WO2011138413A2 - Electrical insulation material and insulating tape for electrically insulating a medium and high voltage - Google Patents

Electrical insulation material and insulating tape for electrically insulating a medium and high voltage Download PDF

Info

Publication number
WO2011138413A2
WO2011138413A2 PCT/EP2011/057240 EP2011057240W WO2011138413A2 WO 2011138413 A2 WO2011138413 A2 WO 2011138413A2 EP 2011057240 W EP2011057240 W EP 2011057240W WO 2011138413 A2 WO2011138413 A2 WO 2011138413A2
Authority
WO
WIPO (PCT)
Prior art keywords
insulation
filler
material according
insulation material
medium
Prior art date
Application number
PCT/EP2011/057240
Other languages
German (de)
French (fr)
Other versions
WO2011138413A3 (en
Inventor
Andre Gruebel
Peter GRÖPPEL
Matthias ÜBLER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2011138413A2 publication Critical patent/WO2011138413A2/en
Publication of WO2011138413A3 publication Critical patent/WO2011138413A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to an electrical insulation material for electrical insulation of a medium and high voltage and an insulation tape, which is made of the insulating material Herge ⁇ is and is suitable for electrical insulation of a medium / high voltage rotary machine.
  • a turbo generator in a power plant to generate electrical energy For a medium / high voltage rotary machine, as in ⁇ example, a turbo generator in a power plant to generate electrical energy, a high efficiency and high availability are required. This usually results in a high mechanical, thermal and electrical stress on the components of the turbogenerator.
  • the Turboge ⁇ erator in particular has a stator winding with respect to strength and supply reliability is set at a particularly high requirement.
  • Stator winding is high by partial discharges that occur continuously during operation of the medium / high voltage rotary machine.
  • insulation electrical conductors wires, coils, rods, sub-conductors
  • an improvement in the electrical properties of insulating materials and systems provide achievable by, for example, an increase in the proportion of fine mica in ⁇ nergur of high voltage insulation, which is difficult to implement, however, because of conflicting technical constraints.
  • the conventional insulation of conductors by means of a mica tape winding leads to inhomogeneities due to the winding process at edges and radii of the conductors. As a result, local field peaks occur at the edges and radii, which can lead to a premature failure of the insulation under the influence of high voltage due to partial discharges.
  • the resin / hardener system bisphenol A diglycidyl ether / acid anhydride
  • the resin / hardener system has only sufficient resistance to partial discharges, which may arise due to a possibly faulty mica tape wrapping and winding-related resulting cavities.
  • the cavities are filled in the insulation, which would otherwise lead to internal gas-solid interfaces and weaken the electrical strength of Iso ⁇ lation due to partial discharges.
  • an increase in the insulation layer thickness is conceivable, which, however, has disadvantages due to a reduced heat dissipation from the conductors and thus a reduced efficiency of the medium / high-voltage rotary machine.
  • the use of nanoparticulate fillers is known.
  • the object of the invention is to provide an electrical Isolationsma ⁇ material for electrical insulation of a medium and high ⁇ voltage, the insulation material has a high electrical aging resistance.
  • the electrical insulation material according to the invention for an electrical insulation of a medium and high voltage has a base resin which is mixed with polyhedral oligomeric silsesquioxane. Furthermore, the insulation tape according to the invention for a medium / high voltage rotary machine is made of the insulating material.
  • the polyhedral oligomeric silsesquioxane as filler powder is preferably uniformly distributed in the base resin, wherein the filler powder particles of the polyhedral oligomeric silsesquioxane R (SiOi, s) n has.
  • the filler is preferably either alterna tive ⁇ preferably with at least one other filler in the only filler, or Base resin provided. If the insulating material is provided with at least one other filler in the base resin, it is preferred that the other filler has makrosko ⁇ pisch scaled particles, which are in particular mica, Bromnitrid, alumina and / or silica.
  • the other filler has nanoparticles which are in particular of titanium oxide, aluminum oxide, silicon nitride and / or silicon oxide. It is also preferred that the other filler is formed from an organically modified, flaky sheet silicate, which is made into a self-organizing, inorganic / organic hybrid system with an aspect ratio of 100-1000 nm at a thickness of about 1 nm.
  • the base resin is preferably made of epoxy resin, polyester, polyurethane and / or silicone.
  • the base resin may be provided for impregnating the insulating tape, wherein the base resin is preferably made of epoxy resin, polyester, polyurethane and / or silicone.
  • the base resin is provided with the polyhedral oligomeric silsesquioxane (POSS), which can be present in both the solid and / or liquid state.
  • the polyhedral oligomeric silsesquioxane is a siloxane having the general empirical formula R (SiOi, 5) n and is provided in the base resin as a filler, additive and / or additive.
  • the polyhedral oligomeric silsesquioxane has an advantageous structure and advantageous chemical properties, whereby the aging resistance of the insulating material is achieved due to a high Generalentladungs ⁇ resistance.
  • the electrical resistance to aging ⁇ permanence of the insulating bands is achieved by the inventions to the invention insulation material that is used for the elekt ⁇ innovative isolation of a motor and a generator in the high- and medium-voltage range.
  • the polyhedral oligomeric Silses ⁇ quioxan depending on the rest (R) in solid, highly viscous or low-viscosity form, wherein the polyhedral oligomeric Silses ⁇ quioxan advantageously has a high specific surface area.
  • the Molecules of the polyhedral oligomeric silsesquioxane can be used singularly as the filler in the base resin or in combination with the macroscopic filler such as mica, bromine nitride, alumina, silica, but also in combination with the nanoparticles based on titanium oxide, aluminum oxide, silicon nitride, and / or Silica, but also in combination with the organically modified, platelike phyllosilicate.
  • the organically modified platelet-shaped phyllosilicate can be converted by means of a suitable process to the self-organizing, inorganic / organic hybrid system with an aspect ratio of 100-1000 nm, at a thickness of about 1 nm.
  • the insulation material according to the invention has a high resistance in the case of partial discharges occurring during operation.
  • the achieved high electrical strength of the Isolationsmate ⁇ rials it is possible to choose the layer thickness of the insulating tape according to the invention smaller compared with a conventional insulation tape.
  • the high electrical strength of the insulating material achieved in accordance with the invention enables the operating voltage of the conductor to be selected to be higher compared with an operating voltage which is customary for a conventionally insulated conductor.
  • the efficiency of a medium / high voltage rotary machine in which he ⁇ inventive isolation tape is used high.
  • the electrical resistance of the insulating material is high. This effect is due to the high electrical discharge resistance of the POSS molecules. Furthermore, it is advantageous in the insulating material according to the invention to form an sion channels between two under tension and electrically coupled to the insulating material electrodes difficult, with an occurrence of voids, stress cracks and / or delaminations in the insulating material is difficult.
  • Figure 2 is a cross-sectional detail through a conductor which is electrically isolated from the inventive insulation tape.
  • FIG. 1 shows the structure of the polyhedral oligomeric silsesquioxane having the general molecular formula R (SIOI f s) is shows n ge ⁇ .
  • FIG. 2 shows a conductor bar 1 which is provided with an external glow protection 2, an end corona protection 3 and an insulating strip 4. The conductor rod 1 is wound around the insulating tape ⁇ 4 for electrical insulation and is made of an insulating material.
  • the conductor bar 1 is made of copper and has a non-wound cross-section of 10 ⁇ 30 mm 2 .
  • the edge radius of the conductor bar 1 is 1 mm.
  • the length of the conductor bar 4 is 360 mm.
  • the insulation tape is 4-ply, wound crosswise and manually with 45% ⁇ 3% overlap around the conductor bar 1.
  • the insulation layer thickness achieved thereby with the insulation band 4 around the conductor bar 1 is 1.15 mm.
  • the conductor bar 4 is high-voltage insulated with the insulation band 4, the external corona shielding 2 and the end corona protection 3.
  • the insulating tape 4 is (VPI process) with a vacuum pressure process, wherein the underlying mitbe ⁇ conditions in Table 1 are indicated.
  • Table 1 Process conditions for the VPI process
  • the insulating material is formed of an epoxy resin as a base ⁇ resin, a curing agent, the addition polyhedrales oligomeric Sil sesquioxan (POSS), nanoparticles, and an accelerator.
  • the insulating material is formed by the epoxy resin and the POSS.
  • the nanoparticles are added to the isolati ⁇ onsmaterial depending on the example.
  • Example 1 relates to a conventional insulating material, whereas Examples 2 to 5 relate to the insulating material according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

