WO2011138974A1 - Reinforcing material for biological glue, and process for production thereof - Google Patents

Reinforcing material for biological glue, and process for production thereof Download PDF

Info

Publication number
WO2011138974A1
WO2011138974A1 PCT/JP2011/061008 JP2011061008W WO2011138974A1 WO 2011138974 A1 WO2011138974 A1 WO 2011138974A1 JP 2011061008 W JP2011061008 W JP 2011061008W WO 2011138974 A1 WO2011138974 A1 WO 2011138974A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
glue
fiber molded
reinforcing material
biological
Prior art date
Application number
PCT/JP2011/061008
Other languages
French (fr)
Japanese (ja)
Inventor
勧 本多
由佳子 景山
真 佐竹
博章 兼子
澄香 宮柱
Original Assignee
帝人株式会社
一般財団法人化学及血清療法研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社, 一般財団法人化学及血清療法研究所 filed Critical 帝人株式会社
Priority to JP2012513839A priority Critical patent/JP5479584B2/en
Publication of WO2011138974A1 publication Critical patent/WO2011138974A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0094Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body

Definitions

  • the present invention relates to a bioglue reinforcing material comprising a fiber-molded body of a bioabsorbable polymer, a method for producing the same, and an artificial biofilm made of the reinforcing material and biopaste.
  • the reinforcing material for living body paste is made of a fine fiber molded body having no through-hole larger than a specific size and can be combined with the living body glue on the living body membrane.
  • This artificial biological thin film is preferably used as a prosthetic substitute dura mater, an adhesion prevention material, a hemostatic material, etc., as a medical article, especially as a protective material, covering material, or sealing material for an organ surface or wound site.
  • the needle hole once opened is difficult to close, and when the tension is applied, the needle hole through which the thread passes may be stretched, and cerebrospinal fluid is likely to leak from the needle hole. It was. Therefore, a filling method in which fibrin glue is applied to the suture portion of the artificial substitute dura is employed.
  • the artificial substitute dura mater is mainly composed of a polymer compound of PTFE (polytetrafluoroethylene), so that it has a low affinity with fibrin glue and cannot completely close the needle hole. ing.
  • 11-309151 describes that a bioabsorbable woven fabric impregnated with an aqueous solution of a biological glue precursor is used as a filling material for a suture portion in order to solve the problem of the filling method. .
  • the invention since it is limited to use as a filling material / reinforcing material at the suture site, the invention has not led to the invention of an artificial substitute dura mater that does not require suture.
  • Seam Dura registered trademark: Gunze Co., Ltd.
  • sutures are necessary to prevent liquid leakage, which is troublesome for the operator. Therefore, an artificial substitute dura mater that does not require suturing and has high affinity with fibrin glue has been desired.
  • Japanese Patent Application Laid-Open No. 2004-089361 describes an artificial substitute dura mater in which the surface of PTFE is modified by an ion beam to improve the affinity with a biological tissue adhesive (fibrin glue) and a method for producing the same. . Although it has become possible to use without stitching due to the increased affinity with fibrin glue, the non-degradability of PTFE has not changed, leaving the problem of remaining permanently in the body.
  • Japanese Patent Application Laid-Open No. 2002-204826 discloses an artificial living body in which a bioabsorbable and / or biodegradable synthetic fiber cloth having a network structure of 0.1 mm 2 to 25 mm 2 is coated with a membrane mainly composed of fibrin fibers. A thin film is described.
  • WO2006 / 025150 uses an intestinal defect occlusion device made of polyglycolic acid felt and fibrin glue so that it can be used for occlusion of an intestinal defect without suturing. It is described that generation
  • bioabsorbable fibers are composed of submillimeter-order fiber bundles in which single fibers are bundled, so it is difficult to completely eliminate such a coarse network structure.
  • a bioabsorbable fiber material ultrafine fibers called nanofibers have recently been studied.
  • the bioabsorbable aliphatic polyester is an electrospinning method (also called an electrostatic spinning method or an electrospinning method). It is known that biodegradable ultrafine fibers having a fiber diameter smaller than a few micrometers can be obtained by a method for producing ultrafine fibers called)).
  • Nanofibers produced by electrospinning have the advantage of being able to easily create yarns with a smaller fiber diameter than conventional molding methods.
  • the adhesion to cells and proteins is increased. Therefore, application to a carrier for cell culture and a scaffold material for regenerative medicine is being studied.
  • fine fiber molded articles obtained by electrospinning especially those made of hydrophobic aliphatic polyesters, have poor hydrophilicity, and when used in a hydrophilic environment, mutual interaction with cells and proteins. It has a problem that its action is limited, and has not been studied as a reinforcing material for biological glue.
  • the problem to be solved by the present invention is to provide a reinforcing material for biological glue that can be uniformly and easily combined with biological glue, particularly on a biological membrane. Moreover, the subject which this invention tends to solve is providing the manufacturing method of this reinforcing material for biological glue. Furthermore, the problem to be solved by the present invention is to provide an artificial biological thin film uniformly combined with biological paste.
  • the present inventors have found that a fine fiber molded body having no through-hole larger than a specific size is combined with a biological glue having excellent adhesion on a biological membrane. The inventors have found that a biological thin film can be produced, and have completed the present invention.
  • a fine fiber molded body made of a bioabsorbable polymer typified by an aliphatic polyester produced by electrospinning has a high specific surface area and high adhesion to cells and proteins. Because of its lack, it has never been studied as a reinforcing material for biological glue such as fibrin glue.
  • biological glue such as fibrin glue.
  • the present inventors have found that a fine fiber molded body made of an aliphatic polyester has high adhesiveness with a biological paste despite having low hydrophilicity, and has no through-hole.
  • a uniform artificial biological thin film can be formed, that is, a uniform regenerated tissue can be formed.
  • the present invention consists of a fiber molded body made of bioabsorbable polymer fibers having an average fiber diameter of 0.1 to 10 ⁇ m, a thickness of 10 to 150 ⁇ m, and having no through-holes of 0.01 mm 2 or more. It is a reinforcing material for biological glue. Moreover, this invention is a method of manufacturing the said reinforcing material for biological glue including the process of obtaining a fiber molded object by an electrospinning method, and the process of heat-processing this fiber molded object. Furthermore, the present invention is an artificial biological thin film comprising the biological glue reinforcing material and the biological glue, wherein at least a part of the biological glue reinforcing material is coated with the biological glue.
  • FIG. 1 is an electron micrograph of a sheet-like fiber molded body obtained in Example 2.
  • FIG. 2 is a photograph of a HE-stained specimen of a specimen obtained by autopsy after one month after placing the artificial biological membrane obtained in Example 3 on the beagle cerebrum so that the fibrin gel layer is on the brain parenchyma side.
  • FIG. 3 is a photograph of a HE-stained specimen of a specimen obtained by autopsy after one month after placing the artificial biological membrane obtained in Example 3 on a beagle cerebrum so that the fibrin gel layer is on the brain parenchyma side.
  • the fiber molded body refers to a three-dimensional molded body formed from one or a plurality of fibers by lamination, weaving, knitting, or other methods.
  • a specific preferred form of the fiber molded body for example, a non-woven fabric can be mentioned, and a tube, a mesh and the like processed based on the nonwoven fabric can be preferably used in the field of regenerative medicine, and are included in the fiber molded body in the present invention.
  • the average fiber diameter of the fibers constituting the fiber molded body is 0.1 to 10 ⁇ m. An average fiber diameter of less than 0.1 ⁇ m is not preferable because the strength of the fiber molded body cannot be maintained.
  • the average fiber diameter is larger than 10 ⁇ m, the specific surface area of the fiber is small, and the number of cells to be engrafted is not preferable. More preferably, the average fiber diameter is 0.2 to 10 ⁇ m.
  • a fiber diameter represents the diameter of a fiber cross section.
  • the shape of the fiber cross section is not limited to a circle, and may be an ellipse or an irregular shape. With respect to the fiber diameter in this case, the average of the length in the major axis direction and the length in the minor axis direction of the ellipse is calculated as the fiber diameter. When the fiber cross section is neither circular nor elliptical, the fiber diameter is calculated by approximating a circle or ellipse.
  • the fiber molded body is a fiber molded body that does not have a through hole having a surface opening area of 0.01 mm 2 or more.
  • a through-hole of 0.01 mm 2 or more when a reinforcing material and biological paste are combined on a biological membrane, a uniform composite membrane cannot be obtained by permeation of body fluid or cerebrospinal fluid, It is not preferable.
  • the penetration of body fluid and cerebrospinal fluid lowers the biopaste concentration, which is not preferable because a substitute biomembrane with sufficient strength cannot be formed.
  • tissue regeneration proceeds non-uniformly. Conventionally, webs, knits, meshes, etc.
  • bioabsorbable fibers have submillimeter order fiber bundles in which single fibers are bundled to form a net in a mesh structure, and there are submillimeter order through holes. It was difficult to eliminate the through hole.
  • the mesh portion and the through-hole portion do not have a loose and dense structure of biological paste, and tissue regeneration does not proceed unevenly.
  • tissue regeneration does not proceed unevenly.
  • the disadvantage that it is very weak against irritation such as piercing has been solved.
  • the fiber molded body used in the present invention preferably has an average surface pore area of 10 to 500 ⁇ m 2 .
  • 30 points were selected at random from photographs obtained by photographing the surface of the fiber molded body with a scanning electron microscope (Keyence Co., Ltd .: trade name “VE8800”) at a magnification of 30 to 200 times. The hole area was measured, and the average value was obtained as the average hole area.
  • the average surface opening area is smaller than 10 ⁇ m 2 , the biopaste impregnation property is insufficient, and sufficient adhesion with the biopaste cannot be obtained, which is not preferable.
  • the average surface opening area is larger than 500 ⁇ m 2, it is not preferable because sufficient strength of the fiber molded body cannot be obtained.
  • the fiber molded body used in the present invention has continuous holes from the front surface to the back surface, but is formed through a curved path, so when a composite thin film with biological glue is prepared, It does not have a sparse / dense structure and has excellent uniformity. Therefore, tissue regeneration can also proceed uniformly. Moreover, it has the characteristic that it is very strong with respect to irritation
  • the thickness of the fiber molded body used in the present invention is 10 to 150 ⁇ m. When it is smaller than 10 ⁇ m, it is not preferable because sufficient strength cannot be obtained. When it is larger than 150 ⁇ m, transparency is insufficient when it is combined with biological paste and used as an artificial biological thin film.
  • the thickness of the fiber molded body is more preferably 25 ⁇ m to 150 ⁇ m, still more preferably 50 to 150 ⁇ m.
  • the bio-glue reinforcing material comprising the fiber molded body used in the present invention is devitrified when the bio-glue is not coated, but after the bio-glue is coated and impregnated, the transparency is improved, and the artificial bio Even after covering the defect site as a thin film, the inside can be observed, and the visibility is excellent.
  • the basis weight of the fiber molded body in the present invention is preferably 1 to 30 g / m 2 . When the basis weight of the fiber molded body is less than 1 g / m 2 , it is not preferable because sufficient strength cannot be obtained.
  • the basis weight of the fiber molded body is larger than 30 g / m 2, inflammation due to the acid component decomposed from the bioabsorbable polymer is not preferable.
  • webs, knits, meshes, and the like that have been used as bioabsorbable fibers have a large basis weight, so that a large amount of decomposed inflammation-inducing components are generated.
  • the degree of inflammation is affected by the person, degradation rate, use environment, etc., it is needless to say that it is preferable that the amount of inflammation-inducing component generated is small.
  • the porosity of the fiber molded body used in the present invention is preferably 40 to 90%.
  • the bioabsorbable (or biodegradable) polymer used in the present invention is preferably an aliphatic polyester.
  • bioabsorbable polymers include polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polycaprolactone, polyglycerol sebacic acid, polyhydroxyalkanoic acid, polybutylene succinate, and the like. These copolymers and derivatives can be exemplified.
  • the polylactic acid copolymer has few monomer components imparting stretchability.
  • the monomer component that imparts stretchability include caprolactone monomer, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,4-butanediol, and polycaprolactone.
  • soft components such as diols, polyalkylene carbonate diols, and polyethylene glycol units.
  • the soft components are preferably less than 20% by weight based on the polymer. When there is more soft component than this, it becomes easy to lose self-supporting property, and it becomes a fiber molded body which is too soft and difficult to handle.
  • the monomer constituting the polymer in polylactic acid may be either L-lactic acid or D-lactic acid. There are no particular restrictions on the optical purity or molecular weight of the polymer, the composition ratio of the L-form and the D-form, and the arrangement, but a polymer having many L-forms is preferred. There is no problem using a stereocomplex of poly L lactic acid and poly D lactic acid.
  • the weight average molecular weight of the polymer is preferably 1 ⁇ 10 3 to 5 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 , and further preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 . is there. Further, the terminal structure of the polymer and the catalyst for polymerizing the polymer can be arbitrarily selected. When the weight average molecular weight of the polymer is smaller than 1 ⁇ 10 3 , the strength of the obtained fiber molded body is insufficient, and it is not preferable because a thin sheet is hardly obtained.
  • the weight average molecular weight of the polymer is larger than 5 ⁇ 10 6 , it is not preferable because the viscosity of the polymer solution becomes high and the moldability becomes poor when a fiber molded body is obtained.
  • the fiber molded body used in the present invention may be used in combination with other polymers and other compounds as long as the purpose is not impaired.
  • the polymer preferably has a high purity.
  • the amount of residues such as additives, plasticizers, residual catalysts, residual monomers, and residual solvents used in molding and post-processing is small.
  • the biopaste in the present invention is not particularly limited, but among the adhesives excellent in biocompatibility used for surgery and the like, particularly the adhesive that is converted into fibroblasts over time in vivo. Is preferably used. Such biopaste preferably exhibits adhesive ability by a rapid biochemical reaction by mixing a plurality of components. For this reason, biopaste is generally known as a combination of a biopaste precursor and a specific additional component that chemically converts it into biopaste.
  • the biopaste precursor is a pre-stage of biochemical reaction in the biopaste as described above, and does not have an adhesive ability by itself.
  • the biological paste used in the present invention is not particularly limited as long as it meets the above definition.
  • it is at least one selected from the group consisting of fibrin glue, gelatin adhesive, cellulose preparation, collagen adhesive, chitosan adhesive, alginic acid preparation, etc., or a mixture of two or more of these. Is preferred.
  • fibrin glue or gelatin-based adhesive is preferred, and fibrin glue is more preferred from the applicability of the artificial biological thin film provided by the present invention.
  • the fibrin glue used in the present invention include fibrinogen lyophilized powder, fibrinogen lyophilized powder, fibrinogen lysate, thrombin lyophilized powder, and thrombin lysate which are precursors of fibrin glue.
  • Fibrin glue is a physiological tissue adhesive that utilizes the final stage of blood coagulation, and fibrinogen contained in it becomes a soluble fibrin clot by the action of thrombin, and blood coagulation factor XIII activated by thrombin in the presence of calcium ions To form a stable insoluble urea fibrin clot with physical strength and adhere and close the tissue.
  • fibrin clot for example, fibroblasts proliferate, collagen fibers and granulation matrix components are produced, and are cured through tissue repair.
  • fibrin glue examples include Bolheel (registered trademark: manufactured by Chemical and Serum Therapy Research Institute), Veriplast (registered trademark: manufactured by CSL Behring), and the like.
  • the fiber molded body used in the present invention may further contain a second component other than the bioabsorbable polymer.
  • the components include, for example, FGF (fibroblast growth factor), EGF (epidermal growth factor), PDGF (platelet-derived growth factor), TGF- ⁇ ( ⁇ -type transforming growth factor), NGF (nerve growth factor), HGF Cell growth factors such as (hepatocyte growth factor) and BMP (bone formation factor) can be mentioned.
  • the fibers of the fiber molded body are made of long fibers.
  • long fiber refers to a fiber molded body that is formed without adding a fiber cutting step in the process from spinning to processing into a fiber molded body.
  • Electrospinning method and spunbonding method It can be formed by a melt blow method or the like. Of these, the electrospinning method is preferably used.
  • the electrospinning method is the same in principle as a method called an electrostatic spinning method or an electrospray method, and these are also included in the electrospinning method referred to in the present invention.
  • the electrospinning method is a method of obtaining a fiber molded body on an electrode by applying a high voltage to a solution in which a polymer is dissolved in a solvent.
  • the steps include a step of producing a solution by dissolving a polymer in a solvent, a step of applying a high voltage to the solution, a step of ejecting the solution, and evaporating the solvent from the ejected solution to form a fiber molded body.
  • the step of producing a solution by dissolving a polymer in a solvent in the electrospinning method will be described.
  • the concentration of the bioabsorbable polymer with respect to the solvent in the solution is preferably 1 to 30% by weight. If the concentration of the bioabsorbable polymer is less than 1% by weight, it is not preferable because the concentration is too low, making it difficult to form a fiber molded body. On the other hand, if it is larger than 30% by weight, the fiber diameter of the resulting fiber molded body is undesirably large.
  • the concentration of the bioabsorbable polymer with respect to the solvent in the solution is more preferably 2 to 20% by weight.
  • a solvent may be used individually by 1 type and may be used combining several solvent.
  • the solvent is not particularly limited as long as it can dissolve the bioabsorbable polymer and can evaporate at the spinning stage to form a fiber.
  • solvent mixtures of include solvent mixtures of.
  • dichloromethane and ethanol are preferably used in view of handling properties and physical properties.
  • a step of applying a high voltage to the solution, a step of ejecting the solution, and a step of evaporating the solvent from the ejected solution to form a fiber molded body will be described.
  • the method of applying a voltage is not particularly limited as long as the solution in which the bioabsorbable polymer is dissolved is ejected and a fiber molded body is formed, but the method of inserting the electrode into the solution and applying the voltage, There is a method of applying a voltage to the solution ejection nozzle.
  • An auxiliary electrode can be provided separately from the electrode applied to the solution.
  • the value of the applied voltage is not particularly limited as long as the fiber molded body is formed, but a range of 5 to 50 kV is usually preferable.
  • the applied voltage is less than 5 kV, it is not preferable because the fiber molded body is not easily formed without jetting the solution, and when the applied voltage is more than 50 kV, discharge tends to occur from the electrode toward the ground electrode. More preferably, it is in the range of 6 to 30 kV.
  • the desired potential may be generated by any appropriate method known in the art.
  • the solvent used is volatilized to form a fiber molded body. Ordinary spinning is performed at room temperature in the atmosphere, but when volatilization is insufficient, it can be performed under negative pressure or in a high-temperature atmosphere.
  • the spinning temperature depends on the evaporation behavior of the solvent and the viscosity of the spinning solution, but is usually in the range of 0 to 50 ° C.
  • a preferable method is a method for eliminating the electric charge with an ionizer.
  • An ionizer is an apparatus that can generate ions by a built-in ion generator and discharge the charges to the charged object, thereby eliminating the charge of the charged object.
  • a preferable ion generator that constitutes an ionizer used in the method for producing a fiber molded body in the present invention there is an apparatus that generates ions by applying a high voltage to a built-in discharge needle.
  • the step of accumulating the fiber molded body due to the charge disappearance will be described.
  • the method for accumulating the fiber molded body by the charge disappearance is not particularly limited, but as a normal method, there is a method in which the electrostatic force of the fiber molded body is lost by the charge disappearance and dropped and accumulated by its own weight.
  • a method for producing a fiber having a smooth fiber surface it can be produced by setting the atmosphere during spinning to low humidity. Preferably it is 25% or less, More preferably, it is 20% or less.
  • the method of treating the fiber molded body by heat treatment is not particularly limited, and examples thereof include heating by contact using a hot plate and a hot roll, in addition to hot air heating, vacuum heating, infrared heating, and microwave heating.
  • the heat treatment can also be performed in an inert gas atmosphere such as nitrogen or argon.
  • an inert gas atmosphere such as nitrogen or argon.
  • it does not restrict
  • the fiber molded body used in the present invention is a fiber molded body in which a cotton-like fiber structure is further laminated on the surface or the cotton-like structure is used in the present invention as long as the object of the present invention is not impaired.
  • coating treatment for imparting antithrombogenicity and surface coating with an antibody or a physiologically active substance can be optionally performed.
  • the coating method and treatment conditions at this time, and the chemicals used for the treatment can be arbitrarily selected within a range that does not damage the fiber structure and impair the purpose of the present invention.
  • a drug can be optionally contained inside the fiber of the fiber molded body used in the present invention. In the case of molding by the electrospinning method, the drug used is not particularly limited as long as it is soluble in a volatile solvent and does not impair the physiological activity by dissolution. Specific examples of such drugs include tacrolimus or its analogs, statins, and taxane anticancer agents.
  • the drug may be a protein preparation or a nucleic acid drug as long as it can maintain activity in a volatile solvent.
  • medical agent for example, a metal, polysaccharide, a fatty acid, surfactant, and a volatile solvent tolerance microbe, may be included.
  • the artificial biological thin film which consists of the said reinforcing material for biological glues and biological glue, and at least one part of the reinforcing material for biological pastes is coat
  • density of the fiber molded body
  • ⁇ 0 density of the bioabsorbable polymer in the bulk state
  • Contact angle measurement was measured 5 times using 7% albumin (derived from bovine serum, pH 5.2: manufactured by Wako Pure Chemical Industries) / PBS (200112 Phosphate-Buffer Salines (PBS), liquid: manufactured by GIBCO). The average value was calculated. 7).
  • the inner diameter of the ejection nozzle was 0.8 mm, the voltage was 8 kV, and the distance from the ejection nozzle to the flat plate was 25 cm.
  • the flat plate was used as a cathode during spinning.
  • the obtained fiber molded body was heat-treated at 70 ° C. for 10 minutes.
  • the obtained fiber molded body had an average fiber diameter of 4.5 ⁇ m, a thickness of 100 ⁇ m, a basis weight of 16.2 g / m 2 , and a porosity of 87.6%. No through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 31.7 ⁇ m 2 .
  • the contact angle of the 7% albumin solution on the surface of the fiber molded body is 120 degrees, which is poor in hydrophilicity, that is, when forming a composite thin film of the fiber molded body and the biological glue on the biological membrane, the fiber molding is performed. It was found that the penetration of body fluid and cerebrospinal fluid into the body was low.
  • the fiber molded body was installed as described in the section of “7. Pressure resistance test”.
  • the obtained fiber molded body was improved in transparency by permeation of fibrin glue, and the inside could be observed. Subsequently, pressure was applied from the outside, and the internal pressure when the membrane broke was measured. As a result, the pressure when the film burst was 32,460 Pa. From the above, even if a microfiber molded body with poor hydrophilicity is used as a reinforcing material for a composite thin film with biological glue, it exhibits sufficient adhesiveness and pressure resistance required for artificial biological membrane materials. all right. Further, when the obtained composite thin film was pierced with the tip of the tweezers, the through hole was not opened.
  • Example 2 A homogeneous solution was prepared by dissolving 8.5 parts by weight of a lactic acid-glycolic acid copolymer (weight average molecular weight 204,000, manufactured by Purac) with 85 parts by weight of a dichloromethane solution and 5 parts by weight of an ethanol solution. Spinning was performed by electrospinning to obtain a sheet-like fiber molded body. The inner diameter of the ejection nozzle was 0.8 mm, the voltage was 8 kV, and the distance from the ejection nozzle to the flat plate was 25 cm. The flat plate was used as a cathode during spinning. The obtained fiber molded body was heat-treated at 70 ° C. for 10 minutes.
  • the obtained fiber molded body had an average fiber diameter of 4.6 ⁇ m, a thickness of 80 ⁇ m, a basis weight of 13.8 g / m 2 , and a porosity of 86.7%. No through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 134.5 ⁇ m 2 . Further, 1 ⁇ L of the 7% albumin solution was put on the obtained fiber molded body, and the change of the droplets was observed. As a result, it was confirmed that the liquid droplets did not enter the inside of the fiber molded body and had a hydrophobic surface.
  • the contact angle of the 7% albumin solution on the surface of the fiber molded body is 123 degrees, and the hydrophilicity is poor, that is, when forming a composite thin film of the fiber molded body and the biological glue on the biological membrane, the fiber molding is performed. It was found that the penetration of body fluid and cerebrospinal fluid into the body was low. Rabbit skin is collected as a living tissue, and the prepared fiber molded body is placed on the hole (5mm ⁇ ) in the center of the rabbit skin so that the hole is blocked, and fibrin glue (Bolheel (registered trademark)) is placed from above. ). At this time, the obtained fiber molded body was improved in transparency by permeation of fibrin glue, and the inside could be observed.
  • Neobale registered trademark
  • NV-M-015G manufactured by Gunze Co., Ltd., thickness 0.15 mm
  • Neobale registered trademark
  • NV-M-015G manufactured by Gunze Co., Ltd., thickness 0.15 mm
  • Neobale had an average fiber diameter of 20 ⁇ m and a fiber bundle (146 ⁇ m) in which single fibers were bundled to have a network structure.
  • a through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 0.34 mm 2 .
  • the thickness was 190 ⁇ m
  • the basis weight was 32.6 g / m 2
  • porosity was 88.6%.
  • Example 1 As a result of Example 1, it is superior in hydrophilicity, that is, when producing a composite thin film of a fiber molded body and a biological paste on a biological membrane, the permeability of body fluid and cerebrospinal fluid into the fiber molded body is I found it expensive. As a result of the pressure test, the pressure when the composite membrane broke was 26,730 Pa. Moreover, when the obtained composite thin film was stabbed with the tip of the tweezers, a through hole was opened.
  • bicyclyl mesh knit (registered trademark, manufactured by Johnson & Johnson Co., Ltd.), which is a mesh made of polyglactin 910, was used.
  • the bifilar mesh knit had an average fiber diameter of 15.2 ⁇ m, and had a network structure of fiber bundles (126 ⁇ m) in which single fibers were bundled.
  • the thickness was 196 ⁇ m, the basis weight was 67.0 g / m 2 , and the porosity was 70.7%.
  • 1 ⁇ L of the 7% albumin solution was put on bicyclyl mesh knit, and changes in the droplets were observed.
  • Example 3 As the fiber molded body, Dexon mesh # 4 (registered trademark, manufactured by Davis & Geck Co., Ltd.), which is a polyglycolic acid-based mesh, was used.
  • the average fiber diameter of Dexon Mesh # 4 was 13.6 ⁇ m, and it had a network structure with a fiber bundle (187 ⁇ m) in which single fibers were bundled. A through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 0.013 mm 2 .
  • the thickness was 205 ⁇ m, the basis weight was 56.0 g / m 2 , and the porosity was 82.1%.
  • 1 ⁇ L of the above 7% albumin solution was added onto Dexon mesh # 4, and changes in the droplets were observed. As a result, the liquid droplets quickly penetrated into the fiber molded body, making it difficult to measure the contact angle. Therefore, it was confirmed that the surface was hydrophilic compared to Example 1.
  • Example 3 Bolheel (registered trademark), which is a commercially available biological tissue adhesive, was used to produce an artificial biological membrane for implantation in a living body.
  • the fiber molded body described in Example 1 was cut into a size of 2 cm ⁇ 2 cm (4 cm 2 ) and placed in a 10 cm plastic petri dish.
  • a 1 cm ⁇ 1 cm (1 cm 2 ) hole was formed in the center of a transparent plastic film having a size of 3 cm ⁇ 3 cm (9 cm 2 ), and the plastic film was placed on the fiber molded body.
  • 3 mL of a solution containing aprotinin (3000KIE) was added to a vial containing 240 mg of lyophilized fibrinogen in Bolheal and factor XIII 225 units and mixed to make 3 mL of fibrinogen solution, about 0.2 mL of fibrinogen solution Inhaled into a spray syringe.
  • Thrombin (750 units) powder was dissolved in 3 mL of a solution containing 17.7 mg of calcium chloride, 0.2 mL of which was drawn into a 1 mL syringe. Each syringe was attached to a Bolheel spray set (Akita Sumitomo Bake Co., Ltd.). Using this spray set, 0.2 mL of each fibrinogen solution and thrombin solution was sprayed evenly from the top of the plastic film overlaid on the fiber molded body.
  • the reinforcing material for biological glue of the present invention is excellent in adhesiveness with biological glue and can form a uniform composite thin film. Therefore, the artificial biofilm composed of the biopaste reinforcing material and the biopaste of the present invention is used as an artificial substitute dura mater, anti-adhesion material, as a medical article, particularly as a protective material, covering material, or seal material for an organ surface or a wound site, It is preferably used as a hemostatic material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Disclosed is a reinforcing material for a biological glue, which can be compounded with a biological glue homogeneously and readily on a biological membrane. Specifically disclosed are: a reinforcing material for a biological glue, which comprises a molded fiber material, wherein the molded fiber material comprises fibers composed of a bioabsorbable polymer and having an average fiber diameter of 0.1 to 10 μm, has a thickness of 10 to 150 μm, and does not have any through-hole having a size of 0.01 mm2 or more; a process for producing the reinforcing material by an electrostatic spinning technique; and an artificial biological thin film comprising the reinforcing material and a component that constitutes a biological glue.

