为低电平,动磁铁1被小电流保持在左端;P1.4输出低电平,P1.5输出高电平,P1.2输出高电平,功率场效应管Q22、Q23和Q14导通,Q21和Q24截止,高电压VCC4对驱动模块供电,线圈2获得正向大电流,对动磁铁1产生向右吸引的电磁力,动磁铁1开始向右运动;单片机监测P3.1和P3.0电平变化,当都为高电平时,P1.4和P1.5均输出高电平,线圈2断电;动磁铁1靠惯性越过线圈2的几何中心,所需时间5毫秒左右;P1.4输出高电平,P1.5输出低电平,功率场效应管Q21和Q24导通,Q22和Q23截止,线圈2反向通电,对动磁铁1产生向右推的电磁力;若需要大的推力,此时P1.2维持高电平;若需要小的推力,P1.2输出低电平;直到动磁铁1运动到右端,这时检测到P3.0为低电平;为使动磁铁1低电流保持在右端,P1.2输出低电平,功率场效应管Q14截止,低电压VCC1对输出驱动模块供电,动磁铁1受到向右的电磁推力而保持在右端。
实施例三:一种由3个线圈和3个动磁铁构成的永磁体电磁驱动装置。 图3A和图3B是本实施例,分别表示动磁铁位于装置的起始和终点位置。塑料基体3的外面缠绕了3个线圈21、22和23,输出件5的螺杆上等距离固定了3个动磁铁11、12和13,每个圆柱体动磁铁的外直径等于其沿轴线方向的长度,也等于每个线圈沿轴线方向的长度。相邻两个动磁铁几何中心之间的距离等于相邻两个线圈几何中心之间的距离,等于每个线圈长度的2.5倍。相邻两个线圈依次反相串联连接,使串联后只有两根电线引出接专用驱动电路,这两根引出电线接直流电时,相邻线圈在轴线上产生的磁场方向相反;相邻两个动磁铁在轴线上产生的磁场方向也相反,后续实施例也都是这样,后面不再重复说明。在空腔0的两端有软质垫片71用于减小撞击噪声,环状静磁铁41沿轴向充磁,对动磁铁产生磁场力,实现吸保持。输出件5的滑竿从轴套75的中心孔穿出,伸缩自如。在基体3和线圈外面有一个铁磁性材料的管状外套100,两端有外螺纹,便于同端盖77的内螺纹配合拧紧。外套100和端盖77采用高导磁率的电工铁或者普通低碳钢制作。外套100的一端侧面开有小孔,便于将线圈的引出线和传感器91、99的引出线从小孔穿出连接到专用控制电路。端盖77的端面上有螺孔,用于固定和安装本永磁体电磁驱动装置。
虽然本装置有3个线圈和3个动磁铁,但是每个动磁铁在每次行程中需越过的线圈个数与实施例二情况相同,即只有1个。所以,本装置与专用控制电路的连接以及控制方法都与实施例二完全相同。例如,线圈引出线连接到电路的输出插座OUT13上,实现可变电流方向的控制驱动,位置传感器91和99分别连接到电路的输入插座IN1和IN2。当需要动磁铁由左端运动到右端,并且是大电流驱动,小电流保持,控制方法是:首先单片机检测到P3.1为低电平,动磁铁被小电流保持在左端(保持也可无需电流,而是靠左端的静磁铁41对动磁铁11的吸引力保持;如果既靠静磁铁吸保持,又靠小电流保持,则能提供更大保持力);P1.4输出低电平,P1.5输出高电平,P1.2输出高电平,功率场效应管Q22、Q23和Q14导通,Q21和Q24截止,高电压VCC4对驱动模块供电,线圈21对动磁铁11产生向右吸引的电磁力,同时线圈21还对动磁铁12产生向右推的电磁力,线圈22对动磁铁12产生向右吸引的电磁力,同时还对动磁铁13产生向右推的电磁力,线圈23对动磁铁13产生向右吸引