The invention relates to an electrical insulation material for electrically insulating a medium and high voltage, comprising a base resin mixed with polyhedral oligomer silsesquioxane. The invention further relates to an insulating tape made of the insulation material for a medium and high voltage rotary machine.

Description

Beschreibung description
Elektrisches Isolationsmaterial und Isolationsband für eine elektrische Isolation einer Mittel- und Hochspannung Electrical insulation material and insulation tape for electrical insulation of medium and high voltage
Die Erfindung betrifft ein elektrisches Isolationsmaterial für eine elektrische Isolation einer Mittel- und Hochspannung und ein Isolationsband, das aus dem Isolationsmaterial herge¬ stellt ist und für eine elektrische Isolation einer Mittel- /Hochspannungsrotationsmaschine geeignet ist. The invention relates to an electrical insulation material for electrical insulation of a medium and high voltage and an insulation tape, which is made of the insulating material Herge ¬ is and is suitable for electrical insulation of a medium / high voltage rotary machine.
Für eine Mittel-/Hochspannungsrotationsmaschine, wie bei¬ spielsweise einen Turbogenerator in einem Kraftwerk zur Erzeugung von elektrischer Energie, sind ein hoher Wirkungsgrad und eine hohe Verfügbarkeit gefordert. Daraus resultiert in der Regel eine hohe mechanische, thermische und elektrische Beanspruchung der Bauteile des Turbogenerators. Der Turboge¬ nerator weist insbesondere eine Ständerwicklung auf, an die eine besonders hohe Anforderung bezüglich Festigkeit und Zu- verlässigkeit gestellt ist. Insbesondere ist das Isoliersys¬ tem der Ständerwicklung an der Grenzfläche zwischen der For a medium / high voltage rotary machine, as in ¬ example, a turbo generator in a power plant to generate electrical energy, a high efficiency and high availability are required. This usually results in a high mechanical, thermal and electrical stress on the components of the turbogenerator. The Turboge ¬ erator in particular has a stator winding with respect to strength and supply reliability is set at a particularly high requirement. In particular, the Isoliersys ¬ tem of the stator winding at the interface between the
Hauptisolierung und dem Blechpaket der Ständerwicklung durch eine hohe thermische, thermomechanische, dynamische und elektromechanische Betriebsbeanspruchung stark belastet, wo- durch das Risiko einer Beschädigung des Isoliersystems derMain insulation and the laminated core of the stator winding by a high thermal, thermo-mechanical, dynamic and electromechanical operating stress heavily loaded, whereby the risk of damaging the insulation of the
Ständerwicklung durch Teilentladungen hoch ist, die beim Betrieb der Mittel-/Hochspannungsrotationsmaschine unablässig auftreten. Mit dem Isoliersystem sind elektrische Leiter (Drähte, Spulen, Stäbe, Teilleiter) dauerhaft gegeneinander und gegen ein Ständerblechpaket oder die Umgebung isoliert.Stator winding is high by partial discharges that occur continuously during operation of the medium / high voltage rotary machine. With the insulation electrical conductors (wires, coils, rods, sub-conductors) are permanently isolated from each other and against a stator core or the environment.
Innerhalb einer Hochspannungsisolierung unterscheidet man die Isolierung zwischen Teilleitern (Teilleiterisolierung) , zwischen den Leitern bzw. Windungen (Leiter- bzw. Windungsisolierung) und zwischen Leiter und Massepotenzial im Nut- und Wickelkopfbereich (Hauptisolierung) . Die Betriebssicherheit der Mittel-/Hochspannungsrotationsmaschine ist maßgeblich von der Zuverlässigkeit des Isoliersystems bestimmt. Sowohl bei der Haupt- als auch bei der Teilleiterisolierung sind Fein- oder Spaltglimmer, die beispielsweise auf ein Glasfaserträgerband appliziert sind, vorgesehen, wodurch eine Erhöhung der elektrischen Dauerbetriebsfestigkeit erzielt ist. Mit dem Feinglimmer ist aufgrund seiner anorganischen Struktur die Beständigkeit der Isolation gegenüber im elektrischen Feld auftretenden Teilentladungen erhöht. Während einer Teilentladung kommt es im elektrischen Feld zur Ausbildung einer elektrischen Entladung, welche in organischen Ma- terialien zu deren Abbau führt und einen Totalausfall zur Folge haben kann. Der Glimmer wirkt als Barriere gegenüber Erosionskanälen zwischen dem Leiter und dem Stator. Within a high-voltage insulation, a distinction is made between the insulation between partial conductors (conductor insulation), between the conductors or windings (conductor or winding insulation) and between conductor and ground potential in the groove and winding overhang area (main insulation). The reliability of the medium / high voltage rotary machine is largely determined by the reliability of the insulation system. Both in the main and in the sub-conductor insulation fine or fission mica, which are applied for example to a glass fiber carrier tape, provided, whereby an increase in the electrical continuous operating resistance is achieved. With the fine mica, the resistance of the insulation to partial discharges occurring in the electric field is increased due to its inorganic structure. During a partial discharge, an electric discharge occurs in the electric field, which leads to their degradation in organic materials and can result in total failure. The mica acts as a barrier to erosion channels between the conductor and the stator.
