WO2011132560A1 - Sealing film for solar cell and solar cell using same - Google Patents

Sealing film for solar cell and solar cell using same Download PDF

Info

Publication number
WO2011132560A1
WO2011132560A1 PCT/JP2011/059004 JP2011059004W WO2011132560A1 WO 2011132560 A1 WO2011132560 A1 WO 2011132560A1 JP 2011059004 W JP2011059004 W JP 2011059004W WO 2011132560 A1 WO2011132560 A1 WO 2011132560A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing film
mass
parts
ethylene
Prior art date
Application number
PCT/JP2011/059004
Other languages
French (fr)
Japanese (ja)
Inventor
真紀子 富山
佳彦 井上
耕二 桑野
服部 憲治
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2011132560A1 publication Critical patent/WO2011132560A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell encapsulating film comprising an ethylene-vinyl acetate copolymer as a main component, and more particularly to a solar cell encapsulating film having improved insulation in a high temperature environment.
  • a solar cell generally has a surface side transparent protective member 11 made of a glass substrate or the like, a surface side sealing film 13A, a solar cell 14 such as a silicon crystal power generation element, a back side sealing film. 13B and the back surface side protection member (back cover) 12 are laminated in this order, and after deaeration under reduced pressure, the surface side sealing film 13A and the back surface side sealing film 13B are cross-linked and cured by heating and pressurizing, and integrated by bonding. Is manufactured.
  • a plurality of solar cell cells 14 are connected and used in order to obtain a high electrical output. Therefore, in order to ensure the insulation of the solar cell 14, the solar cell is sealed using the insulating sealing films 13 ⁇ / b> A and 13 ⁇ / b> B.
  • thin-film solar cells such as thin-film silicon-based, thin-film amorphous silicon-based solar cells, and copper indium selenide (CIS) -based solar cells are also being developed.
  • transparent substrates such as glass and polyimide substrates
  • a power generation element layer such as a semiconductor layer is formed on the surface of the substrate by a chemical vapor deposition method or the like, and a sealing film or the like is laminated thereon and bonded and integrated.
  • an ethylene-polar monomer copolymer such as an ethylene vinyl acetate copolymer (hereinafter also referred to as EVA) or an ethylene ethyl acrylate copolymer (EEA) is used.
  • EVA ethylene vinyl acetate copolymer
  • EVA ethylene ethyl acrylate copolymer
  • a film is used.
  • EVA films are preferably used because they are inexpensive and have high transparency.
  • the EVA film for sealing films has improved the crosslinking density using crosslinking agents, such as an organic peroxide, other than EVA, in order to improve film
  • the electricity generated by a solar cell or a thin-film solar cell power generation element (in the present invention, collectively referred to as a solar cell element) is reliably obtained using incident sunlight. It is necessary to take out.
  • solar cells are often used in outdoor environments exposed to high temperatures, high humidity, and rain for a long period of several decades, and power generation performance may be reduced during use.
  • Patent Document 1 includes an ethylene polar monomer copolymer such as EVA and a cross-linking agent as a solar cell sealing film having excellent insulation under a high temperature environment, and has a volume resistivity of 1. It is specified to be 0 ⁇ 10 13 to 5.0 ⁇ 10 14 ⁇ ⁇ cm. And in order to obtain the sealing film for solar cells of such volume specific resistance, the kind and compounding quantity of a crosslinking agent and a crosslinking adjuvant are mainly adjusted.
  • Patent Document 1 discloses an example of 0.6 to 1.0 parts by mass of a crosslinking agent, 1.0 to 2.0 parts by mass of a crosslinking aid, and 0.5 parts by mass of a silane coupling with respect to 100 parts by mass of EVA. It is disclosed.
  • Patent Document 2 as a composition for sealing a solar cell that is excellent in transparency, heat resistance, adhesiveness, and the like, and silane coupling with respect to 100 parts by mass of an ethylene / polar monomer copolymer. It is specified that the agent is blended at a ratio of 0.03 to 0.3 parts by mass. Patent Document 2 discloses an example of 1.2 parts by mass of a crosslinking agent and 0.1 parts by mass of a silane coupling agent with respect to 100 parts by mass of EVA.
  • an object of the present invention is to provide a solar cell encapsulating material that is made of EVA that is inexpensive and highly transparent, has a significantly high insulation property in a high temperature environment, and has excellent durability in an adhesive force in a high temperature environment. It is to provide a membrane.
  • an object of the present invention is to provide a solar cell using this sealing film.
  • the present inventors have studied various kinds and blending amounts of a crosslinking agent and other additives added to EVA. As a result, two specific crosslinking agents are blended at a predetermined content, and a specific silane coupling agent is blended at a predetermined content, so that insulation in a high-temperature environment is better than a conventional sealing film. It has been found that a solar cell sealing film that is significantly improved and has improved durability of adhesive force can be obtained.
  • the object is a solar cell sealing film comprising an ethylene-vinyl acetate copolymer, a crosslinking agent, and a silane coupling agent, wherein the crosslinking agent is 2,5-dimethyl-2,5-disilane.
  • the silane coupling agent is ⁇ -methacryloxypropyl Trimethoxysilane
  • the total content of the crosslinking agent is 1.67 to 2.05 parts by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer
  • the content of the silane coupling agent is achieved by a sealing film for solar cells, wherein the amount is 0.6 to 1.0 part by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer.
  • the preferable aspect of the sealing film for solar cells concerning this invention is as follows.
  • the volume specific resistance in a 60 ° C. atmosphere after crosslinking is 6.0 ⁇ 10 14 ⁇ ⁇ cm or more. With such a volume resistivity, it can be said that it is a solar cell encapsulating film having a significantly high insulating property in a high temperature environment.
  • the mass ratio of the organic peroxide B to the organic peroxide A (organic peroxide B / organic peroxide A) in the crosslinking agent is in the range of 1/99 to 9/91.
  • the organic peroxide B is an organic peroxide having a lower half-life temperature than that of the organic peroxide A, and is a crosslinking agent capable of allowing EVA to proceed in a shorter time.
  • a bulge (foaming due to gas generation) occurs when the solar cell is used in a high temperature environment, and the power generation efficiency of the solar cell is reduced due to a decrease in transparency and insulation. May decrease.
  • a crosslinking aid is contained with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer. Thereby, durability of the adhesive force of a sealing film and insulation can be improved more.
  • the crosslinking aid is triallyl isocyanurate.
  • the above object is achieved by a solar cell using the solar cell sealing film of the present invention.
  • a solar cell sealing film mainly composed of an ethylene-vinyl acetate copolymer the kind and content of a crosslinking agent and a silane coupling agent to be blended are adjusted in a high temperature environment.
  • a crosslinking agent and a silane coupling agent to be blended are adjusted in a high temperature environment.
  • the solar cell sealing film of the present invention it is possible to provide a solar cell having high power generation efficiency and maintaining the power generation efficiency for a long period of time in a high temperature environment.
  • the solar cell sealing film of the present invention contains at least an ethylene-vinyl acetate copolymer, a crosslinking agent, and a silane coupling agent.
  • ⁇ -methacryloxypropyltrimethoxysilane is used as a silane coupling agent, and its content is 0.6 to 1.0 part by mass with respect to 100 parts by mass of EVA.
  • the solar cell sealing film of the present invention has significantly improved insulation in a high-temperature environment and improved durability of adhesive force in a high-temperature environment.
  • the solar cell encapsulating film having remarkably high insulation under a high temperature environment preferably has a volume specific resistance in a 60 ° C. atmosphere after crosslinking, preferably 6.0 ⁇ 10 14 ⁇ ⁇ cm or more. Preferably, it is 8.0 ⁇ 10 14 to 1.0 ⁇ 10 16 ⁇ ⁇ cm. It is useful to use volume resistivity in a 60 ° C. atmosphere after crosslinking as an index of insulating properties of the solar cell sealing film in a high temperature environment. And if it is the above volume specific resistance, it can be said that it is a sealing film for solar cells which has insulation property remarkably higher than the conventional sealing film.
  • the volume resistivity ( ⁇ ⁇ cm) in the atmosphere at 60 ° C. after crosslinking is obtained by crosslinking a solar cell sealing film to a gelation fraction of 90% or more, and then using a high resistivity meter (HIRESTA UP (Mitsubishi And a probe (UR-100 (manufactured by Mitsubishi Chemical Corporation)) and a value measured in an atmosphere at 60 ° C.
  • HIRESTA UP Mitsubishi And a probe
  • the volume resistivity ( ⁇ ⁇ cm) is measured at room temperature (25 ° C.), and the measured value in a 60 ° C. atmosphere is about 1/10 of the measured value in a 25 ° C. atmosphere.
  • Patent Document 2 a composition in which 0.1 part by mass of a silane coupling agent is blended with 100 parts by mass of EVA, and as a comparative example, silane coupling with respect to 100 parts by mass of EVA.
  • a composition in which 0.5 part by mass of the agent is blended is disclosed, and it is shown that the volume resistivity is decreased in the blend of the comparative example.
  • an improvement in insulation is achieved by blending more silane coupling agents than in Patent Documents 1 and 2.
  • This factor can be considered as follows.
  • the network density of EVA is high by using 2 types of crosslinking agents and mix
  • FIG. Therefore, it is considered that the silane coupling agent is easily incorporated into the EVA network structure, and the degree of freedom is low. If it does so, a silane coupling agent will trap ion and will inhibit electron transmission. Therefore, by increasing the content of the silane coupling agent, the electrical resistance of the sealing film is improved.
  • the volume resistivity in a 60 ° C. atmosphere after crosslinking is as high as 6.0 ⁇ 10 14 ⁇ ⁇ cm or more. It is considered that insulation can be obtained. Moreover, it is thought that durability with high adhesive force is acquired because there is much content of a silane coupling agent.
  • the content of the silane coupling agent is 0.6 to 1.0 part by mass, preferably 0.6 to 0.9 part by mass with respect to 100 parts by mass of EVA.
  • ⁇ -methacryloxypropyltrimethoxysilane is selected as the silane coupling agent because it has a high effect of improving adhesiveness and an effect of improving insulation.
  • organic peroxides having different half-life temperatures, which are effective for increasing the network density by EVA crosslinking, are selected as the crosslinking agent. That is, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (organic peroxide A) having a 10-hour half-life temperature (decomposition temperature of 10-hour half-life) of 110 to 130 ° C. And t-butylperoxy-2-ethylhexyl monocarbonate (organic peroxide B) having a 10-hour half-life temperature of 80 to 100 ° C.
  • organic peroxide A 2,5-dimethyl-2,5-di (t-butylperoxy) hexane
  • organic peroxide B t-butylperoxy-2-ethylhexyl monocarbonate
  • the total content of these organic peroxides is blended in the range of 1.67 to 2.05 parts by mass with respect to 100 parts by mass of EVA, and the silane coupling agent is blended in the above range.
  • the insulating property of the solar cell sealing film is improved, and the durability of the adhesive force in a high-temperature environment is improved.
  • compatibility with EVA which makes content of an organic peroxide larger than the said range may worsen.
  • the total content of the crosslinking agent is preferably 1.75 to 1.95 parts by mass, more preferably 1.8 to 1.9 based on 100 parts by mass of EVA.
  • the mass ratio of the organic peroxide B to the organic peroxide A is not particularly limited and is usually used in the range of 1/99 to 99/1. Is done.
  • the organic peroxide B is an essential component in the present invention because it has a low half-life temperature and can advance EVA crosslinking in a short time.
  • a large amount of organic peroxide B is used in the sealing film for solar cells, when the solar cell is used in a high-temperature environment, a bulge is considered to be caused by the decomposition product of the organic peroxide, resulting in a decrease in transparency. In some cases, the power generation efficiency of the solar cell may decrease due to a decrease in insulation.
  • the organic peroxide B / organic peroxide A is preferably 1/99 to 9/91, more preferably 4/95 to 9/91, and particularly preferably 7/93 to 9/91. If the organic peroxide B / organic peroxide A is in this range, the network density of the EVA soot can be sufficiently increased and swelling of the solar cell in a high temperature environment can be suppressed. Therefore, it can be set as the sealing film for solar cells which can maintain the power generation efficiency of a solar cell for a long period of time in a high temperature environment.
  • the content of vinyl acetate in the ethylene-vinyl acetate copolymer (EVA) used in the present invention is 20 to 35 parts by mass, more preferably 22 to 30 parts by mass, especially 24 to 28 parts by mass with respect to 100 parts by mass of EVA. Is preferred.
  • EVA ethylene-vinyl acetate copolymer
  • the sealing film obtained is hard, so that content of the vinyl acetate unit of EVA is low. If the content of vinyl acetate is less than 20 parts by mass, the resulting sealing film may not have sufficient transparency when crosslinked and cured at high temperatures. Further, if it exceeds 35 parts by mass, the sealing film may have insufficient hardness, and further carboxylic acid, alcohol, amine, etc. are generated, and foaming is likely to occur at the interface between the sealing film and the protective member. There is a fear.
