WO2011137732A2 - 一种电子血压计的误差检测方法、装置及电子血压计 - Google Patents

一种电子血压计的误差检测方法、装置及电子血压计 Download PDF

Info

Publication number
WO2011137732A2
WO2011137732A2 PCT/CN2011/073522 CN2011073522W WO2011137732A2 WO 2011137732 A2 WO2011137732 A2 WO 2011137732A2 CN 2011073522 W CN2011073522 W CN 2011073522W WO 2011137732 A2 WO2011137732 A2 WO 2011137732A2
Authority
WO
WIPO (PCT)
Prior art keywords
air pressure
pressure value
electronic sphygmomanometer
value
measured
Prior art date
Application number
PCT/CN2011/073522
Other languages
English (en)
French (fr)
Other versions
WO2011137732A3 (zh
Inventor
李华荣
温长城
许中清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/073522 priority Critical patent/WO2011137732A2/zh
Priority to CN201180000597.4A priority patent/CN102202567A/zh
Publication of WO2011137732A2 publication Critical patent/WO2011137732A2/zh
Publication of WO2011137732A3 publication Critical patent/WO2011137732A3/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers

Definitions

  • the invention relates to an error detecting method and device for an electronic sphygmomanometer and an electronic sphygmomanometer, belonging to the technical field of medical equipment.
  • Human blood pressure is a very important reference indicator for human health, especially cardiovascular and cerebrovascular. It is an important basis for medical workers to diagnose, and sphygmomanometer is an important medical testing instrument used by medical institutions and families. Therefore, the highly accurate sphygmomanometer can provide a very important help for the medical staff to make an accurate diagnosis, and can also provide an accurate judgment basis for the measurer to understand the changes in his daily health.
  • the measurement of blood pressure is mostly carried out by attaching a cuff to the arteries of the arm arteries.
  • the systolic and diastolic pressures are judged by monitoring the change of cuff pressure or the sound of vascular arteries. Sampling points to know the blood pressure value, the main measurement methods are divided into Korotkoff method and oscillometric method.
  • the existing electronic sphygmomanometer mainly uses the oscillometric method to measure blood pressure. The principle is to use an inflatable cuff to block the blood flow of the upper arm artery. Due to the hemodynamic effect of the heart beat, the overlap between the pressure and the heart beat will be synchronized. Pressure fluctuations, ie pulse waves, and blood pressure values are estimated based on the relationship between pulse wave amplitude and cuff pressure, but the electronic sphygmomanometer must be periodically calibrated and calibrated to provide a precise basis for the user.
  • the error detection of the existing electronic sphygmomanometer mainly includes the use of two pressure sensors and a method of manual auscultation.
  • the first one is used for daily measurement
  • the second is used for error detection of daily measurement sensors
  • the wear is reduced by reducing the number of uses of the second sensor to improve the error of blood pressure measurement.
  • Detection accuracy but this method not only increases the manufacturing cost of the electronic sphygmomanometer, but also wastes due to long-term idleness of equipment resources; if the method of artificial auscultation is used, it is necessary to monitor the change of pulse wave through a stethoscope, according to the Korotkoff sound method.
  • the embodiment of the invention provides an error detecting method and device for an electronic sphygmomanometer and an electronic sphygmomanometer, which can detect the error of the electronic sphygmomanometer without increasing the pressure sensor, and has the characteristics of accurate and rapid error detection.
  • Embodiments of the present invention provide an error detection method for an electronic sphygmomanometer, including:
  • Embodiments of the present invention provide an error detecting apparatus for an electronic sphygmomanometer, including:
  • a characteristic pressure sensing module configured to: when the cuff pressure of the electronic sphygmomanometer reaches a predetermined characteristic air pressure value, send the air pressure value measured at the current time to the error calculation module;
  • the error calculation module is configured to compare the current pressure value measured by the characteristic pressure sensing module with the stored characteristic air pressure value and the actual measured value to obtain a measurement error rate of the electronic blood pressure monitor.
  • An electronic sphygmomanometer comprising a measuring unit and a calibration unit, the measuring unit comprising:
  • the air pressure measuring module is configured to measure the air pressure value measured by the electronic sphygmomanometer at the current moment according to the measurement command sent by the calibration unit, and send the air pressure value to the calibration unit;
  • a calibration module configured to calibrate the air pressure value measured by the electronic sphygmomanometer according to a measurement error rate sent by the calibration unit;
  • the calibration unit includes:
  • a measurement command sending module configured to send a measurement command to the measuring unit when the cuff pressure of the electronic sphygmomanometer reaches a predetermined characteristic air pressure value
  • a calibration parameter generating module configured to compare the actual measured value corresponding to the predetermined characteristic air pressure value with the air pressure value measured by the electronic blood pressure meter, calculate a measurement error rate of the electronic blood pressure meter, and send the measurement error rate to the measurement unit.
  • the measurement error corresponding to the characteristic air pressure value is compared with the stored actual measurement value, thereby obtaining the measurement error of the electronic sphygmomanometer, and the pressure sensor can be added without increasing the pressure sensor.
