WO2011139173A1 - Electrostatic method for producing graphene from graphite - Google Patents

Electrostatic method for producing graphene from graphite Download PDF

Info

Publication number
WO2011139173A1
WO2011139173A1 PCT/RU2010/000220 RU2010000220W WO2011139173A1 WO 2011139173 A1 WO2011139173 A1 WO 2011139173A1 RU 2010000220 W RU2010000220 W RU 2010000220W WO 2011139173 A1 WO2011139173 A1 WO 2011139173A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphene
crystal
potential
producing graphene
Prior art date
Application number
PCT/RU2010/000220
Other languages
French (fr)
Russian (ru)
Inventor
Андрей Яковлевич КОГАН
Original Assignee
Kogan Andrey Yakovlevich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogan Andrey Yakovlevich filed Critical Kogan Andrey Yakovlevich
Priority to PCT/RU2010/000220 priority Critical patent/WO2011139173A1/en
Publication of WO2011139173A1 publication Critical patent/WO2011139173A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation

Definitions

  • the invention relates to a technology for producing graphene. More precisely, to a method for producing cheap and pure graphene material.
  • Graphene is a two-dimensional crystal consisting of a single layer of carbon atoms assembled in a hexagonal lattice. If the layer is not single, but the number of layers is less than 10, then such a material is also often called graphene.
  • Graphene can be used as a filler in nanocomposites, and as an electrode material in supercapacitors.
  • Methods for producing graphene can be divided into three groups.
  • the mechanical separation of graphene particles from graphite Chemical breakdown of graphite or other graphite-containing materials. Synthesis of graphene particles from the gas or liquid phase.
  • the mechanical separation in the classic version is carried out manually using a sticky film. It is used to obtain individual samples of graphene, mainly for research purposes. (See, for example, K. S. Novoselov et al., Science, Vol. 306, p. 666 (2004))
  • the essence of the proposed method for producing graphene consists in the cleavage of the graphene sheet from graphite or graphite-containing material under the action of electrostatic repulsive forces.
  • graphite the individual layers are interconnected by weak van der Waals forces.
  • the adhesion forces are torn under the influence of electrostatic repulsive forces.
  • interlayer bond breaking occurs much earlier than the theoretically necessary potential is achieved.
  • the process probably proceeds according to the following scheme: when a sample of the starting material is placed on a surface charged to a high potential, the edge sections of the upper layer that are not connected with the lower layer due to local lattice dislocations on the side surfaces of the graphite crystal are bent under the action of electrostatic forces as shown in the figure 1. This leads to the discharge of charges on the bent edge and a local increase in the electric field strength, that is, to an increase in the tearing effect of the electrostatic force. When the electric potential exceeds a certain critical level for a given dislocation, the entire graphene plane detaches from the starting material, starting from the edge. Like the way we tear off tape from the surface of a roll.
  • the critical electric field strength varies over a wide range depending on the characteristics of the initial sample. It is affected by many properties of the starting material, among which: the presence of ⁇ -graphite modifications in the starting graphite, mechanical damage leading to the appearance of large dislocations at the crystal edges, preliminary chemical treatment, weakening
  • the process is proposed to be carried out in a gaseous medium, for example in air or in an inert gas. Humidity also affects process parameters. For some applications it will be more convenient to conduct the process in a vacuum.
  • the process is carried out in atmospheric air at normal pressure and humidity.
  • a source of high voltage we use the Van de Graaff electrostatic generator (figure 1).
  • a hole has been drilled in the metal sphere of the generator.
  • an initial sample for example, a graphite crystal, is slowly advanced through the hole.
  • the graphite layers are oriented perpendicular to the direction of movement of the crystal.
  • the sample is electrically connected to the sphere.
  • the concentration of charges on it increases to concentration on the surface of the sphere.
  • the charges are affected by the electrostatic repulsion force, under which one or more atomic layers are split off from the sample of the starting material and fly away along the lines of the electric field in the direction of the nearest grounded or charged surface with the opposite sign.
  • the entire crystal passes through a hole in the sphere and splits into very thin layers, usually into one atomic layer.
  • the finished product is collected from a grounded surface separated from the sphere by a distance sufficient to prevent electrical breakdown.
  • the resulting graphene can be deposited on an insulating plate, for example
  • the surface of which is charged with the opposite sign.
  • the surface is covered with a monolayer of the product, which may be useful, for example, in the manufacture of conductive glasses or monitor screens.
  • the potential needed to start the process depends on the properties of the initial crystal.
  • chemical and physical methods can be used: ultrasound, mechanical friction, acid intercalation, and others. Therefore, the critical value of the electric potential varies over wide aisles.
  • the critical potential is in the range of 1.2 to 8 MB.
  • An ideal graphite sample would require an order of magnitude greater potential. If you use additional methods to stimulate cleavage, you can reduce the critical potential to a range of 0.2 - 1.2 MB.
  • the use of dried air can increase the achievable potentials. Alternatively, this process can be carried out in vacuum, or in an inert gas.

