WO2011135801A1 - シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場 - Google Patents

シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場 Download PDF

Info

Publication number
WO2011135801A1
WO2011135801A1 PCT/JP2011/002272 JP2011002272W WO2011135801A1 WO 2011135801 A1 WO2011135801 A1 WO 2011135801A1 JP 2011002272 W JP2011002272 W JP 2011002272W WO 2011135801 A1 WO2011135801 A1 WO 2011135801A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
fiber structure
fiber
fibers
scaffold
Prior art date
Application number
PCT/JP2011/002272
Other languages
English (en)
French (fr)
Inventor
中谷 将也
高橋 誠
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012512649A priority Critical patent/JP5824645B2/ja
Priority to EP11774590.1A priority patent/EP2565311A4/en
Priority to CN201180021010.8A priority patent/CN102869823B/zh
Publication of WO2011135801A1 publication Critical patent/WO2011135801A1/ja
Priority to US13/620,493 priority patent/US9932239B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/17Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/10Mineral substrates
    • C12N2533/12Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • Y10T428/249964Fibers of defined composition

Definitions

  • the present invention relates to various electronic devices that require heat insulation, heat resistance, and voltage resistance, sheet-like fiber structures used for culture dish materials in cell culture, and batteries, heat insulation materials, and waterproof sheets using the same. And a scaffold for cell culture.
  • sheet-like fiber structures composed of inorganic materials such as silicon dioxide and glass and organic materials such as cellulose, polypropylene, and polyamide have been used as heat insulating materials and withstand voltage materials.
  • Electrolytic capacitors and storage batteries have a withstand voltage material called a separator placed between the positive electrode and the negative electrode together with the electrolyte.
  • the separator prevents short-circuiting between electrodes while allowing ions and electrons present in the electrolytic solution to pass therethrough.
  • a complex of a polymer material and an inorganic material is used as a culture dish material used during cell culture.
  • the composite is formed by filling or laminating an inorganic material such as silicon dioxide in a polymer material such as an olefin polymer or a polyester resin.
  • an inorganic material such as silicon dioxide
  • a polymer material such as an olefin polymer or a polyester resin.
  • a structure used as a culture dish during cell culture may be provided with a scaffold for attaching cells so that the cells can be cultured efficiently.
  • the scaffold supplies sufficient nutrients to the cells in culture and carbon dioxide, air, etc. as needed.
  • the scaffold used for the cell culture dish needs to supply sufficient nutrients and gas to the cell group, liquid permeability and air permeability are required. Moreover, when surface-treating a scaffold, it is necessary to perform heat treatment or chemical treatment, and heat resistance and chemical resistance are required.
  • the sheet-like fiber structure of the present invention has a plurality of fibers made of amorphous silicon dioxide.
  • the plurality of fibers are connected by being intertwined to form a void.
  • the sheet-like fiber structure of the present invention has an amorphous structure, it has higher flexibility than crystal fibers. For this reason, even if it is bent when used as a separator for a storage battery or an electrolytic capacitor or a pressure is applied, the sheet structure is not easily damaged.
  • the sheet-like fiber structure has a high heat resistance of 1000 ° C. or higher. Therefore, even if heat is generated by a short circuit around the sheet, the sheet structure is not damaged, and can be used for a storage battery with a high capacity and a large current. In addition, when used in a scaffold used for a cell culture dish, the sheet structure is not easily damaged even if heat treatment is performed.
  • amorphous silicon dioxide is a material with high alkali resistance and acid resistance. Therefore, when used as a separator, there is little deterioration even if it is immersed in an electrolytic solution for a long time. In addition, when used as a scaffold, the sheet structure is not damaged even if a surface treatment is performed by chemical treatment.
  • the fiber diameter is as thin as 0.01 ⁇ m or more and 1 ⁇ m or less
  • the porosity and liquid permeability of the sheet are increased, and the liquid permeability is thinner and higher than conventional separators. And withstand voltage.
  • the area contacting the cell membrane is only a small part of the nanostructure, so that the porosity and liquid permeability of the sheet are increased. Therefore, it is thinner and has higher liquid permeability than the conventional scaffold. As a result, the nutrients from the culture solution passing through the inside of the sheet-like fiber structure can be sufficiently supplied.
  • FIG. 1A is a side view of a sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 1B is an enlarged view of a main part of the sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an SEM image of the sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an SEM image of the sheet-like fiber structure according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an SEM image of the connection portion of the sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 5 is a conceptual diagram of a battery using the sheet-like fiber structure according to Embodiment 1 of the present invention.
  • FIG. 1A is a side view of a sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 1B is an enlarged view of a main part of the sheet-like fiber structure in Embodiment
  • FIG. 6 is a conceptual diagram of a heat insulating material using the sheet-like fiber structure according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing characteristics of the sheet-like fiber structure in Embodiment 2 of the present invention.
  • FIG. 8 is an enlarged cross-sectional view of a sheet-like fiber structure whose surface is modified with a water repellent film according to Embodiment 3 of the present invention.
  • FIG. 9 is a conceptual diagram when the sheet-like fiber structure in Embodiment 4 of the present invention is used for cell culture.
  • FIG. 10 is a conceptual diagram when the sheet-like fiber structure according to Embodiment 5 of the present invention is used for cell culture.
  • FIG. 1A is a side view of a sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 1B is an enlarged view of a main part of the sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an SEM image of the sheet-like fiber structure in Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an SEM image of the sheet-like fiber structure according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an SEM image of a connection portion of the sheet-like fiber structure in Embodiment 1 of the present invention.
  • the sheet-like fiber structure 20 has a gap portion 2 through which fibers 1 made of amorphous silicon dioxide are intertwined with each other and connected, and air or a solution is passed through the inside. .
  • the fibers 1 are intertwined and densely packed in a moderately curled state.
