WO2011136118A1 - Exhaust heat recovery power generation device and vessel provided therewith - Google Patents

Exhaust heat recovery power generation device and vessel provided therewith Download PDF

Info

Publication number
WO2011136118A1
WO2011136118A1 PCT/JP2011/059806 JP2011059806W WO2011136118A1 WO 2011136118 A1 WO2011136118 A1 WO 2011136118A1 JP 2011059806 W JP2011059806 W JP 2011059806W WO 2011136118 A1 WO2011136118 A1 WO 2011136118A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat recovery
exhaust heat
exhaust
heat
path
Prior art date
Application number
PCT/JP2011/059806
Other languages
French (fr)
Japanese (ja)
Inventor
雅幸 川見
芳弘 市来
渡辺 昌彦
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2011800168948A priority Critical patent/CN102834591A/en
Priority to KR1020127024546A priority patent/KR20120136366A/en
Publication of WO2011136118A1 publication Critical patent/WO2011136118A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • B63J2/04Ventilation; Air-conditioning of living spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2002/125Heating; Cooling making use of waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to an exhaust heat recovery power generation apparatus that recovers exhaust heat from an internal combustion engine to generate electric power, and a ship equipped with the same.
  • Patent Document 1 listed below discloses an exhaust heat recovery power generator that generates power by an organic Rankine Cycle using exhaust heat from a diesel generator as a heat source. This document mainly describes heat recovery from exhaust gas from a diesel generator, and also shows that in the case of a water-cooled diesel engine, the engine cooling water (jacket cooling water) can be used. Has been.
  • the engine coolant has a temperature level of 80 to 90 ° C. at most, and there is a problem that the temperature level is low as a heat source for driving the organic Rankine cycle.
  • the temperature level is low as a heat source for driving the organic Rankine cycle.
  • steam turbines and power turbines gas turbines
  • using the exhaust gas from the marine main engine as a heat source for the organic Rankine cycle is not necessarily a good measure for achieving highly efficient heat recovery.
  • the present invention has been made in view of such circumstances, and the exhaust heat of the engine cooling water, which has a lower temperature level than the exhaust gas of the internal combustion engine and has a low utility value, is used as the heat source of the organic Rankine cycle.
  • An object of the present invention is to provide an exhaust heat recovery power generator that can be used and a ship equipped with the same.
  • an exhaust heat recovery power generator includes an engine cooling water that cools an internal combustion engine body, and an air cooler that cools compressed air discharged from a supercharger of the internal combustion engine.
  • the organic fluid is evaporated in an evaporator, then expanded in a turbine, and condensed in a condenser, that is, an organic Rankine cycle is performed.
  • the heat recovered from the engine cooling water and the air cooler is used as the heat source of the organic Rankine cycle.
  • the engine cooling water for example, 80 to 90 ° C.
  • the air cooler that have a lower temperature level than the exhaust gas and have not been used effectively (For example, 130 to 140 ° C.) can be used.
  • the temperature level of the heat source that drives the organic Rankine cycle is low only with engine cooling water, heat recovery is also performed from the air cooler, thereby enhancing the feasibility of power generation by the organic Rankine cycle.
  • a typical example of the internal combustion engine is a marine diesel engine (main engine). However, it is not limited to marine use but may be a land-use internal combustion engine used for power generation, for example.
  • the exhaust heat recovery from the air cooler is preferably performed from the upstream side (high temperature side) of the compressed air.
  • the engine cooling water includes jacket cooling water flowing through the cylinder jacket of the internal combustion engine body.
  • the exhaust heat recovery path includes a first exhaust heat recovery unit that exchanges heat with the engine coolant, and a second exhaust heat as the air cooler. And a waste heat recovery medium heat recovered by the first exhaust heat recovery device and the second exhaust heat recovery device exchanges heat with the organic fluid in the evaporator.
  • the exhaust heat recovery medium for example, water
  • the exhaust heat recovery medium flowing through the exhaust heat recovery path recovers exhaust heat from the engine cooling water in the first exhaust heat recovery device, and further recovers exhaust heat from the compressed air in the second exhaust heat recovery device. Later, the organic fluid was evaporated in an evaporator. As described above, the exhaust heat recovery medium recovered from the engine cooling water and the compressed air is directly guided to the evaporator without passing through another heat medium, so that the recovered heat can be guided to the evaporator with little heat loss.
  • the exhaust heat recovery path uses the engine cooling water as an exhaust heat recovery medium and performs heat exchange between the engine cooling water and the compressed air.
  • a third exhaust heat recovery device as the air cooler is provided, and the engine coolant recovered by the third exhaust heat recovery device exchanges heat with the organic fluid in the evaporator.
  • the engine coolant flowing through the exhaust heat recovery path collects exhaust heat from the air cooler in the third exhaust heat recovery unit, and then the organic fluid is evaporated in the evaporator.
  • the heat exchanger that exchanges heat with the engine cooling water (the first exhaust heat recovery device of the above invention) is omitted. And a simplified structure can be realized. Further, since the engine coolant recovered from the air cooler is directly guided to the evaporator without passing through another heat medium, the recovered heat can be guided to the evaporator with little heat loss.
  • the exhaust medium includes a heat medium circulation path through which the heat medium circulates and heat exchange with the organic fluid in the evaporator, and the exhaust heat recovery path Are a first exhaust heat recovery unit that exchanges heat with the engine coolant, a second exhaust heat recovery unit as the air cooler, the first exhaust heat recovery unit, and the second exhaust heat recovery unit.
  • the exhaust heat recovery medium recovered by heat exchanges heat with the heat medium in the heat medium circulation path.
  • the exhaust heat recovery medium flowing through the exhaust heat recovery path recovers exhaust heat from the engine cooling water in the first exhaust heat recovery device, and further recovers exhaust heat from the air cooler in the second exhaust heat recovery device.
  • Heat exchange with the heat medium (for example, water or heat medium oil) in the medium circulation path was performed.
  • the organic fluid was evaporated in the evaporator by the heat medium that received the recovered heat. In this way, the recovered heat may be guided to the organic fluid through the heat medium circulation path.
  • the exhaust medium includes a heat medium circulation path through which the heat medium circulates and heat exchange with the organic fluid in the evaporator, and the exhaust heat recovery path Comprises a third exhaust heat recovery device as the air cooler that uses the engine cooling water as an exhaust heat recovery medium and exchanges heat between the engine cooling water and the compressed air.
  • the engine cooling water recovered by the heat exchanger exchanges heat with the heat medium in the heat medium circulation path.
  • the engine coolant flowing through the exhaust heat recovery path recovers the exhaust heat from the air cooler in the third exhaust heat recovery unit, heat exchange with the heat medium (for example, water or heat transfer oil) in the heat medium circulation path; did. Then, the organic fluid was evaporated in the evaporator by the heat medium that received the recovered heat. In this way, the recovered heat may be guided to the organic fluid through the heat medium circulation path.
  • the heat exchanger the first exhaust heat recovery device of the above invention
  • the exhaust heat recovery power generator includes a steam turbine generator driven by steam generated by an exhaust gas heat exchanger that exchanges heat with the exhaust gas of the internal combustion engine.
  • the exhaust gas from an internal combustion engine having a high temperature level of 250 ° C. or higher is generated by a steam turbine that can be expected to have high efficiency.
  • exhaust heat recovery power generation can be performed with high efficiency over a wide temperature range.
  • the exhaust gas heat exchanger includes an evaporation unit that evaporates feed water, and an overheating unit that superheats steam generated in the evaporation unit
  • the exhaust heat recovery path includes a fourth exhaust heat recovery device that exchanges heat with the steam obtained in the evaporation section.
  • the steam obtained in the evaporation part of the exhaust gas heat exchanger (exhaust gas economizer) and the exhaust heat recovery medium are heat-exchanged. it can.
  • the exhaust heat recovery power generator includes a gas turbine generator driven by the exhaust gas of the internal combustion engine.
  • the internal combustion engine exhaust gas having a high temperature level of 250 ° C. or higher is generated by a gas turbine (power turbine) that can be expected to have high efficiency.
  • gas turbine power turbine
  • exhaust heat recovery power generation can be performed with high efficiency over a wide temperature range.
  • it can be made still more efficient by combining with a steam turbine generator.
  • the ship according to the second aspect of the present invention is characterized by including any one of the exhaust heat recovery power generation devices described above.
  • the ship according to the second aspect includes any one of the exhaust heat recovery power generation devices described above, it is possible to provide a highly energy-saving ship that can effectively recover exhaust heat.
  • the heat recovered from the engine cooling water and the air cooler is used as a heat source for driving the organic Rankine cycle.
  • the heat recovered from the engine cooling water and the air cooler is used as a heat source for driving the organic Rankine cycle.
  • FIG. 1 is a diagram schematically illustrating an exhaust heat recovery power generator according to a first embodiment of the present invention. It is the figure which showed roughly the exhaust-heat-recovery power generator concerning 2nd Embodiment of this invention. It is the figure which showed roughly the exhaust-heat-recovery power generation apparatus concerning 3rd Embodiment of this invention. It is the figure which showed roughly the exhaust-heat-recovery power generator concerning 4th Embodiment of this invention. It is the figure which showed roughly the exhaust-heat recovery electric power generating apparatus concerning 5th Embodiment of this invention. It is the figure which showed roughly the exhaust-heat recovery electric power generating apparatus concerning 6th Embodiment of this invention.
  • FIG. 1 schematically shows an exhaust heat recovery power generator according to a first embodiment of the present invention.
  • the exhaust heat recovery power generator includes a preheater (first exhaust heat recovery device) 1 that recovers heat from jacket cooling water (engine cooling water) that flows in a cylinder jacket 2 that cools a cylinder block and the like of a diesel engine, and a diesel engine
  • a first air cooler (second exhaust heat recovery device) 5 that recovers heat by cooling the compressed air discharged from the supercharger, and a heat medium that receives exhaust heat from the preheater 1 and the first air cooler 5
  • region enclosed with the dashed-two dotted line has shown the electric power generating apparatus 10 for organic Rankine cycles.
  • the organic Rankine cycle power generation device 10 by installing the organic Rankine cycle power generation device 10 on an existing ship, further exhaust heat recovery can be easily added.
  • the jacket cooling water flowing in the cylinder jacket 2 is circulated in the jacket cooling water circulation passage 14 by the jacket cooling water pump 12.
  • the jacket cooling water circulation passage 14 is formed so that the jacket cooling water flows in the order of the cylinder jacket 2, the preheater 1, the temperature adjusting three-way valve 16, and the jacket cooling water pump 12.
  • the jacket cooling water circulation passage 14 is provided with a bypass passage 23 through which the jacket cooling water bypasses the preheater 1.
  • the flow rate of the jacket cooling water flowing to the preheater 1 can be adjusted by adjusting the flow rate flowing through the bypass passage 23 with a bypass valve (not shown).
  • the temperature adjusting three-way valve 16 operates so that the jacket cooling water flowing into the cylinder jacket 2 has a desired inlet temperature. Specifically, when the inlet temperature at which the jacket cooling water flows into the cylinder jacket 2 is higher than a set value, fresh water of about 30 ° C. guided from the second air cooler 18 is supplied to the jacket cooling water circulation passage 14. Operates to flow more.
  • a branch flow path 22 that branches to the fresh water pump 20 is provided on the upstream side of the temperature adjusting three-way valve 16. The jacket cooling water flowing in the jacket cooling water circulation channel 14 from the branch channel 22 is discharged to the fresh water pump 20 side, so that the mass balance of the circulation flow rate flowing in the jacket cooling water circulation channel 14 is maintained. It has become.
  • the second air cooler 18 is installed on the downstream side of the first air cooler 5 with respect to the flow of compressed air discharged from the supercharger. Therefore, the first air cooler 5 is installed so as to have a higher temperature level than the second air cooler 18.
  • the fresh water flowing in the second air cooler 18 is guided after being cooled by a central cooler (not shown). Part of the fresh water whose compressed air has been cooled by the second air cooler 18 is guided to the temperature adjusting three-way valve 16, and the remaining part is returned again to the central cooler by the fresh water pump 20.