Abstract

What is proposed is: a method for producing graphene from graphite. The essence of the method consists in separating off monolayers from a graphite crystal under the action of an electrostatic repulsive force acting when an electrical potential of several million volts is applied to the crystal. A sufficient potential can be produced by a Van de Graaff generator. In this case, the graphite monocrystal is passed slowly through an opening in the sphere of the generator. The separated-off layers are collected on a grounded conducting surface or on a non-conducting surface which is positively charged. A second variant makes it possible to produce a monolayer of graphene on a large surface of a non-conducting plate. The method is characterized by a pure end product, by the simplicity and cost-effectiveness, by the environmental friendliness, and by the lack of any harmful waste products. The graphene produced according to the proposed method is intended for use in electronics, instrument-making and nanotechnologies.

Description

Электростатический способ получения графена из графита  Electrostatic method for producing graphene from graphite
Уровень техники. The prior art.
Изобретение относится к технологии получения графена. Точнее, к способу получения дешевого и чистого графенового материала.  The invention relates to a technology for producing graphene. More precisely, to a method for producing cheap and pure graphene material.
Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решетку. Если слой не одиночный, но количество слоев менее 10, то такой материал также часто называют графеном.  Graphene is a two-dimensional crystal consisting of a single layer of carbon atoms assembled in a hexagonal lattice. If the layer is not single, but the number of layers is less than 10, then such a material is also often called graphene.
Графены могут обладать многими ценными свойствами: высокой Graphenes can have many valuable properties: high
электропроводностью, теплопроводностью, механической прочностью, гибкостью, что делает этот материал перспективным для электроники, приборостроения. Графен можно использовать в качестве наполнителя в нанокомпозитах, и как электродный материал в суперконденсаторах. electrical conductivity, thermal conductivity, mechanical strength, flexibility, which makes this material promising for electronics, instrument making. Graphene can be used as a filler in nanocomposites, and as an electrode material in supercapacitors.
Способы получения графенов можно разделить на три группы. Механическое отделение графеновых частиц от графита. Химическое расщепление графита или других графитосодержащих материалов. Синтез графеновых частиц из газовой или жидкой фазы.  Methods for producing graphene can be divided into three groups. The mechanical separation of graphene particles from graphite. Chemical breakdown of graphite or other graphite-containing materials. Synthesis of graphene particles from the gas or liquid phase.
Механическое отделение в классическом варианте проводится вручную при помощи липкой пленки. Используется для получения отдельных образцов графена, в основном с исследовательскими целями. (См., например, К. С. Новоселов и др.., Science, Vol. 306, стр. 666 (2004))  The mechanical separation in the classic version is carried out manually using a sticky film. It is used to obtain individual samples of graphene, mainly for research purposes. (See, for example, K. S. Novoselov et al., Science, Vol. 306, p. 666 (2004))
Химическое расщепление графита проводят путем внедрения в межплоскосное пространство графита кислоты (обычно серной) и последующей тепловой обработки. Например: Хонгвей Жу (Hongwei Zhu) из Университета Циньхуа описал  Chemical splitting of graphite is carried out by introducing acid (usually sulfuric) into the interplanar space of graphite and subsequent heat treatment. For example: Hongwei Zhu from Tsinhua University described
трехстадийный метод получения графена из червеобразного расширенного графита, включающий, обработку графита серной кислотой, которая «раздвигает» слои графита. Серная кислота продолжает скреплять эти слои в виде целостной системы. Нагрев графита, импрегнированного серной кислотой, приводит к разложению серной кислоты и дальнейшему увеличению расстояния между слоями. На последней стадии материал расшелушивали с помощью ультразвука и разделяли слои графена с помощью ультрацентрифугирования. (См., J. Mater. Chem., 2009, 19, 3367, DOI: a three-stage method for producing graphene from vermiform expanded graphite, including the treatment of graphite with sulfuric acid, which "spreads" the layers of graphite. Sulfuric acid continues to hold these layers together in a holistic system. Heating graphite impregnated with sulfuric acid leads to decomposition of sulfuric acid and a further increase in the distance between the layers. At the last stage, the material was peeled using ultrasound and graphene layers were separated by ultracentrifugation. (See, J. Mater. Chem., 2009, 19, 3367, DOI:
10.1039/b904093p.) 10.1039 / b904093p.)
Сущность изобретения. SUMMARY OF THE INVENTION