  • an ethylene-unsaturated carboxylic acid copolymer such as an ethylene-acrylic acid copolymer and an ethylene-methacrylic acid copolymer, Ionomer in which some or all of carboxyl groups of acid copolymer are neutralized with the above metal, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene -Ethylene-isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene-acrylic acid n- Ethylene-unsaturated carboxylic acid ester-unsaturated carboxylic acid such as butyl-methacrylic acid copolymer
  • the sealing film for solar cells of the present invention may further contain a crosslinking aid (a compound having a radical polymerizable group as a functional group) as necessary.
  • the cross-linking aid can improve the gel fraction of the ethylene-vinyl acetate copolymer and improve the adhesion and insulation of the sealing film.
  • the content of the crosslinking aid is preferably 0.1 to 3.0 parts by mass, more preferably 0.5 to 2.0 parts by mass with respect to 100 parts by mass of EVA. Thereby, the sealing film which is more excellent in adhesiveness and insulation is obtained.
  • crosslinking aid examples include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and monofunctional or bifunctional crosslinking aids such as (meth) acrylic esters (eg, NK ester). Can be mentioned. Of these, triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
  • the sealing film for solar cell of the present invention is used as necessary for improving or adjusting various physical properties of the film (optical properties such as mechanical strength and transparency, heat resistance, light resistance, crosslinking speed, etc.).
  • various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may be further included.
  • the plasticizer is not particularly limited, but generally an ester of a polybasic acid or an ester of a polyhydric alcohol is used. Examples thereof include dioctyl phthalate, dihexyl adipate, triethylene glycol-di-2-ethylbutyrate, butyl sebacate, tetraethylene glycol diheptanoate, and triethylene glycol dipelargonate.
  • One type of plasticizer may be used, or two or more types may be used in combination.
  • the plasticizer content is preferably in the range of 5 parts by mass or less with respect to 100 parts by mass of the ethylene-polar monomer copolymer.
  • the acryloxy group-containing compound and the methacryloxy group-containing compound are generally acrylic acid or methacrylic acid derivatives, and examples thereof include acrylic acid or methacrylic acid esters and amides.
  • ester residues include linear alkyl groups such as methyl, ethyl, dodecyl, stearyl, lauryl, cyclohexyl group, tetrahydrofurfuryl group, aminoethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group And 3-chloro-2-hydroxypropyl group.
  • Examples of amides include diacetone acrylamide.
  • polyhydric alcohols such as ethylene glycol, triethylene glycol, polypropylene glycol, polyethylene glycol, trimethylolpropane, and pentaerythritol, and esters of acrylic acid or methacrylic acid can also be used.
  • Epoxy-containing compounds include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, phenol (Ethyleneoxy) 5 glycidyl ether, pt-butylphenyl glycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, glycidyl methacrylate, butyl glycidyl ether.
  • the acryloxy group-containing compound, the methacryloxy group-containing compound, or the epoxy group-containing compound is generally 0.5 to 5.0 parts by mass, particularly 1.0 to 100 parts by mass of the ethylene-polar monomer copolymer, respectively. It is preferably contained in an amount of ⁇ 4.0 parts by mass.
  • the solar cell sealing film of the present invention may contain an ultraviolet absorber, a light stabilizer and an anti-aging agent.
  • an ultraviolet absorber By including the ultraviolet absorber, it is possible to suppress deterioration of the ethylene-polar monomer copolymer due to the influence of irradiated light and the like, and yellowing of the solar cell sealing film.
  • the ultraviolet absorber is not particularly limited, but 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxy Preferred examples include benzophenone ultraviolet absorbers such as benzophenone and 2-hydroxy-4-n-octoxybenzophenone.
  • the blending amount of the benzophenone ultraviolet absorber is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer.
  • a light stabilizer can also suppress the deterioration of the ethylene-polar monomer copolymer due to the influence of irradiated light and the like, and the yellowing of the solar cell sealing film.
  • a light stabilizer called a hindered amine type is preferably used as the light stabilizer.
  • LA-52, LA-57, LA-62, LA-63LA-63p, LA-67, LA-68 (all ADEKA), Tinuvin 744, Tinuvin® 770, Tinuvin® 765, Tinuvin 144, Tinuvin® 622LD, CHIMASSORB® 944LD (all manufactured by Ciba Specialty Chemicals Co., Ltd.), UV-3034 (manufactured by BF Goodrich) Can be mentioned.
  • the light stabilizer may be used alone or in combination of two or more kinds, and the blending amount is 0.01 to 5 parts by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer. It is preferable that
  • antioxidants examples include hindered phenol antioxidants such as N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], Examples thereof include phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers, and sulfur heat stabilizers.
  • the solar cell sealing film of the present invention described above may be formed according to a known method.
  • a composition in which each of the above materials is mixed by a known method using a super mixer (high-speed fluid mixer), a roll mill or the like is molded by ordinary extrusion molding, calendar molding (calendering), or the like, and then a sheet-like material It can manufacture by the method of obtaining.
  • a sheet-like material can be obtained by dissolving the composition in a solvent and coating the solution on a suitable support with a suitable coating machine (coater) and drying to form a coating film.
  • the heating temperature during film formation is preferably a temperature at which the crosslinking agent does not react or hardly reacts.
  • the temperature is preferably 50 to 90 ° C, particularly 40 to 80 ° C.
  • the thickness of the solar cell sealing film is not particularly limited, but may be in the range of 50 ⁇ m to 2 mm.
  • the structure of the solar cell of the present invention is not particularly limited as long as the solar cell sealing film of the present invention is used.
  • the structure etc. which sealed the cell for solar cells by interposing the sealing film for solar cells of this invention between the surface side transparent protection member and the back surface side protection member, and making it bridge-integrate are mentioned.
  • the side (light-receiving surface side) where the light of the solar cell is irradiated is referred to as “front surface side”
  • the surface opposite to the light-receiving surface of the solar cell is referred to as “back surface side”.
  • the front surface side transparent protective member 11 the front surface side sealing film 13A, the solar cell cell 14, the back surface side sealing.
  • the film 13B and the back surface side protection member 12 may be laminated, and the sealing film may be cross-linked and cured according to a conventional method such as heat and pressure.
  • the laminate is heated with a vacuum laminator at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., a degassing time of 0.1 to 5 minutes, and a press pressure of 0.1.
  • Heat pressing may be performed at a pressure of ⁇ 1.5 kg / cm 2 and a press time of 5 to 15 minutes.
  • the ethylene-vinyl acetate copolymer contained in the front surface side sealing film 13A and the back surface side sealing film 13B is cross-linked, whereby the front surface side sealing film 13A and the back surface side sealing film 13B are interposed.
  • the surface side transparent protection member 11, the back surface side transparent member 12, and the cell 14 for solar cells can be integrated, and the cell 14 for solar cells can be sealed.
  • the solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for sealing films of thin film solar cells such as solar cells and copper indium selenide (CIS) solar cells.
  • the solar cell of the present invention is formed on the thin film solar cell element layer formed by a chemical vapor deposition method or the like on the surface of the surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate.
  • the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them On the solar cell element formed on the surface of the back surface side protective member, the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them, the front surface side Laminated transparent protective member, bonded and integrated structure, or front side transparent protective member, front side sealing film, thin film solar cell element, back side sealing film, and back side protective member are laminated in this order, For example, a structure that is bonded and integrated.
  • the solar cell sealing film of the present invention has high insulation under a high temperature environment and has excellent durability of the adhesive strength under a high temperature environment, so that high power generation efficiency is maintained for a long time under a high temperature environment.
  • Solar cells can be provided.
  • the surface-side transparent protective member 11 used in the solar cell of the present invention is usually a glass substrate such as silicate glass.
  • the thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm.
  • the glass substrate may generally be chemically or thermally strengthened.
  • the back surface side protective member 12 used in the present invention is preferably a plastic film such as polyethylene terephthalate (PET). Further, a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
  • PET polyethylene terephthalate
  • the solar cell (including a thin film solar cell) of the present invention is characterized by a sealing film used on the front surface side and / or the back surface side as described above. Therefore, the members other than the sealing film such as the front-side transparent protective member, the back-side protective member, and the solar cell need only have the same configuration as the conventionally known solar cell, and are not particularly limited. .
  • Examples 1 to 5 Each material was supplied to a roll mill with the formulation shown in Tables 1 and 2, and kneaded at 70 ° C. to prepare a sealing film composition for a solar cell.
  • the solar cell sealing film composition was calendered at 70 ° C., allowed to cool, and then a solar cell sealing film (thickness 0.6 mm) was produced.
  • Adhesion strength was evaluated by a 180 ° peel test (JIS K 6854, 1994). Specifically, the 180 ° peel test was performed according to the following procedure as shown in FIG. Glass substrate 21 (thickness 3 mm) / each solar cell sealing film 23 / release PET (thickness 0.75 mm) was laminated in this order, and the resulting laminate was vacuum deaerated with a vacuum laminator. After pre-pressing at 100 ° C. for 10 minutes, it was further placed in an oven and crosslinked at a temperature of 150 ° C. for 30 minutes.
  • a part between the glass substrate 21 and the solar cell sealing film 23 is peeled off, and the solar cell sealing film 23 is folded back 180 ° to obtain a tensile tester (manufactured by Shimadzu Corporation, Autograph).
  • the peeling force at a pulling speed of 100 mm / min was measured and used as the glass adhesive force (initial) [N / cm].
  • the sample after cross-linking was allowed to stand for 2000 hours in an environment of a temperature of 85 ° C. and a humidity of 85% RH. After) was measured. From the initial adhesive strength, if the adhesive strength after the durability test was reduced by 20% or less, the test was accepted.
  • Example 1 when Example 1 and Example 4 were compared, when the silane coupling agent was increased from 0.6 parts by mass to 0.9 parts by mass, a further increase in volume resistivity was observed, and the above-mentioned It was thought that the result suggested the consideration of the effect of the present invention.
  • Comparative Examples 1, 2 and 4 in which the amounts of the crosslinking agent and the silane coupling agent were small, both the volume resistivity and the durability of the adhesive strength were unacceptable.
  • Comparative Example 3 when the compounding amount of the silane coupling agent was increased as compared with Comparative Example 2, the durability of the adhesive force was improved, but as is generally known, the volume resistivity was further reduced.
  • Comparative Example 5 the crosslinking agent was blended in the same manner as in Example 1, and the blending amount of the silane coupling agent was 0.3 parts by mass. there were.
  • Comparative Example 6 the crosslinking agent was the same as in Example 1, and the blending amount of the silane coupling agent was 1.2 parts by mass. The durability of volume resistivity and adhesive strength was acceptable, but the durability was Whitening was observed after the test and it was rejected.
  • the volume resistivity in a 60 ° C. atmosphere after crosslinking is 6.0 ⁇ 10 14 ⁇ ⁇ cm or more and has a remarkably high insulating property, and durability of adhesive strength in a high temperature environment It was shown that the sealing film for solar cells excellent in property was obtained.
  • the present invention can provide a solar cell in which high power generation efficiency is maintained for a long time under a high temperature environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a sealing film for solar cells, which has an ethylene-(vinyl acetate) copolymer (EVA) as the main component thereof, has remarkably high insulation performance in high temperature environments, and has excellent adhesive force in high temperature environments. Also disclosed is a solar cell using this sealing film. The sealing film for solar cells includes an EVA, a cross-linking agent, and a silane coupling agent and is characterized by: the cross-linking agent being formed from 2, 5-dimethyl-2, 5-di (tert-butylperoxy) hexane, and tert-butylperoxy-2-ethylhexyl monocarbonate; the silane coupling agent being γ-methacryloxypropyltrimethoxysilane; the total amount of the cross-linking agent being 1.67 to 2.04 parts by mass per 100 parts by mass of the EVA, and the amount of the silane coupling agent being 0.6 to 1.0 parts by mass per 100 parts by mass of the EVA. Also disclosed is a solar cell using the sealing film for solar cells.

