WO2011136613A2 - 당 단백질 분석용 키트 및 이의 용도 - Google Patents

당 단백질 분석용 키트 및 이의 용도 Download PDF

Info

Publication number
WO2011136613A2
WO2011136613A2 PCT/KR2011/003214 KR2011003214W WO2011136613A2 WO 2011136613 A2 WO2011136613 A2 WO 2011136613A2 KR 2011003214 W KR2011003214 W KR 2011003214W WO 2011136613 A2 WO2011136613 A2 WO 2011136613A2
Authority
WO
WIPO (PCT)
Prior art keywords
glycoprotein
antibody
support
fluorescently labeled
protein
Prior art date
Application number
PCT/KR2011/003214
Other languages
English (en)
French (fr)
Other versions
WO2011136613A3 (ko
Inventor
김학성
박선영
김완중
김용태
손영덕
이상철
김은경
김성호
김정회
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US13/695,197 priority Critical patent/US20130203617A1/en
Publication of WO2011136613A2 publication Critical patent/WO2011136613A2/ko
Publication of WO2011136613A3 publication Critical patent/WO2011136613A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/746Erythropoetin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/02Assays, e.g. immunoassays or enzyme assays, involving carbohydrates involving antibodies to sugar part of glycoproteins

Definitions

  • the present invention relates to a kit for analyzing a sugar protein and a use thereof, and more particularly, to a sugar protein analyzing kit including a fluorescently labeled antibody, a fluorescently labeled biomaterial, and a support, and a glycoprotein using the kit.
  • Glycoprotein is the generic name of sugar (carbohydrate) attached protein, which accounts for most of the protein-based therapeutics that have been approved or developed as therapeutic candidates.
  • the glycoprotein profile of the glycoprotein i.e., the type and binding structure of the monosaccharides constituting the oligosaccharide, varies depending on the type, tissue, and species of the cells produced. It is known to affect various biological functions such as pharmacokinetics.
  • Representative examples of sugar chains known to play an important role in protein function include antibodies, interferon, hormones, and hematopoietic growth factor (Erythropoietin, hereinafter referred to as 'EPO').
  • a method for producing a therapeutic glycoprotein is a single cell line which produces a glycoprotein having a desired oligosaccharide structure by injecting a relevant gene into an animal cell forming a human-like oligosaccharide structure and then repeating the clonal process.
  • Use screening methods The combination of limiting dilution cloning and enzyme-linked immunosorbent assay (ELISA) is the most widely used method for single cell selection. This method is to dilute the cell suspension so that single cells enter each well, put it in 96 well plate, grow it, and take supernatant to measure the amount of protein produced by the cells by ELISA method.
  • ELISA enzyme-linked immunosorbent assay
  • Newly developed single cell screening method involves encapsulating a single cell in a microdrop made of agarose attached with an antibody capable of binding to a specific protein produced in the cell, and then generating the captured single cell.
  • a method of detecting proteins using antibodies labeled with fluorescent labeling factors (Nature 1997, 3, 583).
  • this method has a low probability of entering a single cell into a microdrop and requires special skills or equipment.
  • biotin is applied to the cell surface, and then biotin is attached using avidin to capture the protein produced in the cell and detected using an antibody labeled with a fluorescent marker.
  • Method J. Immunol. Methods 1999, 230, 141).
  • this method involves the process of modifying the cell, so it is not applicable to the fragile cell line, and has the disadvantage of finding an optimized condition for each cell line.
  • microwells having a diameter and depth of micrometers made of poly (dimethylsiloxane) (PDMS) and using them to analyze proteins produced by single cells.
  • PDMS poly(dimethylsiloxane)
  • This method has been reported to produce cell-based microwell arrays from leukocytes and to select leukocytes that selectively bind to specific antigens (Cytometry A 2007, 71A, 1003).
  • microfluidics devices have been applied to microwells and various methods have been developed to detect cells that react with or react with various cell lines (Lab Chip 2005, 5, 1380).
  • microwells are grown in microwells, and then microengraving is used to produce antibodies that respond to specific antigens by transferring proteins produced in each microwell into microarrays on the glass surface.
  • New methods for selectively selecting and isolating single cells to establish new cell lines have been developed (Nat. Biotechnol. 2006, 24, 703). These screening methods using microwells can be applied to a wide range of cell lines, and the analysis of many cells at once has the advantage of selectively selecting only cells having desired characteristics in a short time.
  • glycoproteins In the case of cells producing glycoproteins, analysis of the glycoprotein profile is impossible, and thus, it is necessary to purify the glycoproteins generated from the selected cell lines and further analyze the content of the monosaccharides and the oligosaccharide structure. Analysis of these sugar chain profiles is still very complicated and time-consuming, and in particular, sialic acid contains a lot of negative charges, making accurate quantification very difficult (Biochim. Biophys. Acta 2006, 1764, 1853). In addition, the development of therapeutic glycoproteins is a major limitation.
  • the present inventors have made efforts to develop a method for quickly and simply analyzing the production amount of sugar proteins and specific carbohydrate content produced by a single cell without additional analysis of sugar chains.
  • a glycoprotein analysis kit comprising a fluorescently labeled antibody, a fluorescently labeled biomaterial selectively binding to the carbohydrate region of the glycoprotein, and a support to which the glycoprotein can be bound
  • a glycoprotein produced from a single cell It was confirmed that simultaneous analysis of the amount of and specific carbohydrate content was possible, and the fluorescence intensity of the double probe was measured and statistically analyzed to predict the concentration of glycoprotein and the content of specific carbohydrate attached to the glycoprotein.
  • glycoproteins with desired glycosylation properties It was confirmed that it is possible to rapidly and selectively remove effectively establish a new cell line for the single cell, and completed the present invention.
  • It is a main object of the present invention to provide a kit for analyzing a glycoprotein comprising a fluorescently labeled antibody, a fluorescently labeled biomaterial and a support.
  • Another object of the present invention is to provide a dual probe method for quantitatively analyzing the content and glycation properties of a glycoprotein using the glycoprotein analysis kit.
  • Still another object of the present invention is to provide a method for selecting single cells producing glycoproteins having desired glycosylation properties by using the glycoprotein analysis kit and the dual probe method.
  • Another object of the present invention is to provide a cell producing a glycoprotein having the desired glycosylation properties selected by the above method.
  • biomolecules aptamers, peptides, antibodies, etc.
  • the glycoprotein analysis kit by analyzing the fluorescence signal measurement value statistically by the glycoprotein analysis kit according to the present invention it is possible to quickly select a single cell producing a glycoprotein having a desired glycosylation properties, from which a single cell using a micropipette By using an isolation method, only a single cell that produces a glycoprotein having a desired glycosylation property in a population can be specifically isolated to establish a new single cell. Therefore, the sugar protein assay kit of the present invention can efficiently select cells producing therapeutic glycoproteins having desired glycosylation properties. It can be widely used to establish effectively.
  • FIG. 1 is a schematic diagram showing a method for quantitative analysis of a glycoprotein of the present invention.
  • Figure 2 is a schematic diagram showing a method for selecting a single cell producing a glycoprotein having the desired glycosylation properties of the present invention.
  • Figure 3 is a photograph and graph showing the fluorescence signal generated in the kit for analyzing the glycoproteins when performing the method for quantitatively analyzing the glycoproteins of the present invention.
  • Figure 4 is a photograph showing a fluorescence signal generated in the kit for analyzing the sugar when performing the method of selecting a single cell of the present invention.
  • Figure 5 is a graph showing the distribution of the statistically analyzed fluorescence value when performing the method of selecting single cells of the present invention.
  • the present invention (A) a fluorescently labeled antibody that selectively binds to the protein region of the sugar protein of interest; (B) a fluorescently labeled biomaterial that selectively binds to the carbohydrate region of the sugar protein of interest; And (C) a glycoprotein analysis kit including a support to which a desired glycoprotein may be bound.
  • the term "successful glycoprotein” is a protein of interest to detect glycosylation patterns and amounts of the protein, but may be, but is not limited to, a purified glycoprotein or a glycoprotein isolated from a single cell, preferably It may be an antibody, interferon, hormones, EPO (Erythropoietin).
  • the term "antibody” refers to an antigen-antibody reaction caused by stimulation of an antigen in the immune system, specifically binding to a specific antigen, floating on lymph and blood.
  • the antibody in the present invention interferes with the binding between the biomaterial and the carbohydrate by the binding between the epitope of the antigen, the selected antibody has a problem in measuring the carbohydrate content of the glycoprotein. It is desirable to choose to recognize epitopes that do not.
  • Such antibodies may include polyclonal antibodies, monoclonal antibodies and antibodies, such as recombinant antibodies, multivalent antibodies, multispecific antibodies, and the like.
  • One of ordinary skill in the art can readily prepare using known techniques.
  • Polyclonal antibodies can be produced by methods well known in the art for injecting antigens of the genes into animals and collecting blood from the animals to obtain serum comprising the antibodies, comprising different antibodies generated against different epitopes have.
  • Such polyclonal antibodies can be prepared from any animal species host, such as goats, rabbits, sheep, monkeys, horses, pigs, cattle, dogs, and the like.
  • Monoclonal antibody refers to an antibody obtained from a group having an auxiliary homogeneity, generated for a single antigenic site, that is, a single epitope, and refers to an antibody having a very high specificity for an antigen.
  • Antibodies of the invention can also be prepared using two full length light chains and two full lengths. As well as complete forms having heavy chains of, include functional fragments of the antibody molecule, which refers to fragments having at least antigen-binding function, Fab, F (ab '), F (ab'). 2) and Fv.
  • biomaterial may include, without limitation, a sugar site of the glycoprotein of interest of the present invention, that is, a substance capable of binding to a carbohydrate, for example, a lectin that selectively binds to a specific carbohydrate structure. ), An antibody, an aptamer or a peptide.
  • Lectin a biomaterial for analyzing the specific carbohydrate content of sugar proteins, is a generic term for carbohydrate-binding proteins that specifically binds to specific carbohydrate chains, but is mainly found in plants. Is found.
  • ConA Concanavalin A
  • MAA Melia Amurensis agglutinin
  • sialic acid and Ricanus communis agglutinin, which recognizes N-acetylgalactosamine (GalaNAc).
  • MAA which couple
  • Sial oxidation is known to play a very important role for the function and stability of most glycoproteins, in the case of sugar proteins expressing sialic acid can be analyzed by analyzing the content of sialic acid can be isolated proteins having the desired stability.
  • fluorescent label refers to the act of allowing a fluorescent labeling material to bind to a specific reactor of the antibody or biological material, so that the antibody or biological material can fluoresce.
  • the fluorescent labeling material is not particularly limited thereto, and includes a rhodamine-based compound including rhodamine, tamra, and the like; Fluorescein, including fluorine, fluorescein isothiocyanate (FITC), fluorecein amidite (FAM), and the like; Bodipy (boron-dipyrromethene); Alexa fluor (alexa fluor); And cyanine dyes such as Cy3, Cy5, Cy7, indocianin green, and the like, and preferably cyanide having an NHS-ester end group that selectively reacts with an amine group.
  • the antibody or the biomaterial can be fluorescently labeled with a fluorescent label having different absorption and emission wavelengths, and the fluorescent signals generated from them can be independently detected, thereby simultaneously analyzing the antibody and the biomaterial.
  • the term "support” means a medium for binding and immobilizing a desired glycoprotein.
  • the support is not particularly limited thereto, but a glass substrate may be used, and the surface may be coated with nitrocellulose, nylon, or the like to bind the desired sugar protein so that the desired sugar protein may be easily bound.
  • a glass substrate coated with an antibody can be used.
  • the antibody coated on the support is not particularly limited, but it is preferable to use an antibody that recognizes an epitope different from the fluorescently labeled antibody described above.
  • the present invention relates to a (A) fluorescently labeled antibody that selectively binds to the protein region of the sugar protein and a carbohydrate region of the sugar protein to a support to which the desired glycoprotein is bound. Sequentially treating the fluorescently labeled biomaterial and reacting it; And, (B) provides a method for quantitative analysis of the glycoprotein comprising the step of measuring the fluorescent signal generated from the antibody and the biological material bound to the support is complete.
  • fluorescent signal refers to a fluorescence value generated by quantitatively binding a fluorescent material and a biomaterial to the sugar protein bound to the support.
  • the fluorescently labeled antibody After sequentially reacting the fluorescently labeled antibody with the biomaterial, the fluorescently labeled antibody that has not reacted with the glycoprotein that may affect the measured value of the fluorescent signal in order to measure the fluorescent signal more clearly. And washing the support to remove the biomaterial.
  • the fluorescence signal after measuring the fluorescence signal, it may further comprise the step of simultaneously analyzing the glycation properties and content of the glycoprotein by analyzing the measured fluorescence signal.
  • FIG. 1 is a schematic diagram showing a method for quantitative analysis of glycoproteins using the dual probe method of the present invention.
  • the desired glycoprotein is purified and purified, and then, it is bound to the surface of a support such as a glass substrate to immobilize the desired glycoprotein.
  • a support such as a glass substrate
  • the surface of the support may be coated with nitrocellulose or nylon, or an antibody that recognizes the sugar protein may be coated.
  • An antigen-antibody reaction is performed by adding an antibody labeled with a fluorescent substance to a glycoprotein which is bound to a surface of a sugar protein of interest. When the antigen antibody reaction is completed, the surface of the support is washed to remove the fluorescently labeled antibody which does not bind to the glycoprotein.
  • a biomaterial that can bind to the carbohydrate region of the sugar protein and is labeled with another fluorescent substance is added to react with the carbohydrate region.
  • the binding force when the antigen and the antibody reacts is usually nanomolar ( ⁇ nM) level, whereas the binding force when the carbohydrate region and the biological material reacts is micromolar ( ⁇ ⁇ M) level, because the binding force is relatively weak.
  • ⁇ nM nanomolar
  • ⁇ ⁇ M micromolar
  • the analysis target may be the concentration of glycoproteins, glycosylation characteristics of the glycoproteins, which is the number of carbohydrate regions bound thereto per unit molecule of sugar protein.
  • a fluorescently labeled antibody that specifically binds to recombinant human EPO prepared with various sialic acid contents and a fluorescently labeled MAA lectin that specifically binds to sialic acid As a result of analyzing the reaction at various concentrations, it was confirmed that the fluorescence intensity of the antibody that specifically binds to the glycoprotein is increased in proportion to the concentration of EPO, and the concentration of EPO increases as the concentration of EPO increases. It was also confirmed that it can be effectively used for quantitative analysis. That is, the signal size according to the known glycoprotein concentration was prepared as a standard curve, the fluorescent signal for the unknown glycoprotein was measured, and the concentration of the glycoprotein was compared with the standard curve. .
  • the fluorescence signal of MAA was confirmed that the fluorescence intensity increased according to the sialic acid content of the protein even if the EPO concentration was the same, and in the case of EPO having the same sialic acid content, the fluorescence intensity increased in proportion to the protein concentration. It was.
  • This result means that the fluorescence intensity of the lectin increases in proportion to the total sialic acid content present in the whole sugar protein. Since the fluorescent signal bound to the lectin increases as the specific carbohydrate content in the glycoprotein increases, it is possible to predict the number of specific carbohydrates bound per molecule of sugar protein in a specific glycoprotein having a known concentration. In other words, analyzing the number of specific carbohydrates bound per molecule of sugar protein from the comparison with the standard curve based on the fluorescence signal generated from the standard sugar protein that accurately quantifies the number of specific carbohydrates bound per molecule of sugar protein Proved possible.
  • the present invention comprises the steps of (A) culturing a single cell of a cell capable of expressing a desired glycoprotein on the cell surface; (B) contacting and reacting the cultured cells with a support coated with an antibody capable of binding to the glycoprotein, thereby transferring the glycoprotein expressed on the cell surface to the surface of the support; (C) sequentially reacting the fluorescently labeled antibody that selectively binds to the protein region of the glycoprotein and the fluorescently labeled biomaterial that selectively binds to the carbohydrate region of the glycoprotein to a support to which the glycoprotein has been transferred; step; (D) statistically analyzing each fluorescence signal generated from the support by the reaction; And (E) selecting a single cell producing a glycoprotein having a desired glycosylation property, based on the analyzed fluorescence signal.
