WO2011132298A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2011132298A1
WO2011132298A1 PCT/JP2010/057184 JP2010057184W WO2011132298A1 WO 2011132298 A1 WO2011132298 A1 WO 2011132298A1 JP 2010057184 W JP2010057184 W JP 2010057184W WO 2011132298 A1 WO2011132298 A1 WO 2011132298A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
sectional
unit
honeycomb structure
shape
Prior art date
Application number
PCT/JP2010/057184
Other languages
English (en)
French (fr)
Inventor
田村誠児
佐藤雅也
後藤重晃
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2010/057184 priority Critical patent/WO2011132298A1/ja
Priority to EP11155968.8A priority patent/EP2392554B1/en
Priority to US13/090,262 priority patent/US8685885B2/en
Publication of WO2011132298A1 publication Critical patent/WO2011132298A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2462Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure the outer peripheral sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24157Filled honeycomb cells [e.g., solid substance in cavities, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24165Hexagonally shaped cavities

Definitions

  • the present invention relates to a honeycomb structure.
  • exhaust gas purification devices that use, for example, a honeycomb structure as a constituent element have been proposed as exhaust gas purification devices that collect PM in exhaust gas and purify the exhaust gas.
  • the honeycomb structure is made of, for example, a porous ceramic such as silicon carbide. Inside the honeycomb structure, a large number of cells extend from one end side to the other end side along the longitudinal direction of the honeycomb structure. They are arranged side by side. One end of one cell is sealed with a sealing material. Therefore, the exhaust gas that has flowed into the cell in which the end portion on the exhaust gas inflow side of the honeycomb structure is opened passes through the cell wall separating adjacent cells, and flows out from the cell in which the end portion on the exhaust gas outflow side is open. Thereby, PM contained in the exhaust gas is collected in the cell wall. When a predetermined amount of PM is deposited and the pressure loss reaches a certain value, a regeneration process for heating the honeycomb structure is performed. As a result, the accumulated PM burns and the PM collecting ability of the honeycomb structure is regenerated.
  • a porous ceramic such as silicon carbide.
  • honeycomb structure In recent years, with respect to such a honeycomb structure, a large amount of the honeycomb structure is intended to be used by being attached to a large diesel engine used in a large vehicle such as a bus or a truck, an agricultural machine, a building machine, a ship, or a locomotive. There is a demand for a large honeycomb structure capable of collecting the PM.
  • honeycomb structure aimed at increasing the size, for example, a ceramic block in which a plurality of honeycomb fired bodies made of a porous ceramic such as silicon carbide are bound through an adhesive layer, and formed on the outer peripheral surface of the ceramic block
  • a honeycomb structure composed of the sealing material layer formed for example, Patent Document 1.
  • the ceramic portion to be ground by the grinding process may be wasted. Further, since the outer peripheral surface of a hard ceramic block made of silicon carbide or the like is ground, the grinding process may take a long time. Therefore, there is a problem that the productivity of the honeycomb structure is low and the manufacturing cost is high. In particular, the larger the size of the honeycomb structure to be manufactured, the more parts to be ground, and this tendency is remarkable.
  • a honeycomb structure of the present invention includes a ceramic block in which a plurality of honeycomb fired bodies in which a large number of cells are arranged in parallel in the longitudinal direction with cell walls being spaced apart, and an outer peripheral surface of the ceramic block.
  • the ceramic block is formed by binding a plurality of quadrangular cross-sectional units each having a quadrangular cross-sectional shape perpendicular to the longitudinal direction via an adhesive layer.
  • a rectangular unit assembly having a cross section perpendicular to the longitudinal direction, and a triangular unit having an outer wall formed on the outer peripheral portion.
  • the convex portion is formed in a stepped shape, and the triangular section is fitted in the concave portion via an adhesive layer, and the thickness of the sealing material layer is partially different. Tsu, characterized in that is.
  • the honeycomb structure of the present invention it is not necessary to perform a grinding process for grinding the outer peripheral surface of the ceramic block at the time of manufacturing, and the manufacturing cost can be kept low.
  • the step formed by the concave and convex portions is Since it is eliminated by the cross-sectional triangle unit, the shape thereof is a polygonal column shape close to a columnar shape or the like as compared to the cross-sectional square unit aggregate.
  • the concave portion includes the first side surface of the first quadrangular unit and the second side surface of the second quadrangular unit, and the first side surface and the triangular section.
  • the first side surface of the unit is in contact with each other via an adhesive layer
  • the second side surface and the second side surface of the cross-sectional triangle unit are in contact with each other through an adhesive layer
  • the cross-sectional triangle It is desirable that the third side surface of the unit is not in contact with any side surface of the quadrangular section unit. Even with a honeycomb structure having such a configuration, the effects of the present invention can be suitably enjoyed.
  • the shape of the cross-sectional square unit is a cross-sectional square
  • the shape of the cross-sectional triangular unit is a cross-sectional right triangle
  • the diagonal line of the first end surface of the cross-sectional square unit and the second It is desirable that the cross-sectional quadrilateral unit is bisected by a plane passing through the diagonal of the end face
  • the third side surface of the cross-sectional triangular unit is a side surface including the hypotenuse of the right-angled triangle.
  • the shape of the ceramic block can be made into a polygonal columnar shape that is closer to a columnar shape or the like, so that the effects of the present invention can be enjoyed more suitably.
  • a cross-sectional square means that the shape (cross-sectional shape) of a cross section perpendicular to the longitudinal direction of the cross-sectional square unit is a square
  • a cross-sectional right triangle means a shape of a cross section perpendicular to the longitudinal direction of the cross-sectional triangle unit ( (Cross-sectional shape) is a right triangle.
  • the honeycomb fired body further includes a cross-section deformed unit, and the cross-sectional shape perpendicular to the longitudinal direction of the cross-section deformed unit is at least the first side and the first A second side that forms a right angle with the right side of the first side, and an inclined side that faces the right angle, and an outer wall is formed on the outer peripheral portion of the cross-section deformed unit, and includes the inclined side.
  • the side surface constitutes the outer peripheral surface of the ceramic block.
  • the side surface including the second side of the cross-section deformed unit is in contact with the cross-section triangular unit via an adhesive layer.
  • the shape of the ceramic block can be made into a polygonal column shape that is closer to a columnar shape or the like, so that the effects of the present invention can be particularly suitably enjoyed.
  • the ratio of the thickness of the thickest portion of the sealing material layer to the thickness of the thinnest portion of the sealing material layer is preferably 20: 1 to 5: 3.
  • the ratio of the thickness of the thickest part of the sealing material layer to the thinnest part of the sealing material layer is 20: 1 to 5: 3
  • the PM collection efficiency can be increased, The thermal stress during the regeneration process can be sufficiently relaxed.
  • the thickness of the thickest portion of the sealing material layer is 5 to 10 mm, and the thickness of the thinnest portion of the sealing material layer is 0.5 to 3 mm.
  • the PM collection efficiency can be improved.
  • the thermal stress during the regeneration process can be sufficiently relaxed.
  • the number of the honeycomb fired bodies is preferably 25 or more.
  • the honeycomb structure of the present invention preferably has a circular cross-sectional shape perpendicular to the longitudinal direction of the honeycomb structure and a diameter of 190 mm or more.
  • a honeycomb structure is a large honeycomb structure suitable for use in a large diesel engine, the effect of the present invention can be particularly suitably enjoyed with such a configuration.
  • the shape of the cross section perpendicular to the longitudinal direction of the ceramic block is an octagon, or the shape of the cross section perpendicular to the longitudinal direction of the ceramic block is a square.
  • the shape of the ceramic block is closer to a columnar shape or the like, and the effects of the present invention can be suitably enjoyed.
  • the shape of the cross section perpendicular to the longitudinal direction of the many cells is a quadrangle.
  • the large number of cells includes large-capacity cells and small-capacity cells, and an area of a cross section perpendicular to the longitudinal direction of the large-capacity cells is perpendicular to the longitudinal direction of the small-capacity cells. It is desirable to have a larger cross-sectional area.
  • a large capacity cell refers to a cell having the largest area in a cross section perpendicular to the longitudinal direction of the cell among a plurality of cells formed in the honeycomb structure (honeycomb fired body).
  • the small capacity cell means a cell having the smallest cross-sectional area perpendicular to the longitudinal direction of the cell among a plurality of cells formed in the honeycomb structure (honeycomb fired body).
  • the large-capacity cell and the small-capacity cell are determined among basic cells having a specific cross-sectional shape (basic pattern).
  • the above-mentioned basic cell is a cell of one type or a combination of a plurality of different shapes when the cells constituting the honeycomb fired body are observed in a cross section perpendicular to the longitudinal direction.
  • the basic cell may be repeated when two types of cells having different cell cross-sectional areas are combined to form a minimum unit. In this case, both of the two types of cells having different cell cross-sectional areas are combined together. It is called a cell.
  • a large capacity cell and a small capacity cell will be described below using this basic cell concept.
  • honeycomb fired body 610 shown in FIG. 17A to be described below, square figures (cells) are repeated in a cross section perpendicular to the longitudinal direction of the honeycomb fired body 610, and these square cells are the basic cells. It is.
  • This honeycomb fired body does not correspond to a honeycomb fired body in which large-capacity cells and small-capacity cells are formed because the cross-sectional areas of all the basic cells are the same.
  • the portions corresponding to the corners are substantially square cells 821a, 911a, and 1011a, and square cells 821b, 911b, and 1011b that have corners and have different cross-sectional shapes and cross-sectional areas from the substantially square cells. It is.
  • Two types of cells having different cross-sectional shapes and cross-sectional areas are basic cells. Among these basic cells, cells 821a, 911a and 1011a having the largest cross-sectional area perpendicular to the longitudinal direction of the cells are large-capacity cells, and cells 821b, 911b having the smallest cross-sectional area perpendicular to the longitudinal direction of the cells. And 1011b are small capacity cells.
  • the cells 831a, 871a, 881a, 921a, 961a, 971a, 1021a, 1061a and 1071a are large capacity cells, and the cells 831b, 871b, 881b, 921b, 961b, 971b, 1021b, 1061b and 1071b Is a small capacity cell.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell is a quadrangle
  • the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell is a quadrangle
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell is an octagon and the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell is a quadrangle. Since the cells having these shapes are particularly suitable for PM collection, PM collection efficiency can be increased.
  • the honeycomb structure of the present invention in a cell whose cross-sectional shape perpendicular to the longitudinal direction is a quadrangle, it is desirable that at least one corner corresponds to an arc.
  • the honeycomb fired body having cells having such a shape cracks are less likely to occur. This is considered to be because the thermal stress during the regeneration process is less likely to concentrate in the vicinity of the corner portion and is more easily relaxed than the cell having the corner portion.