  • the error of the electronic sphygmomanometer is detected, which has the characteristics of accurate and rapid error detection.
  • FIG. 1 is a schematic flow chart of an error detecting method of an electronic sphygmomanometer according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of an error detection method of an electronic sphygmomanometer including a calibration process according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an error detecting apparatus of an electronic sphygmomanometer according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an error detecting apparatus of an electronic sphygmomanometer including a calibration calculation module and a display module according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an electronic sphygmomanometer according to an embodiment of the present invention.
  • Embodiments of the present invention provide an error detecting method for an electronic sphygmomanometer, including transmitting a current air pressure value measured when a cuff pressure of an electronic blood pressure monitor reaches a predetermined characteristic air pressure value; and measuring a current air pressure measured at a current time The value is compared with the stored characteristic pressure value and the actual measured value to obtain a measurement error rate of the electronic sphygmomanometer.
  • the method can be applied to various types of electronic sphygmomanometers existing in the prior art by comparing the measured value corresponding to the characteristic air pressure value with the stored actual measured value, thereby obtaining the measurement error of the electronic sphygmomanometer.
  • the embodiment is specifically described below with reference to the accompanying drawings, as shown in FIG. 1, the method includes:
  • Step 11 When the cuff pressure of the electronic sphygmomanometer reaches a predetermined characteristic air pressure value, the air pressure value measured at the current time is transmitted.
  • the parameter storage space of the electronic sphygmomanometer is first emptied, and then the air tube of the characteristic pressure sensor of the electronic sphygmomanometer is connected to the measurement gas space of the air pump.
  • the tester takes the cuff and inflates the electronic sphygmomanometer pump to a high pressure value (eg, 200 mm Hg) sufficient for subsequent measurements.
  • a high pressure value eg, 200 mm Hg
  • the characteristic pressure sensor detects that the cuff pressure (ie, the gas pressure value of the gas in the cuff internal space) reaches a certain characteristic pressure value
  • the characteristic pressure sensor notifies the measurement unit of the electronic sphygmomanometer.
  • the measuring unit transmits the air pressure value read at the current time.
  • Step 12 Compare the received air pressure value measured at the current time with the stored characteristic air pressure value and the actual measured value to obtain a measurement error rate of the electronic sphygmomanometer.
  • the calibration parameter storage space records the correspondence between the characteristic air pressure value and the actual measured value, and the corresponding correspondence relationship is as shown in FIG. 2, wherein the characteristic air pressure value refers to the electronic blood pressure meter when measured in the measurement mode, and will be measured.
  • the systolic pressure and diastolic pressure find the corresponding point on the axis of the actual measured value in the above coordinate system, and then map to the corresponding value on the axis of the characteristic air pressure value according to the coordinate axis curve, which is used to calibrate the actual measured value.
  • the actual measurement results of the electronic sphygmomanometer are obtained.
  • steps 11 and 12 are repeated, and all detected characteristic air pressure values and their corresponding actual measured values are recorded until the minimum characteristic air pressure value is sensed and recorded.
  • the measured air pressure value measured at the current time is compared with the stored characteristic air pressure value and the actual measured value to obtain a measurement error rate of the electronic sphygmomanometer.
  • the corresponding algorithm for measuring the error rate may be: calculating the error value at each characteristic air pressure value according to the correspondence relationship in the calibration parameter storage module. Assuming that the characteristic air pressure value set by the X point is Xp, and the actual measured value corresponding to the characteristic air pressure value is Xt, the measurement error rate here is:
  • the measurement error rate of the electronic sphygmomanometer takes the maximum value of the error rate at all characteristic air pressure values.
  • the calculated error rate of the calculated electronic sphygmomanometer can also be output to the display screen, so that the user can compare the measurement result with the measurement error rate, and more accurately obtain an accurate measurement result.
  • the electronic sphygmomanometer can be further calibrated, that is, the measured atmospheric pressure value at the current time after the calibration is obtained according to the measurement error rate of the electronic sphygmomanometer.
  • the specific process is shown in Figure 3.
  • the method of calibration can include:
  • Step 33 Obtain a measured air pressure value at the current time according to the measurement error rate of the electronic sphygmomanometer.
  • the barometric pressure value is displayed on the display of the electronic sphygmomanometer for intuitive reading by the user.
  • the measured systolic and diastolic pressures can be measured in actual values in the coordinate system shown in FIG.