  • A culturing a single cell of a cell capable of expressing a desired glycoprotein on the cell surface
  • B contacting and reacting the cultured cells with a support coated with an antibody
  • single cell refers to a cell derived from and retained in one cell and having only one form and property.
  • the fluorescently labeled antibody After sequentially reacting and reacting the fluorescently labeled antibody with a biomaterial, the fluorescently labeled antibody that has not reacted with the glycoprotein that may affect the measured value of the fluorescent signal so that the fluorescent signal can be measured more clearly. And washing the support to remove the biomaterial and measuring a fluorescence signal generated from the fluorescently labeled antibody and the fluorescently labeled biomaterial bound to the support.
  • Selecting a single cell producing the glycoprotein having the desired glycosylation properties and then continuously subculture the selected single cell to establish a cell line producing the glycoprotein having the desired glycosylation properties. It may also include.
  • Statistically analyzing the fluorescence signal is not particularly limited, but preferably (i) processing the fluorescence value such that the distribution of the population has a normal distribution; And, (ii) comparing the amount of sugar protein produced in each single cell with the number of specific carbohydrates contained per molecule of sugar protein.
  • the pharmacological activity of the protein is mostly in the form of glycoprotein, and the glycoprotein has a higher carbohydrate content, so that the protein is stabilized and the pharmaceutical activity is maintained for a long time.
  • a method for improving the activity a method of producing a sugar protein having a high content of carbohydrate region may be considered.
  • the pharmacological activity may be influenced by the content of the carbohydrate region included in the glycoprotein, as another method for improving the pharmaceutical activity of the glycoprotein, the pharmacological activity has an optimal carbohydrate content exhibiting pharmacological activity.
  • the production of sugar proteins may be considered.
  • the glycoprotein containing a large amount of the carbohydrate region It is preferred to use a method of selecting a cell which produces a protein or a cell which produces a glycoprotein having an optimal carbohydrate content and producing a glycoprotein having a desired glycation property from the selected cell.
  • FIG. 2 is a schematic diagram showing a method for selecting a single cell producing a glycoprotein having the desired glycosylation properties of the present invention.
  • the primary antibody-coated glass substrate that selectively binds to the glycoprotein is placed on the microwell and reacted at 37 ° C for 1 hour. This transfers the glycoproteins produced by single cells in each microwell to the surface of the glass substrate in the form of protein microarrays.
  • the glass substrate to which the sugar protein has been transferred is reacted by sequentially treating the fluorescently labeled antibody selectively binding to the protein region of the sugar protein and the fluorescently labeled biomaterial selectively binding to the carbohydrate region of the sugar protein. Fluorescence signals generated from the fluorescently labeled antibodies and biomaterials are measured.
  • the fluorescence signal measured from the antibody refers to the relative amount of sugar protein produced in a single cell
  • the fluorescence signal measured from the biomaterial is the amount of carbohydrate bound per molecule of sugar protein which is the total carbohydrate present in the sample Means the product of the concentration of sugar protein in the sample. Therefore, the pure carbohydrate content per molecule of sugar protein is proportional to the total carbohydrate content divided by the sugar protein concentration, that is, the fluorescence signal of the biomaterial divided by the fluorescence signal of the antibody.
  • a log is analyzed for each fluorescence value of the antibody and the biomaterial.
  • the fluorescence signal value of the antibody is divided into the X axis, and the fluorescence signal of the biomaterial is divided by the fluorescence signal of the antibody as the Y axis.
  • the amount of sugar protein produced in a single cell and the relative content of specific carbohydrates contained per molecule of sugar protein can be analyzed.
  • single cells producing glycoproteins can be distinguished by the amount of carbohydrates bound per protein per unit, and on the other hand, single cells producing glycoproteins having desired glycosylation properties can be selected. It may be.
  • the method for isolating single cells selected by the above method is not particularly limited, and (A) treating the selected single cells with trypsin solution; And (B) isolating single cells treated with the trypsin solution by capillary action using a micropipette.
  • micropipette of the present invention means an experimental tool made by using a micropipette puller in a capillary tube to have a diameter of micrometer.
  • the micropipette may have a diameter of 50 ⁇ m in consideration of the diameter of the microwell and the gap between the wells, and the diameter of the micropipette may vary depending on the speed and temperature conditions of the micropipette puller. It is desirable to optimize the conditions to have.
  • trypsin solution is used to weaken the binding force between the selected single cells and the microwells
  • the micropipette is used to separate single cells with weakened binding force to the microwells by capillary action, wherein the concentration of the trypsin If excessive, since single cells are randomly separated from the microwells without capillary phenomenon, the problem may occur that only selected single cells cannot be collected. It is preferred to use an appropriate concentration of trypsin solution that can be separated from the wells.
  • the present invention provides a cell producing a glycoprotein having the desired glycosylation properties selected using the single cell separation method described above.
  • Cy3- ⁇ -EPO was prepared using polyclonal anti-EPO-antibody as antibody and Cy3-NHS ester as fluorescent dye (dye). 100 ⁇ L of polyclonal anti-EPO-antibody (sigma, 2 mg / mL) and a vial of Cy3-NHS ester (GE healthcare) were dissolved in 500 ⁇ l PBS and 200 ⁇ l of them were placed in an EP tube. After 1 hour at room temperature, using a microfilter (Microcon YM-100, 100 kDa cut-off) to remove Cy3 that did not participate in the antibody binding, centrifugation 3-4 times at 10,000 rpm for 10 minutes It was performed repeatedly.
  • a microfilter Microcon YM-100, 100 kDa cut-off
  • the concentration of the antibody and the concentration of Cy3 dye bound to the antibody were quantitatively determined using the intrinsic extinction coefficients (150,000 M-1 cm-1 for the Cy3 dye used here) at 280 nm and 552 nm. That is, the absorbance of Cy3- ⁇ -EPO was measured, and the concentration of antibody and the number of Cy3 dyes bound to one molecule of antibody were calculated by dividing by the absorbance coefficient.
  • Cy5-MAA was prepared using MAA, a type of lectin as a biomaterial, and Cy5-NHS ester as a fluorescent dye. Only the type of protein and dye used were different, and the experimental method was the same as in Example 1-1. The concentration of lectin and the concentration of Cy5 dye bound to lectin were quantitatively determined using the intrinsic extinction coefficients (250,000 M-1 cm-1 for Cy5 dye used here) at 280 nm and 650 nm.
  • EPO isoforms having various sialic acid contents were used as glycoproteins having various carbohydrate contents.
  • EPO protein having various sialic acid contents was prepared by treatment of sialidase-derived sialidase-agarose (Sigma) derived from Clostridium perfringens to EPO protein having high sialic acid content for a predetermined time. 250 ⁇ l of EPO protein (2 mg / ml) having a pI value corresponding to 3.5 to 4.2 was added to an EP tube, and 500 ⁇ l of 50 mM sodium phosphate buffer and 100 ⁇ L of sialides-agarose were added thereto. The reaction was gently shaken for 0, 2, 5, and 10 minutes at room temperature.
  • EPO isoforms with various sialic acid contents were diluted in half from 100 ⁇ g / ml to 3.1 ⁇ g / ml and spotted in the form of 3 ⁇ 3 on the surface of the ultra-thin nitrocellulose support using a microarray. .
  • the surface of the support was treated with PBS solution containing 1% BSA at room temperature for 1 hour, washed three times with TBST (Tris-Buffered Saline Tween-20) and distilled water, and then slowly dried with nitrogen gas. I was.
  • Cy3- ⁇ -EPO prepared by the method of Example 1-1 was diluted in a solution of sodium phosphate (pH 7.0) containing 0.5% Tween-20 at a concentration of 10 ⁇ g / ml and treated on a support, and then at room temperature. The reaction was carried out for 30 minutes and washed with TBST and distilled water. Subsequently, Cy5-MAA prepared by the method of Example 1-2 was diluted in a solution of sodium phosphate (pH 7.0) containing 0.5% Tween-20 at a concentration of 100 ⁇ g / ml and treated on a support, followed by 1 at room temperature. The reaction was time and washed with TBST and distilled water and then slowly dried with nitrogen gas.
  • FIG. 3 is a photograph and graph showing the fluorescence signal generated in the kit for analyzing the glycoproteins when performing the method for quantitatively analyzing the glycoproteins of the present invention. As shown in FIG.
  • the fluorescence signals obtained from Cy3- ⁇ -EPO and Cy5-MAA have a proportional relationship with the amount of EPO present in the spot and the sialic acid content, respectively.
  • the Cy5 fluorescence signal is the same when the Cy3-MAA treatment after Cy3- ⁇ -EPO treatment with Isoform-1 is compared with the Cy5-MAA treatment without Cy3- ⁇ -EPO treatment.
  • the protein chip of the present invention means that in the simultaneous analysis of sugar and protein can be accurately analyzed at the same time without being disturbed by each label.
  • Example 2-1 Obtaining a Cell Based Array of Single Cells
  • SCST3 a CHO (Chinese hamster ovary) cell line producing EPO, was placed in a PDMS microwell prepared to have a diameter of 30 ⁇ m to prepare a cell-based array.
  • fibronectin (sigma) diluted in PBS solution at a concentration of 50 ⁇ g / ml was treated to each array consisting of 45 ⁇ 45 microwells.
  • the fibronectin solution was allowed to penetrate into the well for 10 minutes in a vacuum chamber to remove air from the microwell, and then reacted at room temperature for 1 hour.
  • the fibronectin solution was removed and washed three times with PBS, followed by rubbing with a cotton swab acetone to remove fibronectin bound to the spaces between the microwells.
  • the fibronectin-coated microwell array thus obtained was immersed in a medium in which animal cells can grow for at least 1 hour to allow the medium to enter the microwell.
  • the number of animal cells in one microwell was varied according to the diameter of the microwell. That is, 20 ⁇ l of cell culture solution diluted to a concentration of 5 x 10 5 cells / ml was reacted in microwells having the same depth as 35 ⁇ m but having diameters of 25, 30 or 40 ⁇ m, respectively.
  • the diameters of 25 ⁇ m and 30 ⁇ m contained one or two cells in approximately 65% of the microwells, but 30 ⁇ m showed slightly higher cell occupancy.
  • the cell occupancy rate is very high, but more than two cells are included in each microwell.
  • an ultra-thin nitrocellulose glass substrate (PATH slide) coated with an antibody that specifically binds to EPO was used.
  • the PATH slide was treated with a monoclonal anti-human EPO antibody (R & D systems) at a concentration of 0.5 mg / ml and reacted at 75% humidity for 2 hours. It was placed in a TBST solution containing 1% BSA, reacted at 4 ° C. overnight, and washed with distilled water immediately before use.
  • the microwell array prepared by the method of Example 2-1 and the PATH slide coated with ⁇ -EPO-antibody were adhered to each other by applying an appropriate force, and reacted at 37 ° C. for 1 hour to produce glycoproteins in single cells.
  • Protein chips were made by microengraving methods that were transferred to slides. After the reaction, the microwell array and the slide were removed, the microwell array was immersed in the medium again, the glass substrate was washed three times using TBST and distilled water, and slowly dried with nitrogen gas.
  • Single cells were selected to produce glycoproteins having desired glycosylation properties by simultaneously analyzing the amount of glycoproteins produced in the microwells prepared in Example 2-2 and the specific carbohydrate content.
  • the dual probe method and the fluorescence signal measuring method differed only in using a chip composed of glycoproteins produced from a single cell, and were performed by the same experimental method as a chip made of artificially made EPO isoforms (FIG. 4).
  • Figure 4 is a photograph showing a fluorescence signal generated in the kit for analyzing the sugar when performing the method of selecting a single cell of the present invention.
  • Example 2-4 Selection of Single Cells by Statistical Analysis of Fluorescent Signals
  • ⁇ value means the ratio of the log (Cy5-MAA) fluorescence value changed per log (Cy3- ⁇ -EPO) fluorescence value
  • ⁇ value means the intercept
  • ⁇ i represents the error value.
  • FIG. 5 is a graph showing the distribution of the statistically analyzed fluorescence value when performing the method of selecting single cells of the present invention.
  • Subgroup-1 is a group with more output and sialic acid than the average
  • Subgroup-2 is a group with lower production but more sialic acid
  • Subgroup-3 is a group with less production and sialic acid
  • Subgroup-4 Means a group with high yield but low number of sialic acid.
  • the 10 single cells with the most statistical distance were selected as the cells representing each group.
  • Example 2-5 Isolation of Single Cells and Establishment of Cells Producing the Desired Glycoprotein
  • the microwell array was placed on an inverted microscope (DMI 3000 B, Leica) and the trypsin solution diluted to a concentration of 10% was treated to the array.
  • the tip of the micropipette was adhered to the microwell containing the cells selected in the above-described salicylic example 2-4, cells were detached by capillary action and moved into the micropipette together with the medium.
  • the medium containing the cells was transferred to 96 well plates containing MEM ⁇ medium (Gibco) containing 200 ⁇ l of 10% FBS.
  • the survival rate was approximately 60-70%. If cells grow properly in a 96 well plate, transfer the cells to a 24-well plate, a 25-cm2 T-flask and a 75-cm2 T-flask to increase the number of cells to the level of 106 cells, and then store at -70 ° C. Cells producing glycoproteins were established.
  • the production amount of EPO produced in the cells established in Example 2-5 was measured by ELISA method. Specifically, 1 ⁇ 104 cells were put in each 6-well plate and grown in a 37 ° C. incubator, and the medium containing EPO generated every 12 hours for 72 hours was taken to freeze and count the number of CHO cells producing EPO. Measured. 100 ⁇ l of anti-human EPO monoclonal antibody diluted in sodium carbonate (pH 9.0) at a concentration of 1 ⁇ g / ml was placed in a 96 well plate and reacted at 37 ° C. for 1 hour, followed by TBST 200 containing 2% BSA. ⁇ l was reacted at room temperature for 1 hour.
  • the number of sialic acids in one molecule of EPO produced in newly established cell lines was analyzed using HPLC.
  • the analysis method using HPLC is as follows. Specifically, 3 ⁇ 10 6 cells were transferred to a 175-cm 2 T-flask and grown for 3 days, followed by replacing the medium with 20 ml of serum-free medium (CHO-S-SFMII, Gibco) for 2 days. The supernatant containing the produced EPO was collected and centrifuged at 1,000 rpm for 10 minutes to remove remaining animal cells. Using a micro filter (Amicon Ultra, 10kDa cut-off) centrifugation was repeated 3-4 times at 3,000rpm for 3 to 4 times, concentrated by changing the buffer with PBS.
  • a micro filter Amicon Ultra, 10kDa cut-off
  • EPO was purified from the supernatant using an immuno-affinity chromatography method using a resin bound to anti-human EPO monoclonal antibody, lyophilized and stored at -20 ° C. After lyophilized EPO was dissolved in distilled water, the weak acid was treated to separate sialic acid from EPO. OPD (o-phenylenediamine-2HCl) was selectively combined with the separated sialic acid, and sialic acid was quantified using HPLC and fluorescence detectors 230 (ex) and 425 (em).
  • OPD o-phenylenediamine-2HCl
  • Example 2-5 Based on the selection method mentioned in Example 2-4 and the cell line establishment method of Example 2-5, cell lines derived from single cells having unique characteristics were established.
  • a cell line was established by selecting 10 single cells representing each subgroup through the first screening process, and the above example was performed for a total of four cell lines (sc1-29, sc1-18, sc1-122 and sc1-2). Verification by ELISA and OPD analysis was performed in the same manner as in the method of 2-6 (Table 1).
  • Table 1 MaternalCell line Subgroup Cell line Productivity (pg rhEPO / cell / day) sialic acid per EPO (nmole / nmole) SCST3 1234 sc1-29sc1-18sc1-122sc1-2 4.3 ⁇ 0.43.4 ⁇ 0.13.2 ⁇ 0.54.8 ⁇ 0.7 8.7 ⁇ 0.59.0 ⁇ 0.68.2 ⁇ 0.37.8 ⁇ 0.5
  • the production of cell lines was measured as 4.3 ⁇ 0.4, 3.4 ⁇ 0.1, 3.2 ⁇ 0.5 and 4.8 ⁇ 0.7 pg / cell / day, respectively, and the high Cy3- ⁇ -EPO fluorescence value is expected to be high production
  • the actual yields of sc1-29 and sc1-2 were higher than those of sc1-18 and sc1-122, which had lower fluorescence values.
  • the number of sialic acids bound per molecule of EPO was measured as 8.7 ⁇ 0.5, 9.0 ⁇ 0.6, 8.2 ⁇ 0.3, and 7.8 ⁇ 0.5nmole / nmole, respectively.
  • Example 2-6 The method of Example 2-6 for the four cell lines (sc2-4, sc2-172, sc2-109 and sc2-129) representing each subgroup among the cell lines established through the same process as the first screening process and In the same way, verification was performed through ELISA and OPD analysis (Table 2).
  • each cell line was measured as 4.0 ⁇ 0.3, 3.4 ⁇ 0.1, 3.2 ⁇ 0.3 and 4.4 ⁇ 0.1 pg / cell / day, sialic acid content is 9.1 ⁇ 0.6, 9.8 ⁇ 0.1, 8.5 ⁇ It was measured at 0.1 and 8.5 ⁇ 0.1 nmoles / nmole.
  • the highest sialic acid sc2-172 cell line has a sialic acid content of 9.8 ⁇ 0.1, which is 8.0 ⁇ 0.3 of the parent cell line SCST3 used in the first screening process and 9.0 ⁇ 0.6 of the parent cell line sc1-18 in the second screening process. This is a greatly improved value. In other words, it was confirmed that a cell line producing EPO having an increased sialic acid content could be established through repeated screening processes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Endocrinology (AREA)
  • Plant Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 당 단백질 분석용 키트 및 이의 용도에 관한 것으로서, 보다 구체적으로 본 발명은 형광표지된 항체, 형광표지된 생체물질 및 지지체를 포함하는 당 단백질 분석용 키트, 상기 키트를 이용하여 당 단백질의 함량 및 당화 특성을 동시에 정량분석하는 이중 탐침법, 상기 키트를 이용하여 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 방법 및 상기 방법으로 선별된 목적하는 당화 특성을 갖는 당단백질을 생산하는 세포에 관한 것이다.