  • the shape of each side of the cell in the cross section perpendicular to the longitudinal direction of the large capacity cell and the small capacity cell is a curve. Since the cell having such a shape is particularly suitable for PM collection, PM collection efficiency can be increased.
  • honeycomb structure of the present invention it is desirable that any one end portion of the above-mentioned many cells is sealed.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure is preferably a circle, an ellipse, an ellipse, or a substantially triangular shape.
  • a cylinder, a long cylinder, an elliptical column, or a substantially triangular column can be considered as the “column or the like”, and these shapes are omitted, and the “column or the like” is described.
  • the present invention relates to a honeycomb structure including a ceramic block having a shape close to each of the shapes described above.
  • FIG. 1 is a perspective view schematically showing an example of a honeycomb structure according to a first embodiment of the present invention.
  • 2A is a cross-sectional view of the honeycomb structure shown in FIG. 1 taken along the line AA.
  • FIG. 2B is a cross-sectional view taken along the line AA shown in FIG. It is a partial expanded sectional view shown expanding.
  • Fig.3 (a) is a perspective view which shows typically an example of the cross-sectional square unit which comprises the honeycomb structure of 1st embodiment of this invention
  • FIG.3 (b) is shown to Fig.3 (a). It is a BB line sectional view of a section square unit.
  • Fig.4 (a) is a perspective view which shows typically an example of the cross-sectional triangle unit which comprises the honeycomb structure of 1st embodiment of this invention
  • FIG.4 (b) is shown to Fig.4 (a).
  • Fig.5 (a) is a perspective view which shows typically an example of the cross-sectional deformed unit which comprises the honeycomb structure of 1st embodiment of this invention
  • FIG.5 (b) is shown to Fig.5 (a).
  • FIG.4 (a) is a perspective view which shows typically an example of the honeycomb structure of 2nd embodiment of this invention.
  • FIG. 7 is a cross-sectional view of the honeycomb structure shown in FIG. 6 taken along the line EE. It is a perspective view which shows typically an example of the honeycomb structure of 3rd embodiment of this invention.
  • FIG. 9 is a cross-sectional view of the honeycomb structure shown in FIG. 8 taken along the line FF. It is a perspective view which shows typically an example of the honeycomb structure of 4th embodiment of this invention.
  • FIG. 11 is a cross-sectional view of the honeycomb structure shown in FIG. 10 taken along the line GG. It is a perspective view which shows typically an example of the honeycomb structure of 5th embodiment of this invention.
  • FIG. 13 is a cross-sectional view of the honeycomb structure shown in FIG. 12 taken along the line HH.
  • FIG. 16 is a cross-sectional view taken along line II of the honeycomb structure shown in FIG. 17 (a), 17 (b), 17 (c), 17 (d), and 17 (e) are side views schematically showing an example of a cross-section deformed unit according to the honeycomb structure of the present invention.
  • FIG. 18 (a), 18 (b), 18 (c), and 18 (d) are side views schematically showing an example of an end face of a square cross-section unit according to the honeycomb structure of the present invention.
  • 19 (a), 19 (b), 19 (c), and 19 (d) are side views schematically showing an example of an end face of the cross-section deformed unit according to the honeycomb structure of the present invention.
  • 20 (a), 20 (b), 20 (c), and 20 (d) are side views schematically showing an example of an end face of a cross-sectional triangular unit according to the honeycomb structure of the present invention.
  • the present inventors diligently studied to solve the problems in the grinding process in the above-described conventional honeycomb structure manufacturing method.
  • a cross-sectional square unit whose cross-sectional shape perpendicular to the longitudinal direction is a quadrangle and a cross-sectional triangular unit whose cross-sectional shape perpendicular to the longitudinal direction is a triangle are combined, and the cross-sectional square unit is combined.
  • a ceramic material block having a structure in which a triangular unit is fitted in a recess formed on an outer peripheral surface of a cross-sectional square unit assembly, and a sealing material layer partially having a different thickness on the outer peripheral surface of the ceramic block It has been found that the above problem can be solved by forming.
  • the present inventors can manufacture a honeycomb structure having a desired shape such as a columnar shape without employing a grinding process at the time of manufacturing by adopting the above-described configuration.
  • the present inventors have found that the manufacturing cost of the body can be kept low and completed the present invention.
  • the shape of the honeycomb structure is not limited to the shape of the cross section perpendicular to the longitudinal direction being a circle, and the shape of the cross section may be an ellipse, an ellipse, or a substantially triangular shape.
  • the cross-sectional shape of the ceramic block can also be made to be a shape close to an ellipse, an ellipse, or a substantially triangular shape by combining the above units.
  • the shape of the cross section of the ceramic block is an ellipse, an ellipse, or a shape that is close to a substantially triangle, etc., but there is a convex part or a concave part partially from the outer periphery of each shape, but it approximates each shape. It refers to the shape that is.
  • the shape of the cross section being substantially triangular means that the apex portion of the triangle is a curve.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the first embodiment of the present invention
  • FIG. 2 (a) is a cross-sectional view of the honeycomb structure shown in FIG.
  • FIG. 2B is a partially enlarged cross-sectional view showing an enlarged vicinity of one recess in the cross-sectional view taken along the line AA shown in FIG.
  • the cross-sectional right isosceles triangular unit fitted in the concave portion and the adhesive layer formed between the concave portion and the cross-sectional right isosceles triangular unit are omitted.
  • the honeycomb structure 10 of the present embodiment shown in FIGS. 1 and 2A includes a ceramic block 20 and a sealing material layer 30 formed on the outer peripheral surface 23 of the ceramic block 20.
  • the honeycomb structure 10 has a cylindrical shape.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure 10 is a circle, and the diameter (indicated by the symbol R in FIG. 2A) is 190 mm or more.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure is an ellipse, an ellipse, or a substantially triangle
  • the length of the longest line segment among the line segments between two points on the outer periphery that passes through the center of each shape It is desirable that the length is 190 mm or more.
  • the ceramic block 20 is configured by binding a plurality of honeycomb fired bodies 21 made of a porous ceramic of silicon carbide via an adhesive layer 22.
  • the shape of the cross section perpendicular to the longitudinal direction of the ceramic block 20 is a dodecagon.
  • the plurality of honeycomb fired bodies 21 are mutually connected. It is composed of three types of units having different shapes.
  • Fig.3 (a) is a perspective view which shows typically an example of the cross-sectional square unit which comprises the honeycomb structure of 1st embodiment of this invention
  • FIG.3 (b) is shown to Fig.3 (a).
  • Fig.4 (a) is a perspective view which shows typically an example of the cross-sectional triangle unit which comprises the honeycomb structure of 1st embodiment of this invention
  • FIG.4 (b) is shown to Fig.4 (a).
  • FIG.5 (a) is a perspective view which shows typically an example of the cross-sectional deformed unit which comprises the honeycomb structure of 1st embodiment of this invention
  • FIG.5 (b) is shown to Fig.5 (a).
  • It is DD sectional view taken on the line of a cross-sectional deformed unit.
  • the honeycomb fired body 21a shown in FIGS. 3 (a) and 3 (b) has a cross-sectional shape perpendicular to the longitudinal direction (indicated by a double arrow a in FIG. 3 (a)) (hereinafter, the longitudinal direction of the unit or the like).
  • a cross-sectional quadrangle unit whose cross-sectional shape is simply called a cross-sectional shape is a quadrangle.
  • the cross-sectional square unit has four sides that are substantially equal in length in cross-sectional shape, and has four corners in which one side and the other side are orthogonal to each other. . That is, the cross-sectional square unit 21a is a square cross-sectional unit having a square cross-sectional shape.
  • the cross-sectional square unit 21a has a first end surface 41a and a second end surface 41b, and the length of one side of the first end surface 41a (second end surface 41b) (in FIG. 3A, a double-headed arrow).
  • the length indicated by L) is desirably 31.5 to 38.7 mm.
  • the length in the longitudinal direction of the square section unit 21a is preferably 101.6 to 381.6 mm (4 to 15 inches).
  • the square unit 21a has a large capacity cell 42a whose cross-sectional area perpendicular to the longitudinal direction is relatively larger than that of the small capacity cell 42b and a small cross-sectional area perpendicular to the longitudinal direction which is relatively smaller than that of the large capacity cell 42a. It has a capacity cell 42b.
  • the large-capacity cell 42a has an octagonal cross-sectional shape perpendicular to the longitudinal direction
  • the small-capacity cell 42b has a quadrangular cross-sectional shape perpendicular to the longitudinal direction.
  • the large capacity cell 42a has an opening on the first end face 41a side, and an end on the second end face 41b side is sealed with a sealing material 43a. Yes.
  • the small capacity cell 42b the end on the second end face 41b side is opened, and the end on the first end face 41a side is sealed with the sealing material 43b. Therefore, the cell wall 44 separating the large capacity cell 42a and the small capacity cell 42b functions as a filter. That is, the exhaust gas G that has flowed into the large capacity cell 42a always passes through these cell walls 44 and then flows out of the small capacity cell 42b.
  • each unit and the shape of the cell are expressed by names such as triangles and quadrangles.
  • the triangles and quadrangles in this specification are strict figures consisting only of complete straight lines. It does not mean, but includes a shape whose corners (vertices) are chamfered with straight lines or curves and can be substantially equated with a triangle or a quadrangle.
  • terms such as “right angle”, “parallel”, and “right angled isosceles triangle” do not mean a mathematically exact shape, but “right angle”, “parallel”, “right angled isosceles triangle”. It includes shapes that can be substantially equated with shapes such as “”.
  • the honeycomb fired body 21b shown in FIGS. 4 (a) and 4 (b) has a first end face 41a and a second end face 41b, and is a cross-sectional triangle unit whose cross-sectional shape is a triangle. More specifically, the cross-sectional triangle unit 21b is a cross-sectional right isosceles triangular unit whose cross-sectional shape is a right-angled isosceles triangle, and is the second of the cross-sectional square unit 21a shown in FIGS. 3 (a) and 3 (b).
  • the side surface including the hypotenuse of the right isosceles triangle in the cross-section isosceles triangle unit 21b is referred to as a third side surface B3, and the two side surfaces other than the third side surface B3 are the first side surface B1 and the second side surface. This is called the second side B2.
  • the lengths of two sides other than the hypotenuse of the right-sided isosceles triangle constituting the first side surface B1 and the second side surface B2 are 31.5 to 38.7 mm, respectively.
  • the length of the hypotenuse of the isosceles triangle constituting the third side face B3 is preferably 40.9 to 54.9 mm.
  • the length in the longitudinal direction of the isosceles right triangle unit 21b (the length indicated by the double-headed arrow b in FIG. 4A) is substantially the same as the length in the longitudinal direction of the square section unit 21a. 6 to 381.6 mm is desirable.
