WO2011132734A1 - 液状油脂とその製造法 - Google Patents

液状油脂とその製造法 Download PDF

Info

Publication number
WO2011132734A1
WO2011132734A1 PCT/JP2011/059817 JP2011059817W WO2011132734A1 WO 2011132734 A1 WO2011132734 A1 WO 2011132734A1 JP 2011059817 W JP2011059817 W JP 2011059817W WO 2011132734 A1 WO2011132734 A1 WO 2011132734A1
Authority
WO
WIPO (PCT)
Prior art keywords
fat
weight
oil
liquid
content
Prior art date
Application number
PCT/JP2011/059817
Other languages
English (en)
French (fr)
Inventor
晃生 榊
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to RU2012149617/04A priority Critical patent/RU2012149617A/ru
Priority to EP11772066.4A priority patent/EP2562239A4/en
Priority to US13/642,446 priority patent/US20130045321A1/en
Priority to CN201180020163.0A priority patent/CN102858931B/zh
Priority to JP2011544305A priority patent/JP4930660B2/ja
Publication of WO2011132734A1 publication Critical patent/WO2011132734A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange

Definitions

  • the present invention relates to a liquid fat and oil mainly composed of palm oil and fat, a method for producing the same and a food containing the liquid fat and oil. Moreover, this invention relates to the manufacturing method of solid fat, solid fat, and the foodstuff containing this.
  • Soybean oil and rapeseed oil which have high liquidity at low temperatures, are used in a wide range of applications as liquid oils such as salad oil. These soybean oil and rapeseed oil have good liquidity even at low temperatures, but have poor oxidation stability and tend to deteriorate in flavor during heating and storage. For this reason, oils and fats having high oxidation stability and high liquidity are demanded.
  • palm oil which is solid at room temperature, is highly stable and competitive in price, and its production volume is increasing year by year. For this reason, many attempts have been made to produce liquid oils and fats using palm oil as a raw material.
  • the content of triunsaturated acid glyceride (UUU) in the liquid oil and fat is as low as 11.5% by weight
  • SU2 mono-saturated fatty acid diunsaturated fatty acid glyceride
  • UUU weight ratio
  • SSS tri-saturated acid glyceride
  • cloud point is 2.5 ° C.
  • liquid Sex is not enough.
  • the direct transesterification reaction is a reaction in which a high melting point component such as trisaturated acid glyceride in fats and oils is precipitated as crystals, and transesterification is performed.
  • Trisaturated acid glyceride (SSS) and triunsaturated acid glycerides in fats and oils It is possible to increase (UUU) and obtain liquid oil.
  • SSS trisaturated acid glyceride
  • UUU triunsaturated acid glycerides in fats and oils
  • UUU triunsaturated acid glycerides in fats and oils
  • Patent Document 1 There is also a method of obtaining liquid oil by removing hard oil after transesterification of palm oil using an alkali catalyst (Patent Document 1). However, this method also has a low yield and liquidity is not sufficient.
  • triglyceride in which palmitic acid is bonded to the 2-position is known to exhibit much higher absorbability than triglyceride in which palmitic acid is bonded to the ⁇ -position (Patent Document 4, [0003]. ).
  • solid fat and liquid oil that are filtered when producing liquid oil using palm oil as a raw material have a large amount of palmitic acid as a constituent fatty acid, but most of them are bonded to the 1st and 3rd positions.
  • glyceride having palmitic acid at the 2-position is used as a raw material for OPO (2-palmitoyl-1,3-dioleyl triglyceride) structure, which is abundant in oil components of breast milk, and as a raw material for margarine and chocolate.
  • the raw material of the PPO (1,2-dipalmitoyl-3-dioleyl triglyceride) structure.
  • these compounds specifically transesterify the 1,3-position from oleic acid and triglyceride having palmitic acid at the 2-position such as tripalmitic acid glyceride (PPP) by a 1,3-position specific enzyme or the like. It is produced by.
  • PPP tripalmitic acid glyceride
  • Patent Document 5 As a method for obtaining high-purity PPP, there is a method in which palm oil is used as a raw material and is repeatedly fractionated using a solvent (Patent Document 5).
  • palm oil itself contains a large amount of palmitic acid as a constituent fatty acid, it does not contain much as a form of PPP. Therefore, in order to obtain high-purity PPP, it is necessary to repeatedly separate it using a solvent. For this reason, the yield finally obtained is also low, and since the solvent is used, it is necessary to remove the solvent, resulting in poor productivity.
  • the fat composition other than PPP in the fat is mostly glyceride that does not contain palmitic acid at the 2-position, such as POP and POO, the content of glyceride having palmitic acid at the 2-position in the fat is low.
  • ⁇ Lard is an example of a natural oil containing a large amount of glyceride having palmitic acid at the 2nd position.
  • lard has a variety of problems, such as a unique animal odor, a return odor over time, and sometimes difficult to use for religious reasons. Therefore, development of a method for producing fats and oils containing a large amount of glyceride having palmitic acid at the 2-position using vegetable oil as a raw material is desired.
  • the present invention can produce inexpensive liquid oils and fats that have both exceptionally high liquidity and oxidation stability using inexpensive palm oils and fats as a main raw material, and high yields of the liquid oils and fats, compared to conventional methods. It is an object of the present invention to provide a highly productive manufacturing method that can reduce manufacturing costs and manufacturing time. Furthermore, an object of the present invention is to provide a liquid oil containing a large amount of triglyceride in which palmitic acid is bonded to the 2-position ( ⁇ -position) and exhibits high absorbability.
  • the present invention contains a solid fat containing a large amount of glyceride having palmitic acid at the 2-position from palm-based fats and oils, and especially containing a large amount of tripalmitic acid glyceride (PPP) at low cost and in liquid and oxidative stability. It aims at providing the method of manufacturing simultaneously with the outstanding liquid fats and oils.
  • PPP tripalmitic acid glyceride
  • the direct transesterification reaction is performed until SSS / S2U in the fats is 0.5 or more, particularly preferably 2.0 or more. After the reaction is stopped, the hard part is then removed, and even if dry separation with poor separation efficiency is usually used, the liquidity is high and the oxidation stability is high in one fractionation. Liquid oil can be obtained in high yield.
  • a direct transesterification reaction is carried out while flowing the oil by applying force from the outside, so that crystals having good separability can be generated during the transesterification reaction.
  • the crystals generated in the direct transesterification reaction can be efficiently separated without crystallization, so the yield is high even without heating and cooling for fractionation.
  • a liquid oil is obtained.
  • a liquid oil having palmitic acid bonded at the 2-position ( ⁇ -position) and containing a large amount of triglyceride having high absorbability, high liquidity and high oxidation stability can be obtained.
  • the present inventors conducted a direct transesterification reaction using palm oil as a raw material, increased glyceride having palmitic acid at the 2-position, and then fractionated, whereby palmitic acid was found at the 2-position ( ⁇ -position). It has been found that a solid fat containing a high amount of glyceride having palmitic acid at the 2-position can be obtained at a low cost simultaneously with a liquid oil that is bonded, has high liquidity, and high oxidation stability.
  • the present invention has been completed based on the various findings as described above.
  • the first of the present invention relates to a liquid oil / fat derived from palm oil having palm oil / fat as a main raw material and having a SU2 / UUU weight ratio of 1.9 or less and an SSS content of 2% by weight or less.
  • a preferred embodiment relates to the liquid fat described above, wherein the SSS content is 0.5% by weight or less and the S2U content is 10% by weight or less.
  • a more preferred embodiment relates to the liquid oil described above, wherein the UUU content is 25% by weight or more.
  • a further preferred embodiment relates to the liquid oil described above containing 10 to 30% by weight of triglyceride having palmitic acid bonded at the 2-position.
  • the present invention relates to the above-described liquid oil having a cloud point in the range of 0 ° C. to ⁇ 12 ° C.
  • the second of the present invention is a method for producing a liquid fat having a SU2 / UUU weight ratio of 1.9 or less and an SSS content of 2% by weight or less, wherein the saturated fatty acid content in the whole constituent fatty acids is 70% by weight or less.
  • a preferred embodiment relates to the method for producing a liquid oil according to the above, wherein the reaction is stopped after a direct transesterification reaction until SSS / S2U in the oil becomes 2.0 or more. Further, in a preferred embodiment, the direct transesterification reaction is carried out until the S2U content is 14% by weight or less without the SSS content in the oil and fat being reacted exceeding 31% by weight, and then the hard part is separated and removed.
  • the present invention relates to a method for producing the liquid oil. Further, a preferred embodiment relates to the above-described method for producing a liquid fat, wherein the amount of saturated fatty acid in the whole constituent fatty acid of the palm-based fat is 3 to 52% by weight.
  • preferable embodiment is related with the manufacturing method of the said liquid fats and oils whose said palm oil fat is palm olein. Moreover, a preferable embodiment is related with the manufacturing method of the said liquid fat which uses soybean oil and / or rapeseed oil as fats and oils other than palm oil fat. Further, a preferred embodiment relates to the method for producing a liquid fat described above, wherein the direct transesterification reaction temperature is 0 ° C. to 40 ° C. Moreover, a preferable embodiment is related with the manufacturing method of the said liquid fats and oils whose said fractionation is a dry-type fractionation. Furthermore, a preferred embodiment relates to the method for producing a liquid fat described above, wherein the temperature for dry fractionation is 0 ° C. to 45 ° C. A more preferred embodiment relates to the method for producing a liquid fat described above, wherein the temperature for dry fractionation is 0 ° C. to 10 ° C.
  • the third aspect of the present invention is a method for producing a liquid oil having a SU2 / UUU weight ratio of 1.9 or less and an SSS content of 2% by weight or less, wherein the saturated fatty acid content in the total constituent fatty acids is 70% by weight. Palm oil or fat is used as the main raw material, and after performing direct transesterification while flowing the oil and fat by applying force from the outside, the solid fat content is separated without making it 1% by weight or less.
  • the present invention relates to a method for producing a liquid oil.
  • a preferred embodiment relates to the method for producing a liquid oil according to the above, wherein the reaction is stopped after a direct transesterification reaction until SSS / S2U in the oil becomes 0.5 or more.
  • the direct transesterification reaction is carried out until the S2U content is 14% by weight or less without the SSS content in the oil and fat being reacted exceeding 31% by weight, and then the hard part is separated and removed.
  • the present invention relates to a method for producing the liquid oil. Further, a preferred embodiment relates to the above-described method for producing a liquid fat, wherein the amount of saturated fatty acid in the whole constituent fatty acid of the palm-based fat is 3 to 52% by weight. Moreover, preferable embodiment is related with the manufacturing method of the said liquid fats and oils whose said palm oil fat is palm olein.
  • a preferable embodiment is related with the manufacturing method of the said liquid fat which uses soybean oil and / or rapeseed oil as fats and oils other than palm oil fat. Further, a preferred embodiment relates to the method for producing a liquid fat described above, wherein the direct transesterification reaction temperature is 0 ° C. to 40 ° C. Moreover, a preferable embodiment is related with the manufacturing method of the said liquid fats and oils whose said fractionation is a dry-type fractionation. Furthermore, a preferred embodiment relates to the method for producing a liquid fat described above, wherein the temperature for dry fractionation is 0 ° C. to 45 ° C. A more preferred embodiment relates to the method for producing a liquid fat described above, wherein the temperature for dry fractionation is 0 ° C. to 10 ° C.
  • the fifth aspect of the present invention relates to a food containing the liquid oil described above.
  • the present invention relates to a solid fat having a tripalmitic acid glyceride content of 45% by weight or more in the whole solid fat obtained using a palm-based fat having an iodine value of 55 or more as a raw material.
  • a preferred embodiment relates to the solid fat described above, wherein the content of glyceride tripalmitate in the whole solid fat is 60% by weight or more. More preferably, it relates to the solid fat as described above, wherein the content of glyceride whose constituent fatty acid at the 2-position is palmitic acid is 65% by weight or more in the whole solid fat.
  • the present invention provides a method for producing a solid fat at the same time as the liquid fat by performing direct transesterification and then separating and removing the liquid fat (soft part) in the method for producing the liquid fat of the present invention as described above.
  • a preferred embodiment is characterized in that the direct transesterification is carried out until the S2U content is 14% by weight or less without the SSS content in the reaction product exceeding 31% by weight, and then the soft part is removed by fractionation.
  • the present invention relates to a method for producing the solid fat described above.
  • the oil / fat after direct transesterification is cooled and crystallized at 0 to 40 ° C., and then the soft part is separated and removed by dry fractionation, more preferably the dry fat production method,
  • the present invention relates to the above-described method for producing solid fat, wherein the soft part is removed again by fractionation.
  • the present invention it is possible to obtain an inexpensive liquid fat having a particularly high liquidity and oxidation stability in a high yield using an inexpensive palm-based fat as a main raw material. Furthermore, according to the present invention, a liquid oil containing a large amount of triglyceride exhibiting high absorbability in which palmitic acid is bonded to the 2-position ( ⁇ -position) can be obtained. Moreover, the manufacturing method of the liquid fat of this invention can reduce manufacturing cost and manufacturing time compared with the conventional method, and its productivity is high.
  • palm fats and oils are used as raw materials, and a solid fat containing a large amount of glyceride having palmitic acid at the 2-position, and especially containing a large amount of tripalmitic acid glyceride (PPP) is inexpensive, and at the same time with the liquid fat and oil. Can be manufactured.
  • PPP tripalmitic acid glyceride
  • the liquid fat of the present invention is excellent in liquidity and oxidation stability while using palm oil as the main raw material, and is characterized by the triglyceride composition in the liquid fat.
  • the fatty acid composition of triglyceride in the present invention is described as follows.
  • S saturated fatty acid
  • U unsaturated fatty acid
  • SSS trisaturated fatty acid glyceride
  • SU2 monosaturated fatty acid diunsaturated fatty acid glyceride
  • S2U disaturated fatty acid monounsaturated fatty acid glyceride
  • UUU triunsaturated fatty acid glyceride
  • the method for measuring each triglyceride content is as follows. ⁇ Measurement of each triglyceride content in fats and oils> Each triglyceride content in fats and oils was measured based on AOCS Official Method Ce 5c-93 using HPLC, and calculated from the retention time and area ratio of each peak. The analysis conditions are described below. Eluent: Acetonitrile: Acetone (70:30, volume ratio) Flow rate: 0.9 ml / min Column: ODS Column temperature: 36 ° C Detector: Differential refractometer
  • the method for measuring the fatty acid composition in the fat is as follows. ⁇ Measurement of fatty acid composition in fats and oils>
  • the fatty acid composition in the oil and fat can be measured by the FID constant temperature gas chromatograph method.
  • the FID constant temperature gas chromatograph method is a method described in “2.4.2.1 Fatty acid composition” of “Standard oil analysis test method” (issue year: 1996) edited by Japan Oil Chemistry Association.
  • the raw fats and oils used in the present invention are mainly palm fats and oils, preferably palm fats and oils having an iodine value of 55 or more.
  • the palm oil and fat is not particularly limited as long as it is derived from palm, and examples thereof include palm refined oil, unrefined crude oil, and fractionated oil such as palm olein obtained by one or more fractionations.
  • the saturated fatty acid content in the total constituent fatty acids of the palm oil used as a raw material is preferably 70% by weight or less, more preferably 3 to 70% by weight, still more preferably 3 to 52% by weight, particularly preferably 30 to 52% by weight. If the saturated fatty acid content is more than 70% by weight, there will be too many hard parts during direct transesterification, and it will be difficult to obtain crystals with good separability, and liquid oil with high liquidity can be obtained in high yield. It can be difficult. However, if the saturated fatty acid content is less than 3% by weight, the raw material becomes expensive, and the resulting fats and oils are also expensive, so that the production cost increases and it may be difficult to enjoy the effects of the present invention.
  • a preferred embodiment of palm oil is palm olein.
  • the said palm olein in this invention refers to the thing obtained by isolate
  • fats and oils other than palm-based fats and oils may be further used as raw fats and oils.