Сущность предлагаемого метода получения графена, заключается в отщеплении графенового листа от графита или графитосодержащего материала под действием электростатических сил отталкивания. В графите отдельные слои связаны между собой слабыми Ван-дер-Ваальсовыми силами. При достижении напряженности электрического поля критического уровня, силы сцепления рвутся под воздействием электростатических сил отталкивания. В реальном процессе разрыв межслоевых связей наступает значительно раньше, чем достигается теоретически необходимый потенциал. Вероятно процесс протекает по следующей схеме: когда образец исходного материала помещают на заряженную до высокого потенциала поверхность, краевые участки верхнего слоя, не связанные с нижним слоем из-за локальных дислокаций решетки на боковых поверхностях графитового кристалла, отгибаются под действием электростатических сил как показано на фигуре 1. Это приводит к стеканию зарядов на отогнутый край и локальному увеличению напряженности электрического поля, то есть к усилению отрывающего эффекта электростатической силы. При превышении электрического потенциала выше некоторого критического для данной дислокации уровня, вся графеновая плоскость отрывается от исходного материала, начиная от края. Наподобие того, как мы отрываем скотч от поверхности рулона. Оторванный лист под действием электростатических сил отдаляется от исходного образца, и процесс повторяется для последующих слоев. Величина критической напряженности электрического поля варьируется в широком диапазоне в зависимости от характеристик исходного образца. На нее влияют многие свойства исходного материала, среди которых: наличие β-графит модификации в исходном графите, механические повреждения, приводящие к появлению больших дислокаций на краях кристалла, предварительная химическая обработка, ослабляющая The essence of the proposed method for producing graphene consists in the cleavage of the graphene sheet from graphite or graphite-containing material under the action of electrostatic repulsive forces. In graphite, the individual layers are interconnected by weak van der Waals forces. When the electric field reaches a critical level, the adhesion forces are torn under the influence of electrostatic repulsive forces. In a real process, interlayer bond breaking occurs much earlier than the theoretically necessary potential is achieved. The process probably proceeds according to the following scheme: when a sample of the starting material is placed on a surface charged to a high potential, the edge sections of the upper layer that are not connected with the lower layer due to local lattice dislocations on the side surfaces of the graphite crystal are bent under the action of electrostatic forces as shown in the figure 1. This leads to the discharge of charges on the bent edge and a local increase in the electric field strength, that is, to an increase in the tearing effect of the electrostatic force. When the electric potential exceeds a certain critical level for a given dislocation, the entire graphene plane detaches from the starting material, starting from the edge. Like the way we tear off tape from the surface of a roll. Under the action of electrostatic forces, the torn sheet moves away from the initial sample, and the process is repeated for subsequent layers. The critical electric field strength varies over a wide range depending on the characteristics of the initial sample. It is affected by many properties of the starting material, among which: the presence of β-graphite modifications in the starting graphite, mechanical damage leading to the appearance of large dislocations at the crystal edges, preliminary chemical treatment, weakening
межслоевую связь в кристалле и прочие. interlayer communication in a crystal and others.
В процессе возможно использование различных исходных графитосодержащих материалов: природного графита, синтетического графита, высоко пиролитического графита, оксида графита, фторида графита или углеродного волокна, графита и углеродных нановолокон, или их сочетание.  In the process, it is possible to use various initial graphite-containing materials: natural graphite, synthetic graphite, highly pyrolytic graphite, graphite oxide, graphite fluoride or carbon fiber, graphite and carbon nanofibers, or a combination thereof.
Процесс предлагается проводить в газовой среде, например в воздухе или в инертном газе. Влажность воздуха также влияет на параметры процесса. Для некоторых применений удобнее будет вести процесс в вакууме.  The process is proposed to be carried out in a gaseous medium, for example in air or in an inert gas. Humidity also affects process parameters. For some applications it will be more convenient to conduct the process in a vacuum.
Отдельный вопрос - проведение процесса в жидкости. Теоретически проведение процесса в неэлектропроводящей жидкости обещает дать интересные результаты. В этом случае в результате процесса расщепления будет получена взвесь или раствор графена в жидкой фазе. Но реальных экспериментов в жидкой среде не проводилось. Полярность электрического потенциала на образце может быть любая, но A separate issue is the process in liquid. Theoretically, the process in a non-conductive fluid promises to give interesting results. In this case, as a result of the splitting process, a suspension or solution of graphene in the liquid phase will be obtained. But real experiments in a liquid medium were not carried out. The polarity of the electric potential on the sample can be any, but
предпочтительнее подавать на образец положительное напряжение, так как в этом случае технически проще достичь больших напряженностей электрического поля. Пример воплощения. it is preferable to apply a positive voltage to the sample, since in this case it is technically easier to achieve high electric field strengths. An example of embodiment.