的电磁力,输出件5受到的合力方向向右,动磁铁开始向右运动;单片机监测P3.1和P3.0电平变化,当都为高电平时,表明动磁铁11接近线圈21的几何中心,动磁铁12接近线圈22的几何中心,动磁铁13接近线圈23的几何中心,P1.4和P1.5均输出高电平,线圈断电;动磁铁靠惯性越过各自对应线圈的几何中心,所需时间5毫秒左右;P1.4输出高电平,P1.5输出低电平,功率场效应管Q21和Q24导通,Q22和Q23截止,各线圈反向通电,线圈21对动磁铁11产生向右推的电磁力,线圈22对动磁铁11产生向右吸引的电磁力,线圈22对动磁铁12产生向右推的电磁力,线圈23对动磁铁12产生向右吸引的电磁力,对动磁铁13产生向右推的电磁力,总之合力向右;若需要向右比较大的合力,此时P1.2维持高电平;若需要小的合力,P1.2输出低电平;直到动磁铁运动到右端,这时检测到P3.0为低电平;为使动磁铁低电流保持在右端,P1.2输出低电平,功率场效应管Q14截止,低电压VCC1经过二极管D13对输出驱动模块供电,动磁铁受到向右的电磁力而保持在右端。同时右端的静磁铁41对动磁铁13产生的吸引力进一步增大保持力。
控制过程中还可增加超时检测报警程序,正常情况当动磁铁运动到达右端后,P3.0为低电平。如果线圈对动磁铁向右驱动经历了200毫秒,P3.0还未变为低电平,就说明运动中阻力过大或电磁力太小,动磁铁未被驱动。这时单片机P1.0输出周期为1秒的方波信号,发光二极管D15闪烁报警,同时线圈断电,等待人工处理。
凡是线圈个数等于动磁铁个数,且相邻线圈几何中心之间距离等于相邻动磁铁几何中心之间距时,相邻线圈依次反相串联连接,这种永磁体电磁驱动装置与专用控制电路的连接以及控制方法都可与实施例二完全相同。
实施例四:一种由5个线圈和3个动磁铁构成的永磁体电磁驱动装置。 图4A、图4B和图5是本实施例,图5和前者的区别在于增加了铁磁性外套100。本实施例与实施例三相比,增加了两个线圈24和25,因此,空腔0的长度增加了,行程也增加了。线圈和动磁铁的其他参数与实施例三相同。在动磁铁从一端运动到另一端的行程中,每个动磁铁要越过3个线圈,线圈电流的方向需改变多次。相邻两个线圈反相串联连接,引出线连接到专用控制电路的输出插座OUT13上。当动磁铁位于起始位置,即左端时,假定OUT13输出正向电流时,线圈21对动磁铁11产生向右的吸引力,对动磁铁12产生向右的推力;线圈22对动磁铁12产生向右的吸引力,对动磁铁13产生向右的推力;线圈23对动磁铁13产生向右的吸引力。则当OUT13输出反向电流时,各线圈对对应的动磁铁的作用力将向左。欲使动磁铁从左端运动到右端,其控制过程如下:
OUT13输出正向电流,各动磁铁受到向右的电磁力作用,开始向右运动;当动磁铁11的几何中心接近线圈21的几何中心,动磁铁12的几何中心接近线圈22的几何中心,动磁铁13的几何中心接近线圈23的几何中心时,OUT13停止输出电流,线圈断电,动磁铁靠惯性越过各自对应线圈的几何中心;OUT13输出反向电流,动磁铁11受到线圈21向右推的电磁力,受到线圈22向右吸引的电磁力,其他动磁铁也都受到对应线圈向右的电磁力,动磁铁继续向右运动;当动磁铁11的几何中心接近线圈22的几何中心,动磁铁12的几何中心接近线圈23的几何中心时,OUT13停止输出电流,线圈断电,动磁铁靠惯性越过各自接近线圈的几何中心