  • the content of fats and oils other than palm-based fats and oils is preferably 50% by weight or less, more preferably 30% by weight or less, and still more preferably 10% by weight or less in the total raw material fats and oils. Most preferably, it is 0% by weight. If the content of fats and oils other than palm-based fats and oils is more than 50% by weight, the raw materials become expensive, and the resulting fats and oils are also expensive, which increases the manufacturing cost and may not be able to enjoy the effects of the present invention. is there.
  • the edible fats and oils other than the palm-based fats and oils having a SU2 / UUU weight ratio of 1.9 or less, more preferably 1.1 or less, and an SSS content of 2% by weight or less in the finally obtained liquid fats and oils.
  • examples of such fats are soybean oil, rapeseed oil, sunflower oil, olive oil, sesame oil, canola oil, cottonseed oil, rice bran oil, safflower oil, palm oil, palm kernel oil, shea oil, monkey fat, iripe Fats, cocoa butter, beef tallow, pork tallow, milk fat, fractionated fats of these fats, hardened oils, transesterified oils, and the like.
  • soybean oil and rapeseed oil having a saturated fatty acid content of less than 20% by weight in the total constituent fatty acids are preferable because the effects of the present invention are easily exhibited.
  • the saturated fatty acid content in the total constituent fatty acids of these fats and oils used as a raw material in the present invention is preferably 70% by weight or less, more preferably 3 to 70, for the same reason as described for palm fats and oils. % By weight, more preferably 3 to 52% by weight.
  • the liquid oil / fat derived from palm oil of the present invention is preferably higher in liquidity, and the triglyceride composition of the liquid oil / fat preferably has a SU2 / UUU weight ratio of 1.9 or less.
  • the triglyceride composition of the liquid oil / fat preferably has a SU2 / UUU weight ratio of 1.9 or less.
  • it is preferably less than 1.3, more preferably 1.1 or less.
  • SSS content is 2 weight% or less.
  • the SU2 / UUU weight ratio is preferably 1.0 or less, more preferably 0.95 or less, 0.9 or less, 0.8 or less, 0.7 or less,
  • the smaller the value, 0.5 or less the more preferable.
  • the lower limit of the SU2 / UUU weight ratio is preferably 0.5 or more, more preferably 0.6 or more, still more preferably 0.65 or more, and 7 or more is particularly preferable.
  • the SU2 / UUU weight ratio is preferably in the range of 1.1 to 0.5, more preferably 1.0 to 0.6, and 0.95 to 0. .65 is more preferable, and 0.9 to 0.7 is most preferable.
  • the SSS content of the liquid oil and fat is preferably 0.5% by weight or less. It is more preferably 3% by weight or less, further preferably 0.1% by weight or less, particularly preferably 0.05% by weight or less, and most preferably 0.03% by weight or less. Furthermore, in order to improve liquid property, it is preferable that S2U content is 10 weight% or less in the whole liquid fat, and it is more preferable that S2U content is 5 weight% or less.
  • the UUU content is preferably 12% by weight or more, more preferably 25% by weight or more, still more preferably 35% by weight or more, and most preferably 40% by weight or more.
  • the liquid fat according to the present invention has a specific fatty acid composition with palm oil and fat, preferably palm oil and fat having an iodine value of 55 or more as a main raw material. Furthermore, the liquid fat of the present invention contains a large amount of triglyceride having palmitic acid bonded at the 2-position and exhibiting high absorbability.
  • the liquid oil derived from palm oil of the present invention is preferable as the content of glyceride in which palmitic acid is bonded to the 2-position ( ⁇ -position), which is generally said to have high absorbability, but liquidity is also taken into consideration. It is preferably 10 to 30% by weight, more preferably 13 to 30% by weight, still more preferably 16 to 30% by weight, particularly preferably 16 to 25% by weight, and most preferably 16 to 20% by weight.
  • the content of the polyunsaturated fatty acid in the liquid fat is preferably as small as possible from the viewpoint of oxidation stability. Therefore, it is preferably 21% by weight or less, more preferably 20% by weight or less, further preferably 19% by weight or less, and further 18% by weight. The following is particularly preferable, and 17% by weight or less is most preferable.
  • the timing for stopping the direct transesterification reaction may be advanced or the fractionation temperature may be increased.
  • the cloud point of the liquid oil derived from palm oil of the present invention is not particularly limited as long as it satisfies the liquid oil composition, but is preferably 0 to ⁇ 12 ° C. from the viewpoint of liquidity. From the viewpoint of stability, 0 to ⁇ 10 ° C. is more preferable, and 0 to ⁇ 9 ° C. is still more preferable. For applications requiring high liquidity such as salad oil, ⁇ 2 ° C. to ⁇ 12 ° C. is preferable, and ⁇ 2.5 ° C. to ⁇ 12 ° C. is more preferable.
  • the liquid oil derived from palm oil of the present invention can be used as a mixed liquid oil mixed with other liquid oil.
  • the amount of other liquid oils and fats is preferably as small as possible, and the liquid oils and fats of the present invention derived from palm oil are preferably mixed in an amount of 50% by weight or more of the total liquid oils and fats, more preferably 70% by weight or more, more preferably 90% by weight or more, and most preferably 100% by weight.
  • the content of the liquid oil derived from palm oil is less than 50% by weight, the oxidation stability is deteriorated, the raw material is expensive, and the obtained oil is also expensive. It may be difficult to enjoy the effect.
  • liquid oils examples include soybean oil, rapeseed oil, sunflower oil, olive oil, sesame oil, canola oil, cottonseed oil, rice bran oil, safflower oil and the like.
  • the first production method is characterized by where the direct transesterification reaction is stopped.
  • the second production method is characterized in that the crystal produced during the direct transesterification reaction has good separability, and thereafter it is characterized in that fractionation is performed without dissolving all the crystals.
  • the raw oil and fat is used, and as the SSS / S2U in the fat and oil increases, crystals with high separability are more likely to be generated and the separation efficiency increases, so that the SSS / S2U becomes 0.5 or more.
  • the direct transesterification reaction is performed until the reaction is stopped, and then the hard part is separated and removed.
  • SSS / S2U in the oil / fat is preferably as high as 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, and SSS / S2U in the oil / fat becomes 2.0 or more. It is most preferable to carry out the direct transesterification reaction.
  • the direct transesterification reaction using palm-based fats and oils having a saturated fatty acid content of 70% by weight or less in the whole constituent fatty acids as a main raw material, and at least 31% by weight of the SSS content in the oil / fat composition during the reaction. Without exceeding, it is preferable to carry out until the S2U content becomes 14% by weight or less and the reaction is stopped, and then fractionated. If the above is satisfied, any number of direct transesterification reactions may be performed. However, considering the cost, it is preferable to stop the transesterification immediately if the above is satisfied.
  • the direct transesterification reaction is performed while flowing the fats and oils by applying force from the outside, and then the solid fat content is separated without making it 1% or less. .
  • the direct transesterification reaction is performed until the SSS / S2U in the fat becomes 0.5 or more.
  • SSS / S2U in the oil / fat is preferably as high as 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, and SSS / S2U in the oil / fat becomes 2.0 or more. It is most preferable to carry out the direct transesterification reaction.
  • the SSS content in the oil and fat composition during the direct transesterification reaction does not exceed 31% by weight, and it is even more preferable that the S2U content be 14% by weight or less.
  • crystallization is performed after the direct transesterification reaction and before the fractionation treatment.
  • the liquidity may be lowered.
  • the condition for raising the temperature is to prevent the solid fat content from becoming 1% by weight or less. If the temperature is raised until the solid fat content is 1% by weight or less, the heating cost increases, and the effect as a seed crystal may be lost when crystallization is performed.
  • the crystallization rate is preferably 0.01 ° C./min to 5 ° C./min, more preferably 0.1 ° C./min to 2 ° C./min. If the crystallization rate is out of the above range, the separation of the generated crystals may be poor.
  • the direct transesterification reaction in the method for producing a palm-derived liquid fat according to the present invention as described above is a reaction in which transesterification is performed while generating fat crystals under a catalyst having transesterification ability.
  • the direct transesterification method in the present invention may be either a batch type or a continuous type.
  • the direct transesterification reaction may be cyclic.
  • SSS and SS diglyceride composed of two saturated fatty acids
  • the direct transesterification reaction is performed until the SSS / S2U in the fats and oils in the raw material oil tank A becomes 0.5 or more. More preferably, the SSS / S2U in the fat is 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, most preferably, the SSS / S2U in the fat is 2 Direct transesterification reaction is carried out until it becomes 0 or more.
  • the direct transesterification reaction is performed until the S2U content is 14% by weight or less without the SSS content in the fat or oil exceeding 31% by weight. Then, the fats and oils in the raw material tank A are classified into liquid fats and oils (soft part) and solid fats (hard part).
  • the catalyst used for the direct transesterification reaction is not particularly limited, and any catalyst such as a chemical catalyst or an enzyme catalyst may be used as long as it has transesterification ability.
  • a chemical catalyst potassium sodium alloy is preferable because of its high activity at low temperatures, and sodium methylate is more preferable because of economy and ease of handling.
  • the amount of the chemical catalyst used is not particularly limited, and may be an amount used in ordinary transesterification, but is preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the reaction fat and oil from the viewpoint of reaction efficiency and economy. .
  • Sodium methylate is preferably 0.05 to 0.5 parts by weight, preferably 0.1 to 0.3 parts by weight with respect to 100 parts by weight of reaction oils and fats from the viewpoint of reaction efficiency and fractionation efficiency and yield of liquid oils and fats. Part by weight is more preferred.
  • the enzyme catalyst is not particularly limited as long as it is a lipase having transesterification ability, and may be a random transesterase having no positional specificity or a transesterase having 1,3-position specificity. However, depending on the desired amount of palmitic acid at the 2-position, it is preferable to use either a random transesterification reaction or a regiospecific transesterification reaction.
  • the amount of the enzyme catalyst used is not particularly limited as long as the transesterification reaction proceeds, but is preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the reaction fat and oil from the viewpoint of reaction efficiency and economy.
  • the direct transesterification reaction temperature is not particularly limited as long as it is a temperature at which the high melting point glyceride is crystallized. Specifically, when sodium methylate is used, it is preferably 50 to 120 ° C, and when potassium sodium alloy is used, it is preferably 25 to 270 ° C. When an enzyme catalyst is used, it is preferably 50 ° C to 70 ° C. When a chemical catalyst is used, the direct transesterification reaction temperature is preferably 0 to 40 ° C., more preferably 10 to 40 ° C. 5 to 20 minutes after the start of the reaction. When an enzyme catalyst is used, the direct transesterification reaction temperature is preferably 0 ° C. to 40 ° C., more preferably 10 ° C. to 40 ° C. 3 to 18 hours after the start of the reaction. In the present invention, the final reaction temperature is the direct transesterification reaction temperature.
  • stirring when stirring, it is preferable to perform stirring at a speed of 1000 rpm or less from the viewpoint of imparting fluidity to fats and oils and forming crystals with good separability. Is 600 rpm or less, more preferably 300 to 1 rpm.
  • the final amount of crystals after the direct transesterification reaction is preferably 3% by weight to 60% by weight, more preferably 5% by weight to 40% by weight, based on the entire reaction fat and oil, from the viewpoint of fractionation efficiency.
  • the amount of crystals may be controlled by the reaction time.
  • the direct transesterification reaction at 0 to 40 ° C., preferably 10 to 40 ° C. is used for 1 to 48 hours when a chemical catalyst is used, and when an enzyme catalyst is used. Is preferably performed for 3 to 120 hours.
  • the method for stopping the direct transesterification reaction is not particularly limited as long as the reaction is stopped, but if it is a chemical catalyst, water or citric acid can be added, and it is acidic from the viewpoint of preventing deterioration of the equipment during fractionation. It is preferable to stop neutralization with the substance.
  • the addition amount of the terminator is preferably from 0.1 to 5 parts by weight, more preferably from 0.2 to 1 part by weight, based on 100 parts by weight of the reaction fat and oil from the viewpoint of fractionation efficiency. When the amount is more than 5 parts by weight, the filtration efficiency at the time of fractionation may be deteriorated, and the yield of liquid oil may be reduced. On the other hand, when the addition amount of the terminator is less than 0.1 parts by weight, the color tone may deteriorate or the reaction may not stop.
  • the timing for stopping the direct transesterification reaction is preferably from the viewpoint of the yield of the liquid oil and fat after the reaction until the SSS content in the oil and fat composition during the reaction is 31 wt% or less and the S2U content is 14 wt% or less. . More preferably, from the viewpoint of the liquid property of the liquid fat, it is preferable that the reaction is performed until the SU2 / UUU (weight ratio) is 1.9 or less, and further 1.1 or less.
  • the reaction is further stopped when the SSS content is between 1 wt% and 31 wt%, more preferably 1 wt% to 25 wt%, particularly preferably 1 to 20 wt%, and 1 wt% to 15 wt%. % Is most preferred.
  • the S2U content in the fat during the reaction decreases as the direct transesterification reaction continues, and from the viewpoint of the liquidity of the liquid fat obtained by fractionation after the reaction, the S2U content in the fat during the reaction is 14 wt. It is preferable to stop after reacting until it becomes less than 10%, more preferably until 10% by weight or less, still more preferably until 7% by weight or less, and most preferably until 5% by weight or less.
  • the separation method in the production method of the liquid fat according to the present invention may be solvent fractionation or dry fractionation.
  • solvent fractionation requires equipment cost and running cost due to the use of solvent
  • dry fractionation without using a solvent is preferable.
  • the fractionation temperature is preferably 0 to 45 ° C., preferably 30 ° C. or less, more preferably 20 ° C. or less, and even more preferably 10 ° C. or less in order to obtain higher liquidity. Including the viewpoint, 0 to 10 ° C. is most preferable.
  • the liquid oil derived from palm oil of the present invention can be used in a method used in general liquid oil such as soybean oil and rapeseed oil, and mainly used for dressing, mayonnaise, cream, margarine, shortening, etc. It can be used as a raw material for processed oil products or as it is as salad oil, frying oil, or the like.
  • the solid fat of the present invention is obtained using palm soft oil as a raw material, and contains a specific amount of tripalmitic acid glyceride.
  • the solid fat of the present invention has a tripalmitic acid glyceride (PPP) content of preferably 45% by weight or more, and more preferably 60% by weight or more. If the PPP content is less than 45% by weight, an oil or fat composition in which the constituent fatty acid at the 2-position is palmitic acid cannot be produced efficiently using the solid fat as a raw material. Moreover, it is preferable that the solid fat contains 65% by weight or more of glyceride whose constituent fatty acid at position 2 is palmitic acid.
  • PPP tripalmitic acid glyceride
  • the glyceride whose 2nd constituent fatty acid is palmitic acid is less than 65% by weight, there may be cases where an oil or fat composition whose 2nd constituent fatty acid is palmitic acid cannot be produced efficiently using the solid fat as a raw material.
  • the solid fat of the present invention as described above can be produced at the same time as the liquid fat of the present invention having excellent liquidity and oxidation stability. Therefore, according to the present invention, it is possible to easily and inexpensively produce oils and fats containing palm oils as raw materials and containing a large amount of glyceride having palmitic acid at the 2-position, and especially containing a large amount of PPP.
  • the raw material used for the production of the solid fat of the present invention is mainly palm oil.
  • the palm oil and fat include palm refined oil, unrefined crude oil, and fractionated oil obtained by one or more fractionations.
  • the iodine value of palm oil fat is 55 or more. When the iodine value is less than 55, the amount of palm-based oil-derived liquid oil produced at the same time may be too small.
  • the first method for producing solid fat of the present invention palm-based fats and oils having a saturated fatty acid content of 70% by weight or less in the entire constituent fatty acids are used as a main raw material, and SSS / S2U in the fats and oils is 0.5 or more.
  • the direct transesterification reaction is carried out until the reaction is stopped, and then the liquid fat is separated and removed to produce a solid fat simultaneously with the liquid fat.
  • the direct transesterification reaction is performed until the SSS / S2U in the fat becomes 0.75 or more.
  • the direct transesterification reaction is more preferable as SSS / S2U in the fat or oil is increased to 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, or 2.0 or more.