  • the exhaust heat recovery path 7 is a closed circuit, and an exhaust heat recovery pump 24 for circulating the heat transfer water is provided.
  • the heat transfer water is circulated by the exhaust heat recovery pump 24 so as to exchange heat with the preheater 1, the first air cooler 5, and the evaporator 30.
  • the temperature of the heat medium water inlet of the evaporator 30 is about 130 to 140 ° C., for example.
  • the organic fluid is evaporated by the heat transfer water.
  • the organic fluid path 9 As the organic fluid flowing through the organic fluid path 9, low molecular hydrocarbons such as isopentane, butane and propane, R134a and R245fa used as refrigerants, and the like can be used.
  • the organic fluid path 9 is a closed circuit, and an organic fluid pump 31 for circulating the organic fluid is provided.
  • the organic fluid circulates while repeating the phase change so as to pass through the evaporator 30, the power turbine 32, the economizer 34, and the condenser 36.
  • the power turbine 32 is rotationally driven by a heat drop (enthalpy drop) of the organic fluid evaporated by the evaporator 30.
  • the rotational power of the power turbine 32 is transmitted to the generator 38 so that electric power can be obtained by the generator 38.
  • the electric power obtained by the generator 38 is supplied to the inboard system via a power line (not shown).
  • the organic fluid (gas phase) that has finished work in the power turbine 38 preheats the organic fluid (liquid phase) sent from the organic fluid pump 31 in the economizer 34.
  • the organic fluid that has passed through the economizer 34 is cooled by seawater in the condenser 36 to be condensed and liquefied.
  • the condensed and liquefied organic fluid is sent to the economizer 34 and the evaporator 30 by the organic fluid pump 31.
  • the organic fluid path 9 constitutes an organic Rankine cycle together with the evaporator 30, the power turbine 32, the economizer 34, and the condenser 36.
  • the jacket cooling water led to the cylinder jacket 2 by the jacket cooling water pump 12 is heated by cooling the cylinder block or the like by the cylinder jacket 2 and then led to the preheater 1.
  • the preheater 1 heat exchange is performed between the heat transfer medium flowing through the exhaust heat recovery path 7 and the jacket cooling water, and the sensible heat of the jacket cooling water is recovered into the heat transfer medium in the exhaust heat recovery path 7. .
  • the temperature of the heat transfer water after heat recovery from the jacket cooling water is, for example, 80 to 90 ° C.
  • the air compressed by the turbocharger of the diesel engine is cooled by the first air cooler 5.
  • the heat medium water in the exhaust heat recovery path 7 flowing in the first air cooler 5 is heated by the compressed air, thereby recovering heat from the compressed air.
  • the temperature of the heat transfer water after heat recovery by the first air cooler 5 is set to 130 to 140 ° C., for example.
  • the heat transfer water that has recovered the exhaust heat by the preheater 1 and has recovered the exhaust heat by the first air cooler 5 and has reached a high temperature is led to the evaporator 30 and circulates in the organic fluid path 9. Exchange heat with.
  • the organic fluid is heated and evaporated by the sensible heat of the heat transfer water in the evaporator 30.
  • the organic fluid which has evaporated and becomes high enthalpy is guided to the power turbine 32, and the power turbine 32 is driven to rotate by the heat drop. Rotational output of the power turbine 32 is obtained, and power generation is performed by the generator 38.
  • the organic fluid (gas phase) that has finished the work in the power turbine 32 is preheated to the organic fluid (liquid phase) before flowing into the evaporator 30 by the economizer 34, and then led to the condenser 36, where seawater or the like It is condensed and liquefied by being cooled by the cooling water.
  • the jacket cooling water (engine cooling water) and the heat recovered by the first air cooler 5 were used.
  • jacket cooling water for example, 80 to 90 ° C.
  • a cooler eg, 130-140 ° C.
  • heat recovery is also performed from the first air cooler 5 to increase the feasibility of power generation by the organic Rankine cycle.
  • the heat transfer water flowing through the exhaust heat recovery path 7 recovers exhaust heat from the jacket cooling water, and further recovers exhaust heat with the first air cooler 5, and then evaporates the organic fluid with the evaporator 30. It was. In this way, since the jacket coolant and the heat transfer water recovered from the first air cooler 5 are directly guided to the evaporator 30 without passing through another heat transfer medium, the recovered heat is transferred to the evaporator 30 with less heat loss. Can lead.
  • the jacket cooling water heated by cooling the cylinder jacket 2 flows to the preheater 1, and the heat transfer water circulating through the exhaust heat recovery system 7 by the exhaust heat recovery pump 24 Exchange heat.
  • the heat transfer water recovered from the exhaust heat by the preheater 1 is guided to the first air cooler 5 and is heated after removing the compression heat from the compressed air discharged from the supercharger 40, and then evaporated. Guided to vessel 30.
  • the organic fluid that has been heated and evaporated by the heat transfer medium in the evaporator 30 drives the power turbine 32, and thereby the power generator 38 generates power.
  • the electric power generated by the generator 38 is frequency-adjusted by the inverter device 42 and then guided to the inboard system 44.
  • the exhaust gas from the diesel engine that is the main engine for propulsion is led to an exhaust gas economizer (exhaust gas heat exchanger) 46.
  • the exhaust gas economizer 46 recovers sensible heat of the exhaust gas, generates superheated steam in the superheater 48, and drives the steam turbine 50.
  • An exhaust gas power turbine (gas turbine) 54 is connected to the steam turbine 50 via a clutch 52.
  • the exhaust gas power turbine 54 is driven by exhaust gas guided from an exhaust manifold 56 of the diesel engine.
  • the rotation output obtained by the steam turbine 50 and the power turbine 54 is transmitted to the generator 60 via the speed reducer 58, and the generator 60 generates power.
  • the electric power generated by the generator 60 is output to the inboard system 44.
  • a plurality (three in FIG. 2) of power generation diesel engines 62 and a generator 64 are connected to the inboard system 44 in parallel. These power generation diesel engines 62 are started and stopped in accordance with the onboard power demand. Further, a shaft generator motor 66 is connected to the inboard system 44. The shaft generator motor 66 is configured to obtain electric power from the inboard system 44 and to energize the ship propeller 68, while collecting power from the ship propeller 68 to generate electric power to the inboard system 44. Can be powered.
  • the steam turbine 50 that can expect high efficiency is generated for exhaust gas from a ship propulsion diesel engine with a high temperature level of, for example, 250 ° C or higher. It was.
  • exhaust heat recovery power generation can be performed with high efficiency over a wide temperature range.
  • the exhaust gas power turbine 54 driven by the exhaust gas is further provided to generate power, exhaust heat recovery power generation can be realized with higher efficiency.
  • power generation is performed using both the steam turbine 50 and the exhaust gas power turbine 54.
  • the present invention is not limited to this, and only the steam turbine 50 or only the exhaust gas power turbine 54 is used. It is also good.
  • the exhaust gas economizer 46 is provided with an evaporator 49 located on a lower temperature side (a downstream side of the exhaust gas flow) than the superheater 48.
  • the vapor evaporated in the evaporator 49 is guided to the vapor drum 72.
  • the steam staying above the steam drum 72 is guided to a heater (fourth exhaust heat recovery device) 70.
  • the heater 70 the heat transfer water flowing through the exhaust heat recovery system 7 is heated and guided to the evaporator 30.
  • the heating temperature of the organic refrigerant in the evaporator 30 can be raised. .
  • the electric power generation by an organic Rankine cycle can be made highly efficient.
  • the steam obtained by the exhaust gas economizer 46 can be used effectively, the exhaust heat recovery power generation can be made more efficient.
  • symbol 3 has shown the diesel engine for ship propulsion, and the cylinder jacket 2 is typically shown by the side.
  • Reference numeral 74 denotes a steam turbine condenser connected to the downstream side of the steam turbine 50
  • reference numeral 76 denotes a condensate pump
  • reference numeral 78 denotes a ground condenser
  • reference numeral 80 denotes an atmospheric pressure condenser
  • reference numeral 82 denotes a water supply pump.
  • reference numeral 84 denotes a boiler drum water circulation pump that sends water in the steam drum 72 to the evaporator 49
  • reference numeral 86 denotes a steam drum level control valve that adjusts the water level in the steam drum 72.
  • jacket cooling water is used as it is as the heat transfer water in the exhaust heat recovery path 7 '. That is, the jacket cooling water flowing out from the cylinder jacket 2 flows to the first air cooler (third exhaust heat recovery device) 5. The jacket cooling water heated by cooling the compressed air with the first air cooler 5 evaporates the organic fluid with the evaporator 30 and then returns to the jacket cooling water pump 12.
  • the preheater 1 (see FIG. 1) for exchanging heat with the jacket cooling water can be omitted.
  • a simplified structure can be realized.
  • the jacket cooling water recovered from the first air cooler 5 is directly guided to the evaporator 30 without passing through another heat medium, the recovered heat can be guided to the evaporator 30 with a small heat loss.
  • a heat medium circulation path 8 is provided between the exhaust heat recovery path 7 and the organic fluid path 9.
  • the heat medium circulation path 8 is a closed circuit, and a heat medium circulation pump 11 for circulating the heat medium is provided.
  • the heat medium circulation pump 11 the heat medium circulates through the exhaust heat recovery heat exchanger 13 and the evaporator 30.
  • heat exchange is performed so as to recover heat from the heat transfer medium in the exhaust heat recovery path 7.
  • heat medium oil having a boiling point higher than that of the heat medium water in the exhaust heat recovery path 7 is used.
  • Barretherm registered trademark
  • Matsumura Oil Co., Ltd. is used as the heat medium oil.
  • the heat transfer water in the heat medium path 7 is not guided to the evaporator 30 as in the first embodiment, but the exhaust heat recovered through the heat medium circulation path 8 is guided to the evaporator 30. Also good. Since water is used in the exhaust heat recovery path 7, it is necessary to pressurize the exhaust heat collection path 7 so that the water does not boil and become steam. Depending on the inlet air temperature of the first air cooler 5, the high pressure specification is required. Become. Therefore, if the heat medium circulation path 8 is provided as in the present embodiment and a heat medium oil having a boiling point higher than that of water is mainly used, the pressure of the heat medium circulation path 8 can be used at atmospheric pressure, and exhaust heat recovery is performed. It can be configured as a low-pressure line separated from the path 7.
  • the exhaust heat recovery path 7 is introduced by introducing the heat medium circulation path 8. It is possible to guide exhaust heat to the organic Rankine cycle power generation device 10 using the low-pressure line of the heating medium circulation path 8 while avoiding the long line.
  • FIG. 5 a heating medium circulation path 8 (see FIG. 5) similar to that in the fifth embodiment is provided between the exhaust heat recovery path 7 ′ and the organic fluid path 9 with respect to the fourth embodiment. Is different. Therefore, the same components as those in the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a heat medium circulation path 8 is provided between the exhaust heat recovery path 7 ′ and the organic fluid path 9.
  • the heat medium circulation path 8 is a closed circuit, and a heat medium circulation pump 11 for circulating the heat medium is provided.
  • the heat medium circulation pump 11 the heat medium circulates through the exhaust heat recovery heat exchanger 13 and the evaporator 30.
  • heat exchange is performed so that heat is recovered from the jacket cooling water in the exhaust heat recovery path 7 ′.
  • heat medium flowing through the heat medium circulation path 8 for example, heat medium oil having a boiling point higher than that of the heat medium water in the exhaust heat recovery path 7 is used.
  • Barretherm registered trademark
  • Matsumura Oil Co., Ltd. is used as the heat medium oil.
  • the exhaust heat recovered via the heat medium circulation path 8 is guided to the evaporator 30. May be.
  • the line of the exhaust heat recovery path 7 is avoided from becoming a long distance, and then the low pressure line of the heat medium circulation path 8. A configuration using can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Provided is an exhaust heat recovery power generation device capable of using, as a heat source for an organic Rankine cycle, exhaust heat of engine cooling water the temperature level of which is lower than that of exhaust gas of an internal combustion engine and the utility value of which has been low in the past. The exhaust heat recovery power generation device is provided with: a exhaust heat recovery path (7) which recovers heat from jacket cooling water for cooling a cylinder jacket (2) of a diesel engine, and a first air cooler (5) for cooling compressed air discharged from a supercharger of the diesel engine; an evaporator (30) which evaporates an organic fluid by the recovered heat recovered by the exhaust heat recovery path (7); a power turbine (32) which is driven by the organic fluid evaporated by the evaporator (30); a power generator (38) which generates power by an rotation output from the power turbine (32); and a condenser (36) which condenses the organic fluid which has passed through the power turbine (32).