  • the cells formed in the cross-sectional right isosceles triangular unit 21b shown in FIGS. 4A and 4B are similar to the cross-sectional square unit 21a described above, and the large-capacity cell 42a having an octagonal cross-sectional shape,
  • the small-capacity cell 42b has a square cross-sectional shape.
  • the cell walls 44 separating the large-capacity cell 42a and the small-capacity cell 42b are arranged on the first side surface B1, the second side surface B2, and the third side surface B3, which are outer walls constituting the outer peripheral portion of the isosceles right triangle unit 21b. Are connected.
  • the large-capacity cell 42a has an opening on the first end face 41a side, and is sealed with a sealing material 43a on the end on the second end face 41b side.
  • the small capacity cell 42b is open at the end on the second end face 41b side and is sealed with the sealing material 43b at the end on the first end face 41a side. Therefore, like the square section unit 21a, the cell wall 44 separating the large capacity cell 42a and the small capacity cell 42b functions as a filter.
  • the honeycomb fired body 21c shown in FIGS. 5 (a) and 5 (b) has a first end face 41a and a second end face 41b, and the cross-sectional shape thereof is at least the first side and the first end face. It is a cross-section deformed unit including a second side forming a right angle with one side and an inclined side facing the right angle.
  • the cross-sectional shape of the specific cross-section variant unit 21c includes a first side 51, a second side 52, an inclined side 53, and a third side 54.
  • the angle 52 forms is a right angle
  • the inclined side 53 is provided to face the right angle.
  • the inclined side 53 is a straight line.
  • the third side 54 is a side connecting the inclined side 53 and the second side 52, and the first side 51 is parallel to the third side 54. That is, the cross-section variant unit 21c is a cross-sectional trapezoidal unit whose cross-sectional shape is a trapezoid.
  • the side surface including the first side 51 of the cross-sectional trapezoidal unit 21c is referred to as the first side surface C1
  • the side surface including the second side 52 is referred to as the second side surface C2
  • the side surface including the third side 54 Is the third side surface C3, and the side surface including the inclined side 53 is the fourth side surface C4.
  • the length of the first side 51 is preferably 12.0 to 25.5 mm, and the length of the second side 52 is longer than the length of the first side 51, 49 .8 to 56.9 mm is desirable, and the length of the third side 54 is desirably 3.6 to 10.0 mm.
  • the length in the longitudinal direction of the trapezoidal unit 21c is substantially the same as the length in the longitudinal direction of the square unit 21a. .6 mm is desirable.
  • the cells formed in the cross-sectional trapezoidal unit 21c shown in FIGS. 5A and 5B are similar to the cross-sectional square unit 21a described above in that the large-capacity cell 42a having a substantially octagonal cross-sectional shape, A small capacity cell 42b having a cross-sectional shape.
  • the cell wall 44 that separates the large-capacity cell 42a and the small-capacity cell 42b is a first side C1, a second side C2, a third side C3, and a fourth side that are outer walls constituting the outer peripheral portion of the trapezoidal unit 21c Bonded to side C4.
  • the large-capacity cell 42a has an opening on the first end face 41a side, and is sealed with a sealing material 43a at the end on the second end face 41b side.
  • the small capacity cell 42b is open at the end on the second end face 41b side and is sealed with the sealing material 43b at the end on the first end face 41a side. Therefore, like the square section unit 21a, the cell wall 44 that separates the large capacity cell 42a and the small capacity cell 42b functions as a filter.
  • the ceramic block 20 shown in FIG. 2 (a) has a total of 29 honeycomb fired bodies including 13 cross-sectional square units 21a, 8 cross-sectional right isosceles triangular units 21b, and 8 cross-sectional trapezoidal units 21c. It is configured by being bundled together via the adhesive layer 22.
  • the adhesive layer 22 includes inorganic fibers such as alumina fibers, inorganic particles such as silicon carbide, inorganic binders such as silica sol, and organic binders such as carboxymethyl cellulose.
  • the thickness of the adhesive layer 22 is preferably 0.5 to 2.0 mm.
  • the recess 26a which is the region indicated by the double-headed arrow in FIG. 2B, is erected in a substantially vertical direction with respect to the first side surface A1 of the first square unit 21a and the first side surface A1.
  • the second side surface A2 of the second sectional square unit 21a 'and the adhesive layer are included.
  • the adhesive layer includes an adhesive layer 22 formed between a first cross-sectional square unit 21a and a third cross-sectional square unit 21a '' adjacent to the first cross-sectional square unit 21a, and a third cross-sectional square unit 21a ''. It is composed of an adhesive layer 22 'formed between the square unit 21a' 'and the second square unit 21a'.
  • an isosceles triangle unit 21 b having a cross-sectional right angle is fitted into the recess 26 a via the adhesive layer 22. That is, the first side face A1 of the first square section unit 21a and the first side face B1 of the right-angle isosceles triangle unit 21b are in contact with each other via the adhesive layer 22, and the second square section unit. The second side surface A2 of 21a ′ and the second side surface B2 of the right-angle isosceles triangle unit 21b are in contact with each other through the adhesive layer 22. The third side surface B3 of the isosceles right triangle unit 21b is not in contact with the side surface of the square unit.
  • the relationship between the other recesses and the isosceles right triangle unit is the same, and the isosceles right triangle unit 21b is fitted into each of the eight recesses 26a via the adhesive layer 22. Since the isosceles triangles with the right-angle cross section are arranged as described above, the unevenness formed on the outer peripheral surface 25 of the cross-sectional square unit assembly 24 is eliminated.
  • the third side surface B3 of the isosceles right triangle unit 21b is in contact with the second side surface C2 of the trapezoidal unit with an adhesive layer interposed therebetween.
  • the first side surface C1 of the cross-sectional trapezoidal unit 21c is in contact with the first side surface C1 ′ of another adjacent cross-sectional trapezoidal unit 21c ′ via an adhesive layer.
  • the fourth side surface C4 of the trapezoidal trapezoidal unit 21c constitutes a part of the outer peripheral surface 23 of the ceramic block 20.
  • Other cross-sectional trapezoidal units have the same configuration. For this reason, the shape of the cross section perpendicular to the longitudinal direction of the ceramic block 20 is a dodecagon.
  • the sealing material layer 30 is formed on the outer peripheral surface 23 of the ceramic block 20, and the thickness is partially different. Therefore, the honeycomb structure 10 has a cylindrical shape.
  • the thickness of the thickest part of the sealing material layer 30 (distance X between the arrows in FIG. 2A) and the thickness of the thinnest part of the sealing material layer 30 (distance between the arrows in FIG. 2A).
  • Y) (the thickness of the thickest portion of the sealing material layer: the thickness of the thinnest portion of the sealing material layer 30) is preferably 20: 1 to 5: 3, more preferably 4: 1 to 3: 1. 7.8: 2.3 to 8.3: 3.0 is more desirable.
  • the thickness of the thickest portion of the sealing material layer 30 is desirably 5 to 10 mm, more desirably 8 to 9 mm, and further desirably 8.2 to 8.7 mm.
  • the thickness of the thinnest portion of the sealing material layer 30 is preferably 0.5 to 3 mm, more preferably 1 to 2.5 mm, and further preferably 1.6 to 2.3 mm.
  • the ratio of the thickness of the thickest part of the sealing material layer 30 to the thickness of the thinnest part of the sealing material layer 30 is in the above range, the PM collection efficiency can be increased, and the thermal stress during the regeneration process can be It can be relaxed sufficiently.
  • the thickness of the thickest part of the sealing material layer exceeds 10 mm, there are many parts where the thickness of the sealing material layer is too thick, and there are few areas where cells are open on the end face of the honeycomb structure. Thus, the PM collection efficiency may be lowered for the size of the honeycomb structure.
  • the lower limit of the thickness of the thickest part of the sealing material layer is not particularly limited, but is preferably 5 mm. Moreover, when the thickness of the thinnest part of the sealing material layer is less than 0.5 mm, the sealing material layer is too thin, and it may be difficult to alleviate thermal stress during the regeneration process.
  • the material of the sealing material layer 30 is the same as that of the adhesive material layer 22 described above. Since the sealing material layer 30 is formed on the outer peripheral surface 23 of the ceramic block 20, an external force such as an impact is absorbed, so that the honeycomb structure 10 is not easily damaged.
  • the method for manufacturing the honeycomb structure of the present embodiment is as follows.
  • a forming step of creating a honeycomb formed body in which a large number of cells are arranged in parallel in the longitudinal direction across the cell wall A firing step of firing the honeycomb formed body to produce a honeycomb fired body;
  • a bundling step of producing a ceramic block by bonding a plurality of the honeycomb fired bodies through an adhesive layer A method for manufacturing a honeycomb structure including a sealing material layer forming step of forming a sealing material layer on an outer peripheral surface of the ceramic block, In the forming step and the firing step, at least a square unit and a triangular unit are produced.
  • the shape of the cross section perpendicular to the longitudinal direction of the cross-sectional square unit is a quadrangle
  • the shape of the cross section perpendicular to the longitudinal direction of the cross-sectional triangle unit is a triangle, and an outer wall is formed on the outer periphery.
  • a plurality of the cross-sectional quadrilateral units are bonded via an adhesive layer, thereby producing a cross-sectional quadrilateral unit assembly in which concave portions and convex portions are formed in a stepped shape on the outer peripheral surface,
  • the triangular section unit is fitted into the recess through an adhesive layer
  • the sealing material layer is formed so that the thickness of the sealing material layer is partially different.
  • the concave portion is formed including the first side face of the first cross-sectional quadrangle unit and the second side face of the second cross-sectional quadrangle unit, Adhering the first side surface and the first side surface of the triangular section unit to each other through an adhesive layer, The second side surface and the second side surface of the cross-sectional triangular unit are bonded to each other via an adhesive layer, It is desirable that the third side surface of the triangular section unit is not adhered to any side surface of the rectangular unit unit.
  • a cross-sectional square unit whose shape is a cross-sectional square is manufactured, A cross-section whose shape is a right-angled triangle and matches a shape obtained by bisecting the cross-sectional quadrilateral unit in a plane passing through the diagonal of the first end face and the diagonal of the second end face of the cross-sectional quadrilateral unit Create a triangular unit,
  • the bundling step it is desirable that the side surface including the hypotenuse of the right triangle is not adhered to any side surface of the cross-sectional square unit.
  • the shape of the cross section perpendicular to the longitudinal direction forms at least a first side and a right angle with the first side.
  • a cross-section deformed unit that includes two sides and an inclined side opposite to the right angle, and has an outer wall formed on the outer periphery thereof;
  • the bundling step it is desirable to dispose the cross-section deformed unit so that the side surface including the inclined side constitutes the outer peripheral surface of the ceramic block.