  • the fibers 1 may be connected by connecting portions 6 that are partially melted together. Thereby, the fiber 1 is connected more firmly. By having the connection portion 6 in this manner, the adjacent fibers 1 support each other, and thus become stronger than the case without the connection portion 6.
  • particles or a substrate made of Si as a raw material is prepared.
  • This raw material and a gas containing at least oxygen atoms are mixed and heated at 1000 ° C. to 1500 ° C. using a heater or the like.
  • the raw material evaporates when it reaches the vapor pressure temperature of the raw material.
  • the evaporated raw material combines with oxygen contained in the gas to form silicon monoxide (SiO), and then agglomerates, takes in oxygen in the atmosphere to become silicon dioxide (SiO 2 ), and the fibers 1 are deposited.
  • a substance serving as a nucleus exists in the vicinity of SiO, agglomeration is likely to occur, and the fibers 1 are efficiently precipitated.
  • a metal such as Pt, Fe, Co, Ni, or Au can be used, and the type of the metal is not particularly limited. Moreover, the substance used as a nucleus is not necessarily required.
  • the pressure at the time of heating is lower than atmospheric pressure, the vapor pressure temperature of the raw material is lowered and the material easily evaporates, so that more fibers 1 can be formed.
  • the productivity of the fiber 1 is improved.
  • the sheet 1 thus formed is entangled and overlapped to form a sheet-like fiber structure 20.
  • the sheet is formed by the process of growing the fiber 1 and a case where the sheet is formed after the fiber 1 is grown and formed.
  • Such conditions depend on the temperature at which the fiber 1 is formed.
  • the sheet-like fiber structure 20 when heat of about 1100 ° C. or higher is applied to the sheet-like fiber structure 20, the sheet-like fiber structure 20 is thermally melted.
  • the thermally melted SiO 2 fiber is bonded when there is a portion in contact with the adjacent fiber in the cooling process, and forms a sheet-like fiber structure 20 having a plurality of connecting portions 6 as shown in FIG. . Since the sheet-like fiber structures connected in this way have the voids 2, the surface area can be kept large. Furthermore, since the fibers 1 support each other, the fibers 1 become stronger than when there is no connection portion 6.
  • connection part 6 may be formed also in the process in which the fiber 1 grows.
  • the formation of the connecting portion 6 depends on the temperature at which the fiber 1 is formed. In particular, when a silicon substrate is used as a raw material, the fibers 1 are densely packed on the surface of the bonding portion between the substrate and the fibers 1 in the fiber 1 formation process, so that melting easily occurs, and the connecting portions 6 are easily formed.
  • a gas necessary for forming the fiber 1 in addition to oxygen, a gas having an oxidizing action (that is, supplying oxygen) such as dinitrogen monoxide (N 2 O) and carbon monoxide (CO) can be used. It is. However, since these gases contain impurities other than oxygen, they affect the formation process of the fibers 1 and the formation process of the sheet-like fiber structure 20, and therefore it is necessary to appropriately control the concentration, temperature, and pressure.
  • the fiber 1 and the sheet-like fiber structure 20 having a desired shape can be formed by changing these conditions.
  • the diameter (thickness) of the fiber 1 can be changed from 0.01 ⁇ m to 1 ⁇ m.
  • the length of the fiber 1 can be changed from 1 ⁇ m to 500 ⁇ m.
  • the sheet-like fiber structure 20 is composed of fibers 1 made of amorphous silicon dioxide and voids 2.
  • the gap portion 2 can contain a large amount of liquid material such as the electrolytic solution 3.
  • FIG. 5 is a conceptual diagram of a battery using the sheet-like fiber structure 20 according to Embodiment 1 of the present invention. Electrodes 4 and 5 made of different materials such as aluminum and cobalt are disposed on both sides of the sheet-like fiber structure 20 in which the electrolytic solution 3 is contained in the gap 2. When the ionization tendency differs between the electrodes 4 and 5, ions in the electrolytic solution 3 move between the electrodes, and a battery for taking out current can be obtained.
  • the distance between the electrode 4 and the electrode 5 is a factor that determines the ion movement time.
  • the distance between the electrodes should be as small as possible. However, if the distance between the electrodes is reduced, a short circuit is likely to occur between the electrodes 4 and 5.
  • separators used in batteries are used to prevent short-circuiting, but separators must not inhibit the flow of ions. For this reason, paper having a gap inside, polymer fiber or the like is used, and the electrolytic solution is contained in the gap.
  • the sheet-like fiber structure 20 made of fibers 1 is excellent as this separator.
  • the portion other than the fiber 1 is the void portion 2, and therefore, an extremely large amount of the electrolytic solution 3 can be contained, and the flow of ions is not hindered.
  • the diameter of the fiber 1 is 0.01 ⁇ m or more and 1 ⁇ m or less as compared with the conventional fiber, it can contain a large amount of electrolyte solution or allow the electrolyte solution to pass through (liquid permeability).
  • the length of the fiber 1 can be 1 ⁇ m or more and 500 ⁇ m or less, and the maximum distance between the fibers 1 adjacent to the fiber 1 can be 1 ⁇ m or more and 50 ⁇ m or less. Can be increased. Numerical values such as the diameter, length, and maximum interval of the fiber 1 are determined by the degree of hydrophilicity and water retention desired.
  • the sheet-like fiber structure 20 can be used under high temperature and high oxygen concentration. Since the adjacent fibers 1 are easily formed into a network structure by melting with heat, the strength can be increased, and there is a characteristic not found in carbon-based fibers.
  • the connecting portion 6 is formed by heat melting, but the connecting portion 6 may be formed by filling a resin. Alternatively, the connecting portion 6 may be formed by filling a resin and heat melting. By filling the gap 2 with resin, the connection strength of the sheet-like fiber structure 20 can be increased.
  • an adhesive can be used as the resin.
  • FIG. 6 is a conceptual diagram of a heat insulating material using the sheet-like fiber structure 20 according to Embodiment 2 of the present invention.
  • the method for producing the sheet-like fiber structure 20 is the same as that in the first embodiment.
  • a fiber 1 having a void 2 is sandwiched between base materials 7.
  • the substrate 7 is made of at least one of flat glass, silicon, quartz, ceramic, resin, and metal, for example. Since there are many voids 2 in the sheet-like fiber structure 20, the space between the base materials 7 is thermally insulated.
  • FIG. 7 is a diagram showing the characteristics of the sheet-like fiber structure 20 according to Embodiment 2 of the present invention.
  • the fiber 1 is sandwiched between two glass substrates which are the base material 7, and the state of heat conducted between the glass substrates is shown in a graph.
  • the time change of the temperature of the other base material 7 at the time of applying heat from one base material 7 is shown.