Herkömmlich ist eine Verbesserung der elektrischen Eigen- schaffen der Isolierwerkstoffe und -Systeme erzielbar durch beispielsweise eine Erhöhung des Anteils an Feinglimmer in¬ nerhalb der Hochspannungsisolation, was allerdings aufgrund von entgegenstehenden technischen Randbedingungen nur schwer umsetzbar ist. Ferner führt die herkömmliche Isolierung von Leitern mittels einer Glimmerbandumwicklung zu Inhomogenitäten aufgrund des Wicklungsprozesses an Kanten und Radien der Leiter. Dadurch treten lokal Feldüberhöhungen an den Kanten und Radien auf, die zu einem verfrühten Ausfall der Isolation unter Hochspannungseinfluss aufgrund von Teilentladungen füh- ren können. Außerdem trägt das zur Imprägnierung eingesetzte Harz/Härtersystem (Bisphenol-A-Diglycidylether/Säureanhydrid) aufgrund seines polymeren Charakters nur unzurei¬ chend zur Verbesserung der Teilentladungsbeständigkeit der Isolation bei. Ebenso besitzt das Harz/Härtersystem eine nur hinreichende Resistenz gegen Teilentladungen, die aufgrund einer eventuell fehlerhaften Glimmerbandumwickelung und wicklungsbedingt resultierenden Hohlräumen entstehenden können. Conventionally, an improvement in the electrical properties of insulating materials and systems provide achievable by, for example, an increase in the proportion of fine mica in ¬ nerhalb of high voltage insulation, which is difficult to implement, however, because of conflicting technical constraints. Furthermore, the conventional insulation of conductors by means of a mica tape winding leads to inhomogeneities due to the winding process at edges and radii of the conductors. As a result, local field peaks occur at the edges and radii, which can lead to a premature failure of the insulation under the influence of high voltage due to partial discharges. In addition, the resin / hardener system (bisphenol A diglycidyl ether / acid anhydride) used for the impregnation wearing due to its polymeric nature only unzurei ¬ accordingly to improve the partial discharge resistance of the insulation. Likewise, the resin / hardener system has only sufficient resistance to partial discharges, which may arise due to a possibly faulty mica tape wrapping and winding-related resulting cavities.
Bei Mittel-/Hochspannungsrotationsmaschinen werden herkömm- lieh geschichtete Glimmerisolierungen eingesetzt. Dabei wer¬ den die aus den isolierten Teilleitern hergestellten Formspulen und Leiter mit Glimmerbändern umwickelt und herkömmlich in einem Vakuum-Druck-Prozess (VPI-Prozess) mit Kunstharz im- prägniert. Von dem Verbund von Imprägnierharz und Trägermate¬ rial des Glimmers ist die mechanische Festigkeit der Isolie¬ rung definiert. Die in dem Verbund vorliegende Schichtung aus organischen und anorganischen Materialien bildet mikroskopi- sehe Feststoff-Feststoff-Grenzflächen, deren Beständigkeit gegen Teilentladungen und thermische Beanspruchungen von den Eigenschaften der Glimmerplättchen bestimmt werden. In medium / high voltage rotary machines traditionally layered mica insulations are used. In this case, the shape of who the coils and conductor made of the insulated partial conductors wrapped with mica tapes and conventional in a vacuum pressure process (VPI) process with synthetic resin ¬ im- pregnated. From the composite by impregnating and carrier materials ¬ rial of the mica, the mechanical strength of the Isolie ¬ tion is defined. The composite of organic and inorganic materials present in the composite forms microscopic solid-solid interfaces whose resistance to partial discharges and thermal stresses are determined by the properties of the mica platelets.
Durch den vorgesehenen VPI-Prozess werden die Hohlräume in der Isolierung gefüllt, die sonst zu inneren Gas-Feststoff- Grenzflächen führen und die elektrische Festigkeit der Iso¬ lierung aufgrund von Teilentladungen schwächen würden. Um dieser Schwächung entgegenzuwirken, ist eine Erhöhung der Isolationsschichtdicke denkbar, was aber aufgrund einer ver- ringerten Wärmeabfuhr von den Leitern und dadurch bedingt eines verringerten Wirkungsgrades der Mittel-/Hochspannung- rotationsmaschine Nachteile mit sich bringt. Zur Verbesserung der elektrischen Beständigkeit des Isolationssystems ist der Einsatz nanopartikulärer Füllstoffe bekannt. Through the proposed VPI process, the cavities are filled in the insulation, which would otherwise lead to internal gas-solid interfaces and weaken the electrical strength of Iso ¬ lation due to partial discharges. In order to counteract this weakening, an increase in the insulation layer thickness is conceivable, which, however, has disadvantages due to a reduced heat dissipation from the conductors and thus a reduced efficiency of the medium / high-voltage rotary machine. To improve the electrical resistance of the insulation system, the use of nanoparticulate fillers is known.
Aufgabe der Erfindung ist es, ein elektrisches Isolationsma¬ terial für eine elektrische Isolation einer Mittel- und Hoch¬ spannung zu schaffen, wobei das Isolationsmaterial eine hohe elektrische Alterungsbeständigkeit hat. The object of the invention is to provide an electrical Isolationsma ¬ material for electrical insulation of a medium and high ¬ voltage, the insulation material has a high electrical aging resistance.
Das erfindungsgemäße elektrische Isolationsmaterial für eine elektrische Isolation einer Mittel- und Hochspannung weist ein Basisharz auf, das mit polyhedralem oligomerem Silsesquioxan versetzt ist. Ferner ist das erfindungsgemäße Isola- tionsband für eine Mittel-/Hochspannungsrotationsmaschine aus dem Isolationsmaterial hergestellt. The electrical insulation material according to the invention for an electrical insulation of a medium and high voltage has a base resin which is mixed with polyhedral oligomeric silsesquioxane. Furthermore, the insulation tape according to the invention for a medium / high voltage rotary machine is made of the insulating material.