Description

排熱回収発電装置およびこれを備えた船舶Waste heat recovery power generator and ship equipped with the same
 本発明は、内燃機関の排熱を回収して発電する排熱回収発電装置およびこれを備えた船舶に関するものである。 The present invention relates to an exhaust heat recovery power generation apparatus that recovers exhaust heat from an internal combustion engine to generate electric power, and a ship equipped with the same.
 従来より、内燃機関の排ガス等の排熱を回収して発電する技術が種々提案されている。下記特許文献1には、ディーゼル発電機からの排熱を熱源とする有機ランキンサイクル(Organic Rankine Cycle)によって発電する排熱回収発電装置が開示されている。
 同文献には、ディーゼル発電機の排ガスから熱回収することが主として記載されているとともに、水冷式のディーゼルエンジンの場合には、そのエンジン冷却水(ジャケット冷却水)を利用することができることも示されている。
Conventionally, various technologies for recovering exhaust heat such as exhaust gas of an internal combustion engine to generate electric power have been proposed. Patent Document 1 listed below discloses an exhaust heat recovery power generator that generates power by an organic Rankine Cycle using exhaust heat from a diesel generator as a heat source.
This document mainly describes heat recovery from exhaust gas from a diesel generator, and also shows that in the case of a water-cooled diesel engine, the engine cooling water (jacket cooling water) can be used. Has been.
実用新案登録第3044386号公報([0010])Utility Model Registration No. 3044386 ([0010])
 しかし、エンジン冷却水は、温度レベルがせいぜい80~90℃であり、有機ランキンサイクルを駆動させる熱源としては温度レベルが低いという問題がある。
 一方、舶用主機として用いられるディーゼルエンジンでは、排ガスの熱回収としては蒸気タービンやパワータービン(ガスタービン)が検討されており、既に所定の効率を達成した実績もある。したがって、舶用主機の排ガスを有機ランキンサイクルの熱源として用いることは、高効率な熱回収を達成する上では必ずしも得策とはいえない。
However, the engine coolant has a temperature level of 80 to 90 ° C. at most, and there is a problem that the temperature level is low as a heat source for driving the organic Rankine cycle.
On the other hand, in a diesel engine used as a marine main engine, steam turbines and power turbines (gas turbines) have been studied for heat recovery of exhaust gas and have already achieved a predetermined efficiency. Therefore, using the exhaust gas from the marine main engine as a heat source for the organic Rankine cycle is not necessarily a good measure for achieving highly efficient heat recovery.
 本発明は、このような事情に鑑みてなされたものであって、内燃機関の排ガスよりも温度レベルが低く従来利用価値の低かったエンジン冷却水の排熱を有機ランキンサイクルの熱源とすることができる排熱回収発電装置およびこれを備えた船舶を提供することを目的とする。 The present invention has been made in view of such circumstances, and the exhaust heat of the engine cooling water, which has a lower temperature level than the exhaust gas of the internal combustion engine and has a low utility value, is used as the heat source of the organic Rankine cycle. An object of the present invention is to provide an exhaust heat recovery power generator that can be used and a ship equipped with the same.
 上記課題を解決するために、本発明の排熱回収発電装置およびこれを備えた船舶は以下の手段を採用する。
 すなわち、本発明の第1の態様にかかる排熱回収発電装置は、内燃機関本体を冷却するエンジン冷却水、及び、該内燃機関の過給機から吐出される圧縮空気を冷却する空気冷却器とから熱回収する排熱回収経路と、該排熱回収経路にて回収された回収熱によって有機流体を蒸発させる蒸発器と、該蒸発器によって蒸発させられた前記有機流体によって駆動されるタービンと、該タービンの回転出力によって発電する発電機と、タービンを通過した前記有機流体を凝縮させる凝縮器と、を備えていることを特徴とする。
In order to solve the above-mentioned problems, the exhaust heat recovery power generation apparatus of the present invention and a ship equipped with the same adopt the following means.
That is, an exhaust heat recovery power generator according to a first aspect of the present invention includes an engine cooling water that cools an internal combustion engine body, and an air cooler that cools compressed air discharged from a supercharger of the internal combustion engine. An exhaust heat recovery path for recovering heat from the evaporator, an evaporator for evaporating the organic fluid by the recovered heat recovered in the exhaust heat recovery path, and a turbine driven by the organic fluid evaporated by the evaporator; It is characterized by comprising a generator that generates electric power by the rotational output of the turbine, and a condenser that condenses the organic fluid that has passed through the turbine.
 有機流体は、蒸発器にて蒸発された後、タービンで膨張し、凝縮器で凝縮するサイクル、即ち有機ランキンサイクル(Organic Rankine Cycle)を行う。本発明では、有機ランキンサイクルの熱源として、エンジン冷却水と空気冷却器から熱回収した熱を用いることとした。このように、例えば250℃以上といった温度レベルが高い内燃機関の排ガスを用いるのではなく、排ガスよりも温度レベルが低く有効利用されていなかったエンジン冷却水(例えば80~90℃)および空気冷却器(例えば130~140℃)を用いることができる。特に、有機ランキンサイクルを駆動する熱源の温度レベルとして、エンジン冷却水のみでは低いので、空気冷却器からも熱回収することとして、有機ランキンサイクルによる発電の実現性を高めている。
 内燃機関としては、典型的には舶用ディーゼルエンジン(主機)が挙げられる。ただし、舶用に限らず、例えば発電等に用いられる陸用の内燃機関であっても良い。
 空気冷却器からの排熱回収は、圧縮空気の上流側(高温側)から行うのが好ましい。
 エンジン冷却水としては、典型的には、内燃機関本体のシリンダジャケットを流通するジャケット冷却水が挙げられる。
The organic fluid is evaporated in an evaporator, then expanded in a turbine, and condensed in a condenser, that is, an organic Rankine cycle is performed. In the present invention, the heat recovered from the engine cooling water and the air cooler is used as the heat source of the organic Rankine cycle. Thus, instead of using the exhaust gas of an internal combustion engine having a high temperature level of, for example, 250 ° C. or higher, the engine cooling water (for example, 80 to 90 ° C.) and the air cooler that have a lower temperature level than the exhaust gas and have not been used effectively (For example, 130 to 140 ° C.) can be used. In particular, since the temperature level of the heat source that drives the organic Rankine cycle is low only with engine cooling water, heat recovery is also performed from the air cooler, thereby enhancing the feasibility of power generation by the organic Rankine cycle.
A typical example of the internal combustion engine is a marine diesel engine (main engine). However, it is not limited to marine use but may be a land-use internal combustion engine used for power generation, for example.
The exhaust heat recovery from the air cooler is preferably performed from the upstream side (high temperature side) of the compressed air.
Typically, the engine cooling water includes jacket cooling water flowing through the cylinder jacket of the internal combustion engine body.
 さらに、前記第1の態様に係る排熱回収発電装置では、前記排熱回収経路は、前記エンジン冷却水と熱交換を行う第1排熱回収器と、前記空気冷却器としての第2排熱回収器とを備え、前記第1排熱回収器および前記第2排熱回収器にて熱回収した排熱回収媒体が前記蒸発器にて前記有機流体と熱交換することを特徴とする。 Furthermore, in the exhaust heat recovery power generator according to the first aspect, the exhaust heat recovery path includes a first exhaust heat recovery unit that exchanges heat with the engine coolant, and a second exhaust heat as the air cooler. And a waste heat recovery medium heat recovered by the first exhaust heat recovery device and the second exhaust heat recovery device exchanges heat with the organic fluid in the evaporator.
 排熱回収経路を流れる排熱回収媒体(例えば水)が第1排熱回収器にてエンジン冷却水から排熱を回収し、さらに第2排熱回収器にて圧縮空気から排熱を回収した後に、蒸発器にて有機流体を蒸発させることとした。このように、エンジン冷却水および圧縮空気から熱回収した排熱回収媒体を、他の熱媒を介することなく蒸発器に直接導くので、少ない熱損失で回収熱を蒸発器に導くことができる。 The exhaust heat recovery medium (for example, water) flowing through the exhaust heat recovery path recovers exhaust heat from the engine cooling water in the first exhaust heat recovery device, and further recovers exhaust heat from the compressed air in the second exhaust heat recovery device. Later, the organic fluid was evaporated in an evaporator. As described above, the exhaust heat recovery medium recovered from the engine cooling water and the compressed air is directly guided to the evaporator without passing through another heat medium, so that the recovered heat can be guided to the evaporator with little heat loss.
 さらに、前記第1の態様に係る排熱回収発電装置では、前記排熱回収経路は、前記エンジン冷却水を排熱回収媒体とするとともに、該エンジン冷却水と前記圧縮空気との熱交換を行う前記空気冷却器としての第3排熱回収器を備え、該第3排熱回収器にて熱回収した前記エンジン冷却水が前記蒸発器にて前記有機流体と熱交換することを特徴とする。 Further, in the exhaust heat recovery power generation apparatus according to the first aspect, the exhaust heat recovery path uses the engine cooling water as an exhaust heat recovery medium and performs heat exchange between the engine cooling water and the compressed air. A third exhaust heat recovery device as the air cooler is provided, and the engine coolant recovered by the third exhaust heat recovery device exchanges heat with the organic fluid in the evaporator.
 排熱回収経路を流れるエンジン冷却水が第3排熱回収器にて空気冷却器から排熱を回収した後に、蒸発器にて有機流体を蒸発させることとした。このように、排熱回収経路を流れるエンジン冷却水を排熱回収媒体として用いることとしたので、エンジン冷却水と熱交換する熱交換器(上記発明の第1排熱回収器)を省略することができ、簡素化した構造を実現できる。また、空気冷却器から熱回収したエンジン冷却水を、他の熱媒を介することなく蒸発器に直接導くので、少ない熱損失で回収熱を蒸発器に導くことができる。 The engine coolant flowing through the exhaust heat recovery path collects exhaust heat from the air cooler in the third exhaust heat recovery unit, and then the organic fluid is evaporated in the evaporator. Thus, since the engine cooling water flowing through the exhaust heat recovery path is used as the exhaust heat recovery medium, the heat exchanger that exchanges heat with the engine cooling water (the first exhaust heat recovery device of the above invention) is omitted. And a simplified structure can be realized. Further, since the engine coolant recovered from the air cooler is directly guided to the evaporator without passing through another heat medium, the recovered heat can be guided to the evaporator with little heat loss.
 さらに、前記第1の態様に係る排熱回収発電装置では、熱媒が循環するとともに、前記蒸発器にて該熱媒が有機流体と熱交換する熱媒循環経路を備え、前記排熱回収経路は、前記エンジン冷却水と熱交換を行う第1排熱回収器と、前記空気冷却器としての第2排熱回収器と、前記第1排熱回収器および前記第2排熱回収器にて熱回収した排熱回収媒体が前記熱媒循環経路の熱媒と熱交換することを特徴とする。 Further, in the exhaust heat recovery power generation device according to the first aspect, the exhaust medium includes a heat medium circulation path through which the heat medium circulates and heat exchange with the organic fluid in the evaporator, and the exhaust heat recovery path Are a first exhaust heat recovery unit that exchanges heat with the engine coolant, a second exhaust heat recovery unit as the air cooler, the first exhaust heat recovery unit, and the second exhaust heat recovery unit. The exhaust heat recovery medium recovered by heat exchanges heat with the heat medium in the heat medium circulation path.
 排熱回収経路を流れる排熱回収媒体が第1排熱回収器にてエンジン冷却水から排熱を回収し、さらに第2排熱回収器にて空気冷却器から排熱を回収した後に、熱媒循環経路の熱媒(例えば水または熱媒油)と熱交換させることとした。そして、回収熱を受け取った熱媒によって、有機流体を蒸発器にて蒸発させることとした。このように、熱媒循環経路を介して回収熱を有機流体に導くこととしても良い。 The exhaust heat recovery medium flowing through the exhaust heat recovery path recovers exhaust heat from the engine cooling water in the first exhaust heat recovery device, and further recovers exhaust heat from the air cooler in the second exhaust heat recovery device. Heat exchange with the heat medium (for example, water or heat medium oil) in the medium circulation path was performed. Then, the organic fluid was evaporated in the evaporator by the heat medium that received the recovered heat. In this way, the recovered heat may be guided to the organic fluid through the heat medium circulation path.
 さらに、前記第1の態様に係る排熱回収発電装置では、熱媒が循環するとともに、前記蒸発器にて該熱媒が有機流体と熱交換する熱媒循環経路を備え、前記排熱回収経路は、前記エンジン冷却水を排熱回収媒体とするとともに、該エンジン冷却水と前記圧縮空気との熱交換を行う前記空気冷却器としての第3排熱回収器を備え、該第3排熱回収器にて熱回収した前記エンジン冷却水が前記熱媒循環経路の熱媒と熱交換することを特徴とする。 Furthermore, in the exhaust heat recovery power generation device according to the first aspect, the exhaust medium includes a heat medium circulation path through which the heat medium circulates and heat exchange with the organic fluid in the evaporator, and the exhaust heat recovery path Comprises a third exhaust heat recovery device as the air cooler that uses the engine cooling water as an exhaust heat recovery medium and exchanges heat between the engine cooling water and the compressed air. The engine cooling water recovered by the heat exchanger exchanges heat with the heat medium in the heat medium circulation path.
 排熱回収経路を流れるエンジン冷却水が第3排熱回収器にて空気冷却器から排熱を回収した後に、熱媒循環経路の熱媒(例えば水または熱媒油)と熱交換させることとした。そして、回収熱を受け取った熱媒によって、有機流体を蒸発器にて蒸発させることとした。このように、熱媒循環経路を介して回収熱を有機流体に導くこととしても良い。