  • the side surface including the second side of the cross-section deformed unit is bonded to the cross-section triangular unit via an adhesive layer.
  • a ceramic powder such as silicon carbide powder having a different average particle diameter as a ceramic raw material, an organic binder, a liquid plasticizer, a lubricant, water, and the like are mixed to prepare a wet mixture for forming a molded body.
  • a molding process is performed in which the wet mixture is put into an extruder and extrusion molding is performed, and a honeycomb molded body having a predetermined shape is manufactured.
  • a honeycomb molding having a large volume cell with an octagonal cross section and a small volume cell with a square cross section, and a square cross section. Create a body.
  • a honeycomb molded body having a right-angled isosceles triangle as shown in FIGS. 4 (a) and 4 (b) was produced, and FIG. 5 (a) and FIG.
  • honeycomb formed body having a square cross-sectional shape becomes a square cross-sectional unit through a firing step described later.
  • a honeycomb molded body having a cross-sectional shape of a right-angled isosceles triangle becomes a cross-section right-angled isosceles triangle unit through a firing step described later.
  • a honeycomb formed body having a trapezoidal cross-sectional shape becomes a cross-sectional trapezoidal unit through a firing step described later.
  • the term “honeycomb molded body” refers to these three types of honeycomb molded bodies without distinction.
  • a cutting process is performed in which both ends of the honeycomb formed body are cut using a cutting device, the honeycomb formed body is cut into a predetermined length, and the cut honeycomb formed body is dried using a dryer.
  • a predetermined amount of a sealing material paste serving as a sealing material is filled into one of the end portions of the cell, and the cell is sealed.
  • a cell-sealed honeycomb formed body is manufactured through such steps.
  • the said wet mixture can be used as a sealing material paste.
  • a degreasing step of heating the organic matter in the cell-sealed honeycomb molded body in a degreasing furnace is performed to produce a honeycomb degreased body.
  • the shape of this honeycomb degreased body is the shape of each honeycomb fired body shown in FIGS. 3 (a), 3 (b), 4 (a), 4 (b), 5 (a) and 5 (b). Is almost the same.
  • honeycomb degreased body is conveyed to a firing furnace and fired at 2000 to 2300 ° C. in an argon atmosphere, thereby performing FIGS. 3 (a), 3 (b), 4 (a), and 4.
  • a honeycomb fired body having the shape shown in FIGS. 5A and 5B, that is, a cross-sectional square unit, a cross-sectional right-angled isosceles triangular unit, and a cross-sectional trapezoidal unit are manufactured.
  • an adhesive paste layer is formed on a predetermined side surface of the honeycomb fired body, the adhesive paste layer is heated and solidified to form an adhesive layer, and a plurality of honeycomb fired bodies are bundled through the adhesive layer to form a ceramic block.
  • the bundling process is performed.
  • an adhesive paste containing inorganic fibers and / or whiskers, an inorganic binder, and an organic binder is suitably used.
  • an adhesive paste layer is formed by applying an adhesive paste to the side surface of the square section. And the process of laminating
  • an adhesive paste layer is formed by applying an adhesive paste to each of the eight concave portions formed on the outer peripheral surface of the square unit assembly. And the first side surface of the first cross-sectional square unit and the first side surface of the right-angle isosceles triangular unit are in contact with each other through the adhesive paste layer, Each of the eight isosceles triangular units is fitted into each of the eight recesses so that the second side surface of the right isosceles triangular unit is in contact with each other through the adhesive paste layer.
  • an adhesive paste is applied to the third side surface of the isosceles right triangle unit to form an adhesive paste layer.
  • the cross-section right-angled isosceles triangle unit and the cross-section trapezoid unit so that the third side face of the right-angle isosceles triangle unit and the second side face of one cross-section trapezoid unit are in contact with each other through the adhesive paste layer And glue.
  • other cross-sectional trapezoidal units are bonded to the cross-sectional right isosceles triangular unit with an adhesive paste layer.
  • an adhesive paste layer is also formed between the first side surface of one cross-sectional trapezoidal unit and the first side surface of another cross-sectional trapezoidal unit.
  • FIG. 1 and FIG. 2 (a) in which 13 cross-sectional square units, 8 cross-sectional right isosceles triangular units, and 8 cross-sectional trapezoidal units are bound by the adhesive paste layer.
  • a decagonal ceramic block is produced.
  • a sealing material layer is applied to the outer peripheral surface of the ceramic block, and the sealing material layer is dried and solidified to form a sealing material layer (coat layer), thereby producing a cylindrical honeycomb structure.
  • the thickness of the sealing material paste applied to the outer peripheral surface of the ceramic block is adjusted, for example, to be thin on the side surface of the cross-sectional trapezoidal unit and thick on the side surface of the cross-sectional square unit (cross-sectional square unit aggregate).
  • the sealing material paste is applied so that the honeycomb structure manufactured through this step has a cylindrical shape.
  • the sealing material paste is used so that the ratio of the thickness of the thickest part of the sealing material layer to the thickness of the thinnest part of the sealing material layer is 20: 1 to 5: 3. Apply. Specifically, in the manufactured honeycomb structure, the thickness of the thickest part of the sealing material layer is 5 to 10 mm, and the thickness of the thinnest part of the sealing material layer is 0.5 to 3 mm. Apply sealant paste. In addition, as the sealing material paste, a paste similar to the adhesive paste can be used. A honeycomb structure is manufactured through the above steps.
  • the sealing material paste a paste similar to the above-described adhesive paste may be used, but a paste having a different composition may be used as the sealing material paste.
  • the honeycomb structure of the present embodiment does not need to be subjected to a grinding process for grinding the outer peripheral surface of the ceramic block at the time of manufacturing, and can reduce the manufacturing cost. The reason for this will be described below.
  • the ceramic block is composed only of a square unit assembly. Concave portions and convex portions are formed in a stepped shape on the outer peripheral surface of the cross-sectional square unit assembly, and there are irregularities. Therefore, when a sealing material layer having a substantially uniform thickness is formed on the outer peripheral surface of the cross-sectional square unit assembly, the honeycomb structure has a prismatic shape resulting from the shape of the cross-sectional square unit assembly. It will not be.
  • the shape of the cross-sectional square unit assembly is processed into a cylindrical shape or the like by pre-grinding the cross-sectional square unit assembly.
  • the manufacturing cost becomes high.
  • the triangular section is fitted into the concave portion formed on the outer peripheral surface of the square unit aggregate through the adhesive layer, and is formed by the concave portion and the convex portion.
  • Unevenness has been eliminated. Therefore, the shape of the ceramic block is a polygonal column shape that is as close as possible to a columnar shape or the like as compared to a square unit assembly having a cross section. Therefore, a cylindrical honeycomb structure or the like can be easily manufactured by simply forming a sealing material layer having a partially different thickness on the outer peripheral surface without grinding the ceramic block. Therefore, the manufacturing cost can be kept low. Moreover, since the thickness of the sealing material layer formed on the outer peripheral surface of the ceramic block is partially different, a honeycomb structure having a desired shape such as a columnar shape can be obtained.
  • the third side surface including the inclined side of the trapezoidal cross section constitutes the outer peripheral surface of the ceramic block, so the shape of the ceramic block is closer to a columnar shape, etc.
  • the effect (1) mentioned above can be enjoyed suitably.
  • the PM collection efficiency is increased.
  • the thermal stress during the regeneration process can be sufficiently relaxed.
  • the thickness of the thickest part of the sealing material layer is 5 to 10 mm and the thickness of the thinnest part of the sealing material layer is 0.5 to 3 mm, the PM collection efficiency is further increased.
  • the thermal stress during the regeneration process can be alleviated more sufficiently.
  • a large number of cells formed in the honeycomb fired body are composed of large-capacity cells having an octagonal cross-sectional shape and small-capacity cells having a quadrangular cross-sectional shape.
  • the honeycomb structure of the present embodiment is used for purification of exhaust gas
  • the inflow side cell into which the exhaust gas flows is a large-capacity cell
  • the outflow side cell from which the exhaust gas flows out is a small-capacity cell.
  • the total amount of surface area can be increased. Therefore, at the time of exhaust gas purification, the thickness of the PM deposition layer can be reduced as compared with the honeycomb structure in which the total amount of the surface area of the inflow side cell is equal to the total amount of the surface area of the outflow side cell.
  • the PM collection efficiency can be increased.
  • honeycomb structure of the present embodiment a square cross-sectional unit and a right-angled isosceles triangular unit are used as the honeycomb fired body, the number of honeycomb fired bodies used is different, and the cross-sectional shape of the ceramic block is an octagon.
  • the honeycomb structure described in the first embodiment of the present invention has the same configuration as the honeycomb structure described in the first embodiment of the present invention. Therefore, the description overlapping with the description of the honeycomb structure of the first embodiment of the present invention is omitted.
  • FIG. 6 is a perspective view schematically showing an example of the honeycomb structure of the second embodiment of the present invention
  • FIG. 7 is a cross-sectional view of the honeycomb structure shown in FIG. 6 taken along the line EE.
  • a honeycomb structure 110 of the present embodiment shown in FIGS. 6 and 7 includes a ceramic block 120 and a sealing material layer 130 formed on the outer peripheral surface 123 of the ceramic block 120.
  • the ceramic block 120 includes one cross-sectional square unit assembly 124 having a dodecagonal cross-sectional shape and four isosceles right triangle units 121b.
  • the cross-sectional shape is an octagon.
  • the cross-sectional square unit assembly 124 is configured by bonding twelve cross-sectional square units 121 a through the adhesive layer 122.
  • the configurations of the square section unit 121a and the right-angle isosceles triangle unit 121b are the same as those of the square section unit 21a and the right-angle isosceles triangle unit 21b described in the first embodiment of the present invention.
  • Concave portions 126a and convex portions 126b are formed in a step shape on the outer peripheral surface 125 of the cross-sectional square unit assembly 124, and there are four concave portions 126a.
  • isosceles right triangle units 121b are fitted into the four recesses 126a through the adhesive layer 122, respectively.
  • a sealing material layer 130 having a partially different thickness is formed on the outer peripheral surface 123 of the ceramic block 120, and the honeycomb structure 110 has a cylindrical shape.
  • the method for manufacturing the honeycomb structure of the present embodiment 12 cross-section square units and 4 cross-section isosceles right triangle units are manufactured, and the ceramic block 120 having the shape shown in FIGS. 6 and 7 is manufactured in the bundling process.
  • the method is the same as the method for manufacturing the honeycomb structured body of the first embodiment of the present invention except that the honeycomb fired bodies are appropriately combined, description thereof will be omitted.
  • a third embodiment which is an embodiment of the present invention will be described.
  • a square cross-sectional unit and a right-angled isosceles triangular unit are used as the honeycomb fired body.