Description

生体糊用補強材及びその製造方法Reinforcing material for biological glue and method for producing the same
 本発明は、生体吸収性ポリマーの繊維成形体からなる生体糊用補強材、その製造方法および当該補強材と生体糊とからなる人工生体薄膜に関する。さらに詳しくは、特定の大きさ以上に大きい貫通孔を有さない微細繊維成形体からなりそして、生体膜上での当該微細繊維成形体と生体糊との複合化が可能な生体糊用補強材およびそれを用いた人工生体薄膜に関する。
 この人工生体薄膜は、医療用品、とりわけ臓器表面や創傷部位の保護材、被覆材、シール材として、人工代用硬膜、癒着防止材、止血材などとして好ましく用いられる。
The present invention relates to a bioglue reinforcing material comprising a fiber-molded body of a bioabsorbable polymer, a method for producing the same, and an artificial biofilm made of the reinforcing material and biopaste. More specifically, the reinforcing material for living body paste is made of a fine fiber molded body having no through-hole larger than a specific size and can be combined with the living body glue on the living body membrane. And an artificial biological thin film using the same.
This artificial biological thin film is preferably used as a prosthetic substitute dura mater, an adhesion prevention material, a hemostatic material, etc., as a medical article, especially as a protective material, covering material, or sealing material for an organ surface or wound site.
 脳外科手術により硬膜に大きな欠損を生じた場合、ヒト乾燥硬膜を移植する方法が行われていたが、クロイツフェルト−ヤコブ病ウイルス感染の危険性など、重篤な問題点等が指摘され、現在では、ヒト乾燥硬膜の使用が禁止されている。それゆえ、現在では、硬膜欠損に対しては、例えばゴアテックス(登録商標:ゴアテックス社製)等の人工代用硬膜を縫いつけて補填する方法が採用されている。
 しかしながら、ゴアテックス(登録商標)は非分解性の材料からできているため、体内に永久に残留し、異物反応を惹起させる。また、縫合する場合には、一度開けた針穴が塞がり難く、また張力を負荷することによって糸を通した針穴が伸張することがあり、この針穴から髄液が漏出し易い問題があった。そこで、人工代用硬膜の縫合部分に、フィブリン糊を塗布する補填法が採用されている。しかしながら、一般に、人工代用硬膜はPTFE(ポリテトラフルオロエチレン)の高分子化合物を主成分としているため、フィブリン糊との親和性が低く、針穴を完全に塞ぐことができないといった問題を有している。
 特開平11−309151号公報には、上記補填法の問題を解決すべく、生体糊前駆物質の水溶液を含浸させた生体吸収性織布を縫合部分の補填材として使用することが記載されている。しかし、あくまで縫合部位の補填材・補強材として使用することに限定していることから、縫合不要な人工代用硬膜の発明には至っていない。
 また、生分解性の材料からなるシームデュラ(登録商標:グンゼ(株)製)も販売されているが、液漏れを防ぐために縫合が必要であり、手術者にとって煩雑である。そのため、縫合を必要とせず、フィブリン糊との親和性が高い人工代用硬膜が望まれていた。
 特開2004−089361号公報には、イオンビームによりPTFEの表面を改質し、生体組織接着剤(フィブリン糊)との親和性を向上させた人工代用硬膜とその製造方法が記載されている。フィブリン糊との親和性を高めたことにより無縫合で使用することが可能になったが、PTFEの非分解性は変化しておらず、体内に永久に残存するという問題を残している。
 特開2002−204826号公報には、0.1mm~25mmの網目構造を有する生体吸収性および/または生分解性の合成繊維布を、フィブリン繊維を主成分とする膜で被覆した人工生体薄膜が記載されている。
 また、WO2006/025150号公報には、ポリグリコール酸フェルトとフィブリン糊よりなる腸管欠損部閉塞用デバイスを使用することで、縫合を行うことなく、腸管欠損部の閉塞に使用し、縫合不全や狭窄の発生を防止できることが記載されている。
 さらには、特開2002−204826号公報およびWO2006/025150号号公報で使用している合成繊維布およびフェルトの繊維構造には、疎と密な部分が存在するため、これらを補強材として用いた場合、フィブリンゲルの厚みが不均一となるため均一な組織再生ができないという問題を有していた。また、網目構造(貫通孔)を有するため、生体糊で被覆した複合膜としてピンホールが発生しやすいという問題を有していた。従来、生体吸収性繊維として使用されているウェブ、ニット、およびメッシュ等は、単繊維を束ねたサブミリオーダーの繊維束から構成されるため、このような粗い網目構造を完全に消失させることは困難であった。
 一方、生体吸収性の繊維材料としては、近年、ナノファイバーとよばれる極細繊維の検討がなされており、生体吸収性の脂肪族ポリエステルは、エレクトロスピニング法(静電紡糸法、電界紡糸法ともいう)とよばれる極細繊維の作成方法により、繊維径が数マイクロメーターよりも小さい生分解性の極細繊維が得られることは公知である。これら脂肪族ポリエステル繊維を加工した成形体は、縫合糸や生体吸収性シートなど様々な用途に用いられている。エレクトロスピニング法で作製されるナノファイバーは、従来の成形方法よりも繊維径の細い糸を簡便に作成できるメリットがあり、繊維成形体の表面積を大きくすることで細胞・タンパク質との接着性を高めることができるため、細胞培養用の担体や再生医療のための足場材料などへの応用が検討されている。
 しかし、エレクトロスピニング法で得られた微細繊維成形体、特に疎水性である脂肪族ポリエステルからなる微細繊維成形体は親水性に乏しく、親水性の環境下で使用する場合、細胞やタンパク質との相互作用が制限されるという問題を有しており、これまで生体糊の補強材として検討されていない。
When brain deficiency caused a large defect in the dura mater, a method of transplanting human dura mater was performed, but serious problems such as the risk of Creutzfeldt-Jakob disease virus infection were pointed out, At present, the use of human dry dura mater is prohibited. Therefore, at present, for dura deficiency, a method is employed in which artificial dura mater such as Gore-Tex (registered trademark: Gore-Tex) is sewn and compensated.
However, because Gore-Tex (registered trademark) is made of a non-degradable material, it remains permanently in the body and causes a foreign body reaction. In addition, when stitching, the needle hole once opened is difficult to close, and when the tension is applied, the needle hole through which the thread passes may be stretched, and cerebrospinal fluid is likely to leak from the needle hole. It was. Therefore, a filling method in which fibrin glue is applied to the suture portion of the artificial substitute dura is employed. However, in general, the artificial substitute dura mater is mainly composed of a polymer compound of PTFE (polytetrafluoroethylene), so that it has a low affinity with fibrin glue and cannot completely close the needle hole. ing.
Japanese Patent Application Laid-Open No. 11-309151 describes that a bioabsorbable woven fabric impregnated with an aqueous solution of a biological glue precursor is used as a filling material for a suture portion in order to solve the problem of the filling method. . However, since it is limited to use as a filling material / reinforcing material at the suture site, the invention has not led to the invention of an artificial substitute dura mater that does not require suture.
Seam Dura (registered trademark: Gunze Co., Ltd.) made of a biodegradable material is also on the market, but sutures are necessary to prevent liquid leakage, which is troublesome for the operator. Therefore, an artificial substitute dura mater that does not require suturing and has high affinity with fibrin glue has been desired.
Japanese Patent Application Laid-Open No. 2004-089361 describes an artificial substitute dura mater in which the surface of PTFE is modified by an ion beam to improve the affinity with a biological tissue adhesive (fibrin glue) and a method for producing the same. . Although it has become possible to use without stitching due to the increased affinity with fibrin glue, the non-degradability of PTFE has not changed, leaving the problem of remaining permanently in the body.
Japanese Patent Application Laid-Open No. 2002-204826 discloses an artificial living body in which a bioabsorbable and / or biodegradable synthetic fiber cloth having a network structure of 0.1 mm 2 to 25 mm 2 is coated with a membrane mainly composed of fibrin fibers. A thin film is described.
In addition, WO2006 / 025150 uses an intestinal defect occlusion device made of polyglycolic acid felt and fibrin glue so that it can be used for occlusion of an intestinal defect without suturing. It is described that generation | occurrence | production of can be prevented.
Furthermore, since the synthetic fiber cloth and felt fiber structure used in Japanese Patent Application Laid-Open No. 2002-204826 and WO 2006/025150 have sparse and dense portions, these were used as reinforcing materials. In such a case, the thickness of the fibrin gel becomes non-uniform so that a uniform tissue regeneration cannot be achieved. Moreover, since it has a network structure (through-hole), it has a problem that pinholes are easily generated as a composite film coated with biological glue. Conventionally, webs, knits, meshes, etc. used as bioabsorbable fibers are composed of submillimeter-order fiber bundles in which single fibers are bundled, so it is difficult to completely eliminate such a coarse network structure. Met.
On the other hand, as a bioabsorbable fiber material, ultrafine fibers called nanofibers have recently been studied. The bioabsorbable aliphatic polyester is an electrospinning method (also called an electrostatic spinning method or an electrospinning method). It is known that biodegradable ultrafine fibers having a fiber diameter smaller than a few micrometers can be obtained by a method for producing ultrafine fibers called)). Molded products obtained by processing these aliphatic polyester fibers are used in various applications such as sutures and bioabsorbable sheets. Nanofibers produced by electrospinning have the advantage of being able to easily create yarns with a smaller fiber diameter than conventional molding methods. By increasing the surface area of the fiber molded body, the adhesion to cells and proteins is increased. Therefore, application to a carrier for cell culture and a scaffold material for regenerative medicine is being studied.
However, fine fiber molded articles obtained by electrospinning, especially those made of hydrophobic aliphatic polyesters, have poor hydrophilicity, and when used in a hydrophilic environment, mutual interaction with cells and proteins. It has a problem that its action is limited, and has not been studied as a reinforcing material for biological glue.
 本発明が解決しようとする課題は、特に生体膜上にて、生体糊との複合化を均一かつ容易に実施できる生体糊用補強材を提供することである。
 また、本発明が解決しようとする課題は、かかる生体糊用補強材の製造方法を提供することである。
 さらに、本発明が解決しようとする課題は、生体糊と均一に複合化された人工生体薄膜を提供することである。
 本発明者らは前記課題を解決するために鋭意検討した結果、特定の大きさ以上に大きい貫通孔を有さない微細繊維成形体が、生体膜上で接着性に優れた生体糊との複合生体薄膜を作製できることを見出し、本発明を完成するに至った。
 従来、エレクトロスピニング法により作製された脂肪族ポリエステルを代表とする生体吸収性ポリマーからなる微細繊維成形体は、比表面積が高く、細胞・タンパク質との接着性が高いにもかかわらず、親水性に乏しいことから、フィブリン糊のような生体糊の補強材として検討されたことはなかった。本発明者らは、驚くべきことに脂肪族ポリエステルからなる微細繊維成形体は、親水性が低いにもかかわらず生体糊との接着性が高く、貫通孔を有さないために生体膜上にて、均一な人工生体薄膜を形成、すなわち均一な再生組織を形成しうることを見出し本発明に到達した。
 すなわち、本発明は、平均繊維径が0.1~10μmの生体吸収性ポリマーの繊維からなり、厚みが10~150μmであり、0.01mm以上の貫通孔を有さない繊維成形体からなる生体糊用補強材である。
 また、本発明は、静電紡糸法にて繊維成形体を得る工程、該繊維成形体に熱処理を行う工程を含む、上記生体糊用補強材を製造する方法である。
 さらに、本発明は、上記生体糊用補強材と生体糊とからなり、生体糊用補強材の少なくとも一部が生体糊で被覆されている人工生体薄膜である。
The problem to be solved by the present invention is to provide a reinforcing material for biological glue that can be uniformly and easily combined with biological glue, particularly on a biological membrane.
Moreover, the subject which this invention tends to solve is providing the manufacturing method of this reinforcing material for biological glue.
Furthermore, the problem to be solved by the present invention is to provide an artificial biological thin film uniformly combined with biological paste.
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a fine fiber molded body having no through-hole larger than a specific size is combined with a biological glue having excellent adhesion on a biological membrane. The inventors have found that a biological thin film can be produced, and have completed the present invention.
Conventionally, a fine fiber molded body made of a bioabsorbable polymer typified by an aliphatic polyester produced by electrospinning has a high specific surface area and high adhesion to cells and proteins. Because of its lack, it has never been studied as a reinforcing material for biological glue such as fibrin glue. Surprisingly, the present inventors have found that a fine fiber molded body made of an aliphatic polyester has high adhesiveness with a biological paste despite having low hydrophilicity, and has no through-hole. Thus, the present inventors have found that a uniform artificial biological thin film can be formed, that is, a uniform regenerated tissue can be formed.
That is, the present invention consists of a fiber molded body made of bioabsorbable polymer fibers having an average fiber diameter of 0.1 to 10 μm, a thickness of 10 to 150 μm, and having no through-holes of 0.01 mm 2 or more. It is a reinforcing material for biological glue.
Moreover, this invention is a method of manufacturing the said reinforcing material for biological glue including the process of obtaining a fiber molded object by an electrospinning method, and the process of heat-processing this fiber molded object.
Furthermore, the present invention is an artificial biological thin film comprising the biological glue reinforcing material and the biological glue, wherein at least a part of the biological glue reinforcing material is coated with the biological glue.
 図1は、実施例2で得られたシート状の繊維成形体の電子顕微鏡写真である。
 図2は、実施例3で得られた人工生体膜をフィブリンゲル層が脳実質側となるようにビーグル大脳に被せ、1ヶ月後の剖検で得られた標本のHE染色標本の写真である。
 図3は、実施例3で得られた人工生体膜をフィブリンゲル層が脳実質側となるようにビーグル大脳に被せ、1ヶ月後の剖検で得られた標本のHE染色標本の写真である。
FIG. 1 is an electron micrograph of a sheet-like fiber molded body obtained in Example 2.
FIG. 2 is a photograph of a HE-stained specimen of a specimen obtained by autopsy after one month after placing the artificial biological membrane obtained in Example 3 on the beagle cerebrum so that the fibrin gel layer is on the brain parenchyma side.
FIG. 3 is a photograph of a HE-stained specimen of a specimen obtained by autopsy after one month after placing the artificial biological membrane obtained in Example 3 on a beagle cerebrum so that the fibrin gel layer is on the brain parenchyma side.
 本発明において、繊維成形体とは、一本または複数本の繊維から積層、織り、編み若しくはその他の手法により形成された3次元の成形体を指す。具体的な繊維成形体の好ましい形態としては、例えば不織布が挙げられ、さらにそれをもとに加工したチューブ、メッシュなども再生医療分野において好ましく用いることができ、本発明における繊維成形体に含まれる。