  • the direct transesterification reaction is performed until the S2U content is 14% by weight or less and the reaction is stopped without the SSS content in the oil or fat composition being reacted exceeding 31% by weight.
  • palm oil and fat having a saturated fatty acid content of 70% by weight or less in the entire constituent fatty acid is used as a main raw material, and the oil and fat is caused to flow by applying force from the outside. Then, after the direct transesterification reaction, the solid fat is produced simultaneously with the liquid fat by separating and removing the liquid fat without reducing the solid fat content to 1% by weight or less.
  • the direct transesterification reaction is performed until the SSS / S2U in the fat becomes 0.5 or more.
  • the direct transesterification reaction is carried out until the SSS / S2U in the fat or oil is increased to 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, 2.0 or more. preferable.
  • the direct transesterification reaction using palm-based fats and oils as a raw material the SSS content in the fat composition during the reaction does not exceed 31% by weight, and the S2U content is 14% by weight or less,
  • the reaction is carried out until the reaction is stopped, and then the liquid oil is separated and removed. If the above is satisfied, any number of direct transesterification reactions may be performed.
  • the direct transesterification reaction in producing the solid fat of the present invention is a reaction in which transesterification is carried out while generating fat crystals under a catalyst having transesterification ability.
  • the method of direct transesterification in the method for producing solid fat of the present invention may be a batch type or a continuous type. Furthermore, the direct transesterification reaction may be cyclic. In addition, as described above, the timing of stopping the direct transesterification reaction is the reaction until the SSS content in the reaction fat is 31 wt% or less and the S2U content is 14 wt% or less from the viewpoint of the yield of the liquid fat. After is preferable.
  • the cyclic direct transesterification reaction for example, SSS and SS (diglyceride composed of two saturated fatty acids) precipitated in the palm oil and fat deposited in the raw material oil tank A adjusted to a specific temperature are precipitated, and the supernatant liquid is obtained.
  • step (2) the direct transesterification reaction is performed until the S2U content is 14% by weight or less without the SSS content in the fat and oil in the raw material oil tank A exceeding 31% by weight.
  • the fats and oils in A are separated into liquid fats and oils (soft part) and solid fats (hard part).
  • the separation method in the production method of the liquid fats and solid fats of the present invention may be solvent fractionation or dry fractionation, but solvent fractionation requires equipment costs and running costs due to the use of solvent, so dry fractionation without using a solvent is required. preferable.
  • the fractionation temperature in the dry fractionation is preferably 0 ° C. to 30 ° C., more preferably 20 ° C. or less, and more preferably 0 ° C. to 10 ° C. in view of the yield, in order to obtain liquid oil with sufficient liquidity.
  • the fractionation temperature is increased and the fractionation is again performed at 40 ° C to 60 ° C.
  • the solid fat of the present invention can be used as a raw material for processed fat products such as cream, margarine, shortening, chocolate, etc., or can be used as it is as a base material for microcapsules.
  • the solid fat of the present invention is used as a raw material for OPO (2-palmitoyl-1,3-dioleyl triglyceride) structure oil or PPO (1,2-dipalmitoyl-3-dioleyl triglyceride) structure oil. It can also be used.
  • 0.05 g of the monoglyceride is dissolved in 5 ml of isooctane, 1 ml of 0.2 mol / L sodium methylate / methanol solution is added and reacted at 70 ° C. for 15 minutes to make methyl ester, and after neutralizing the reaction solution with acetic acid, an appropriate amount
  • the glyceride content having palmitic acid at the second position was determined based on the retention time and peak area area of the organic phase by gas chromatography (model number: 6890N, manufactured by Agilent).
  • Example 1 Preparation of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value 64) into a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate was added. After holding at 90 ° C. for 20 minutes, the temperature is lowered and direct transesterification is carried out at 30 ° C. for about 8 hours, so that the SSS content and S2U content become 18% by weight and 13.5% by weight, respectively, in the total fat and oil during the reaction After confirming that the reaction was completed, 50 parts by weight of water was added as a reaction terminator to terminate the reaction.
  • palm olein iodine value 64
  • the temperature after decolorization is reduced to 1 ° C / min (set value) up to 40 ° C, decreased from 40 ° C to 0.2 ° C / min (set value), and when 10 ° C is reached, the temperature is maintained and measured from the start of temperature decrease. Crystallization continued until 24 hours. After the crystallization, 3200 parts by weight (yield: 64%) of liquid oil with a SU2 / UUU (weight ratio) of 1.1 in the triglyceride composition is obtained by filtration using a filter press (pressurized to 3 MPa). It was.
  • Example 2 Production of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine number 57) into a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate was added. After holding at 90 ° C. for 20 minutes, the temperature is lowered and direct transesterification is carried out at 30 ° C. for about 8 hours. The SSS content and the S2U content become 27% by weight and 11.6% by weight, respectively, in the total fats and oils during the reaction. After confirming that the reaction was completed, 50 parts by weight of water was added as a reaction terminator to terminate the reaction. Thereafter, in the same manner as in Example 1, 2700 parts by weight (yield: 54%) of liquid oil having a SU2 / UUU (weight ratio) of 1.1 in the triglyceride composition was obtained.
  • Example 3 Preparation of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value 64) in a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate was added. After holding at 90 ° C. for 20 minutes, the temperature was lowered, and the direct transesterification reaction was carried out at 30 ° C. for about 8 hours, and further at 25 ° C. for about 24 hours, and the SSS content and S2U content were After confirming that the total amount was 22% by weight and 9.5% by weight, 50 parts by weight of water was added as a reaction terminator to stop the reaction. Thereafter, in the same manner as in Example 1, 3100 parts by weight (yield: 62%) of liquid oil having an SU2 / UUU (weight ratio) of 0.9 in the triglyceride composition was obtained.
  • Example 4 Production of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value 57) into a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate was added. After holding at 90 ° C. for 20 minutes, the temperature was lowered, and the direct transesterification reaction was carried out at 30 ° C. for about 8 hours, and further at 25 ° C. for about 24 hours, and the SSS content and S2U content were After confirming that the total amount was 30% by weight and 9.4% by weight, 50 parts by weight of water was added as a reaction terminator to stop the reaction. Thereafter, in the same manner as in Example 1, 2640 parts by weight (yield: 53%) of liquid oil having a SU2 / UUU (weight ratio) of 0.9 in the triglyceride composition was obtained.
  • Example 5 Preparation of liquid fats and oils 5000 parts by weight of palm olein (iodine value 64) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 5 parts by weight of sodium methylate was added. , Held at 90 ° C. for 20 minutes, and then cooled, and the direct transesterification reaction was performed at 30 ° C. for about 8 hours, 27.5 ° C. for about 2 hours, 25 ° C. for about 12 hours, and 22.5 ° C. for about 24 hours.
  • Example 6 Preparation of liquid fats and oils 5000 parts by weight of palm olein (iodine number 57) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 5 parts by weight of sodium methylate was added. , Held at 90 ° C. for 20 minutes, and then cooled, and the direct transesterification reaction was performed at 30 ° C. for about 8 hours, 27.5 ° C. for about 2 hours, 25 ° C. for about 12 hours, and 22.5 ° C. for about 24 hours.
  • Example 7 Preparation of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value 64) into a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 10 parts by weight of sodium methylate was added. , Held at 90 ° C. for 20 minutes, and then cooled, and the direct transesterification reaction was performed at 30 ° C. for about 8 hours, 27.5 ° C. for about 2 hours, 25 ° C. for about 2 hours, 22.5 ° C. for about 5 hours, It was carried out at 18 ° C.
  • Example 8 Preparation of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value 64) into a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate was added. After holding at 90 ° C. for 20 minutes, the temperature was lowered, and the direct transesterification reaction was carried out at 36 ° C. for about 8 hours. After confirming that the reaction was completed, 50 parts by weight of water was added as a reaction terminator to stop the reaction. Thereafter, in the same manner as in Example 1, 3200 parts by weight (yield: 64%) of liquid oil having a SU2 / UUU (weight ratio) of 1.3 in the triglyceride composition was obtained.
  • Example 9 to 18 Analysis of liquid fats and oils
  • Example 9 to 18 obtained by the production methods of Examples 1 to 8 and Comparative Examples 1 and 2, fatty acid composition, triglyceride composition, cloud point, iodine
  • the values were analyzed for the CDM value, the salad oil standards were determined, and the results are summarized in Table 1.
  • Example 20 Preparation of liquid fats and oils 5000 parts by weight of palm olein (iodine value: 64) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 10 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and after reaching 30 ° C., 25 parts by weight of tripalmitin powder (manufactured by Nacalai Tex) was added, and direct transesterification was performed for 4 hours.
  • palm olein 5000 parts by weight of palm olein (iodine value: 64) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 10 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and after reaching 30 ° C., 25 parts by weight of tripalmitin
  • Example 21 Preparation of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value: 64) into a separable flask and stirring at 300 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 34 ° C. for 24 hours. At that time, after confirming that the SSS content and S2U content in the entire fat and oil during the reaction were 20 wt% and 10.5 wt%, respectively, 15 parts by weight of 25% citric acid water was added as a reaction terminator. The reaction was stopped.
  • Example 22 Preparation of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value: 64) in a separable flask and stirring at 600 rpm under vacuum dehydration at 90 ° C, 5 parts by weight of sodium methylate In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 34 ° C. for 24 hours. At that time, after confirming that the SSS content and S2U content in the entire fat and oil during the reaction were 20 wt% and 10.5 wt%, respectively, 15 parts by weight of 25% citric acid water was added as a reaction terminator. The reaction was stopped.
  • Example 23 Production of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value: 64) into a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered and direct transesterification was performed at 38 ° C. for 18 hours. At that time, after confirming that the SSS content and S2U content in the whole fat and oil during the reaction were 16% by weight and 13.0% by weight, respectively, 15 parts by weight of 25% citric acid water was added as a reaction terminator. The reaction was stopped. Then, 3850 parts by weight (yield: 77%) of liquid oil was obtained by filtration using a filter press (pressurized to 3 MPa).
  • Example 25 Preparation of liquid fats and oils After putting 5000 parts by weight of palm olein (iodine value: 64) into a separable flask and stirring at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 32 ° C. for 16 hours, and then the temperature was further lowered, and direct transesterification was performed at 10 ° C. for 18 hours.
  • palm olein iodine value: 64
  • the oil and fat temperature after decolorization is 1 ° C / min (set value) until 40 ° C and from 40 ° C to 0.2 ° C / min (set value), and when it reaches 10 ° C, the temperature is maintained. Then, crystallization was performed until 24 hours in total from the start of temperature drop. After crystallization, 3200 parts by weight (yield: 64%) of liquid oil was obtained by filtering using a filter press (pressurized to 3 MPa).
  • Example 30 Preparation of solid fat 5000 parts by weight of palm olein (iodine value: 64) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 30 ° C. for 8 hours, 27.5 ° C. for 2 hours, 25 ° C. for 12 hours, and 22.5 ° C. for about 24 hours.
  • Example 31 Production of solid fat After 5,000 parts by weight of palm olein (iodine value: 64) were put into a separable flask and stirred at 100 rpm, vacuum dehydration was performed at 90 ° C, and then 10 parts by weight of sodium methylate In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and the direct transesterification reaction was performed at 30 ° C. for 8 hours, 27.5 ° C. for 2 hours, 25 ° C. for 2 hours, 22.5 ° C. for 5 hours, and 18 ° C.
  • Example 32 Preparation of solid fat 5000 parts by weight of palm olein (iodine value: 57) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 30 ° C. for about 8 hours. After confirming that the reaction had ended, 50 parts by weight of water was added as a reaction terminator to stop the reaction. Thereafter, all the crystals were dissolved by heating, warm water at 70 ° C.
  • the oil in the oil layer is heated to 90 ° C., vacuum dewatered, added 2 parts by weight of white clay, stirred for 20 minutes, and then filtered. Decolorization was performed except for the white clay.
  • the temperature after decolorization is reduced to 1 ° C / min (set value) up to 40 ° C, and decreased from 40 ° C to 0.2 ° C / min (set value). When the temperature reaches 30 ° C, the temperature is maintained and measured from the start of temperature decrease. Crystallization continued until 24 hours.
  • the solid fat After crystallization, it is filtered using a filter press (pressurized to 3 MPa), so that the solid fat has an SSS content of 68% by weight, a PPP content of 52% by weight, and a glyceride content with palmitic acid at the 2-position of 70%. As a result, 2050 parts by weight (yield: 41%) of a solid fat having a weight% was obtained.
  • Example 33 Production of solid fat 5000 parts by weight of palm olein (iodine value: 64) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 30 ° C. for about 8 hours. The SSS content and S2U content were 18% by weight and 13.5% by weight, respectively, in the total fats and oils during the reaction. After confirming that the reaction had ended, 50 parts by weight of water was added as a reaction terminator to stop the reaction.
  • the temperature When the temperature reaches 30 ° C, the temperature is maintained and measured from the start of temperature decrease. Crystallization continued until 24 hours. After crystallization, the soft part was filtered off using a filter press (pressurized to 3 MPa), the temperature was raised to 45 ° C. with the pressure released, the pressure was increased to 3 MPa, and then the temperature was increased to 60 again.
  • the solid fat having an SSS content of 95% by weight, a PPP content of 78% by weight, and a glyceride content having palmitic acid at the second position of 91% by weight after being pressurized to 3 ° C. 400 parts by weight (yield: 8%) was obtained.
  • Example 34 Production of solid fat 5,000 parts by weight of palm olein (iodine value: 64) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 30 ° C. for about 8 hours. After confirming that the reaction had ended, 50 parts by weight of water was added as a reaction terminator to stop the reaction. Thereafter, all the crystals were dissolved by heating, warm water at 70 ° C.
  • the temperature After crystallization, after filtering the soft part using a filter press (pressurization up to 3 MPa), the temperature is raised to 45 ° C. with the pressure released, and after pressurizing up to 3 MPa again, the temperature is increased again. After raising the temperature to 55 ° C., pressurizing again to 3 MPa, the solid fat has an SSS content of 80% by weight, a PPP content of 61% by weight, and a glyceride content having palmitic acid at the 2-position of 82% by weight. 1000 parts by weight (yield: 20%) of fat was obtained.
  • the temperature When 20 ° C is reached, the temperature is maintained and measured from the start of temperature decrease. Crystallization continued until 24 hours. After crystallization, after filtering the soft part using a filter press (pressurization up to 3 MPa), the temperature is raised to 45 ° C. with the pressure released, and after pressurizing up to 3 MPa again, the temperature is increased again. After raising the temperature to 50 ° C. and pressurizing again to 3 MPa, the solid fat has an SSS content of 73 wt%, a PPP content of 56 wt%, and a glyceride content having palmitic acid at the 2nd position is 84 wt% 1150 parts by weight of fat (yield: 23%) was obtained.
  • Example 36 Preparation of solid fat 5000 parts by weight of palm olein (iodine value: 57) was placed in a separable flask and stirred at 100 rpm, followed by vacuum dehydration at 90 ° C, and then 5 parts by weight of sodium methylate. In addition, after maintaining at 90 ° C. for 20 minutes, the temperature was lowered, and direct transesterification was performed at 30 ° C. for about 8 hours. After confirming that the reaction had ended, 50 parts by weight of water was added as a reaction terminator to stop the reaction. Thereafter, all the crystals were dissolved by heating, warm water at 70 ° C.
  • the temperature After crystallization, after filtering the soft part using a filter press (pressurization up to 3 MPa), the temperature is raised to 45 ° C. with the pressure released, and after pressurizing up to 3 MPa again, the temperature is increased again. After raising the temperature to 55 ° C., pressurizing again to 3 MPa, the solid fat has an SSS content of 83% by weight, a PPP content of 65% by weight, and a glyceride content having palmitic acid at the 2-position of 83% by weight. 1500 parts by weight of fat (yield: 32%) was obtained.
  • a solid fat containing a large amount of glyceride having palmitic acid at the 2-position can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Abstract