  • the second embodiment of the present invention is used. It has the same configuration as the honeycomb structure described above. Therefore, the description overlapping with the description of the honeycomb structure of the second embodiment of the present invention is omitted.
  • FIG. 8 is a perspective view schematically showing an example of the honeycomb structure of the third embodiment of the present invention
  • FIG. 9 is a cross-sectional view of the honeycomb structure shown in FIG. 8 taken along the line FF.
  • the honeycomb structure 210 of the present embodiment shown in FIGS. 8 and 9 includes a ceramic block 220 and a sealing material layer 230 formed on the outer peripheral surface 223 of the ceramic block 220.
  • the ceramic block 220 includes one cross-sectional square unit aggregate 224 having a decagonal cross-sectional shape and eight cross-sectional right isosceles triangular units 221b, and the cross-sectional shape is an octagon.
  • the cross-sectional square unit aggregate 224 is configured by bundling 24 cross-sectional square units 221 a through an adhesive layer 222.
  • the configurations of the cross-sectional square unit 221a and the cross-sectional right isosceles triangle unit 221b are the same as the cross-sectional square unit 21a and the cross-sectional right isosceles triangular unit 21b described in the first embodiment of the present invention.
  • Concave portions 226a and convex portions 226b are formed in a step shape on the outer peripheral surface 225 of the square section aggregate 224, and there are eight concave portions 226a.
  • the eight concave portions 226 a are fitted with the isosceles right triangle unit 221 b through the adhesive layer 222.
  • a sealing material layer 230 having a partially different thickness is formed on the outer peripheral surface 223 of the ceramic block 220, and the honeycomb structure 210 has a cylindrical shape.
  • the method for manufacturing the honeycomb structure of the present embodiment 24 cross-sectional square units and 8 isosceles right-angled isosceles triangular units are manufactured, and the ceramic block 220 having the shape shown in FIGS.
  • the method is the same as the method for manufacturing the honeycomb structured body according to the first embodiment of the present invention except that the honeycomb fired bodies are appropriately combined.
  • a fourth embodiment which is an embodiment of the present invention will be described.
  • a square cross-sectional unit and a right-angled isosceles triangular unit are used as the honeycomb fired body.
  • the second embodiment of the present invention is used. It has the same configuration as the honeycomb structure described above. Therefore, the description overlapping with the description of the honeycomb structure of the second embodiment of the present invention is omitted.
  • FIG. 10 is a perspective view schematically showing an example of the honeycomb structure of the fourth embodiment of the present invention
  • FIG. 11 is a cross-sectional view taken along the line GG of the honeycomb structure shown in FIG.
  • a honeycomb structure 310 of the present embodiment shown in FIGS. 10 and 11 includes a ceramic block 320 and a sealing material layer 330 formed on the outer peripheral surface 323 of the ceramic block 320.
  • the ceramic block 320 includes one cross-sectional square unit aggregate 324 having a decagonal cross-sectional shape and eight cross-sectional isosceles right triangle units 321b, and the cross-sectional shape is an octagon.
  • the cross-sectional square unit assembly 324 is configured by binding 37 cross-sectional square units 321 a via an adhesive layer 322.
  • the cross-sectional square unit 321a and the cross-sectional right-angled isosceles triangle unit 321b it is the same as that of the cross-sectional square unit 21a and the cross-sectional right-angled isosceles triangle unit 21b demonstrated in 1st embodiment of this invention.
  • Concave portions 326a and convex portions 326b are formed in a step shape on the outer peripheral surface 325 of the cross-sectional square unit assembly 324, and there are eight concave portions 326a.
  • an isosceles triangle unit 321b having a right-angle cross section is fitted into each of the eight recesses 326a via an adhesive layer 322.
  • a sealing material layer 330 having a partially different thickness is formed on the outer peripheral surface 323 of the ceramic block 320, and the honeycomb structure 310 has a cylindrical shape.
  • the method for manufacturing the honeycomb structure of the present embodiment 37 cross-sectional square units and 8 isosceles right-angled isosceles triangular units are manufactured, and the ceramic block 320 having the shape shown in FIGS.
  • the method is the same as the method for manufacturing the honeycomb structured body according to the first embodiment of the present invention except that the honeycomb fired bodies are appropriately combined.
  • a fifth embodiment which is an embodiment of the present invention will be described.
  • the present invention is used except that a square cross-sectional unit, a cross-section isosceles right triangle unit, and a cross-sectional square unit having a rectangular cross-sectional shape (hereinafter also simply referred to as a cross-sectional rectangular unit) are used as the honeycomb fired body.
  • the structure is the same as that of the honeycomb structure described in the second embodiment of the invention. Therefore, the description overlapping with the description of the honeycomb structure of the second embodiment of the present invention is omitted.
  • FIG. 12 is a perspective view schematically showing an example of the honeycomb structure according to the fifth embodiment of the present invention
  • FIG. 13 is a cross-sectional view taken along the line HH of the honeycomb structure shown in FIG.
  • a honeycomb structure 410 according to this embodiment shown in FIGS. 12 and 13 includes a ceramic block 420 and a sealing material layer 430 formed on the outer peripheral surface 423 of the ceramic block 420.
  • the ceramic block 420 includes one cross-sectional square unit aggregate 424 having a dodecagonal cross-sectional shape and four cross-sectional right-angled isosceles triangular units 421b, and the cross-sectional shape is an octagon.
  • the cross-sectional square unit aggregate 424 includes four cross-sectional square units 421a and eight cross-sectional rectangular units 421c whose cross-sectional shape perpendicular to the longitudinal direction is a rectangle. Since the square section 421a has the same configuration as the square section unit 21a described in the first embodiment of the present invention, the description thereof is omitted.
  • FIG. 14 is a perspective view schematically showing an example of a cross-sectional rectangular unit constituting the honeycomb structure of the fifth embodiment of the present invention.
  • the cross-sectional rectangular unit 421c has a length in the longitudinal direction (indicated by a double-headed arrow d in FIG. 14) substantially equal to the length in the longitudinal direction of the cross-sectional square unit 421a and a cross-sectional right isosceles triangular unit 421b described later. Further, the length of the long side L ′ in the cross section perpendicular to the longitudinal direction of the cross-sectional rectangular unit 421c is substantially the same as the length L of one side in the cross section perpendicular to the longitudinal direction of the cross-sectional square unit 421a.
  • the length of the short side l ′ in the cross section perpendicular to the longitudinal direction of the cross-sectional rectangular unit 421c is approximately half the length L of one side in the cross section perpendicular to the longitudinal direction of the cross-sectional square unit 421a.
  • a number of cells formed in the rectangular section unit 421c shown in FIG. 14 are juxtaposed in the longitudinal direction across the cell wall 444, as in the above-described square section unit 21a.
  • the large number of cells includes a large capacity cell 442a having an octagonal cross section and a small capacity cell 442b having a quadrangular cross section.
  • the end of the large capacity cell 442a on the first end face 441a side is open, and the end of the second end face 441b side is sealed with a sealing material.
  • the small-capacity cell 442b has an open end on the second end face 441b side, and is sealed with a sealing material at the end on the first end face 441a side. Therefore, like the square unit 21a, the cell wall 444 that separates the large capacity cell 442a and the small capacity cell 442b functions as a filter.
  • the isosceles right triangle unit 421b has the length of the side constituting the first side B1 and the length of the side constituting the second side B2 in the longitudinal direction of the rectangular unit 421c.
  • the configuration is the same as that of the isosceles right triangle unit 21b in the first embodiment of the present invention except that the length is substantially equal to the length of the short side l ′ in the cross section perpendicular to the cross section.
  • cross-sectional square unit aggregate 424 shown in FIG. 13 four cross-sectional square units 421a are bound to each other so that the cross-sectional shape is square via the adhesive layer 422, and one cross-sectional square unit 421a bound.
  • the long side surface D1 of the first cross-sectional rectangular unit 421c is in contact with the first side surface A1 through the adhesive layer 422, and the second side surface A2 of the one cross-sectional square unit 421a is in contact with the second side surface A2.
  • the long side surface D1 ′ of the cross-sectional rectangular unit 421c ′ is in contact with the adhesive layer 422.
  • a total of eight cross-sectional rectangular units 421c are in contact with the cross-sectional square units 421a via the adhesive layer 422.
  • the cross-sectional shape of the quadrangular unit assembly 424 having such a configuration is a dodecagon.
  • a concave portion 426a and a convex portion 426b are formed in a step shape on the outer peripheral surface 425 of the quadrangular unit assembly 424, and there are four concave portions 426a.
  • the first short side surface D2 of the first rectangular section unit 421c and the first side surface B1 of the isosceles right triangle unit 421b are interposed via the adhesive layer 422.
  • the second short side surface D2 ′ of the second rectangular unit 421c ′ and the second side surface B2 of the isosceles right triangle unit 421b are in contact with each other via the adhesive layer 422.
  • the third side surface B3 of the isosceles right triangle unit 421b constitutes the outer peripheral surface 423 of the ceramic block 420.
  • the relationship between the other concave portions and the triangular section unit is the same, and isosceles right triangle units 421b are fitted into the four concave portions 426b via the adhesive layer 422, respectively.
  • a sealing material layer 430 having a partially different thickness is formed on the outer peripheral surface 423 of the ceramic block 420, and the honeycomb structure 410 has a cylindrical shape.
  • the method of manufacturing the honeycomb structure of the present embodiment four cross-sectional square units, four isosceles right-angled isosceles triangular units, and eight cross-sectional rectangular units are produced, and the binding process is shown in FIGS. 12 and 13. Except for appropriately combining the honeycomb fired bodies so that a ceramic block 420 having a shape is produced, the method is the same as the method for manufacturing the honeycomb structured body of the first embodiment of the present invention, and thus the description thereof is omitted.
  • an extrusion mold corresponding to the shape of the honeycomb molded body to be manufactured can be used. Good.
  • a sixth embodiment which is an embodiment of the present invention will be described.
  • a cross-sectional square unit, a cross-sectional triangle unit, and a cross-sectional rectangular unit are used as the honeycomb fired body.
  • the number of honeycomb fired bodies constituting the ceramic block is 116
  • the cross-sectional shape of the ceramic block is 32 squares
  • the combination of the honeycomb fired bodies is different as described below.
  • FIG. 15 is a perspective view schematically showing an example of the honeycomb structure of the sixth embodiment of the present invention
  • FIG. 16 is a cross-sectional view taken along the line II of the honeycomb structure shown in FIG.
  • a honeycomb structure 510 of the present embodiment shown in FIGS. 15 and 16 includes a ceramic block 520 and a sealing material layer 530 formed on the outer peripheral surface 523 of the ceramic block 520.