;OUT13输出正向电流,动磁铁11受到线圈22向右推的电磁力,受到线圈23向右吸引的电磁力,此时动磁铁13受到线圈24向右推的电磁力,受到线圈25向右吸引的电磁力,动磁铁继续向右运动;当动磁铁11的几何中心接近线圈23的几何中心,动磁铁13的几何中心接近线圈25的几何中心时,线圈断电,动磁铁靠惯性越过各自所接近线圈的几何中心;OUT13输出反向电流,动磁铁13受到线圈25向右推的电磁力,其他动磁铁也继续受到向右的电磁力作用,继续向右运动,直到右端为止。到达右端后,右端的静磁铁41对动磁铁13产生吸引力而保持,若P1.2输出低电平,OUT13继续输出反向小电流,则电磁力也向右,进一步增大保持力。
凡是线圈个数比动磁铁个数多2的永磁体电磁驱动装置,其控制方法都与本实施例完全相同。
实施例五:一种由3个线圈和4个动磁铁构成的永磁体电磁驱动装置。 图6A和图6B是本实施例。除了个数不同外,线圈和动磁铁其他参数与实施例三相同。还是相邻线圈反相串联后接电路输出插座OUT13。欲使动磁铁从左端运动到右端,其控制过程如下:
OUT13输出正向电流,各动磁铁受到其右边附近线圈向右吸引的电磁力作用,同时受到其左边附近线圈向右推的电磁力作用,动磁铁开始向右运动;当动磁铁几何中心接近右边附近线圈几何中心时,线圈断电,动磁铁靠惯性越过对应线圈几何中心;OUT13输出反向电流,各动磁铁受到向右的电磁力作用继续运动;当动磁铁12的几何中心接近线圈22的几何中心时,线圈断电,动磁铁靠惯性越过对应线圈几何中心;OUT13输出正向电流,各动磁铁继续受到向右的电磁力作用而运动直到右端为止。到达右端后,右端的静磁铁41对动磁铁14的磁场力为吸引力,提供保持力。若P1.2输出低电平,OUT13继续输出正向小电流,则电磁力也向右,进一步增大保持力。
实施例六:一种由5个线圈和5个动磁铁构成的永磁体电磁驱动装置。 图7是本实施例,在空腔0的左端由弹簧4构成回复力机构。线圈不通电时,动磁铁保持在空腔的右端,右端的静磁铁41对动磁铁15产生吸引力而保持,弹簧4对动磁铁向右的弹力则提供回复力。弹簧4采用非铁磁性材料制作,输出件5可以为任意材料制作。
本装置可应用在需要脉冲撞击的领域,例如自动生产线上,次品的剔除。工作时输出件5的滑竿向左运动剔除次品,然后线圈断电,在弹簧4的回复力作用下回到右端。5个线圈依次反相串联连接,然后连接到专用控制电路的输出插座上。根据需要,如果需要较大的行程和驱动力,则连接到插座OUT13上;如果需要的行程不太大和驱动力也不太大,则连接到插座OUT1或OUT2上。以连接到插座OUT13上为例说明控制过程:首先OUT13输出正向电流,各动磁铁受到向左的电磁力作用开始向左运动,当动磁铁和对应线圈几何中心接近时断电;5毫秒后,OUT13输出反向电流,持续20毫秒后断电;在弹簧4的弹力作用下,动磁铁回到右端,等待下一次驱动。
本装置也可以按照实施例三方式工作,这里不再赘述。
最后,上述实施例仅是举例说明,由于动磁铁和线圈个数不同,组合方式不同,有限的实施例无法穷尽所有情况。所以,可以对实施例做出变更或修改,而不背离本发明的原理和实质,均落在本发明的保护范围。凡采用等同替换或等效变换的形式所获得的技术方案,均落在本发明的保护范围之内。
工业实用性
本装置可应用于需要大行程快速直线驱动领域,在驱动力要求不太大时,可替代传统汽缸驱动装置。