Description

太陽電池用封止膜及びこれを用いた太陽電池Solar cell sealing film and solar cell using the same
 本発明は、エチレン-酢酸ビニル共重合体を主成分とする太陽電池用封止膜に関し、特に、高温環境下における絶縁性が向上された太陽電池用封止膜に関する。 The present invention relates to a solar cell encapsulating film comprising an ethylene-vinyl acetate copolymer as a main component, and more particularly to a solar cell encapsulating film having improved insulation in a high temperature environment.
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接、変換する太陽電池が広く使用され、更に、発電効率や耐候性等の点から開発が進められている。 In recent years, solar cells that directly convert sunlight into electrical energy have been widely used in terms of effective use of resources and prevention of environmental pollution, and further development has been promoted in terms of power generation efficiency and weather resistance. .
 太陽電池は、一般に、図1に示すように、ガラス基板などからなる表面側透明保護部材11、表面側封止膜13A、シリコン結晶系発電素子などの太陽電池用セル14、裏面側封止膜13B、及び裏面側保護部材(バックカバー)12をこの順で積層し、減圧で脱気した後、加熱加圧して表面側封止膜13A及び裏面側封止膜13Bを架橋硬化させて接着一体化することにより製造される。 As shown in FIG. 1, a solar cell generally has a surface side transparent protective member 11 made of a glass substrate or the like, a surface side sealing film 13A, a solar cell 14 such as a silicon crystal power generation element, a back side sealing film. 13B and the back surface side protection member (back cover) 12 are laminated in this order, and after deaeration under reduced pressure, the surface side sealing film 13A and the back surface side sealing film 13B are cross-linked and cured by heating and pressurizing, and integrated by bonding. Is manufactured.
 太陽電池では、高い電気出力を得るために、複数の太陽電池用セル14を接続して用いられている。従って、太陽電池用セル14の絶縁性を確保するために、絶縁性のある封止膜13A、13Bを用いて太陽電池用セルを封止している。 In solar cells, a plurality of solar cell cells 14 are connected and used in order to obtain a high electrical output. Therefore, in order to ensure the insulation of the solar cell 14, the solar cell is sealed using the insulating sealing films 13 </ b> A and 13 </ b> B.
 また、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の開発も進められており、この場合は、例えば、ガラスやポリイミド基板等の透明基板の表面に化学気相蒸着法等により半導体層等の発電素子層が形成され、その上に封止膜等を積層し、接着一体化することで製造される。 In addition, thin-film solar cells such as thin-film silicon-based, thin-film amorphous silicon-based solar cells, and copper indium selenide (CIS) -based solar cells are also being developed. In this case, for example, transparent substrates such as glass and polyimide substrates A power generation element layer such as a semiconductor layer is formed on the surface of the substrate by a chemical vapor deposition method or the like, and a sealing film or the like is laminated thereon and bonded and integrated.
 従来から、これらの太陽電池に用いられる封止膜としては、エチレン酢酸ビニル共重合体(以下、EVAともいう)、エチレンエチルアクリレート共重合体(EEA)等のエチレン-極性モノマー共重合体からなるフィルムが用いられている。特に、安価であり、高い透明性を有することからEVAフィルムが好ましく用いられている。そして、封止膜用のEVAフィルムは、膜強度や耐久性を向上させるために、EVAの他に有機過酸化物等の架橋剤を用いて架橋密度を向上させている。 Conventionally, as a sealing film used in these solar cells, an ethylene-polar monomer copolymer such as an ethylene vinyl acetate copolymer (hereinafter also referred to as EVA) or an ethylene ethyl acrylate copolymer (EEA) is used. A film is used. In particular, EVA films are preferably used because they are inexpensive and have high transparency. And the EVA film for sealing films has improved the crosslinking density using crosslinking agents, such as an organic peroxide, other than EVA, in order to improve film | membrane intensity | strength and durability.
 このような太陽電池においては、入射した太陽光を利用して太陽電池用セルや薄膜太陽電池用発電素子(本発明において、これらを総称して太陽電池用素子ともいう)が発電した電気を確実に取り出すことが必要である。しかしながら、太陽電池は数十年の長期間に亘り、高温、高湿度、風雨に曝される屋外の環境下で使用されることが多く、使用中に発電性能が低下することがある。特に、高温環境下での使用においては、絶縁不良が生じ、発電性能が低下するといった問題があり、従来から太陽電池用封止膜の改良が行われている。 In such a solar cell, the electricity generated by a solar cell or a thin-film solar cell power generation element (in the present invention, collectively referred to as a solar cell element) is reliably obtained using incident sunlight. It is necessary to take out. However, solar cells are often used in outdoor environments exposed to high temperatures, high humidity, and rain for a long period of several decades, and power generation performance may be reduced during use. In particular, when used in a high-temperature environment, there is a problem that insulation failure occurs and power generation performance is lowered, and solar cell sealing films have been conventionally improved.
 例えば、特許文献1では、高温環境下で優れた絶縁性を有する太陽電池用封止膜として、EVA等のエチレン極性モノマー共重合体及び架橋剤を含み、60℃雰囲気における体積固有抵抗が1.0×1013~5.0×1014Ω・cmであることを規定としている。そして、このような体積固有抵抗の太陽電池用封止膜を得るために、主として架橋剤、架橋助剤の種類や配合量を調整している。特許文献1には、EVA100質量部に対して、架橋剤0.6~1.0質量部、架橋助剤1.0~2.0質量部、シランカップリング0.5質量部の実施例が開示されている。 For example, Patent Document 1 includes an ethylene polar monomer copolymer such as EVA and a cross-linking agent as a solar cell sealing film having excellent insulation under a high temperature environment, and has a volume resistivity of 1. It is specified to be 0 × 10 13 to 5.0 × 10 14 Ω · cm. And in order to obtain the sealing film for solar cells of such volume specific resistance, the kind and compounding quantity of a crosslinking agent and a crosslinking adjuvant are mainly adjusted. Patent Document 1 discloses an example of 0.6 to 1.0 parts by mass of a crosslinking agent, 1.0 to 2.0 parts by mass of a crosslinking aid, and 0.5 parts by mass of a silane coupling with respect to 100 parts by mass of EVA. It is disclosed.
 また、特許文献2では、透明性、耐熱性、接着性等に優れ、且つ絶縁特性に優れた太陽電池封止用組成物として、エチレン・極性モノマー共重合体100質量部に対し、シランカップリング剤を0.03~0.3質量部の割合で配合することを規定している。特許文献2には、EVA100質量部に対して、架橋剤1.2質量部、シランカップリング剤0.1質量部の実施例が開示されている。 Further, in Patent Document 2, as a composition for sealing a solar cell that is excellent in transparency, heat resistance, adhesiveness, and the like, and silane coupling with respect to 100 parts by mass of an ethylene / polar monomer copolymer. It is specified that the agent is blended at a ratio of 0.03 to 0.3 parts by mass. Patent Document 2 discloses an example of 1.2 parts by mass of a crosslinking agent and 0.1 parts by mass of a silane coupling agent with respect to 100 parts by mass of EVA.
特開2008-205448号公報JP 2008-205448 A 特開2006-036875号公報JP 2006-036875 A
 しかしながら、太陽電池の種類や使用場所等によっては、発電効率の低下を防止するために、高温環境下において、より高い絶縁性を必要とし、特許文献1及び2の太陽電池用封止膜では十分に対応できない場合がある。この場合、更に、高温環境下で絶縁性を長期間維持できるように接着力の耐久性も要求される。 However, depending on the type and use location of the solar cell, higher insulation is required in a high-temperature environment in order to prevent a decrease in power generation efficiency, and the solar cell sealing films of Patent Documents 1 and 2 are sufficient. May not be compatible. In this case, durability of adhesive strength is also required so that the insulating property can be maintained for a long time in a high temperature environment.
 従って、本発明の目的は、安価で高い透明性を有するEVAを主成分とし、高温環境下における絶縁性が顕著に高く、且つ高温環境下における接着力の耐久性に優れた太陽電池用封止膜を提供することにある。 Accordingly, an object of the present invention is to provide a solar cell encapsulating material that is made of EVA that is inexpensive and highly transparent, has a significantly high insulation property in a high temperature environment, and has excellent durability in an adhesive force in a high temperature environment. It is to provide a membrane.
 また、本発明の目的は、この封止膜を用いた太陽電池を提供することにある。 Also, an object of the present invention is to provide a solar cell using this sealing film.
 上記目的を達成するため、本発明者らは、EVAに加える架橋剤、及びその他の添加剤の種類や配合量を種々検討した。その結果、特定の2種の架橋剤を所定の含有量で配合し、特定のシランカップリング剤を所定の含有量で配合することで、従来の封止膜より、高温環境下における絶縁性が顕著に向上し、且つ接着力の耐久性が向上した太陽電池用封止膜が得られることを見出した。 In order to achieve the above object, the present inventors have studied various kinds and blending amounts of a crosslinking agent and other additives added to EVA. As a result, two specific crosslinking agents are blended at a predetermined content, and a specific silane coupling agent is blended at a predetermined content, so that insulation in a high-temperature environment is better than a conventional sealing film. It has been found that a solar cell sealing film that is significantly improved and has improved durability of adhesive force can be obtained.
 即ち、上記目的は、エチレン-酢酸ビニル共重合体、架橋剤、及びシランカップリング剤を含む太陽電池用封止膜であって、前記架橋剤が、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(有機過酸化物A)、及びt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(有機過酸化物B)からなり、前記シランカップリング剤が、γ-メタクリロキシプロピルトリメトキシシランであり、前記架橋剤の総含有量が、前記エチレン-酢酸ビニル共重合体100質量部に対して、1.67~2.05質量部であり、且つ前記シランカップリング剤の含有量が、前記エチレン-酢酸ビニル共重合体100質量部に対して、0.6~1.0質量部であることを特徴とする太陽電池用封止膜によって達成される。 That is, the object is a solar cell sealing film comprising an ethylene-vinyl acetate copolymer, a crosslinking agent, and a silane coupling agent, wherein the crosslinking agent is 2,5-dimethyl-2,5-disilane. (T-butylperoxy) hexane (organic peroxide A) and t-butylperoxy-2-ethylhexyl monocarbonate (organic peroxide B), and the silane coupling agent is γ-methacryloxypropyl Trimethoxysilane, the total content of the crosslinking agent is 1.67 to 2.05 parts by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer, and the content of the silane coupling agent The amount is achieved by a sealing film for solar cells, wherein the amount is 0.6 to 1.0 part by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer.
 本発明に係わる太陽電池用封止膜の好ましい態様は以下の通りである。
(1)架橋後の60℃雰囲気における体積固有抵抗が6.0×1014Ω・cm以上である。このような体積固有抵抗であれば、高温環境下における絶縁性が顕著に高い太陽電池用封止膜であるといえる。
(2)前記架橋剤における、有機過酸化物Bの有機過酸化物Aに対する質量比(有機過酸化物B/有機過酸化物A)が、1/99~9/91の範囲である。有機過酸化物Bは有機過酸化物Aよりも半減期温度が低い有機過酸化物であり、より短時間にEVAの架橋を進行させることができる架橋剤である。しかしながら、そのような有機過酸化物を多く使用すると太陽電池の高温環境下での使用時に、フクレ(ガス発生による発泡)が生じ、透明性の低下や絶縁性の低下により、太陽電池の発電効率が低下する場合がある。有機過酸化物B/有機過酸化物Aを上記範囲とすることで、高温環境下におけるフクレを抑制することができ、より太陽電池の発電効率を長期間維持できる太陽電池用封止膜とすることができる。
(3)更に、架橋助剤を、前記エチレン-酢酸ビニル共重合体100質量部に対して、0.1~3.0質量部含む。これにより、より封止膜の接着力の耐久性や絶縁性を向上させることができる。
(4)前記架橋助剤が、トリアリルイソシアヌレートである。
The preferable aspect of the sealing film for solar cells concerning this invention is as follows.
(1) The volume specific resistance in a 60 ° C. atmosphere after crosslinking is 6.0 × 10 14 Ω · cm or more. With such a volume resistivity, it can be said that it is a solar cell encapsulating film having a significantly high insulating property in a high temperature environment.
(2) The mass ratio of the organic peroxide B to the organic peroxide A (organic peroxide B / organic peroxide A) in the crosslinking agent is in the range of 1/99 to 9/91. The organic peroxide B is an organic peroxide having a lower half-life temperature than that of the organic peroxide A, and is a crosslinking agent capable of allowing EVA to proceed in a shorter time. However, if such an organic peroxide is used in a large amount, a bulge (foaming due to gas generation) occurs when the solar cell is used in a high temperature environment, and the power generation efficiency of the solar cell is reduced due to a decrease in transparency and insulation. May decrease. By setting the organic peroxide B / organic peroxide A within the above range, a swelling in a high temperature environment can be suppressed, and a solar cell sealing film that can maintain the power generation efficiency of the solar cell for a long period of time. be able to.
(3) Further, 0.1 to 3.0 parts by mass of a crosslinking aid is contained with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer. Thereby, durability of the adhesive force of a sealing film and insulation can be improved more.
(4) The crosslinking aid is triallyl isocyanurate.
 また、上記目的は、本発明の太陽電池封止膜を用いたことを特徴とする太陽電池によって達成される。 The above object is achieved by a solar cell using the solar cell sealing film of the present invention.
 本発明によれば、エチレン-酢酸ビニル共重合体を主成分とする太陽電池用封止膜について、配合する架橋剤及びシランカップリング剤の種類及び含有量を調整することで、高温環境下において、絶縁性が顕著に高く、且つ高温環境下における接着力の耐久性に優れた太陽電池用封止膜を提供することができる。 According to the present invention, in a solar cell sealing film mainly composed of an ethylene-vinyl acetate copolymer, the kind and content of a crosslinking agent and a silane coupling agent to be blended are adjusted in a high temperature environment. In addition, it is possible to provide a solar cell sealing film that is remarkably high in insulation and excellent in durability of adhesive strength in a high temperature environment.