 繊維成形体を構成する繊維の平均繊維径は0.1~10μmである。平均繊維径が、0.1μmよりも小さいと該繊維成形体の強度が保てないため、好ましくない。また平均繊維径が10μmよりも大きいと、繊維の比表面積が小さく、生着する細胞数が少なくなるため好ましくない。さらに好ましくは、平均繊維径が0.2~10μmである。なお、繊維径とは繊維断面の直径を表す。繊維断面の形状は円形に限らず、楕円形や異形になることもありうる。この場合の繊維径とは、該楕円形の長軸方向の長さと短軸方向の長さの平均をその繊維径として算出する。また、繊維断面が円形でも楕円形でもないときには円または楕円に近似して繊維径を算出する。
 本発明において、繊維成形体は表面開孔面積が0.01mm以上の大きさの貫通孔を有さない繊維成形体である。0.01mm以上の貫通孔を有する場合、生体膜上にて補強材と生体糊との複合化をする際、体液や髄液が浸透することで均一な複合膜を得ることができず、好ましくない。また、体液や髄液が浸透することで、生体糊濃度が低下するため、十分な強度のある代用生体膜が形成されず、好ましくない。さらには、組織再生が不均一に進行するため好ましくない。
 従来、生体吸収性繊維として使用されているウェブ、ニットおよびメッシュ等は、単繊維を束ねたサブミリオーダーの繊維束が網目構造における網を形成し、サブミリオーダーの貫通孔が存在し、そのような貫通孔を消失させることは困難であった。しかし、本発明によれば、生体糊で被覆する際、網部と貫通孔部とで生体糊の疎と密な構造を取ることがなく、組織再生が不均一に進行することはない。また、大きな貫通孔を有するが故に、生体膜上にて補強材と生体糊との複合化をする場合、体液や髄液が浸透することで均一な複合膜を得ることが困難であった問題も解消された。さらには、貫通孔を有するため突き刺しのような刺激に対して非常に弱いという欠点も解消された。
 本発明で用いられる繊維成形体は、10~500μmの平均表面開孔面積であるものが好ましい。表面開孔は、繊維成形体の表面を走査型電子顕微鏡(キーエンス(株):商品名「VE8800」)により、倍率30~200倍で撮影して得た写真から無作為に30箇所を選んで開孔面積を測定し、平均値を求めて平均開孔面積とした。平均表面開孔面積が10μmよりも小さい場合は、生体糊の含浸性が不十分であり、生体糊との接着性が十分に得られず好ましくない。平均表面開孔面積が500μmよりも大きい場合、繊維成形体の十分な強度が得られず、好ましくない。
 本発明で用いられる繊維成形体は、表面から裏面にかけて連続孔を有しているが、曲路を介して形成されているため、生体糊との複合薄膜を調製した場合、複合薄膜面内において疎密構造をとらず、均一性に優れている。よって、組織再生も均一に進行することができる。また、突き刺しのような刺激に対して、非常に強いという特徴を有する。
 本発明で用いられる繊維成形体の厚みは、10~150μmである。10μmよりも小さい場合、十分な強度が得られず好ましくない。150μmよりも大きい場合、生体糊と複合して人工生体薄膜として使用する際に、透明性が不十分となり好ましくない。繊維成形体の厚みは、より好ましくは25μm~150μm、さらに好ましくは50~150μmである。
 本発明で用いられる繊維成形体からなる生体糊用補強材は、生体糊が被覆されていないときは失透しているが、生体糊を被覆、含浸した後は透明性が向上し、人工生体薄膜として欠損部位にカバーした後も内部を観察することができ、視認性に優れている。
 本発明における繊維成形体の目付けは、1~30g/mであることが好ましい。繊維成形体の目付けが1g/m未満の場合、十分な強度が得られず好ましくない。繊維成形体の目付けが30g/mよりも大きい場合、生体吸収性ポリマーから分解された酸成分による炎症が発生するため好ましくない。従来、生体吸収性繊維として使用されているウェブ、ニットおよびメッシュ等は、目付けが大きいことから、分解された炎症誘発成分が多量に発生する。炎症発生の程度は、人、分解速度、使用環境等により影響を受けるが、炎症誘発成分の発生量が少ないほうが好ましいことはいうまでもない。
 本発明で用いられる繊維成形体の空孔率は、40~90%であることが好ましい。繊維成形体の空孔率が40%よりも小さい場合、生体糊を十分に含浸させることができず、接着性が不十分となり好ましくない。繊維成形体の空孔率が90%よりも大きい場合、十分な強度を確保することが困難となり好ましくない。
 本発明において使用される生体吸収性(または生分解性)ポリマーは、脂肪族ポリエステルであることが好ましい。生体吸収性のポリマーとしては、具体的には、ポリ乳酸、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体、ポリカプロラクトン、ポリグリセロールセバシン酸、ポリヒドロキシアルカン酸、ポリブチレンサクシネートなどや、これらの共重合体および誘導体が例示できる。好ましくは、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、およびそれらの共重合体からなる群から選ばれる少なくとも1種であり、最も好ましいのは、ポリ乳酸、乳酸−グリコール酸共重合体である。
 このとき、ポリ乳酸の共重合体は、伸縮性を付与するモノマー成分が少ないほうが好ましい。ここで伸縮性を付与するモノマー成分としては、例えばカプロラクトンモノマーや、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,4−ブタンジオール、ポリカプロラクトンジオール、ポリアルキレンカーボネートジオール、ポリエチレングリコールユニットなどの軟質成分が例示できる。これらの軟質成分はポリマーに対し20重量%未満であることが好ましい。これよりも軟質成分が多いと自己支持性を失いやすく、やわらかすぎて取り扱いにくい繊維成形体になる。
 ポリ乳酸におけるポリマーを構成するモノマーはL−乳酸およびD−乳酸のいずれでもよい。またポリマーの光学純度や分子量、L体とD体の組成比、配列には特に制限はないが、好ましくはL体の多いポリマーである。ポリL乳酸とポリD乳酸のステレオコンプレックスを用いることも問題ない。
 また、ポリマーの重量平均分子量としては、好ましくは1×10~5×10であり、より好ましくは1×10~1×10、さらに好ましくは5×10~5×10である。また、ポリマーの末端構造やポリマーを重合する触媒は任意に選択できる。ポリマーの重量平均分子量が1×10より小さい場合、得られた繊維成形体の強度が不十分となり薄いシートが得られ難く好ましくない。一方、ポリマーの重量平均分子量が5×10よりも大きい場合、繊維成形体を得る際に、ポリマー溶液の粘度が高くなり、成形性が乏しくなるので好ましくない。
 本発明で用いられる繊維成形体には、その目的を損なわない範囲で、他のポリマーや他の化合物を併用してもよい。例えば、ポリマー共重合、ポリマーブレンド、化合物混合である。
 ポリマーは高純度であることが好ましく、とりわけポリマー中に含まれる添加剤や可塑剤、残存触媒、残存モノマー、成形加工や後加工に用いた残留溶媒などの残留物は、少ないほうが好ましい。特に、医療に用いる場合は、安全性の基準値未満に抑える必要があることはいうまでもない。
 本発明における生体糊としては、特に限定されるものではないが、手術等に用いられる生体適合性に優れた接着剤のなかでも、特に生体内で経時的に線維芽細胞に変換される接着剤が好ましく用いられる。かかる生体糊は、複数の成分を混合することによって、急速な生化学反応により接着能を示すものであることが好ましい。このことから、一般的に生体糊は、生体糊前駆物質とこれを生体糊に化学変換させる特定の追加成分との組合せとして知られている。ここで、生体糊前駆物質とは、上記した生体糊において、未だ生化学反応が惹起する前段階にあるもので、それ自体接着能を有しないものである。
 本発明で用いられる生体糊としては、上記定義に該当するものであれば、特に限定されるものではない。例えば、フィブリン糊、ゼラチン系粘着剤、セルロース製剤、コラーゲン系粘着剤、キトサン系粘着剤、アルギン酸製剤等のいずれか、またはこれらの2種以上の混合物からなる群から選ばれる少なくとも1種であることが好ましい。このような生体糊の中でも、本発明により提供される人工生体薄膜の適用性から、フィブリン糊またはゼラチン系粘着剤が好ましく、フィブリン糊を用いるのがより好ましい。
 本発明で用いられるフィブリン糊は、例えばフィブリン糊の前駆体であるフィブリノゲン凍結乾燥粉末、フィブリノゲン溶解液、トロンビン凍結乾燥粉末、およびトロンビン溶解液から構成されたものを挙げることができる。すなわち、フィブリノゲン凍結乾燥粉末をフィブリノゲン溶解液で溶解してA液とし、トロンビン凍結乾燥粉末をトロンビン溶解液で溶解してB液とする。そして溶解した両液を接着部位に重層または混合して適用する。
 フィブリン糊は、血液凝固の最終段階を利用した生理的組織接着剤であり、含有するフィブリノゲンはトロンビンの作用により可溶性フィブリン塊となり、さらにカルシウムイオン存在下でトロンビンにより活性化された血液凝固第XIII因子により、物理的強度をもった尿素不溶性の安定なフィブリン塊となり、組織を接着・閉鎖する。この安定化したフィブリン塊内で、例えば線維芽細胞が増殖し、膠原線維や肉芽基質成分が産生され、組織修復を経て治癒に至る。容易に入手できるこのようなフィブリン糊としては、ボルヒール(登録商標:一般財団法人化学及血清療法研究所製)、ベリプラスト(登録商標:CSLベーリング製)等を例示することができる。
 本発明で用いられる繊維成形体は、生体吸収性ポリマー以外の第2成分をさらに含有してもよい。該成分には、例えばFGF(線維芽細胞増殖因子)、EGF(上皮増殖因子)、PDGF(血小板由来増殖因子)、TGF−β(β型形質転換増殖因子)、NGF(神経増殖因子)、HGF(肝細胞増殖因子)、BMP(骨形成因子)などの細胞増殖因子などが挙げられる。
 繊維成形体の繊維は長繊維よりなる。長繊維とは具体的には紡糸から繊維成形体への加工にいたるプロセスの中で、繊維を切断する工程を加えずに形成される繊維成形体のことをいい、エレクトロスピニング法、スパンボンド法、メルトブロー法などで形成することができる。その中でもエレクトロスピニング法が好ましく用いられる。ここで、エレクトロスピニング法とは、静電紡糸法、エレクトロスプレー法などとよばれる方法とも原理的には同じであり、これらも本発明でいうエレクトロスピニング法に含まれる。
 エレクトロスピニング法は、ポリマーを溶媒に溶解させた溶液に高電圧を印加することで、電極上に繊維成形体を得る方法である。工程としては、ポリマーを溶媒に溶解させて溶液を製造する工程と、該溶液に高電圧を印加させる工程と、該溶液を噴出させる工程と、噴出させた溶液から溶媒を蒸発させて繊維成形体を形成させる工程と、任意に実施しうる工程として形成された繊維成形体の電荷を消失させる工程と、電荷消失によって繊維成形体を累積させる工程、および熱処理する工程を含む。
 エレクトロスピニング法における、ポリマーを溶媒に溶解させて溶液を製造する段階について説明する。本発明の製造方法における溶液中の溶媒に対する生体吸収性ポリマーの濃度は1~30重量%であることが好ましい。生体吸収性ポリマーの濃度が1重量%より小さいと、濃度が低すぎるため繊維成形体を形成することが困難となり好ましくない。また、30重量%より大きいと、得られる繊維成形体の繊維径が大きくなり好ましくない。より好ましい溶液中の溶媒に対する生体吸収性ポリマーの濃度は2~20重量%である。
 溶媒は一種を単独で用いてもよく、複数の溶媒を組み合わせて用いてもよい。前記溶媒としては、生体吸収性ポリマーを溶解可能で、かつ紡糸する段階で蒸発して繊維を形成可能なものであれば特に限定されず、例えば、アセトン、クロロホルム、エタノール、2−プロパノール、メタノール、トルエン、テトラヒドロフラン、水、ベンゼン、ベンジルアルコール、1,4−ジオキサン、1−プロパノール、ジクロロメタン、四塩化炭素、シクロヘキサン、シクロヘキサノン、フェノール、ピリジン、トリクロロエタン、酢酸、蟻酸、ヘキサフルオロ−2−プロパノール、ヘキサフルオロアセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、アセトニトリル、N−メチル−2−ピロリジノン、N−メチルモルホリン−N−オキシド、1,3−ジオキソラン、メチルエチルケトンおよびこれらの溶媒の混合溶媒が挙げられる。これらのうち、取り扱い性や物性などから、ジクロロメタン、エタノールを用いることが好ましい。
 次に、溶液に高電圧を印加させる段階と、溶液を噴出させる段階と、噴出された溶液から溶媒を蒸発させて繊維成形体を形成させる段階について説明する。
 本発明に用いる繊維成形体の製造方法においては、生体吸収性ポリマーを溶解した溶液を噴出させ、繊維成形体を形成させるために、溶液に高電圧を印加させる必要がある。電圧を印加させる方法については、生体吸収性ポリマーを溶解した溶液を噴出させ、繊維成形体が形成されるものであれば特に限定されないが、溶液に電極を挿入して電圧を印加させる方法や、溶液噴出ノズルに対して電圧を印加させる方法などがある。
 また、溶液に印加させる電極とは別に補助電極を設けることも可能である。また、印加電圧の値については、前記繊維成形体が形成されれば特に限定されないが、通常は5~50kVの範囲が好ましい。印加電圧が5kVより小さい場合は、溶液が噴出されずに繊維成形体が形成され難く好ましくなく、印加電圧が50kVより大きい場合は、電極からアース電極に向かって放電が起き易く好ましくない。より好ましくは6~30kVの範囲である。所望の電位は従来公知の任意の適切な方法で作ればよい。
 また、生体吸収性ポリマーを溶解した溶液を噴出させた直後に、使用した溶媒が揮発して繊維成形体が形成される。通常の紡糸は大気下、室温で行われるが、揮発が不十分である場合には陰圧下で行うことや、高温の雰囲気下で行うことも可能である。また、紡糸する温度は溶媒の蒸発挙動や紡糸液の粘度に依存するが、通常は0~50℃の範囲である。
 次に、形成された繊維成形体の電荷を消失させる段階について説明する。前記繊維成形体の電荷を消失させる方法は特に限定はされないが、好ましい方法として、イオナイザーにより電荷を消失させる方法が挙げられる。イオナイザーとは、内蔵のイオン発生装置によりイオンを発生させ、前記イオンを帯電物に放出させることにより前記帯電物の電荷を消失させうる装置である。本発明における繊維成形体の製造方法で用いられるイオナイザーを構成する好ましいイオン発生装置として、内蔵の放電針に高電圧を印加させることによりイオンを発生する装置が挙げられる。
 次に、前記電荷消失によって繊維成形体を累積させる段階について説明する。前記電荷消失によって繊維成形体を累積させる方法は、特に限定はされないが、通常の方法として、電荷消失により繊維成形体の静電力を失わせ、自重により落下、累積させる方法が挙げられる。また、必要に応じて、静電力を消失させた繊維成形体を吸引してメッシュ上に累積させる方法、装置内の空気を対流させてメッシュ上に累積させる方法などを行ってもよい。
 繊維表面が平滑な繊維の作製方法としては、紡糸する際の雰囲気を低湿度に設定することで作製することができる。好ましくは25%以下、さらに好ましくは20%以下である。
 次に、熱処理によって繊維成形体を処理する段階について説明する。熱処理によって繊維成形体を処理する方法としては、特に限定されないが、熱風加熱、真空加熱、赤外線加熱、マイクロ波加熱の他、熱板、ホットロールを用いた接触による加熱などが例示できる。この際、段階的に温度を上げて熱処理することも可能である。また、窒素またはアルゴンといった不活性ガス雰囲気下で熱処理を実施することもできる。
 熱処理の温度及び時間について特に制限されるものではないが、生体吸収性ポリマーのガラス転移温度以上、融点以下で実施することが好ましい。時間については、選択した熱処理温度により適宜選択することができる。熱処理をすることにより、繊維成形体の毛羽立ちを抑制することができる。
 本発明で用いられる繊維成形体としては、本発明の目的を損ねない範囲で、その表面に、さらに綿状の繊維構造物を積層することや、綿状構造物を本発明で用いる繊維成形体ではさんでサンドイッチ構造にするなどの加工をして用いることもできる。
 医療応用においては、さらに抗血栓性を付与するためのコーティング処理、抗体や生理活性物質で表面をコーティングすることも任意に実施できる。このときのコーティング方法や処理条件、その処理に用いる化学薬品は、繊維の構造を極端に破壊せず、本発明の目的を損なわない範囲で任意に選択できる。
 本発明で用いられる繊維成形体の繊維内部にも任意に薬剤を含ませることができる。エレクトロスピニング法で成形する場合は、揮発性溶媒に可溶であり、溶解によりその生理活性を損なわないものであれば、使用する薬剤に特に制限はない。
 かかる薬剤の具体例としては、タクロリムスもしくはその類縁体、スタチン系、またはタキサン系抗癌剤が例示できる。
 また、上記薬剤は、揮発性溶媒中において活性を維持することが可能であればタンパク質製剤、核酸医薬であってもよい。また薬剤以外のもの、例えば金属、多糖、脂肪酸、界面活性剤、揮発性溶媒耐性微生物を含んでいてもよい。
 また、本発明によれば、上記生体糊用補強材と生体糊とからなり、生体糊用補強材の少なくとも一部が生体糊で被覆されている人工生体薄膜も同様に提供される。ここで用いられる生体糊用補強材としても、好適なものとして上述した生体糊用補強材を用いることが望ましい。
In the present invention, the fiber molded body refers to a three-dimensional molded body formed from one or a plurality of fibers by lamination, weaving, knitting, or other methods. As a specific preferred form of the fiber molded body, for example, a non-woven fabric can be mentioned, and a tube, a mesh and the like processed based on the nonwoven fabric can be preferably used in the field of regenerative medicine, and are included in the fiber molded body in the present invention. .
The average fiber diameter of the fibers constituting the fiber molded body is 0.1 to 10 μm. An average fiber diameter of less than 0.1 μm is not preferable because the strength of the fiber molded body cannot be maintained. On the other hand, if the average fiber diameter is larger than 10 μm, the specific surface area of the fiber is small, and the number of cells to be engrafted is not preferable. More preferably, the average fiber diameter is 0.2 to 10 μm. In addition, a fiber diameter represents the diameter of a fiber cross section. The shape of the fiber cross section is not limited to a circle, and may be an ellipse or an irregular shape. With respect to the fiber diameter in this case, the average of the length in the major axis direction and the length in the minor axis direction of the ellipse is calculated as the fiber diameter. When the fiber cross section is neither circular nor elliptical, the fiber diameter is calculated by approximating a circle or ellipse.
In the present invention, the fiber molded body is a fiber molded body that does not have a through hole having a surface opening area of 0.01 mm 2 or more. When having a through-hole of 0.01 mm 2 or more, when a reinforcing material and biological paste are combined on a biological membrane, a uniform composite membrane cannot be obtained by permeation of body fluid or cerebrospinal fluid, It is not preferable. In addition, the penetration of body fluid and cerebrospinal fluid lowers the biopaste concentration, which is not preferable because a substitute biomembrane with sufficient strength cannot be formed. Furthermore, it is not preferable because tissue regeneration proceeds non-uniformly.
Conventionally, webs, knits, meshes, etc. used as bioabsorbable fibers have submillimeter order fiber bundles in which single fibers are bundled to form a net in a mesh structure, and there are submillimeter order through holes. It was difficult to eliminate the through hole. However, according to the present invention, when covering with biological paste, the mesh portion and the through-hole portion do not have a loose and dense structure of biological paste, and tissue regeneration does not proceed unevenly. In addition, because of having a large through-hole, it is difficult to obtain a uniform composite membrane due to permeation of body fluid or cerebrospinal fluid when the reinforcing material and biological paste are combined on the biological membrane. Was also resolved. Furthermore, since it has a through-hole, the disadvantage that it is very weak against irritation such as piercing has been solved.
The fiber molded body used in the present invention preferably has an average surface pore area of 10 to 500 μm 2 . For surface opening, 30 points were selected at random from photographs obtained by photographing the surface of the fiber molded body with a scanning electron microscope (Keyence Co., Ltd .: trade name “VE8800”) at a magnification of 30 to 200 times. The hole area was measured, and the average value was obtained as the average hole area. When the average surface opening area is smaller than 10 μm 2 , the biopaste impregnation property is insufficient, and sufficient adhesion with the biopaste cannot be obtained, which is not preferable. When the average surface opening area is larger than 500 μm 2, it is not preferable because sufficient strength of the fiber molded body cannot be obtained.
The fiber molded body used in the present invention has continuous holes from the front surface to the back surface, but is formed through a curved path, so when a composite thin film with biological glue is prepared, It does not have a sparse / dense structure and has excellent uniformity. Therefore, tissue regeneration can also proceed uniformly. Moreover, it has the characteristic that it is very strong with respect to irritation | stimulation like a stab.
The thickness of the fiber molded body used in the present invention is 10 to 150 μm. When it is smaller than 10 μm, it is not preferable because sufficient strength cannot be obtained. When it is larger than 150 μm, transparency is insufficient when it is combined with biological paste and used as an artificial biological thin film. The thickness of the fiber molded body is more preferably 25 μm to 150 μm, still more preferably 50 to 150 μm.