  • a case where nothing is sandwiched between the base materials 7 is indicated by a broken line
  • a case where the fibers 1 are sandwiched between the base materials 7 is indicated by a solid line.
  • the thermal conductivity is lower than when nothing is sandwiched.
  • the gap 2 when the gap 2 is evacuated, the heat conduction effect becomes larger.
  • the base materials 7 when the inside of the base material 7 is evacuated, the base materials 7 are in close contact with each other under external pressure. However, when there is the sheet-like fiber structure 20, the base materials 7 do not contact each other.
  • the sheet-like fiber structure 20 is in contact with the base material 7, but the fiber 1 of the sheet-like fiber structure 20 has a diameter of 1 ⁇ m or less, a length of 1 ⁇ m or more, and has a higher aspect ratio, so that it has a higher thermal conductivity. The degree becomes smaller.
  • the fibers 1 having the voids 2 may be formed entirely between the base material 7 and the base material 7 or may be patterned and formed only at specific locations.
  • FIG. 8 is an enlarged cross-sectional view of a sheet-like fiber structure whose surface is modified with a water repellent film according to Embodiment 3 of the present invention.
  • the surface of the fiber 1 of the sheet-like fiber structure 20 produced by the same method as in the first embodiment is modified with the water-repellent film 8.
  • the water repellent film 8 can be formed of, for example, a polymer in which CF 2 chains are connected, a fluorine compound in which a CF group is present, an alkylsilyl group, a fluorosilyl group, or a long chain alkyl group.
  • the surface of the fiber 1 is modified with a chemical substance having a water repellent effect, whereby the water repellent film 8 is formed on the surface of the fiber 1.
  • the sheet-like fiber structure 20 has extremely high water repellency, and liquid water such as water droplets cannot enter the sheet.
  • liquid water such as water droplets cannot enter the sheet.
  • the sheet-like fiber structure 20 has a high porosity, the gas easily passes through the sheet-like fiber structure 20. That is, it can be used as a membrane that allows water vapor to pass but not water. This membrane is used for waterproof sheets and waterproof clothes with high air permeability (air permeability).
  • the fiber 1 whose surface is modified by the water-repellent film 8 can be used by being sandwiched between the base materials 7 as shown in FIG.
  • the sheet-like fiber structure 20 can maintain strength as a film.
  • steam can pass the hole of the base material 7 if the base material 7 has a some hole, it is useful for uses, such as a waterproof sheet.
  • sheet-like fiber structure 20 produced by the same method as in Embodiment 1 is used as a scaffold for a culture dish used for adhesive cell culture.
  • FIG. 9 is a conceptual diagram when the sheet-like fiber structure 20 is used for cell culture.
  • the cells 9 are seeded so as to adhere to the upper surface of the sheet-like fiber structure 20. As a result, the cells 9 adhere to and extend on the sheet-like fiber structure 20, and cell culture can be performed.
  • the sheet-like fiber structure 20 is the same as that produced in the first embodiment, and has the void portion 2 because the fibers 1 made of amorphous silicon dioxide are intertwined. Adhesive cells are suitable as the cells 9 for cell culture.
  • the cells 9 can be cultured in a situation closer to that inside the living body. That is, since the gap 2 is provided, not only the culture solution can be easily replaced, but also nutrients can be easily supplied to the cells 9 being cultured. In addition, the waste product discharged by the cells 9 moves to the lower surface of the sheet-like fiber structure 20 through the gap 2 and is easily discharged from the sheet-like fiber structure 20. Therefore, waste products do not accumulate around the cells 9 in culture. As a result, the cells 9 can be cultured for a long time, and the survival rate of the cells 9 is improved.
  • the sheet-like fibrous structure 20 of the present embodiment is the inorganic material made of SiO 2, heat resistance, and chemical resistance.
  • the sheet-like fiber structure 20 has a heat-resistant temperature of 1000 ° C. or higher and can be easily subjected to surface treatment by heat treatment.
  • the chemical resistance is not affected by anything other than hydrofluoric acid and is strong against alkaline solutions.
  • a scaffold having a high porosity per unit area and excellent in heat resistance and chemical resistance can be provided.
  • FIG. 10 is a conceptual diagram when the sheet-like fiber structure 20 is used for cell culture.
  • the solution 10 such as a culture solution is dropped on the upper surface of the sheet-like fiber structure 20, and the cells 9 are seeded in the solution 10. As a result, the cells 9 are cultured in the solution 10.
  • the sheet-like fiber structure 20 is the same as that produced in the third embodiment, and the surface of the fiber 1 is surface-modified with the water-repellent film 8. Moreover, it has the space
  • the sheet-like fiber structure 20 in which the water-repellent film 8 is formed on the surface of the fiber 1 can appropriately supply gas to the solution 10 in the vicinity of the cell 9.
  • the pH of the solution (culture solution) must be kept acidic. Therefore, the acidity is usually controlled by adding about 5% of carbon dioxide or carbon dioxide gas to the atmosphere and dissolving it in the solution.
  • carbon dioxide can be melted only from the point where the liquid phase solution and the gas phase atmosphere come into contact. Therefore, the acidity cannot be precisely controlled in a solution (culture solution) region away from the gas phase.
  • a gas-permeable scaffold such as the sheet-like fiber structure 20 according to the present embodiment is applied to the cell culture dish, the cells 9 in the solution 10, which is a region in which carbon dioxide is hardly melted, adheres and spreads. Gas can also be supplied to nearby areas. As a result, the cells 9 can be cultured more efficiently.
  • the solution 10 such as the culture solution does not penetrate into the inside of the sheet-like fiber structure 20, and the inside, that is, the void 2 becomes a gas phase. Therefore, even when the cells 9 are attached to the surface of the sheet-like fiber structure 20, since the carbon dioxide is appropriately supplied around the cells 9, the acidity of the solution 10 can be kept moderate.
  • the supplied gas includes nitrogen, oxygen, etc. as required, and the gas type is not limited.
  • the fibrous structure of the sheet of the present invention has not only liquid permeability and voltage resistance, but also high heat resistance and chemical resistance. Therefore, it can be used as a separator for preventing a short circuit between electrodes or a scaffold for cell culture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Nonwoven Fabrics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Laminated Bodies (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 シート状繊維構造体は、アモルファス二酸化ケイ素からなる複数の繊維を有し、前記複数の繊維が絡み合うことにより接続され、空隙部を形成する。これにより、透液性、耐電圧性のみならず、高い耐熱性、耐薬品性を有している。そのため、電極間のショートを防ぐためのセパレータあるいは細胞培養の足場などに利用できる。