Description

당 단백질 분석용 키트 및 이의 용도
본 발명은 당 단백질 분석용 키트 및 이의 용도에 관한 것으로서, 보다 구체적으로 본 발명은 형광표지된 항체, 형광표지된 생체물질 및 지지체를 포함하는 당 단백질 분석용 키트, 상기 키트를 이용하여 당 단백질의 함량 및 당화 특성을 동시에 정량분석하는 이중 탐침법, 상기 키트를 이용하여 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 방법 및 상기 방법으로 선별된 목적하는 당화 특성을 갖는 당단백질을 생산하는 세포에 관한 것이다.
당단백질은 당(탄수화물)이 부착된 단백질의 총칭으로서, 현재까지 치료약으로 승인되었거나 치료약 후보로 개발 중인 단백질 기반 치료약의 대부분을 차지하고 있다. 당단백질의 당사슬 프로파일(profile), 즉 당사슬을 구성하는 단당류의 종류와 결합 구조는 생산되는 세포의 종류, 조직, 종에 따라서 각각 다르며, 이러한 당사슬 형태에 따라 생체 내에서의 생물학적 활성, 면역반응, 약물 동력학 등 다양한 생물학적 기능에 영향을 주는 것으로 알려져 있다. 당사슬이 단백질의 기능에 중요하게 작용하는 것으로 알려진 대표적인 예로는 항체, 인터페론(interferon), 호르몬, 조혈세포성장인자(Erythropoietin, 이하, 'EPO'라 함) 등이 있다. 특히, EPO의 경우 당사슬의 말단에 존재하는 시알산(sialic acid)의 함량이 높을수록 생체 내에서의 반감기가 길어지므로 약효도 증가하는 것으로 알려져 있으며 실제로 시알산 함량이 증대된 새로운 형태의 EPO가 치료용으로 개발되어 사용되고 있다.
일반적으로 치료용 당단백질을 생산하는 방법으로는 사람과 유사한 당사슬 구조를 형성하는 동물세포에 관련 유전자를 주입한 후, 반복적인 클론 선별 과정을 통하여 원하는 당사슬 구조를 가지는 당단백질을 생산하는 단일세포주를 선별하는 방법을 사용한다. LDC(Limiting dilution cloning)에 효소 면역학적 분석(enzyme-linked immunosorbent assay, ELISA)을 결합한 방법이 단일세포 선별 방법으로 가장 널리 쓰이는 방법이다. 이 방법은 각각의 웰(well) 안에 단일세포가 들어가도록 세포 현탁액을 희석하여 96 웰 플레이트에 넣고 키운 후, 상층액을 취하여 ELISA 방법으로 세포가 생성한 단백질의 양을 측정하는 방법이다. 그러나 이 방법은 방법의 단순함 때문에 널리 쓰이지만, 많은 시간과 노동력이 요구되는 단점 때문에 최근 이를 극복하려는 연구들이 진행되고 있다.
새로 개발된 단일세포 선별 방법으로는 세포에서 생성되는 특정 단백질에 결합할 수 있는 항체를 붙인 아가로스(agarose)로 만들어진 마이크로드롭 (microdrop) 안에 단일세포를 피포한 후, 포획된 단일세포에서 생성되는 단백질을 형광표지인자를 붙인 항체를 이용하여 검출하는 방법이 있다(Nature 1997, 3, 583). 그러나 이 방법은 마이크로드롭 안에 단일세포가 들어가는 확률이 낮고, 특수한 기술이나 장비가 필요하다는 단점이 있다. 다른 방법으로는 세포표면에 비오틴(biotin)을 입힌 후, 아비딘(avidin)을 이용하여 비오틴을 붙인 항체를 연결하여, 세포에서 생산되는 단백질을 포획하고 이를 형광표지인자를 붙인 항체를 이용하여 검출하는 방법이 있다(J. Immunol. Methods 1999, 230, 141). 하지만 이 방법은 세포를 변형시키는 과정을 포함하므로, 망가지기 쉬운 세포주에는 적용이 불가능하며, 각 세포주 별로 최적화된 조건을 찾아야 한다는 단점이 있다.
최근에는 PDMS(Poly(dimethylsiloxane))로 만들어진 마이크로미터 크기의 지름과 깊이를 가지는 마이크로웰(microwell)을 이용하여 단일세포를 격리하고 이를 이용하여 단일세포가 생산하는 단백질을 분석하는 방법이 개발되었다. 이 방법을 통해 백혈구 세포로 세포기반 마이크로웰 어레이(microwell array)를 제작하고, 특정 항원에 선택적으로 결합하는 백혈구 세포를 선별하는 방법이 보고되었다(Cytometry A 2007, 71A, 1003). 또한, 마이크로웰에 미세유체채널(microfluidics device)을 적용하여 다양한 세포주를 특정 물질과 반응시켜 이러한 물질과 결합하거나 반응하는 세포를 찾아내는 방법들이 개발되었다(Lab Chip 2005, 5, 1380). 비슷한 방법으로 마이크로웰 안에서 세포를 키운 후, 각 마이크로웰 안에서 생산된 단백질을 유리표면에 마이크로어레이(microarray)형태로 옮기는 마이크로인그레이빙(microengraving) 방법을 이용하여 특정 항원에 반응하는 항체를 생산하는 단일세포를 선택적으로 선별, 분리하여 새로운 세포주를 확립하는 방법이 새롭게 개발되었다(Nat. Biotechnol. 2006, 24, 703). 마이크로웰을 이용한 이러한 선별 방법들은 광범위한 세포주에 적용가능하며, 한번에 많은 세포들의 분석이 가능하여 빠른 시간 내에 원하는 특성을 가지는 세포들만을 선택적으로 선별할 수 있는 장점이 있다. 그러나 당단백질을 생산하는 세포의 경우에는 당사슬 프로파일의 분석이 불가능하기 때문에 선별된 세포주에서 생성되는 당단백질을 정제하여, 추가적으로 단당류의 함량 및 당사슬 구조를 분석하는 과정이 필요하게 된다. 이러한 당사슬 프로파일의 분석은 현재까지도 매우 복잡하고 시간과 노력이 많이 소요되며, 특히 시알산의 경우 음전하를 많이 포함하고 있어 정확한 정량이 매우 어려운 것으로 알려져 있어서(Biochim. Biophys. Acta 2006, 1764, 1853), 치료용 당단백질의 개발에 큰 제약이 되고 있다.
본 발명자들은 추가적인 당사슬의 복잡한 분석과정 없이 단일세포가 생산하는 당 단백질의 생산량 및 특정 탄수화물 함량을 신속하고 간단하게 분석하는 방법을 개발하고자 예의 노력한 결과, 목적하는 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체, 상기 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질 및 상기 당 단백질이 결합될 수 있는 지지체를 포함하는 당 단백질 분석용 키트를 이용할 경우, 단일세포에서 생산된 당단백질의 양과 특정 탄수화물 함량의 동시 분석이 가능함을 확인하였고, 이중 탐침의 형광 세기를 측정하고 통계학적으로 분석하여 당단백질의 농도 및 당단백질에 부착된 특정 탄수화물의 함량을 예측할 수 있음을 확인하였으며, 이로부터 원하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 신속하게 선별 및 분리하여 새로운 세포주를 효과적으로 확립할 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명의 주된 목적은 형광표지된 항체, 형광표지된 생체물질 및 지지체를 포함하는 당 단백질 분석용 키트를 제공하는 것이다.
본 발명의 다른 목적은 상기 당 단백질 분석용 키트를 이용하여 당 단백질의 함량 및 당화 특성을 동시에 정량분석하는 이중 탐침법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 당 단백질 분석용 키트 및 이중 탐침법을 이용하여 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 방법으로 선별된 목적하는 당화 특성을 갖는 당단백질을 생산하는 세포를 제공하는 것이다.
본 발명에 의한 당 단백질 분석용 키트에 포함되는 당 단백질에 선택적으로 결합하는 형광표지된 항체와 특정 탄수화물과 결합하는 생체물질의 형광신호를 이용하여 추가적인 분석 과정 없이 단일세포가 생산하는 당 단백질의 양과 특정 탄수화물 함량을 동시에 분석할 수 있고, 다양한 특정 탄수화물과 특이적으로 결합하는 렉틴을 포함한 다른 종류의 생체 분자(앱타머, 펩타이드, 항체등)를 접목하여, 다양한 특정 탄수화물의 함량 분석을 할 수 있다. 또한 본 발명에 의한 당 단백질 분석용 키트에 의해 형광신호 측정값을 통계학적으로 분석하여 원하는 당화 특성을 갖는 당 단백질을 생산하는 단일세포를 신속하게 선별할 수 있고, 이로부터 마이크로파이펫을 이용한 단일세포분리방법을 이용하여 한 개체군 내에서 원하는 당화 특성을 갖는 당 단백질을 생산하는 단일세포만을 특이적으로 분리하여 새로운 단일세포를 확립할 수 있다. 따라서 본 발명의 당 단백질 분석용 키트를 이용하여 원하는 당화 특성을 갖는 치료용 당 단백질을 생산하는 세포를 효율적으로 선별할 수 있으므로, 본 발명은 산업적으로 가치 있는 치료용 당 단백질 생산용 세포를 신속하고 효과적으로 확립하는데 광범위하게 활용될 수 있다.
도 1은 본 발명의 당 단백질을 정량분석하는 방법을 나타내는 개요도이다.
도 2는 본 발명의 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 방법을 나타내는 개요도이다.
도 3은 본 발명의 당 단백질을 정량분석하는 방법을 수행할 때, 당 단백질 분석용 키트에서 발생하는 형광신호를 보여주는 사진 및 그래프이다.
도 4는 본 발명의 단일세포를 선별하는 방법을 수행할 때, 당 단백질 분석용 키트에서 발생하는 형광신호를 보여주는 사진이다.
도 5는 본 발명의 단일세포를 선별하는 방법을 수행할 때, 통계적으로 분석된 형광값의 분포를 나타내는 그래프이다.
상기의 목적을 달성하기 위한 하나의 실시양태로서, 본 발명은 (A) 목적하는 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체; (B) 목적하는 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질; 및, (C) 목적하는 당 단백질이 결합될 수 있는 지지체를 포함하는 당 단백질 분석용 키트를 제공한다.
본 발명에서 용어, "목적하는 당 단백질"이란 당화 패턴 및 단백질의 양을 검출하고자 하는 목적 단백질로서, 특별히 이에 제한되지는 않으나 정제된 당 단백질 또는 단일세포로부터 분리된 당 단백질일 수 있고, 바람직하게는 항체, 인터페론, 호르몬, EPO(Erythropoietin) 등이 될 수 있다.
본 발명에서 용어, "항체"란 면역계 내에서 항원의 자극에 의하여 만들어지며 특정한 항원과 특이적으로 결합하여 림프와 혈액을 떠돌며 항원항체반응을 일으키는 것을 말한다. 본 발명에서의 항체가 항원의 에피토프(epitope) 사이의 결합에 의해 생체물질과 탄수화물 사이의 결합을 방해하는 경우, 당 단백질의 탄수화물 함량을 측정하는데 문제가 있으므로, 선택한 항체는 생체물질의 결합을 방해하지 않는 에피토프를 인식하는 것으로 선택하는 것이 바람직하다. 이러한 항체로서 폴리클로날(Polyclonal) 항체, 모노클로날(Monoclonal) 항체 및 재조합 항체, 다가(Multivalent) 항체, 다특이성(Multispecific) 항체 등의 항체를 모두 포함할 수 있으며, 항체를 생성하는 것은 당해 기술분야의 일반적 기술자가 공지된 기술을 이용하여 용이하게 제조할 수 있다. 폴리클로날 항체는 상기 유전자의 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 당업계에 널리 공지된 방법에 의해 생산할 수 있으며, 상이한 에피토프에 대해 생성된 상이한 항체를 포함하고 있다. 이러한 폴리클로날 항체는 염소, 토끼, 양, 원숭이, 말, 돼지, 소, 개 등의 임의의 동물 종 숙주로부터 제조가능하다. 모노클로날 항체는 보조적으로 동질성을 갖는 군으로부터 얻어진 항체를 의미하며, 단일한 항원성 부위(Antigenic site), 즉 단일 에피토프에 대해 생성된 것으로, 항원에 대한 특이성이 매우 높은 항체를 의미하며, 당업계에 널리 공지된 하이브리도마 방법((hybridoma method)(Kohler 및 Milstein (1976) European Jounral of Immunology 6:511-519 참조), 또는 파지 항체 라이브러리(Clackson et al, Nature, 352:624-628, 1991; Marks et al, J. Mol. Biol., 222:58, 1-597, 1991) 기술을 이용하여 제조될 수 있다. 또한, 본 발명의 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라, 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합 기능을 보유하고 있는 단편을 뜻하며, Fab, F(ab'), F(ab')2 및 Fv 등이 있다.