The bio-glue reinforcing material comprising the fiber molded body used in the present invention is devitrified when the bio-glue is not coated, but after the bio-glue is coated and impregnated, the transparency is improved, and the artificial bio Even after covering the defect site as a thin film, the inside can be observed, and the visibility is excellent.
The basis weight of the fiber molded body in the present invention is preferably 1 to 30 g / m 2 . When the basis weight of the fiber molded body is less than 1 g / m 2 , it is not preferable because sufficient strength cannot be obtained. When the basis weight of the fiber molded body is larger than 30 g / m 2, inflammation due to the acid component decomposed from the bioabsorbable polymer is not preferable. Conventionally, webs, knits, meshes, and the like that have been used as bioabsorbable fibers have a large basis weight, so that a large amount of decomposed inflammation-inducing components are generated. Although the degree of inflammation is affected by the person, degradation rate, use environment, etc., it is needless to say that it is preferable that the amount of inflammation-inducing component generated is small.
The porosity of the fiber molded body used in the present invention is preferably 40 to 90%. When the porosity of the fiber molded body is smaller than 40%, the biopaste cannot be sufficiently impregnated and the adhesiveness becomes insufficient, which is not preferable. When the porosity of the fiber molded body is larger than 90%, it is difficult to ensure sufficient strength, which is not preferable.
The bioabsorbable (or biodegradable) polymer used in the present invention is preferably an aliphatic polyester. Specific examples of bioabsorbable polymers include polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polycaprolactone, polyglycerol sebacic acid, polyhydroxyalkanoic acid, polybutylene succinate, and the like. These copolymers and derivatives can be exemplified. Preferably, it is at least one selected from the group consisting of polyglycolic acid, polylactic acid, polycaprolactone, and copolymers thereof, and most preferred are polylactic acid and lactic acid-glycolic acid copolymers.
At this time, it is preferable that the polylactic acid copolymer has few monomer components imparting stretchability. Examples of the monomer component that imparts stretchability include caprolactone monomer, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,4-butanediol, and polycaprolactone. Examples include soft components such as diols, polyalkylene carbonate diols, and polyethylene glycol units. These soft components are preferably less than 20% by weight based on the polymer. When there is more soft component than this, it becomes easy to lose self-supporting property, and it becomes a fiber molded body which is too soft and difficult to handle.
The monomer constituting the polymer in polylactic acid may be either L-lactic acid or D-lactic acid. There are no particular restrictions on the optical purity or molecular weight of the polymer, the composition ratio of the L-form and the D-form, and the arrangement, but a polymer having many L-forms is preferred. There is no problem using a stereocomplex of poly L lactic acid and poly D lactic acid.
The weight average molecular weight of the polymer is preferably 1 × 10 3 to 5 × 10 6 , more preferably 1 × 10 4 to 1 × 10 6 , and further preferably 5 × 10 4 to 5 × 10 5 . is there. Further, the terminal structure of the polymer and the catalyst for polymerizing the polymer can be arbitrarily selected. When the weight average molecular weight of the polymer is smaller than 1 × 10 3 , the strength of the obtained fiber molded body is insufficient, and it is not preferable because a thin sheet is hardly obtained. On the other hand, when the weight average molecular weight of the polymer is larger than 5 × 10 6 , it is not preferable because the viscosity of the polymer solution becomes high and the moldability becomes poor when a fiber molded body is obtained.
The fiber molded body used in the present invention may be used in combination with other polymers and other compounds as long as the purpose is not impaired. For example, polymer copolymerization, polymer blending, compound mixing.
The polymer preferably has a high purity. In particular, it is preferable that the amount of residues such as additives, plasticizers, residual catalysts, residual monomers, and residual solvents used in molding and post-processing is small. In particular, when used for medical treatment, it goes without saying that it is necessary to keep it below the safety standard value.
The biopaste in the present invention is not particularly limited, but among the adhesives excellent in biocompatibility used for surgery and the like, particularly the adhesive that is converted into fibroblasts over time in vivo. Is preferably used. Such biopaste preferably exhibits adhesive ability by a rapid biochemical reaction by mixing a plurality of components. For this reason, biopaste is generally known as a combination of a biopaste precursor and a specific additional component that chemically converts it into biopaste. Here, the biopaste precursor is a pre-stage of biochemical reaction in the biopaste as described above, and does not have an adhesive ability by itself.
The biological paste used in the present invention is not particularly limited as long as it meets the above definition. For example, it is at least one selected from the group consisting of fibrin glue, gelatin adhesive, cellulose preparation, collagen adhesive, chitosan adhesive, alginic acid preparation, etc., or a mixture of two or more of these. Is preferred. Among such biological glues, fibrin glue or gelatin-based adhesive is preferred, and fibrin glue is more preferred from the applicability of the artificial biological thin film provided by the present invention.
Examples of the fibrin glue used in the present invention include fibrinogen lyophilized powder, fibrinogen lyophilized powder, fibrinogen lysate, thrombin lyophilized powder, and thrombin lysate which are precursors of fibrin glue. That is, fibrinogen lyophilized powder is dissolved in a fibrinogen solution to prepare solution A, and thrombin lyophilized powder is dissolved in a thrombin solution to prepare solution B. Then, both dissolved solutions are applied in layers or mixed on the adhesion site.
Fibrin glue is a physiological tissue adhesive that utilizes the final stage of blood coagulation, and fibrinogen contained in it becomes a soluble fibrin clot by the action of thrombin, and blood coagulation factor XIII activated by thrombin in the presence of calcium ions To form a stable insoluble urea fibrin clot with physical strength and adhere and close the tissue. In this stabilized fibrin clot, for example, fibroblasts proliferate, collagen fibers and granulation matrix components are produced, and are cured through tissue repair. Examples of such readily available fibrin glue include Bolheel (registered trademark: manufactured by Chemical and Serum Therapy Research Institute), Veriplast (registered trademark: manufactured by CSL Behring), and the like.
The fiber molded body used in the present invention may further contain a second component other than the bioabsorbable polymer. The components include, for example, FGF (fibroblast growth factor), EGF (epidermal growth factor), PDGF (platelet-derived growth factor), TGF-β (β-type transforming growth factor), NGF (nerve growth factor), HGF Cell growth factors such as (hepatocyte growth factor) and BMP (bone formation factor) can be mentioned.
The fibers of the fiber molded body are made of long fibers. Specifically, long fiber refers to a fiber molded body that is formed without adding a fiber cutting step in the process from spinning to processing into a fiber molded body. Electrospinning method and spunbonding method It can be formed by a melt blow method or the like. Of these, the electrospinning method is preferably used. Here, the electrospinning method is the same in principle as a method called an electrostatic spinning method or an electrospray method, and these are also included in the electrospinning method referred to in the present invention.
The electrospinning method is a method of obtaining a fiber molded body on an electrode by applying a high voltage to a solution in which a polymer is dissolved in a solvent. The steps include a step of producing a solution by dissolving a polymer in a solvent, a step of applying a high voltage to the solution, a step of ejecting the solution, and evaporating the solvent from the ejected solution to form a fiber molded body. , A step of eliminating the charge of the formed fiber molded body as an optional step, a step of accumulating the fiber molded body due to charge loss, and a heat treatment step.
The step of producing a solution by dissolving a polymer in a solvent in the electrospinning method will be described. In the production method of the present invention, the concentration of the bioabsorbable polymer with respect to the solvent in the solution is preferably 1 to 30% by weight. If the concentration of the bioabsorbable polymer is less than 1% by weight, it is not preferable because the concentration is too low, making it difficult to form a fiber molded body. On the other hand, if it is larger than 30% by weight, the fiber diameter of the resulting fiber molded body is undesirably large. The concentration of the bioabsorbable polymer with respect to the solvent in the solution is more preferably 2 to 20% by weight.
A solvent may be used individually by 1 type and may be used combining several solvent. The solvent is not particularly limited as long as it can dissolve the bioabsorbable polymer and can evaporate at the spinning stage to form a fiber. For example, acetone, chloroform, ethanol, 2-propanol, methanol, Toluene, tetrahydrofuran, water, benzene, benzyl alcohol, 1,4-dioxane, 1-propanol, dichloromethane, carbon tetrachloride, cyclohexane, cyclohexanone, phenol, pyridine, trichloroethane, acetic acid, formic acid, hexafluoro-2-propanol, hexafluoro Acetone, N, N-dimethylformamide, N, N-dimethylacetamide, acetonitrile, N-methyl-2-pyrrolidinone, N-methylmorpholine-N-oxide, 1,3-dioxolane, methyl ethyl ketone and their solubility They include solvent mixtures of. Of these, dichloromethane and ethanol are preferably used in view of handling properties and physical properties.
Next, a step of applying a high voltage to the solution, a step of ejecting the solution, and a step of evaporating the solvent from the ejected solution to form a fiber molded body will be described.
In the method for producing a fiber molded body used in the present invention, it is necessary to apply a high voltage to the solution in order to eject a solution in which a bioabsorbable polymer is dissolved to form a fiber molded body. The method of applying a voltage is not particularly limited as long as the solution in which the bioabsorbable polymer is dissolved is ejected and a fiber molded body is formed, but the method of inserting the electrode into the solution and applying the voltage, There is a method of applying a voltage to the solution ejection nozzle.
An auxiliary electrode can be provided separately from the electrode applied to the solution. Further, the value of the applied voltage is not particularly limited as long as the fiber molded body is formed, but a range of 5 to 50 kV is usually preferable. When the applied voltage is less than 5 kV, it is not preferable because the fiber molded body is not easily formed without jetting the solution, and when the applied voltage is more than 50 kV, discharge tends to occur from the electrode toward the ground electrode. More preferably, it is in the range of 6 to 30 kV. The desired potential may be generated by any appropriate method known in the art.
Further, immediately after the solution in which the bioabsorbable polymer is dissolved is ejected, the solvent used is volatilized to form a fiber molded body. Ordinary spinning is performed at room temperature in the atmosphere, but when volatilization is insufficient, it can be performed under negative pressure or in a high-temperature atmosphere. The spinning temperature depends on the evaporation behavior of the solvent and the viscosity of the spinning solution, but is usually in the range of 0 to 50 ° C.