  • the corresponding point is found on the axis, and then mapped to the corresponding value on the axis of the characteristic air pressure value according to the coordinate curve.
  • the mapped value is the final measurement result after the measured value is calibrated.
  • the measurement error corresponding to the characteristic air pressure value is compared with the stored actual measurement value, thereby obtaining the measurement error of the electronic sphygmomanometer, and the error of the electronic sphygmomanometer can be obtained without increasing the pressure sensor.
  • the operator is not required to have the corresponding medical knowledge, and the error checking and correction are accurate and fast.
  • An embodiment of the present invention further provides an error detecting device for an electronic sphygmomanometer, as shown in FIG. 4, comprising a characteristic pressure sensing module 41 and an error calculating module 42, wherein: the characteristic pressure sensing module 41 is used for electronic blood pressure When the cuff pressure reaches a predetermined characteristic air pressure value, the air pressure value measured at the current time is sent to the error calculation module 42; the error calculation module 42 is configured to store the current air pressure value measured by the characteristic pressure sensing module 41 and the stored The correspondence between the characteristic air pressure value and the actual measured value is compared to obtain the measurement error rate of the electronic sphygmomanometer.
  • the apparatus may further include a calibration calculation module 43 and a display module 44, where the calibration calculation module 43 is configured to obtain the measured current pressure value of the current time according to the measurement error rate of the electronic sphygmomanometer;
  • the module 44 is configured to output a measurement error rate of the electronic sphygmomanometer or a measured atmospheric pressure value at the current time after calibration.
  • an error rate calculation sub-module may be included in the error calculation module 42 for making a difference between the current measured air pressure value and the actual measured value corresponding to the predetermined characteristic air pressure value, and then the difference and the predetermined feature.
  • the barometric pressure value is used as the ratio, and the value with the largest ratio is used as the measurement error rate of the electronic sphygmomanometer.
  • the measurement error corresponding to the characteristic air pressure value is compared with the stored actual measurement value, thereby obtaining the measurement error of the electronic sphygmomanometer, and the error of the electronic sphygmomanometer can be obtained without increasing the pressure sensor.
  • the operator is not required to have the corresponding medical knowledge, and the error checking and correction are accurate and fast.
  • An embodiment of the present invention also provides an electronic sphygmomanometer.
  • the system includes a measuring unit 61 and a calibration unit 62.
  • the corresponding measuring unit includes a barometric pressure measuring module 611 and a calibration module 612, and a corresponding calibration unit.
  • the measurement command sending module 621 and the calibration parameter generating module 622 are configured to measure the air pressure value measured by the electronic sphygmomanometer at the current time according to the measurement command sent by the calibration unit 62, and send the air pressure value to the calibration unit 62;
  • the module 612 is configured to calibrate the air pressure value measured by the electronic sphygmomanometer according to the measurement error rate sent by the calibration unit 62.
  • the measurement command sending module 621 is configured to measure when the cuff pressure of the electronic sphygmomanometer reaches a predetermined characteristic air pressure value.
  • the unit 61 sends a measurement command;
  • the calibration parameter generation module 622 is configured to compare the actual measured value corresponding to the predetermined characteristic air pressure value with the air pressure value measured by the electronic sphygmomanometer, calculate the measurement error rate of the electronic sphygmomanometer, and calculate the measurement error. The rate is sent to the measuring unit 61.
  • the measuring unit 61 further includes a display module configured to output the measurement error rate of the electronic sphygmomanometer or the measured atmospheric pressure value of the current time after the calibration.
  • the calibration parameter generation module 622 further includes an error rate calculation sub-module, configured to calculate a difference between the current measured air pressure value and the actual measured value corresponding to the predetermined characteristic air pressure value, and then compare the difference with the predetermined
  • the characteristic air pressure value is used as a ratio, and the value with the largest ratio is used as the measurement error rate of the electronic sphygmomanometer.
  • the electronic sphygmomanometer in this embodiment needs to have the following instructions: receive the calibration instrument, and immediately measure the current air pressure value, and transmit the air pressure value to the calibration instrument through the data line. Receive and store calibration parameters for calibration instrument feedback.
  • the calibration parameter includes a correspondence between a set of characteristic air pressure values and actual measured values; according to the calibration parameters, the measurement results of the electronic blood pressure monitor are calibrated and outputted.