본 발명에서 용어, "생체물질"은 본 발명의 목적하는 당 단백질의 당 부위, 즉, 탄수화물과 결합할 수 있는 물질은 제한없이 포함될 수 있으나, 그 예로 특정 탄수화물 구조에 선택적으로 결합하는 렉틴(Lectin), 항체, 앱타머(Aptamer) 또는 펩타이드일 수 있다. 당 단백질의 특정 탄수화물 함량을 분석하기 위한 생체물질인 렉틴(lectin)은 특정 탄수화물 사슬과 특이적으로 결합하는 탄수화물 결합 단백질의 총칭으로 주로 식물에서 발견되고 있으나, 척추동물, 미생물, 바이러스 등 다양한 유래에서도 발견된다. 렉틴으로서 식물로부터 유래된, 만노스(mannose)를 인식하는 ConA(Concanavalin A), 시알산(sialic acid)을 인식하는 MAA(Maackia Amurensis agglutinin), GalNAc(N-acetylgalactosamine)을 인식하는 RCA(Ricinus communis agglutinin), L-퓨코스(L-fucose)를 인식하는 AAL(Aleuria aurantia lectin), di-GlcNAc(N,N-diacetyl chitobios)를 인식하는 WGA(wheat germ agglutinin) 등을 이용할 수 있으나, 바람직하게는 당사슬 말단의 시알산과 결합하는 MAA를 이용할 수 있다. 시알산화는 대부분의 당 단백질에 있어서 기능과 안정성에 대해 매우 중요한 역할을 하는 것으로 알려져 있어, 시알산을 발현하는 당 단백질의 경우 시알산의 함량을 분석하면 원하는 안정성을 갖는 단백질을 분리할 수 있다.
본 발명에서 용어 "형광표지"는 형광표지 물질이 상기 항체 또는 생체물질의 특정 반응기와 결합하여, 상기 항체 또는 생체물질이 형광을 낼 수 있도록 하는 행위를 의미한다. 상기 형광표지 물질은 특별히 이에 제한되지 않으나, 로다민(rhodamine), 탐라(TAMRA)등을 포함하는 로다민계; 플루오세인, FITC(fluorescein isothiocyanate) 및 FAM(fluorecein amidite)등을 포함하는 플루오세인계(fluorescein); 보디피계(bodipy, boron-dipyrromethene); 알렉사플로어계 (alexa fluor); 및 Cy3, Cy5, Cy7, 인도시아닌그린을 포함하는 시아닌계(cyanine) 등의 염료를 사용할 수 있고, 바람직하게는 아민기(amine group)와 선택적으로 반응하는 NHS-에스터 말단기를 갖는 시안계(Cyanine) 염료를 사용할 수 있다. 본 발명에서는 상기 항체 또는 생체물질을 서로 다른 흡광 및 발광 파장을 갖는 형광표지 물질로 형광표지하고, 이들로부터 발생하는 형광신호를 독립적으로 검출함으로써, 상기 항체와 생체물질을 동시에 분석할 수 있다.
본 발명에서 용어 "지지체"는 목적하는 당 단백질을 결합시켜서 고정화시키기 위한 매체를 의미한다. 상기 지지체는 특별히 이에 제한되지 않으나, 유리기판을 사용할 수 있고, 바람직하게는 목적하는 당 단백질이 용이하게 결합될 수 있도록, 표면이 니트로셀룰로오스, 나일론 등으로 코팅되거나 또는 목적하는 당 단백질과 결합할 수 있는 항체로 코팅된 유리기판을 사용할 수 있다. 아울러, 상기 지지체에 코팅되는 항체는 특별히 이에 제한되지는 않으나 상술한 형광표지된 항체와는 다른 에피토프를 인식하는 항체를 사용함이 바람직하다.
본 발명의 다른 실시양태로서, 본 발명은 (A) 목적하는 당 단백질이 결합된 지지체에 상기 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체 및 상기 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질을 순차적으로 처리하여 반응시키는 단계; 및, (B) 상기 반응이 종료된 지지체에 결합된 항체 및 생체물질로부터 발생하는 형광신호를 측정하는 단계를 포함하는 당 단백질을 정량분석하는 방법을 제공한다.
본 발명의 용어 "형광신호"는 지지체에 결합된 상기 당 단백질에 형광표지된 항체와 생체물질이 정량적으로 결합이 되어 발생하는 형광값을 의미한다.
상기 형광표지된 항체와 생체물질을 순차적으로 처리하여 반응시킨 후에, 형광신호를 보다 명확하게 측정하기 위하여, 상기 형광신호의 측정값에 영향을 줄 수 있는 상기 당 단백질과 반응하지 않은 형광표지된 항체 및 생체물질을 제거하기 위하여, 상기 지지체를 세척하는 단계를 추가로 포함할 수 있다.
아울러, 상기 형광신호를 측정한 후에, 측정된 형광신호를 분석하여 상기 당 단백질의 당화특성 및 함량을 동시에 분석하는 단계를 추가로 포함할 수도 있다.
본 발명의 당 단백질을 이중 탐침법을 이용하여 정량분석하는 방법을 보다 구체적으로 설명하면 다음과 같다(도 1). 도 1은 본 발명의 이중 탐침법을 이용하여 당 단백질을 정량분석하는 방법을 나타내는 개요도이다.
우선, 목적하는 당 단백질을 정제하여 순수분리 하고, 이를 유리기판과 같은 지지체의 표면에 결합시켜서 목적하는 당 단백질을 고정화시킨다. 이때, 목적하는 당 단백질을 지지체의 표면에 보다 용이하게 결합시키기 위하여, 상기 지지체의 표면을 니트로셀룰로오스 또는 나일론 등으로 코팅할 수도 있고, 상기 당 단백질을 인식하는 항체를 코팅할 수도 있다. 목적하는 당 단백질이 표면에 고정된 지지체에 상기 당 단백질과 결합할 수 있고 형광물질로 표지된 항체를 가하여 항원항체반응을 수행한다. 상기 항원항체반응이 종료되면 상기 지지체의 표면을 세척하여 상기 당 단백질에 결합하지 않은 형광표지된 항체를 제거한다. 이어, 상기 당 단백질의 탄수화물 영역과 결합할 수 있고 또 다른 형광물질로 표지된 생체물질을 가하여 상기 탄수화물 영역과 결합하도록 반응시킨다. 이때, 항원과 항체가 반응할때의 결합력은 통상 나노 몰(~nM) 수준인데 반하여, 탄수화물 영역과 생체물질이 반응할때의 결합력은 마이크로 몰(~μM) 수준으로서, 결합력이 상대적으로 약하기 때문에, 탄수화물 영역과 생체물질의 충분한 결합을 위하여 반응에 사용한 생체물질의 양과 반응시간을 최적화하는 것이 필요하다. 상기 반응이 종료되면 상기 지지체의 표면을 세척하여 상기 탄수화물 영역과 결합하지 않은 형광표지된 생체물질을 제거한다. 그런 다음, 상기 형광표지된 항체의 형광물질로부터 발생하는 형광신호와 상기 형광표지된 생체물질의 형광물질로부터 발생하는 형광신호를 독립적으로 측정하고, 상기 각 형광측정값에 근거하여, 상기 당 단백질을 정량분석할 수 있다. 이때, 분석대상으로는 당 단백질의 농도, 당 단백질의 단위분자당 이에 결합된 탄수화물 영역의 숫자인 당 단백질의 당화특성 등이 될 수 있다.
본 발명의 일 구현예에 의하면, 다양한 시알산 함량을 갖도록 제조된 인간 재조합 EPO(recombinant human EPO)에 특이적으로 결합하는 형광표지된 항체와 시알산에 특이적으로 결합하는 형광표지된 MAA 렉틴을 반응시켜 여러 농도에서 분석한 결과, EPO의 농도에 비례하여 당 단백질에 특이적으로 결합하는 항체의 형광 세기가 강해지는 것을 확인하였고, EPO의 농도가 증가할수록 형광신호가 증가하므로 EPO의 농도를 확인하는 정량분석에 효과적으로 사용될 수 있음도 확인하였다. 즉, 알려진 당 단백질의 농도에 따른 신호 크기를 표준 곡선(standard curve)으로 작성하고, 미지 농도의 당 단백질에 대한 형광신호를 측정한 후, 표준 곡선과 비교하여 당 단백질의 농도를 정량할 수 있었다. 반면, MAA의 형광신호는 EPO 농도가 같더라도 단백질의 시알산 함량에 따라 형광 세기가 증가하는 것을 확인하였고, 같은 시알산 함량을 가지는 EPO의 경우에는 단백질 농도에 비례하여 형광 세기가 증가하는 것을 확인하였다. 이런 결과는 전체 당 단백질에 존재하는 총 시알산 함량에 비례하여 렉틴의 형광 세기가 증가한다는 것을 의미한다. 렉틴에 결합된 형광신호가 당 단백질 내에 존재하는 특정 탄수화물 함량이 높을수록 증가하므로, 정확한 농도를 알고 있는 특정 당 단백질에서 당 단백질 한 분자당 결합된 특정 탄수화물의 수를 예측하는 것이 가능하다. 즉, 당 단백질 한 분자당 결합된 특정 탄수화물의 수가 정확하게 정량되어 있는 표준 당 단백질에서 발생하는 형광신호를 기반으로 한 표준 곡선과의 비교로부터 당 단백질 한 분자당 결합된 특정 탄수화물의 수를 분석하는 것이 가능함을 입증하였다.
본 발명의 또 다른 실시양태로서, 본 발명은 (A) 목적하는 당 단백질을 세포 표면에 발현시킬 수 있는 세포를 단세포 배양하는 단계; (B) 상기 배양된 세포에, 상기 당 단백질과 결합할 수 있는 항체가 코팅된 지지체를 접촉시키고 반응시켜서, 상기 세포 표면에 발현된 당 단백질을 상기 지지체의 표면으로 전이시키는 단계; (C) 상기 당 단백질이 전이된 지지체에 상기 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체 및 상기 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질을 순차적으로 처리하여 반응시키는 단계; (D) 상기 반응에 의하여 상기 지지체로부터 발생되는 각 형광신호를 통계적으로 분석하는 단계; 및, (E) 상기 분석된 형광신호에 의거하여, 목적하는 당화 특성을 갖는 당 단백질을 생산하는 단일세포를 선별하는 단계를 포함하는, 목적하는 당화 특성을 갖는 당 단백질을 생산하는 단일세포를 선별하는 방법을 제공한다.
본 발명의 용어 "단일세포"란 하나의 세포로부터 파생 유지되어 오로지 하나의 형태 및 성질을 갖는 세포를 의미한다.
상기 형광표지된 항체와 생체물질을 순차적으로 처리하여 반응시킨 후에, 형광신호를 보다 명확하게 측정할 수 있도록 상기 형광신호의 측정값에 영향을 줄 수 있는 상기 당 단백질과 반응하지 않은 형광표지된 항체 및 생체물질을 제거하기 위한 상기 지지체를 세척하는 단계와 상기 지지체에 결합된 상기 형광표지된 항체 및 형광표지된 생체물질로부터 발생하는 형광신호를 측정하는 단계를 추가로 포함할 수 있다.
상기 목적하는 당화 특성을 갖는 당 단백질을 생산하는 단일세포를 선별한 다음, 상기 선별된 단일세포를 지속적으로 계대배양하여, 목적하는 당화 특성을 갖는 당 단백질을 생산하는 세포주를 확립하는 단계를 추가로 포함할 수도 있다.
상기 형광신호를 통계적으로 분석하는 단계는 특별히 이에 제한되지 않으나, 바람직하게는 (i) 개체군의 분포가 정규분포를 갖도록 형광값을 가공하고; 및, (ii) 각 단일세포에서 생산된 당 단백질 양 및 당 단백질 한 분자당 포함된 특정 탄수화물의 개수를 상대적 비교하여 수행될 수 있다.
통상적으로 연구되는 약학적인 활성을 가지는 단백질은 대부분 당 단백질의 형태이고, 상기 당 단백질은 탄수화물 영역의 함량이 많을 수록 단백질이 안정화되어 약학적인 활성이 오랜기간 동안 유지되므로, 상기 당 단백질의 약학적인 활성을 향상시키기 위한 하나의 방법으로서, 탄수화물 영역의 함량이 많은 당 단백질을 생산하는 방안이 검토될 수 있다. 또한, 상기 약리활성은 당 단백질에 포함된 탄수화물 영역의 함량에 의하여 영향을 받을 수 있기 때문에, 상기 당 단백질의 약학적인 활성을 향상시키기 위한 다른 방법으로서, 약학적인 활성을 나타내는 최적의 탄수화물 함량을 갖는 당 단백질을 생산하는 방안이 검토될 수도 있다.
그런데, 당 단백질에 부가되는 탄수화물 영역의 함량은 상기 당 단백질을 생산하는 세포에 의하여 크게 영향을 받으므로, 상기 당 단백질의 약학적인 활성을 향상시키기 위하여는 상기 탄수화물 영역을 많은 함량으로 포함하는 당 단백질을 생산하는 세포 또는 최적의 탄수화물 함량을 갖는 당 단백질을 생산하는 세포를 선별하고, 선별된 세포로부터 목적하는 당화 특성을 갖는 당 단백질을 생산하는 방법을 사용함이 바람직하다.
본 발명의 목적하는 당화 특성을 갖는 당 단백질을 생산하는 단일세포를 선별하는 방법을 보다 구체적으로 설명하면 다음과 같다(도 2). 도 2는 본 발명의 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 방법을 나타내는 개요도이다.