Das polyhedrale oligomere Silsesquioxan als Füllstoffpulver liegt bevorzugt in dem Basisharz gleichmäßig verteilt vor, wobei das Füllstoffpulver Partikel aus dem polyhedralem oligomerem Silsesquioxan R(SiOi,s)n aufweist. Das Füllstoffpulver ist bevorzugt entweder als einziger Füllstoff, oder alterna¬ tiv bevorzugt mit mindestens einem anderen Füllstoff in dem Basisharz vorgesehen. Wenn das Isoliermaterial mit dem mindestens einen anderen Füllstoff in dem Basisharz vorgesehen ist, ist es bevorzugt, dass der andere Füllstoff makrosko¬ pisch skalierte Partikel aufweist, die insbesondere aus Glim- mer, Bromnitrid, Aluminiumoxid und/oder Siliziumoxid sind.The polyhedral oligomeric silsesquioxane as filler powder is preferably uniformly distributed in the base resin, wherein the filler powder particles of the polyhedral oligomeric silsesquioxane R (SiOi, s) n has. The filler is preferably either alterna tive ¬ preferably with at least one other filler in the only filler, or Base resin provided. If the insulating material is provided with at least one other filler in the base resin, it is preferred that the other filler has makrosko ¬ pisch scaled particles, which are in particular mica, Bromnitrid, alumina and / or silica.
Ferner ist es bevorzugt, dass der andere Füllstoff Nanoparti- kel aufweist, die insbesondere aus Titanoxid, Aluminiumoxid, Siliziumnitrid und/oder Siliziumoxid sind. Bevorzugt ist es außerdem, dass der andere Füllstoff aus einem organisch modi- fizierten, plättchenförmigen Schichtsilikat gebildet ist, das zu einem selbstorganisierenden, anorganisch/organischen Hybridsystem mit einem Aspektverhältnis von 100 - 1000 nm bei einer Dicke von etwa 1 nm hergestellt ist. Das Basisharz ist bevorzugt aus Epoxidharz, Polyester, Polyurethan und/oder Si- likon. Furthermore, it is preferred that the other filler has nanoparticles which are in particular of titanium oxide, aluminum oxide, silicon nitride and / or silicon oxide. It is also preferred that the other filler is formed from an organically modified, flaky sheet silicate, which is made into a self-organizing, inorganic / organic hybrid system with an aspect ratio of 100-1000 nm at a thickness of about 1 nm. The base resin is preferably made of epoxy resin, polyester, polyurethane and / or silicone.
Das Basisharz kann zur Imprägnierung des Isolationsbands vorgesehen sein, wobei das Basisharz bevorzugt aus Epoxidharz, Polyester, Polyurethan und/oder Silikon hergestellt ist. Das Basisharz ist dabei mit dem polyhedralen oligomeren Silses- quioxan (POSS) versehen, das sowohl im festen und/oder flüssigen Aggregatszustand vorliegen kann. Das polyhedrale oligo- mere Silsesquioxan ist ein Siloxan mit der allgemeinen Summenformel R(SiOi,5)n und ist in dem Basisharz als Füllstoff, Additiv und/oder Zusatz vorgesehen. Das polyhedrale oligomere Silsesquioxan hat eine vorteilhafte Struktur und vorteilhafte chemische Eigenschaften, wodurch die Alterungsbeständigkeit des Isolationsmaterials aufgrund einer hohen Teilentladungs¬ beständigkeit erzielt ist. Insbesondere ist mit dem erfin- dungsgemäßen Isolationsmaterial die elektrische Alterungsbe¬ ständigkeit des Isolationsbands erreicht, das für die elekt¬ rische Isolation eines Motors und eines Generators im Hoch- und Mittelspannungsbereich eingesetzt ist. Bei Raumtemperatur liegt das polyhedrale oligomere Silses¬ quioxan je nach Rest (R) in fester, hochviskoser oder niederviskoser Form vor, wobei das polyhedrale oligomere Silses¬ quioxan vorteilhaft eine hohe spezifische Oberfläche hat. Die Moleküle des polyhedralen oligomeren Silsesquioxan können singulär als der Füllstoff in dem Basisharz eingesetzt sein oder in Kombination mit dem makroskopischen Füllstoff wie Glimmer, Bromnitrid, Aluminiumoxid, Siliziumoxid, aber auch in Kombination mit den Nanopartikeln auf Basis von Titanoxid, Aluminiumoxid, Siliziumnitrid, und/oder Siliziumoxid, aber auch in Kombination mit dem organisch modifizierten, plätt- chenförmigen Schichtsilikat. Das organisch modifizierte, plättchenförmigen Schichtsilikat kann mittels eines geeigne- ten Verfahrens zu dem selbstorganisierenden, anorganisch/- organischen Hybridsystem mit einem Aspektverhältnis von 100 - 1000 nm, bei einer Dicke von ca. 1 nm, umgewandelt werden. The base resin may be provided for impregnating the insulating tape, wherein the base resin is preferably made of epoxy resin, polyester, polyurethane and / or silicone. The base resin is provided with the polyhedral oligomeric silsesquioxane (POSS), which can be present in both the solid and / or liquid state. The polyhedral oligomeric silsesquioxane is a siloxane having the general empirical formula R (SiOi, 5) n and is provided in the base resin as a filler, additive and / or additive. The polyhedral oligomeric silsesquioxane has an advantageous structure and advantageous chemical properties, whereby the aging resistance of the insulating material is achieved due to a high Teilentladungs ¬ resistance. In particular, the electrical resistance to aging ¬ permanence of the insulating bands is achieved by the inventions to the invention insulation material that is used for the elekt ¬ innovative isolation of a motor and a generator in the high- and medium-voltage range. At room temperature the polyhedral oligomeric Silses ¬ quioxan, depending on the rest (R) in solid, highly viscous or low-viscosity form, wherein the polyhedral oligomeric Silses ¬ quioxan advantageously has a high specific surface area. The Molecules of the polyhedral oligomeric silsesquioxane can be used singularly as the filler in the base resin or in combination with the macroscopic filler such as mica, bromine nitride, alumina, silica, but also in combination with the nanoparticles based on titanium oxide, aluminum oxide, silicon nitride, and / or Silica, but also in combination with the organically modified, platelike phyllosilicate. The organically modified platelet-shaped phyllosilicate can be converted by means of a suitable process to the self-organizing, inorganic / organic hybrid system with an aspect ratio of 100-1000 nm, at a thickness of about 1 nm.