  • the ceramic block 520 includes one cross-sectional square unit aggregate 524 having a cross-sectional shape of 44 squares and eight cross-sectional right-angled isosceles triangular units 521b, and the cross-sectional shape thereof is a 32 square.
  • the cross-sectional square unit aggregate 524 includes one cross-sectional square unit aggregate 527 formed by binding 88 cross-sectional square units 521a via an adhesive layer 522, and the outer periphery of the cross-sectional square unit aggregate 527. It is composed of four cross-sectional rectangular unit aggregates 529 that are in contact with the surface 528 via an adhesive layer 522.
  • two cross-sectional rectangular unit aggregates 529a are composed of six cross-sectional rectangular units 521c, and the two cross-sectional rectangular unit aggregates 529b are four cross-sectional rectangular units. 521c.
  • the configurations of the cross-sectional square unit 521a and the cross-sectional right isosceles triangle unit 521b are the same as the cross-sectional square unit 21a and the cross-sectional right isosceles triangular unit 21b described in the first embodiment of the present invention.
  • the configuration of the cross-sectional rectangular unit 521c is the same as that of the cross-sectional rectangular unit 421c described in the fifth embodiment of the present invention.
  • Concave portions 526a and convex portions 526b are formed in a stepped manner on the outer peripheral surface 525 of the square unit assembly 524, and there are 20 concave portions 526a. Of the 20 concave portions 526a, the eight concave portions 526a are fitted with the isosceles right triangle units 521b through the adhesive layer 522, respectively.
  • a sealing material layer 530 having a partially different thickness is formed on the outer peripheral surface 523 of the ceramic block 520, and the honeycomb structure 510 has a cylindrical shape.
  • the method for manufacturing the honeycomb structure of the present embodiment 88 cross-sectional square units, 8 isosceles right-angled isosceles triangular units, and 20 cross-sectional rectangular units are produced.
  • the method is the same as the method for manufacturing the honeycomb structured body of the fifth embodiment of the present invention except that the honeycomb fired bodies are appropriately combined so that the ceramic block 520 having a shape is manufactured, and thus the description thereof is omitted.
  • the cross-sectional square unit is not limited to the above-described cross-sectional square unit or cross-sectional rectangular unit, for example, a cross-sectional square unit having a cross-sectional shape such as a rhombus or a parallelogram, and their cross-sectional shapes And a substantially rectangular unit having a cross-sectional shape that can be substantially equated with each other.
  • the cross-sectional triangular unit is not limited to the above-mentioned cross-sectional right angled isosceles triangular unit, as long as it is a shape that can be fitted into the recess formed on the outer peripheral surface of the cross-sectional square unit assembly,
  • the shape is not particularly limited, and for example, a cross-sectional triangle unit having a cross-sectional shape such as a substantially right triangle, a substantially isosceles triangle, a substantially equilateral triangle, and a cross-sectional shape that can be substantially equated with these cross-sectional shapes. It may be a substantially triangular unit or the like having a cross section.
  • cross-sectionally deformed unit in addition to the above-described cross-sectional trapezoidal unit, a cross-sectional sector unit or a cross-sectional trapezoidal unit having the following cross-sectional shape may be used.
  • FIG. 17 (a), 17 (b), 17 (c), 17 (d), and 17 (e) are side views schematically showing an example of a cross-section deformed unit according to the honeycomb structure of the present invention.
  • FIG. 17 (a), 17 (b) and 17 (c) show a sectional fan-shaped unit
  • FIGS. 17 (d) and 17 (e) show a sectional trapezoidal unit.
  • Each sectional fan-shaped unit and each sectional trapezoidal unit shown in each drawing includes a cell having a quadrangular cross-sectional shape perpendicular to the longitudinal direction, instead of the above-described large-capacity cell and small-capacity cell.
  • the cells in the honeycomb structure of the present invention may be composed of a combination of the above-described large-capacity cells and small-capacity cells, or cells having the same cross-sectional area perpendicular to the longitudinal direction. Also good.
  • the cross-sectional shape perpendicular to the longitudinal direction may be, for example, a quadrangle, and any cross-sectional shape may be used. Also good.
  • the shape perpendicular to the longitudinal direction is a shape consisting of one arc and two straight portions, a shape consisting of one arc and three straight portions, a shape consisting of one arc and four straight portions Etc.
  • the shape of the cross-sectional sector unit may be provided with at least one arc and two straight portions, the number of arcs may be two or more, and the number of straight portions may be five or more.
  • FIG. 17A shows an example of a cross-sectional sector unit in which the shape of the cross section perpendicular to the longitudinal direction is one arc and two straight portions.
  • the shape in a cross section perpendicular to the longitudinal direction of the cross-sectional sector unit 610 shown in FIG. 17A has a first side 611, a second side 612, and an inclined side 613.
  • the angle formed by the first side 611 and the second side 612 is a right angle, and the inclined side 613 is provided to face the right angle.
  • the inclined side 613 is an arc.
  • the inclined side 613 is connected to the first side 611 and the second side 612.
  • FIG. 17B shows an example of a cross-sectional sector unit in which the shape of the cross section perpendicular to the longitudinal direction is one arc and three straight portions.
  • This cross-sectional sector unit has the same shape as the unit of the second shape described in the description of the honeycomb structure of the first embodiment of the present invention.
  • the shape in the cross section perpendicular to the longitudinal direction of the cross-sectional sector unit 620 shown in FIG. 17B has a first side 621, a second side 622, an inclined side 623, and a third side 624.
  • the angle formed by the first side 621 and the second side 622 is a right angle, and the inclined side 623 is provided to face the right angle.
  • the inclined side 623 is an arc.
  • the third side 624 is a side connecting the inclined side 623 and the first side 621, and the third side 624 is parallel to the second side 622.
  • FIG. 17C shows an example of a cross-sectional sector unit in which the shape of the cross section perpendicular to the longitudinal direction is one arc and four straight portions.
  • the shape in the cross section perpendicular to the longitudinal direction of the cross-sectional sector unit 630 shown in FIG. 17C is the first side 631, the second side 632, the inclined side 633, the third side 634, and the fourth side.
  • Side 635 The angle formed by the first side 631 and the second side 632 is a right angle, and the inclined side 633 is provided to face the right angle.
  • the inclined side 633 is an arc.
  • the third side 634 is a side connecting the inclined side 633 and the first side 631, and the third side 634 is parallel to the second side 632.
  • the fourth side 635 is a side connecting the inclined side 633 and the second side 632, and the fourth side 635 is parallel to the first side 631.
  • Examples of the cross-sectional trapezoidal unit include a shape in which a cross section perpendicular to the longitudinal direction is formed by four straight portions, a shape formed by five straight portions, and the like.
  • the shape of the cross-sectional trapezoidal unit is not limited as long as the straight portion has at least one inclined side and two sides (first side and second side), and the number of inclined sides is two or more.
  • the number of straight portions may be six or more.
  • the cross-sectional shape of the “cross-sectional trapezoidal unit” is not limited to a trapezoid, and may be a polygon such as a pentagon or a hexagon.
  • FIG. 17D shows an example of a cross-sectional trapezoidal unit in which the shape of the cross section perpendicular to the longitudinal direction is composed of four linear portions.
  • the shape in a cross section perpendicular to the longitudinal direction of the cross-sectional trapezoidal unit 710 shown in FIG. 17D has a first side 711, a second side 712, an inclined side 713, and a third side 714.
  • the angle formed by the first side 711 and the second side 712 is a right angle, and the inclined side 713 is provided to face the right angle.
  • the inclined side 713 is a straight line.
  • the third side 714 is a side connecting the inclined side 713 and the first side 711, and the third side 714 is parallel to the second side 712.
  • FIG. 17 (e) shows an example of a cross-sectional trapezoidal unit in which the shape of the cross section perpendicular to the longitudinal direction is composed of five linear portions.
  • the shape in the cross section perpendicular to the longitudinal direction of the cross-sectional trapezoidal unit 720 shown in FIG. 17E is the first side 721, the second side 722, the inclined side 723, the third side 724, and the fourth side. Side 725.
  • the angle formed by the first side 721 and the second side 722 is a right angle, and the inclined side 723 is provided to face the right angle.
  • the inclined side 723 is a straight line.
  • the third side 724 is a side connecting the inclined side 723 and the first side 721, and the third side 724 is parallel to the second side 722.
  • the fourth side 725 is a side connecting the inclined side 723 and the second side 722, and the fourth side 725 is parallel to the first side 721.
  • the intersections of the sides of the cross-sectional shape of the honeycomb fired body may be corners.
  • the portion corresponding to the corner may be chamfered.
  • the shape in which the portion corresponding to the corner is chamfered is, for example, an R chamfer shape in which the portion corresponding to the outer peripheral corner of the honeycomb fired body is configured by an arcuate curve, or the corner.
  • a C-chamfered shape configured so that only a blunt cut-off obtuse angle exists can be given.
  • a desirable lower limit is 0.3 mm
  • a more desirable lower limit is 0.5 mm
  • a desirable upper limit is 2.5 mm. If the dimension is less than 0.3 mm, it is not possible to sufficiently suppress the concentration of thermal stress on the corner, or to sufficiently improve the gas fluidity in the cell located at the corner. May not be possible. Further, if the above dimension exceeds 2.5 mm, the roundness of the corner is too large, and a corner portion that is an acute angle is generated in the cell located at the corner, so that cracks may easily occur. There is.
  • R dimension means the radius of the circular arc in R chamfering shape.
  • the C dimension means a cut-out length of a side that is cut longer by C chamfering among two sides that originally constitute the corner portion.
  • the ratio of the area occupied by the unit (honeycomb fired body) is preferably 87 to 93%.
  • the area of the cross section perpendicular to the longitudinal direction of the large capacity cell with respect to the area of the cross section perpendicular to the longitudinal direction of the small capacity cell. It is desirable that the area ratio is 1.4 to 2.4. This is because when the large-capacity cell and the small-capacity cell described above are provided, the PM collection efficiency is improved.
  • each honeycomb fired body is not limited to the form described in the previous embodiments.
  • 18 (a), 18 (b), 18 (c), and 18 (d) are side views schematically showing an example of an end face of a square cross-section unit according to the honeycomb structure of the present invention.
  • Each of the cell forms shown in these drawings is a form in which large-capacity cells and small-capacity cells are alternately arranged.
  • the shape of the cross section perpendicular to the longitudinal direction of the large-capacity cell 821a is a quadrangle whose portion corresponding to the corner is an arc.
  • the cross-sectional shape perpendicular to the longitudinal direction of the small capacity cell 821b is a quadrangle.
  • the cross section perpendicular to the longitudinal direction of the large-capacity cell 831a and the small-capacity cell 831b has a shape in which each side of the cell is a curve. That is, in FIG. 18B, the cross-sectional shape of the cell wall 833 is a curve.