 また、排熱回収経路を流れるエンジン冷却水を排熱回収媒体として用いることとしたので、エンジン冷却水と熱交換する熱交換器(上記発明の第1排熱回収器)を省略することができ、簡素化した構造を実現できる。
After the engine coolant flowing through the exhaust heat recovery path recovers the exhaust heat from the air cooler in the third exhaust heat recovery unit, heat exchange with the heat medium (for example, water or heat transfer oil) in the heat medium circulation path; did. Then, the organic fluid was evaporated in the evaporator by the heat medium that received the recovered heat. In this way, the recovered heat may be guided to the organic fluid through the heat medium circulation path.
In addition, since the engine coolant flowing through the exhaust heat recovery path is used as the exhaust heat recovery medium, the heat exchanger (the first exhaust heat recovery device of the above invention) that exchanges heat with the engine coolant can be omitted. A simplified structure can be realized.
 さらに、前記第1の態様に係る排熱回収発電装置は、前記内燃機関の排ガスと熱交換する排ガス熱交換器にて生成された蒸気によって駆動される蒸気タービン発電機を備えている。 Further, the exhaust heat recovery power generator according to the first aspect includes a steam turbine generator driven by steam generated by an exhaust gas heat exchanger that exchanges heat with the exhaust gas of the internal combustion engine.
 例えば250℃以上といった温度レベルが高い内燃機関の排ガスについては高効率が期待できる蒸気タービンにて発電することとした。これにより、広い温度範囲に対して高効率に排熱回収発電が可能となる。 For example, the exhaust gas from an internal combustion engine having a high temperature level of 250 ° C. or higher is generated by a steam turbine that can be expected to have high efficiency. Thus, exhaust heat recovery power generation can be performed with high efficiency over a wide temperature range.
 さらに、前記第1の態様に係る排熱回収発電装置では、前記排ガス熱交換器は、給水を蒸発させる蒸発部と、該蒸発部にて生成された蒸気を過熱する過熱部とを備え、前記排熱回収経路は、前記蒸発部にて得られた蒸気と熱交換する第4排熱回収器を備えていることを特徴とする。 Furthermore, in the exhaust heat recovery power generation apparatus according to the first aspect, the exhaust gas heat exchanger includes an evaporation unit that evaporates feed water, and an overheating unit that superheats steam generated in the evaporation unit, The exhaust heat recovery path includes a fourth exhaust heat recovery device that exchanges heat with the steam obtained in the evaporation section.
 第4排熱回収器にて、排ガス熱交換器(排ガスエコノマイザ)の蒸発部にて得られた蒸気と排熱回収媒体とを熱交換させることとしたので、さらに有効に排熱回収することができる。 In the fourth exhaust heat recovery device, the steam obtained in the evaporation part of the exhaust gas heat exchanger (exhaust gas economizer) and the exhaust heat recovery medium are heat-exchanged. it can.
 さらに、前記第1の態様に係る排熱回収発電装置は、前記内燃機関の排ガスによって駆動されるガスタービン発電機を備えていることを特徴とする。 Furthermore, the exhaust heat recovery power generator according to the first aspect includes a gas turbine generator driven by the exhaust gas of the internal combustion engine.
 例えば250℃以上といった温度レベルが高い内燃機関の排ガスについては高効率が期待できるガスタービン(パワータービン)にて発電することとした。これにより、広い温度範囲に対して高効率に排熱回収発電が可能となる。
 また、蒸気タービン発電機と組み合わせることにより、さらに高効率とすることができる。
For example, the internal combustion engine exhaust gas having a high temperature level of 250 ° C. or higher is generated by a gas turbine (power turbine) that can be expected to have high efficiency. Thus, exhaust heat recovery power generation can be performed with high efficiency over a wide temperature range.
Moreover, it can be made still more efficient by combining with a steam turbine generator.
 また、本発明の第2の態様に係る船舶は、上記のいずれかの排熱回収発電装置を備えていることを特徴とする。 Further, the ship according to the second aspect of the present invention is characterized by including any one of the exhaust heat recovery power generation devices described above.
 前記第2の態様に係る船舶は、上記のいずれかの排熱回収発電装置を備えているので、有効に排熱回収できる省エネルギー性の高い船舶を提供することができる。 Since the ship according to the second aspect includes any one of the exhaust heat recovery power generation devices described above, it is possible to provide a highly energy-saving ship that can effectively recover exhaust heat.
 本発明によれば、有機ランキンサイクルを駆動する熱源として、エンジン冷却水と空気冷却器とから回収した熱を用いることとした。これにより、従来利用価値の低かったエンジン冷却水の排熱を有効に利用して発電を行うことができる。 According to the present invention, the heat recovered from the engine cooling water and the air cooler is used as a heat source for driving the organic Rankine cycle. As a result, it is possible to generate power by effectively using the exhaust heat of the engine coolant that has been low in utility value.
本発明の第1実施形態にかかる排熱回収発電装置を概略的に示した図である。1 is a diagram schematically illustrating an exhaust heat recovery power generator according to a first embodiment of the present invention. 本発明の第2実施形態にかかる排熱回収発電装置を概略的に示した図である。It is the figure which showed roughly the exhaust-heat-recovery power generator concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる排熱回収発電装置を概略的に示した図である。It is the figure which showed roughly the exhaust-heat-recovery power generation apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる排熱回収発電装置を概略的に示した図である。It is the figure which showed roughly the exhaust-heat-recovery power generator concerning 4th Embodiment of this invention. 本発明の第5実施形態にかかる排熱回収発電装置を概略的に示した図である。It is the figure which showed roughly the exhaust-heat recovery electric power generating apparatus concerning 5th Embodiment of this invention. 本発明の第6実施形態にかかる排熱回収発電装置を概略的に示した図である。It is the figure which showed roughly the exhaust-heat recovery electric power generating apparatus concerning 6th Embodiment of this invention.
 以下に、本発明にかかる各実施形態について、排熱回収発電装置が船舶の推進用主機(ディーゼルエンジン;内燃機関)の排熱回収として設置された構成を例として、図面を参照して説明する。 Hereinafter, each embodiment according to the present invention will be described with reference to the drawings, taking as an example a configuration in which an exhaust heat recovery power generator is installed as an exhaust heat recovery of a main engine for propulsion of a ship (diesel engine; internal combustion engine). .
[第1実施形態]
 図1には、本発明の第1実施形態にかかる排熱回収発電装置が概略的に示されている。
 排熱回収発電装置は、ディーゼルエンジンのシリンダブロック等を冷却するシリンダジャケット2内を流れるジャケット冷却水(エンジン冷却水)から熱回収する予熱器(第1排熱回収器)1と、ディーゼルエンジンの過給機から吐出される圧縮空気を冷却して熱回収する第1空気冷却器(第2排熱回収器)5と、これら予熱器1及び第1空気冷却器5から排熱を受け取る熱媒水(排熱回収媒体)が循環する排熱回収経路7と、排熱回収経路7の熱媒水から熱を受け取り、有機ランキンサイクル(Organic Rankine Cycle)を構成する有機流体経路9とを備えている。
[First Embodiment]
FIG. 1 schematically shows an exhaust heat recovery power generator according to a first embodiment of the present invention.
The exhaust heat recovery power generator includes a preheater (first exhaust heat recovery device) 1 that recovers heat from jacket cooling water (engine cooling water) that flows in a cylinder jacket 2 that cools a cylinder block and the like of a diesel engine, and a diesel engine A first air cooler (second exhaust heat recovery device) 5 that recovers heat by cooling the compressed air discharged from the supercharger, and a heat medium that receives exhaust heat from the preheater 1 and the first air cooler 5 An exhaust heat recovery path 7 through which water (exhaust heat recovery medium) circulates and an organic fluid path 9 that receives heat from the heat transfer water in the exhaust heat recovery path 7 and constitutes an organic Rankine Cycle (Organic Rankine Cycle) Yes.
 なお、図1において、2点鎖線で囲まれた領域は、有機ランキンサイクル用発電装置10を示している。例えば、この有機ランキンサイクル用発電装置10を既存の船舶に設置することにより、更なる排熱回収を簡便に追加することができる。 In addition, in FIG. 1, the area | region enclosed with the dashed-two dotted line has shown the electric power generating apparatus 10 for organic Rankine cycles. For example, by installing the organic Rankine cycle power generation device 10 on an existing ship, further exhaust heat recovery can be easily added.
 シリンダジャケット2内を流れるジャケット冷却水は、ジャケット冷却水ポンプ12によって、ジャケット冷却水循環流路14内を循環する。このジャケット冷却水循環流路14は、シリンダジャケット2、予熱器1、温度調整用三方弁16、ジャケット冷却水ポンプ12という順番でジャケット冷却水が流れるように形成されている。
 ジャケット冷却水循環流路14には、予熱器1をジャケット冷却水がバイパスするバイパス流路23が設けられている。このバイパス流路23を流れる流量を図示しないバイパス弁で調整することによって、予熱器1へ流れるジャケット冷却水の流量を調整できるようになっている。
The jacket cooling water flowing in the cylinder jacket 2 is circulated in the jacket cooling water circulation passage 14 by the jacket cooling water pump 12. The jacket cooling water circulation passage 14 is formed so that the jacket cooling water flows in the order of the cylinder jacket 2, the preheater 1, the temperature adjusting three-way valve 16, and the jacket cooling water pump 12.
The jacket cooling water circulation passage 14 is provided with a bypass passage 23 through which the jacket cooling water bypasses the preheater 1. The flow rate of the jacket cooling water flowing to the preheater 1 can be adjusted by adjusting the flow rate flowing through the bypass passage 23 with a bypass valve (not shown).
 温度調整用三方弁16は、シリンダジャケット2へ流入するジャケット冷却水が所望の入口温度となるように動作する。具体的には、ジャケット冷却水がシリンダジャケット2に流入する入口温度が設定値よりも高い場合には、第2空気冷却器18から導かれる約30℃程度の清水をジャケット冷却水循環流路14へ多く流すように動作する。
 温度調整用三方弁16の上流側には、清水ポンプ20へと分岐する分岐流路22が設けられている。この分岐流路22からジャケット冷却水循環流路14内を流れるジャケット冷却水が清水ポンプ20側へと排出されることにより、ジャケット冷却水循環流路14内を流れる循環流量のマスバランスが保たれるようになっている。
The temperature adjusting three-way valve 16 operates so that the jacket cooling water flowing into the cylinder jacket 2 has a desired inlet temperature. Specifically, when the inlet temperature at which the jacket cooling water flows into the cylinder jacket 2 is higher than a set value, fresh water of about 30 ° C. guided from the second air cooler 18 is supplied to the jacket cooling water circulation passage 14. Operates to flow more.
A branch flow path 22 that branches to the fresh water pump 20 is provided on the upstream side of the temperature adjusting three-way valve 16. The jacket cooling water flowing in the jacket cooling water circulation channel 14 from the branch channel 22 is discharged to the fresh water pump 20 side, so that the mass balance of the circulation flow rate flowing in the jacket cooling water circulation channel 14 is maintained. It has become.
 第2空気冷却器18は、過給機から吐出された圧縮空気の流れに対して、第1空気冷却器5の下流側に設置されている。したがって、第1空気冷却器5の方が、第2空気冷却器18よりも温度レベルが高くなるように設置されている。
 第2空気冷却器18内を流れる清水は、図示しないセントラル冷却器によって冷却された後に導かれる。第2空気冷却器18にて圧縮空気を冷却した清水は、一部が温度調整用三方弁16へ導かれ、残部が清水ポンプ20によって再びセントラル冷却器へと返送される。
The second air cooler 18 is installed on the downstream side of the first air cooler 5 with respect to the flow of compressed air discharged from the supercharger. Therefore, the first air cooler 5 is installed so as to have a higher temperature level than the second air cooler 18.
The fresh water flowing in the second air cooler 18 is guided after being cooled by a central cooler (not shown). Part of the fresh water whose compressed air has been cooled by the second air cooler 18 is guided to the temperature adjusting three-way valve 16, and the remaining part is returned again to the central cooler by the fresh water pump 20.
 次に、排熱回収経路7について説明する。
 排熱回収経路7は閉回路とされており、熱媒水を循環させるための排熱回収用ポンプ24が設けられている。この排熱回収用ポンプ24により、熱媒水は、予熱器1、第1空気冷却器5及び蒸発器30と熱交換するように循環する。
Next, the exhaust heat recovery path 7 will be described.
The exhaust heat recovery path 7 is a closed circuit, and an exhaust heat recovery pump 24 for circulating the heat transfer water is provided. The heat transfer water is circulated by the exhaust heat recovery pump 24 so as to exchange heat with the preheater 1, the first air cooler 5, and the evaporator 30.
 蒸発器30の熱媒水入口温度は例えば約130~140℃とされる。この蒸発器30にて、熱媒水によって有機流体が蒸発させられる。 The temperature of the heat medium water inlet of the evaporator 30 is about 130 to 140 ° C., for example. In the evaporator 30, the organic fluid is evaporated by the heat transfer water.
 次に、有機流体経路9について説明する。
 有機流体経路9を流れる有機流体としては、イソペンタン、ブタン、プロパン等の低分子炭化水素や冷媒として用いられるR134a、R245fa等を用いることができる。