Das erfindungsgemäße Isolationsmaterial hat eine hohe Bestän- digkeit bei im Betrieb auftretenden Teilentladungen. Durch die erzielte hohe elektrische Festigkeit des Isolationsmate¬ rials ist es möglich, die Schichtdicke des erfindungsgemäßen Isolationsbands kleiner verglichen mit einem herkömmlichen Isolationsband zu wählen. Dadurch kann vorteilhaft die Ablei- tung von Wärme, die beispielsweise in einem mit Strom durch- flossenen Leiter entsteht, der mit dem Isolationsband umwi¬ ckelt und dadurch elektrisch isoliert ist, gut bewerkstelligt werden. Ferner ermöglicht die erfindungsgemäß erzielte hohe elektrische Festigkeit des Isolationsmaterials dazu, dass die Betriebsspannung des Leiters höher gewählt werden kann verglichen mit einer Betriebsspannung, die für einen herkömmlich isolierten Leiter üblich ist. Dadurch ist der Wirkungsgrad einer Mittel-/Hochspannungsrotationsmaschine, in der das er¬ findungsgemäße Isolationsband eingesetzt ist, hoch. The insulation material according to the invention has a high resistance in the case of partial discharges occurring during operation. The achieved high electrical strength of the Isolationsmate ¬ rials, it is possible to choose the layer thickness of the insulating tape according to the invention smaller compared with a conventional insulation tape. Thereby, advantageously, the derivation of heat generated for example in a transit-carrying power conductor with the insulation tape umwi ¬ developed and thereby electrically isolated, be well accomplished. Furthermore, the high electrical strength of the insulating material achieved in accordance with the invention enables the operating voltage of the conductor to be selected to be higher compared with an operating voltage which is customary for a conventionally insulated conductor. As a result, the efficiency of a medium / high voltage rotary machine in which he ¬ inventive isolation tape is used, high.
Aufgrund der hohen spezifischen Oberflächen des aus Silizium und Sauerstoff aufgebauten Silsesquioxan, das in der bevorzugten Kombination mit den Nanopartikeln und/oder dem plättchenförmigen Schichtsilikat eingesetzt ist, ist die elektri- sehe Festigkeit des Isolationsmaterials hoch. Dieser Effekt ist auf die hohe elektrische Teileentladungsbeständigkeit der POSS-Moleküle zurückzuführen. Ferner ist vorteilhaft in dem erfindungsgemäßen Isolationsmaterial eine Ausbildung von Ero- sionskanälen zwischen zwei unter Spannung stehenden und an das Isolationsmaterial elektrisch gekoppelten Elektroden erschwert, wobei ein Auftreten von Hohlräumen, Spannungsrissen und/oder Delaminationen in dem Isolationsmaterial erschwert ist . Due to the high specific surface area of the silsesquioxane composed of silicon and oxygen, which is used in the preferred combination with the nanoparticles and / or the platelet-shaped phyllosilicate, the electrical resistance of the insulating material is high. This effect is due to the high electrical discharge resistance of the POSS molecules. Furthermore, it is advantageous in the insulating material according to the invention to form an sion channels between two under tension and electrically coupled to the insulating material electrodes difficult, with an occurrence of voids, stress cracks and / or delaminations in the insulating material is difficult.
Im Folgenden wird die Erfindung anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigt: Figur 1 schematisch die Struktur des Silsesquioxan In the following the invention will be explained with reference to the attached schematic drawings. 1 shows schematically the structure of silsesquioxane
und and
Figur 2 einen Querschnittsausschnitt durch einen Leiter, der von dem erfindungemäßem Isolationsband elektrisch isoliert ist.  Figure 2 is a cross-sectional detail through a conductor which is electrically isolated from the inventive insulation tape.
In Figur 1 ist die Struktur des polyhedralen oligomeren Silsesquioxan mit der allgemeinen Summenformel R(SiOifs)n ge¬ zeigt . In Figur 2 ist ein Leiterstab 1 gezeigt, der mit einem Außen- glimmschutz 2, einem Endenglimmschutz 3 und einem Isolationsband 4 versehen ist. Der Leiterstab 1 ist von dem Isolations¬ band 4 zur elektrischen Isolation umwickelt und ist aus einem Isolationsmaterial hergestellt. 1 shows the structure of the polyhedral oligomeric silsesquioxane having the general molecular formula R (SIOI f s) is shows n ge ¬. FIG. 2 shows a conductor bar 1 which is provided with an external glow protection 2, an end corona protection 3 and an insulating strip 4. The conductor rod 1 is wound around the insulating tape ¬ 4 for electrical insulation and is made of an insulating material.