Процесс проводят в атмосферном воздух при нормальном давлении и влажности. В качестве источника высокого напряжения используем электростатический генератор Ван де Граафа (фигура 1). В металлической сфере генератора просверлено отверстие. Изнутри сферы, по радиусу, в направлении к поверхности, через отверстие медленно продвигают исходный образец, например кристалл графита. Причем слои графита ориентированы перпендикулярно направлению перемещения кристалла. Образец электрически соединен со сферой. Когда передняя грань кристалла достигает поверхности сферы, концентрация зарядов на ней возрастает до концентрации на поверхности сферы. На заряды действует сила электростатического отталкивания, под действием которой один или несколько атомарных слоев отщепляются от образца исходного материала и отлетают прочь по линиям напряженности электрического поля в направлении ближайшей заземленной или заряженной противоположным знаком поверхности. По мере выдвижения образца весь кристалл проходит через отверстие в сфере и расщепляется на очень тонкие слои, обычно в один атомарный слой. Готовый продукт собирают с заземленной поверхности, отстоящей от сферы на расстояние достаточное для предотвращения электрического пробоя. Как вариант, можно осаждать полученный графен на изолирующей пластине, например  The process is carried out in atmospheric air at normal pressure and humidity. As a source of high voltage, we use the Van de Graaff electrostatic generator (figure 1). A hole has been drilled in the metal sphere of the generator. Inside the sphere, along the radius, towards the surface, an initial sample, for example, a graphite crystal, is slowly advanced through the hole. Moreover, the graphite layers are oriented perpendicular to the direction of movement of the crystal. The sample is electrically connected to the sphere. When the front face of the crystal reaches the surface of the sphere, the concentration of charges on it increases to concentration on the surface of the sphere. The charges are affected by the electrostatic repulsion force, under which one or more atomic layers are split off from the sample of the starting material and fly away along the lines of the electric field in the direction of the nearest grounded or charged surface with the opposite sign. As the sample advances, the entire crystal passes through a hole in the sphere and splits into very thin layers, usually into one atomic layer. The finished product is collected from a grounded surface separated from the sphere by a distance sufficient to prevent electrical breakdown. Alternatively, the resulting graphene can be deposited on an insulating plate, for example
стеклянной, поверхность которой заряжена противоположным знаком. В этом случае поверхность покрывается монослоем продукта, что может быть полезно, например, при изготовлении проводящих стекол или экранов мониторов. glass, the surface of which is charged with the opposite sign. In this case, the surface is covered with a monolayer of the product, which may be useful, for example, in the manufacture of conductive glasses or monitor screens.
Так как отрыв графеновой поверхности происходит не одновременно, а начинается с края листа или локальной дислокации, то потенциал, нужный для начала процесса, зависит от свойств исходного кристалла. Для понижения критического потенциала можно использовать химические и физические методы: ультразвук, механическое трение, интеркаляция кислот и другие. Поэтому критическая величина электрического потенциала варьирует в широких приделах. Предпочтительно, когда критический потенциал в пределах от 1.2 до 8 MB. Для идеального образца графита потребовался бы на порядок больший потенциал. Если использовать дополнительные способы стимулирования отщепления, можно снизить критический потенциал до диапазона 0,2 - 1.2 MB. Использование осушенного воздуха позволяет повысить достижимые потенциалы. Как вариант, этот процесс можно проводить в вакууме, или в инертном газе. Since graphene surface detachment does not occur simultaneously, but begins from the edge of a sheet or a local dislocation, the potential needed to start the process depends on the properties of the initial crystal. To lower the critical potential, chemical and physical methods can be used: ultrasound, mechanical friction, acid intercalation, and others. Therefore, the critical value of the electric potential varies over wide aisles. Preferably, when the critical potential is in the range of 1.2 to 8 MB. An ideal graphite sample would require an order of magnitude greater potential. If you use additional methods to stimulate cleavage, you can reduce the critical potential to a range of 0.2 - 1.2 MB. The use of dried air can increase the achievable potentials. Alternatively, this process can be carried out in vacuum, or in an inert gas.
Возможно проведение процесса в электроизолирующей жидкости, например в трансформаторном масле или в сжиженном инертном газе азоте, аргоне или другом сжиженном газе. Применение жидкой среды позволяет избежать пробоя при более высоких потенциалах на поверхности. It is possible to conduct the process in an electrically insulating liquid, for example, in transformer oil or in a liquefied inert gas, nitrogen, argon or other liquefied gas. The use of a liquid medium allows avoiding breakdown at higher potentials on the surface.