 安価なパーム系油脂を原料とし、特段に高い液状性と酸化安定性を兼ね備えた安価な液状油脂と、PPPを多く含む固体脂とを、高収率で得ることを目的とするものであり、構成脂肪酸中の飽和脂肪酸70重量%以下のパーム系油脂を主原料とし、油脂中のSSS/S2Uが0.5以上になるまで、かつ反応中にSSSが31重量%を越えることなくS2Uが14重量%以下になるまでダイレクトエステル交換反応した後、液状油脂と固体脂とを分別する、また、前記パーム系油脂を主原料とする油脂に外部から力を加えて流動させつつ前記ダイレクトエステル交換反応した後、固体脂含量を1重量%以下にすることなく液状油脂と固体脂とを分別することで、SU2/UUUが1.9以下、SSS含量が2重量%以下、2位にパルミチン酸が結合したトリグリセライドを10~30重量%含む液状油脂と、PPPを多く含む固体脂と、を得る。

Description

液状油脂とその製造法
 本発明は、パーム系油脂を主原料とする液状油脂およびその製造方法並びに前記液状油脂を含有する食品に関する。また、本発明は、固体脂の製造方法及び固体脂並びにこれを含有する食品に関する。
 低温で高い液状性を持つ大豆油やナタネ油は、サラダ油など液状油脂として幅広い用途に利用されている。これら大豆油やナタネ油は、低温でも液状性は良好であるが、酸化安定性が悪く、加熱や保管中に風味が劣化しやすい。このため、酸化安定性が高く、液状性の高い油脂が求められている。
 一方、常温で固体であるパーム油は、安定性が高く、価格競争力もあることから、年々生産量が増加している。そのため、パーム油を原料として、液状油脂を作る多くの試みが行われている。
 パーム油から液状油脂を得るためには、溶剤あるいは無溶剤下で、硬質部を除く方法が、広く行われている。しかし、これらの方法で得られる液状油脂は、低温で結晶が発生するため、十分な液状性がない。また、更に分別を繰り返すことでパーム油から高ヨウ素価(ヨウ素価70)の液状部を得て、低温での結晶の発生量を抑制し、サラダ油に近い特性を持つ液状油脂が得られる製法がある(非特許文献1)。しかし、この方法は、分別を繰り返す為に収率が低い。更に、同様の方法で作製した高ヨウ素価(ヨウ素価70)のパーム系油脂由来液状油脂を分析したところ、液状油脂中のトリ不飽和酸グリセライド(UUU)含量は11.5重量%と低く、SU2(モノ飽和脂肪酸ジ不飽和脂肪酸グリセライド)/UUU(重量比)は5.3、SSS(トリ飽和酸グリセライド)含量は0.02重量%であり、曇点は2.5℃であり、液状性は十分ではない。
 また、ダイレクトエステル交換反応は油脂中のトリ飽和酸グリセライドなどの高融点成分を結晶として析出させながらエステル交換反応を行なう反応であり、油脂中のトリ飽和酸グリセライド(SSS)とトリ不飽和酸グリセライド(UUU)を増加させ、液状油脂を得ることが可能である。例えば、パーム油を原料にしてダイレクトエステル交換反応を行なった後に硬質部を分別除去することで液状油脂を得る方法がある(非特許文献2)。しかし、この方法は、静置したままダイレクトエステル交換反応を進行させているため、ダイレクトエステル交換反応により流動性を失った分離性の悪い結晶が発生している。このため、液状油脂を得るには、分離性の悪い結晶を、一旦全て溶解させた後、再結晶させて硬質部を分別除去しなければならず、工程が煩雑であり、製造時間、製造コストの点で問題である。また、トリ飽和酸グリセライド含量が2重量%を超えており、液状性も不十分であった。
 また、アルカリ触媒を用いてパーム油をエステル交換した後、硬質油を除去することで液状油脂を得る方法もある(特許文献1)。しかし、この方法も、収率が悪く、液状性も十分ではない。
 また、ランダムエステル交換能を有するリパーゼを用いてパームオレインをエステル交換する工程と、高融点部を分別除去する工程を、複数回繰り返すことにより、液状性の良いヨウ素価70以上の油脂を得る方法が開示されている(特許文献2)。しかし、この方法は、エステル交換と、高融点部を除去するための晶析、分別ろ過とを複数回行う必要があり、非常に手間がかかり、且つ収率も悪く、液状性も不十分であった。
 更に、安定性の低い大豆油やナタネ油を水素添加した後、ダイレクトエステル交換反応し、その後、硬質部を分別除去することで、安定性の高い液状油脂を得る方法も試みられている(特許文献3)。しかし、この方法も、静置して20℃でダイレクトエステル交換反応を進行させており、ダイレクトエステル交換反応により発生した分離性の悪い結晶を分別して液状油脂を得るために、結晶を、一旦全て溶解した後、再結晶を行い、硬質部を分別除去しなければならない。このため、この方法も、溶剤の添加、結晶の溶解、再結晶および分別を行う必要があり、工程が煩雑で、製造時間の長さおよび製造コストの点で問題がある。
 上記のように、パーム油から液状油脂を得るこれまでの方法は、いずれも、分別を何度も繰り返すか、あるいは条件を特に規定せずにダイレクトエステル交換反応後、結晶を、一旦全て溶解して再結晶した後、分別している。このため、工程が煩雑で、製造時間の長さおよび製造コストの点で問題があった。
 また、2位(β位)にパルミチン酸が結合したトリグリセライドは、α位にパルミチン酸が結合したトリグリセライドにくらべ、はるかに高い吸収性を示すことが知られている(特許文献4、[0003])。
 ところが、パ-ム油を原料として液状油脂を作製する際にろ別される固体脂及び該液状油脂は、構成脂肪酸としてパルミチン酸が多いものの、その殆どが1、3位に結合している。
 固体脂の場合、2位にパルミチン酸を有するグリセライドは、母乳の油脂成分に多く含まれるOPO(2-パルミトイル-1,3-ジオレイルトリグリセライド)構造の原料や、マーガリンやチョコレートの原料に利用されるPPO(1,2-ジパルミトイル-3-ジオレイルトリグリセライド)構造の原料になる。これらは、例えば、オレイン酸と、トリパルミチン酸グリセライド(PPP)のように2位にパルミチン酸を有するトリグリセライドとから、1,3位特異的酵素などによって1,3位を特異的にエステル交換することで作製される。
 高純度なPPPを得る方法として、パーム油を原料として溶剤を用いて繰り返し分別する方法がある(特許文献5)。しかし、パーム油自体には構成脂肪酸としてパルミチン酸が多く含まれているものの、PPPの形としては多く含まれないため、高純度のPPPを得るには溶剤を用いて繰り返し分別する必要がある。このため、最終的に得られる収率も低く、また、溶剤を使用しているため溶剤を除去する必要があり、生産性が悪い。また、油脂中のPPP以外の油脂組成はPOPやPOOなど2位にパルミチン酸を含まないグリセライドが殆どであるため、油脂中の2位にパルミチン酸を有するグリセライドの含量は低い。
 別の方法としてグリセリンとパルミチン酸のエステル合成反応により合成する方法もある。しかし、この方法は、高純度なPPPが得られるが、純度の高い脂肪酸、グリセリンが必要であったり、反応後に脂肪酸を除去する必要があるなど、非常にコストがかかるといったデメリットがあった。
 2位にパルミチン酸を有するグリセライドを多く含む天然の油脂としては、ラードが挙げられる。しかし、ラードは独特の獣臭が発現し、更に時間の経過と共に戻り臭が発生し、また宗教上の理由で使用が困難な場合がある、といろいろな問題がある。そこで、植物油を原料として、2位にパルミチン酸を有するグリセライドを多く含む油脂を製造する方法の開発が望まれている。
 自然界に豊富にあるオレイン酸やリノール酸を多く含んだ油脂を水素添加して得られる、ステアリン酸を有するグリセライドを含む油脂とは異なり、パルミトオレイン酸などの炭素数16の不飽和脂肪酸含量は自然界に極端に少ない。このため、天然原料を水素添加して2位にパルミチン酸を有するグリセライドを得ることは出来ない。
 OPOを得る方法として、パルミチン酸の含量が多いが、2位にパルミチン酸を有するグリセライドが少ないパーム油を化学的にランダムエステル交換することで、2位のパルミチン酸含量を増加させる方法がある(特許文献6)。しかし、この方法で得られたOPOは液状性が低く、サラダ油などには使用できない。
米国特許第2,442,531号明細書 特開2008-194011号公報 特開昭57-165491号公報 特許第3120906号公報 特開平9-75015号公報 特開昭61-209544号公報
Gijs H.Calliauw.et.al., "Principles of palm olein fractionation:a bit of science behind the technology", Lipid Technology, July 2007, Vol.19, No.7, p.152-155 Regina C. A. Lago and Leopold Hartman,"Directed Interesterification of a Brazilian Palm Oil and Analysis of the Original and Interesterified Oil and its Fractions" J. Sci. Food Agric, 1986, 37, p.689-693
 本発明は、安価なパーム系油脂を主原料として特段に高い液状性と酸化安定性を兼ね備えた安価な液状油脂、並びに該液状油脂を高収率で製造することができ、且つ従来法に較べて製造コスト、製造時間を削減でき、生産性の高い製造方法を提供することを目的とする。
 更に、本発明は、2位(β位)にパルミチン酸が結合し、高い吸収性を示すトリグリセライドを多く含む液状油脂を提供することを目的とする。
 更に、本発明は、パーム系油脂から、2位にパルミチン酸を有するグリセライドを多く含有し、中でもトリパルミチン酸グリセライド(PPP)を多く含む固体脂を、安価に、且つ液状性、酸化安定性に優れた液状油脂と同時に製造する方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、以下のような知見を得た。
 第一の製造方法として、パーム系油脂を主原料とし、ダイレクトエステル交換反応を実施する際、油脂中のSSS/S2Uが0.5以上、特に好ましくは2.0以上になるまでダイレクトエステル交換反応を行ない、反応を停止することで、その後、硬質部を除去する際に、通常は分離効率の悪い乾式分別を用いても、1回の分別で、液状性が高く、且つ酸化安定性も高い液状油脂を高収率で得ることが出来る。
 第二の製造方法として、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行なうことで、前記エステル交換反応中に分離性の良い結晶を発生させることができ、また、固体脂含量を1%以下にすることなく分別することで、ダイレクトエステル交換反応で発生した結晶を晶析せずにそのまま効率良く分取できるため、分別のための加熱、冷却を無くしても高収率で液状油脂が得られる。
 更に、上記方法によれば、2位(β位)にパルミチン酸が結合し、高い吸収性を示すトリグリセライドを多く含み、液状性が高く、且つ酸化安定性が高い液状油脂が得られる。
 また、本発明者らは、パーム油脂を原料にしてダイレクトエステル交換反応を行ない、2位にパルミチン酸を有するグリセライドを増加させた後、分別することで、2位(β位)にパルミチン酸が結合し、液状性が高く、且つ酸化安定性も高い液状油脂と同時に、2位にパルミチン酸を有するグリセライドを高含有する固体脂を安価に得られることが出来ることを見出した。
 本発明は、上記のような種々の知見に基づき、完成されたものである。
 即ち、本発明の第一は、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であるパーム油由来の液状油脂に関する。好ましい実施態様は、SSS含量が0.5重量%以下且つS2U含量が10重量%以下である上記記載の液状油脂に関する。より好ましい実施態様は、UUU含量が25重量%以上である上記記載の液状油脂に関する。更に好ましい実施態様は、2位にパルミチン酸が結合したトリグリセライドを10~30重量%含む上記記載の液状油脂に関する。また、好ましい実施態様では、曇点が0℃~-12℃の範囲内である上記記載の液状油脂に関する。
 本発明の第二は、SU2/UUU重量比が1.9以下、SSS含量が2重量%以下である液状油脂の製造方法であって、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行い、反応を停止させた後、硬質部を分別除去することを特徴とする液状油脂の製造方法に関する。好ましい実施態様は、油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応させてから反応を停止させる上記記載の液状油脂の製造方法に関する。更に、好ましい実施態様は、反応中の油脂中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行ない、その後、硬質部を分別除去する上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、前記パーム系油脂の構成脂肪酸全体中の飽和脂肪酸量が3~52重量%である上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、前記パーム系油脂がパームオレインである上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、パーム系油脂以外の油脂として大豆油および/またはナタネ油を用いてなる上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、ダイレクトエステル交換反応温度が0℃~40℃である上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、分別が乾式分別である上記記載の液状油脂の製造方法に関する。更に、好ましい実施態様は、乾式分別の温度が0℃~45℃である上記記載の液状油脂の製造方法に関する。より好ましい実施態様は、乾式分別の温度が0℃~10℃である上記記載の液状油脂の製造方法に関する。
 また、本発明の第三は、SU2/UUU重量比が1.9以下、SSS含量が2重量%以下である液状油脂の製造方法であって、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行なった後、固体脂含量を1重量%以下にすることなく分別することを特徴とする液状油脂の製造方法に関する。好ましい実施態様は、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応させてから反応を停止させる上記記載の液状油脂の製造方法に関する。更に、好ましい実施態様は、反応中の油脂中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行ない、その後、硬質部を分別除去する上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、前記パーム系油脂の構成脂肪酸全体中の飽和脂肪酸量が3~52重量%である上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、前記パーム系油脂がパームオレインである上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、パーム系油脂以外の油脂として大豆油および/またはナタネ油を用いてなる上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、ダイレクトエステル交換反応温度が0℃~40℃である上記記載の液状油脂の製造方法に関する。また、好ましい実施態様は、分別が乾式分別である上記記載の液状油脂の製造方法に関する。更に、好ましい実施態様は、乾式分別の温度が0℃~45℃である上記記載の液状油脂の製造方法に関する。より好ましい実施態様は、乾式分別の温度が0℃~10℃である上記記載の液状油脂の製造方法に関する。
 本発明の第四は、上記記載の製造方法により製造された液状油脂に関する。
 本発明の第五は、上記記載の液状油脂を含有する食品に関する。