Der Leiterstab 1 ist aus Kupfer und hat ungewickelt einen Querschnitt von 10 x 30 mm2. Der Kantenradius des Leiterstabs 1 beträgt 1 mm. Die Länge des Leiterstabs 4 beträgt 360 mm. Das Isolationsband ist 4-lagig, kreuzweise und manuell mit 45% ± 3% Überlappung um den Leiterstab 1 gewickelt. Die da¬ durch mit dem Isolationsband 4 um den Leiterstab 1 erzielte Isolationsschichtdicke beträgt 1,15 mm. Damit ist mit dem Isolationsband 4, dem Außenglimmschutz 2 und dem Endenglimm- schutz 3 der Leiterstab 4 hochspannungsisoliert. The conductor bar 1 is made of copper and has a non-wound cross-section of 10 × 30 mm 2 . The edge radius of the conductor bar 1 is 1 mm. The length of the conductor bar 4 is 360 mm. The insulation tape is 4-ply, wound crosswise and manually with 45% ± 3% overlap around the conductor bar 1. The insulation layer thickness achieved thereby with the insulation band 4 around the conductor bar 1 is 1.15 mm. Thus, the conductor bar 4 is high-voltage insulated with the insulation band 4, the external corona shielding 2 and the end corona protection 3.
Das Isolationsband 4 ist mit einem Vakuum-Druck-Prozess (VPI- Prozess) hergestellt, wobei die zugrundeliegenden Prozessbe¬ dingungen in Tabelle 1 angegeben sind. Tabelle 1: Prozessbedingungen für den VPI-Prozess The insulating tape 4 is (VPI process) with a vacuum pressure process, wherein the underlying Prozessbe ¬ conditions in Table 1 are indicated. Table 1: Process conditions for the VPI process
Figure imgf000009_0001
Anhand von Beispielen wird im Folgenden die Erfindung näher erläutet .
Figure imgf000009_0001
The invention will be explained in more detail below by means of examples.
Das Isolationsmaterial ist von einem Epoxidharz als Basis¬ harz, einem Härter, dem Zusatz polyhedrales oligomeres Sil- sesquioxan (POSS) , Nanopartikel und einem Beschleuniger gebildet. Erfindungsgemäß ist das Isolationsmaterial von dem Epoxidharz und dem POSS gebildet. Ferner sind zu dem Isolati¬ onsmaterial je nach Beispiel Nanopartikel zugegeben. Beispiel 1 betrifft ein herkömmliches Isolationsmaterial, wohingegen Beispiele 2 bis 5 das erfindungsgemäße Isolationsmaterial betreffen . The insulating material is formed of an epoxy resin as a base ¬ resin, a curing agent, the addition polyhedrales oligomeric Sil sesquioxan (POSS), nanoparticles, and an accelerator. According to the invention, the insulating material is formed by the epoxy resin and the POSS. Furthermore, the nanoparticles are added to the isolati ¬ onsmaterial depending on the example. Example 1 relates to a conventional insulating material, whereas Examples 2 to 5 relate to the insulating material according to the invention.
Beispiel 1 (Referenz, ungefülltes Imprägnierharz) Example 1 (Reference, unfilled impregnating resin)
Komponente BezeichChemische Zusammen¬ MassenAkronym nung setzung teileComponent DesignChemical Compound ¬ MassenAkronym tion tion parts
Epoxidharz EPR 162 Bisphenol-A- 83,5 BADGE diglycidylether Epoxy EPR 162 bisphenol A 83.5 BADGE diglycidyl ether
Härter EPH 868 Methylhexa- 90 MHHPA hydrophtha1säure- anhydrid  Hardener EPH 868 methylhexa-90 MHHPA hydrophthalic anhydride
POSS 0  POSS 0
Nanoparti¬ 0 Nanoparticles ¬ 0
kel  kel
Beschleu¬ Zn-N Zink-Naphthenat 1 Zn-N niger Beispiel 2 Accelerat ¬ Zn-N zinc naphthenate 1 Zn-N niger Example 2
Figure imgf000010_0001
Beispiel 3
Figure imgf000010_0001
Example 3
Komponente BezeichChemische Zusammen¬ Mas¬ Akronym nung setzung senteile Component DesignCommon ¬ Mas ¬ Acronym tion parts
Epoxidharz EPR 162 Bisphenol-A- 83,5 BADGE diglycidylether  Epoxy EPR 162 bisphenol A 83.5 BADGE diglycidyl ether
Härter EPH 868 Methylhexa- 90 MHHPA hydrophtha1säure- anhydrid  Hardener EPH 868 methylhexa-90 MHHPA hydrophthalic anhydride
POSS Glycidyl Oxirane, 2- [ [ 3- 19, 4 POSS  POSS glycidyl oxiranes, 2- [[3- 19, 4 POSS
POSS (trimethoxy- silyl ) propoxy]  POSS (trimethoxysilyl) propoxy]
methyl ] - , hydrolyzed  methyl] -, hydrolyzed
Nanoparti- Aerosil Aerosil A 200 20 Aer kel  Nanoparti- Aerosil Aerosil A 200 20 Aer
Beschleu¬ Zn-N Zink-Naphthenat 1 Zn-N niger Beispiel 4 Accelerat ¬ Zn-N zinc naphthenate 1 Zn-N niger Example 4
Figure imgf000011_0001
Beispiel 5
Figure imgf000011_0001
Example 5
Komponente BezeichChemische Zusammen¬ Mas¬ Akronym nung setzung senteile Component DesignCommon ¬ Mas ¬ Acronym tion parts
Epoxidharz EPR 162 Bisphenol-A- 83,5 BADGE diglycidylether  Epoxy EPR 162 bisphenol A 83.5 BADGE diglycidyl ether
Härter EPH 868 MethylhexahydrOph90 MHHPA thal-säurenhydrid  Hardener EPH 868 MethylhexahydrOph90 MHHPA thalian acid hydride
POSS Glycidyl Oxirane, 2- [ [ 3- 19, 4 POSS  POSS glycidyl oxiranes, 2- [[3- 19, 4 POSS
POSS (trimethox- ysilyl ) propoxy]  POSS (trimethoxysilyl) propoxy]
methyl ] - , hydrolyzed  methyl] -, hydrolyzed
Nanoparti- Schicht¬ I 30 E 5 OC kel silikat Nanoparticle layer ¬ I 30 E 5 OC kel silicate
Beschleu¬ Zn-N Zink-Naphthenat 1 Zn-N niger Es ergeben sich folgende Lebensdauerdaten für die beispielhaften Isolationsmaterialien: Accelerat ¬ Zn-N zinc naphthenate 1 Zn-N niger This results in the following lifetime data for the exemplary insulation materials:
Für Beispiel 1 : For Example 1:
Feldbelastung durchschnittliche Lebensdauer [h]Field load average life [h]
19,5 kV 60 19.5 kV 60
16,25 kV 120  16.25 kV 120
15,0 kV 400  15.0 kV 400
Für Beispiel 2 : For Example 2:
Feldbelastung durchschnittliche Lebensdauer [h]Field load average life [h]
19,5 kV 80 19.5 kV 80
16,25 kV 140  16.25 kV 140
15,0 kV 1000  15.0 kV 1000
Für Beispiel 3: For Example 3:
Feldbelastung durchschnittliche Lebensdauer [h]Field load average life [h]
19,5 kV 120 19.5 kV 120
16,25 kV 800  16.25 kV 800
15,0 kV 3500  15.0 kV 3500
Für Beispiel 4 : For Example 4:
Feldbelastung durchschnittliche Lebensdauer [h]Field load average life [h]
19,5 kV 300 19.5 kV 300
16,25 kV 1000  16.25 kV 1000
15,0 kV 4000 Für Beispiel 5: 15.0 kV 4000 For Example 5:
Feldbelastung durchschnittliche Lebensdauer [h]Field load average life [h]
19,5 kV 250 19.5 kV 250
16,25 kV 900  16.25 kV 900
15,0 kV 3000  15.0 kV 3000