 従って、本発明の太陽電池用封止膜を用いることにより、高温環境下において、発電効率が高く、その発電効率が長期間維持された太陽電池を提供することができる。 Therefore, by using the solar cell sealing film of the present invention, it is possible to provide a solar cell having high power generation efficiency and maintaining the power generation efficiency for a long period of time in a high temperature environment.
一般的な太陽電池の概略断面図である。It is a schematic sectional drawing of a common solar cell. 接着力の評価である、180°ピール試験法を説明するための概略図である。It is the schematic for demonstrating the 180 degree peel test method which is evaluation of adhesive force.
 本発明の太陽電池用封止膜は、少なくともエチレン-酢酸ビニル共重合体、架橋剤、及びシランカップリング剤を含んでいる。 The solar cell sealing film of the present invention contains at least an ethylene-vinyl acetate copolymer, a crosslinking agent, and a silane coupling agent.
 そして、架橋剤として、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(有機過酸化物A)、及びt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(有機過酸化物B)の2種を用い、その合計した含有量はEVA100質量部に対して、1.67~2.05質量部である。 As a cross-linking agent, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (organic peroxide A) and t-butylperoxy-2-ethylhexyl monocarbonate (organic peroxide) Two types of B) are used, and the total content is 1.67 to 2.05 parts by mass with respect to 100 parts by mass of EVA.
 また、シランカップリング剤として、γ-メタクリロキシプロピルトリメトキシシランを用い、その含有量はEVA100質量部に対して、0.6~1.0質量部である。 Further, γ-methacryloxypropyltrimethoxysilane is used as a silane coupling agent, and its content is 0.6 to 1.0 part by mass with respect to 100 parts by mass of EVA.
 これにより、本発明の太陽電池用封止膜は、高温環境下における絶縁性が顕著に向上し、且つ高温環境下における接着力の耐久性が向上している。 As a result, the solar cell sealing film of the present invention has significantly improved insulation in a high-temperature environment and improved durability of adhesive force in a high-temperature environment.
 本発明において、高温環境下における絶縁性が顕著に高い太陽電池用封止膜は、架橋後の60℃雰囲気における体積固有抵抗が、好ましくは6.0×1014Ω・cm以上であり、特に好ましくは8.0×1014~1.0×1016Ω・cmである。太陽電池用封止膜の、高温環境下における絶縁性の指標として、架橋後の60℃雰囲気における体積固有抵抗を用いることが有用である。そして、上記のような体積固有抵抗であれば、従来の封止膜より顕著に高い絶縁性を有する太陽電池用封止膜であるということができる。 In the present invention, the solar cell encapsulating film having remarkably high insulation under a high temperature environment preferably has a volume specific resistance in a 60 ° C. atmosphere after crosslinking, preferably 6.0 × 10 14 Ω · cm or more. Preferably, it is 8.0 × 10 14 to 1.0 × 10 16 Ω · cm. It is useful to use volume resistivity in a 60 ° C. atmosphere after crosslinking as an index of insulating properties of the solar cell sealing film in a high temperature environment. And if it is the above volume specific resistance, it can be said that it is a sealing film for solar cells which has insulation property remarkably higher than the conventional sealing film.
 本発明において、架橋後の60℃雰囲気における体積固有抵抗(Ω・cm)は、太陽電池用封止膜をゲル化分率90%以上まで架橋させた後、高抵抗率計(ハイレスタUP(三菱化学社製))とプローブ(UR-100(三菱化学社製))を用いて、60℃雰囲気下で測定した値である。なお、一般的に、体積固有抵抗(Ω・cm)は室温(25℃)で測定されており、60℃雰囲気における測定値は、25℃雰囲気における測定値の約1/10である。 In the present invention, the volume resistivity (Ω · cm) in the atmosphere at 60 ° C. after crosslinking is obtained by crosslinking a solar cell sealing film to a gelation fraction of 90% or more, and then using a high resistivity meter (HIRESTA UP (Mitsubishi And a probe (UR-100 (manufactured by Mitsubishi Chemical Corporation)) and a value measured in an atmosphere at 60 ° C. In general, the volume resistivity (Ω · cm) is measured at room temperature (25 ° C.), and the measured value in a 60 ° C. atmosphere is about 1/10 of the measured value in a 25 ° C. atmosphere.
 以下、本発明の太陽電池用封止膜について、より詳細に説明する。 Hereinafter, the solar cell sealing film of the present invention will be described in more detail.
 一般に、シランカップリング剤の含有量を増加した場合、封止膜の絶縁性は低下する傾向にあることが知られている。例えば、特許文献2には、実施例として、EVA100質量部に対して、シランカップリング剤0.1質量部が配合された組成物、及び比較例として、EVA100質量部に対して、シランカップリング剤0.5質量部が配合された組成物が開示され、比較例の配合では、体積抵抗率が低下していることが示されている。この原因としては、特許文献2の実施例のような、架橋剤の配合量が少なく、EVAの架橋による網目密度が低い場合には、含まれるシランカップリング剤の自由度が高く、電子伝達に寄与するため、シランカップリング剤の含有量が多いと、封止膜の電気抵抗が低下するものと考えられる。 Generally, it is known that when the content of the silane coupling agent is increased, the insulating property of the sealing film tends to be lowered. For example, in Patent Document 2, as an example, a composition in which 0.1 part by mass of a silane coupling agent is blended with 100 parts by mass of EVA, and as a comparative example, silane coupling with respect to 100 parts by mass of EVA. A composition in which 0.5 part by mass of the agent is blended is disclosed, and it is shown that the volume resistivity is decreased in the blend of the comparative example. As a cause of this, when the blending amount of the crosslinking agent is small as in the example of Patent Document 2 and the network density due to the crosslinking of EVA is low, the degree of freedom of the silane coupling agent contained is high, and the electron transfer In order to contribute, when there is much content of a silane coupling agent, it is thought that the electrical resistance of a sealing film falls.
 一方、本発明においては、シランカップリング剤を、特許文献1及び2と比較して多く配合することで、逆に絶縁性の向上が達成されている。この要因は以下のように考えることができる。本発明の場合は、2種の架橋剤を用い、且つ特許文献1及び2の実施例よりも多く配合することによりEVAの網目密度が高くなっている。そのため、シランカップリング剤がEVAの網目構造に組み込まれ易くなり、その自由度が低くなっているものと考えられる。そうすると、シランカップリング剤がイオンをトラップすることになり、電子伝達を阻害することになる。従って、シランカップリング剤の含有量を多くすることで、封止膜の電気抵抗が向上され、例えば、架橋後の60℃雰囲気における体積固有抵抗が6.0×1014Ω・cm以上という高い絶縁性が得られるものと考えられる。また、シランカップリング剤の含有量が多いことで、接着力の高い耐久性も得られるものと考えられる。 On the other hand, in the present invention, an improvement in insulation is achieved by blending more silane coupling agents than in Patent Documents 1 and 2. This factor can be considered as follows. In the case of this invention, the network density of EVA is high by using 2 types of crosslinking agents and mix | blending more than the Example of patent document 1 and 2. FIG. Therefore, it is considered that the silane coupling agent is easily incorporated into the EVA network structure, and the degree of freedom is low. If it does so, a silane coupling agent will trap ion and will inhibit electron transmission. Therefore, by increasing the content of the silane coupling agent, the electrical resistance of the sealing film is improved. For example, the volume resistivity in a 60 ° C. atmosphere after crosslinking is as high as 6.0 × 10 14 Ω · cm or more. It is considered that insulation can be obtained. Moreover, it is thought that durability with high adhesive force is acquired because there is much content of a silane coupling agent.
 但し、シランカップリング剤の含有量が多過ぎると、ブリード(染み出し)が生じ、封止膜の白化が生じる場合がある。従って、本発明において、シランカップリング剤の含有量は、EVA100質量部に対して、0.6~1.0質量部であり、好ましくは0.6~0.9質量部である。 However, if the content of the silane coupling agent is too large, bleeding (bleeding) may occur and whitening of the sealing film may occur. Therefore, in the present invention, the content of the silane coupling agent is 0.6 to 1.0 part by mass, preferably 0.6 to 0.9 part by mass with respect to 100 parts by mass of EVA.
 本発明においては、シランカップリング剤として、接着性向上効果、及び絶縁性向上効果が高いことから、γ-メタクリロキシプロピルトリメトキシシランが選択されている。 In the present invention, γ-methacryloxypropyltrimethoxysilane is selected as the silane coupling agent because it has a high effect of improving adhesiveness and an effect of improving insulation.
 また、架橋剤としては、上述のように、EVAの架橋による網目密度を高めるために有効な、半減期温度が異なる2種の有機過酸化物が選択されている。即ち、10時間半減期温度(10時間半減期の分解温度)が110~130℃である、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(有機過酸化物A)、及び10時間半減期温度が80~100℃である、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(有機過酸化物B)である。そして、これらの有機過酸化物の合計の含有量を、EVA100質量部に対して、1.67~2.05質量部の範囲で配合し、シランカップリング剤を上記範囲の含有量で配合することで、上述のように、太陽電池用封止膜の絶縁性が向上され、且つ高温環境下における接着力の耐久性が向上される。なお、有機過酸化物の含有量を、上記範囲より多くする、EVAとの相溶性が悪くなるおそれがある。 Further, as described above, two kinds of organic peroxides having different half-life temperatures, which are effective for increasing the network density by EVA crosslinking, are selected as the crosslinking agent. That is, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (organic peroxide A) having a 10-hour half-life temperature (decomposition temperature of 10-hour half-life) of 110 to 130 ° C. And t-butylperoxy-2-ethylhexyl monocarbonate (organic peroxide B) having a 10-hour half-life temperature of 80 to 100 ° C. Then, the total content of these organic peroxides is blended in the range of 1.67 to 2.05 parts by mass with respect to 100 parts by mass of EVA, and the silane coupling agent is blended in the above range. Thus, as described above, the insulating property of the solar cell sealing film is improved, and the durability of the adhesive force in a high-temperature environment is improved. In addition, there exists a possibility that compatibility with EVA which makes content of an organic peroxide larger than the said range may worsen.
 架橋剤の総含有量は、EVA100質量部に対して、1.75~1.95質量部が好ましく、1.8~1.9が更に好ましい。 The total content of the crosslinking agent is preferably 1.75 to 1.95 parts by mass, more preferably 1.8 to 1.9 based on 100 parts by mass of EVA.
 本発明において、有機過酸化物Bの有機過酸化物Aに対する質量比(有機過酸化物B/有機過酸化物A)は特に制限は無く、通常、1/99~99/1の範囲で使用される。有機過酸化物Bは、その半減期温度が低いことにより短時間にEVAの架橋を進行させることができるため、本発明において必須成分である。しかしながら、太陽電池用封止膜に有機過酸化物Bを多く使用すると、太陽電池の高温環境下での使用時に、有機過酸化物の分解物によるためと考えられるフクレが生じ、透明性の低下や絶縁性の低下により太陽電池の発電効率が低下する場合がある。従って、有機過酸化物B/有機過酸化物Aは、1/99~9/91が好ましく、4/95~9/91が更に好ましく、7/93~9/91が特に好ましい。この範囲の有機過酸化物B/有機過酸化物Aであれば、EVA の網目密度を十分に高め、且つ太陽電池の高温環境下におけるフクレを抑制することができる。従って、高温環境下において、より太陽電池の発電効率を長期間維持できる太陽電池用封止膜とすることができる。 In the present invention, the mass ratio of the organic peroxide B to the organic peroxide A (organic peroxide B / organic peroxide A) is not particularly limited and is usually used in the range of 1/99 to 99/1. Is done. The organic peroxide B is an essential component in the present invention because it has a low half-life temperature and can advance EVA crosslinking in a short time. However, if a large amount of organic peroxide B is used in the sealing film for solar cells, when the solar cell is used in a high-temperature environment, a bulge is considered to be caused by the decomposition product of the organic peroxide, resulting in a decrease in transparency. In some cases, the power generation efficiency of the solar cell may decrease due to a decrease in insulation. Accordingly, the organic peroxide B / organic peroxide A is preferably 1/99 to 9/91, more preferably 4/95 to 9/91, and particularly preferably 7/93 to 9/91. If the organic peroxide B / organic peroxide A is in this range, the network density of the EVA soot can be sufficiently increased and swelling of the solar cell in a high temperature environment can be suppressed. Therefore, it can be set as the sealing film for solar cells which can maintain the power generation efficiency of a solar cell for a long period of time in a high temperature environment.
[エチレン-酢酸ビニル共重合体]
 本発明に使用するエチレン-酢酸ビニル共重合体(EVA)における酢酸ビニルの含有量は、EVA100質量部に対して20~35質量部、さらに22~30質量部、特に24~28質量部とするのが好ましい。EVAの酢酸ビニル単位の含有量が低い程、得られる封止膜が硬くなる傾向がある。酢酸ビニルの含有量が20質量部未満では、高温で架橋硬化させる場合に、得られる封止膜の透明性が充分でない恐れがある。また、35質量部を超えると封止膜の硬さが不十分となる場合があり、更にカルボン酸、アルコール、アミン等が発生し封止膜と保護部材等との界面で発泡が生じ易くなる恐れがある。
[Ethylene-vinyl acetate copolymer]
The content of vinyl acetate in the ethylene-vinyl acetate copolymer (EVA) used in the present invention is 20 to 35 parts by mass, more preferably 22 to 30 parts by mass, especially 24 to 28 parts by mass with respect to 100 parts by mass of EVA. Is preferred. There exists a tendency for the sealing film obtained to become hard, so that content of the vinyl acetate unit of EVA is low. If the content of vinyl acetate is less than 20 parts by mass, the resulting sealing film may not have sufficient transparency when crosslinked and cured at high temperatures. Further, if it exceeds 35 parts by mass, the sealing film may have insufficient hardness, and further carboxylic acid, alcohol, amine, etc. are generated, and foaming is likely to occur at the interface between the sealing film and the protective member. There is a fear.