  • the cross-sectional shape of the large capacity cell 831a is such that the cell wall 833 is convex outward from the center of the cross section of the cell.
  • the cross-sectional shape of the small-capacity cell 831b is such that the cell wall 833 is convex from the outside of the cell cross-section toward the center.
  • the cell wall 833 has a “corrugated” shape that undulates in the horizontal direction and the vertical direction of the cross section of the honeycomb fired body.
  • a large-capacity cell 831a in which the cross-sectional shape of the cell swells outward and a small-capacity cell 831b in which the cross-sectional shape of the cell is recessed inward are formed.
  • the amplitude of the waveform may be constant or may vary, but is preferably constant.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell 871a is a quadrangle
  • the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell 871b is a quadrangle
  • the cross-sectional shape perpendicular to the longitudinal direction of the large-capacity cells 881a and the small-capacity cells 881b is a quadrangle whose portions corresponding to the corners are arcuate.
  • the distance between the centroids of the cross section perpendicular to the longitudinal direction of the adjacent large-capacity cells, and the distance between the centroids of the cross-section perpendicular to the longitudinal direction of the adjacent small-capacity cells are preferably equal.
  • “Distance between centroids of cross sections perpendicular to the longitudinal direction of adjacent large-capacity cells” means the centroid of the cross-section perpendicular to the longitudinal direction of one large-capacity cell and the cross-section perpendicular to the longitudinal direction of adjacent large-capacity cells.
  • the minimum distance from the center of gravity on the other hand, the “distance between the centers of gravity of cross sections perpendicular to the longitudinal direction of adjacent small capacity cells” is adjacent to the center of gravity of the cross section perpendicular to the longitudinal direction of one small capacity cell. This is the minimum distance from the center of gravity of the small capacity cell.
  • honeycomb fired body is composed of a large capacity cell and a small capacity cell.
  • a honeycomb fired body such as a triangular section unit or a rectangular section unit has a large capacity cell and a small capacity cell. May be provided.
  • 19 (a), 19 (b), 19 (c), and 19 (d) are side views schematically showing an example of an end face of the cross-section deformed unit according to the honeycomb structure of the present invention.
  • the cross-section deformed units 910, 920, 960 and 970 shown in these drawings are formed by alternately arranging large capacity cells 911a, 921a, 961a and 971a and small capacity cells 911b, 921b, 961b and 971b. Since the shapes of the large capacity cell and the small capacity cell are the same as those of the above-described square unit, the detailed description thereof is omitted.
  • 20 (a), 20 (b), 20 (c), and 20 (d) are side views schematically showing an example of an end face of a cross-sectional triangular unit according to the honeycomb structure of the present invention.
  • the cross-sectional triangular units 1010, 1020, 1060, and 1070 shown in these drawings are configured by alternately arranging large capacity cells 1011a, 1021a, 1061a, 1071a and small capacity cells 1011b, 1021b, 1061b, 1071b, respectively. Since the shapes of the large capacity cell and the small capacity cell are the same as those of the above-described square unit, the detailed description thereof is omitted.
  • the thickness of the cell wall of the honeycomb fired body is not particularly limited, but is preferably 0.2 to 0.4 mm. If the thickness of the cell wall of the honeycomb fired body is less than 0.2 mm, the thickness of the cell wall supporting the honeycomb structure may be reduced, and the strength of the honeycomb structure (honeycomb fired body) may not be maintained. On the other hand, if the thickness exceeds 0.4 mm, the pressure loss may increase.
  • the cell density in the cross section of the honeycomb fired body is not particularly limited, but a desirable lower limit is 31.0 / cm 2 (200 / in 2 ), and a desirable upper limit is 93 / cm. 2 (600 / in 2 ), the more desirable lower limit is 38.8 / cm 2 (250 / in 2 ), and the more desirable upper limit is 77.5 / cm 2 (500 / in 2 ). .
  • the shape of the cross section of the honeycomb structure of the present invention is not limited to the above-described circular shape (perfect circle), and may be, for example, an elliptical shape, an oval shape, a substantially triangular shape, or the like.
  • the porosity of the honeycomb fired body is not particularly limited, but is desirably 35 to 60%.
  • a honeycomb structure made of a honeycomb fired body is used as a filter, if the porosity of the honeycomb fired body is less than 35%, the honeycomb structure may be immediately clogged. This is because when the rate exceeds 60%, the strength of the honeycomb fired body is lowered and may be easily broken.
  • the average pore diameter of the honeycomb fired body is preferably 5 to 30 ⁇ m.
  • the average pore diameter of the honeycomb fired body is less than 5 ⁇ m, the particulates may easily clog, while the average pore size of the honeycomb fired body may be clogged. This is because if the pore diameter exceeds 30 ⁇ m, the particulates pass through the pores, and the particulates cannot be collected and cannot function as a filter.
  • the porosity and pore diameter can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the main component of the constituent material of the honeycomb fired body is not limited to silicon carbide.
  • ceramic raw materials include aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • non-oxide ceramics are preferable, and silicon carbide or silicon-containing silicon carbide is particularly preferable. It is because it is excellent in heat resistance, mechanical strength, thermal conductivity and the like.
  • a catalyst may be supported on the honeycomb structure of the present invention.
  • a catalyst capable of purifying harmful gas components in exhaust gas such as CO, HC and NOx
  • harmful gas components in exhaust gas can be sufficiently purified by catalytic reaction. It becomes possible.
  • by supporting a catalyst that helps combustion of PM it becomes possible to burn and remove PM more easily.
  • honeycomb structure either one end of the cell is sealed and the honeycomb structure functioning as a filter has been described.
  • the honeycomb structure of the present invention has the end of the cell. May not be sealed.
  • Such a honeycomb structure can be suitably used as a catalyst carrier.
  • a method for sequentially assembling a honeycomb fired body through an adhesive has been described.
  • a method for manufacturing a ceramic block is not particularly limited. For example, you may produce a ceramic block with the following method.
  • a plurality of honeycomb fired bodies are juxtaposed in the vertical and horizontal directions via a spacer, thereby producing a parallel body of honeycomb fired bodies in which the shape of the cross section perpendicular to the longitudinal direction is substantially the same as the shape of the ceramic block to be produced. .
  • a gap corresponding to the thickness of the spacer is formed between the honeycomb fired bodies.
  • a parallel body of honeycomb fired bodies is installed in a filling apparatus having a cylindrical tubular body, and gaps formed between the honeycomb fired bodies and formed between the honeycomb fired body and the cylindrical body. Fill the gaps with sealant paste.