  • the calibration instrument provided in this embodiment needs to include the following functions: the characteristic pressure value can be sensed, and the corresponding characteristic air pressure value is set by the calibration instrument in the production process or set by the calibration personnel before calibration; in the electronic blood pressure monitor During the process of gas, when the calibration instrument senses a certain characteristic pressure value preset, the calibration instrument sends a command to the electronic blood pressure monitor through the data line, and the electronic blood pressure monitor immediately sends the current built-in pressure sensor reading value to the calibration instrument.
  • the calibration instrument calculates an error rate based on all characteristic air pressure values and actual measured values corresponding to the characteristic air pressure values, and transmits the correspondence between the set of characteristic air pressure values and the actual measured values and the error rate to the electronic blood pressure monitor.
  • the electronic sphygmomanometer provided in this embodiment adopts a method of separating measurement and calibration, and the electronic sphygmomanometer is independent of the calibration instrument.
  • the independent calibration instrument has two connections to the electronic sphygmomanometer: the data line and the air tube.
  • the data transmission channel includes the pressure value of the electronic sphygmomanometer at a certain moment and is transmitted to the calibration instrument, and the calibration instrument transmits the calibration result to the electronic sphygmomanometer, and the data transmission channel can be a physical data line supporting various protocols and interfaces, or It is a wireless connection, such as Bluetooth; the air tube includes a gas line for connecting the pressure chamber of the electronic sphygmomanometer and the pressure chamber of the calibration instrument such that the pressure chamber of the electronic sphygmomanometer and the pressure chamber of the calibration instrument have the same pressure value at the same time.
  • the specific calibration process includes: connecting the electronic sphygmomanometer to the calibration device, including the connection of the data transmission channel and the trachea, then clearing the calibration parameter storage space, the electronic sphygmomanometer enters the calibration mode, the calibration personnel bring the cuff, start the calibration instrument, and start During the calibration process of the electronic sphygmomanometer, the sphygmomanometer pump is pumped up to a high pressure value (for example, 200 mmHg) for subsequent measurement. During the deflation process, when the characteristic pressure sensor senses that the air pressure reaches a certain characteristic value, the characteristic pressure sensor passes.
  • a high pressure value for example, 200 mmHg
  • the measurement command transmitting module 621 sends the measurement command from the data transmission path to the air pressure measurement module 611 in the measurement unit 61, and the air pressure measurement module 611 transmits the read air pressure value to the calibration parameter generation module 622 of the calibration unit 62;
  • the space records the actual measured value corresponding to each characteristic air pressure value, and the calibration parameter generating module 622 compares the actual measured value corresponding to the predetermined characteristic air pressure value with the air pressure value measured by the electronic sphygmomanometer to calculate the measurement error rate of the electronic sphygmomanometer.
  • the calibration module 612 of the element 61 calibrates the air pressure value measured by the electronic sphygmomanometer according to the measurement error rate sent by the calibration parameter generation module 622; and repeatedly measures the characteristic air pressure value measurement unit 61 during the subsequent deflation process
  • the measured air pressure value is recorded, and all detected characteristic air pressure values and their corresponding actual measured values are recorded until the minimum characteristic air pressure value is sensed and recorded;
  • the calibration parameter generating module 622 calculates the electronic blood pressure meter error according to the above error calculating method, and Transmitting the error value with the calibration parameter in the calibration parameter buffer space to the calibration module 612 of the measurement unit 61;
  • the electronic sphygmomanometer saves the calibration result in the calibration parameter storage space and displays the calibration error value on the display screen;
  • the calibrator removes the cuff and disconnects the electronic sphygmomanometer from the calibration instrument.
  • the measurement error corresponding to the characteristic air pressure value is compared with the stored actual measurement value, thereby obtaining the measurement error of the electronic sphygmomanometer, and the error of the electronic sphygmomanometer can be obtained without increasing the pressure sensor.
  • the operator is not required to have the corresponding medical knowledge, and the error checking and correction are accurate and fast.
  • each unit included is only divided according to functional logic, but is not limited to the above division, as long as the corresponding function can be implemented; in addition, each functional unit
  • the specific names are also for convenience of distinguishing from each other and are not intended to limit the scope of the present invention.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only) Memory, ROM) or Random Access Memory (RAM).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明涉及一种电子血压计的误差检测方法、装置及电子血压计,相应的包括当所述电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值;将接收的当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得所述电子血压计的测量误差率。本发明通过将特征气压值对应的测量值与存储的实际测量值进行比较,从而获得电子血压计的测量误差,能够在不增加压力传感器的情况下对电子血压计的误差进行检测,同时也不要求操作人员具备相应的医学知识,具有误差检验准确、快速的特点。