Description

シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場
 本発明は、断熱性、耐熱性、耐電圧性を必要とする各種の電子デバイスや、細胞培養における培養皿材料などに使われるシート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場などに関する。
 従来、二酸化ケイ素、ガラスなどの無機物と、セルロース、ポリプロピレン、ポリアミドなどの有機材料で構成されたシート状繊維構造体が断熱材や耐電圧材として使用されている。
 電解キャパシタや蓄電池などにはセパレータと称される耐電圧材が、正極と負極の間に電解液と共に設置されている。セパレータは、電極同士のショートを防ぐ一方で、電解液の中に存在するイオンや電子は透過させる。
 しかしながら、昨今の蓄電池などの高容量化や高出力化に伴って、電極間の距離を極力短くしながら耐電圧特性、透液性を確保する必要がある。また、電極間に異物が存在するなどの理由で偶発的にショートが起こった場合には、ショート箇所周辺で発熱が起こり、セパレータが高温によって破損する可能性がある。
 また、高分子材料と無機材料との複合体が、細胞培養時に使用する培養皿材料として使用されている。複合体は、オレフイン系重合体、ポリエステル樹脂などの高分子材料に、二酸化ケイ素などの無機材料を充填もしくは積層させて形成されている。ここで、多孔質あるいはチユ-ブ状、中空糸などの形状に成形された高分子材料を用いるのが好ましい。
 細胞培養時に培養皿として用いられる構造体には、細胞の培養が効率よく行われるよう、細胞が付着するための足場を設置する場合がある。足場は培養中の細胞群に十分な栄養と必要に応じて炭酸ガス、空気などを供給する。
 細胞培養皿に用いる足場は、細胞群に十分な栄養とガスを供給する必要があるため、透液性、透気性が求められる。また、足場に表面処理を施す場合には、熱処理や薬品処理をする必要があり、耐熱性、耐薬品性が求められる。
 なお、発明に関する先行技術文献としては、以下の特許文献が知られている。
特開2008-243825号公報 特開2008-117950号公報 特開昭63-196280号公報
 本発明のシート状繊維構造体は、アモルファス二酸化ケイ素からなる複数の繊維を有している。複数の繊維が絡み合うことにより接続され、空隙部を形成している。
 本発明のシート状繊維構造体は、アモルファス構造であるため、結晶体繊維に比べて高い柔軟性を有している。このため、蓄電池や電解キャパシタのセパレータとして使われる際に折り曲げられたり、圧力が加えられても、シート構造が破損されにくい。
 また、シート状繊維構造体は、耐熱性が1000℃以上と高い。そのため、シート周辺でショートによる発熱が発生してもシート構造が破損されず、高容量・大電流の蓄電池に用いることができる。また、細胞培養皿に用いる足場に用いられた場合に、熱処理がされてもシート構造は破損されにくい。
 さらに、アモルファス二酸化ケイ素は耐アルカリ性、耐酸性の高い材料である。そのため、セパレータとして用いられた場合に、電解液などに長時間浸されていても劣化が少ない。また、足場として用いられた場合に、薬品処理により表面処理を施しても、シート構造を破損しない。
 さらに、繊維径が0.01μm以上、1μm以下と細いために、セパレータとして用いられた場合に、シートの空隙率や透液性が高くなり、従来のセパレータよりも、薄い厚みで、高い透液性、耐電圧を有する。また、足場として用いられた場合に、細胞膜に接触する面積はナノ構造体であるごく一部の領域だけであるため、シートの空隙率や透液性が高くなる。そのため、従来の足場よりも、薄い厚みで、高い透液性を有する。その結果、シート状繊維構造体の内部を通過する培養液からの養分を十分供給できる。
図1Aは、本発明の実施の形態1におけるシート状繊維構造体の側面図である。 図1Bは、本発明の実施の形態1におけるシート状繊維構造体の要部拡大図である。 図2は、本発明の実施の形態1におけるシート状繊維構造体のSEM像を示す図である。 図3は、本発明の実施の形態1におけるシート状繊維構造体のSEM像を示す図である。 図4は、本発明の実施の形態1におけるシート状繊維構造体の接続部のSEM像を示す図である。 図5は、本発明の実施の形態1におけるシート状繊維構造体を用いた電池の概念図である。 図6は、本発明の実施の形態2におけるシート状繊維構造体を用いた断熱材の概念図である。 図7は、本発明の実施の形態2におけるシート状繊維構造体の特性を示す図である。 図8は、本発明の実施の形態3における撥水膜により表面修飾されたシート状繊維構造体の拡大断面図である。 図9は、本発明の実施の形態4におけるシート状繊維構造体を細胞培養に用いた場合の概念図である。 図10は、本発明の実施の形態5におけるシート状繊維構造体を細胞培養に用いた場合の概念図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本発明はこれら実施の形態に限定されない。
 (実施の形態1)
 図1Aは、本発明の実施の形態1におけるシート状繊維構造体の側面図である。図1Bは、本発明の実施の形態1におけるシート状繊維構造体の要部拡大図である。図2は、本発明の実施の形態1におけるシート状繊維構造体のSEM像を示す図である。図3は、本発明の実施の形態1におけるシート状繊維構造体のSEM像を示す図である。図4は、本発明の実施の形態1におけるシート状繊維構造体の接続部のSEM像を示す図である。
 図1A~図3に示すように、シート状繊維構造体20は、アモルファス二酸化ケイ素からなる繊維1が互いに絡み合い、接続され、内部に空気や溶液などを通すための空隙部2を有している。繊維1は適度にカールした状態で互いに絡み合って密集している。また図4に示すように、繊維1は一部が互いに溶融された接続部6により接続されていても良い。これにより繊維1は、より強固に繋がる。このように接続部6を持つことにより、隣り合う繊維1が互いに支え合うため、接続部6の無い場合に比べて強固になる。
 次に、シート状繊維構造体20の製造方法の一例を示す。