PDMS로 제작된 마이크로웰 안에 단일세포를 넣어 배양 한 후, 마이크로웰 위에 당 단백질에 선택적으로 결합하는 1차 항체가 코팅된 유리기판을 올려놓은 후 1시간 37℃에서 반응시킨다. 이를 통해 각각의 마이크로웰 안에서 단일세포가 생산한 당 단백질을 단백질 마이크로어레이 형태로 유리기판 표면으로 전이시킨다. 상기 당 단백질이 전이된 유리기판에 상기 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체 및 상기 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질을 순차적으로 처리하여 반응시킨다음, 상기 형광표지된 항체 및 생체물질로부터 발생하는 형광신호를 측정한다. 상기 항체로부터 측정된 형광신호는 단일세포에서 생산된 당 단백질의 상대적인 양을 의미하고, 상기 생체물질로부터 측정된 형광신호는 시료 내에 존재하는 전체 탄수화물의 함량인 당 단백질 한 분자당 결합된 탄수화물의 함량과 시료 내의 당 단백질의 농도가 곱해진 값을 의미한다. 따라서, 순수하게 당 단백질 한 분자당 결합된 탄수화물의 함량은 전체 탄수화물 함량을 당 단백질의 농도로 나눈 값, 즉, 생체물질의 형광신호를 항체의 형광신호로 나눈 값에 비례한다. 통계적으로 분석 가능한, 정규 분포를 나타내는 그래프를 얻기 위해 항체와 생체물질 각각의 형광 값에 로그(log)를 취하여 분석한다. 로그를 취한 각각의 형광 값을 기반으로 항체의 형광신호 값을 X축에, 생체물질의 형광신호를 항체의 형광신호로 나눈 값을 Y축으로 하여 각각의 단일세포가 생산한 당 단백질의 그래프를 작성하면, 단일세포에서 생산된 당 단백질의 양과 당 단백질 분자당 포함된 특정 탄수화물의 상대적인 함량을 분석할 수 있다. 상기 분석결과에 의거하여, 당 단백질을 생산하는 단일세포를 단위 당 단백질 당 결합하는 탄수화물 영역의 함량별로 구별할 수 있고, 한편으로는 목적하는 당화특성을 가지는 당 단백질을 생산하는 단일세포를 선별할 수도 있다.
상기 방법에 의하여 선별된 단일세포를 분리하는 방법은 특별히 이에 제한되지 않으나, (A) 상기 선별된 단일세포에 트립신 용액을 처리하는 단계; 및, (B) 마이크로파이펫을 이용하여 모세관 현상에 의해 트립신 용액이 처리된 단일세포를 분리하는 단계를 포함한다.
본 발명의 용어 "마이크로파이펫"이란 마이크로미터의 지름을 갖도록 모세관에 마이크로파이펫 풀러(Micropipette puller)를 이용해 만들어 진 실험도구를 의미한다. 상기 마이크로파이펫(micropipette)은 마이크로웰의 지름과 웰 사이의 간격을 고려하여 50μm 지름을 갖게 하는 것이 바람직하며, 마이크로파이펫 풀러의 속도와 온도 조건에 따라 마이크로파이펫의 지름이 달라지므로 원하는 크기의 지름을 갖도록 조건을 최적화하는 것이 바람직하다.
상기 방법에서 트립신 용액은 상기 선별된 단일세포와 마이크로웰 사이의 결합력을 약화시키는데 사용되고, 상기 마이크로파이펫은 마이크로웰과의 결합력이 약화된 단일세포를 모세관현상에 의하여 분리하는데 사용되는데, 상기 트립신의 농도가 과다하면, 모세관현상 없이도 단일세포가 마이크로웰로부터 무작위적으로 분리되므로, 선별된 단일세포만 수집할 수 없다는 문제점이 발생할 수 있으므로, 세포가 마이크로웰로부터 저절로 분리되지는 않지만 모세관현상에 의하여는 마이크로웰로부터 분리될 수 있는 적절한 농도의 트립신 용액을 사용함이 바람직하다.
본 발명의 또 다른 실시양태로서, 본 발명은 상술한 단일세포 분리 방법을 이용하여 선별된 목적하는 당화 특성을 갖는 당 단백질을 생산하는 세포를 제공한다.
상술한 방법에 의해 각각의 단일세포가 생산하는 당 단백질의 당화 특성을 분석하여, 많은 세포들 중에서 원하는 당화 특성을 갖는 당 단백질을 생산하는 단일세포를 효율적으로 선별할 수 있다. 즉, 특정 탄수화물 함량이 높은 당 단백질을 생산하는 단일세포를 선별하는 것이 목적이면 렉틴의 형광신호를 항체의 형광신호로 나눈 값을 비교하여 이 값이 큰 단일세포만을 선별하므로서, 특정 탄수화물 함량이 높은 당 단백질을 생산하는 새로운 세포를 확립할 수 있다.
구체적인 일 구현예에서, 상기 선별 방법 및 분리 방법을 반복하여 실시할수록 EPO의 생산량 및 시알산 함량이 높아진 단일세포를 확립하였음을 확인하였다(표 1 및 표 2).
이하, 본 발명을 하기의 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게 당연할 것이다.
실시예 1: 당 단백질 분석용 키트를 이용한 당 단백질 양과 특정 탄수화물 함량의 동시 분석
실시예 1-1: 형광표지된 항체의 수득
항체로서 폴리클로날 항-EPO-항체를, 형광 염료(dye)로 Cy3-NHS 에스터를 사용하여 Cy3-α-EPO를 제조하였다. 폴리클로날 항-EPO-항체(sigma, 2mg/㎖) 100μL 와 Cy3-NHS 에스터(GE healthcare) 한 바이알(vial)을 500㎕ PBS에 녹인 후 그 중 200㎕를 EP 튜브 안에 넣었다. 상온에서 1시간 방치한 후 항체와의 결합에 참여하지 않은 Cy3을 제거하기 위해 마이크로필터(Microcon YM-100, 100 kDa cut-off)를 사용하여, 10,000rpm에서 10분간 원심분리를 3~4번 반복적으로 수행하였다. 항체의 농도와 항체에 결합된 Cy3 염료의 농도는 280nm 와 552nm에서의 고유의 흡광계수(여기서 사용한 Cy3 염료의 경우 150,000M-1cm-1)를 사용하여 정량적으로 확인하였다. 즉, Cy3-α-EPO의 흡광도를 측정하여, 상기 흡광계수로 나누어서 항체의 농도 및 한 분자의 항체에 결합된 Cy3 염료의 개수를 산정하였다.
실시예 1-2: 형광표지된 생체물질의 수득
생체물질로서 렉틴의 한 종류인 MAA를, 형광 염료로 Cy5-NHS 에스터를 사용하여 Cy5-MAA를 제조하였다. 사용한 단백질과 염료의 종류만 다를 뿐 실험방법은 상기 실시예 1-1의 과정과 동일하게 하였다. 렉틴의 농도와 렉틴에 결합된 Cy5 염료의 농도는 280nm 와 650nm에서의 고유의 흡광계수(여기서 사용한 Cy5 염료의 경우 250,000 M-1 cm-1)를 사용하여 정량적으로 확인하였다.
실시예 1-3: 당 단백질이 결합된 지지체의 수득
다양한 탄수화물 함량을 가지는 당단백질로서, 다양한 시알산 함량을 가지는 EPO 이소폼(isoform)들을 사용하였다. 높은 시알산 함량을 가지는 EPO 단백질에 시알산을 제거하는 사이알리데이즈(Clostridium perfringens에서 유래한 sialidase-agarose(Sigma)) 효소를 일정 시간 처리하여 다양한 시알산 함량을 가지는 EPO 단백질을 제조하였다. 3.5에서 4.2에 해당하는 pI 값을 가지는 EPO 단백질(2mg/㎖) 250㎕를 EP 튜브에 넣고 500㎕의 50mM 인산나트륨 버퍼(sodium phosphate buffer)와 100μL 사이알리데이즈-아가로스를 넣어주었다. 부드럽게 흔들어주면서 상온에서 각각 0, 2, 5, 10분 동안 반응을 시켰다. 12,000rpm에서 3분간 원심분리를 하여 사이알리데이즈-아가로스를 제거하고, 잘려진 시알산을 제거하기 위해 마이크로필터(Microcon YM-30, 30 kDa cut-off)를 사용하여 10,000rpm에서 10분간 원심분리를 3~4번 반복적으로 수행하였다. 사이알리데이즈-아가로스를 처리한 시간이 증가함에 따라 EPO 표면에 존재하는 시알산의 개수는 감소하였다. 처리시간이 0분인 EPO를 이소폼-1으로, 2분, 5분, 10분 처리한 경우를 각각 이소폼-2,-3,-4로 명명하였다. 이소폼-1은 시알산이 거의 온전하게 유지된 형태이며, 이소폼-4는 시알산이 대부분 제거된 형태의 EPO를 의미한다.
다양한 시알산 함량을 가지는 EPO 이소폼들을 100㎍/㎖ 부터 3.1㎍/㎖까지 1/2씩 희석하고 마이크로어레이어를 이용하여 초박형나이트로셀룰로스 지지체의 표면에 3X3의 형태로 스팟팅(spotting) 하였다. 1시간 37℃에서 반응시키고, 1%의 BSA가 포함된 PBS 용액으로 지지체 표면을 상온에서 1시간 처리하고, TBST(Tris-Buffered Saline Tween-20)와 증류수로 3회씩 세척 후 질소가스로 천천히 건조시켰다.
실시예 1-4: 지지체 표면에서 당단백질의 양과 특정 탄수화물 함량의 분석
상기 실시예 1-1의 방법으로 제조된 Cy3-α-EPO를 10㎍/㎖의 농도로 0.5% Tween-20 이 포함된 인산나트륨(pH 7.0) 용액에 희석하여 지지체에 처리한 후, 상온에서 30분 동안 반응시키고 TBST와 증류수를 이용하여 세척하였다. 이어서 상기 실시예 1-2의 방법으로 제조된 Cy5-MAA를 100㎍/㎖의 농도로 0.5 % Tween-20이 포함된 인산나트륨(pH 7.0) 용액에 희석하여 지지체에 처리한 후, 상온에서 1시간 반응시키고 TBST와 증류수를 이용하여 세척 후 질소가스로 천천히 건조시켰다.
실시예 1-5: 지지체 표면에서 형광신호의 측정
상기와 같은 반응과정을 거친 후에, 상기 지지체를 GenePix 4100A 스캐너 (Molecular Devices)에 삽입한 후, 형광신호를 측정하였다. Cy3-α-EPO의 경우에는 532nm(ex)/550-600nm(em) 조건을, Cy5-MAA의 경우에는 635nm(ex)/655-695nm(em) 조건을 사용하여 두 영역에서 스캔하였고, 획득한 이미지는 GenePix Pro 6.0 소프트웨어(Molecular Devices)를 이용하여 분석하여 형광신호를 측정하였다(도 3). 도 3은 본 발명의 당 단백질을 정량분석하는 방법을 수행할 때, 당 단백질 분석용 키트에서 발생하는 형광신호를 보여주는 사진 및 그래프이다. 도 3에서 보듯이, EPO의 농도에 비례하여 Cy3-α-EPO의 형광 세기가 강해지는 것을 확인하였다. 반면 Cy5-MAA의 형광신호는 같은 단백질 양이 존재하는 경우에도 시알산 함량이 높은 이소폼-1에서 가장 강하고, 함량이 낮은 이소폼-4에서 가장 낮았다.
이상의 결과는 Cy3-α-EPO와 Cy5-MAA에서 얻어지는 형광신호가 각각 스팟(spot)에 존재하는 EPO의 양과 시알산 함량에 비례 관계를 가진다는 것을 의미한다. 또한, 이소폼-1에 Cy3-α-EPO를 처리한 후 Cy5-MAA를 처리한 경우와 Cy3-α-EPO를 처리하지 않고 Cy5-MAA만을 처리한 경우를 비교했을 때, Cy5 형광신호가 동일하게 얻어졌다. 이는 먼저 처리된 Cy3-α-EPO에 의해 Cy5-MAA의 결합이 방해받지 않는다는 사실을 의미한다. 즉, 본 발명의 단백질 칩은 당 및 단백질의 동시분석에 있어서 각각의 표지물질에 의해 방해받지 않고 동시에 정확한 분석이 가능하다는 것을 의미한다.
실시예 2: 당 단백질 분석용 키트를 이용한 단일세포 유래 당단백질의 분석
실시예 2-1: 단일세포로 구성된 세포기반 어레이(cell based array)의 수득
EPO를 생산하는 CHO(Chinese hamster ovary) 세포주인 SCST3을 30㎛의 지름을 가지도록 제작한 PDMS 마이크로웰 안에 넣어, 세포기반 어레이를 제조하였다.
마이크로웰 안에 세포가 잘 부착되도록 하기 위해서, 50㎍/㎖ 농도로 PBS 용액에 희석한 피브로넥틴(fibronectin(sigma)) 30㎕를 45 × 45 마이크로웰로 구성된 어레이 각각에 처리하였다. 피브로넥틴 용액이 웰 안으로 침투할 수 있도록 진공 챔버(vaccum chamber) 안에서 10분 정도 넣어두어 마이크로웰 안의 공기를 제거한 후, 1시간 상온에서 반응시켰다. 피브로넥틴 용액을 제거하고 PBS로 3회 세척한 후, 아세톤을 묻힌 면봉으로 문질러주어 마이크로웰 사이의 공간에 결합된 피브로넥틴을 제거해줬다. 이렇게 얻어진 피브로넥틴이 코팅된 마이크로웰 어레이를 동물세포가 자랄 수 있는 배지에 1시간 이상 담가서, 마이크로웰 안에 배지가 들어가도록 하였다.
5 × 105세포수/㎖의 농도로 희석한 세포 배양액 20㎕를 취하여 상기의 방법으로 준비된 마이크로웰 어레이에 올려놓고, 10분간 37℃에서 반응시켜서 중력에 의해 마이크로웰 안으로 세포가 들어가도록 하였다. 남은 배양액을 제거하고 배지로 씻어준 뒤, 6시간 동안 37℃(5% CO2) 인큐베이터에 넣어두고 세포가 마이크로웰 바닥에 잘 붙도록 하였다.
동일한 농도와 양의 세포 배양액을 사용하는 경우, 마이크로웰의 지름에 따라 하나의 마이크로웰 안에 들어가는 동물 세포의 개수가 달라지도록 하였다. 즉, 깊이가 35㎛로 동일하지만, 지름이 각각 25, 30 또는 40㎛인 마이크로웰에 5 × 105세포수/㎖의 농도로 희석한 세포 배양액 20㎕를 반응시켰다. 25㎛와 30㎛의 지름을 가진 경우는 대략 65%의 마이크로웰 안에 하나 혹은 두 개의 세포를 포함하지만 30㎛의 경우가 약간 더 높은 세포 점유율을 보였다. 반면 40㎛ 지름의 경우는 매우 높은 세포 점유율을 보이지만, 각 마이크로웰 안에 두 개 이상의 세포가 포함되어 있는 경우가 크게 증가하였다.
따라서, 마이크로웰 당 세포수와 세포 점유율을 고려할 때, EPO를 생산하는 CHO 세포의 경우에는 30㎛가 단일세포 분석을 하기에 가장 적당한 크기로 선정하였다.
실시예 2-2: 단일세포에서 생산된 당단백질의 마이크로어레이(microarray)의 제조