 また、本発明は、ヨウ素価55以上のパーム系油脂を原料にして得られる、固体脂全体中のトリパルミチン酸グリセライド含量が45重量%以上である固体脂に関する。好ましい実施態様は、固体脂全体中のトリパルミチン酸グリセライド含量が60重量%以上である上記記載の固体脂に関する。より好ましくは、固体脂全体中に、2位の構成脂肪酸がパルミチン酸であるグリセライドの含量が65重量%以上である上記記載の固体脂に関する。
 更に、本発明は、上記のような本発明の液状油脂の製造方法において、ダイレクトエステル交換反応した後、液状油脂(軟質部)を分別除去することで、液状油脂と同時に固体脂を製造する方法に関する。好ましい実施態様は、反応物中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行ない、その後、軟質部を分別除去することを特徴とする上記記載の固体脂の製造方法に関する。より好ましくは、ダイレクトエステル交換後の油脂を0~40℃で冷却結晶化し、その後、乾式分別により軟質部を分別除去することを特徴とする上記記載の固体脂の製造方法、更に好ましくは、乾式分別温度が、0~30℃である上記記載の固体脂の製造方法、特に好ましくは、軟質部を乾式分別により分別除去して得た固体脂を、40~60℃まで昇温した後、乾式分別により再び軟質部を除去することを特徴とする上記記載の固体脂の製造方法、に関する。
 本発明に従えば、安価なパーム系油脂を主原料として、特段に高い液状性と酸化安定性を兼ね備えた安価な液状油脂を高収率で得ることができる。更に、本発明に従えば、2位(β位)にパルミチン酸が結合した、高い吸収性を示すトリグリセライドを多く含む液状油脂を得ることができる。
 また、本発明の液状油脂の製造方法は、従来法に較べて、製造コスト、製造時間を削減でき、生産性が高い。
 また、本発明に従えば、パーム系油脂を原料として、2位にパルミチン酸を有するグリセライドを多く含有し、中でもトリパルミチン酸グリセライド(PPP)を多く含む固体脂を安価に、しかも液状油脂と同時に製造することができる。
 以下、本発明につき、更に詳細に説明する。
 本発明の液状油脂は、パーム系油脂を主な原料としながらも、液状性、酸化安定性に優れていて、液状油脂中のトリグリセライド組成に特徴がある。
 本発明におけるトリグリセライドの脂肪酸組成は、以下のように記する。
  S:飽和脂肪酸、U:不飽和脂肪酸
  SSS:トリ飽和脂肪酸グリセライド
  SU2:モノ飽和脂肪酸ジ不飽和脂肪酸グリセライド
  S2U:ジ飽和脂肪酸モノ不飽和脂肪酸グリセライド
  UUU:トリ不飽和脂肪酸グリセライド
 また、本発明において、前記各トリグリセライド含量を測定する方法は、以下のとおりである。
 <油脂中の各トリグリセライド含量の測定>
 油脂中の各トリグリセライド含量は、HPLCを用いて、AOCS Official Method Ce 5c-93に準拠して測定し、各ピークのリテンションタイムおよびエリア比から算出した。以下に、分析の条件を記す。
   溶離液  :アセトニトリル:アセトン(70:30、体積比)
   流速   :0.9ml/分
   カラム  :ODS
   カラム温度:36℃
   検出器  :示差屈折計
 更に、本発明において、油脂中の脂肪酸組成を測定する方法は、以下のとおりである。
<油脂中の脂肪酸組成の測定>
 油脂中の脂肪酸組成の測定は、FID恒温ガスクロマトグラフ法により行うことができる。FID恒温ガスクロマトグラフ法とは、社団法人日本油化学協会編「基準油脂分析試験法」(発行年:1996年)の「2.4.2.1 脂肪酸組成」に記載された方法である。
 本発明で使用する原料油脂は、パーム系油脂、好ましくはヨウ素価55以上のパーム系油脂が主である。前記パーム系油脂としては、パーム由来であれば特に限定はなく、パーム精製油、未精製のクルード油、一回以上の分別によって得られたパームオレインなどの分画油、などが例示される。
 原料として使用するパーム系油脂の構成脂肪酸全体中の飽和脂肪酸含量は70重量%以下であることが好ましく、より好ましくは3~70重量%、更に好ましくは3~52重量%、特に好ましくは30~52重量%である。飽和脂肪酸含量が70重量%より多いと、ダイレクトエステル交換中に硬質部が多くなり過ぎ、分離性の良い結晶を得ることが困難になり、液状性の高い液状油脂を高収率で得ることが困難な場合がある。しかし、飽和脂肪酸含量が3重量%より少ないものだと、原料が高価になり、得られた油脂も高価なものになる為、製造コストがあがり、本発明の効果を享受しにくい場合がある。パーム系油脂の好ましい実施態様はパームオレインである。本発明における前記パームオレインとは、パームの果肉から採取した脂を分離して得られ、ヨウ素価が55以上のものを指す。
 本発明の液状油脂の製造方法においては、原料油脂としてパーム系油脂以外の油脂を更に用いても良い。但し、本発明の効果をより享受するためにはパーム系油脂以外の油脂の含有量は、原料油脂全体中50重量%以下が好ましく、より好ましくは30重量%以下、更に好ましくは10重量%以下、最も好ましくは0重量%である。パーム系油脂以外の油脂の含有量が50重量%より多いと、原料が高価になり、得られた油脂も高価なものになる為、製造コストがあがり、本発明の効果を享受しにくい場合がある。
 前記パーム系油脂以外の油脂としては、最終的に得られる液状油脂中のSU2/UUU重量比が1.9以下、より好ましくは1.1以下、且つSSS含量が2重量%以下となる食用油脂であれば特に限定はない。そのような油脂の例としては、大豆油、ナタネ油、ひまわり油、オリーブ油、ごま油、キャノーラ油、綿実油、こめ油、サフラワー油、やし油、パーム核油、シア油、サル脂、イリッぺ脂、カカオ脂、牛脂、豚脂、乳脂、これらの油脂の分別脂、硬化油、エステル交換油などが挙げられる。これらの中でも、構成脂肪酸全体中の飽和脂肪酸含量が20重量%よりも低い大豆油やナタネ油などが本発明の効果を発現し易いために好ましい。
 本発明で原料として使用するこれらの油脂の構成脂肪酸全体中の飽和脂肪酸含量は、パーム系油脂について述べたのと同様の理由により、70重量%以下であることが好ましく、より好ましくは3~70重量%、更に好ましくは3~52重量%である。
 本発明のパーム油由来の液状油脂は、液状性が高いほど好ましく、該液状油脂のトリグリセライド組成は、SU2/UUU重量比が1.9以下であることが好ましい。サラダ油など高い液状性が求められる用途向けには1.3未満が好ましく、より好ましくは1.1以下である。また、SSS含量が2重量%以下であることが好ましい。前記SU2/UUU重量比は、更に高い液状性を求めると、1.0以下がより好ましく、0.95以下が更に好ましく、0.9以下、0.8以下、0.7以下、0.6以下、0.5以下と、小さくなるほど好ましい。一方、製造のし易さと酸化安定性を考慮すると、前記SU2/UUU重量比の下限値は、0.5以上が好ましく、0.6以上がより好ましく、0.65以上が更に好ましく、0.7以上が特に好ましい。液状性と製造のし易さのバランスを考慮すると、前記SU2/UUU重量比は、1.1~0.5の範囲が好ましく、1.0~0.6がより好ましく、0.95~0.65が更に好ましく、0.9~0.7が最も好ましい。
 また、液状性を高めるのに最も効果の大きいものは、油脂中におけるSSS含量をできるだけ少なくすることであり、該液状油脂のSSS含量は、0.5重量%以下であることが好ましく、0.3重量%以下であることがより好ましく、0.1重量%以下であることが更に好ましく、0.05重量%以下であることが特に好ましく、0.03重量%以下が最も好ましい。更に、液状性を高めるためには、S2U含量が液状油脂全体中10重量%以下であることが好ましく、S2U含量が5重量%以下であることがより好ましい。またUUU含量は12重量%以上であることが好ましく、25重量%以上であることがより好ましく、35重量%以上であることが更に好ましく、40重量%以上であることが最も好ましい。
 また、本発明の液状油脂は、パーム系油脂、好ましくはヨウ素価55以上のパーム系油脂を主原料とし、特定の脂肪酸組成を有する。更に、本発明の液状油脂は、2位にパルミチン酸が結合し、高い吸収性を示すトリグリセライドを多量に含む。
 本発明のパーム油由来の液状油脂は、一般的に吸収性が高いといわれている2位(β位)にパルミチン酸が結合したグリセライドの含量が多いほど好ましいが、液状性も考慮にいれると10~30重量%が好ましく、13~30重量%がより好ましく、16~30重量%が更に好ましく、16~25重量%が特に好ましく、16~20重量%が最も好ましい。
 液状油脂中の多価不飽和脂肪酸含量は、酸化安定性の観点からは少ないほど良く、従って21重量%以下が好ましく、20重量%以下がより好ましく、19重量%以下が更に好ましく、18重量%以下が特に好ましく、17重量%以下が最も好ましい。多価不飽和脂肪酸量を減らすには、ダイレクトエステル交換反応を停止するタイミングを早めるか、分別温度を高くすればよい。
 また、本発明のパーム油由来の液状油脂の曇点は、前記液状油脂組成を満たしていれば特に問題はないが、液状性の観点から0~-12℃が好ましく、製造のし易さと酸化安定性の観点から0~-10℃がより好ましく、0~-9℃が更に好ましい。サラダ油など高い液状性が求められる用途向けには-2℃~-12℃が好ましく、-2.5℃~-12℃がより好ましい。
 本発明のパーム油由来の液状油脂は、他の液状油脂と混合した混合液状油脂として使用してもなんら問題ない。しかし、コストや酸化安定性の面から他の液状油脂の混合量は少ない程良く、パーム油由来の本発明の液状油脂を混合液状油脂全体中50重量%以上混合することが好ましく、より好ましくは70重量%以上、更に好ましくは90重量%以上、最も好ましくは100重量%である。パーム油由来の液状油脂の含有量が50重量%より少ないと、酸化安定性が悪くなり、また原料が高価となり、得られた油脂も高価なものになる為、製造コストがあがり、本発明の効果を享受しにくい場合がある。
 前記他の液状油脂としては、大豆油、ナタネ油、ひまわり油、オリーブ油、ごま油、キャノーラ油、綿実油、こめ油、サフラワー油などが例示できる。
 本発明における液状油脂の製造方法としては2つある。第一の製造方法は、ダイレクトエステル交換反応をどこで停止させるかに特徴がある。また、第二の製造方法は、ダイレクトエステル交換反応中に生成する結晶の分離性が良いことに特徴があり、その後、その結晶を全て溶解させず分別を行なうことに特徴がある。
 第一の製造方法では、前記原料油脂を用い、油脂中のSSS/S2Uが大きくなるほど分離性の高い結晶が発生しやすくなり、分離効率が上がることから、SSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行い、反応を停止させた後、硬質部を分別除去する。前記油脂中のSSS/S2Uが0.75以上、1.0以上、1.25以上、1.5以上、1.75以上と大きくなるほど好ましく、油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行うことが最も好ましい。好ましい実施態様では、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料としたダイレクトエステル交換反応を、少なくとも反応中の油脂組成物中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になり、反応を停止させるまで行うことが好ましく、その後、分別する。前記を満たせば、ダイレクトエステル交換反応はどれだけ行っても良いが、コストを考え、前記を満たせば直ぐに停止させることが好ましい。
 また、第二の製造方法では、前記した原料油脂を用い、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行い、その後、固体脂含量を1%以下にすることなく分別する。好ましい実施態様では、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行う。前記油脂中のSSS/S2Uが0.75以上、1.0以上、1.25以上、1.5以上、1.75以上と大きくなるほど好ましく、油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行うことが最も好ましい。また、ダイレクトエステル交換反応中の油脂組成中のSSS含量が31重量%を超えないことがより好ましく、且つ、S2U含量が14重量%以下になることが更に好ましい。
 外部から力を加えて油脂を流動させるためには、攪拌する、反応管などにポンプなどの外圧で油脂を通す、高所から自然落下させるなど、各種の方法を採用しうる。具体的には、撹拌するには、攪拌翼を有しているタンクやピンマシンなどの装置を用いることにより、反応させる油脂を流動させる。反応管などにポンプなどの外圧で油脂を通すには、スタティックミキサーなどの手段により、反応させる油脂を流動させることができる。もし、反応開始時や途中で撹拌などによる外部からの力を加えず、油脂を流動させないでダイレクトエステル交換反応を行うと、分離性の悪い結晶が生成し、反応中の油脂が固形状になってしまい、分別が困難となる場合がある。
 前記外部から力を加えて油脂を流動させてダイレクトエステル交換反応を行う第二の製造方法において、更に液状性を高めるためには、ダイレクトエステル交換反応後、分別処理するまでに、晶析することが好ましく、収率を高めるためには昇温することが好ましい。但し、昇温のみする場合は液状性が低くなる場合がある。昇温する場合の条件は、固体脂含量が1重量%以下にならないようにすることである。もし、固体脂含量が1重量%以下になるまで昇温すると、加熱ためのコストが高くなり、また晶析も行う場合に種晶としての効果がなくなる場合がある。晶析速度は0.01℃/分~5℃/分が好ましく、0.1℃/分~2℃/分がより好ましい。晶析速度が前記範囲を外れると、生成する結晶の分離性が悪い場合がある。
 上記のような、本発明のパーム由来の液状油脂の製造方法におけるダイレクトエステル交換反応とは、エステル交換能を有する触媒下で油脂結晶を発生させながらエステル交換を行う反応である。本発明におけるダイレクトエステル交換反応の方法は、バッチ式、連続式を問わない。更に、前記ダイレクトエステル交換反応は、循環式であってもよい。循環式のダイレクトエステル交換反応としては、例えば、特定の温度に調整した原料油タンクAで析出したパーム系油脂中のSSS及びSS(飽和脂肪酸2つで構成されるジグリセライド)を沈降させ、上澄み液をエステル交換装置Bに連続的に移送する工程(1)と、エステル交換装置Bにおいて、移送された上澄み液をリパーゼの至適温度でエステル交換反応し、その後、再び原料油タンクAに移送する工程(2)を繰り返すことで、原料油タンクAにある油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行う。より好ましくは、前記油脂中のSSS/S2Uが、0.75以上、1.0以上、1.25以上、1.5以上、1.75以上、最も好ましくは前記油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行う。更に好ましくは、油脂中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行う。その後、原料タンクA中の油脂を液状油脂(軟質部)と固体脂(硬質部)とに分別する。
 前記ダイレクトエステル交換反応に使用する触媒は特に限定せず、エステル交換能を有していれば化学触媒、酵素触媒など何を使用しても良い。化学触媒の中でもカリウムナトリウム合金は低温での活性が高いことから好ましく、ナトリウムメチラートは経済性や扱い易さからより好ましい。化学触媒の使用量は特に限定されず、通常のエステル交換で使用される量で良いが、反応効率と経済性からは反応油脂100重量部に対して0.01重量部~1重量部が好ましい。ナトリウムメチラートでは、反応効率と分別効率、液状油脂の収率の観点から反応油脂100重量部に対して0.05重量部~0.5重量部が好ましく、0.1重量部~0.3重量部がより好ましい。