 まず、原料となるSiからなる粒子あるいは基板を準備する。この原料と少なくとも酸素原子を含むガスを混合させ、ヒータなどを用いて1000℃~1500℃で加熱する。原料はその原料の蒸気圧温度に達すると蒸発する。蒸発した原料はガスに含まれる酸素と結合し一酸化ケイ素(SiO)を形成した後、凝集を起こし、雰囲気中の酸素を取り込んで二酸化ケイ素(SiO)となり、繊維1が析出する。
 ここで、SiOの周辺に核となる物質が存在すると凝集が起こりやすくなり、効率よく繊維1が析出する。核となる物質は、Pt、Fe、Co、NiまたはAuなどの金属を用いることができ、金属の種類には特に限定されない。また、核となる物質は必ずしも必要ではない。
 なお、加熱時の圧力を大気圧より低くしておくと、原料の蒸気圧温度が下がり、蒸発しやすくなるので、繊維1をさらに多く形成できる。出来るだけ酸素を取り除いた状態で昇温し、少量の酸素を追加した低酸素分圧下、例えば10-2Pa~数1000Paでその温度を維持することにより、繊維1の生産性が向上する。
 このように析出した繊維1が絡み合い、重なり合うことによって、シート状繊維構造体20が形成される。このとき、繊維1が成長していく過程によってシート状になる場合と、繊維1が成長して形成された後にシート状になる場合とがある。このような条件は、繊維1を形成する際の温度に依存している。
 さらに、シート状繊維構造体20に約1100℃以上の熱を加えると、シート状繊維構造体20は熱溶融を起こす。熱溶融を起こしたSiO繊維は冷却過程で隣り合う繊維と接触している箇所があると結合を起こし、図4に示すように、接続部6を複数有するシート状繊維構造体20を形成する。このように接続されたシート状繊維構造体は、空隙部2を有しているので表面積を大きく保つことができる。さらに繊維1が互いに支え合うため、接続部6の無い場合に比べて強固になる。
 なお、接続部6は繊維1が成長していく過程においても形成される場合がある。接続部6の形成は繊維1の形成時の温度に依存している。特に原料にシリコン基板を用いた場合、繊維1形成過程における基板と繊維1との接合部分の表面では、繊維1が密集しているため溶融が起こりやすく、接続部6が形成されやすい。
 なお、繊維1を形成するために必要なガスは酸素の他に、一酸化二窒素(NO)、一酸化炭素(CO)など酸化作用を有する(つまり酸素を供給する)ガスも使用可能である。しかしこれらのガスは酸素とは別の不純物を含むため、繊維1の形成およびシート状繊維構造体20の形成過程に影響を及ぼすので、適切な濃度・温度・圧力の制御が必要である。
 なお、繊維1の大きさ、繊維1の形成時における雰囲気の圧力、雰囲気の酸素濃度、雰囲気の温度などの条件により析出状態が変わる。そのため、これらの条件を変えることによって所望の形状を持った繊維1およびシート状繊維構造体20を形成できる。繊維1の直径(太さ)は0.01μm以上、1μm以下まで変えられる。繊維1の長さは1μm以上、500μm以下まで変えられる。
 このように形成されたシート状繊維構造体20の繊維1が複数形成されている領域においては、アモルファス二酸化ケイ素の表面積が極めて大きくなる。一方で、アモルファス二酸化ケイ素周辺には空隙部2が多数存在している。シート状繊維構造体20はアモルファス二酸化ケイ素からなる繊維1と空隙部2によって構成されている。空隙部2には電解液3などの液体材料を多量に含有させることができる。
 図5は、本発明の実施の形態1におけるシート状繊維構造体20を用いた電池の概念図である。空隙部2内に電解液3が含有されたシート状繊維構造体20の両側に例えばアルミ、コバルトなど異なる材料からなる電極4、5を配置する。電極4、5でイオン化傾向が異なる場合、電解液3内のイオンが電極間を移動することになり、電流を取り出す電池ができる。
 電極4と電極5の距離はイオンの移動時間を決める要素である。電池の内部抵抗を小さくするためには電極間距離は極力小さい方が良い。しかし、電極間距離を小さくすると電極4と電極5の間でショートが起こりやすくなる。一般に電池に用いるセパレータはショートを防ぐために利用されるが、セパレータはイオンの流れは阻害してはならない。このため、内部に空隙を持った紙、高分子繊維などが用いられ、電解液がこの空隙内に含有される。
 繊維1によるシート状繊維構造体20は、このセパレータとして優れている。電解液3を内部に含有させるときに、繊維1以外は空隙部2であるので極めて多くの電解液3を含有させることができ、イオンの流れを妨げることがない。また、繊維1の直径は0.01μm以上、1μm以下と従来の繊維に比べて小さいので、多量の電解液を含有または電解液を通過させる(透液性)ことができる。また、繊維1の長さは1μm以上、500μm以下、繊維1と隣り合う繊維1の最大間隔は1μm以上、50μm以下にできるので、電極間のショート防止効果を保ちながら、電解液含有量を極力増やすことができる。繊維1の直径、長さ、最大間隔などの数値は付与したい親水性、保水性の程度によって決定される。
 シート状繊維構造体20は高温、高酸素濃度下でも使用可能である。熱で溶融することにより隣接する繊維1が容易に網目状構造に形成されるので強度を強くでき、カーボン系ファイバーにはない特徴を有する。
 本実施の形態では熱溶融により接続部6を形成したが、樹脂を充填し、その樹脂により接続部6を形成してもよい。また、樹脂を充填し、熱溶融により接続部6を形成してもよい。空隙部2に樹脂を充填することにより、シート状繊維構造体20の接続強度を強くできる。なお、樹脂として、例えば接着剤を用いることもできる。
 (実施の形態2)
 図6は、本発明の実施の形態2におけるシート状繊維構造体20を用いた断熱材の概念図である。シート状繊維構造体20の作製方法は実施の形態1と同様である。空隙部2を有する繊維1が基材7に挟み込まれている。基材7は、例えば平面状のガラス、シリコン、石英、セラミック、樹脂、金属の少なくとも一つからなる。シート状繊維構造体20には空隙部2が多く存在するので、基材7間が断熱される。
 図7は、本発明の実施の形態2におけるシート状繊維構造体20の特性を示す図である。基材7である2枚のガラス基板間に繊維1を挟み込み、ガラス基板間を伝導する熱の様子をグラフで示している。一方の基材7から熱を加えた場合の他方の基材7の温度の時間変化を示している。基材7の間に何も挟み込まない場合を破線で、基材7の間に繊維1を挟み込んだ場合を実線で示している。繊維1を挟み込んだ場合は、何も挟み込まない場合に比べて、熱伝導度が低下している。