 有機流体経路9は閉回路とされており、有機流体を循環させるための有機流体用ポンプ31が設けられている。有機流体は、蒸発器30、パワータービン32、エコノマイザ34、凝縮器36を通過するように相変化を繰り返しながら循環する。
Next, the organic fluid path 9 will be described.
As the organic fluid flowing through the organic fluid path 9, low molecular hydrocarbons such as isopentane, butane and propane, R134a and R245fa used as refrigerants, and the like can be used.
The organic fluid path 9 is a closed circuit, and an organic fluid pump 31 for circulating the organic fluid is provided. The organic fluid circulates while repeating the phase change so as to pass through the evaporator 30, the power turbine 32, the economizer 34, and the condenser 36.
 パワータービン32は、蒸発器30によって蒸発した有機流体の熱落差(エンタルピー落差)によって回転駆動される。パワータービン32の回転動力は発電機38に伝達され、発電機38にて電力が得られるようになっている。発電機38で得られた電力は、図示しない電力線を介して船内系統へと供給される。 The power turbine 32 is rotationally driven by a heat drop (enthalpy drop) of the organic fluid evaporated by the evaporator 30. The rotational power of the power turbine 32 is transmitted to the generator 38 so that electric power can be obtained by the generator 38. The electric power obtained by the generator 38 is supplied to the inboard system via a power line (not shown).
 パワータービン38にて仕事を終えた有機流体(気相)は、エコノマイザ34にて、有機流体用ポンプ31から送られた有機流体(液相)を予熱する。
 エコノマイザ34を通過した有機流体は、凝縮器36にて海水によって冷却されて凝縮液化する。凝縮液化した有機流体は、有機流体用ポンプ31によってエコノマイザ34及び蒸発器30へと送られる。
 このように、有機流体経路9は、蒸発器30、パワータービン32、エコノマイザ34及び凝縮器36とともに有機ランキンサイクルを構成する。
The organic fluid (gas phase) that has finished work in the power turbine 38 preheats the organic fluid (liquid phase) sent from the organic fluid pump 31 in the economizer 34.
The organic fluid that has passed through the economizer 34 is cooled by seawater in the condenser 36 to be condensed and liquefied. The condensed and liquefied organic fluid is sent to the economizer 34 and the evaporator 30 by the organic fluid pump 31.
Thus, the organic fluid path 9 constitutes an organic Rankine cycle together with the evaporator 30, the power turbine 32, the economizer 34, and the condenser 36.
 次に、上記構成の排熱回収発電装置の動作について図1を用いて説明する。
 ジャケット冷却水ポンプ12によってシリンダジャケット2へと導かれたジャケット冷却水は、シリンダジャケット2にてシリンダブロック等を冷却することによって昇温させられた後、予熱器1へと導かれる。予熱器1にて、排熱回収経路7を流れる熱媒水とジャケット冷却水との間で熱交換が行われ、ジャケット冷却水の顕熱が排熱回収経路7の熱媒水に回収される。ジャケット冷却水から熱回収した後の熱媒水温度は、例えば、80~90℃とされる。
Next, the operation of the exhaust heat recovery power generation apparatus having the above configuration will be described with reference to FIG.
The jacket cooling water led to the cylinder jacket 2 by the jacket cooling water pump 12 is heated by cooling the cylinder block or the like by the cylinder jacket 2 and then led to the preheater 1. In the preheater 1, heat exchange is performed between the heat transfer medium flowing through the exhaust heat recovery path 7 and the jacket cooling water, and the sensible heat of the jacket cooling water is recovered into the heat transfer medium in the exhaust heat recovery path 7. . The temperature of the heat transfer water after heat recovery from the jacket cooling water is, for example, 80 to 90 ° C.
 ディーゼルエンジンの過給機によって圧縮された空気が第1空気冷却器5によって冷却される。この際に第1空気冷却器5内を流れる排熱回収経路7の熱媒水が圧縮空気によって昇温させられることにより、圧縮空気から熱を回収する。第1空気冷却器5にて熱回収した後の熱媒水温度は、例えば、130~140℃とされる。 The air compressed by the turbocharger of the diesel engine is cooled by the first air cooler 5. At this time, the heat medium water in the exhaust heat recovery path 7 flowing in the first air cooler 5 is heated by the compressed air, thereby recovering heat from the compressed air. The temperature of the heat transfer water after heat recovery by the first air cooler 5 is set to 130 to 140 ° C., for example.
 予熱器1で排熱を回収し、さらに第1空気冷却器5で排熱を回収して高温となった熱媒水は、蒸発器30へと導かれ、有機流体経路9を循環する有機流体と熱交換する。有機流体は、蒸発器30にて熱媒水の顕熱によって加熱され蒸発気化する。蒸発気化して高エンタルピとなった有機流体は、パワータービン32へと導かれ、その熱落差によってパワータービン32を回転駆動させる。パワータービン32の回転出力を得て、発電機38にて発電が行われる。
 パワータービン32にて仕事を終えた有機流体(気相)は、エコノマイザ34にて蒸発器30流入前の有機流体(液相)に予熱を与えた後、凝縮器36へと導かれ、海水等の冷却水によって冷却されることにより凝縮液化する。
The heat transfer water that has recovered the exhaust heat by the preheater 1 and has recovered the exhaust heat by the first air cooler 5 and has reached a high temperature is led to the evaporator 30 and circulates in the organic fluid path 9. Exchange heat with. The organic fluid is heated and evaporated by the sensible heat of the heat transfer water in the evaporator 30. The organic fluid which has evaporated and becomes high enthalpy is guided to the power turbine 32, and the power turbine 32 is driven to rotate by the heat drop. Rotational output of the power turbine 32 is obtained, and power generation is performed by the generator 38.
The organic fluid (gas phase) that has finished the work in the power turbine 32 is preheated to the organic fluid (liquid phase) before flowing into the evaporator 30 by the economizer 34, and then led to the condenser 36, where seawater or the like It is condensed and liquefied by being cooled by the cooling water.
 以上の通り、本実施形態によれば、以下の作用効果を奏する。
 有機ランキンサイクルの熱源として、ジャケット冷却水(エンジン冷却水)と第1空気冷却器5にて熱回収した熱を用いることとした。このように、例えば250℃以上といった温度レベルが高いディーゼルエンジンの排ガスを用いるのではなく、排ガスよりも温度レベルが低く有効利用されていなかったジャケット冷却水(例えば80~90℃)および第1空気冷却器(例えば130~140℃)を用いることができる。特に、有機ランキンサイクルを駆動する熱源の温度レベルとして、ジャケット冷却水のみでは低いので、第1空気冷却器5からも熱回収することとして、有機ランキンサイクルによる発電の実現性を高めている。
As described above, according to the present embodiment, the following operational effects are obtained.
As the heat source of the organic Rankine cycle, the jacket cooling water (engine cooling water) and the heat recovered by the first air cooler 5 were used. Thus, instead of using exhaust gas from a diesel engine having a high temperature level, for example, 250 ° C. or higher, jacket cooling water (for example, 80 to 90 ° C.) and the first air that have a lower temperature level than the exhaust gas and have not been effectively used. A cooler (eg, 130-140 ° C.) can be used. In particular, since the temperature level of the heat source that drives the organic Rankine cycle is low only with the jacket cooling water, heat recovery is also performed from the first air cooler 5 to increase the feasibility of power generation by the organic Rankine cycle.
 また、排熱回収経路7を流れる熱媒水がジャケット冷却水から排熱を回収し、さらに第1空気冷却器5にて排熱を回収した後に、蒸発器30にて有機流体を蒸発させることとした。このように、ジャケット冷却水および第1空気冷却器5から熱回収した熱媒水を、他の熱媒を介することなく蒸発器30に直接導くので、少ない熱損失で回収熱を蒸発器30に導くことができる。 Further, the heat transfer water flowing through the exhaust heat recovery path 7 recovers exhaust heat from the jacket cooling water, and further recovers exhaust heat with the first air cooler 5, and then evaporates the organic fluid with the evaporator 30. It was. In this way, since the jacket coolant and the heat transfer water recovered from the first air cooler 5 are directly guided to the evaporator 30 without passing through another heat transfer medium, the recovered heat is transferred to the evaporator 30 with less heat loss. Can lead.
[第2実施形態]
 次に、本発明の第2実施形態について図2を用いて説明する。本実施形態は、第1実施形態の排熱回収発電装置を船舶の排熱回収システムに適用した場合の構成について、電力系統を含めた状態で示されている。したがって、第1実施形態と同様の構成については同一符号を付し、その説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the configuration when the exhaust heat recovery power generation apparatus of the first embodiment is applied to a ship exhaust heat recovery system is shown in a state including an electric power system. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図2に示されているように、シリンダジャケット2を冷却して昇温したジャケット冷却水は予熱器1へと流れ、排熱回収用ポンプ24によって排熱回収系統7を循環する熱媒水と熱交換する。予熱器1にて排熱回収した熱媒水は、第1空気冷却器5へと導かれ、過給機40から吐出された圧縮空気から圧縮熱を除去して昇温させられた後、蒸発器30へと導かれる。蒸発器30にて熱媒水によって加熱されて蒸発した有機流体は、パワータービン32を駆動し、これにより発電機38にて発電が行われる。発電機38にて発電された電力は、インバータ装置42にて周波数調整された後、船内系統44へと導かれる。 As shown in FIG. 2, the jacket cooling water heated by cooling the cylinder jacket 2 flows to the preheater 1, and the heat transfer water circulating through the exhaust heat recovery system 7 by the exhaust heat recovery pump 24 Exchange heat. The heat transfer water recovered from the exhaust heat by the preheater 1 is guided to the first air cooler 5 and is heated after removing the compression heat from the compressed air discharged from the supercharger 40, and then evaporated. Guided to vessel 30. The organic fluid that has been heated and evaporated by the heat transfer medium in the evaporator 30 drives the power turbine 32, and thereby the power generator 38 generates power. The electric power generated by the generator 38 is frequency-adjusted by the inverter device 42 and then guided to the inboard system 44.
 推進用主機であるディーゼルエンジンの排ガスは、排ガスエコノマイザ(排ガス熱交換器)46へと導かれる。排ガスエコノマイザ46では、排ガスの顕熱を回収して過熱器48にて過熱蒸気を生成し、蒸気タービン50を駆動する。蒸気タービン50には、クラッチ52を介して排ガスパワータービン(ガスタービン)54が接続されている。排ガスパワータービン54は、ディーゼルエンジンの排気マニホールド56から導かれる排ガスによって駆動される。
 これら蒸気タービン50及びパワータービン54によって得られた回転出力は、減速機58を介して発電機60へと伝達され、この発電機60にて発電が行われる。発電機60にて発電された電力は、船内系統44へと出力される。
The exhaust gas from the diesel engine that is the main engine for propulsion is led to an exhaust gas economizer (exhaust gas heat exchanger) 46. The exhaust gas economizer 46 recovers sensible heat of the exhaust gas, generates superheated steam in the superheater 48, and drives the steam turbine 50. An exhaust gas power turbine (gas turbine) 54 is connected to the steam turbine 50 via a clutch 52. The exhaust gas power turbine 54 is driven by exhaust gas guided from an exhaust manifold 56 of the diesel engine.
The rotation output obtained by the steam turbine 50 and the power turbine 54 is transmitted to the generator 60 via the speed reducer 58, and the generator 60 generates power. The electric power generated by the generator 60 is output to the inboard system 44.
 船内系統44には、複数(図2おいては3台)の発電用ディーゼルエンジン62及び発電機64が並列に接続されている。これら発電用ディーゼルエンジン62は、船内需要電力に応じて起動および停止が行われる。
 さらに船内系統44には、軸発電機モータ66が接続されている。軸発電機モータ66は、船内系統44から電力を得て船舶推進用プロペラ68を加勢できるようになっている一方で、船舶推進用プロペラ68からの動力を回収して発電し、船内系統44へと給電できるようになっている。
A plurality (three in FIG. 2) of power generation diesel engines 62 and a generator 64 are connected to the inboard system 44 in parallel. These power generation diesel engines 62 are started and stopped in accordance with the onboard power demand.
Further, a shaft generator motor 66 is connected to the inboard system 44. The shaft generator motor 66 is configured to obtain electric power from the inboard system 44 and to energize the ship propeller 68, while collecting power from the ship propeller 68 to generate electric power to the inboard system 44. Can be powered.
 本実施形態によれば、以下の作用効果を奏する。
 130~140℃で作動する有機ランキンサイクルによる排熱回収発電装置に加え、例えば250℃以上といった温度レベルが高い船舶推進用ディーゼルエンジンの排ガスについては高効率が期待できる蒸気タービン50にて発電することとした。これにより、広い温度範囲に対して高効率に排熱回収発電が可能となる。
 また、排ガスによって駆動される排ガスパワータービン54を更に備えて発電を行うこととしたので、より高効率にて排熱回収発電を実現することができる。
According to this embodiment, there exist the following effects.
In addition to the exhaust heat recovery power generation system using an organic Rankine cycle that operates at 130 to 140 ° C, the steam turbine 50 that can expect high efficiency is generated for exhaust gas from a ship propulsion diesel engine with a high temperature level of, for example, 250 ° C or higher. It was. Thus, exhaust heat recovery power generation can be performed with high efficiency over a wide temperature range.
Moreover, since the exhaust gas power turbine 54 driven by the exhaust gas is further provided to generate power, exhaust heat recovery power generation can be realized with higher efficiency.
 なお、本実施形態では、蒸気タービン50及び排ガスパワータービン54の両方を用いて発電することとしたが、本発明はこれに限定されず、蒸気タービン50のみ、或いは排ガスパワータービン54のみを用いることとしても良い。 In the present embodiment, power generation is performed using both the steam turbine 50 and the exhaust gas power turbine 54. However, the present invention is not limited to this, and only the steam turbine 50 or only the exhaust gas power turbine 54 is used. It is also good.