Claims

Patentansprüche claims
1. Elektrisches Isolationsmaterial für eine elektrische Iso¬ lation einer Mittel- und Hochspannung, mit einem Basisharz, das mit polyhedralem oligomerem Silsesquioxan versetzt ist. 1. Electrical insulation material for an electrical Iso ¬ lation of a medium and high voltage, with a base resin which is mixed with polyhedral oligomeric silsesquioxane.
2. Isolationsmaterial gemäß Anspruch 1, wobei das polyhedrale oligomere Silsesquioxan als Füllstoffpulver in dem Basisharz gleichmäßig verteilt vorliegt, wobei das Füllstoffpulver Par- tikel aus dem polyhedralem oligomerem Silsesquioxan R(SiOi,s)n aufweist . 2. The insulating material according to claim 1, wherein the polyhedral oligomeric silsesquioxane is uniformly dispersed as a filler powder in the base resin, the filler powder having particles of the polyhedral oligomeric silsesquioxane R (SiOi, s) n .
3. Isolationsmaterial gemäß Anspruch 1 oder 2, wobei das Füllstoffpulver als einziger Füllstoff in dem Basisharz vor- gesehen ist. 3. Insulation material according to claim 1 or 2, wherein the filler powder is provided as the only filler in the base resin.
4. Isolationsmaterial gemäß Anspruch 1 oder 2, wobei das Füllstoffpulver mit mindestens einem anderen Füllstoff in dem Basisharz vorgesehen ist. 4. Insulation material according to claim 1 or 2, wherein the filler powder is provided with at least one other filler in the base resin.
5. Isolationsmaterial gemäß Anspruch 4, wobei der andere Füllstoff makroskopisch skalierte Partikel aufweist, die ins¬ besondere aus Glimmer, Bromnitrid, Aluminiumoxid und/oder Si¬ liziumoxid sind. 5. Insulation material according to claim 4, wherein the other filler has macroscopically scaled particles into ¬ particular mica, Bromnitrid, alumina and / or Si ¬ liziumoxid.
6. Isolationsmaterial gemäß Anspruch 4 oder 5, wobei der an¬ dere Füllstoff Nanopartikel aufweist, die insbesondere aus Titanoxid, Aluminiumoxid, Siliziumnitrid und/oder Silizium¬ oxid sind. 6. Insulation material according to claim 4 or 5, wherein the other filler ¬ nanoparticles, which are in particular of titanium oxide, alumina, silicon nitride and / or silicon ¬ oxide.
7. Isolationsmaterial gemäß einem der Ansprüche 4 bis 6, wo¬ bei der andere Füllstoff aus einem organisch modifizierten, plättchenförmigen Schichtsilikat gebildet ist, das zu einem selbstorganisierenden, anorganisch/organischen Hybridsystem mit einem Aspektverhältnis von 100 - 1000 nm bei einer Dicke von etwa 1 nm hergestellt ist. 7. Insulating material according to one of claims 4 to 6, where ¬ in the other filler is formed from an organically modified, platelet-shaped phyllosilicate leading to a self-organizing, inorganic / organic hybrid system with an aspect ratio of 100 - 1000 nm at a thickness of about 1 nm is made.
8. Isolationsmaterial gemäß einem der Ansprüche 1 bis 7, wo¬ bei das Basisharz aus Epoxidharz, Polyester, Polyurethan und/oder Silikon ist. 8. Insulation material according to one of claims 1 to 7, where ¬ in the base resin of epoxy resin, polyester, polyurethane and / or silicone.
9. Isolationsband für eine Mittel-/Hochspannungsrotations- maschine, wobei das Isolationsband (4) aus einem Isolations¬ material gemäß einem der Ansprüche 1 bis 8 hergestellt ist. 9. insulation tape for a medium / high voltage rotary machine, wherein the insulating tape (4) is made of an insulation ¬ material according to one of claims 1 to 8.
PCT/EP2011/057240 2010-05-07 2011-05-05 Electrical insulation material and insulating tape for electrically insulating a medium and high voltage WO2011138413A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010019724.6 2010-05-07
DE201010019724 DE102010019724A1 (en) 2010-05-07 2010-05-07 Electrical insulation material and insulation tape for electrical insulation of medium and high voltage