Description

一种电子血压计的误差检测方法、装置及电子血压计
技术领域
本发明涉及一种电子血压计的误差检测方法、装置及电子血压计,属于医疗设备技术领域。
发明背景
人体血压是人类在身体健康程度,尤其是心脑血管方面非常重要的参考指标,是医务工作者进行诊断的重要依据,而血压计是医疗机构和家庭都会使用的重要医疗检测仪器。因此,精准度高的血压计能为医务工作人员作出准确的诊断提供非常重要的帮助,也能为测量者本人了解自身每天身体健康状况的变化提供准确的判断依据。
目前,血压的测量绝大部分采用袖带附着在胳膊动脉血管上的方法,在袖带放气的过程中通过监听袖带压的变化过程或者血管动脉跳动的声音来判断收缩压和舒张压的采样点,从而得知血压值,主要的测量方法分为柯氏音法和示波法。现有的电子血压计主要采用示波法测量血压,其原理是采用充气袖套来阻断上臂动脉血流,由于心搏的血液动力学作用,在气袖压力上将重叠与心搏同步的压力波动,即脉搏波,并根据脉搏波振幅与气袖压力之间的关系来估计血压值,但是电子血压计必须定期校验并且校准才能为使用者提供精准的依据。
现有的电子血压计的误差检测主要包括采用两个压力传感器以及通过人工听诊的方法进行。采用两个压力传感器时,其中第一个作为日常测量用,第二个用于对日常测量传感器的误差检测,通过减少对第二个传感器的使用次数来减小磨损,以提高血压测量的误差检测准确度,但这种方法不但提高了电子血压计的制造成本,而且因设备资源长期闲置而造成浪费;若通过人工听诊的方法,则需要通过听诊器监听脉搏波的变化,根据柯氏音法判断参数识别点,因此需要有一定经验的医务工作者才能进行,由于不同的人对柯氏音判断不一样,会引入新的人为误差,并且如果电子血压计的压力传感器本身误差较大且不为线性误差时,导致此误差检测方法的效果较差。
发明内容
本发明的实施例提供了一种电子血压计的误差检测方法、装置及电子血压计,能够在不增加压力传感器的情况下对电子血压计的误差进行检测,具有误差检验准确、快速的特点。
本发明的实施例提供了一种电子血压计的误差检测方法,包括:
当所述电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值;
将接收的当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得所述电子血压计的测量误差率。
本发明的实施例提供了一种电子血压计的误差检测装置,包括:
特征压力传感模块,用于当所述电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值到误差计算模块;
误差计算模块,用于将特征压力传感模块发送的所述当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得所述电子血压计的测量误差率。
一种电子血压计,包括测量单元和校准单元,所述测量单元包括:
气压测量模块,用于根据校准单元发送的测量命令测量当前时刻的所述电子血压计测量的气压值,并将所述气压值发送给校准单元;
校准模块,用于根据校准单元发送的测量误差率,对所述电子血压计测量的气压值进行校准;
所述校准单元包括:
测量命令发送模块,用于当所述电子血压计的袖带气压达到预定的特征气压值时,向测量单元发送测量命令;
校准参数生成模块,用于根据预定的特征气压值对应的实际测量值与所述电子血压计测量的气压值相比较,计算获得电子血压计的测量误差率,并将所属测量误差率发送给测量单元。
由上述本发明的实施例提供的技术方案可以看出,通过将特征气压值对应的测量值与存储的实际测量值进行比较,从而获得电子血压计的测量误差,能够在不增加压力传感器的情况下对电子血压计的误差进行检测,具有误差检验准确、快速的特点。
附图简要说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例提供的电子血压计的误差检测方法的流程示意图;
图2为本发明的实施例提供的特征其他值与实际测量值的对应关系示意图;
图3为本发明的实施例提供的包括校准过程的电子血压计的误差检测方法的流程示意图;
图4为本发明的实施例提供的电子血压计的误差检测装置的结构示意图;
图5为本发明的实施例提供的包括校准计算模块和显示模块的电子血压计的误差检测装置的结构示意图;
图6为本发明的实施例提供的电子血压计的结构示意图。
实施本发明的方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了一种电子血压计的误差检测方法,包括当电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值;将接收的当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得电子血压计的测量误差率。该方法可应用在现有的各种类型的电子血压计中,其原理是通过将特征气压值对应的测量值与存储的实际测量值进行比较,从而获得电子血压计的测量误差。下面结合说明书附图对本实施例作具体说明,如图1所示,该方法包括:
步骤11、当电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值。
具体的,当开始对电子血压计进行误差检测时,首先清空该电子血压计的参数存储空间,然后将该电子血压计的特征压力传感器的气管与气泵的测量气体空间联通。检测人员带上袖带,将该电子血压计气泵打气到足够后续测量的高压值(例如200mmHg)。在放气过程中,当特征压力传感器检测到袖带气压(即袖带内部空间中气体的气压值)达到设定的某一个特征气压值时,特征压力传感器通知电子血压计的测量单元。测量单元将当前时刻读取的气压值发送。
步骤12、将接收的当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得电子血压计的测量误差率。
具体的,校准参数存储空间记录了特征气压值与实际测量值的对应关系,相应的对应关系如图2所示,其中的特征气压值是指电子血压计在测量模式下工作时,将测得的收缩压合舒张压在以上坐标系中的实际测量值的轴上找到对应的点,然后根据坐标轴曲线映射到特征气压值的轴上对应的数值,该数值用于对实际测量值进行校准后获得电子血压计的真实测量结果。在后续的放气过程中,重复步骤11和步骤12,记录所有检测到的特征气压值及其对应的实际测量值,直到最小特征气压值被感知并记录完成。