 さらに、空隙部2を真空にすると熱伝導効果はより大きくなる。シート状繊維構造体20がない場合、基材7の内部を真空にすると、外部からの圧力を受けて基材7同士が密着してしまう。しかし、シート状繊維構造体20がある場合、基材7同士は接触しない。またシート状繊維構造体20は基材7と接触するが、シート状繊維構造体20の繊維1は直径が1μm以下、長さが1μm以上であり、アスペクト比が高いことにより、従来より熱伝導度が小さくなる。なお、空隙部2を有する繊維1は、基材7と基材7との間に全体的に形成されていても、パターン化され特定の箇所にのみに形成されていても構わない。
 (実施の形態3)
 図8は、本発明の実施の形態3における撥水膜により表面修飾されたシート状繊維構造体の拡大断面図である。本実施の形態では、実施の形態1と同様の方法で作製したシート状繊維構造体20の繊維1の表面が撥水膜8によって表面修飾されている。撥水膜8は、例えばCF鎖が繋がったポリマーやCF基が存在するフッ素化合物、アルキルシリル基、フルオロシリル基、長鎖アルキル基によって形成できる。繊維1の表面が撥水効果を持つ化学物質で修飾されることにより、撥水膜8が繊維1の表面に形成される。その結果、シート状繊維構造体20が極めて高い撥水性を有し、水滴など液体状態の水はシート内部に進入できない。一方、水蒸気など気体状態であればシートを通過できる。しかもシート状繊維構造体20は高い空隙率を有するので、気体は容易にシート状繊維構造体20を通過する。つまり、水蒸気は通すが水は通さない膜として利用できる。この膜は通気性(透気性)の高い防水シートや防水服などに利用される。
 なお、撥水膜8により表面修飾された繊維1を図6で示したように基材7に挟み込んで使用することもできる。基材7に挟まれることでシート状繊維構造体20は膜として強度を保つことができる。なお、基材7に複数の穴が空いていれば基材7の穴を水蒸気が通過できるので、防水シートなどの用途に有用である。
 (実施の形態4)
 本実施の形態では、実施の形態1と同様の方法で作製したシート状繊維構造体20を接着性細胞培養に用いる培養皿の足場として用いる。図9は、シート状繊維構造体20を細胞培養に用いた場合の概念図である。
 シート状繊維構造体20の上面に接着するように細胞9を撒種する。これにより細胞9がシート状繊維構造体20に接着、伸展し、細胞培養を行うことが可能となる。ここで、シート状繊維構造体20は実施の形態1で作製したものと同様であり、アモルファス二酸化ケイ素からなる繊維1が絡み合うことで、空隙部2を有している。また、細胞培養する細胞9としては、接着性細胞が適している。
 上記構成により、生体内部により近い状況で細胞9を培養できる。すなわち空隙部2を有するために、培養液を容易に交換できるだけでなく、培養している細胞9への栄養分の供給が容易である。また細胞9が排出した老廃物は、空隙部2を通してシート状繊維構造体20の下面に移動し、容易にシート状繊維構造体20より排出される。そのため、老廃物が培養している細胞9の周辺に蓄積しない。その結果、長期的に細胞9を培養でき、細胞9の生存率が向上する。
 なお、従来のように高分子材料により足場を形成した場合は、耐熱性、耐薬剤性の問題がある。しかし、本実施の形態のシート状繊維構造体20は、SiOからなる無機材料であるため、耐熱性、耐薬剤性に優れている。シート状繊維構造体20は、耐熱温度が1000℃以上であり熱処理による表面処理などを容易に行える。そして、耐薬品性としてはフッ化水素酸以外に侵されることがなく、アルカリ性溶液に対しても強固である。このように、単位面積当たりの空隙率が高く、耐熱性、耐薬品性にも優れた足場を提供できる。
 (実施の形態5)
 本実施の形態では、実施の形態1と同様の方法で作製したシート状繊維構造体20の繊維1の表面が撥水膜8によって表面修飾されている。このシート状繊維構造体20を接着性細胞培養に用いる培養皿の足場として用いる。図10は、シート状繊維構造体20を細胞培養に用いた場合の概念図である。
 シート状繊維構造体20の上面に培養液などの溶液10を滴下し、溶液10内に細胞9を撒種する。これにより溶液10内で細胞9を培養する。ここで、シート状繊維構造体20は実施の形態3で作製したものと同様であり、繊維1の表面が撥水膜8によって表面修飾されている。また、アモルファス二酸化ケイ素からなる繊維1が絡み合うことで、空隙部2を有している。
 上記構成により、シート状繊維構造体20の上の溶液10で細胞9を培養している場合であっても、撥水膜8によって、溶液10が安定してシート状繊維構造体20の表面に存在できる。そのため、安定した細胞培養を行うことができる。
 さらに、撥水膜8を繊維1の表面に形成したシート状繊維構造体20は、細胞9近辺の溶液10へ適切にガスを供給できる。細胞培養時の培養皿への足場として用いる場合は、溶液(培養液)のpHは酸性に保たれなければならない。そのため、通常、二酸化炭素や炭酸ガスを雰囲気に5%程度添加し、溶液に溶け込ますことで酸性度を制御している。しかし、二酸化炭素は液相である溶液と気相である雰囲気とが接触する箇所からしか溶融できない。そのため、気相より離れた溶液(培養液)領域では酸性度を精密に制御出来ない。本実施の形態によるシート状繊維構造体20のように透気性のある足場を細胞培養皿に適用すれば、従来では二酸化炭素が溶融し難い領域である溶液10中の細胞9が接着し伸展している付近へもガスを供給できる。その結果、細胞9がより効率的に培養できる。
 また、本実施の形態のように撥水膜8が表面に形成されている場合には、培養液などの溶液10はシート状繊維構造体20の内部には浸透せず、内部すなわち空隙部2は気相状態となる。従って、細胞9がシート状繊維構造体20の表面に付着している場合でも、細胞9の周辺に適切に二酸化炭素が供給されるため、溶液10の酸性度を適度に保つことができる。
 なお、供給されるガスは二酸化炭素の他に、必要に応じて窒素、酸素などがあり、ガス種は限定されない。
 以上のように本発明シートの状繊維構造物は、透液性、耐電圧のみならず、高い耐熱性、耐薬品性を有している。そのため、電極間のショートを防ぐためのセパレータあるいは細胞培養の足場などに利用できる。
 1  繊維
 2  空隙部
 3  電解液
 4  電極
 5  電極
 6  接続部
 7  基材
 8  撥水膜
 9  細胞
 10  溶液