당단백질 마이크로어레이를 제조하기 위하여, EPO에 특이적으로 결합하는 항체를 코팅한 초박형나이트로셀룰로스 유리기판(PATH 슬라이드)을 사용하였다. PATH 슬라이드에 0.5mg/㎖ 농도의 모노클로날 항-인간 EPO 항체(R&D systems)를 처리하고, 2시간 동안 75% 습도 조건에서 반응시켰다. 1% BSA를 포함하는 TBST 용액에 넣고, 4℃에서 하룻밤 반응시키고, 사용하기 직전에 증류수로 세척하였다. 상기 실시예 2-1의 방법으로 제조된 마이크로웰 어레이와 α-EPO-항체가 코팅된 PATH 슬라이드를 적당한 힘을 가해 밀착시키고, 1시간 동안 37℃에서 반응시켜서 단일세포에서 생산된 당단백질이 PATH 슬라이드로 옮겨지는 마이크로인그레이빙(Microengraving) 방법을 통해 단백질 칩을 만들었다. 반응이 끝난 후, 마이크로웰 어레이와 슬라이드를 떼어내어, 마이크로웰 어레이는 다시 배지에 담그고 유리기판은 TBST와 증류수를 이용하여 3회씩 세척하고 질소가스로 천천히 건조시켰다.
실시예 2-3: 단일세포 유래의 당단백질의 동시분석
단일세포가 상기 실시예 2-2에서 제작한 마이크로웰 안에서 생산한 당단백질의 양과 특정 탄수화물 함량을 동시 분석하여 원하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하였다. 이중 탐침 방법 및 형광신호 측정 방법은 단일세포에서 생산된 당단백질로 구성된 칩을 사용한다는 점에서만 차이가 있을 뿐, 인공적으로 만든 EPO 이소폼들로 만들어진 칩과 동일한 실험 방법으로 수행하였다(도 4). 도 4는 본 발명의 단일세포를 선별하는 방법을 수행할 때, 당 단백질 분석용 키트에서 발생하는 형광신호를 보여주는 사진이다.
실시예 2-4: 형광신호의 통계적 분석을 통한 단일세포의 선별
Cy3-α-EPO 와 Cy5-MAA 형광값의 통계적 분석을 위하여, 정규분포를 갖도록 log(Cy3-α-EPO)와 log(Cy5-MAA) 값을 기준으로 하여 단일세포에 의해 생산된 당단백질의 특성을 분석하였다. Zi와 Xi값을 각각 i번째 스팟에서의 log(Cy5-MAA)와 log(Cy3-α-EPO)라고 할 때, 스팟 상에 존재하는 탄수화물의 총량은 당단백질 한 분자당 결합된 특정 탄수화물의 함량과 당단백질의 농도가 곱해진 값이므로 두 값은 다음의 관계식 (a)를 만족한다.
[관계식 (a)]
Zi = α + βXi + εi (i = 1, 2, …, n)
상기 관계식에서 β값은 log(Cy3-α-EPO) 형광값 당 변하는 log(Cy5-MAA) 형광값의 비율을 의미하고, α값은 절편을 의미하며, εi는 에러값을 의미한다. 상기 관계식을 바탕으로 최소자승근사값(least square estimation)인 α'과 β' 값을 구하여, 각각의 단일세포에서 생산된 EPO 한 분자당 포함하고 있는 시알산의 개수를 구하는 관계식 (b)를 얻을 수 있다. 즉, i번째 마이크로웰에 존재하는 단일세포에서 생산된 EPO 분자가 가지는 시알산의 개수를 의미하는 Yi값을 다음의 관계식 (b)에 의해 단순하게 표현할 수 있다.
[관계식 (b)]
Yi = (Zi - α')/ Xi
1,000개 이상의 마이크로웰을 분석하고, 단일세포가 들어있는 200개의 마이크로웰을 선정하여 각각의 마이크로웰 안에서 생성된 EPO의 양을 의미하는 Xi값과 상기 관계식(b)에 의해 얻어진 EPO 당 시알산의 개수를 의미하는 Yi값을 X-Y 평면을 가지는 그래프로 그려서 분석하였다(도 5). 도 5는 본 발명의 단일세포를 선별하는 방법을 수행할 때, 통계적으로 분석된 형광값의 분포를 나타내는 그래프이다.
평균적인 X값과 Y값, 즉 평균 log(Cy3-α-EPO)와 log(Cy5-MAA)/log(Cy3-α-EPO) 값을 기준으로 하여 개체군을 크게 네 그룹(하위그룹-1에서 4)으로 나누었다. 하위그룹-1은 평균보다 생산량과 시알산 개수가 많은 그룹, 하위그룹-2는 생산량은 낮지만 시알산 개수가 많은 그룹, 하위그룹-3은 생산량과 시알산 개수가 적은 그룹이며 하위그룹-4는 생산량은 높지만 시알산 개수가 적은 그룹을 의미한다. 각각의 그룹에 속하는 세포들 중, 가장 통계적 거리(mahalanobis distance)가 먼 10개의 단일세포를 각 그룹을 대표하는 세포들로 선별하였다.
실시예 2-5: 단일세포의 분리 및 목적하는 당 단백질을 생산하는 세포의 확립
마이크로파이펫 풀러(Flamming/Brown micropipette puller(Sutter Instrument))를 이용하여 열을 가한 모세관을 빠른 속도로 잡아당긴 후, 열을 가해 끝부분을 다듬어서 50㎛의 지름을 갖는 마이크로파이펫을 형성하였다.
현미경(inverted microscope(DMI 3000 B, Leica)) 위에 마이크로웰 어레이를 올려놓고, 10%의 농도를 갖도록 희석한 트립신(trypsin)용액을 상기 어레이에 처리하였다. 마이크로파이펫의 끝부분을 상기 살시예 2-4에서 선별한 세포가 들어있는 마이크로웰 위에 밀착하였고, 모세관 현상에 의해 세포가 떨어져나와 배지와 함께 마이크로파이펫 안으로 이동하였다. 세포가 들어있는 배지를 200㎕의 10% FBS를 포함한 MEMα 배지(Gibco)가 들어있는 96 웰 플레이트에 옮겨서 키웠다.
그 결과, 10 개의 단일세포를 옮겼을 경우, 대략 60~70%의 생존율을 보였다. 96 웰 플레이트에서 세포가 적당히 자라면, 24 웰 플레이트, 25-cm2 T-플라스크 및 75-cm2 T-플라스크 등으로 옮겨서 106세포수 수준으로 세포의 수를 늘린 후, -70℃에 저장하여 목적하는 당 단백질을 생산하는 세포를 확립하였다.
실시예 2-6: 생화학적 방법을 이용한 세포의 검증
상기 실시예 2-5에서 확립된 세포들에서 생산된 EPO의 생산량은 ELISA 방법을 통하여 측정하였다. 구체적으로, 6 웰 플레이트에 각각 1×104의 세포가 들어가도록 넣고 37℃ 인큐베이터에서 키우면서, 72시간 동안 12시간마다 생성된 EPO가 포함되어 있는 배지를 채취하여 얼리고 EPO를 생성하는 CHO 세포의 개수를 측정하였다. 96 웰 플레이트에 1㎍/㎖의 농도로 탄산나트륨(pH 9.0)에 희석한 항-인간 EPO 모노클로날 항체를 100㎕씩 넣고, 37℃에서 1시간 반응시킨 후, 2% BSA를 포함하는 TBST 200㎕를 상온에서 1시간 반응시켰다. 50㎍/㎖ 농도의 표준 EPO를 1/2씩 희석하여 만든 표준용액들(standard solution)과 12시간마다 채취한 EPO가 포함되어있는 배지 100㎕를 각각의 96 웰 안에 넣고, 37℃에서 2시간 반응시켰다. 0.3% BSA가 들어있는 TBST 용액에 1㎍/㎖ 농도로 희석한 래빗 항-EPO IgG 100㎕를 37℃에서 30분 처리한 후, 0.3% BSA가 들어있는 TBST 용액에 0.5㎍/㎖ 농도로 희석한 염소 항-래빗 IgG(H+L)-HRP 컨쥬게이트 100㎕를 37℃에서 30분간 반응시켰다. 각각의 반응 단계 이후에는 TBST를 이용하여 3회씩 세척하는 과정을 거쳤다. HRP의 기질인 TMB(3,3',5,5'-tetramethylbenzidine(Sigma))를 100㎕씩 넣어 반응시키고, 분광광도계(Infinite M200, Tecan)를 이용하여 655nm에서 흡광도를 측정하였다. EPO 표준용액의 흡광도 값을 통해 작성한, 표준 곡선(standard curve)에 시료에서 얻은 흡광도 신호를 비교하여 생산된 당단백질의 양을 측정하였고, 시료를 채취한 시점의 세포 개수를 반영하여 단일세포가 하루 동안 생산하는 EPO 단백질의 양으로 생산량을 구하였다.
새롭게 확립된 세포주들에서 생산한 한 분자의 EPO가 가지는 시알산의 개수는 HPLC를 이용하여 분석하였다. HPLC를 이용한 분석 방법은 하기와 같다. 구체적으로 175-cm2 T-플라스크에 3×106의 세포를 옮겨서 3일간 키운 후, 혈청이 없는 배지(CHO-S-SFMII, Gibco) 20㎖로 배지를 교체하여 2일간 더 키웠다. 생산된 EPO가 포함된 상층액을 채취하고, 1,000rpm에서 10분간 원심분리를 하여 남아 있던 동물 세포를 제거하였다. 마이크로필터(Amicon Ultra, 10kDa cut-off)를 사용하여 3,000rpm에서 20분간 원심분리를 3~4번 반복적으로 수행하며 PBS로 버퍼를 바꿔주며 농축하였다. 항-인간 EPO 모노클로날 항체가 결합된 레진을 이용하여 면역-친화성 크로마토그래피 방법을 통해 상기 상층액으로부터 EPO를 정제하여, 동결건조하여 -20℃에 보관하였다. 동결건조된 상태의 EPO를 증류수에 녹인 후, 약한 산을 처리하여 EPO에서 시알산을 분리하였다. 분리된 시알산에 선택적으로 OPD(o-phenylenediamine-2HCl)를 결합시켜서, HPLC와 형광검출기(230(ex), 425(em))를 이용하여 시알산을 정량하였다. 알려진 농도의 시알산 표준용액의 형광값을 통해 작성한, 표준 곡선(standard curve)과 시료에서 얻은 형광값을 비교하여 시료 내에 존재하는 시알산의 함량을 구하고, 반응에 사용한 EPO의 양을 반영하여, EPO 한 분자당 포함된 시알산의 개수를 산출하였다. 그 결과를 하기 표 1에 나타냈다.
실시예 3: 목적하는 당화 특성을 갖는 당 단백질을 생산하는 세포
상기 실시예 2-4에서 언급된 선별 방법과 실시예 2-5의 세포주 확립 방법을 기반으로 고유한 특성을 갖는 단일세포에서 유래한 세포주들을 확립하였다.
첫번째 선별 과정을 통해 각각의 하위그룹을 대표하는 10개의 단일세포를 선별하여 세포주를 확립하였고, 총 4개의 세포주(sc1-29, sc1-18, sc1-122 및 sc1-2)에 대해 상기 실시예 2-6의 방법과 동일하게 ELISA 와 OPD 분석을 통한 검증을 수행하였다(표 1).
표 1
MaternalCell line Subgroup Cell line Productivity(pg rhEPO/cell/day) sialic acid per EPO(nmole/nmole)
SCST3 1234 sc1-29sc1-18sc1-122sc1-2 4.3±0.43.4±0.13.2±0.54.8±0.7 8.7±0.59.0±0.68.2±0.37.8±0.5
상기 표 1에서 보듯이, 세포주들의 생산량은 각각 4.3±0.4, 3.4±0.1, 3.2±0.5 및 4.8±0.7pg/cell/day로 측정되었으며, Cy3-α-EPO 형광값이 높아서 생산량도 높을 것으로 예측된 sc1-29 과 sc1-2의 경우가 형광값이 낮은 sc1-18 과 sc1-122에 비해 실제 생산량이 높게 측정되었다. 또한, EPO 한 분자당 결합되어 있는 시알산의 개수를 측정한 결과, 8.7±0.5, 9.0±0.6, 8.2±0.3 및 7.8±0.5nmole/nmole 로 측정되어, Cy5-MAA 형광값이 높은 단일세포에서 유래한 세포주에서 높은 값을 갖는 것으로 확인되었다. EPO 한 분자당 결합되어 있는 시알산의 함량이 높을수록, 생체 내에서 EPO의 반감기가 늘어나서 결과적으로 약효가 높아지므로, 시알산 개수가 많은 EPO를 생산하는 단일세포인 sc1-18에서 유래한 세포주를 선택하여, 두번째 선별 과정을 수행하였다.
첫번째 선별과정과 동일한 과정을 통하여 확립된 세포주들 중에서 각 하위그룹을 대표하는 4 개의 세포주(sc2-4, sc2-172, sc2-109 및 sc2-129)에 대해 상기 실시예 2-6의 방법과 동일하게 ELISA와 OPD 분석을 통한 검증을 수행하였다(표 2).
표 2
MaternalCell line Subgroup Cell line Productivity(pg rhEPO/cell/day) sialic acid per EPO(nmole/nmole)
sc1-18 1234 sc2-4sc2-172sc2-109sc2-129 4.0±0.33.4±0.13.2±0.34.4±0.1 9.1±0.69.8±0.18.5±0.18.5±0.1
상기 표 2에서 보듯이, 각 세포주의 생산량은 4.0±0.3, 3.4±0.1, 3.2±0.3 및 4.4±0.1pg/cell/day으로 측정되었고, 시알산 함량은 9.1±0.6, 9.8±0.1, 8.5±0.1 및 8.5±0.1nmole/nmole로 측정되었다.
가장 시알산 함량이 높은 sc2-172 세포주의 경우 9.8±0.1의 시알산 함량을 가지는데, 이는 첫번째 선별과정에서 사용한 모세포주인 SCST3의 8.0±0.3 및 두번째 선별과정의 모세포주인 sc1-18의 9.0±0.6 보다도 크게 향상된 값이다. 즉, 반복된 선별과정을 통해서 점점 증가된 시알산 함량을 가지는 EPO를 생산하는 세포주를 확립할 수 있음을 확인하였다.
이와 같은 결과는, 본 발명의 당 단백질 분석용 키트 및 이를 이용한 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 방법을 통하여 목적하는 당화 특성을 갖는 당 단백질을 생산하는 세포를 손쉽게 확립할 수 있음을 시사한다.