Next, the step of eliminating the charge of the formed fiber molded body will be described. Although the method for eliminating the electric charge of the fiber molded body is not particularly limited, a preferable method is a method for eliminating the electric charge with an ionizer. An ionizer is an apparatus that can generate ions by a built-in ion generator and discharge the charges to the charged object, thereby eliminating the charge of the charged object. As a preferable ion generator that constitutes an ionizer used in the method for producing a fiber molded body in the present invention, there is an apparatus that generates ions by applying a high voltage to a built-in discharge needle.
Next, the step of accumulating the fiber molded body due to the charge disappearance will be described. The method for accumulating the fiber molded body by the charge disappearance is not particularly limited, but as a normal method, there is a method in which the electrostatic force of the fiber molded body is lost by the charge disappearance and dropped and accumulated by its own weight. Moreover, you may perform the method of attracting | sucking the fiber molded object which lose | disappeared the electrostatic force and accumulating on a mesh as needed, the method of making the air in an apparatus convect, and accumulating on a mesh, etc.
As a method for producing a fiber having a smooth fiber surface, it can be produced by setting the atmosphere during spinning to low humidity. Preferably it is 25% or less, More preferably, it is 20% or less.
Next, the step of processing the fiber molded body by heat treatment will be described. The method of treating the fiber molded body by heat treatment is not particularly limited, and examples thereof include heating by contact using a hot plate and a hot roll, in addition to hot air heating, vacuum heating, infrared heating, and microwave heating. At this time, it is also possible to perform heat treatment by increasing the temperature stepwise. The heat treatment can also be performed in an inert gas atmosphere such as nitrogen or argon.
Although it does not restrict | limit in particular about the temperature and time of heat processing, It is preferable to implement above the glass transition temperature of a bioabsorbable polymer, and below melting | fusing point. About time, it can select suitably by the selected heat processing temperature. By performing the heat treatment, the fluffing of the fiber molded body can be suppressed.
The fiber molded body used in the present invention is a fiber molded body in which a cotton-like fiber structure is further laminated on the surface or the cotton-like structure is used in the present invention as long as the object of the present invention is not impaired. It can also be used after being processed into a sandwich structure.
In medical applications, coating treatment for imparting antithrombogenicity and surface coating with an antibody or a physiologically active substance can be optionally performed. The coating method and treatment conditions at this time, and the chemicals used for the treatment can be arbitrarily selected within a range that does not damage the fiber structure and impair the purpose of the present invention.
A drug can be optionally contained inside the fiber of the fiber molded body used in the present invention. In the case of molding by the electrospinning method, the drug used is not particularly limited as long as it is soluble in a volatile solvent and does not impair the physiological activity by dissolution.
Specific examples of such drugs include tacrolimus or its analogs, statins, and taxane anticancer agents.
The drug may be a protein preparation or a nucleic acid drug as long as it can maintain activity in a volatile solvent. Moreover, things other than a chemical | medical agent, for example, a metal, polysaccharide, a fatty acid, surfactant, and a volatile solvent tolerance microbe, may be included.
Moreover, according to this invention, the artificial biological thin film which consists of the said reinforcing material for biological glues and biological glue, and at least one part of the reinforcing material for biological pastes is coat | covered with the biological glue is provided similarly. It is desirable to use the above-described bioglue reinforcing material as a suitable material as the bioglue reinforcing material used here.
 以下、実施例により本発明の実施の形態を説明するが、これらは本発明の範囲を制限するものではない。
1.平均繊維径:
 得られた繊維成形体の表面を走査型電子顕微鏡(キーエンス(株):商品名「VE8800」)により、倍率2000倍で撮影して得た写真から無作為に20箇所を選んで繊維の径を測定し、すべての繊維径の平均値を求めて平均繊維径とした。n=20である。
2.平均厚:
 高精度デジタル測長機((株)ミツトヨ:商品名「ライトマチックVL−50」)を用いて測長力0.01Nによりn=10にて繊維成形体の膜厚を測定した平均値を算出した。なお、本測定においては測定機器が使用可能な最小の測定力で測定を行った。
3.貫通孔の有無及び平均表面開孔面積
 得られた繊維成形体の表面を走査型電子顕微鏡(キーエンス(株):商品名「VE8800」)で撮影して得た写真から無作為に30箇所を選んで表面開孔面積を測定し、平均値を求めて平均表面開孔面積とした。電子顕微鏡観察から、貫通孔の有無を確認した。
4.目付け:
 得られた繊維成形体を、5cm×10cmにカットし、その重量を測定、換算することで目付けを算出した。
5.空孔率:
 空孔率ε(%)は、ε={1−ρ/ρ0}×100より求めた。
 ρ:繊維成形体の密度、ρ0:バルクな状態での生体吸収性ポリマーの密度
6.接触角測定
 7%アルブミン(ウシ血清由来、pH5.2:和光純薬製)/PBS(20012 Phosphate−Bufferd Salines (PBS),liquid:GIBCO製)液を使用して接触角測定を5回測定し、平均値を算出した。
7.耐圧試験
 生体組織としてウサギの皮膚を採取し、ウサギの皮膚の中央にあけた穴(5mmΦ)の上に、得られた繊維成形体を穴がふさがるように設置し、上からフィブリン糊(ボルヒール(登録商標))を吹き付け、繊維成形体とフィブリン糊からなる複合薄膜をウサギの皮膚欠損部に被覆する。続いて、外部より圧を加えていき、膜が破断したときの内圧を測定した。
実施例1
 ポリ乳酸(重量平均分子量26万2千、Purac社製)10重量部をジクロロメタン溶液90重量部で溶解し、均一な溶液を調製した。エレクトロスピニング法により紡糸を行い、シート状の繊維成形体を得た。噴出ノズルの内径は0.8mm、電圧は8kV、噴出ノズルから平板までの距離は25cmであった。上記平板は、紡糸時は陰極として用いた。得られた繊維成形体に、70℃10分間熱処理を実施した。得られた繊維成形体の平均繊維径は4.5μm、厚さは100μm、目付けは16.2g/m、空孔率は87.6%であった。0.01mm以上の貫通孔は観察されず、平均表面開孔面積は31.7μmであった。また、得られた繊維成形体上に、上記7%アルブミン溶液を1μLたらして液滴の変化を観察した。その結果、液滴が繊維成形体の内部に入り込むことはなく、疎水性の表面であることが確認された。繊維成形体表面上の上記7%アルブミン溶液の接触角は120度であり、親水性に乏しいこと、すなわち生体膜上にて繊維成形体と生体糊との複合薄膜を作製する際に、繊維成形体内への体液や髄液の浸透性が低いことがわかった。
 次に、前記「7.耐圧試験」の項に記載したように繊維成形体を設置した。このとき、得られた繊維成形体は、フィブリン糊の浸透により透明性が向上し、内部が観察できるようになった。続いて、外部より圧を加えていき、膜が破断したときの内圧を測定した。その結果、膜が破裂したときの圧力は32,460Paであった。以上のことから、親水性に乏しい微細繊維成形体を生体糊との複合薄膜の補強材として使用しても十分な接着性および人工生体膜材料に要求される耐圧性を発現していることがわかった。また、得られた複合薄膜をピンセット先端により突き刺してみたところ、貫通孔は開かなかった。
実施例2
 乳酸−グリコール酸共重合体(重量平均分子量20万4千、Purac社製)8.5重量部をジクロロメタン溶液85重量部およびエタノール溶液5重量部で溶解し、均一な溶液を調製した。エレクトロスピニング法により紡糸を行い、シート状の繊維成形体を得た。噴出ノズルの内径は0.8mm、電圧は8kV、噴出ノズルから平板までの距離は25cmであった。上記平板は、紡糸時は陰極として用いた。得られた繊維成形体に、70℃10分間熱処理を実施した。得られた繊維成形体の平均繊維径は4.6μm、厚さは80μm、目付けは13.8g/m、空孔率は86.7%であった。0.01mm以上の貫通孔は観察されず、平均表面開孔面積は134.5μmであった。また、得られた繊維成形体上に、上記7%アルブミン溶液を1μLたらして液滴の変化を観察した。その結果、液滴が繊維成形体の内部に入り込むことはなく、疎水性の表面であることが確認された。繊維成形体表面上の上記7%アルブミン溶液の接触角は123度であり、親水性に乏しいこと、すなわち生体膜上にて繊維成形体と生体糊との複合薄膜を作製する際に、繊維成形体内への体液や髄液の浸透性が低いことがわかった。
 生体組織としてウサギの皮膚を採取し、ウサギの皮膚の中央にあけた穴(5mmΦ)の上に、作成した繊維成形体を穴がふさがるように設置し、上からフィブリン糊(ボルヒール(登録商標))を吹き付けた。このとき、得られた繊維成形体は、フィブリン糊の浸透により透明性が向上し、内部が観察できるようになった。続いて、外部より圧を加えていき、膜が破断したときの内圧を測定した。その結果、膜が破裂したときの圧力は31,864Paであった。以上のことから、親水性に乏しい微細繊維成形体を生体糊との複合薄膜の補強材として使用しても十分な接着性および人工生体膜に要求される耐圧性を発現していることがわかった。また、得られた複合薄膜をピンセット先端により突き刺してみたところ、貫通孔は開かなかった。
 得られたシート状の繊維成形体の電子顕微鏡写真を、図1に示す。
比較例1
 繊維成形体として、ポリグリコール酸系不織布であるネオベール(登録商標)NV−M−015G(グンゼ(株)製、厚さ0.15mm)を用いた以外は、実施例1と同様に、耐圧試験を行った。ネオベール(登録商標)の平均繊維径は20μmであり単繊維を束にした繊維束(146μm)で網目構造を有していた。0.01mm以上の貫通孔が観察され、平均表面開孔面積は、0.34mmであった。厚さは190μm、目付けは32.6g/m、空孔率は88.6%であった。また、ネオベール上に、上記7%アルブミン溶液を1μLたらして液滴の変化を観察した。その結果、繊維成形体表面上の上記7%アルブミン溶液の接触角は78度であり、時々刻々染込んでいくのが観察された。実施例1に比較して親水性に優れていること、すなわち生体膜上にて繊維成形体と生体糊との複合薄膜を作製する際に、繊維成形体内への体液や髄液の浸透性が高いことがわかった。耐圧試験の結果、複合膜が破断したときの圧力は、26,730Paであった。また、得られた複合薄膜をピンセット先端により突き刺してみたところ、貫通孔が開いた。
比較例2
 繊維成形体として、ポリグラクチン910からなるメッシュであるバイクリルメッシュニット(登録商標、ジョンソン&ジョンソン(株)製)を用いた。バイクリルメッシュニットの平均繊維径は15.2μmであり単繊維を束にした繊維束(126μm)で網目構造を有していた。0.01mm以上の貫通孔が観察され、平均表面開孔面積は、0.09mmであった。厚さは196μm、目付けは67.0g/m、空孔率は70.7%であった。また、バイクリルメッシュニット上に、上記7%アルブミン溶液を1μLたらして液滴の変化を観察した。その結果、液滴が繊維成形体の内部に速やかに浸透したことから、実施例1に比較して親水性の表面であることが確認された。滴下直後の接触角は70度であった。すなわち生体膜上にて繊維成形体と生体糊との複合薄膜を作製する際に、繊維成形体内への体液や髄液の浸透性が高いことがわかった。また、得られた複合薄膜をピンセット先端により突き刺してみたところ、貫通孔が開いた。
比較例3
 繊維成形体として、ポリグリコール酸系メッシュであるデキソンメッシュ#4(登録商標、デービス&ゲック(株)製)を用いた。デキソンメッシュ#4の平均繊維径は13.6μmであり単繊維を束にした繊維束(187μm)で網目構造を有していた。0.01mm以上の貫通孔が観察され、平均表面開孔面積は、0.013mmであった。厚さは205μm、目付けは56.0g/m、空孔率は82.1%であった。また、デキソンメッシュ#4上に、上記7%アルブミン溶液を1μLたらして液滴の変化を観察した。その結果、液滴が繊維成形体の内部に速やかに浸透し、接触角の測定が困難なことから、実施例1に比較して親水性の表面であることが確認された。すなわち生体膜上にて繊維成形体と生体糊との複合薄膜を作製する際に、繊維成形体内への体液及び髄液の浸透性が高いことがわかった。また、得られた複合薄膜をピンセット先端により突き刺してみたところ、貫通孔が開いた。
 上記実施例1、2及び比較例1から3の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例3
 生体に埋め込むための人工生体膜の作製には、市販の生体組織接着剤であるボルヒール(登録商標)を使用した。実施例1で記載した繊維成形体を2cm×2cm(4cm)の大きさに切断し、10cmプラスチックシャーレ中に置いた。3cm×3cm(9cm)の大きさの透明なプラスチックフィルムの中央部に1cm×1cm(1cm)の穴を開け、繊維成形体の上にプラスチックフィルムを被せた。ボルヒール中の凍結乾燥フィブリノゲン240mgおよび第XIII因子225単位を含むバイアルにアプロチニン(3000KIE)を含む溶液3mLを添加して混合し、3mLのフィブリノゲン液を作製し、約0.2mLのフィブリノゲン液を1mLの噴霧用シリンジに吸い込んだ。トロンビン(750単位)の粉末を、塩化カルシウム17.7mgを含む溶液3mLで溶解して、そのうちの0.2mLを1mLのシリンジに吸い込んだ。それぞれのシリンジをボルヒールスプレーセット(秋田住友ベーク(株))に装着した。このスプレーセットを用いてフィブリノゲン液とトロンビン液各0.2mLを同時に繊維成形体に重ねたプラスチックフィルムの上から均等に噴霧した。この後、5分間以上静置した後、プラスチックフィルムを除去することによって、繊維成形体の中央部に1cm×1cm(1cm)の大きさのフィブリンゲル層とその周囲に0.5cmの幅ののりしろ部分を持つ人工生体膜を形成した。この人工生体膜をシャーレから剥離して以後の実験に使用した。
実施例4
 ビーグル成犬を用いて動物実験を行った。
(i)硬膜の貼り付け
 ビーグル成犬を挿管管理による全身麻酔下におき、両側頭頂前頭開頭を行い、左右に各々1箇所、1cm四方の正方形の硬膜欠損部を作製した。一箇所の欠損部に対して、欠損部周囲の硬膜にフィブリノゲン液を0.1mL滴下して指ですり込み、その上から実施例3に記載した人工生体膜をフィブリンゲル層が脳実質側になるように被せた。次にボルヒールスプレーセットを用いてボルヒール各液0.3mLを人工生体膜の上から噴霧し、人工生体膜を硬膜欠損部に接着させた。3分間以上静置した後、閉頭を行った。
(ii)術後1ヶ月の病理所見
 図2に示したように、術後1ヵ月の時点でのヘマトキシリン・エオジン染色(HE染色)標本では、硬膜欠損部において本発明の人工生体薄膜の上部及び下部に自己の結合組織の層が確認された。また、人工生体膜の繊維間にも結合組織が増生していた。また、図3に示したように、脳組織は正常所見を呈していた。なお、術後より剖検時の1ヶ月まで、手術部位からの髄液の漏れはなかった。
 以上の結果より、実施例1で示した特定の構造を有する繊維成形体とフィブリン糊を組み合わせることで、硬膜を含む自己組織層の再生を促す人工生体膜になり得ることが確認された。
 以上のとおり、本発明の生体糊用補強材は、生体糊との接着性に優れ、均一な複合薄膜を形成できる。したがって、本発明の生体糊用補強材と生体糊とからなる人工生体膜は、医療用品、とりわけ臓器表面や創傷部位の保護材、被覆材、シール材として、人工代用硬膜、癒着防止材、止血材などに好ましく用いられる。
Hereinafter, although an example explains an embodiment of the present invention, these do not limit the range of the present invention.
1. Average fiber diameter:
The surface of the resulting fiber molded body was randomly selected from 20 photographs taken with a scanning electron microscope (Keyence Co., Ltd .: trade name “VE8800”) at a magnification of 2000 times to select the fiber diameter. The average value of all the fiber diameters was obtained and determined as the average fiber diameter. n = 20.
2. Average thickness:
Using a high-precision digital length measuring machine (Mitutoyo Co., Ltd .: trade name “Lightmatic VL-50”), the average value obtained by measuring the film thickness of the fiber molded body at a length measuring force of 0.01 N and n = 10 is calculated. did. In this measurement, the measurement was performed with the minimum measuring force that can be used by the measuring device.
3. Existence of through-holes and average surface open area 30 spots were randomly selected from photographs obtained by photographing the surface of the obtained fiber molded body with a scanning electron microscope (Keyence Corporation: trade name “VE8800”). Then, the surface opening area was measured, and the average value was obtained as the average surface opening area. The presence or absence of a through hole was confirmed from observation with an electron microscope.
4). Weight:
The obtained fiber molded body was cut into 5 cm × 10 cm, and the basis weight was calculated by measuring and converting the weight.
5. Porosity:
The porosity ε (%) was determined from ε = {1−ρ / ρ0} × 100.
ρ: density of the fiber molded body, ρ0: density of the bioabsorbable polymer in the bulk state Contact angle measurement Contact angle measurement was measured 5 times using 7% albumin (derived from bovine serum, pH 5.2: manufactured by Wako Pure Chemical Industries) / PBS (200112 Phosphate-Buffer Salines (PBS), liquid: manufactured by GIBCO). The average value was calculated.
7). Pressure resistance test Rabbit skin was collected as a living tissue, and the resulting fiber molded body was placed over the hole (5mmΦ) drilled in the center of the rabbit skin so that the hole was blocked, and fibrin glue (Bolheel ( (Registered trademark)), and a rabbit skin defect is covered with a composite thin film composed of a fiber molded body and fibrin glue. Subsequently, pressure was applied from the outside, and the internal pressure when the membrane broke was measured.
Example 1