 酵素触媒は、エステル交換能を有するリパーゼであれば特に限定されず、位置特異性が全くないランダムエステル交換酵素でも、1,3位特異性を有するエステル交換酵素でも良い。但し、所望の2位のパルミチン酸量によっては、ランダムエステル交換反応を行うか、位置特異的エステル交換反応を行うかは、使い分けたほうが好ましい。酵素触媒の使用量はエステル交換反応が進行する量であれば良く特に限定されないが、反応効率と経済性から反応油脂100重量部に対して0.5重量部~20重量部が好ましい。
 本発明において、ダイレクトエステル交換反応温度は、高融点グリセライドが結晶化する温度であれば特に限定されないが、反応開始時は効率良く反応を行なうために触媒活性が最も高くなる温度が好ましい。具体的には、ナトリウムメチラートを使用する場合は50℃~120℃が好ましく、カリウムナトリウム合金を使用する場合は25~270℃が好ましい。また、酵素触媒を使用する場合は50℃~70℃が好ましい。また、化学触媒を使用する場合は、反応開始から5~20分後に、ダイレクトエステル交換反応温度を0~40℃にすることが好ましく、更には10℃~40℃にすることがより好ましい。酵素触媒を使用する場合は、反応開始から3~18時間後に、ダイレクトエステル交換反応温度を0℃~40℃にすることが好ましく、更には10℃~40℃にすることがより好ましい。なお、本発明では、最終的な反応温度をダイレクトエステル交換反応温度とする。
 本発明の製造方法におけるダイレクトエステル交換反応において、攪拌する場合は、油脂に流動性を与え、また分離性の良い結晶を生成させる観点から、1000rpm以下の速度で攪拌を行うことが好ましく、より好ましくは600rpm以下、更に好ましくは300~1rpmである。
 ダイレクトエステル交換反応後の最終的な結晶量は、分別効率の観点からは反応油脂全体中、3重量%~60重量%が好ましく、より好ましくは5重量%~40重量%である。前記結晶量は、反応時間でコントロールすれば良く、前記0~40℃、好ましくは10℃~40℃でのダイレクトエステル交換反応を、化学触媒使用の場合は1~48時間、酵素触媒使用の場合は3~120時間行うことが好ましい。
 ダイレクトエステル交換反応を停止する方法は、反応が停止しさえすれば特に問わないが、化学触媒であれば水やクエン酸水の添加などが挙げられ、分別時の機器の劣化を防ぐ観点から酸性物質で中和停止することが好ましい。停止剤の添加量は、分別効率の観点から反応油脂100重量部に対して0.1重量部~5重量部が好ましく、0.2重量部~1重量部がより好ましい。5重量部より多いと、分別時のろ過効率が悪くなる場合があり、液状油脂の収率が低下する場合がある。一方、停止剤の添加量が0.1重量部より少ないと、色調が悪くなったり、反応が停止しない場合がある。
 ダイレクトエステル交換反応を停止するタイミングは、液状油脂の収率の観点からは、反応中の油脂組成中のSSS含量が31重量%以下且つS2U含量が14重量%以下になるまで反応した後が好ましい。より好ましくは液状油脂の液状性の観点から、SU2/UUU(重量比)が1.9以下、更には1.1以下になるまで反応した後であることが好ましい。
 一方、ダイレクトエステル交換反応を続けるほど反応中の油脂中のSSS含量が増えてゆくため、反応系中に固体脂が増えすぎて分別しにくくなる。従って、分別効率の観点からは、反応中の油脂中のSSS含量が50重量%を越えることなく反応を停止することが好ましく、SSS含量が31重量%を越えることなく反応を停止することがより好ましく、SSS含量が1重量%~31重量%の間で反応を停止することが更に好ましく、1重量%~25重量%がより好ましく、1~20重量%が特に好ましく、1重量%~15重量%が最も好ましい。
 また、ダイレクトエステル交換反応を続けるほど反応中の油脂中のS2U含量が減ってゆき、反応後の分別で得られる液状油脂の液状性の観点からは、反応中の油脂中のS2U含量が14重量%以下になるまで反応させてから停止することが好ましく、10重量%以下になるまでがより好ましく、7重量%以下になるまでが更に好ましく、5重量%以下になるまでが最も好ましい。
 本発明の液状油脂の製造方法における分別の方法は、溶剤分別、乾式分別を問わないが、溶剤分別は溶剤の使用により設備費やランニングコストがかかるため、溶剤を使用しない乾式分別が好ましい。溶剤を使用する場合は、ヘキサン、アセトンなどを用いることができる。乾式分別の場合は、分別温度は、0~45℃が好ましく、より高い液状性を得るために30℃以下が好ましく、より好ましくは20℃以下、更には10℃以下がより好ましく、収率の観点も含めると0~10℃が最も好ましい。
 本発明のパーム油由来の液状油脂は、大豆油やナタネ油の様に一般的な液状油脂で利用されている方法で利用することが出来、主にドレッシング、マヨネーズ、クリーム、マーガリン、ショートニングなどの加工油脂製品の原料として、或いはそのまま、サラダ油、フライ油などとして利用することが出来る。
 また、本発明の固体脂は、パーム軟質油を原料にして得られ、特定量のトリパルミチン酸グリセライドを含有することを特徴とする。
 本発明の固体脂は、トリパルミチン酸グリセライド(PPP)含量が、45重量%以上であることが好ましく、60重量%以上がより好ましい。PPP含量が45重量%未満であると、2位の構成脂肪酸がパルミチン酸である油脂組成物を、該固体脂を原料として効率的に作製できない。また、該固体脂全体中には、2位の構成脂肪酸がパルミチン酸であるグリセライドを65重量%以上含有することが好ましい。2位の構成脂肪酸がパルミチン酸であるグリセライドが65重量%未満であると、該固体脂を原料として2位の構成脂肪酸がパルミチン酸である油脂組成物を効率的に作製できない場合がある。
 前記のような本発明の固体脂は、液状性、酸化安定性に優れた本発明の液状油脂と同時に製造できる。従って、本発明によれば、パーム系油脂を原料として、2位にパルミチン酸を有するグリセライドを多く含有し、中でもPPPを多く含む油脂を容易に安価で製造することができる。
 本発明の固体脂の製造に使用する原料は、パーム系油脂が主である。前記パーム系油脂としてはパーム精製油、未精製のクルード油および一回以上の分別によって得られた分画油などが例示される。また、パーム系油脂のヨウ素価は55以上であることが好ましい。ヨウ素価が55未満の場合は、同時に製造されるパーム系油脂由来液状油脂の量が少なくなりすぎる場合がある。
 本発明の固体脂の第一の製造方法では、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行ない、反応を停止させた後、液状油脂を分別除去することにより、液状油脂と同時に固体脂を製造する。好ましい実施態様では、油脂中のSSS/S2Uが0.75以上になるまでダイレクトエステル交換反応を行う。該ダイレクトエステル交換反応は、油脂中のSSS/S2Uが1.0以上、1.25以上、1.5以上、1.75以上、2.0以上と大きくなるまで行うほどより好ましい。更に好ましくは、該ダイレクトエステル交換反応を、反応中の油脂組成物中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になり、反応を停止させるまで行う。また、本発明の固体脂の第二の製造方法では、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行なった後、固体脂含量を1重量%以下にすることなく液状油脂を分別除去することにより、液状油脂と同時に固体脂を製造する。好ましい実施態様では、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行う。該ダイレクトエステル交換反応は、油脂中のSSS/S2Uが0.75以上、1.0以上、1.25以上、1.5以上、1.75以上、2.0以上と大きくなるまで行うほどより好ましい。また、更に好ましい実施態様では、パーム系油脂を原料としたダイレクトエステル交換反応を、反応中の油脂組成物中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になり、反応を停止させるまで行い、その後、液状油脂を分別除去する。前記を満たせば、ダイレクトエステル交換反応はどれだけ行っても良いが、コストを考え、前記を満たせば直ぐに停止させることが好ましい。本発明の固体脂を製造する際のダイレクトエステル交換反応とは、エステル交換能を有した触媒下で油脂結晶を発生させながらエステル交換を行う反応のことである。
 本発明の固体脂の製造方法におけるダイレクトエステル交換反応の方法はバッチ式、連続式を問わない。更に、前記ダイレクトエステル交換反応は、循環式であってもよい。また、ダイレクトエステル交換反応を停止するタイミングは、前記のように、液状油脂の収率の観点から反応中の油脂中のSSS含量が31重量%以下且つS2U含量が14重量%以下になるまで反応した後が好ましい。循環式のダイレクトエステル交換反応としては、例えば、特定の温度に調整した原料油タンクAで析出したパーム系油脂中のSSS及びSS(飽和脂肪酸2つで構成されるジグリセライド)を沈降させ、上澄み液をエステル交換装置Bに連続的に移送する工程(1)と、エステル交換装置Bにおいて、移送された上澄み液をリパーゼの至適温度でエステル交換反応し、その後、再び原料油タンクAに移送する工程(2)を繰り返すことで、原料油タンクAにある油脂中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行ない、その後、原料タンクA中の油脂を液状油脂(軟質部)と固体脂(硬質部)とに分別する。
 本発明の液状油脂および固体脂の製造方法における分別の方法は、溶剤分別、乾式分別を問わないが、溶剤分別は溶剤の使用により設備費やランニングコストがかかるため、溶剤を使用しない乾式分別が好ましい。
 溶剤を使用する場合は、ヘキサン、アセトンなどを用いることができる。乾式分別の分別温度は、液状油脂を十分な液状性で得るためには0℃~30℃が好ましく、20℃以下がより好ましく、収率の観点も含めると0℃~10℃が更に好ましい。
 また、固体脂中における、2位にパルミチン酸を有するグリセライドの含有量を高めるためには、一旦前記乾式分別を行った後、分別温度を上昇させて、40℃~60℃で再度分別することが好ましく、2位にパルミチン酸を有するグリセライドの含有量と収率を考慮すると45℃~55℃で再度分別することがより好ましい。
 本発明の固体脂は、クリーム、マーガリン、ショートニング、チョコレートなどの加工油脂製品の原料に利用したり、そのままマイクロカプセルの基材などに利用したりすることが出来る。また、本発明の固体脂は、OPO(2-パルミトイル-1,3-ジオレイルトリグリセライド)構造油脂の原料や、PPO(1,2-ジパルミトイル-3-ジオレイルトリグリセライド)構造油脂の原料などに利用することも出来る。
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 <脂肪酸組成の測定>
 油脂中の脂肪酸組成は、既述の方法により測定した。
 <油脂中の各トリグリセライド含量の測定>
 油脂中の各トリグリセライド含量は、既述の方法により測定した。
 <2位にパルミチン酸を有するグリセライド含量の測定>
 分析対象の油脂7.5gとエタノール22.5gを混合しノボザイム435(ノボザイムジャパン社製)を1.2g加えて30℃で4時間反応させ、反応液を濃縮後、シリカゲルカラムクロマトグラフィー(型番:シリカゲル60(0.063-0.200mm)カラムクロマトグラフィー用、メルク社製)によりトリグリセライド、ジグリセライド、モノグリセライドの各成分に分離し、そのうちモノグリセライド成分を回収した。そのモノグリセライド0.05gをイソオクタン5mlに溶解し、0.2mol/Lナトリウムメチラート/メタノール溶液1mlを加えて70℃で15分間反応させることによりメチルエステル化し、酢酸により反応液を中和した後に適量の水を加え、有機相をガスクロマトグラフ(型番:6890N、Agilent社製)によるリテンションタイム及びピークエリア面積により2位にパルミチン酸を有するグリセライド含有量を決定した。
 <曇点>
 基準油脂分析試験法「2.2.7-1996 曇り点」に準じて行なった。
 <サラダ油規格の判定>
 基準油脂分析試験法「2.2.8.1-1996 冷却試験(その1)」に準じて測定を行い、5.5時間以上曇らなかったものを○とした。
 <CDM試験(酸化安定性)>
 基準油脂分析試験法「2.5.1.2-1996 CDM試験」に準じてCDM値を測定した。
 <ヨウ素価>
 基準油脂分析試験法「3.3.3-1996 ヨウ素価(ウィイスーシクロヘキサン法)」に準じて測定を行なった。
 (実施例1) 液状油脂の作製
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ18重量%、13.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加え、20分間攪拌後、ろ過することで白土を除き、脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、10℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、トリグリセライド組成中のSU2/UUU(重量比)が1.1の液状油脂を3200重量部(収率:64%)得た。
 (実施例2) 液状油脂の作製
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ27重量%、11.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が1.1の液状油脂を2700重量部(収率:54%)得た。
 (実施例3) 液状油脂の作製
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油脂を3100重量部(収率:62%)得た。
 (実施例4) 液状油脂の作製
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ30重量%、9.4重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油脂を2640重量部(収率:53%)得た。
 (実施例5) 液状油脂の作製
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約12時間、22.5℃で約24時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ23重量%、10.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.7の液状油脂を3000重量部(収率:60%)得た。
 (実施例6) 液状油脂の作製
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約12時間、22.5℃で約24時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ30重量%、8.0重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.7の液状油脂を2600重量部(収率:52%)得た。
 (実施例7) 液状油脂の作製
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約2時間、22.5℃で約5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ29重量%、3.8重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.5の液状油脂を2700重量部(収率:54%)得た。
 (実施例8) 液状油脂の作製
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を36℃で約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ13重量%、16.5重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が1.3の液状油脂を3200重量部(収率:64%)得た。