Claims

Формула изобретения: Claim:
1. Способ получения графена путем расщепления графита отличающийся тем, что для расщепления, используют электростатические силы отталкивания, для чего исходный кристалл графита заряжают до потенциала более 200 тысяч Вольт, обычно от 2 до 10 миллионов Вольт, причем допускается  1. The method of producing graphene by splitting graphite characterized in that for splitting, using electrostatic repulsive forces, for which the initial graphite crystal is charged to a potential of more than 200 thousand volts, usually from 2 to 10 million volts, and it is allowed
использование потенциалов от 10 до 100 миллионов Вольт.  use of potentials from 10 to 100 million volts.
2. Способ по п.1 характеризуется тем, что процесс проводят в одной из  2. The method according to claim 1 is characterized in that the process is carried out in one of
следующих сред: в атмосферном воздухе, в инертном газе, в изолирующей жидкости, в сжиженном инертном газе или в вакууме.  the following environments: in atmospheric air, in an inert gas, in an insulating liquid, in a liquefied inert gas or in vacuum.
PCT/RU2010/000220 2010-05-04 2010-05-04 Electrostatic method for producing graphene from graphite WO2011139173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2010/000220 WO2011139173A1 (en) 2010-05-04 2010-05-04 Electrostatic method for producing graphene from graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2010/000220 WO2011139173A1 (en) 2010-05-04 2010-05-04 Electrostatic method for producing graphene from graphite