Claims (15)

  1. アモルファス二酸化ケイ素からなる複数の繊維を有し、
    前記複数の繊維が互いに絡み合うことにより接続され、空隙部を形成する
    シート状繊維構造体。
  2. 前記繊維の一部が溶融し、前記繊維と前記繊維の一部が結合して接続部を形成する
    請求項1に記載のシート状繊維構造体。
  3. 前記繊維の長さが1μm以上、500μm以下である
    請求項1に記載のシート状繊維構造体。
  4. 前記繊維と隣り合う前記繊維との最大間隔が1μm以上、50μm以下である
    請求項1に記載のシート状繊維構造体。
  5. 前記繊維の太さが0.01μm以上、1μm以下である
    請求項1に記載のシート状繊維構造体。
  6. 前記接続部が樹脂によって形成されている
    請求項1に記載のシート状繊維構造体。
  7. 請求項1記載のシート状繊維構造体と、
    前記シート状繊維構造体を挟む電極を有し、
    前記空隙部には電解液が充填されている
    電池。
  8. 請求項1記載のシート状繊維構造体と、
    前記シート状繊維構造体を挟む基材を備えた
    断熱材。
  9. 前記基材はガラス、シリコン、石英、セラミック、樹脂、金属の少なくともいずれか一つからなる
    請求項8に記載の断熱材。
  10. 前記空隙部は真空である
    請求項8に記載の断熱材。
  11. 前記繊維は前記基材の特定の箇所のみに形成されている
    請求項8に記載の断熱材。
  12. 請求項1記載のシート状繊維構造体を有し、
    前記繊維の表面は撥水膜により表面修飾されている
    防水シート。
  13. 前記シート状繊維構造体を挟む基材をさらに備え、
    前記基材には複数の穴が形成されている
    請求項12に記載の防水シート。
  14. 請求項1記載のシート状繊維構造体を用いた
    細胞培養用の足場。
  15. 前記繊維の表面は撥水膜により表面修飾されている
    請求項14に記載の細胞培養用の足場。
PCT/JP2011/002272 2010-04-27 2011-04-19 シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場 WO2011135801A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012512649A JP5824645B2 (ja) 2010-04-27 2011-04-19 シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場
EP11774590.1A EP2565311A4 (en) 2010-04-27 2011-04-19 SHEET-LIKE FIBROUS STRUCTURE, AND BATTERY, THERMAL INSULATING MATERIAL, WATERPROOF SHEET, AND SCAFFOLDING FOR CELL CULTURE, EACH USING THE SHEET-LIKE FIBROUS STRUCTURE
CN201180021010.8A CN102869823B (zh) 2010-04-27 2011-04-19 薄片状纤维结构体、电池、绝热材料、防水片、支架
US13/620,493 US9932239B2 (en) 2010-04-27 2012-09-14 Sheet-like fiber structure, and battery, heat insulation material, waterproof sheet, scaffold for cell culture, and holding material each using the sheet-like fiber structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-101730 2010-04-27
JP2010101730 2010-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/620,493 Continuation-In-Part US9932239B2 (en) 2010-04-27 2012-09-14 Sheet-like fiber structure, and battery, heat insulation material, waterproof sheet, scaffold for cell culture, and holding material each using the sheet-like fiber structure

Publications (1)

Publication Number Publication Date
WO2011135801A1 true WO2011135801A1 (ja) 2011-11-03

Family

ID=44861127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002272 WO2011135801A1 (ja) 2010-04-27 2011-04-19 シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場

Country Status (5)

Country Link
US (1) US9932239B2 (ja)
EP (1) EP2565311A4 (ja)
JP (1) JP5824645B2 (ja)
CN (1) CN102869823B (ja)
WO (1) WO2011135801A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011142117A1 (ja) * 2010-05-11 2013-07-22 パナソニック株式会社 細胞培養基材及びそれを用いた細胞培養方法
CN104756213A (zh) * 2012-10-31 2015-07-01 日本华尔卡工业株式会社 压电层叠体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170346B2 (ja) * 2010-04-27 2013-03-27 パナソニック株式会社 金属酸化物ナノファイバ製造装置および金属酸化物ナノファイバの製造方法
CN108118023B (zh) * 2016-11-28 2021-06-29 广东乾晖生物科技有限公司 纤维支架及其制备方法和应用
CN112335075A (zh) * 2018-05-25 2021-02-05 美国纳米有限责任公司 并入二氧化硅纤维的电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257842A (ja) * 1986-05-02 1987-11-10 カンボウプラス株式会社 透光性を有する不燃性防水シ−ト
JPS63196280A (ja) 1987-02-12 1988-08-15 Sumitomo Electric Ind Ltd 細胞培養用基材
JP2001032162A (ja) * 1999-06-22 2001-02-06 Johnson Matthey Plc 不織ファイバーウェブ
JP2002527881A (ja) * 1998-10-16 2002-08-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 基 材
JP2007132425A (ja) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd 真空断熱材及び製造方法、並びに真空断熱材を使用したプロジェクタ
JP2008117950A (ja) 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
JP2008243825A (ja) 2005-12-08 2008-10-09 Hitachi Maxell Ltd 電気化学素子用セパレータおよび電気化学素子
WO2009034697A1 (ja) * 2007-09-11 2009-03-19 Panasonic Corporation シリコン構造体およびその製造方法並びにセンサチップ