 (比較例1) 液状油脂の作製
 パーム油(ヨウ素価52)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ33重量%、8.6重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油脂を1800重量部(収率:36%)得た。
 (比較例2) 液状油脂の作製
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約2時間、22.5℃で約5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ37重量%、3.7重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.5の液状油脂を850重量部(収率:17%)得た。
 (実施例9~18) 液状油脂の分析
 実施例1~8及び比較例1、2の製造方法で得られた液状油脂(実施例9~18)について、脂肪酸組成、トリグリセライド組成、曇点、ヨウ素価、CDM値について分析を行い、またサラダ油規格の判定を行い、それらの結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 (実施例19) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3200重量部(収率:64%)得た。
 (実施例20) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、30℃到達後、トリパルミチン粉末(ナカライテクス社製)を25重量部加え、ダイレクトエステル交換反応を4時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、11.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を30重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3200重量部(収率:64%)得た。
 (実施例21) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて300rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3200重量部(収率:64%)得た。
 (実施例22) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて600rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3150重量部(収率:63%)得た。
 (実施例23) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、38℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ16重量%、13.0重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3850重量部(収率:77%)得た。
 (実施例24) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を16時間行なった後、更に降温し、10℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3100重量部(収率:62%)得た。
 (実施例25) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を16時間行なった後、更に降温し、10℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、30℃まで昇温し、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3350重量部(収率:67%)得た。
 (実施例26) 液状油脂の作製
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を12時間行なった後、更に降温し、25℃でダイレクトエステル交換反応を20時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ30重量%、8.0重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.17℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を2700重量部(収率:54%)得た。
 (実施例27) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、50℃に降温してリパーゼ(ノボザイムズ社製「Lipozyme TL IM」)を500重量部加え、50℃で4時間保持した後、降温し、36℃でダイレクトエステル交換反応を38時間行なった後、更に降温し、10℃で18時間ダイレクトエステル交換反応を行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、酵素を含んだまま10℃でフィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を2850重量部(収率:57%)得た。
 (実施例37) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加えてから静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで該温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌した後、ろ過することで白土を除いて脱色を行なった。脱色後の油脂温度を、40℃になるまでは1℃/分(設定値)で、40℃からは0.2℃/分(設定値)で降温し、10℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油脂を3200重量部(収率:64%)得た。
 (比較例4) 液状油脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を1時間行なった後、攪拌を停止し、更にダイレクトエステル交換反応を3時間行った。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した。その油脂を分別しようとしたが、固形状になっており、フィルタープレスに送液することが出来ず、分別することが出来なかった。
 上記実施例19~27、37及び比較例4で得られた液状油脂の分析値を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 (実施例28) 固体脂の作製
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ27重量%、11.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を5000重量部加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行なった後、白土を2重量部加えて20分間攪拌し、その後ろ過することで白土を除き、脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で降温し、10℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、固体脂全体中のSSS含量が59重量%、PPP含量が45重量%、2位にパルミチン酸を有するグリセライド含量が76重量%である固体脂を2250重量部(収率:45%)得た。
 (実施例29) 固体脂の作製
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で8時間行った後、更に25℃で約24時間該反応を行ってSSS含量及びS2U含量が反応中の油脂全体中それぞれ30重量%、9.4重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例28と同様にして、固体脂全体中のSSS含量が64重量%、PPP含量が48重量%、2位にパルミチン酸を有するグリセライド含量が82重量%である固体脂を2300重量部(収率:46%)得た。
 (実施例30) 固体脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で8時間、27.5℃で2時間、25℃で12時間、22.5℃で約24時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ23重量%、10.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例28と同様にして、固体脂全体中のSSS含量が59重量%、PPP含量が45重量%、2位にパルミチン酸を有するグリセライド含量が75重量%である固体脂を1950重量部(収率:39%)得た。
 (実施例31) 固体脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で8時間、27.5℃で2時間、25℃で2時間、22.5℃で5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ29重量%、3.8重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例28と同様にして、固体脂全体中のSSS含量が64重量%、PPP含量が49重量%、2位にパルミチン酸を有するグリセライド含量が83重量%である固体脂を2250重量部(収率:45%)得た。
 (実施例32) 固体脂の作製
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ27重量%、11.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌後、ろ過することで白土を除いて脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、30℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、固体脂全体中のSSS含量が68重量%、PPP含量が52重量%、2位にパルミチン酸を有するグリセライド含量が70重量%である固体脂を2050重量部(収率:41%)得た。
 (実施例33) 固体脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ18重量%、13.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌後、ろ過することで白土を除いて脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、30℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いて軟質部をろ別後、圧力を開放した状態で温度を45℃まで昇温し再び3MPaまで加圧を行なった後、再び温度を60℃まで上昇させた後、再度3MPaまで加圧して、固体脂全体中のSSS含量が95重量%、PPP含量が78重量%、2位にパルミチン酸を有するグリセライド含量が91重量%である固体脂を400重量部(収率:8%)得た。
 (実施例34) 固体脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ18重量%、13.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌後、ろ過することで白土を除いて脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、20℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いて軟質部をろ別後、圧力を開放した状態で温度を45℃まで昇温し、再び3MPaまで加圧を行なった後、再び温度を55℃まで上昇させた後、再度3MPaまで加圧して、固体脂全体中のSSS含量が80重量%、PPP含量が61重量%、2位にパルミチン酸を有するグリセライド含量が82重量%である固体脂を1000重量部(収率:20%)得た。
 (実施例35) 固体脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ18重量%、13.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌後、ろ過することで白土を除いて脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、20℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いて軟質部をろ別後、圧力を開放した状態で温度を45℃まで昇温し、再び3MPaまで加圧を行なった後、再び温度を50℃まで上昇させた後、再度3MPaまで加圧して、固体脂全体中のSSS含量が73重量%、PPP含量が56重量%、2位にパルミチン酸を有するグリセライド含量が84重量%である固体脂を1150重量部(収率:23%)得た。
 (実施例36) 固体脂の作製
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ27重量%、11.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌後、ろ過することで白土を除いて脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、20℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いて軟質部をろ別後、圧力を開放した状態で温度を45℃まで昇温し、再び3MPaまで加圧を行なった後、再び温度を55℃まで上昇させた後、再度3MPaまで加圧して、固体脂全体中のSSS含量が83重量%、PPP含量が65重量%、2位にパルミチン酸を有するグリセライド含量が83重量%である固体脂を1500重量部(収率:32%)得た。
 (比較例5) 固体脂の作製
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で8時間、27.5℃で2時間、25℃で2時間、22.5℃で5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ37重量%、3.4重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例28と同様にして、固体脂全体中のSSS含量が44重量%、PPP含量が固体脂全体中33重量%、2位にパルミチン酸を有するグリセライド含量が36重量%である固体脂を4150重量部(収率:82%)得た。
 (比較例6) 固体脂の作製
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を36℃で約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ13重量%、16.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は実施例28と同様にして、固体脂全体中のSSS含量が36重量%、PPP含量が27重量%、2位にパルミチン酸を有するグリセライド含量が47重量%である固体脂を1800重量部(収率:35%)得た。
 上記実施例28~36及び比較例5、6で得られた固体脂の分析値を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明によれば、2位にパルミチン酸を有するグリセライドを多く含む固体脂を製造することができる。