将接收的当前时刻测量的气压值,与存储的特征气压值和实际测量值的对应关系进行比较,获得电子血压计的测量误差率。相应的测量误差率的算法可以是:根据校准参数存储模块内的对应关系,计算出每个特征气压值处的误差值。假定X点所设定的特征气压值为Xp,此特征气压值对应的实际测量值为Xt,则此处的测量误差率为:
Ex=|(Xt-Xp)/Xp|×100%
电子血压计的测量误差率取所有特征气压值处的误差率的最大值。
可选的,还可以将计算获得的电子血压计的测量误差率输出到显示屏上,以供用户将测量结果与测量误差率进行比较,更直观的获得准确的测量结果。
进一步的,由于现有的电子血压计的校准过程比较复杂,又需要专业的技术知识,并且现有的误差检测设备也仅能对电子血压计进行误差检测,无法实现校准,因此本发明的实施例在对电子血压计进行误差检测之后,还可以进一步对该电子血压计进行校准,即根据电子血压计的测量误差率获得校准后的当前时刻测量的气压值。具体流程如图3所示,该校准的方法可以包括:
其中,步骤31-32的实现过程与图1所示实施例中步骤11-12类似,这里不再赘述。
步骤33、根据电子血压计的测量误差率获得校准后的当前时刻测量的气压值。
具体的,在获得电子血压计的测量误差率后,将当前时刻测量的气压值乘以该测量误差率,获得校准后的当前时刻测量的气压值,并且可以将该校准后的当前时刻测量的气压值显示在电子血压计的显示屏上,以供用户直观的读取。
在实际的测量过程中,由于每次测量都需要测量收缩压和舒张压(即高压和低压),可以将测得的收缩压和舒张压在以图2所示的坐标系中的实际测量值的轴上找到对应的点,然后根据坐标曲线映射到特征气压值的轴上对应的数值,这个映射后的值即为测量值经过校准后的最终测量结果。
采用本实施例的技术方案,通过将特征气压值对应的测量值与存储的实际测量值进行比较,从而获得电子血压计的测量误差,能够在不增加压力传感器的情况下对电子血压计的误差进行检测及校准,同时也不要求操作人员具备相应的医学知识,误差检验及校正具有准确、快速的特点。
本发明的实施例还提供了一种电子血压计的误差检测装置,如图4所示,包括特征压力传感模块41和误差计算模块42,其中:特征压力传感模块41用于当电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值到误差计算模块42;误差计算模块42用于将特征压力传感模块41发送的当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得电子血压计的测量误差率。
可选的,如图5所示,该装置还可以包括校准计算模块43和显示模块44,校准计算模块43用于根据电子血压计的测量误差率获得校准后的当前时刻测量的气压值;显示模块44用于将电子血压计的测量误差率或者校准后的当前时刻测量的气压值输出显示。
可选的,在误差计算模块42中可以包括误差率计算子模块,用于将当前时刻测量的气压值与预定的特征气压值对应的实际测量值作差值,再将差值与预定的特征气压值作比值,将比值最大的数值作为电子血压计的测量误差率。
采用本实施例的技术方案,通过将特征气压值对应的测量值与存储的实际测量值进行比较,从而获得电子血压计的测量误差,能够在不增加压力传感器的情况下对电子血压计的误差进行检测及校准,同时也不要求操作人员具备相应的医学知识,误差检验及校正具有准确、快速的特点。
上述电子血压计的误差检测装置中包含的各模块的处理功能的具体实施方式在之前的方法实施方式中已经描述,在此不再重复描述。
本发明的实施例还提供了一种电子血压计,如图6所示,该***包括了测量单元61和校准单元62,相应的测量单元包括气压测量模块611和校准模块612,相应的校准单元包括测量命令发送模块621和校准参数生成模块622,气压测量模块611用于根据校准单元62发送的测量命令测量当前时刻的电子血压计测量的气压值,并将气压值发送给校准单元62;校准模块612用于根据校准单元62发送的测量误差率,对电子血压计测量的气压值进行校准;测量命令发送模块621用于当电子血压计的袖带气压达到预定的特征气压值时,向测量单元61发送测量命令;校准参数生成模块622用于根据预定的特征气压值对应的实际测量值与电子血压计测量的气压值相比较,计算获得电子血压计的测量误差率,并将所属测量误差率发送给测量单元61。
可选的,在测量单元61中还包括显示模块,用于将电子血压计的测量误差率或者校准后的当前时刻测量的气压值输出显示。
可选的,在校准参数生成模块622中还包括误差率计算子模块,用于将当前时刻测量的气压值与预定的特征气压值对应的实际测量值作差值,再将差值与预定的特征气压值作比值,将比值最大的数值作为电子血压计的测量误差率。
本实施例中的电子血压计除了具备目前常用电子血压计的测量功能以外,还需要具备:接收校准仪器的指令,并立即测量当前时刻的气压值,并将气压值通过数据线传送给校准仪器;接收并存储校准仪器反馈的校准参数。校准参数包括一组特征气压值与实际测量值的对应关系;根据校准参数,为以后电子血压计的测量结果进行校准并输出显示。
本实施例提供的校准仪器需要包括以下的功能:能够感知特征气压值,相应的特征气压值是校准仪器在生产过程中设定好的或者校准前校准人员自行设定的;在电子血压计放气的过程中,当校准仪器感知到预先设定的某个特征气压值时,校准仪器通过数据线给电子血压计发送指令,电子血压计立即把当前自身内置的压力传感器读数值发送到校准仪器;校准仪器根据所有特征气压值以及与特征气压值对应的实际测量值算出误差率,并将这组特征气压值与实际测量值的对应关系以及误差率传送到电子血压计。
本实施例提供的电子血压计采用测量与校准分离的方法,将电子血压计与校准仪器独立。独立的校准仪器与电子血压计有两条连接线:数据线与气管。其中,数据传输通道包括电子血压计某一时刻的压力值传送给校准仪器,以及校准仪器将校准结果传送到电子血压计,数据传输通道可以是支持各种协议和接口的实物数据线,也可以是无线连接,比如蓝牙;气管包括用来连接电子血压计的气压仓与校准仪器的气压仓的气体管道,使得电子血压计的气压仓与校准仪器的气压仓在相同时刻具有相同的压力值。