 本発明の太陽電池封止膜においては、EVAに加えて、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸共重合体、前記エチレン-不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸イソブチル共重合体、エチレン-アクリル酸n-ブチル共重合体のようなエチレン-不飽和カルボン酸エステル共重合体、エチレン-アクリル酸イソブチル-メタクリル酸共重合体、エチレン-アクリル酸n-ブチル-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸エステル-不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-酢酸ビニル共重合体のようなエチレン-ビニルエステル共重合体等のエチレン-極性モノマー共重合体、ポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)、及び塩化ビニル樹脂を副次的に使用しても良い。 In the solar cell sealing film of the present invention, in addition to EVA, an ethylene-unsaturated carboxylic acid copolymer such as an ethylene-acrylic acid copolymer and an ethylene-methacrylic acid copolymer, Ionomer in which some or all of carboxyl groups of acid copolymer are neutralized with the above metal, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene -Ethylene-isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene-acrylic acid n- Ethylene-unsaturated carboxylic acid ester-unsaturated carboxylic acid such as butyl-methacrylic acid copolymer Polymers and ionomers in which some or all of the carboxyl groups have been neutralized with the above metals, ethylene-polar monomer copolymers such as ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers, polyvinyl acetals System resins (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB), and vinyl chloride resin may be used as secondary materials.
[架橋助剤]
 本発明の太陽電池用封止膜は、必要に応じて、さらに架橋助剤(官能基としてラジカル重合性基を有する化合物)を含んでいてもよい。前記架橋助剤は、エチレン-酢酸ビニル共重合体のゲル分率を向上させ、封止膜の接着性や絶縁性を向上させることができる。
[Crosslinking aid]
The sealing film for solar cells of the present invention may further contain a crosslinking aid (a compound having a radical polymerizable group as a functional group) as necessary. The cross-linking aid can improve the gel fraction of the ethylene-vinyl acetate copolymer and improve the adhesion and insulation of the sealing film.
 前記架橋助剤の含有量は、EVA100質量部に対して、好ましくは0.1~3.0質量部、更に好ましくは0.5~2.0質量部で使用される。これにより、より接着性や絶縁性に優れる封止膜が得られる。 The content of the crosslinking aid is preferably 0.1 to 3.0 parts by mass, more preferably 0.5 to 2.0 parts by mass with respect to 100 parts by mass of EVA. Thereby, the sealing film which is more excellent in adhesiveness and insulation is obtained.
 前記架橋助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレートおよびトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。 Examples of the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and monofunctional or bifunctional crosslinking aids such as (meth) acrylic esters (eg, NK ester). Can be mentioned. Of these, triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
[その他]
 本発明の太陽電池用封止膜は、膜の種々の物性(機械的強度、透明性等の光学的特性、耐熱性、耐光性、架橋速度等)の改良あるいは調整のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物及び/又はエポキシ基含有化合物などの各種添加剤をさらに含んでいてもよい。
[Others]
The sealing film for solar cell of the present invention is used as necessary for improving or adjusting various physical properties of the film (optical properties such as mechanical strength and transparency, heat resistance, light resistance, crosslinking speed, etc.). In addition, various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may be further included.
 可塑剤としては、特に限定されるものではないが、一般に多塩基酸のエステル、多価アルコールのエステルが使用される。その例としては、ジオクチルフタレート、ジヘキシルアジペート、トリエチレングリコール-ジ-2-エチルブチレート、ブチルセバケート、テトラエチレングリコールジヘプタノエート、トリエチレングリコールジペラルゴネートを挙げることができる。可塑剤は一種用いてもよく、二種以上組み合わせて使用しても良い。可塑剤の含有量は、エチレン-極性モノマー共重合体100質量部に対して5質量部以下の範囲が好ましい。 The plasticizer is not particularly limited, but generally an ester of a polybasic acid or an ester of a polyhydric alcohol is used. Examples thereof include dioctyl phthalate, dihexyl adipate, triethylene glycol-di-2-ethylbutyrate, butyl sebacate, tetraethylene glycol diheptanoate, and triethylene glycol dipelargonate. One type of plasticizer may be used, or two or more types may be used in combination. The plasticizer content is preferably in the range of 5 parts by mass or less with respect to 100 parts by mass of the ethylene-polar monomer copolymer.
 アクリロキシ基含有化合物及びメタクリロキシ基含有化合物としては、一般にアクリル酸あるいはメタクリル酸誘導体であり、例えばアクリル酸あるいはメタクリル酸のエステルやアミドを挙げることができる。エステル残基の例としては、メチル、エチル、ドデシル、ステアリル、ラウリル等の直鎖状のアルキル基、シクロヘキシル基、テトラヒドルフルフリル基、アミノエチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、3-クロロ-2-ヒドロキシプオピル基を挙げることができる。アミドの例としては、ジアセトンアクリルアミドを挙げることができる。また、エチレングリコール、トリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールとアクリル酸あるいはメタクリル酸のエステルも挙げることができる。 The acryloxy group-containing compound and the methacryloxy group-containing compound are generally acrylic acid or methacrylic acid derivatives, and examples thereof include acrylic acid or methacrylic acid esters and amides. Examples of ester residues include linear alkyl groups such as methyl, ethyl, dodecyl, stearyl, lauryl, cyclohexyl group, tetrahydrofurfuryl group, aminoethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group And 3-chloro-2-hydroxypropyl group. Examples of amides include diacetone acrylamide. In addition, polyhydric alcohols such as ethylene glycol, triethylene glycol, polypropylene glycol, polyethylene glycol, trimethylolpropane, and pentaerythritol, and esters of acrylic acid or methacrylic acid can also be used.
 エポキシ含有化合物としては、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、フェノール(エチレンオキシ)5グリシジルエーテル、p-t-ブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、グリシジルメタクリレート、ブチルグリシジルエーテルを挙げることができる。 Epoxy-containing compounds include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, phenol (Ethyleneoxy) 5 glycidyl ether, pt-butylphenyl glycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, glycidyl methacrylate, butyl glycidyl ether.
 前記アクリロキシ基含有化合物、前記メタクリロキシ基含有化合物、または前記エポキシ基含有化合物は、それぞれエチレン-極性モノマー共重合体100質量部に対してそれぞれ一般に0.5~5.0質量部、特に1.0~4.0質量部含まれていることが好ましい。 The acryloxy group-containing compound, the methacryloxy group-containing compound, or the epoxy group-containing compound is generally 0.5 to 5.0 parts by mass, particularly 1.0 to 100 parts by mass of the ethylene-polar monomer copolymer, respectively. It is preferably contained in an amount of ˜4.0 parts by mass.
 更に、本発明の太陽電池用封止膜は、紫外線吸収剤、光安定剤および老化防止剤を含んでいてもよい。紫外線吸収剤を含むことにより、照射された光などの影響によってエチレン-極性モノマー共重合体が劣化し、太陽電池用封止膜が黄変するのを抑制することができる。紫外線吸収剤としては、特に制限されないが、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシロキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2'-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤が好ましく挙げられる。なお、上記ベンゾフェノン系紫外線吸収剤の配合量は、エチレン-極性モノマー共重合体100質量部に対して0.01~5質量部であることが好ましい。 Furthermore, the solar cell sealing film of the present invention may contain an ultraviolet absorber, a light stabilizer and an anti-aging agent. By including the ultraviolet absorber, it is possible to suppress deterioration of the ethylene-polar monomer copolymer due to the influence of irradiated light and the like, and yellowing of the solar cell sealing film. The ultraviolet absorber is not particularly limited, but 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxy Preferred examples include benzophenone ultraviolet absorbers such as benzophenone and 2-hydroxy-4-n-octoxybenzophenone. The blending amount of the benzophenone ultraviolet absorber is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer.
 また、光安定剤を含むことによっても、照射された光などの影響によってエチレン-極性モノマー共重合体の劣化し、太陽電池用封止膜が黄変するのを抑制することができる。光安定剤としてはヒンダードアミン系と呼ばれる光安定剤を用いることが好ましく、例えば、LA-52、LA-57、LA-62、LA-63LA-63p、LA-67、LA-68(いずれも(株)ADEKA製)、Tinuvin744、Tinuvin 770、Tinuvin 765、Tinuvin144、Tinuvin 622LD、CHIMASSORB 944LD(いずれもチバ・スペシャリティ・ケミカルズ(株)社製)、UV-3034(B.F.グッドリッチ社製)等を挙げることができる。なお、上記光安定剤は、単独で使用しても、2種以上組み合わせて用いてもよく、その配合量は、エチレン-極性モノマー共重合体100質量部に対して0.01~5質量部であることが好ましい。 Further, the inclusion of a light stabilizer can also suppress the deterioration of the ethylene-polar monomer copolymer due to the influence of irradiated light and the like, and the yellowing of the solar cell sealing film. As the light stabilizer, a light stabilizer called a hindered amine type is preferably used. For example, LA-52, LA-57, LA-62, LA-63LA-63p, LA-67, LA-68 (all ADEKA), Tinuvin 744, Tinuvin® 770, Tinuvin® 765, Tinuvin 144, Tinuvin® 622LD, CHIMASSORB® 944LD (all manufactured by Ciba Specialty Chemicals Co., Ltd.), UV-3034 (manufactured by BF Goodrich) Can be mentioned. The light stabilizer may be used alone or in combination of two or more kinds, and the blending amount is 0.01 to 5 parts by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer. It is preferable that
 老化防止剤としては、例えばN,N’-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド〕等のヒンダードフェノール系酸化防止剤、リン系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤、イオウ系熱安定剤等が挙げられる。 Examples of the antioxidant include hindered phenol antioxidants such as N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], Examples thereof include phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers, and sulfur heat stabilizers.
 上述した本発明の太陽電池用封止膜を形成するには、公知の方法に準じて行えばよい。例えば、上記の各材料をスーパーミキサー(高速流動混合機)、ロールミル等を用いて公知の方法で混合した組成物を通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。また、前記組成物を溶剤に溶解させ、この溶液を適当な塗布機(コーター)で適当な支持体上に塗布、乾燥して塗膜を形成することによりシート状物を得ることもできる。尚、製膜時の加熱温度は、架橋剤が反応しない或いはほとんど反応しない温度とすることが好ましい。例えば、50~90℃、特に40~80℃とするのが好ましい。太陽電池用封止膜の厚さは、特に制限されないが、50μm~2mmの範囲であればよい。 The solar cell sealing film of the present invention described above may be formed according to a known method. For example, a composition in which each of the above materials is mixed by a known method using a super mixer (high-speed fluid mixer), a roll mill or the like is molded by ordinary extrusion molding, calendar molding (calendering), or the like, and then a sheet-like material It can manufacture by the method of obtaining. Alternatively, a sheet-like material can be obtained by dissolving the composition in a solvent and coating the solution on a suitable support with a suitable coating machine (coater) and drying to form a coating film. The heating temperature during film formation is preferably a temperature at which the crosslinking agent does not react or hardly reacts. For example, the temperature is preferably 50 to 90 ° C, particularly 40 to 80 ° C. The thickness of the solar cell sealing film is not particularly limited, but may be in the range of 50 μm to 2 mm.
[太陽電池]
 本発明の太陽電池の構造は、本発明の太陽電池用封止膜を用いていれば、特に制限されない。例えば、表面側透明保護部材と裏面側保護部材との間に、本発明の太陽電池用封止膜を介在させて架橋一体化させることにより太陽電池用セルを封止させた構造などが挙げられる。なお、本発明において、太陽電池用セルの光が照射される側(受光面側)を「表面側」と称し、太陽電池用セルの受光面とは反対面側を「裏面側」と称する。
[Solar cell]
The structure of the solar cell of the present invention is not particularly limited as long as the solar cell sealing film of the present invention is used. For example, the structure etc. which sealed the cell for solar cells by interposing the sealing film for solar cells of this invention between the surface side transparent protection member and the back surface side protection member, and making it bridge-integrate are mentioned. . In addition, in this invention, the side (light-receiving surface side) where the light of the solar cell is irradiated is referred to as “front surface side”, and the surface opposite to the light-receiving surface of the solar cell is referred to as “back surface side”.
 前記太陽電池において、太陽電池用セルを十分に封止するには、例えば、図1に示すように表面側透明保護部材11、表面側封止膜13A、太陽電池用セル14、裏面側封止膜13B及び裏面側保護部材12を積層し、加熱加圧など常法に従って、封止膜を架橋硬化させればよい。 In the solar cell, in order to sufficiently seal the solar cell, for example, as shown in FIG. 1, the front surface side transparent protective member 11, the front surface side sealing film 13A, the solar cell cell 14, the back surface side sealing. The film 13B and the back surface side protection member 12 may be laminated, and the sealing film may be cross-linked and cured according to a conventional method such as heat and pressure.