[第3実施形態]
 次に、本発明の第3実施形態について図3を用いて説明する。本実施形態は、第1実施形態および第2実施形態に加えて、排ガスエコノマイザ46にて得られた蒸気を有機ランキンサイクルの熱源として用いる点が各上記実施形態と異なる。したがって、第1実施形態及び第2実施形態と同様の構成については同一符号を付し、その説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. In addition to the first and second embodiments, this embodiment is different from each of the above embodiments in that the steam obtained by the exhaust gas economizer 46 is used as a heat source for the organic Rankine cycle. Accordingly, the same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 排ガスエコノマイザ46には、過熱器48よりも低温側(排ガス流れ下流側)に位置する蒸発器49が設けられている。蒸発器49にて蒸発した蒸気は、蒸気ドラム72へと導かれる。この蒸気ドラム72の上方に滞留する蒸気は、加熱器(第4排熱回収器)70へと導かれる。加熱器70では、排熱回収系統7を流れる熱媒水が加熱され、蒸発器30へと導かれる。 The exhaust gas economizer 46 is provided with an evaporator 49 located on a lower temperature side (a downstream side of the exhaust gas flow) than the superheater 48. The vapor evaporated in the evaporator 49 is guided to the vapor drum 72. The steam staying above the steam drum 72 is guided to a heater (fourth exhaust heat recovery device) 70. In the heater 70, the heat transfer water flowing through the exhaust heat recovery system 7 is heated and guided to the evaporator 30.
 このように、本実施形態では、第1空気冷却器5にて加熱された熱媒水が、加熱器70にて更に加熱されるので、蒸発器30における有機冷媒の加熱温度を高めることができる。これにより、有機ランキンサイクルによる発電を高効率とすることができる。また、排ガスエコノマイザ46にて得られた蒸気を有効利用することができるので、排熱回収発電を更に高効率とすることができる。 Thus, in this embodiment, since the heat-medium water heated with the 1st air cooler 5 is further heated with the heater 70, the heating temperature of the organic refrigerant in the evaporator 30 can be raised. . Thereby, the electric power generation by an organic Rankine cycle can be made highly efficient. Moreover, since the steam obtained by the exhaust gas economizer 46 can be used effectively, the exhaust heat recovery power generation can be made more efficient.
 なお、図3において、符号3は船舶推進用ディーゼルエンジンを示しており、その側方にはシリンダジャケット2が模式的に示されている。また、符号74は蒸気タービン50の下流側に接続された蒸気タービンコンデンサ、符号76は復水ポンプ、符号78はグランドコンデンサ、符号80は大気圧コンデンサ、符号82は給水ポンプを示している。さらに、符号84は蒸気ドラム72内の水を蒸発器49へと送るボイラドラム水循環ポンプを示し、符号86は、蒸気ドラム72内の水位を調整する蒸気ドラムレベル制御弁を示している。 In addition, in FIG. 3, the code | symbol 3 has shown the diesel engine for ship propulsion, and the cylinder jacket 2 is typically shown by the side. Reference numeral 74 denotes a steam turbine condenser connected to the downstream side of the steam turbine 50, reference numeral 76 denotes a condensate pump, reference numeral 78 denotes a ground condenser, reference numeral 80 denotes an atmospheric pressure condenser, and reference numeral 82 denotes a water supply pump. Further, reference numeral 84 denotes a boiler drum water circulation pump that sends water in the steam drum 72 to the evaporator 49, and reference numeral 86 denotes a steam drum level control valve that adjusts the water level in the steam drum 72.
[第4実施形態]
 次に、本発明の第4実施形態について図4を用いて説明する。本実施形態は、第1実施形態に対して、排熱回収経路7’の構成が異なる。したがって、第1実施形態と同様の構成については同一符号を付し、その説明を省略する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. The present embodiment differs from the first embodiment in the configuration of the exhaust heat recovery path 7 ′. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図4に示されているように、本実施形態は、排熱回収経路7’の熱媒水としてジャケット冷却水をそのまま用いるようにしている。すなわち、シリンダジャケット2から流出したジャケット冷却水は、第1空気冷却器(第3排熱回収器)5へと流れる。第1空気冷却器5にて圧縮空気を冷却して昇温したジャケット冷却水は、蒸発器30にて有機流体を蒸発させた後、ジャケット冷却水ポンプ12へと戻る。 As shown in FIG. 4, according to the present embodiment, jacket cooling water is used as it is as the heat transfer water in the exhaust heat recovery path 7 '. That is, the jacket cooling water flowing out from the cylinder jacket 2 flows to the first air cooler (third exhaust heat recovery device) 5. The jacket cooling water heated by cooling the compressed air with the first air cooler 5 evaporates the organic fluid with the evaporator 30 and then returns to the jacket cooling water pump 12.
 このように、本実施形態によれば、ジャケット冷却水を排熱回収用の熱媒体として用いることとしたので、ジャケット冷却水と熱交換する予熱器1(図1参照)を省略することができ、簡素化した構造を実現できる。また、第1空気冷却器5から熱回収したジャケット冷却水を、他の熱媒を介することなく蒸発器30に直接導くので、少ない熱損失で回収熱を蒸発器30に導くことができる。 Thus, according to this embodiment, since the jacket cooling water is used as the heat medium for exhaust heat recovery, the preheater 1 (see FIG. 1) for exchanging heat with the jacket cooling water can be omitted. A simplified structure can be realized. Further, since the jacket cooling water recovered from the first air cooler 5 is directly guided to the evaporator 30 without passing through another heat medium, the recovered heat can be guided to the evaporator 30 with a small heat loss.
[第5実施形態]
 次に、本発明の第5実施形態について図5を用いて説明する。本実施形態は、第1実施形態に対して、排熱回収経路7と有機流体経路9との間に熱媒循環経路8が設けられている点が異なる。したがって、第1実施形態と同様の構成については同一符号を付し、その説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that a heat medium circulation path 8 is provided between the exhaust heat recovery path 7 and the organic fluid path 9. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図5に示されているように、排熱回収経路7と有機流体経路9との間に熱媒循環経路8が設けられている。この熱媒循環経路8は閉回路とされており、熱媒体を循環させるための熱媒循環ポンプ11が設けられている。この熱媒循環ポンプ11により、熱媒は、排熱回収熱交換器13及び蒸発器30を通過して循環する。排熱回収熱交換器13では、排熱回収経路7の熱媒水から熱回収するように熱交換が行われる。
 熱媒循環経路8を流れる熱媒は、排熱回収経路7の熱媒水よりも沸点が高い、例えば熱媒体油などが用いられる。熱媒体油としては、例えば、松村石油株式会社から入手可能なバーレルサーム(登録商標)が用いられる。
As shown in FIG. 5, a heat medium circulation path 8 is provided between the exhaust heat recovery path 7 and the organic fluid path 9. The heat medium circulation path 8 is a closed circuit, and a heat medium circulation pump 11 for circulating the heat medium is provided. By this heat medium circulation pump 11, the heat medium circulates through the exhaust heat recovery heat exchanger 13 and the evaporator 30. In the exhaust heat recovery heat exchanger 13, heat exchange is performed so as to recover heat from the heat transfer medium in the exhaust heat recovery path 7.
As the heat medium flowing through the heat medium circulation path 8, for example, heat medium oil having a boiling point higher than that of the heat medium water in the exhaust heat recovery path 7 is used. For example, Barretherm (registered trademark) available from Matsumura Oil Co., Ltd. is used as the heat medium oil.
 このように、第1実施形態のように熱媒体経路7の熱媒水を蒸発器30に導くのではなく、熱媒循環経路8を介して回収した排熱を蒸発器30に導くようにしても良い。
 排熱回収経路7には水が用いられるため、水が沸騰し蒸気にならないように排熱収経路7内を加圧する必要があり、第1空気冷却器5の入口空気温度次第では高圧仕様になる。そこで、本実施形態のように熱媒循環経路8を設け、水よりも沸点の高い熱媒油等を主に使用すれば、熱媒循環経路8の圧力を大気圧で使用でき、排熱回収経路7から分離した低圧ラインとして構成可能となる。
 また、有機ランキンサイクル用発電装置10を、排熱回収経路7のあるディーゼルエンジン近くに設置できない配置上の制約がある場合においては、熱媒循環経路8を導入することで、排熱回収経路7のラインが遠距離になることを回避した上で、熱媒循環経路8の低圧ラインを用いて有機ランキンサイクル用発電装置10に排熱を導くことが可能となる。
As described above, the heat transfer water in the heat medium path 7 is not guided to the evaporator 30 as in the first embodiment, but the exhaust heat recovered through the heat medium circulation path 8 is guided to the evaporator 30. Also good.
Since water is used in the exhaust heat recovery path 7, it is necessary to pressurize the exhaust heat collection path 7 so that the water does not boil and become steam. Depending on the inlet air temperature of the first air cooler 5, the high pressure specification is required. Become. Therefore, if the heat medium circulation path 8 is provided as in the present embodiment and a heat medium oil having a boiling point higher than that of water is mainly used, the pressure of the heat medium circulation path 8 can be used at atmospheric pressure, and exhaust heat recovery is performed. It can be configured as a low-pressure line separated from the path 7.
In addition, when there is an arrangement restriction in which the organic Rankine cycle power generation device 10 cannot be installed near the diesel engine having the exhaust heat recovery path 7, the exhaust heat recovery path 7 is introduced by introducing the heat medium circulation path 8. It is possible to guide exhaust heat to the organic Rankine cycle power generation device 10 using the low-pressure line of the heating medium circulation path 8 while avoiding the long line.
[第6実施形態]
 次に、本発明の第6実施形態について図6を用いて説明する。本実施形態は、第4実施形態に対して、排熱回収経路7’と有機流体経路9との間に、第5実施形態と同様の熱媒循環経路8(図5参照)が設けられている点が異なる。したがって、第4実施形態と同様の構成については同一符号を付し、その説明を省略する。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described with reference to FIG. In the present embodiment, a heating medium circulation path 8 (see FIG. 5) similar to that in the fifth embodiment is provided between the exhaust heat recovery path 7 ′ and the organic fluid path 9 with respect to the fourth embodiment. Is different. Therefore, the same components as those in the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図6に示されているように、排熱回収経路7’と有機流体経路9との間に熱媒循環経路8が設けられている。この熱媒循環経路8は閉回路とされており、熱媒体を循環させるための熱媒循環ポンプ11が設けられている。この熱媒循環ポンプ11により、熱媒は、排熱回収熱交換器13及び蒸発器30を通過して循環する。排熱回収13では、排熱回収経路7’のジャケット冷却水から熱回収するように熱交換が行われる。
 熱媒循環経路8を流れる熱媒は、排熱回収経路7の熱媒水よりも沸点が高い、例えば熱媒体油などが用いられる。熱媒体油としては、例えば、松村石油株式会社から入手可能なバーレルサーム(登録商標)が用いられる。
As shown in FIG. 6, a heat medium circulation path 8 is provided between the exhaust heat recovery path 7 ′ and the organic fluid path 9. The heat medium circulation path 8 is a closed circuit, and a heat medium circulation pump 11 for circulating the heat medium is provided. By this heat medium circulation pump 11, the heat medium circulates through the exhaust heat recovery heat exchanger 13 and the evaporator 30. In the exhaust heat recovery 13, heat exchange is performed so that heat is recovered from the jacket cooling water in the exhaust heat recovery path 7 ′.
As the heat medium flowing through the heat medium circulation path 8, for example, heat medium oil having a boiling point higher than that of the heat medium water in the exhaust heat recovery path 7 is used. For example, Barretherm (registered trademark) available from Matsumura Oil Co., Ltd. is used as the heat medium oil.
 このように、第4実施形態のように熱媒体経路7’のジャケット冷却水を蒸発器30に導くのではなく、熱媒循環経路8を介して回収した排熱を蒸発器30に導くようにしても良い。
 本実施形態も第5実施形態と同様に、熱媒循環経路8を導入することで、排熱回収経路7のラインが遠距離になることを回避した上で、熱媒循環経路8の低圧ラインを用いた構成が可能となる。
Thus, instead of guiding the jacket cooling water of the heat medium path 7 ′ to the evaporator 30 as in the fourth embodiment, the exhaust heat recovered via the heat medium circulation path 8 is guided to the evaporator 30. May be.
In the present embodiment, similarly to the fifth embodiment, by introducing the heat medium circulation path 8, the line of the exhaust heat recovery path 7 is avoided from becoming a long distance, and then the low pressure line of the heat medium circulation path 8. A configuration using can be made.
 なお、上述した各実施形態の排熱回収発電装置は、船舶への適用を例として説明したが、本発明はこれに限定されず、例えば発電等に用いられる陸用の内燃機関に適用することもできる。 In addition, although the exhaust heat recovery power generation apparatus of each embodiment mentioned above demonstrated as an example application to a ship, this invention is not limited to this, For example, it applies to a land internal combustion engine used for power generation etc. You can also.
1 予熱器(第1排熱回収器)
5 第1空気冷却器(第2排熱回収器,第3排熱回収器)
7,7’ 排熱回収経路
8 熱媒循環経路
9 有機流体経路
10 排熱回収発電装置
30 蒸発器
31 有機流体用ポンプ
32 パワータービン(タービン)
36 凝縮器
38 発電機
70 加熱器(第4排熱回収器)
1 Preheater (first exhaust heat recovery device)
5 1st air cooler (2nd exhaust heat recovery device, 3rd exhaust heat recovery device)
7, 7 'Waste heat recovery path 8 Heat medium circulation path 9 Organic fluid path 10 Waste heat recovery power generator 30 Evaporator 31 Pump for organic fluid 32 Power turbine (turbine)
36 Condenser 38 Generator 70 Heater (4th exhaust heat recovery device)