10 parts by weight of polylactic acid (weight average molecular weight 262,000, manufactured by Purac) was dissolved in 90 parts by weight of a dichloromethane solution to prepare a uniform solution. Spinning was performed by electrospinning to obtain a sheet-like fiber molded body. The inner diameter of the ejection nozzle was 0.8 mm, the voltage was 8 kV, and the distance from the ejection nozzle to the flat plate was 25 cm. The flat plate was used as a cathode during spinning. The obtained fiber molded body was heat-treated at 70 ° C. for 10 minutes. The obtained fiber molded body had an average fiber diameter of 4.5 μm, a thickness of 100 μm, a basis weight of 16.2 g / m 2 , and a porosity of 87.6%. No through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 31.7 μm 2 . Further, 1 μL of the 7% albumin solution was put on the obtained fiber molded body, and the change of the droplets was observed. As a result, it was confirmed that the liquid droplets did not enter the inside of the fiber molded body and had a hydrophobic surface. The contact angle of the 7% albumin solution on the surface of the fiber molded body is 120 degrees, which is poor in hydrophilicity, that is, when forming a composite thin film of the fiber molded body and the biological glue on the biological membrane, the fiber molding is performed. It was found that the penetration of body fluid and cerebrospinal fluid into the body was low.
Next, the fiber molded body was installed as described in the section of “7. Pressure resistance test”. At this time, the obtained fiber molded body was improved in transparency by permeation of fibrin glue, and the inside could be observed. Subsequently, pressure was applied from the outside, and the internal pressure when the membrane broke was measured. As a result, the pressure when the film burst was 32,460 Pa. From the above, even if a microfiber molded body with poor hydrophilicity is used as a reinforcing material for a composite thin film with biological glue, it exhibits sufficient adhesiveness and pressure resistance required for artificial biological membrane materials. all right. Further, when the obtained composite thin film was pierced with the tip of the tweezers, the through hole was not opened.
Example 2
A homogeneous solution was prepared by dissolving 8.5 parts by weight of a lactic acid-glycolic acid copolymer (weight average molecular weight 204,000, manufactured by Purac) with 85 parts by weight of a dichloromethane solution and 5 parts by weight of an ethanol solution. Spinning was performed by electrospinning to obtain a sheet-like fiber molded body. The inner diameter of the ejection nozzle was 0.8 mm, the voltage was 8 kV, and the distance from the ejection nozzle to the flat plate was 25 cm. The flat plate was used as a cathode during spinning. The obtained fiber molded body was heat-treated at 70 ° C. for 10 minutes. The obtained fiber molded body had an average fiber diameter of 4.6 μm, a thickness of 80 μm, a basis weight of 13.8 g / m 2 , and a porosity of 86.7%. No through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 134.5 μm 2 . Further, 1 μL of the 7% albumin solution was put on the obtained fiber molded body, and the change of the droplets was observed. As a result, it was confirmed that the liquid droplets did not enter the inside of the fiber molded body and had a hydrophobic surface. The contact angle of the 7% albumin solution on the surface of the fiber molded body is 123 degrees, and the hydrophilicity is poor, that is, when forming a composite thin film of the fiber molded body and the biological glue on the biological membrane, the fiber molding is performed. It was found that the penetration of body fluid and cerebrospinal fluid into the body was low.
Rabbit skin is collected as a living tissue, and the prepared fiber molded body is placed on the hole (5mmΦ) in the center of the rabbit skin so that the hole is blocked, and fibrin glue (Bolheel (registered trademark)) is placed from above. ). At this time, the obtained fiber molded body was improved in transparency by permeation of fibrin glue, and the inside could be observed. Subsequently, pressure was applied from the outside, and the internal pressure when the membrane broke was measured. As a result, the pressure when the film burst was 31,864 Pa. From the above, it can be seen that even if a fine fiber molded body with poor hydrophilicity is used as a reinforcing material for a composite thin film with biological glue, sufficient adhesiveness and pressure resistance required for an artificial biological membrane are expressed. It was. Further, when the obtained composite thin film was pierced with the tip of the tweezers, the through hole was not opened.
An electron micrograph of the obtained sheet-like fiber molded body is shown in FIG.
Comparative Example 1
The pressure resistance test is the same as in Example 1 except that Neobale (registered trademark) NV-M-015G (manufactured by Gunze Co., Ltd., thickness 0.15 mm), which is a polyglycolic acid nonwoven fabric, is used as the fiber molded body. Went. Neobale (registered trademark) had an average fiber diameter of 20 μm and a fiber bundle (146 μm) in which single fibers were bundled to have a network structure. A through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 0.34 mm 2 . The thickness was 190 μm, the basis weight was 32.6 g / m 2 , and the porosity was 88.6%. Further, 1 μL of the 7% albumin solution was put on Neobale and the change of the droplets was observed. As a result, the contact angle of the 7% albumin solution on the surface of the fiber molded body was 78 degrees, and it was observed that the contact was constantly made. Compared to Example 1, it is superior in hydrophilicity, that is, when producing a composite thin film of a fiber molded body and a biological paste on a biological membrane, the permeability of body fluid and cerebrospinal fluid into the fiber molded body is I found it expensive. As a result of the pressure test, the pressure when the composite membrane broke was 26,730 Pa. Moreover, when the obtained composite thin film was stabbed with the tip of the tweezers, a through hole was opened.
Comparative Example 2
As the fiber molded body, bicyclyl mesh knit (registered trademark, manufactured by Johnson & Johnson Co., Ltd.), which is a mesh made of polyglactin 910, was used. The bifilar mesh knit had an average fiber diameter of 15.2 μm, and had a network structure of fiber bundles (126 μm) in which single fibers were bundled. Was observed 0.01 mm 2 or more through holes, the average surface open area was 0.09 mm 2. The thickness was 196 μm, the basis weight was 67.0 g / m 2 , and the porosity was 70.7%. Further, 1 μL of the 7% albumin solution was put on bicyclyl mesh knit, and changes in the droplets were observed. As a result, since the liquid droplets quickly penetrated into the fiber molded body, it was confirmed that the surface was hydrophilic compared to Example 1. The contact angle immediately after dropping was 70 degrees. That is, when producing a composite thin film of a fiber molded body and a biological paste on a biological membrane, it was found that the permeability of body fluid and cerebrospinal fluid into the fiber molded body was high. Moreover, when the obtained composite thin film was stabbed with the tip of the tweezers, a through hole was opened.
Comparative Example 3
As the fiber molded body, Dexon mesh # 4 (registered trademark, manufactured by Davis & Geck Co., Ltd.), which is a polyglycolic acid-based mesh, was used. The average fiber diameter of Dexon Mesh # 4 was 13.6 μm, and it had a network structure with a fiber bundle (187 μm) in which single fibers were bundled. A through-hole of 0.01 mm 2 or more was observed, and the average surface opening area was 0.013 mm 2 . The thickness was 205 μm, the basis weight was 56.0 g / m 2 , and the porosity was 82.1%. Further, 1 μL of the above 7% albumin solution was added onto Dexon mesh # 4, and changes in the droplets were observed. As a result, the liquid droplets quickly penetrated into the fiber molded body, making it difficult to measure the contact angle. Therefore, it was confirmed that the surface was hydrophilic compared to Example 1. That is, when producing a composite thin film of a fiber molded body and a biological glue on a biological membrane, it was found that the permeability of body fluid and cerebrospinal fluid into the fiber molded body was high. Moreover, when the obtained composite thin film was stabbed with the tip of the tweezers, a through hole was opened.
The results of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Example 3
Bolheel (registered trademark), which is a commercially available biological tissue adhesive, was used to produce an artificial biological membrane for implantation in a living body. The fiber molded body described in Example 1 was cut into a size of 2 cm × 2 cm (4 cm 2 ) and placed in a 10 cm plastic petri dish. A 1 cm × 1 cm (1 cm 2 ) hole was formed in the center of a transparent plastic film having a size of 3 cm × 3 cm (9 cm 2 ), and the plastic film was placed on the fiber molded body. 3 mL of a solution containing aprotinin (3000KIE) was added to a vial containing 240 mg of lyophilized fibrinogen in Bolheal and factor XIII 225 units and mixed to make 3 mL of fibrinogen solution, about 0.2 mL of fibrinogen solution Inhaled into a spray syringe. Thrombin (750 units) powder was dissolved in 3 mL of a solution containing 17.7 mg of calcium chloride, 0.2 mL of which was drawn into a 1 mL syringe. Each syringe was attached to a Bolheel spray set (Akita Sumitomo Bake Co., Ltd.). Using this spray set, 0.2 mL of each fibrinogen solution and thrombin solution was sprayed evenly from the top of the plastic film overlaid on the fiber molded body. Then, after leaving still for 5 minutes or more, by removing the plastic film, a fibrin gel layer having a size of 1 cm × 1 cm (1 cm 2 ) in the center of the fiber molded body and a width of 0.5 cm around the fibrin gel layer. An artificial biofilm with a margin was formed. This artificial biological membrane was peeled from the petri dish and used for the subsequent experiments.
Example 4
Animal experiments were conducted using adult beagle dogs.
(I) Attaching the dura mater A beagle dog was placed under general anesthesia by intubation management, bilateral parietal frontal craniotomy was performed, and a 1-cm square square dural defect part was produced on each of the left and right sides. To one deficient part, 0.1 mL of fibrinogen solution is dropped on the dura mater around the deficient part and rubbed with a finger, and then the artificial biomembrane described in Example 3 is placed on the brain parenchyma side. I covered it to become. Next, 0.3 mL of each Borheel solution was sprayed from above the artificial biological membrane using a Bolheel spray set to adhere the artificial biological membrane to the dural defect. After standing for 3 minutes or more, craniotomy was performed.
(Ii) Pathological findings at 1 month after surgery As shown in FIG. 2, in the hematoxylin-eosin stained (HE stained) sample at 1 month after surgery, the upper part of the artificial thin film of the present invention in the dural defect And the layer of self connective tissue was confirmed at the bottom. In addition, connective tissue grew between the fibers of the artificial biological membrane. In addition, as shown in FIG. 3, the brain tissue exhibited normal findings. There was no leakage of cerebrospinal fluid from the surgical site from the postoperative period until 1 month at the time of necropsy.
From the above results, it was confirmed that by combining the fiber molded body having the specific structure shown in Example 1 and the fibrin glue, an artificial biological membrane that promotes the regeneration of the self-organized layer including the dura mater can be obtained.
As mentioned above, the reinforcing material for biological glue of the present invention is excellent in adhesiveness with biological glue and can form a uniform composite thin film. Therefore, the artificial biofilm composed of the biopaste reinforcing material and the biopaste of the present invention is used as an artificial substitute dura mater, anti-adhesion material, as a medical article, particularly as a protective material, covering material, or seal material for an organ surface or a wound site, It is preferably used as a hemostatic material.