Claims (23)

  1.  パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であるパーム油由来の液状油脂。
  2.  SSS含量が0.5重量%以下且つS2U含量が10重量%以下である請求項1に記載のパーム油由来の液状油脂。
  3.  UUU含量が25重量%以上である請求項1または2に記載の液状油脂。
  4.  2位にパルミチン酸が結合したトリグリセライドを10~30重量%含む請求項1~3のいずれか1項に記載の液状油脂。
  5.  曇点が0℃~-12℃の範囲内である請求項1~4のいずれか1項に記載の液状油脂。
  6.  請求項1~5のいずれか1項に記載の液状油脂の製造方法であって、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行ない、反応を停止させた後、硬質部を分別除去することを特徴とする液状油脂の製造方法。
  7.  油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応させてから反応を停止させる請求項6に記載の液状油脂の製造方法。
  8.  請求項1~5のいずれか1項に記載の液状油脂の製造方法であって、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行なった後、固体脂含量を1重量%以下にすることなく分別することを特徴とする液状油脂の製造方法。
  9.  油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応させてから反応を停止させる請求項8に記載の液状油脂の製造方法。
  10.  反応中の油脂中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行ない、その後、硬質部を分別除去する請求項6~9のいずれか1項に記載の液状油脂の製造方法。
  11.  前記パーム系油脂の構成脂肪酸全体中の飽和脂肪酸量が3~52重量%である請求項6~10のいずれか1項に記載の液状油脂の製造方法。
  12.  前記パーム系油脂がパームオレインである請求項6~11のいずれか1項に記載の液状油脂の製造方法。
  13.  パーム系油脂以外の油脂として大豆油および/またはナタネ油を用いてなる請求項6~12のいずれか1項に記載の液状油脂の製造方法。
  14.  ダイレクトエステル交換反応温度が0℃~40℃である請求項6~13のいずれか1項に記載の液状油脂の製造方法。
  15.  分別が乾式分別である請求項6~14のいずれか1項に記載の液状油脂の製造方法。
  16.  乾式分別の温度が0℃~45℃である請求項15に記載の液状油脂の製造方法。
  17.  乾式分別の温度が0℃~10℃である請求項15に記載の液状油脂の製造方法。
  18.  請求項6~17のいずれか1項に記載の方法により製造された液状油脂。
  19.  請求項1~5のいずれか1項に記載の液状油脂を含有する食品。
  20.  請求項18に記載の液状油脂を含有する食品。
  21.  構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行ない、反応を停止させた後、液状油脂を分別除去することにより、液状油脂と同時に固体脂を製造する方法。
  22.  構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料として用い、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行なった後、固体脂含量を1重量%以下にすることなく液状油脂を分別除去することにより、液状油脂と同時に固体脂を製造する方法。
  23.  反応中の油脂中のSSS含量が31重量%を越えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行ない、その後、液状油脂を分別除去する請求項21または22に記載の、液状油脂と同時に固体脂を製造する方法。
PCT/JP2011/059817 2010-04-22 2011-04-21 液状油脂とその製造法 WO2011132734A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2012149617/04A RU2012149617A (ru) 2010-04-22 2011-04-21 Жидкое масло и способ его получения
EP11772066.4A EP2562239A4 (en) 2010-04-22 2011-04-21 LIQUID OIL AND FAT AND MANUFACTURING METHOD THEREFOR
US13/642,446 US20130045321A1 (en) 2010-04-22 2011-04-21 Liquid oil and fat, and production method therefor
CN201180020163.0A CN102858931B (zh) 2010-04-22 2011-04-21 液体油脂及其制造方法
JP2011544305A JP4930660B2 (ja) 2010-04-22 2011-04-21 液状油脂とその製造法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-099121 2010-04-22
JP2010099121 2010-04-22
JP2010-099123 2010-04-22
JP2010099123 2010-04-22

Publications (1)

Publication Number Publication Date
WO2011132734A1 true WO2011132734A1 (ja) 2011-10-27

Family

ID=44834250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059817 WO2011132734A1 (ja) 2010-04-22 2011-04-21 液状油脂とその製造法

Country Status (6)

Country Link
US (1) US20130045321A1 (ja)
EP (1) EP2562239A4 (ja)
JP (2) JP4930660B2 (ja)
CN (1) CN102858931B (ja)
RU (1) RU2012149617A (ja)
WO (1) WO2011132734A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140937A1 (ja) * 2011-04-14 2012-10-18 株式会社J-オイルミルズ パーム系分別油脂、それを配合した油脂組成物及び食品
WO2013062111A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ 酸性水中油型乳化油脂組成物
WO2013062110A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ ホイップドクリーム用起泡性水中油型乳化油脂組成物
WO2013062113A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ 可塑性油脂組成物
WO2013062112A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ フラワーペースト
WO2013062114A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ 加熱調理油
JP2013090602A (ja) * 2011-10-26 2013-05-16 Kaneka Corp 濃縮乳様水中油型乳化油脂組成物
JP5462985B1 (ja) * 2012-10-04 2014-04-02 株式会社J−オイルミルズ 油脂組成物及びその製造方法
JP2015136329A (ja) * 2014-01-22 2015-07-30 ミヨシ油脂株式会社 水産加工食品用油脂組成物とそれを用いた可塑性油脂組成物及び水産加工食品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106901317B (zh) * 2015-12-22 2020-11-10 丰益(上海)生物技术研发中心有限公司 一种低温抗冻高温稳定型巧克力酱
CN108239580B (zh) * 2016-12-23 2022-01-07 丰益(上海)生物技术研发中心有限公司 一种含高不饱和脂肪酸油脂的制备方法及得到的油脂、使用该油脂的食品
CN108244267B (zh) * 2016-12-28 2022-02-25 丰益(上海)生物技术研发中心有限公司 一种加热烹调用油脂组合物
CN108796000A (zh) * 2018-07-04 2018-11-13 嘉必优生物技术(武汉)股份有限公司 一种三饱和脂肪酸甘油酯以及usu型甘油三酯
CN108795998B (zh) * 2018-07-04 2021-11-19 嘉必优生物技术(武汉)股份有限公司 一种降低甘油酯碘值的方法
CN108823255B (zh) * 2018-07-04 2021-01-05 嘉必优生物技术(武汉)股份有限公司 一种三饱和脂肪酸甘油酯的制备方法
CN108865445B (zh) * 2018-07-04 2020-12-29 嘉必优生物技术(武汉)股份有限公司 一种降低甘油酯碘值的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2442531A (en) 1944-11-06 1948-06-01 Procter & Gamble Process for treating fats and fatty oils
JPS57165491A (en) 1981-04-06 1982-10-12 Kanegafuchi Chemical Ind Manufacture of highly stable liquid fat
JPS61209544A (ja) 1985-03-14 1986-09-17 Ueda Seiyu Kk 人乳脂類似油脂
JPH0686636A (ja) * 1992-09-08 1994-03-29 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH07135901A (ja) * 1993-11-18 1995-05-30 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH0975015A (ja) 1995-09-07 1997-03-25 Fuji Oil Co Ltd 水中油型乳化物
JP3120906B2 (ja) 1992-08-25 2000-12-25 雪印乳業株式会社 β−パルミチン酸含有トリグリセリドの製造方法
JP2006288232A (ja) * 2005-04-07 2006-10-26 Kaneka Corp 低トランス・ルー用油脂組成物
JP2007523596A (ja) * 2003-11-14 2007-08-23 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス トリアシルグリセロール分子中の脂肪酸分布が改変されたヒマワリの油、種子及び植物
JP2008194011A (ja) 2007-02-15 2008-08-28 J-Oil Mills Inc 高液状性パーム油の製造方法および高液状性パーム油
JP2010077244A (ja) * 2008-09-25 2010-04-08 Adeka Corp ハードストック及び該ハードストックを使用した可塑性油脂組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2427386A1 (fr) * 1978-05-31 1979-12-28 Lesieur Cotelle Procede pour la production de plusieurs fractions comestibles a partir de corps gras naturels et fractions ainsi obtenues
GB8432058D0 (en) * 1984-12-19 1985-01-30 Unilever Plc Edible fat
KR100218231B1 (ko) * 1991-03-04 1999-09-01 야스이 기치지 초콜렛 및 초콜렛 이용 식품
PL178223B1 (pl) * 1993-09-14 2000-03-31 Unilever Nv Kompozycja tłuszczowa
US6004611A (en) * 1996-10-18 1999-12-21 Kao Corporation General-purpose oils composition
JP3743179B2 (ja) * 1998-10-28 2006-02-08 株式会社カネカ 油脂組成物
US7611744B2 (en) * 2004-11-12 2009-11-03 Loders Croklaan Usa Llc Frying fats and oils
ES2395046T3 (es) * 2005-09-08 2013-02-07 Loders Croklaan B.V. Proceso para triglicéridos
US7645473B2 (en) * 2006-06-13 2010-01-12 Loders Croklaan Usa Llc Fat composition
CN102753028B (zh) * 2010-05-06 2013-11-20 日清奥利友集团株式会社 油脂组合物及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2442531A (en) 1944-11-06 1948-06-01 Procter & Gamble Process for treating fats and fatty oils
JPS57165491A (en) 1981-04-06 1982-10-12 Kanegafuchi Chemical Ind Manufacture of highly stable liquid fat
JPS61209544A (ja) 1985-03-14 1986-09-17 Ueda Seiyu Kk 人乳脂類似油脂
JP3120906B2 (ja) 1992-08-25 2000-12-25 雪印乳業株式会社 β−パルミチン酸含有トリグリセリドの製造方法
JPH0686636A (ja) * 1992-09-08 1994-03-29 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH07135901A (ja) * 1993-11-18 1995-05-30 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH0975015A (ja) 1995-09-07 1997-03-25 Fuji Oil Co Ltd 水中油型乳化物
JP2007523596A (ja) * 2003-11-14 2007-08-23 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス トリアシルグリセロール分子中の脂肪酸分布が改変されたヒマワリの油、種子及び植物
JP2006288232A (ja) * 2005-04-07 2006-10-26 Kaneka Corp 低トランス・ルー用油脂組成物
JP2008194011A (ja) 2007-02-15 2008-08-28 J-Oil Mills Inc 高液状性パーム油の製造方法および高液状性パーム油
JP2010077244A (ja) * 2008-09-25 2010-04-08 Adeka Corp ハードストック及び該ハードストックを使用した可塑性油脂組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Standard Methods for the Analysis of Fats", OILS AND RELATED MATERIALS, 1996
"Standard Methods for the Analysis of Fats, Oils and Related Materials", 1996, JAPAN OIL CHEMISTS' SOCIETY
GIJS H. CALLIAUW.: "Principles of palm olein fractionation: a bit of science behind the technology", LIPID TECHNOLOGY, vol. 19, no. 7, July 2007 (2007-07-01), pages 152 - 155
REGINA C. A. LAGO; LEOPOLD HARTMAN: "Directed Interesterification of a Brazilian Palm based oil and fat and Analysis of the Original and Interesterified Oil and its Fractions", J. SCI. FOOD AGRIC, vol. 37, 1986, pages 689 - 693
See also references of EP2562239A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140937A1 (ja) * 2011-04-14 2012-10-18 株式会社J-オイルミルズ パーム系分別油脂、それを配合した油脂組成物及び食品
JP5085810B1 (ja) * 2011-04-14 2012-11-28 株式会社J−オイルミルズ パーム系分別油脂、それを配合した油脂組成物及び食品
US9370196B2 (en) 2011-04-14 2016-06-21 J-Oil Mills, Inc. Palm-based fractionated oil and fat, oil and fat composition and food product containing the same
WO2013062114A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ 加熱調理油
WO2013062113A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ 可塑性油脂組成物
WO2013062112A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ フラワーペースト
WO2013062110A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ ホイップドクリーム用起泡性水中油型乳化油脂組成物
JP2013090602A (ja) * 2011-10-26 2013-05-16 Kaneka Corp 濃縮乳様水中油型乳化油脂組成物
WO2013062111A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ 酸性水中油型乳化油脂組成物
JP5462985B1 (ja) * 2012-10-04 2014-04-02 株式会社J−オイルミルズ 油脂組成物及びその製造方法
WO2014054335A1 (ja) * 2012-10-04 2014-04-10 株式会社J-オイルミルズ 油脂組成物及びその製造方法
CN104704098A (zh) * 2012-10-04 2015-06-10 J-制油株式会社 油脂组合物及其制造方法
RU2632909C2 (ru) * 2012-10-04 2017-10-11 Й-Оил Миллс, Инц. Композиция масла или жира и способ ее получения
JP2015136329A (ja) * 2014-01-22 2015-07-30 ミヨシ油脂株式会社 水産加工食品用油脂組成物とそれを用いた可塑性油脂組成物及び水産加工食品

Also Published As

Publication number Publication date
CN102858931B (zh) 2014-03-26
CN102858931A (zh) 2013-01-02
JP2012065657A (ja) 2012-04-05
JP4930660B2 (ja) 2012-05-16
EP2562239A1 (en) 2013-02-27
EP2562239A4 (en) 2014-02-26
RU2012149617A (ru) 2014-05-27
JPWO2011132734A1 (ja) 2013-07-18
US20130045321A1 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP4930660B2 (ja) 液状油脂とその製造法
EP2602308B1 (en) Lipase-catalysed esterification of marine oil
JP5557457B2 (ja) 油脂の製造方法
JP4952865B2 (ja) トリ飽和脂肪酸グリセリド含有油脂組成物の製造方法
JP5358041B1 (ja) ノンテンパリング型ハードバターに適した油脂組成物
DK3139770T3 (en) FATTY ACID COMPOSITION, PROCEDURE FOR THE PREPARATION AND APPLICATION OF THEREOF
EP2636313B1 (en) Glyceride composition obtainable from shea oil
JP5399544B1 (ja) 精製油脂の製造方法
WO2010110260A1 (ja) ハードバター組成物の製造法
JP6749761B2 (ja) 出発油又はその分画による出発オレイン画分からのステアリンの収率を増加する方法、及びステアリン画分
JPH0789944B2 (ja) 製菓用油脂組成物の製法
JP5720113B2 (ja) 固体脂の製造法
CA2524492A1 (en) Method for the production of fatty acids having a low trans-fatty acid content
CA3188538A1 (en) Solid fat triglyceride composition
JP6593551B1 (ja) 2位がパルミチン酸に富む油脂組成物の製造方法
Lee et al. Blending, hydrogenation, fractionation and interesterification processing
US9149053B2 (en) Method for producing conjugated linoleic acid
JP2010081834A (ja) ハードバター組成物の製造法
WO2013062114A1 (ja) 加熱調理油
JP2021132566A (ja) β位パルミチン酸含有油脂の製造方法
NZ724761B2 (en) Fatty acid composition and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020163.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011544305

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13642446

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012149617

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011772066

Country of ref document: EP