Claims (9)

  1.  内燃機関本体を冷却するエンジン冷却水、及び、該内燃機関の過給機から吐出される圧縮空気を冷却する空気冷却器とから熱回収する排熱回収経路と、
     該排熱回収経路にて回収された回収熱によって有機流体を蒸発させる蒸発器と、
     該蒸発器によって蒸発させられた前記有機流体によって駆動されるタービンと、
     該タービンの回転出力によって発電する発電機と、
     タービンを通過した前記有機流体を凝縮させる凝縮器と、
    を備えている排熱回収発電装置。
    An exhaust heat recovery path for recovering heat from engine cooling water for cooling the internal combustion engine body, and an air cooler for cooling compressed air discharged from the supercharger of the internal combustion engine;
    An evaporator for evaporating the organic fluid by the recovered heat recovered in the exhaust heat recovery path;
    A turbine driven by the organic fluid evaporated by the evaporator;
    A generator for generating electricity by the rotational output of the turbine;
    A condenser for condensing the organic fluid that has passed through the turbine;
    An exhaust heat recovery power generation device.
  2.  前記排熱回収経路は、
     前記エンジン冷却水と熱交換を行う第1排熱回収器と、
     前記空気冷却器としての第2排熱回収器と、
    を備え、
     前記第1排熱回収器および前記第2排熱回収器にて熱回収した排熱回収媒体が前記蒸発器にて前記有機流体と熱交換する請求項1に記載の排熱回収発電装置。
    The exhaust heat recovery path is
    A first exhaust heat recovery unit that exchanges heat with the engine coolant;
    A second exhaust heat recovery device as the air cooler;
    With
    The exhaust heat recovery power generator according to claim 1, wherein the exhaust heat recovery medium recovered by the first exhaust heat recovery device and the second exhaust heat recovery device exchanges heat with the organic fluid in the evaporator.
  3.  前記排熱回収経路は、前記エンジン冷却水を排熱回収媒体とするとともに、
     該エンジン冷却水と前記圧縮空気との熱交換を行う前記空気冷却器としての第3排熱回収器を備え、
     該第3排熱回収器にて熱回収した前記エンジン冷却水が前記蒸発器にて前記有機流体と熱交換する請求項1に記載の排熱回収発電装置。
    The exhaust heat recovery path uses the engine coolant as an exhaust heat recovery medium,
    A third exhaust heat recovery device as the air cooler for performing heat exchange between the engine coolant and the compressed air;
    The exhaust heat recovery power generator according to claim 1, wherein the engine coolant recovered by the third exhaust heat recovery unit exchanges heat with the organic fluid in the evaporator.
  4.  熱媒が循環するとともに、前記蒸発器にて該熱媒が有機流体と熱交換する熱媒循環経路を備え、
     前記排熱回収経路は、
     前記エンジン冷却水と熱交換を行う第1排熱回収器と、
     前記空気冷却器としての第2排熱回収器と、
     前記第1排熱回収器および前記第2排熱回収器にて熱回収した排熱回収媒体が前記熱媒循環経路の熱媒と熱交換する請求項1に記載の排熱回収発電装置。
    A heating medium circulates, and a heating medium circulation path through which the heating medium exchanges heat with an organic fluid in the evaporator,
    The exhaust heat recovery path is
    A first exhaust heat recovery unit that exchanges heat with the engine coolant;
    A second exhaust heat recovery device as the air cooler;
    The exhaust heat recovery power generator according to claim 1, wherein the exhaust heat recovery medium recovered by the first exhaust heat recovery device and the second exhaust heat recovery device exchanges heat with the heat medium in the heat medium circulation path.
  5.  熱媒が循環するとともに、前記蒸発器にて該熱媒が有機流体と熱交換する熱媒循環経路を備え、
     前記排熱回収経路は、前記エンジン冷却水を排熱回収媒体とするとともに、
     該エンジン冷却水と前記圧縮空気との熱交換を行う前記空気冷却器としての第3排熱回収器を備え、
     該第3排熱回収器にて熱回収した前記エンジン冷却水が前記熱媒循環経路の熱媒と熱交換する請求項1に記載の排熱回収発電装置。
    A heating medium circulates, and a heating medium circulation path through which the heating medium exchanges heat with an organic fluid in the evaporator,
    The exhaust heat recovery path uses the engine coolant as an exhaust heat recovery medium,
    A third exhaust heat recovery device as the air cooler for performing heat exchange between the engine coolant and the compressed air;
    The exhaust heat recovery power generator according to claim 1, wherein the engine coolant recovered by the third exhaust heat recovery unit exchanges heat with the heat medium in the heat medium circulation path.
  6.  前記内燃機関の排ガスと熱交換する排ガス熱交換器にて生成された蒸気によって駆動される蒸気タービン発電機を備えている請求項1から5のいずれかに記載の排熱回収発電装置。 The exhaust heat recovery power generator according to any one of claims 1 to 5, further comprising a steam turbine generator driven by steam generated by an exhaust gas heat exchanger that exchanges heat with the exhaust gas of the internal combustion engine.
  7.  前記排ガス熱交換器は、給水を蒸発させる蒸発部と、該蒸発部にて生成された蒸気を過熱する過熱部とを備え、
     前記排熱回収経路は、前記蒸発部にて得られた蒸気と熱交換する第4排熱回収器を備えている請求項6に記載の排熱回収発電装置。
    The exhaust gas heat exchanger includes an evaporation section that evaporates feed water, and an overheating section that superheats steam generated in the evaporation section,
    The exhaust heat recovery power generation apparatus according to claim 6, wherein the exhaust heat recovery path includes a fourth exhaust heat recovery device that exchanges heat with the steam obtained in the evaporation unit.
  8.  前記内燃機関の排ガスによって駆動されるガスタービン発電機を備えている請求項1から7のいずれかに記載の排熱回収発電装置。 The exhaust heat recovery power generator according to any one of claims 1 to 7, further comprising a gas turbine generator driven by the exhaust gas of the internal combustion engine.
  9.  請求項1から8のいずれかに記載の排熱回収発電装置を備えている船舶。 A ship equipped with the exhaust heat recovery power generator according to any one of claims 1 to 8.
PCT/JP2011/059806 2010-04-26 2011-04-21 Exhaust heat recovery power generation device and vessel provided therewith WO2011136118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800168948A CN102834591A (en) 2010-04-26 2011-04-21 Exhaust heat recovery power generation device and vessel provided therewith
KR1020127024546A KR20120136366A (en) 2010-04-26 2011-04-21 Exhaust heat recovery power generation device and vessel provided therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010100792A JP2011231636A (en) 2010-04-26 2010-04-26 Exhaust heat recovery power generator and ship provided with exhaust heat recovery power generator
JP2010-100792 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011136118A1 true WO2011136118A1 (en) 2011-11-03