具体的校准过程包括:将电子血压计与校准设备相连,包括数据传输通道和气管的连接,然后清空校准参数存储空间,电子血压计进入校准模式,校准人员带上袖带,启动校准仪器,启动电子血压计的校准过程,血压计气泵打气到足够后续测量的高压值(例如200mmHg),在放气过程中,当特征压力传感器感知到气压达到设定的某一个特征值时,特征压力传感器通过测量命令发送模块621将测量命令从数据传输通路发送给测量单元61中的气压测量模块611,气压测量模块611将读取的气压值传送给校准单元62的校准参数生成模块622;由于校准参数缓存空间记录了每个特征气压值对应的实际测量值,校准参数生成模块622根据预定的特征气压值对应的实际测量值与电子血压计测量的气压值相比较,计算获得电子血压计的测量误差率,并将所属测量误差率发送给测量单元61的校准模块612;校准模块612根据校准参数生成模块622发送的测量误差率,对电子血压计测量的气压值进行校准;在后续的放气过程中,重复对特征气压值测量单元61测量的气压值进行测量,记录所有检测到的特征气压值及其对应的实际测量值,直到最小特征气压值被感知并记录完成;校准参数生成模块622根据上述误差计算方法算出电子血压计误差,并将误差值连带校准参数缓存空间内的校准参数传送到测量单元61的校准模块612上;电子血压计将校准结果保存在校准参数存储空间内,并在显示屏上显示校准误差值;校准结束,校准人员取下袖带,断开电子血压计与校准仪器的连接。
采用本实施例的技术方案,通过将特征气压值对应的测量值与存储的实际测量值进行比较,从而获得电子血压计的测量误差,能够在不增加压力传感器的情况下对电子血压计的误差进行检测及校准,同时也不要求操作人员具备相应的医学知识,误差检验及校正具有准确、快速的特点。
需要注意的是,在上述装置及***实施例中,所包括的各个单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种电子血压计的误差检测方法,其特征在于,包括:
    当所述电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值;
    将接收的当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得所述电子血压计的测量误差率。
  2. 根据权利要求1所述的方法,其特征在于,在获得所述电子血压计的测量误差率之后,该方法还包括:
    根据所述电子血压计的测量误差率获得校准后的当前时刻测量的气压值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获得电子血压计的测量误差包括:
    将当前时刻测量的气压值与预定的特征气压值对应的实际测量值作差值,再将所述差值与预定的特征气压值作比值,将所述比值最大的数值作为所述电子血压计的测量误差率。
  4. 一种电子血压计的误差检测装置,其特征在于,包括:
    特征压力传感模块,用于当所述电子血压计的袖带气压达到预定的特征气压值时,发送当前时刻测量的气压值到误差计算模块;
    误差计算模块,用于将特征压力传感模块发送的所述当前时刻测量的气压值与存储的特征气压值和实际测量值的对应关系进行比较,获得所述电子血压计的测量误差率。
  5. 根据权利要求4所述的装置,其特征在于,该装置还包括:
    校准计算模块,用于根据所述电子血压计的测量误差率获得校准后的当前时刻测量的气压值。
  6. 根据权利要求5所述的装置,其特征在于,该装置还包括:
    显示模块,用于将所述电子血压计的测量误差率或者校准后的当前时刻测量的气压值输出显示。
  7. 根据权利要求4至6任意一项所述的装置,其特征在于,在误差计算模块中包括:
    误差率计算子模块,用于将当前时刻测量的气压值与预定的特征气压值对应的实际测量值作差值,再将所述差值与预定的特征气压值作比值,将所述比值最大的数值作为所述电子血压计的测量误差率。
  8. 一种电子血压计,其特征在于,包括测量单元和校准单元,所述测量单元包括:
    气压测量模块,用于根据校准单元发送的测量命令测量当前时刻的所述电子血压计测量的气压值,并将所述气压值发送给校准单元;
    校准模块,用于根据校准单元发送的测量误差率,对所述电子血压计测量的气压值进行校准;
    所述校准单元包括:
    测量命令发送模块,用于当所述电子血压计的袖带气压达到预定的特征气压值时,向测量单元发送测量命令;
    校准参数生成模块,用于根据预定的特征气压值对应的实际测量值与所述电子血压计测量的气压值相比较,计算获得电子血压计的测量误差率,并将所属测量误差率发送给测量单元。
  9. 根据权利要求8所述的电子血压计,其特征在于,所述测量单元还包括:
    显示模块,用于将所述电子血压计的测量误差率或者校准后的当前时刻测量的气压值输出显示。
  10. 根据权利要求8或9所述的电子血压计,其特征在于,在校准参数生成模块中包括:
    误差率计算子模块,用于将当前时刻测量的气压值与预定的特征气压值对应的实际测量值作差值,再将所述差值与预定的特征气压值作比值,将所述比值最大的数值作为所述电子血压计的测量误差率。
PCT/CN2011/073522 2011-04-29 2011-04-29 一种电子血压计的误差检测方法、装置及电子血压计 WO2011137732A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/073522 WO2011137732A2 (zh) 2011-04-29 2011-04-29 一种电子血压计的误差检测方法、装置及电子血压计
CN201180000597.4A CN102202567A (zh) 2011-04-29 2011-04-29 一种电子血压计的误差检测方法、装置及电子血压计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073522 WO2011137732A2 (zh) 2011-04-29 2011-04-29 一种电子血压计的误差检测方法、装置及电子血压计