Claims (10)

  1. 永磁体电磁驱动装置,包含固定在基体外面的N个线圈和固定在输出件螺杆上的M个沿轴向充磁的动磁铁,动磁铁可以在基体内部的圆柱形空腔中沿轴向运动,行程为L,每个线圈都与基体内部的圆柱形空腔同轴,沿轴线方向各线圈间隔适当距离;其特征在于:相邻动磁铁在轴线上产生的磁场方向相反;线圈通电时,相邻线圈在轴线上产生的磁场方向相反;在每次驱动的行程中,至少有一个动磁铁要从一个线圈的一侧越过该线圈的几何中心到该线圈的另一侧;每个线圈长度为LN,每个动磁铁长度为LM,每个动磁铁外直径为LD,LM与LD的比值介于0.5到2.0之间,LM 与LN的比值也介于0.5到2.0之间;相邻两个线圈几何中心之间的距离等于相邻两个动磁铁几何中心之间的距离,等于L0;在行程的起始位置或终点位置,最外端的动磁铁位于最外端的线圈的外端,而且最外端的线圈几何中心与最外端的动磁铁几何中心之间的距离为LY;取LM和LN中较小者为LX,则LY≥LX;L0≥LM+LN。
  2. 根据权利要求1所述的永磁体电磁驱动装置,其特征在于:它还包含1个或多个用于检测动磁铁位置的传感器。
  3. 根据权利要求1所述的永磁体电磁驱动装置,其特征在于:它还包含由铁磁性材料构成的管状外套,套在线圈和基体的外面,并与线圈同轴。
  4. 根据权利要求1或2或3所述的永磁体电磁驱动装置,其特征在于:在装置的两端或一端安装有铁磁性盖板或静磁铁,使得动磁铁运动到该端时能吸保持。
  5. 一种控制权利要求1所述的永磁体电磁驱动装置的方法,其特征在于:根据当前线圈和动磁铁的相对位置及计划控制运动的方向判断对线圈通电及通电方向;每次动磁铁越过一个线圈几何中心后,线圈的通电方向都要改变,具体步骤及原则如下:
    (1)在动磁铁运动过程中,当某个动磁铁的几何中心距离即将到达的线圈几何中心之间的距离既小于该线圈长度LN的1/5,又小于该动磁铁长度LM的1/5时,该线圈断电;动磁铁依靠惯性继续运动并越过线圈的几何中心后,线圈反方向通电,继续对动磁铁产生驱动的电磁力作用;
    (2)线圈通电的方向应满足:对该线圈附近的动磁铁产生的电磁力方向与计划控制运动的方向相同;
    (3)在电磁力作用下,动磁铁向计划方向运动,在运动过程中随时检测或判断线圈与动磁铁之间的相对位置,并根据上述(1)(2)原则确定通电的线圈及改变通电方向,直到动磁铁运动到达目的地;
    (4)动磁铁运动到达目的地后,根据驱动装置的结构或节电要求,决定是否线圈继续通电或低电流通电保持,或者线圈断电。
  6. 根据权利要求5所述的控制方法,其特征在于:在控制过程中,还包含超时检测程序,即经过一段时间,按正常程序动磁铁应当运动到达行程的终端而实际上未到达,则说明运动中受到阻力过大或电磁力太小,动磁铁被停在途中或未被驱动;出现这种情况,或者报警,或者各线圈断电同时报警。
  7. 一种实现权利要求5的专用控制电路,其特征在于它包含:
    电源模块,它对其他各模块供电,能够为输出驱动模块短时间提供大电流,因此含有储能电容;
    单片机模块,它接收来自外部的控制信号和动磁铁位置检测模块的位置信号,执行单片机程序,向输出驱动模块发出控制信号,使其对永磁体电磁驱动装置提供正确的驱动电流;
    动磁铁位置检测模块,为单片机模块提供当前动磁铁位置信息;
    输出驱动模块,含有大功率半导体开关元件,通过大功率半导体开关元件对所控制的永磁体电磁驱动装置的线圈提供驱动电流。
  8. 根据权利要求7所述的专用控制电路,其特征在于:它还包含用于工作方式选择的跳线器和一个驱动电流检测模块;跳线器通过电阻与单片机的I/O端口连接,设置跳线器状态可改变对应I/O端口的电平;根据所驱动的永磁体电磁驱动装置线圈的个数、控制驱动方式设置跳线器的状态,使单片机根据跳线器的状态执行相应的程序;达到只用一个硬件电路就能对各种不同结构的永磁体电磁驱动装置提供相应的驱动电流;驱动电流检测模块有一个取样电阻(R58)串联在输出驱动模块与地之间,永磁体电磁驱动装置线圈中的电流等于该取样电阻中的电流;取样电阻(R58)上的电压信号经过放大后送给单片机的一个I/O端口。
  9. 根据权利要求7所述的专用控制电路,其特征在于:所述电源模块中各种不同电压的直流电源(VCC1、VCC4和VCC5)既可以由外界提供的直流电源(VCC2)变换而来,也可以由工频交流电经过常规交流变直流的电源电路得到;由直流电源(VCC1)经变换得到输出稳定的直流电压(VDD)为单片机模块和位置检测模块供电;直流电源(VCC2)经电感(L1)后成为本电路主电源(VCC1),低压储能电容(C9)并联在主电源(VCC1)和地之间;
    所述单片机模块包含多个I/O端口,其中几个I/O端口与位置检测模块连接;几个I/O端口用于产生驱动控制信号与输出驱动模块连接,I/O端口输出不同的电平,对应输出驱动通道产生不同的驱动电流;一个或两个I/O端口用于接收外部控制信号;一个或两个I/O端口用于输出报警指示,连接发光二极管或蜂鸣器;
    所述位置检测模块包含多个提供开关信号的位置传感器,这些位置传感器安装在被驱动的永磁体电磁驱动装置上;
    所述输出驱动模块包含多个输出通道,每个输出通道都能通过大功率半导体开关元件对外提供驱动电流。
  10. 根据权利要求7所述的专用控制电路,其特征在于:所述的动磁铁位置检测模块可以省掉不要。
PCT/CN2011/073860 2010-05-18 2011-05-10 永磁体电磁驱动装置、控制方法及专用控制电路 WO2011144006A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201010175164.X 2010-05-18
CN201010175164XA CN101873045B (zh) 2010-05-18 2010-05-18 大行程永磁体电磁驱动装置及其控制方法
CN201010198078.0 2010-06-11
CN201010198078A CN101873046A (zh) 2010-06-11 2010-06-11 含稳态的永磁体电磁驱动装置
CN2011100402909A CN102158038A (zh) 2011-02-18 2011-02-18 大驱动力永磁体电磁驱动装置及其控制方法
CN201110040290.9 2011-02-18
CN2011100409325A CN102111104A (zh) 2011-02-21 2011-02-21 永磁体电磁驱动装置的控制驱动电路
CN201110040932.5 2011-02-21