Claims (10)

  1.  平均繊維径が0.1~10μmである生体吸収性ポリマーの繊維からなり、厚みが10~150μmであり、表面開孔面積が0.01mm以上の貫通孔を有さない繊維成形体からなることを特徴とする生体糊用補強材。 It consists of fibers of bioabsorbable polymer having an average fiber diameter of 0.1 to 10 μm, a thickness of 10 to 150 μm, and a fiber molded body having no surface opening area of 0.01 mm 2 or more. A reinforcing material for living body glue.
  2.  繊維成形体の平均表面開孔面積が10~500μmである請求項1に記載の生体糊用補強材。 2. The reinforcing material for biological glue according to claim 1, wherein the average surface pore area of the fiber molded body is 10 to 500 μm 2 .
  3.  繊維成形体の目付けが1~30g/mである請求項1または2に記載の生体糊用補強材。 Biological glue reinforcing material according to claim 1 or 2 basis weight of the fibrous form is 1 ~ 30 g / m 2.
  4.  繊維成形体の空孔率が40~90%である請求項1~3のいずれかに記載の生体糊用補強材。 The bio-glue reinforcing material according to any one of claims 1 to 3, wherein the fiber molded body has a porosity of 40 to 90%.
  5.  生体吸収性ポリマーが、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、およびそれらの共重合体よりなる群から選ばれる少なくとも1種である請求項1~4のいずれかに記載の生体糊用補強材。 5. The bioglue reinforcing material according to any one of claims 1 to 4, wherein the bioabsorbable polymer is at least one selected from the group consisting of polyglycolic acid, polylactic acid, polycaprolactone, and copolymers thereof.
  6.  生体糊が、フィブリン糊、ゼラチン系粘着剤、セルロース製剤、コラーゲン系粘着剤、キトサン系粘着剤、アルギン酸製剤、およびこれらの2種以上の混合物からなる群から選ばれる、請求項1~5のいずれかに記載の生体糊用補強材。 The biological paste is selected from the group consisting of fibrin glue, gelatin adhesive, cellulose preparation, collagen adhesive, chitosan adhesive, alginic acid preparation, and a mixture of two or more thereof. Reinforcing material for biological glue according to crab.
  7.  請求項1~6のいずれかに記載の生体糊用補強材と生体糊を構成する成分とからなり、生体糊用補強材の少なくとも一部が生体糊を構成する成分で被覆されている人工生体薄膜。 An artificial living body comprising the bio-glue reinforcing material according to any one of claims 1 to 6 and a component constituting the bio-glue, wherein at least a part of the bio-glue reinforcement is coated with the component constituting the bio-glue. Thin film.
  8.  生体糊が、フィブリン糊、ゼラチン系粘着剤、セルロース製剤、コラーゲン系粘着剤、キトサン系粘着剤、アルギン酸製剤、およびこれらの2種以上の混合物からなる群から選ばれる、請求項7に記載の人工生体薄膜。 The artificial paste according to claim 7, wherein the biological paste is selected from the group consisting of fibrin glue, gelatin adhesive, cellulose preparation, collagen adhesive, chitosan adhesive, alginic acid preparation, and a mixture of two or more thereof. Biological thin film.
  9.  生体吸収性ポリマーから静電紡糸法にて繊維成形体を得る工程および該繊維成形体に熱処理を行う工程を含む、請求項1~6のいずれかに記載の生体糊用補強材を製造する方法。 The method for producing a reinforcing material for a biopaste according to any one of claims 1 to 6, comprising a step of obtaining a fiber molded body from a bioabsorbable polymer by an electrospinning method and a step of heat-treating the fiber molded body. .
  10.  平均繊維径が0.1~10μmである生体吸収性ポリマーからなり、厚みが10~150μmであり、0.01mm以上の貫通孔を有さない繊維成形体からなる生体糊用補強材と、生体糊との組み合わせからなる生体膜再生のための治療キット。 A bio-glue reinforcing material comprising a bio-absorbable polymer having an average fiber diameter of 0.1 to 10 μm, a thickness of 10 to 150 μm, and a fiber molded body having no through hole of 0.01 mm 2 or more; A treatment kit for biomembrane regeneration consisting of a combination with biopaste.
PCT/JP2011/061008 2010-05-07 2011-05-06 Reinforcing material for biological glue, and process for production thereof WO2011138974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012513839A JP5479584B2 (en) 2010-05-07 2011-05-06 Reinforcing material for biological glue and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010107087 2010-05-07
JP2010-107087 2010-05-07