Claims (13)

  1. (A) 목적하는 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체;
    (B) 목적하는 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질; 및,
    (C) 목적하는 당 단백질이 결합될 수 있는 지지체를 포함하는, 당 단백질 분석용 키트.
  2. 제1항에 있어서,
    상기 생체물질은 특정 탄수화물 구조에 선택적으로 결합하는 렉틴(lectin), 항체, 앱타머(aptamer) 또는 펩타이드인 키트.
  3. 제1항에 있어서,
    상기 항체와 생체물질에 결합된 형광표지물질(fluorescent dye)은 서로 다른 흡광 및 발광 파장을 갖는 것인 키트.
  4. 제1항에 있어서,
    상기 당 단백질은 정제된 당단백질 또는 단일세포로부터 분리된 당단백질인 키트.
  5. 제1항에 있어서,
    상기 지지체는 표면에 목적하는 당 단백질과 결합할 수 있는 다른 항체가 코팅된 것인 키트.
  6. (A) 목적하는 당 단백질이 결합된 지지체에 상기 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체 및 상기 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질을 순차적으로 처리하여 반응시키는 단계; 및
    (B) 상기 반응이 종료된 지지체에 결합된 항체 및 생체물질로부터 발생하는 형광신호를 측정하는 단계를 포함하는, 당 단백질을 정량분석하는 방법.
  7. 제6항에 있어서,
    (A) 단계가 종료되고 (B) 단계를 수행하기 전에, 상기 지지체를 세척하여 상기 당 단백질과 반응하지 않은 형광표지된 항체 및 생체물질을 제거하는 단계를 추가로 포함하는 것인 방법.
  8. 제6항에 있어서,
    (B) 단계가 종료된 후에, 측정된 형광신호를 분석하여 상기 당 단백질의 당화특성 및 함량을 동시에 분석하는 단계를 추가로 포함하는 것인 방법.
  9. (A) 목적하는 당 단백질을 세포 표면에 발현시킬 수 있는 세포를 단세포 배양하는 단계;
    (B) 상기 배양된 세포에, 상기 당 단백질과 결합할 수 있는 항체가 코팅된 지지체를 접촉시키고 반응시켜서, 상기 세포 표면에 발현된 당 단백질을 상기 지지체의 표면으로 전이시키는 단계;
    (C) 상기 당 단백질이 전이된 지지체에 상기 당 단백질의 단백질 영역에 선택적으로 결합하는 형광표지된 항체 및 상기 당 단백질의 탄수화물 영역에 선택적으로 결합하는 형광표지된 생체물질을 순차적으로 처리하여 반응시키는 단계;
    (D) 상기 반응에 의하여 상기 지지체로부터 발생되는 각 형광신호의 형광값을 통계적으로 분석하는 단계; 및,
    (E) 상기 분석된 형광신호에 의거하여, 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 단계를 포함하는, 목적하는 당화 특성을 갖는 당단백질을 생산하는 단일세포를 선별하는 방법.
  10. 제9항에 있어서,
    (C) 단계가 종료되고 (D) 단계를 수행하기 전에, 상기 지지체를 세척하여 상기 당 단백질과 반응하지 않은 형광표지된 항체 및 생체물질을 제거하는 단계를 추가로 포함하는 것인 방법.
  11. 제9항에 있어서,
    (C) 단계가 종료되고 (D) 단계를 수행하기 전에, 상기 지지체에 결합된 상기 형광표지된 항체 및 형광표지된 생체물질로부터 발생하는 형광신호를 측정하는 단계를 추가로 포함하는 것인 방법.
  12. 제9항에 있어서,
    상기 (D) 단계는 (i) 개체군의 분포가 정규분포를 갖도록 형광값을 가공하고; 및, (ii) 각 단일세포에서 생산된 당단백질 양 및 당단백질 한 분자당 포함된 특정 탄수화물의 개수를 상대적으로 비교하여 수행되는 것인 방법.
  13. 제9항 또는 제12항 중 어느 한 항의 방법으로 선별된, 목적하는 당화 특성을 갖는 당단백질을 생산하는 세포.
PCT/KR2011/003214 2010-04-29 2011-04-29 당 단백질 분석용 키트 및 이의 용도 WO2011136613A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/695,197 US20130203617A1 (en) 2010-04-29 2011-04-29 Glycoprotein Analysis Kit and Use Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100040185 2010-04-29
KR10-2010-0040185 2010-04-29