 前記加熱加圧するには、例えば、前記積層体を、真空ラミネーターで温度135~180℃、さらに140~180℃、特に155~180℃、脱気時間0.1~5分、プレス圧力0.1~1.5kg/cm2、プレス時間5~15分で加熱圧着すればよい。この加熱加圧時に、表面側封止膜13Aおよび裏面側封止膜13Bに含まれるエチレン-酢酸ビニル共重合体を架橋させることにより、表面側封止膜13Aおよび裏面側封止膜13Bを介して、表面側透明保護部材11、裏面側透明部材12、および太陽電池用セル14を一体化させて、太陽電池用セル14を封止することができる。 For the heating and pressurization, for example, the laminate is heated with a vacuum laminator at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., a degassing time of 0.1 to 5 minutes, and a press pressure of 0.1. Heat pressing may be performed at a pressure of ˜1.5 kg / cm 2 and a press time of 5 to 15 minutes. During this heating and pressurization, the ethylene-vinyl acetate copolymer contained in the front surface side sealing film 13A and the back surface side sealing film 13B is cross-linked, whereby the front surface side sealing film 13A and the back surface side sealing film 13B are interposed. And the surface side transparent protection member 11, the back surface side transparent member 12, and the cell 14 for solar cells can be integrated, and the cell 14 for solar cells can be sealed.
 なお、本発明の太陽電池用封止膜は、図1に示したような単結晶又は多結晶のシリコン結晶系の太陽電池セルを用いた太陽電池だけでなく、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の封止膜にも使用することもできる。この場合は、例えば、ガラス基板、ポリイミド基板、フッ素樹脂系透明基板等の表面側透明保護部材の表面上に化学気相蒸着法等により形成された薄膜太陽電池素子層上に、本発明の太陽電池用封止膜、裏面側保護部材を積層し、接着一体化させた構造、裏面側保護部材の表面上に形成された太陽電池素子上に、本発明の太陽電池用封止膜、表面側透明保護部材を積層し、接着一体化させた構造、又は表面側透明保護部材、表面側封止膜、薄膜太陽電池素子、裏面側封止膜、及び裏面側保護部材をこの順で積層し、接着一体化させた構造等が挙げられる。 The solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for sealing films of thin film solar cells such as solar cells and copper indium selenide (CIS) solar cells. In this case, for example, the solar cell of the present invention is formed on the thin film solar cell element layer formed by a chemical vapor deposition method or the like on the surface of the surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate. On the solar cell element formed on the surface of the back surface side protective member, the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them, the front surface side Laminated transparent protective member, bonded and integrated structure, or front side transparent protective member, front side sealing film, thin film solar cell element, back side sealing film, and back side protective member are laminated in this order, For example, a structure that is bonded and integrated.
 本発明の太陽電池用封止膜は、高温環境下における高い絶縁性を有し、且つ高温環境下における接着力の耐久性が優れているので、高温環境下で、高い発電効率を長期間維持された太陽電池を提供することができる。 The solar cell sealing film of the present invention has high insulation under a high temperature environment and has excellent durability of the adhesive strength under a high temperature environment, so that high power generation efficiency is maintained for a long time under a high temperature environment. Solar cells can be provided.
 本発明の太陽電池に使用される表面側透明保護部材11は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1~10mmが一般的であり、0.3~5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。 The surface-side transparent protective member 11 used in the solar cell of the present invention is usually a glass substrate such as silicate glass. The thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm. The glass substrate may generally be chemically or thermally strengthened.
 本発明で使用される裏面側保護部材12は、ポリエチレンテレフタレート(PET)などのプラスチックフィルムが好ましく用いられる。また、耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムでも良い。 The back surface side protective member 12 used in the present invention is preferably a plastic film such as polyethylene terephthalate (PET). Further, a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
 なお、本発明の太陽電池(薄膜太陽電池を含む)は、上述した通り、表面側及び/又は裏面側に用いられる封止膜に特徴を有する。したがって、表面側透明保護部材、裏面側保護部材、および太陽電池用セルなどの前記封止膜以外の部材については、従来公知の太陽電池と同様の構成を有していればよく、特に制限されない。 In addition, the solar cell (including a thin film solar cell) of the present invention is characterized by a sealing film used on the front surface side and / or the back surface side as described above. Therefore, the members other than the sealing film such as the front-side transparent protective member, the back-side protective member, and the solar cell need only have the same configuration as the conventionally known solar cell, and are not particularly limited. .
 以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described by way of examples.
(実施例1~5、比較例1~6)
 表1及び2に示す配合で各材料をロールミルに供給し、70℃で、混練して太陽電池用封止膜組成物を調製した。前記太陽電池用封止膜組成物を、70℃で、カレンダ成形し、放冷後、太陽電池用封止膜(厚さ0.6mm)を作製した。
(Examples 1 to 5, Comparative Examples 1 to 6)
Each material was supplied to a roll mill with the formulation shown in Tables 1 and 2, and kneaded at 70 ° C. to prepare a sealing film composition for a solar cell. The solar cell sealing film composition was calendered at 70 ° C., allowed to cool, and then a solar cell sealing film (thickness 0.6 mm) was produced.
(評価方法)
(1)体積固有抵抗
 上記で作製した各太陽電池用封止膜の100mmx100mmの大きさのサンプルを作製し、真空ラミネーターにて90℃で仮圧着した後、加熱し、ゲル化分率90%以上まで架橋させた。
作製した各サンプルについて、高抵抗率計(ハイレスタUP(三菱化学社製))とプローブ(UR-100(三菱化学社製))を用いて、25℃及び60℃雰囲気下で体積固有抵抗(Ω・cm)を測定した。60℃雰囲気下の体積固有抵抗が6.0×1014Ω・cm以上を合格とした。
(Evaluation methods)
(1) Volume specific resistance A sample having a size of 100 mm × 100 mm of each of the solar cell sealing films prepared above was prepared, and after temporarily press-bonding at 90 ° C. with a vacuum laminator, the sample was heated to have a gelation fraction of 90% or more. Until crosslinked.
For each sample produced, a volume resistivity (Ω) at 25 ° C. and 60 ° C. using a high resistivity meter (Hiresta UP (Mitsubishi Chemical)) and a probe (UR-100 (Mitsubishi Chemical)). Cm) was measured. A volume resistivity of 60 × 10 14 Ω · cm or more in an atmosphere at 60 ° C. was regarded as acceptable.
(2)ガラス接着力の耐久性
 接着力は180°ピール試験(JIS K 6584、1994年)により評価した。180°ピール試験は、具体的には、下記手順に従って、図2に示すように行った。ガラス基板21(厚さ3mm)/上記各太陽電池用封止膜23/離型PET(厚さ0.75mm)をこの順で積層し、得られた積層体を真空ラミネーターで真空脱気し、100℃、10分間予備圧着した後、さらにオーブンに入れ、温度150℃、30分間架橋させた。これを、ガラス基板21と太陽電池用封止膜23との間の一部を剥離して、太陽電池用封止膜23を180°折り返して引張試験機(島津製作所社製、オートグラフ)を用いて引っ張り速度100mm/分時の引き剥がし力を測定し、ガラス接着力(初期)[N/cm]とした。
(2) Durability of glass adhesion strength Adhesion strength was evaluated by a 180 ° peel test (JIS K 6854, 1994). Specifically, the 180 ° peel test was performed according to the following procedure as shown in FIG. Glass substrate 21 (thickness 3 mm) / each solar cell sealing film 23 / release PET (thickness 0.75 mm) was laminated in this order, and the resulting laminate was vacuum deaerated with a vacuum laminator. After pre-pressing at 100 ° C. for 10 minutes, it was further placed in an oven and crosslinked at a temperature of 150 ° C. for 30 minutes. A part between the glass substrate 21 and the solar cell sealing film 23 is peeled off, and the solar cell sealing film 23 is folded back 180 ° to obtain a tensile tester (manufactured by Shimadzu Corporation, Autograph). The peeling force at a pulling speed of 100 mm / min was measured and used as the glass adhesive force (initial) [N / cm].
 また、接着力の耐久性を調べるため、架橋後のサンプルを温度85℃、湿度85%RHの環境下で2000時間放置後に、同様に、180°ピール試験を行い、ガラス接着力(耐久性試験後)を測定した。初期の接着力から、耐久性試験後の接着力が20%以内の低下であれば合格とした。 In addition, in order to investigate the durability of the adhesive strength, the sample after cross-linking was allowed to stand for 2000 hours in an environment of a temperature of 85 ° C. and a humidity of 85% RH. After) was measured. From the initial adhesive strength, if the adhesive strength after the durability test was reduced by 20% or less, the test was accepted.
(3)耐久試験後の白化の有無
 上記(2)における、温度85℃、湿度85%RHの環境下で2000時間放置したサンプルについて、太陽電池用封止膜の白化の有無を目視観察した。白化が認められない場合を合格とした。
(3) Presence / absence of whitening after endurance test With respect to the sample in the above (2) which was left for 2000 hours in an environment of a temperature of 85 ° C. and a humidity of 85% RH, the presence / absence of whitening of the solar cell sealing film was visually observed. The case where whitening was not recognized was set as the pass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(評価結果)
 各サンプルの評価結果を表1及び2に示す。実施例1~5において、EVA100質量部に対して、2種の架橋剤を合せて1.67~2.05質量部(有機過酸化物B/有機過酸化物Aは、8/92~9/91)、及びシランカップリング剤を0.6~1.0質量部配合した太陽電池用封止膜を評価した。その結果、すべての実施例において、60℃体積固有抵抗、ガラス接着力の耐久性、及び耐久試験後の白化の有無は全て合格であった。ここで、実施例1と実施例4とを比較すると、シランカップリング剤を0.6質量部から0.9質量部に増加した場合に、体積固有抵抗の更なる上昇が認められ、上述の本発明の効果の考察を示唆する結果と考えられた。
(Evaluation results)
The evaluation results of each sample are shown in Tables 1 and 2. In Examples 1 to 5, 1.67 to 2.05 parts by mass of the two crosslinking agents combined with 100 parts by mass of EVA (organic peroxide B / organic peroxide A is 8/92 to 9 / 91) and a solar cell sealing film containing 0.6 to 1.0 parts by mass of a silane coupling agent. As a result, in all Examples, the 60 ° C. volume specific resistance, the durability of the glass adhesive force, and the presence or absence of whitening after the durability test were all acceptable. Here, when Example 1 and Example 4 were compared, when the silane coupling agent was increased from 0.6 parts by mass to 0.9 parts by mass, a further increase in volume resistivity was observed, and the above-mentioned It was thought that the result suggested the consideration of the effect of the present invention.
 一方、架橋剤及びシランカップリング剤の配合量が少量である比較例1、2及び4においては、体積固有抵抗及び接着力の耐久性がともに不合格であった。比較例3では、比較例2よりもシランカップリング剤の配合量を増加したところ、接着力の耐久性は向上したが、一般に知られているように、体積固有抵抗は更に低下した。 On the other hand, in Comparative Examples 1, 2 and 4 in which the amounts of the crosslinking agent and the silane coupling agent were small, both the volume resistivity and the durability of the adhesive strength were unacceptable. In Comparative Example 3, when the compounding amount of the silane coupling agent was increased as compared with Comparative Example 2, the durability of the adhesive force was improved, but as is generally known, the volume resistivity was further reduced.
 また、比較例5では、架橋剤の配合は実施例1と同様とし、シランカップリング剤の配合量を0.3質量部としたところ、体積固有抵抗及び接着力の耐久性が共に不合格であった。比較例6では、架橋剤は実施例1と同様とし、シランカップリング剤の配合量を1.2質量部としたところ、体積固有抵抗及び接着力の耐久性は合格であったが、耐久性試験後に白化が認められ、不合格であった。 In Comparative Example 5, the crosslinking agent was blended in the same manner as in Example 1, and the blending amount of the silane coupling agent was 0.3 parts by mass. there were. In Comparative Example 6, the crosslinking agent was the same as in Example 1, and the blending amount of the silane coupling agent was 1.2 parts by mass. The durability of volume resistivity and adhesive strength was acceptable, but the durability was Whitening was observed after the test and it was rejected.
 以上により、本発明の配合により初めて、架橋後の60℃雰囲気における体積固有抵抗が6.0×1014Ω・cm以上という顕著に高い絶縁性を有し、且つ高温環境下における接着力の耐久性が優れた太陽電池用封止膜が得られることが示された。 As described above, for the first time by the blending of the present invention, the volume resistivity in a 60 ° C. atmosphere after crosslinking is 6.0 × 10 14 Ω · cm or more and has a remarkably high insulating property, and durability of adhesive strength in a high temperature environment It was shown that the sealing film for solar cells excellent in property was obtained.
 なお、本発明は上記の実施の形態の構成及び実施例に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。 Note that the present invention is not limited to the configurations and examples of the above-described embodiment, and various modifications are possible within the scope of the gist of the invention.
 本発明により、高温環境下で、高い発電効率が長期間維持された太陽電池を提供することができる。 The present invention can provide a solar cell in which high power generation efficiency is maintained for a long time under a high temperature environment.
 11  表面側透明保護部材
 12  裏面側保護部材
 13A 表面側封止膜
 13B 裏面側封止膜
 14  太陽電池用セル
 21  ガラス基板
 23  太陽電池用封止膜
DESCRIPTION OF SYMBOLS 11 Surface side transparent protective member 12 Back surface side protective member 13A Surface side sealing film 13B Back surface side sealing film 14 Cell for solar cells 21 Glass substrate 23 Sealing film for solar cells