Publications (1)

Publication Number Publication Date
WO2011138974A1 true WO2011138974A1 (en) 2011-11-10

Family

ID=44903824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061008 WO2011138974A1 (en) 2010-05-07 2011-05-06 Reinforcing material for biological glue, and process for production thereof

Country Status (2)

Country Link
JP (1) JP5479584B2 (en)
WO (1) WO2011138974A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083106A (en) * 2012-10-19 2014-05-12 Gunze Ltd Bioabsorbable tissue reinforcing material
JPWO2013172468A1 (en) * 2012-05-14 2016-01-12 帝人株式会社 Sterile composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087012A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Composite of support substrate and collagen, and process for producing support substrate and composite
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2005290610A (en) * 2004-03-31 2005-10-20 Akihiko Tanioka Nanoscale fiber and formed product of polysaccharides
WO2005113030A1 (en) * 2004-05-21 2005-12-01 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Tissue closing preparation
WO2007063820A1 (en) * 2005-12-02 2007-06-07 Sunstar Suisse Sa Biocompatible material having biocompatible non-woven nano- or micro-fiber fabric produced by electrospinning method, and method for production of the material
JP2009089859A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Wound covering material
JP2009089837A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Wound covering material
JP2010069031A (en) * 2008-09-19 2010-04-02 Chemo Sero Therapeut Res Inst Sheet-like fibrin glue adhesive
JP2010246750A (en) * 2009-04-16 2010-11-04 Teijin Ltd Wound treatment material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087012A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Composite of support substrate and collagen, and process for producing support substrate and composite
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2005290610A (en) * 2004-03-31 2005-10-20 Akihiko Tanioka Nanoscale fiber and formed product of polysaccharides
WO2005113030A1 (en) * 2004-05-21 2005-12-01 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Tissue closing preparation
WO2007063820A1 (en) * 2005-12-02 2007-06-07 Sunstar Suisse Sa Biocompatible material having biocompatible non-woven nano- or micro-fiber fabric produced by electrospinning method, and method for production of the material
JP2009089859A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Wound covering material
JP2009089837A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Wound covering material
JP2010069031A (en) * 2008-09-19 2010-04-02 Chemo Sero Therapeut Res Inst Sheet-like fibrin glue adhesive
JP2010246750A (en) * 2009-04-16 2010-11-04 Teijin Ltd Wound treatment material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013172468A1 (en) * 2012-05-14 2016-01-12 帝人株式会社 Sterile composition
JP2014083106A (en) * 2012-10-19 2014-05-12 Gunze Ltd Bioabsorbable tissue reinforcing material

Also Published As

Publication number Publication date
JP5479584B2 (en) 2014-04-23
JPWO2011138974A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
US9457127B2 (en) Micro-fiber webs of poly-4-hydroxybutyrate and copolymers thereof produced by centrifugal spinning
EP2968669B1 (en) Ultrafine electrospun fibers of poly-4-hydroxybutyrate and copolymers thereof
US20210008505A1 (en) Novel electrospun synthetic dental barrier membranes for guided tissue regeneration and guided bone regeneration applications
RU2491961C2 (en) Artificial dura mater and method of its production
DE69724807T2 (en) IMPLANTABLE FIBERS AND MEDICAL OBJECTS
EP3083233B1 (en) A tissue substitute multilayer matrix and uses thereof
CA2933746C (en) Medical implants including laminates of poly-4-hydroxybutyrate and copolymers thereof
EP1615589A1 (en) Planar implant and surgical use thereof
CN109072514A (en) Guided bone regeneration nano-fiber composite film and preparation method thereof
Sebe et al. Polymers and formulation strategies of nanofibrous systems for drug delivery application and tissue engineering
JP5544206B2 (en) Fiber composite
JP5479584B2 (en) Reinforcing material for biological glue and method for producing the same
JP5563590B2 (en) Fiber molded body
EP2567715A1 (en) Flocked medical device and methods for manufacturing the device
JP5589080B2 (en) Composite of fibrin glue and fiber molded body
KR20030002224A (en) Barrier membrance for guided tissue regeneration and the preparation thereof
DE102007024220A1 (en) Hemostatic fleece
WO2024025978A2 (en) Novel electrospun synthetic membranes for soft tissue repair applications
TW200423976A (en) Anti-adhesive membrane and method for production thereof
WO2011115281A1 (en) Fiber molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012513839

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777493

Country of ref document: EP

Kind code of ref document: A1