Publications (2)

Publication Number Publication Date
WO2011138413A2 true WO2011138413A2 (en) 2011-11-10
WO2011138413A3 WO2011138413A3 (en) 2012-01-05

Family

ID=44626476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057240 WO2011138413A2 (en) 2010-05-07 2011-05-05 Electrical insulation material and insulating tape for electrically insulating a medium and high voltage

Country Status (2)

Country Link
DE (1) DE102010019724A1 (en)
WO (1) WO2011138413A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712462A1 (en) * 2011-09-22 2014-04-02 Siemens Aktiengesellschaft Insulation systems having improved partial discharge resistance, and method for producing same
WO2016046479A1 (en) * 2014-09-26 2016-03-31 Nexans Electrical device comprising a cross-linked layer
CN110744881A (en) * 2019-10-11 2020-02-04 明冠新材料股份有限公司 Photovoltaic module packaging film containing POSS modified polymer
CN111133661A (en) * 2017-09-20 2020-05-08 西门子股份公司 Electrical insulation material and/or impregnating resin for insulation of winding tapes for medium and/or high voltage machines and insulation system made thereof
US20200220409A1 (en) * 2017-09-20 2020-07-09 Siemens Aktiengesellschaft Electrical Insulation Material and/or Impregnation Resin for a Wrapping Tape Insulation for Electrical Machines
WO2023170112A1 (en) * 2022-03-08 2023-09-14 Siemens Aktiengesellschaft Sub-conductor insulation and sub-conductor composite of an electric rotating machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207535A1 (en) * 2012-05-07 2013-11-07 Siemens Aktiengesellschaft Electrical tape material, method of manufacture and use therefor
DE102014211122A1 (en) * 2014-06-11 2015-12-17 Siemens Aktiengesellschaft Electrically defined conductive multifunctional tape, method of manufacture and use therefor
DE102014219765A1 (en) * 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Formulation for an insulation system and insulation system
DE102015010669A1 (en) * 2015-08-14 2017-02-16 Stephan Matthies Potting compound with fillers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189109A (en) * 2000-01-05 2001-07-10 Sumitomo Bakelite Co Ltd Resin composition for insulator, and insulator using the same
US20050277349A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials incorporated into resins
US8030818B2 (en) * 2004-06-15 2011-10-04 Siemens Energy, Inc. Stator coil with improved heat dissipation
US7781057B2 (en) * 2005-06-14 2010-08-24 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
JP2008195741A (en) * 2007-02-08 2008-08-28 Asahi Kasei Chemicals Corp Polyphenylene ether-based resin film for electric insulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712462A1 (en) * 2011-09-22 2014-04-02 Siemens Aktiengesellschaft Insulation systems having improved partial discharge resistance, and method for producing same
WO2016046479A1 (en) * 2014-09-26 2016-03-31 Nexans Electrical device comprising a cross-linked layer
FR3026547A1 (en) * 2014-09-26 2016-04-01 Nexans ELECTRICAL DEVICE COMPRISING A RETICULATED LAYER
KR20170061153A (en) * 2014-09-26 2017-06-02 넥쌍 Electrical device comprising a cross-linked layer
CN111133661A (en) * 2017-09-20 2020-05-08 西门子股份公司 Electrical insulation material and/or impregnating resin for insulation of winding tapes for medium and/or high voltage machines and insulation system made thereof
US20200220409A1 (en) * 2017-09-20 2020-07-09 Siemens Aktiengesellschaft Electrical Insulation Material and/or Impregnation Resin for a Wrapping Tape Insulation for Electrical Machines
CN111133661B (en) * 2017-09-20 2023-11-17 西门子股份公司 Impregnating resin and insulation system made therefrom
CN110744881A (en) * 2019-10-11 2020-02-04 明冠新材料股份有限公司 Photovoltaic module packaging film containing POSS modified polymer
WO2023170112A1 (en) * 2022-03-08 2023-09-14 Siemens Aktiengesellschaft Sub-conductor insulation and sub-conductor composite of an electric rotating machine

Also Published As

Publication number Publication date
DE102010019724A1 (en) 2011-11-10
WO2011138413A3 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2011138413A2 (en) Electrical insulation material and insulating tape for electrically insulating a medium and high voltage
US4760296A (en) Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors
DE102010019721A1 (en) Electrical insulating material, insulation paper and insulation tape for a high voltage rotary machine
US20130131218A1 (en) Insulation for rotating electrical machines
EP2402958B1 (en) Electric isolation system for an electrical high voltage rotation machine
EP3278423B1 (en) Resistance covering for a corona shield of an electric machine
US20170301429A1 (en) Insulation System
WO2012013543A2 (en) Insulation system having improved partial discharge strength
US10736249B2 (en) Conductive corona shielding paper, in particular for outer corona shielding
US9771464B2 (en) Insulating material for rotating machines
EP1643511B1 (en) Glow protection band
DE102013201054A1 (en) Composition, useful for insulating system in high-voltage machine such as generator, comprises matrix material with nanoparticles, and sintering additive and/or flame retardant
EP2915170B1 (en) Insulation arrangement for a high voltage machine
Muto et al. Polymer Composites for Generators and Motors
EP3175536B1 (en) Corona shielding system and electrical machine
US11916448B2 (en) Small-fraction nanoparticle resin for electric machine insulation systems
EP2623565A1 (en) Repair substance
WO2022201279A1 (en) Semiconductive member, stator coil, and rotating electric machine
DE102014204416A1 (en) Insulation tape, its use as electrical insulation for electrical machines, electrical insulation and method of making the insulation tape
WO2022096429A1 (en) Corona shielding strip for a high-voltage rotating electric machine, use thereof, and electric machine
EP2765685A1 (en) Outer corona protection with reliable connection to the main isolation and the sheet of stacks
WO2006084828A1 (en) Thermally conductive insulation strip
DE102012211762A1 (en) Formulation used to impregnate resin, comprises flowable component comprising e.g. polymer, and monodisperse component comprising nanoparticulate powder fraction, where impregnated resin is useful in high-voltage insulation system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11720420

Country of ref document: EP

Kind code of ref document: A2