Publications (1)

Publication Number Publication Date
WO2011139173A1 true WO2011139173A1 (en) 2011-11-10

Family

ID=44903870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2010/000220 WO2011139173A1 (en) 2010-05-04 2010-05-04 Electrostatic method for producing graphene from graphite

Country Status (1)

Country Link
WO (1) WO2011139173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787445A (en) * 2012-07-18 2012-11-21 上海大学 Method of preparing porous graphene film by using electrostatic spray process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258359A1 (en) * 2007-04-17 2008-10-23 Aruna Zhamu Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258359A1 (en) * 2007-04-17 2008-10-23 Aruna Zhamu Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOVOSELOV K.S. ET AL.: "Electric field effect in atomically thin carbon films", SCIENCE, vol. 306, 2004, pages 666 - 669 *
SIDOROV ANTON N. ET AL.: "Electrostatic deposition of graphene", NANOTECHNOLOGY, vol. 18, no. 12, 2007, pages 1 - 4, Retrieved from the Internet <URL:http://www.nanoarchive.org/189/1/nano7_13_135301.pdf> [retrieved on 20101102] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787445A (en) * 2012-07-18 2012-11-21 上海大学 Method of preparing porous graphene film by using electrostatic spray process

Similar Documents

Publication Publication Date Title
Sidorov et al. Electrostatic deposition of graphene
Pu et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite
Wang et al. A water-dielectric capacitor using hydrated graphene oxide film
JP6044934B2 (en) Method for producing graphene
Kim et al. Direct transfer of wafer-scale graphene films
Carotenuto et al. Graphene-polymer composites
Ageev et al. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy
Wang et al. Synthesis of graphene nanosheets by the electrical explosion of graphite powder confined in a tube
Luo et al. Folding and Fracture of Single‐Crystal Graphene Grown on a Cu (111) Foil
US7790242B1 (en) Method for electrostatic deposition of graphene on a substrate
Chan et al. Tailoring mechanical and electrical properties of graphene oxide film for structural dielectric capacitors
CN108349727B (en) Production of graphene
Kedambaimoole et al. Electric spark induced instantaneous and selective reduction of graphene oxide on textile for wearable electronics
WO2011139173A1 (en) Electrostatic method for producing graphene from graphite
US20080241422A1 (en) Method for aerosol synthesis of carbon nanostructure under atmospheric pressure
Li et al. Molybdenum disulfide dc contact MEMS shunt switch
Wang Progress on preparation of graphene and its application
KR20140142455A (en) Transfer and adhesion technology of nano thin film
Vishnyakova et al. Structural studies of hydrographenes
Mishra Graphene-Based Fibers and their Application in Advanced Composites System
US8516853B2 (en) Method of fastening lamellae of a lamellar material on a suitable substrate
CA2837394A1 (en) Electro-magneto-chemical synthesis of few or multi-layers magnetic graphene, and graphene oxide and uses thereof
Shakya et al. Defects-assisted piezoelectric response in liquid exfoliated MoS2 nanosheets
Hong et al. Simple, effective fabrication of layered carbon nanotube/graphene hybrid field emitters by electrophoretic deposition
Ni’maturrohmah et al. Copper-graphene composite: electrochemical synthesis and structural characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851104

Country of ref document: EP

Kind code of ref document: A1