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720713A (en) * 1986-10-06 1988-01-19 Hughes Aircraft Company Fiber ceramic antenna reflector
US5629186A (en) * 1994-04-28 1997-05-13 Lockheed Martin Corporation Porous matrix and method of its production
EP0872899B1 (en) * 1995-02-17 2011-03-23 Mitsubishi Paper Mills, Ltd. Nonwoven fabric for an alkaline battery separator and method for producing the same
US20040058102A1 (en) * 1996-11-12 2004-03-25 Baychar Moisture transfer liner for alpine boots, snowboard boots inline skates, hockey skates, hiking boots and the like
JPH11209185A (ja) * 1998-01-20 1999-08-03 Noritake Co Ltd 多孔質繊維を用いたセラミックシートとその製造方法
JPH11283603A (ja) * 1998-03-30 1999-10-15 Noritake Co Ltd 電池用セパレーター及びその製造方法
JP4572281B2 (ja) * 1998-06-15 2010-11-04 独立行政法人産業技術総合研究所 撥水処理をした油水分離フィルターとその製造方法
US20040266299A1 (en) * 1998-10-16 2004-12-30 Fongalland Dharshini Chryshatha Substrate
DE10146957A1 (de) * 2001-09-24 2003-04-17 Nbt Gmbh Dicht verschlossener Akkumulator
US8257962B2 (en) 2003-03-07 2012-09-04 Panasonic Corporation Extracellular potential measuring device and its manufacturing method
JP4552423B2 (ja) 2003-11-21 2010-09-29 パナソニック株式会社 細胞外電位測定デバイスおよびこれを用いた細胞外電位の測定方法
WO2007001091A1 (en) 2005-06-29 2007-01-04 Matsushita Electric Industrial Co., Ltd. Cellular potential measurement container
US8202439B2 (en) 2002-06-05 2012-06-19 Panasonic Corporation Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm
JP4449519B2 (ja) 2004-03-22 2010-04-14 パナソニック株式会社 細胞外電位測定デバイスおよびその製造方法
WO2003104788A1 (ja) 2002-06-05 2003-12-18 松下電器産業株式会社 細胞外電位測定デバイスおよびその製造方法
WO2007138902A1 (ja) 2006-05-25 2007-12-06 Panasonic Corporation 細胞電気生理センサ用チップとこれを用いた細胞電気生理センサおよび細胞電気生理センサ用チップの製造方法
DE10312144B4 (de) * 2003-03-13 2006-12-14 Technische Universität Dresden Trägermaterial für die Gewebe- und Zellkultur und die Herstellung von Implantatmaterialien
EP1783202B1 (en) 2004-08-25 2013-10-02 Panasonic Corporation Probe for measuring electric potential of cell
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
KR101135477B1 (ko) * 2005-01-12 2012-04-19 삼성에스디아이 주식회사 다공성 멤브레인 및 그 제조방법, 이를 이용한 연료전지용고분자 전해질막, 및 이를 포함하는 연료전지 시스템
JP4639340B2 (ja) * 2005-03-30 2011-02-23 国立大学法人名古屋大学 生体有機体の生産方法および培養容器
US8318477B2 (en) 2005-06-07 2012-11-27 Panasonic Corporation Cellular electrophysiological measurement device and method for manufacturing the same
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
US7776193B2 (en) 2005-12-20 2010-08-17 Panasonic Corporation Cell electrophysiological sensor
JP4582146B2 (ja) 2006-05-17 2010-11-17 パナソニック株式会社 細胞電位測定デバイスとそれに用いる基板、細胞電位測定デバイス用基板の製造方法
WO2007140302A2 (en) 2006-05-26 2007-12-06 Propex Inc. Hot gas filtration fabrics with silica and flame resistant fibers
CA2718882C (en) * 2008-03-20 2013-12-24 University Of Akron Ceramic nanofibers containing nanosize metal catalyst particles and medium thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257842A (ja) * 1986-05-02 1987-11-10 カンボウプラス株式会社 透光性を有する不燃性防水シ−ト
JPS63196280A (ja) 1987-02-12 1988-08-15 Sumitomo Electric Ind Ltd 細胞培養用基材
JP2002527881A (ja) * 1998-10-16 2002-08-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 基 材
JP2001032162A (ja) * 1999-06-22 2001-02-06 Johnson Matthey Plc 不織ファイバーウェブ
JP2007132425A (ja) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd 真空断熱材及び製造方法、並びに真空断熱材を使用したプロジェクタ
JP2008243825A (ja) 2005-12-08 2008-10-09 Hitachi Maxell Ltd 電気化学素子用セパレータおよび電気化学素子
JP2008117950A (ja) 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
WO2009034697A1 (ja) * 2007-09-11 2009-03-19 Panasonic Corporation シリコン構造体およびその製造方法並びにセンサチップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565311A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011142117A1 (ja) * 2010-05-11 2013-07-22 パナソニック株式会社 細胞培養基材及びそれを用いた細胞培養方法
JP5887496B2 (ja) * 2010-05-11 2016-03-16 パナソニックIpマネジメント株式会社 細胞培養基材及びそれを用いた細胞培養方法
CN104756213A (zh) * 2012-10-31 2015-07-01 日本华尔卡工业株式会社 压电层叠体
US20150295163A1 (en) * 2012-10-31 2015-10-15 Nippon Valqua Industries, Ltd. Piezoelectric Stack
US10998488B2 (en) 2012-10-31 2021-05-04 Valqua, Ltd. Piezoelectric stack

Also Published As

Publication number Publication date
US9932239B2 (en) 2018-04-03
CN102869823B (zh) 2015-09-02
US20130017450A1 (en) 2013-01-17
EP2565311A1 (en) 2013-03-06
JPWO2011135801A1 (ja) 2013-07-18
EP2565311A4 (en) 2016-11-30
CN102869823A (zh) 2013-01-09
JP5824645B2 (ja) 2015-11-25

Similar Documents

Publication Publication Date Title
CN102282706B (zh) 使用碳纳米结构材料的高效能量转换和存储***
JP5824645B2 (ja) シート状繊維構造体およびそれを用いた電池、断熱材、防水シート、および細胞培養用の足場
US8665581B2 (en) Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
KR101265847B1 (ko) 복합형 탄소 및 그 제조방법
JP2014011163A (ja) ガス拡散層用炭素基材、それを利用したガス拡散層、それを含む燃料電池用電極
CA2845539A1 (en) Methods and apparatus for the fabrication and use of graphene petal nanosheet structures
JP2009173476A (ja) カーボンナノチューブ構造体、その製造方法、及びこれを用いたエネルギーデバイス
JP2014504313A (ja) イオン伝導性ポリマー、これらを生産するための方法、およびこれらから作製される電気デバイス
KR101610354B1 (ko) 전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터
US20140126112A1 (en) Carbon nanotubes attached to metal foil
TW201135769A (en) High performance carbon nanotube energy storage device
JP2018137228A (ja) カソード電極材料
KR100599874B1 (ko) 탄소나노물질과 나노크기의 금속산화물이 조합된 전기화학캐패시터용 전극의 제조방법
KR101611744B1 (ko) 중공 탄소섬유를 포함하는 전극을 구비한 전기화학 캐패시터, 그의 제조방법, 및 전기화학 소자용 전극
WO2010010990A1 (en) Electrode for a fuel cell comprising a catalyst layer and a gas diffusion layer integrated with one nanofiber web and method of preparing the same and fuel cell using the same
JP5791701B2 (ja) 電気化学装置のための拡散層、及びそのような拡散層の製造方法
CN116097383A (zh) 用于超级电容器应用的在微结构化的金属基底上的直接生长的交联的碳纳米管
JP2009088394A (ja) 構造体、電極体、およびそれらの製造方法
JP2021084830A (ja) カーボンシート
JP2009146693A (ja) グラファイトナノファイバおよびその製造方法、グラファイトナノファイバ電子源およびフィールドエミッションディスプレイ装置
JPS61119716A (ja) 表面積の大きな炭素繊維及びその製造法及びその炭素繊維を用いた触媒担体
Kozinda et al. Flexible energy storage devices based on lift-off of CNT films
KR102407319B1 (ko) 미생물연료전지용 산화전극소재, 그 제조방법 및 상기 산화전극소재를 포함하는 미생물연료전지
CN113410064B (zh) 一种平面电极及其制备方法和应用
KR20210133881A (ko) 고체 산화물 연료전지 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021010.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512649

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774590

Country of ref document: EP