Publications (2)

Publication Number Publication Date
WO2011136613A2 true WO2011136613A2 (ko) 2011-11-03
WO2011136613A3 WO2011136613A3 (ko) 2012-04-12

Family

ID=44862086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003214 WO2011136613A2 (ko) 2010-04-29 2011-04-29 당 단백질 분석용 키트 및 이의 용도

Country Status (3)

Country Link
US (1) US20130203617A1 (ko)
KR (1) KR101322925B1 (ko)
WO (1) WO2011136613A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307773A (zh) * 2018-10-31 2019-02-05 福州大学 一种蛋白糖基化检测试剂盒、检测方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010049795A (ko) * 1999-11-10 2001-06-15 복성해 간 질환 진단을 위한 혈중 아사이알로당단백질양의측정방법 및 측정용 킷트

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010049795A (ko) * 1999-11-10 2001-06-15 복성해 간 질환 진단을 위한 혈중 아사이알로당단백질양의측정방법 및 측정용 킷트

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRIAN B HAAB: 'Antibody-lectin sandwich arrays for biomarker and glycobiology studies' EXPERT REV PROTEOMICS. vol. 7, no. 1, February 2010, pages 9 - 11 *
CHEN LI ET AL.: 'Pancreatic Cancer Serum Detection Using a Lectin/Glyco-Antibody Array Method' JOURNAL OFPROTEOME RESEARCH vol. 8, 2009, pages 483 - 492 *
LUNDY FT ET AL.: 'An antibody-ectin sandwich assay for quantifying protein glycoforms' MOL BIOTECHNOL. vol. 12, no. 2, September 1999, pages 203 - 206 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307773A (zh) * 2018-10-31 2019-02-05 福州大学 一种蛋白糖基化检测试剂盒、检测方法及应用

Also Published As

Publication number Publication date
WO2011136613A3 (ko) 2012-04-12
US20130203617A1 (en) 2013-08-08
KR101322925B1 (ko) 2013-10-29
KR20110120843A (ko) 2011-11-04

Similar Documents

Publication Publication Date Title
US10870669B2 (en) Method for producing an isolated monoclonal antibody specifically binding to a glycolipid antigen of mycoplasma pneumoniae
US7622261B2 (en) Method for the diagnosis of cancers by measuring the changes of glycosylation of proteins related to tumorigenesis and metastasis and kit for diagnosis of cancers using the same
WO2016080701A1 (ko) 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도
US20080261249A1 (en) Detecting and Quantifying Host Cell Proteins in Recombinant Protein Products
WO2018054394A1 (zh) 一株分泌抗磺胺类抗生素单克隆抗体的杂交瘤细胞株NaN-1及其应用
CN112679605A (zh) 针对新型冠状病毒核衣壳蛋白的抗体或其抗原结合片段及其应用
CN113150133B (zh) 针对SARS-CoV-2的单克隆抗体或其抗原结合片段
WO2019098603A2 (ko) 소-임신 연관 글리코단백질 1에 특이적으로 결합하는 항체 및 이의 용도
WO2011136613A2 (ko) 당 단백질 분석용 키트 및 이의 용도
WO2015037907A1 (ko) Ast 양의 측정을 통한 간 질환 진단, 예후 또는 모니터링 키트 및 방법
Niman et al. Proteins of the sea urchin egg vitelline layer
JP2003517040A (ja) Rickettsiapulicis菌及び血清学的診断法
FI92716B (fi) Uudet monoklonaaliset vasta-aineet IFN-omegalle, niiden valmistusmenetelmät ja niiden käyttö IFN-omegan puhdistamiseen ja osoittamiseen
WO2011081310A2 (ko) 암 진단용 펩티드 마커 및 이를 이용한 암 진단방법
Cambier et al. Isolated phosphorylcholine binding lymphocytes. I. Use of a cleavable crosslinking reagent for solid-phase adsorbent isolation of functional antigen binding cells
WO2016117956A1 (ko) Cdc 단백질 및 콜레스테롤 항체를 이용한 콜레스테롤 측정 방법
Kline et al. Immunochemical characterization of differentiation and age-related cell surface antigens expressed by chicken erythrocytes
EP4234559A1 (en) Serum resistant bis-sulfhydryl specific biotinylation reagent
CN117143234B (zh) 抗大鼠白细胞介素-4蛋白的单克隆抗体及其用途
Wang et al. An abundant high-mobility-group-like protein is targeted to micronuclei in a cell cycle-dependent and developmentally regulated fashion in Tetrahymena thermophila
WO2021210731A1 (ko) 전이성 뇌종양의 진단 또는 예후 분석용 바이오마커 및 이를 이용한 진단방법
CN115144597A (zh) Cho-s细胞残留蛋白检测试剂盒及其制备方法
KR100309072B1 (ko) 시알리다제의 역가 측정방법
EP4310100A1 (en) Monoclonal antibody specifically binding to sugar chain in which a terminal sialic acid residue is bound to galactose with ?2,6 linkage, and method for measuring sugar chain in which terminal sialic acid residue is bound to galactose with ?2,6 linkage
JPS6247554A (ja) ヒト上皮細胞成長因子の免疫化学的測定法及びそのためのキツト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775318

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13695197

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11775318

Country of ref document: EP

Kind code of ref document: A2