Publications (2)

Publication Number Publication Date
WO2011137732A2 true WO2011137732A2 (zh) 2011-11-10
WO2011137732A3 WO2011137732A3 (zh) 2012-04-05

Family

ID=44662764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073522 WO2011137732A2 (zh) 2011-04-29 2011-04-29 一种电子血压计的误差检测方法、装置及电子血压计

Country Status (2)

Country Link
CN (1) CN102202567A (zh)
WO (1) WO2011137732A2 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722125B2 (en) * 2016-10-31 2020-07-28 Livemetric (Medical) S.A. Blood pressure signal acquisition using a pressure sensor array
CN107157460B (zh) * 2017-06-16 2020-10-27 广州视源电子科技股份有限公司 一种血压计稳定性测试方法、装置和***
CN107865648A (zh) * 2017-11-16 2018-04-03 广州视源电子科技股份有限公司 血压计测试方法、装置、移动终端及存储介质
CN110200612B (zh) * 2018-02-28 2021-02-26 广东乐心医疗电子股份有限公司 电子血压计测量方法、***和电子血压计
CN110522435A (zh) * 2019-09-25 2019-12-03 宁波智能装备研究院有限公司 一种检测电子血压计袖带捆绑松紧度的方法
CN111904405B (zh) * 2020-08-31 2021-09-07 江苏盖睿健康科技有限公司 一种血压测量装置
CN113925477B (zh) * 2021-07-08 2023-10-27 哈尔滨铂云医疗器械有限公司 电子血压计自动校准***
CN114608745A (zh) * 2022-03-09 2022-06-10 深圳酷赛通信科技有限公司 一种气压计的校准方法及其***
CN115670448B (zh) * 2022-10-13 2023-09-19 安徽医科大学第二附属医院 一种血糖连续监测设备及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994220A (zh) * 2005-12-26 2007-07-11 优盛医学科技股份有限公司 电子血压计的校正方法及其装置
WO2010090072A1 (ja) * 2009-02-05 2010-08-12 オムロンヘルスケア株式会社 管理装置、管理システム、および管理方法
US20100268098A1 (en) * 2008-01-23 2010-10-21 Omron Healthcare Co., Ltd. Sphygmomanometer and measurement accuracy check system of sphygmomanometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994220A (zh) * 2005-12-26 2007-07-11 优盛医学科技股份有限公司 电子血压计的校正方法及其装置
US20100268098A1 (en) * 2008-01-23 2010-10-21 Omron Healthcare Co., Ltd. Sphygmomanometer and measurement accuracy check system of sphygmomanometer
WO2010090072A1 (ja) * 2009-02-05 2010-08-12 オムロンヘルスケア株式会社 管理装置、管理システム、および管理方法

Also Published As

Publication number Publication date
WO2011137732A3 (zh) 2012-04-05
CN102202567A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2011137732A2 (zh) 一种电子血压计的误差检测方法、装置及电子血压计
US10729338B2 (en) Blood pressure measurement device and calibration method thereof
KR101460922B1 (ko) 비침습 혈압 측정 장치 및 측정 방법
CN100584276C (zh) 一种电子听诊装置
CN103637783B (zh) 基于无线控制的人体健康检测***
CN112890790B (zh) 一种穿戴式无创血压动态跟踪监测方法
US8951204B2 (en) Method for using a pulse oximetry signal to monitor blood pressure
US20170290519A1 (en) Blood pressure measuring auxiliary device and blood pressure measuring apparatus, and design method therefor
CN108742574B (zh) 一种无创连续血压测量仪
CN113080912A (zh) 电子血压计及血压测量方法
CN111513752A (zh) 一种基于脉搏声信号的脉诊仪
CN102283638A (zh) 智能系数匹配的血压测量方法
CN213345622U (zh) 血压采集装置及血压采集处理***
KR20130022125A (ko) 전자혈압계의 정확성 평가 기법과 필요한 장비
CN209153649U (zh) 一种医用动态血压测量***
US20150051463A1 (en) Oximetry Signal, Pulse-Pressure Correlator
CN111990982B (zh) 血压采集装置及处理***
CN214804680U (zh) 一种测量双臂压差的血压电子测量仪
WO2019164073A1 (ko) 흡착 컵형 혈류변화 측정 센서와 이를 이용한 혈류변화 측정 장치 및 측정방법
CN220713897U (zh) 自动寻找肱动脉最强搏动点的血压仪及装置
CN205379300U (zh) 一种实测无听诊器血压计
CN216124435U (zh) 一种用于无创血压动态跟踪监测的穿戴式装置
CN219206926U (zh) 血压检测装置和血压实时检测***
KR102231690B1 (ko) 수동혈압계의 혈압측정 보조장치
CN113143235A (zh) 一种测量双臂压差的血压电子测量仪及其测量方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000597.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777153

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777153

Country of ref document: EP

Kind code of ref document: A2