Claims (6)

  1.  エチレン-酢酸ビニル共重合体、架橋剤、及びシランカップリング剤を含む太陽電池用封止膜であって、
     前記架橋剤が、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(有機過酸化物A)、及びt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(有機過酸化物B)からなり、
     前記シランカップリング剤が、γ-メタクリロキシプロピルトリメトキシシランであり、
     前記架橋剤の総含有量が、前記エチレン-酢酸ビニル共重合体100質量部に対して、1.67~2.05質量部であり、且つ
     前記シランカップリング剤の含有量が、前記エチレン-酢酸ビニル共重合体100質量部に対して、0.6~1.0質量部であることを特徴とする太陽電池用封止膜。
    A solar cell encapsulating film comprising an ethylene-vinyl acetate copolymer, a crosslinking agent, and a silane coupling agent,
    The crosslinking agent is 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (organic peroxide A), and t-butylperoxy-2-ethylhexyl monocarbonate (organic peroxide B). )
    The silane coupling agent is γ-methacryloxypropyltrimethoxysilane;
    The total content of the crosslinking agent is 1.67 to 2.05 parts by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer, and the content of the silane coupling agent is the ethylene-vinyl acetate A sealing film for solar cells, which is 0.6 to 1.0 part by mass with respect to 100 parts by mass of the vinyl acetate copolymer.
  2.  架橋後の60℃雰囲気における体積固有抵抗が6.0×1014Ω・cm以上である請求項1に記載の太陽電池用封止膜。 2. The solar cell sealing film according to claim 1, wherein the volume resistivity in a 60 ° C. atmosphere after crosslinking is 6.0 × 10 14 Ω · cm or more.
  3.  前記架橋剤における、有機過酸化物Bの有機過酸化物Aに対する質量比(有機過酸化物B/有機過酸化物A)が、1/99~9/91の範囲である請求項1又は2に記載の太陽電池用封止膜。 The mass ratio of the organic peroxide B to the organic peroxide A (organic peroxide B / organic peroxide A) in the crosslinking agent is in the range of 1/99 to 9/91. The sealing film for solar cells as described in any one of.
  4.  更に、架橋助剤を、前記エチレン-酢酸ビニル共重合体100質量部に対して、0.1~3.0質量部含む請求項1~3のいずれか1項に記載の太陽電池用封止膜。 The sealing for solar cell according to any one of claims 1 to 3, further comprising 0.1 to 3.0 parts by mass of a crosslinking aid with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer. film.
  5.  前記架橋助剤が、トリアリルイソシアヌレートである請求項4に記載の太陽電池用封止膜。 The solar cell sealing film according to claim 4, wherein the crosslinking assistant is triallyl isocyanurate.
  6.  請求項1~5のいずれか1項に記載の太陽電池封止膜を用いたことを特徴とする太陽電池。 A solar cell comprising the solar cell sealing film according to any one of claims 1 to 5.
PCT/JP2011/059004 2010-04-21 2011-04-11 Sealing film for solar cell and solar cell using same WO2011132560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-097537 2010-04-21
JP2010097537A JP5587659B2 (en) 2010-04-21 2010-04-21 Solar cell sealing film and solar cell using the same