Publications (1)

Publication Number Publication Date
WO2011144006A1 true WO2011144006A1 (zh) 2011-11-24

Family

ID=44991192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073860 WO2011144006A1 (zh) 2010-05-18 2011-05-10 永磁体电磁驱动装置、控制方法及专用控制电路

Country Status (1)

Country Link
WO (1) WO2011144006A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762345A (zh) * 2020-06-22 2020-10-13 南京航空航天大学 一种用于集群模块拼接的多功能电磁链接机构
CN115557581A (zh) * 2022-10-28 2023-01-03 湖南岳大环保科技有限公司 一种废液再利用设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154877A (zh) * 2006-09-28 2008-04-02 村田机械株式会社 线性电动机及搭载了该线性电动机的机床
CN101404439A (zh) * 2007-10-02 2009-04-08 精工爱普生株式会社 无刷电力机械
CN101873045A (zh) * 2010-05-18 2010-10-27 蹇兴亮 大行程永磁体电磁驱动装置及其控制方法
CN101873046A (zh) * 2010-06-11 2010-10-27 蹇兴亮 含稳态的永磁体电磁驱动装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154877A (zh) * 2006-09-28 2008-04-02 村田机械株式会社 线性电动机及搭载了该线性电动机的机床
CN101404439A (zh) * 2007-10-02 2009-04-08 精工爱普生株式会社 无刷电力机械
CN101873045A (zh) * 2010-05-18 2010-10-27 蹇兴亮 大行程永磁体电磁驱动装置及其控制方法
CN101873046A (zh) * 2010-06-11 2010-10-27 蹇兴亮 含稳态的永磁体电磁驱动装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762345A (zh) * 2020-06-22 2020-10-13 南京航空航天大学 一种用于集群模块拼接的多功能电磁链接机构
CN115557581A (zh) * 2022-10-28 2023-01-03 湖南岳大环保科技有限公司 一种废液再利用设备
CN115557581B (zh) * 2022-10-28 2023-05-23 湖南岳大环保科技有限公司 一种废液再利用设备

Similar Documents

Publication Publication Date Title
JP7495536B2 (ja) 電磁切り替え可能な永久磁気装置
CN1188618C (zh) 一种自锁型电磁阀
US20130135067A1 (en) Magnet substance holder including a combination of a permanent magnet and an electromagnet
WO2012129485A2 (en) Integrated magnetics with isolated drive circuit
CN102758951B (zh) 双功率电磁头
CN107148526A (zh) 电磁阀驱动控制装置以及具备电磁阀驱动控制装置的电磁阀
CN111120716A (zh) 一种微功耗电磁阀
WO2011144006A1 (zh) 永磁体电磁驱动装置、控制方法及专用控制电路
CN109958816A (zh) 控制***、电磁阀及其控制方法
KR100944158B1 (ko) 렌즈 초점 거리 제어용 리니어 모터 및 그 제어방법
CN111564277A (zh) 一种节能型双稳式永磁保持电磁铁
CN212113342U (zh) 一种节能型双稳式永磁保持电磁铁
KR20050047671A (ko) 장행정 솔레노이드
CN2406320Y (zh) 可变换磁路双固定位置的磁铁装置
CN113500619B (zh) 电磁夹爪的控制方法、电路和电磁夹爪设备
CN213092958U (zh) 一种节能型自保持位置电磁铁
Huang et al. Research and analysis of a novel voice coil motor with wireless power supply
CN221201029U (zh) 接触器及电气设备
JP3408558B2 (ja) 直流リニアブラシレスモータの制御装置
US20230238857A1 (en) Magnetic levitation system
JPS5828074A (ja) ソレノイドバルブ
CN201982777U (zh) 交流电磁阀简易降温器
WO2020103067A1 (zh) 开关电路以及充电设备的充电电路
RU1784101C (ru) Электромагнитный привод дл дистанционного управлени
SU1163385A1 (ru) Устройство дл управлени электромагнитом

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11782923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11782923

Country of ref document: EP

Kind code of ref document: A1