Family

ID=44861424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059806 WO2011136118A1 (en) 2010-04-26 2011-04-21 Exhaust heat recovery power generation device and vessel provided therewith

Country Status (4)

Country Link
JP (1) JP2011231636A (en)
KR (1) KR20120136366A (en)
CN (1) CN102834591A (en)
WO (1) WO2011136118A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797833A (en) * 2012-08-31 2012-11-28 长城汽车股份有限公司 Cooling and energy-saving device for vehicle heat-generating member
JP2013104336A (en) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd Exhaust heat recovery type ship propulsion apparatus
WO2013117296A1 (en) * 2012-02-11 2013-08-15 Daimler Ag Machine for recovering energy from a waste heat flow of an internal combustion engine in a vehicle having a working medium circuit
CN104487661A (en) * 2012-10-26 2015-04-01 三菱重工业株式会社 Internal combustion engine system, ship provided with same, and method for operating internal combustion engine system
US9745881B2 (en) 2013-12-23 2017-08-29 Hyundai Motor Company System for recycling exhaust heat from internal combustion engine
EP3354869A4 (en) * 2015-09-24 2018-10-31 Mitsubishi Heavy Industries, Ltd. Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
CN110056448A (en) * 2019-04-23 2019-07-26 东风商用车有限公司 A kind of EGR engine Waste Heat Recovery System and its control method

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002417B2 (en) * 2012-01-20 2016-10-05 日立造船株式会社 Waste heat recovery device
KR101270867B1 (en) 2012-02-29 2013-06-05 에스티엑스조선해양 주식회사 Parallel waste heat recovery system and method with organic rankine cycle for ship
KR101356005B1 (en) * 2012-03-09 2014-01-29 대우조선해양 주식회사 Energy saving system of ship by using waste heat
CN102628412A (en) * 2012-04-20 2012-08-08 江苏科技大学 Waste heat power generation system of marine diesel engine based on organic Rankine cycle
US9322300B2 (en) 2012-07-24 2016-04-26 Access Energy Llc Thermal cycle energy and pumping recovery system
FI20126065A (en) * 2012-10-11 2013-12-02 Waertsilae Finland Oy Cooling arrangement for a combination piston engine power plant
KR101356122B1 (en) 2012-10-17 2014-01-29 한국해양과학기술원 Multi-turbine power plant system by using ocean thermal energy conversion (otec)
JP5916598B2 (en) * 2012-12-20 2016-05-11 三菱重工業株式会社 Power system
KR102011859B1 (en) * 2012-12-27 2019-08-19 대우조선해양 주식회사 Energy saving system for using waste heat of ship
US9540961B2 (en) 2013-04-25 2017-01-10 Access Energy Llc Heat sources for thermal cycles
CN103244214B (en) * 2013-05-07 2015-02-25 华北电力大学 Smoke condensation heat recovery combined heat and power supply system based on organic Rankine cycle
CN103322634B (en) * 2013-05-27 2016-03-02 洛阳双瑞精铸钛业有限公司 A kind of marine engine cooling water heat utilizes device
JP6214253B2 (en) * 2013-07-12 2017-10-18 日立造船株式会社 Boiler system
JP6214252B2 (en) * 2013-07-12 2017-10-18 日立造船株式会社 Boiler system
JP2015031268A (en) * 2013-08-07 2015-02-16 日立造船株式会社 Waste heat recovery device
JP6195299B2 (en) * 2013-10-23 2017-09-13 三菱重工業株式会社 Waste heat recovery system, ship and waste heat recovery method
CN103726950B (en) * 2013-12-27 2016-01-20 天津大学 Double-loop waste heat recovery system of two-stroke internal combustion engine
JP5951593B2 (en) * 2013-12-27 2016-07-13 三菱重工業株式会社 Waste heat recovery device, waste heat recovery type ship propulsion device, and waste heat recovery method
JP6194273B2 (en) 2014-04-04 2017-09-06 株式会社神戸製鋼所 Waste heat recovery device and waste heat recovery method
JP2015199413A (en) * 2014-04-07 2015-11-12 新潟原動機株式会社 Power generating system for ship
CN103982259B (en) * 2014-04-22 2015-09-16 浙江银轮机械股份有限公司 A kind of diesel generator exhaust system based on ORC system
CN104165102A (en) * 2014-04-22 2014-11-26 浙江银轮机械股份有限公司 Engine waste heat recovery system based on organic Rankine cycle
JP6532652B2 (en) * 2014-06-10 2019-06-19 三菱重工業株式会社 Exhaust heat recovery apparatus, internal combustion engine system, ship, and exhaust heat recovery method
CN107429578B (en) * 2015-03-20 2020-06-23 西门子歌美飒可再生能源公司 Thermal energy storage apparatus
CN104879178A (en) * 2015-05-26 2015-09-02 阮炯明 Method and system for generating power through high-pressure cryogenic fluid, recycling low-grade waste heat and cooling compressor inlet gas
CN106989607B (en) * 2017-04-13 2019-01-25 中南大学 A kind of recycling of high-temperature flue gas waste heat and advanced purification system
JP6761380B2 (en) * 2017-06-22 2020-09-23 株式会社神戸製鋼所 Thermal energy recovery system and ships equipped with it
KR102391284B1 (en) * 2017-09-01 2022-04-27 삼성중공업(주) Combined cycle gas power plant
KR102391285B1 (en) * 2017-09-15 2022-04-27 삼성중공업(주) Combined cycle gas power plant
JP7212149B2 (en) * 2018-09-10 2023-01-24 テーゲーエー、マリン、ガス、エンジニヤリング、ゲーエムベーハー An assembly that evaporates liquefied gas to provide combustion gases for an engine
CN110017183A (en) * 2018-09-20 2019-07-16 承德石油高等专科学校 Engine Two-way Cycle waste heat recovery generating system
JP7150630B2 (en) * 2019-02-07 2022-10-11 三菱重工マリンマシナリ株式会社 Exhaust heat recovery device and its control method
CN111570089A (en) * 2019-02-19 2020-08-25 上海必修福企业管理有限公司 Tail heat power generation device and method
CN110332036B (en) * 2019-07-02 2024-04-30 哈尔滨工程大学 Closed cooling system for recycling energy of bypass waste gas of diesel engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149514A (en) * 1976-06-07 1977-12-12 Kawasaki Heavy Ind Ltd Effective use of heat generated from supercharged air of diesel engine
JPS5557609A (en) * 1978-10-25 1980-04-28 Sulzer Ag Internal combustion engine
JPS55117054A (en) * 1979-02-22 1980-09-09 Mashiinterumitsukusu Soc Et Method and device for recovering heat energy of supercharged internal combustion engine
JPS5865917A (en) * 1981-10-15 1983-04-19 Takuma Sogo Kenkyusho:Kk Power generating device of exhaust heat recovery in diesel engine
JPS59131739A (en) * 1983-01-18 1984-07-28 Mitsui Eng & Shipbuild Co Ltd Internal-combustion engine
WO2006138459A2 (en) * 2005-06-16 2006-12-28 Utc Power Corporation Organic rankine cycle mechanically and thermally coupled to an engine driving a common load
JP2007270623A (en) * 2006-03-30 2007-10-18 Tokyo Electric Power Co Inc:The Steam generator and internal combustion engine system
JP2008008224A (en) * 2006-06-29 2008-01-17 Denso Corp Waste heat utilization device
JP2008202474A (en) * 2007-02-19 2008-09-04 Toyota Motor Corp Exhaust heat recovery device and engine
JP2009185773A (en) * 2008-02-08 2009-08-20 Sanden Corp Exhaust heat utilization device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048651A1 (en) * 2001-12-03 2003-06-12 The Tokyo Electric Power Company, Incorporated Exhaust heat recovery system
JP2006185990A (en) * 2004-12-27 2006-07-13 Renesas Technology Corp Semiconductor apparatus and its manufacturing method, and electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149514A (en) * 1976-06-07 1977-12-12 Kawasaki Heavy Ind Ltd Effective use of heat generated from supercharged air of diesel engine
JPS5557609A (en) * 1978-10-25 1980-04-28 Sulzer Ag Internal combustion engine
JPS55117054A (en) * 1979-02-22 1980-09-09 Mashiinterumitsukusu Soc Et Method and device for recovering heat energy of supercharged internal combustion engine
JPS5865917A (en) * 1981-10-15 1983-04-19 Takuma Sogo Kenkyusho:Kk Power generating device of exhaust heat recovery in diesel engine
JPS59131739A (en) * 1983-01-18 1984-07-28 Mitsui Eng & Shipbuild Co Ltd Internal-combustion engine
WO2006138459A2 (en) * 2005-06-16 2006-12-28 Utc Power Corporation Organic rankine cycle mechanically and thermally coupled to an engine driving a common load
JP2007270623A (en) * 2006-03-30 2007-10-18 Tokyo Electric Power Co Inc:The Steam generator and internal combustion engine system
JP2008008224A (en) * 2006-06-29 2008-01-17 Denso Corp Waste heat utilization device
JP2008202474A (en) * 2007-02-19 2008-09-04 Toyota Motor Corp Exhaust heat recovery device and engine
JP2009185773A (en) * 2008-02-08 2009-08-20 Sanden Corp Exhaust heat utilization device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104336A (en) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd Exhaust heat recovery type ship propulsion apparatus
WO2013117296A1 (en) * 2012-02-11 2013-08-15 Daimler Ag Machine for recovering energy from a waste heat flow of an internal combustion engine in a vehicle having a working medium circuit
CN104106201A (en) * 2012-02-11 2014-10-15 戴姆勒股份公司 Machine for recovering energy from a waste heat flow of an internal combustion engine in a vehicle having a working medium circuit
CN102797833A (en) * 2012-08-31 2012-11-28 长城汽车股份有限公司 Cooling and energy-saving device for vehicle heat-generating member
CN104487661A (en) * 2012-10-26 2015-04-01 三菱重工业株式会社 Internal combustion engine system, ship provided with same, and method for operating internal combustion engine system
US9745881B2 (en) 2013-12-23 2017-08-29 Hyundai Motor Company System for recycling exhaust heat from internal combustion engine
EP3354869A4 (en) * 2015-09-24 2018-10-31 Mitsubishi Heavy Industries, Ltd. Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
CN110056448A (en) * 2019-04-23 2019-07-26 东风商用车有限公司 A kind of EGR engine Waste Heat Recovery System and its control method

Also Published As

Publication number Publication date
CN102834591A (en) 2012-12-19
JP2011231636A (en) 2011-11-17
KR20120136366A (en) 2012-12-18

Similar Documents

Publication Publication Date Title
WO2011136118A1 (en) Exhaust heat recovery power generation device and vessel provided therewith
KR101290289B1 (en) Apparatus for ship's orc power generating system
WO2011089997A1 (en) Waste heat recovery power generation device and ship with same
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
US8850814B2 (en) Waste heat recovery system
US10927713B2 (en) Intake air cooling method, intake air cooling device executing said method, and waste heat recovery facility and gas turbine plant each comprising said intake air cooling device
JP5683359B2 (en) Waste heat recovery generator
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
JP2013180625A (en) Exhaust heat recovery type ship propulsion device, and operation method therefor
JP6941587B2 (en) Combined cycle plant and its operation method
JP2013160132A (en) Exhaust-heat recovery and utilization system
KR102011859B1 (en) Energy saving system for using waste heat of ship
JP2015081569A (en) Exhaust heat recovery system, ship, and exhaust heat recovery method
WO2017051450A1 (en) Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
JP7057323B2 (en) Thermal cycle system
JP2012082750A (en) Waste heat recovery power generator and vessel equipped with waste heat recovery power generator
JP2015096703A (en) Heat recovery power generation system
JP5527513B2 (en) Fluid machine drive system
JP6382127B2 (en) Heat exchanger, energy recovery device, and ship
JP2018021485A (en) Multistage rankine cycle system, internal combustion engine and operation method of multistage rankine cycle system
KR20140085003A (en) Energy saving system for using waste heat of ship
KR20140086203A (en) Energy saving system for using waste heat of ship
KR20140085002A (en) Energy saving system for using waste heat of ship
KR101270867B1 (en) Parallel waste heat recovery system and method with organic rankine cycle for ship
JP2023093168A (en) Marine power generation system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016894.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024546

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774901

Country of ref document: EP

Kind code of ref document: A1