Publications (1)

Publication Number Publication Date
WO2011132560A1 true WO2011132560A1 (en) 2011-10-27

Family

ID=44834087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059004 WO2011132560A1 (en) 2010-04-21 2011-04-11 Sealing film for solar cell and solar cell using same

Country Status (2)

Country Link
JP (1) JP5587659B2 (en)
WO (1) WO2011132560A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109280A (en) * 2013-04-17 2014-10-22 东丽尖端素材株式会社 Encapsulation Composition For A Solarcell Module And The Solarcell Module Using The Same
KR20160075338A (en) * 2014-12-19 2016-06-29 에보니크 데구사 게엠베하 Co-crosslinker systems for encapsulation films comprising bis(alkenylamide) compounds
WO2016149898A1 (en) * 2015-03-23 2016-09-29 Arkema (Changshu) Fluorochemical Co., Ltd. CURABLE COMPOSITION COMPRISING AN ETHYLENE POLYMER, A MONOPEROXYCARBONATE AND A t-ALKYL HYDROPEROXIDE
JP2020532616A (en) * 2017-08-30 2020-11-12 ダウ グローバル テクノロジーズ エルエルシー Polyolefin formulation containing peroxide
CN113980619A (en) * 2021-11-08 2022-01-28 苏州赛伍应用技术股份有限公司 Low-corrosivity packaging adhesive film and preparation method and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181853A (en) * 2012-03-02 2013-09-12 Mitsui Chemicals Inc Long-term reliability evaluation method for resin material, method of manufacturing solar cell module, and solar cell sealing material
JP6054665B2 (en) * 2012-07-25 2016-12-27 株式会社ブリヂストン Solar cell module
JP6054664B2 (en) * 2012-07-25 2016-12-27 株式会社ブリヂストン Solar cell sealing film and method for selecting the same
CN104662674B (en) * 2012-07-25 2016-11-23 株式会社普利司通 The system of selection of sealing films for solar cell, solar module and sealing films for solar cell
EP3439047A4 (en) * 2016-03-28 2019-05-01 Sharp Kabushiki Kaisha Back contact solar cell, solar cell module and solar photovoltaic power generation system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116928A1 (en) * 2006-04-05 2007-10-18 Bridgestone Corporation Sealing film for solar cell and solar cell using such sealing film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034382B2 (en) * 1997-07-08 2008-01-16 三井・デュポンポリケミカル株式会社 Protection sheet for solar cell module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116928A1 (en) * 2006-04-05 2007-10-18 Bridgestone Corporation Sealing film for solar cell and solar cell using such sealing film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109280A (en) * 2013-04-17 2014-10-22 东丽尖端素材株式会社 Encapsulation Composition For A Solarcell Module And The Solarcell Module Using The Same
JP2014212318A (en) * 2013-04-17 2014-11-13 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated Encapsulant composition for solar cell module, encapsulant sheet for solar cell module, and solar cell module
KR20160075338A (en) * 2014-12-19 2016-06-29 에보니크 데구사 게엠베하 Co-crosslinker systems for encapsulation films comprising bis(alkenylamide) compounds
JP2016117892A (en) * 2014-12-19 2016-06-30 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Co-crosslinking agent system for encapsulation film containing bis-(alkenyl amide) compound
KR102424016B1 (en) 2014-12-19 2022-07-25 에보니크 오퍼레이션즈 게엠베하 Co-crosslinker systems for encapsulation films comprising bis(alkenylamide) compounds
WO2016149898A1 (en) * 2015-03-23 2016-09-29 Arkema (Changshu) Fluorochemical Co., Ltd. CURABLE COMPOSITION COMPRISING AN ETHYLENE POLYMER, A MONOPEROXYCARBONATE AND A t-ALKYL HYDROPEROXIDE
JP2020532616A (en) * 2017-08-30 2020-11-12 ダウ グローバル テクノロジーズ エルエルシー Polyolefin formulation containing peroxide
CN113980619A (en) * 2021-11-08 2022-01-28 苏州赛伍应用技术股份有限公司 Low-corrosivity packaging adhesive film and preparation method and application thereof

Also Published As

Publication number Publication date
JP5587659B2 (en) 2014-09-10
JP2011228509A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5587659B2 (en) Solar cell sealing film and solar cell using the same
JP5572232B2 (en) Solar cell sealing film and solar cell using the same
JP5914323B2 (en) Solar cell sealing film and solar cell using the same
JP5785794B2 (en) Solar cell sealing film and solar cell using the same
JP5572233B2 (en) Solar cell sealing film and solar cell using the same
WO2010140608A1 (en) Sealing film for solar cell, and solar cell utilizing same
WO2014017282A1 (en) Sealing film for solar cells, solar cell module, and method for selecting sealing film for solar cells
JP2012004146A (en) Sealing film for solar cell and solar cell using the same
JP5819159B2 (en) Solar cell sealing film and solar cell using the same
JP5778441B2 (en) Solar cell sealing film and solar cell using the same
JP5567896B2 (en) Solar cell sealing film and solar cell using the same
JP5755950B2 (en) Solar cell sealing film and solar cell using the same
JP5788712B2 (en) Ethylene-polar monomer copolymer sheet, and interlayer film for laminated glass, laminated glass, solar cell sealing film and solar cell using the same
JP6054664B2 (en) Solar cell sealing film and method for selecting the same
JP5591564B2 (en) Solar cell sealing film and solar cell using the same
JP4740101B2 (en) Solar cell sealing film and solar cell using the same
JP5604335B2 (en) Solar cell sealing film and solar cell using the same
JP5624898B2 (en) Manufacturing method of back surface side protective member integrated sealing film for solar cell, solar cell using the same, and manufacturing method thereof
JP2012182407A (en) Sealing film for solar cell and solar cell using the same
JP5726568B2 (en) Solar cell sealing film and solar cell using the same
JP5806373B2 (en) Solar cell sealing film and solar cell using the same
JP6054665B2 (en) Solar cell module
JP2011238862A (en) Solar cell encapsulation film and solar cell using the same
JP2012182406A (en) Sealing film for solar cell and solar cell using the same
JP2013030584A (en) Sealing film for solar cell, and solar cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771895

Country of ref document: EP

Kind code of ref document: A1