  • the filling device includes a cylindrical body such as a cylinder and a sealing material paste supply device.
  • the inner diameter of the cylindrical body is slightly larger than the diameter of the parallel body of the honeycomb fired bodies to be installed, and when the parallel body of honeycomb fired bodies is installed in the internal space of the cylindrical body, It is comprised so that a space
  • the sealing material paste supply device is capable of simultaneously filling the gap between the honeycomb fired bodies and the gap between the parallel bodies of the tubular body and the honeycomb fired body with the sealing material paste accommodated in the sealing material paste chamber. It is configured.
  • the gap between the honeycomb fired bodies and the gap formed between the honeycomb fired body and the cylindrical body are filled with the sealing material paste.
  • an adhesive layer and a sealing material layer (coat layer) between the honeycomb fired bodies are simultaneously formed by drying and solidifying the sealing material paste.
  • the above method is a method of simultaneously performing a bundling process for producing a ceramic block and a sealing material layer forming process for forming a sealing material layer on the outer peripheral surface of the ceramic block.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本発明は、製造コストを低く抑えることができるハニカム構造体を提供することを目的とするものであり、本発明のハニカム構造体は、多数のセルがセル壁を隔てて長手方向に並設されたハニカム焼成体が接着材層を介して複数個結束されてなるセラミックブロックと、上記セラミックブロックの外周面に形成されたシール材層とからなるハニカム構造体であって、上記セラミックブロックは、長手方向に垂直な断面の形状が四角形である断面四角形ユニットが接着材層を介して複数個結束されてなる断面四角形ユニット集合体と、長手方向に垂直な断面の形状が三角形であり、外周部に外壁が形成された断面三角形ユニットとを含んでなり、上記断面四角形ユニット集合体の外周面には、凹部及び凸部が階段状に形成されており、上記凹部には、上記断面三角形ユニットが接着材層を介して嵌め込まれており、上記シール材層の厚さが部分的に異なっていることを特徴とする。

Description

ハニカム構造体
本発明は、ハニカム構造体に関する。
車両や建設機械等の内燃機関から排出される排ガスに含有されるパティキュレートマター(以下、単にPMともいう)が環境や人体に害を及ぼすことが最近問題となっている。
そこで、排ガス中のPMを捕集して排ガスを浄化する排ガス浄化装置として、例えば、ハニカム構造体を構成要素とした排ガス浄化装置が種々提案されている。
ハニカム構造体は、例えば、炭化ケイ素等の多孔質セラミックからなり、その内部にはハニカム構造体の長手方向に沿って、一方の端部側から他方の端部側まで多数のセルがセル壁を隔てて並設されている。また、一のセルのいずれか一方の端部は、封止材により封止されている。
そのため、ハニカム構造体の排ガス流入側の端部が開口したセルに流入した排ガスは、隣り合うセル同士を隔てるセル壁を通過し、排ガス流出側の端部が開口したセルから流出する。これにより、排ガスに含まれるPMがセル壁に補集される。
なお、PMが所定量堆積し、圧力損失が一定の値に達したところで、ハニカム構造体を加熱する再生処理を施す。これにより、堆積したPMが燃焼してハニカム構造体のPM補集能が再生される。
このようなハニカム構造体に関し、近年では、バス、トラック等の大型車、農業用機械、建築用機械、船舶、機関車等に用いられる大型のディーゼルエンジンに取り付けて使用することを目的として、多量のPMを補集することができる大型のハニカム構造体が求められている。
大型化を指向したハニカム構造体としては、例えば、炭化ケイ素等の多孔質セラミックからなるハニカム焼成体が接着材層を介して複数個結束されてなるセラミックブロックと、このセラミックブロックの外周面に形成されたシール材層とから構成されたハニカム構造体が提案されている(例えば、特許文献1)。
特開2008-179526号公報
特許文献1に記載のハニカム構造体を製造する場合には、まず、ハニカム焼成体を接着材層を介して複数個結束させることにより、角柱状のセラミックブロックを作製する。そして、作製したセラミックブロックの外周面に研削加工を施すことにより円柱状のセラミックブロックを作製する。続いて、このセラミックブロックの外周面にシール材層を形成する。
これにより、円柱状のハニカム構造体を製造する。
しかしながら、研削加工工程では、研削加工によって研削するセラミック部分が無駄になることがある。また、炭化ケイ素等からなる硬質なセラミックブロックの外周面を研削するため、研削加工に長時間を要することがある。
そのため、ハニカム構造体の生産性が低く、製造コストが高く付いてしまうという問題がある。
特に、製造するハニカム構造体の大きさが大きくなればなるほど、研削加工を施すべき部分が多くなり、この傾向は顕著である。
本発明のハニカム構造体は、多数のセルがセル壁を隔てて長手方向に並設されたハニカム焼成体が接着材層を介して複数個結束されてなるセラミックブロックと、上記セラミックブロックの外周面に形成されたシール材層とからなるハニカム構造体であって、上記セラミックブロックは、長手方向に垂直な断面の形状が四角形である断面四角形ユニットが接着材層を介して複数個結束されてなる断面四角形ユニット集合体と、長手方向に垂直な断面の形状が三角形であり、外周部に外壁が形成された断面三角形ユニットとを含んでなり、上記断面四角形ユニット集合体の外周面には、凹部及び凸部が階段状に形成されており、上記凹部には、上記断面三角形ユニットが接着材層を介して嵌め込まれており、上記シール材層の厚さが部分的に異なっていることを特徴とする。
本発明のハニカム構造体では、製造時において、セラミックブロックの外周面を研削する研削加工工程を行う必要がなく、製造コストを低く抑えることができる。
外周面に凹部及び凸部が階段状に形成された断面四角形ユニット集合体の凹部に、断面三角形ユニットが接着材層を介して嵌め込まれたセラミックブロックでは、凹部及び凸部により形成された段差が断面三角形ユニットにより解消されるので、断面四角形ユニット集合体に比べて、その形状が円柱状等に近い多角柱状となる。
本発明のハニカム構造体では、上記凹部が、第一の断面四角形ユニットの第一の側面と第二の断面四角形ユニットの第二の側面とを含んでなり、上記第一の側面と上記断面三角形ユニットの第一の側面とが接着材層を介して互いに接しており、上記第二の側面と上記断面三角形ユニットの第二の側面とが接着材層を介して互いに接しており、上記断面三角形ユニットの第三の側面が上記断面四角形ユニットのいずれの側面とも互いに接していないことが望ましい。
このような構成を有するハニカム構造体であっても、本発明の作用効果を好適に享受することができる。
本発明のハニカム構造体では、上記断面四角形ユニットの形状が断面正方形であり、上記断面三角形ユニットの形状が断面直角三角形であり、かつ、上記断面四角形ユニットの第一の端面の対角線と第二の端面の対角線とを通る平面で上記断面四角形ユニットを二等分した形状と一致しており、上記断面三角形ユニットの第三の側面が上記直角三角形の斜辺を含む側面であることが望ましい。
このような構成を有するハニカム構造体では、セラミックブロックの形状を円柱状等により近い多角柱状とすることができるので、本発明の作用効果をより好適に享受することができる。
なお、断面正方形とは、断面四角形ユニットの長手方向に垂直な断面の形状(断面形状)が正方形であることをいい、断面直角三角形とは、断面三角形ユニットの長手方向に垂直な断面の形状(断面形状)が直角三角形であることをいう。
本発明のハニカム構造体では、上記ハニカム焼成体には、断面異形ユニットがさらに含まれており、上記断面異形ユニットの長手方向に垂直な断面の形状は、少なくとも第一の辺と、上記第一の辺と直角を形成する第二の辺と、上記直角と対向する傾斜辺とを含んで構成されており、上記断面異形ユニットの外周部には外壁が形成されており、上記傾斜辺を含む側面は、上記セラミックブロックの外周面を構成していることが望ましい。
また、この場合、上記断面異形ユニットの第二の辺を含む側面が、上記断面三角形ユニットと接着材層を介して接していることがさらに望ましい。
このような構成を有するハニカム構造体では、セラミックブロックの形状を円柱状等により近い多角柱状とすることができるので、本発明の作用効果を特に好適に享受することができる。
本発明のハニカム構造体では、上記シール材層の最も厚い部分の厚みと、上記シール材層の最も薄い部分の厚みとの比が、20:1~5:3であることが望ましい。
上記シール材層の最も厚い部分の厚みと、上記シール材層の最も薄い部分の厚みとの比が、20:1~5:3であると、PMの補集効率を高めることができるとともに、再生処理時の熱応力を充分に緩和することができる。
本発明のハニカム構造体では、上記シール材層の最も厚い部分の厚みが、5~10mmであり、上記シール材層の最も薄い部分の厚みが、0.5~3mmであることが望ましい。
上記シール材層の最も厚い部分の厚みが、5~10mmであり、上記シール材層の最も薄い部分の厚みが、0.5~3mmであると、PMの補集効率を高めることができるとともに、再生処理時の熱応力を充分に緩和することができる。
本発明のハニカム構造体では、上記ハニカム焼成体の数が25個以上であることが望ましい。
本発明のハニカム構造体は、上記ハニカム構造体の長手方向に垂直な断面の形状が円形であり、直径が190mm以上であることが望ましい。
係るハニカム構造体は、大型のディーゼルエンジンへの使用に適した大型のハニカム構造体であるが、このような構成を有していると本発明の作用効果を特に好適に享受することができる。
本発明のハニカム構造体は、上記セラミックブロックの長手方向に垂直な断面の形状が八角形であるか、上記セラミックブロックの長手方向に垂直な断面の形状が32角形であることが望ましい。
このような構成を有するハニカム構造体では、セラミックブロックの形状が円柱状等により近く、本発明の作用効果を好適に享受することができる。
本発明のハニカム構造体では、上記多数のセルの上記長手方向に垂直な断面の形状が四角形であることが望ましい。
本発明のハニカム構造体では、上記多数のセルが、大容量セルと小容量セルとからなり、上記大容量セルの上記長手方向に垂直な断面の面積が上記小容量セルの上記長手方向に垂直な断面の面積より大きいことが望ましい。
なお、本明細書において、大容量セルとは、ハニカム構造体(ハニカム焼成体)に形成された複数のセルのうち、セルの長手方向に垂直な断面の面積の最も大きいセルのことをいい、小容量セルとは、ハニカム構造体(ハニカム焼成体)に形成された複数のセルのうち、セルの長手方向に垂直な断面の面積の最も小さいセルのことをいう。
但し、大容量セルと小容量セルは、特定の断面形状(基本パターン)を有している基本セルのうちで決められる。
上記基本セルとは、ハニカム焼成体を構成するセルを長手方向に垂直な断面で観察した際、1種類の形状のセル、又は、複数個の異なる形状の組み合わせからなるセルが、上下左右に一定の繰り返しで形成されている最小単位のセルをいう。
但し、基本セルは、セルの断面積の異なる2種類のセルを組み合わせて最小単位としたときの繰り返しであってよく、この場合、セルの断面積の異なる2種類のセルの両方を合わせて基本セルという。
この基本セルの概念を用い、大容量セルと小容量セルについて以下に説明する。
例えば、下記する図17(a)に示すハニカム焼成体610では、ハニカム焼成体610の長手方向に垂直な断面において正方形の図形(セル)が繰り返されており、これらの断面正方形のセルが基本セルである。このハニカム焼成体では、全ての基本セルの断面積が同じであるから、大容量セルと小容量セルが形成されたハニカム焼成体には該当しない。
下記する図18(a)、図19(a)及び図20(a)に示すハニカム焼成体820、910及び1010では、セルを長手方向に垂直な断面で観察した場合、角部に相当する部分が円弧状になっている略四角形のセル821a、911a及び1011aと、角部を有しており、上記略四角形のセルと断面形状及び断面積が異なる四角形のセル821b、911b及び1011bとが繰り返されている。断面形状及び断面積が異なる2種類のセルが、基本セルである。
これらの基本セルのうち、セルの長手方向に垂直な断面の面積の最も大きいセル821a、911a及び1011aが大容量セルであり、セルの長手方向に垂直な断面の面積の最も小さいセル821b、911b及び1011bが小容量セルである。
同様にして大容量セルと小容量セルとを決定すると、図18(b)~図18(d)、図19(b)~図19(d)、図20(b)~図20(d)に示すハニカム焼成体では、セル831a、871a、881a、921a、961a、971a、1021a、1061a及び1071aが大容量セルであり、セル831b、871b、881b、921b、961b、971b、1021b、1061b及び1071bが小容量セルである。
係るハニカム構造体を排ガスの浄化に使用する際、排ガスが流入する流入側セルを大容量セルとし、排ガスが流出する流出側セルを小容量セルとした場合には、PMの堆積層の厚さを薄くすることができるので、圧力損失の上昇を抑制したり、PMの捕集限界量を多くしたりすることができる。また、堆積したPMを燃焼させやすくなる。
本発明のハニカム構造体では、上記大容量セルの上記長手方向に垂直な断面の形状が四角形であり、上記小容量セルの上記長手方向に垂直な断面の形状が四角形であることが望ましい。
また、上記大容量セルの上記長手方向に垂直な断面の形状が八角形であり、上記小容量セルの上記長手方向に垂直な断面の形状が四角形であることが望ましい。
これらの形状のセルはPMの補集に特に適しているので、PMの捕集効率を高めることができる。
本発明のハニカム構造体において、長手方向に垂直な断面の形状が四角形であるセルでは、少なくとも一つの角部に相当する部分が円弧状となっていることが望ましい。
このような形状のセルを有しているハニカム焼成体では、クラックが発生しにくくなる。角部を有するセルと比べて、再生処理時の熱応力が角部近傍に集中しにくくなり、緩和されやすくなるためであると考えられる。
本発明のハニカム構造体では、上記大容量セル及び上記小容量セルの上記長手方向に垂直な断面におけるセルの各辺の形状が曲線であることが望ましい。
係る形状のセルはPMの補集に特に適しているので、PMの捕集効率を高めることができる。
本発明のハニカム構造体では、上記多数のセルのいずれか一方の端部が封止されていることが望ましい。
本発明のハニカム構造体では、上記ハニカム構造体の上記長手方向に垂直な断面の形状が、円、長円、楕円、又は、略三角形であることが望ましい。
なお、本明細書において、「円柱等」としては、例えば、円柱、長円柱、楕円柱、又は、略三角柱が考えられ、これらの形状を省略して、「円柱等」と表記している。
本発明は上記した各形状に近い形状のセラミックブロックを含むハニカム構造体に係る発明である。
本発明の第一実施形態のハニカム構造体の一例を模式的に示した斜視図である。 図2(a)は、図1に示すハニカム構造体のA-A線断面図であり、図2(b)は、図2(a)に示すA-A線断面図における一の凹部近傍を拡大して示す部分拡大断面図である。 図3(a)は、本発明の第一実施形態のハニカム構造体を構成する断面四角形ユニットの一例を模式的に示す斜視図であり、図3(b)は、図3(a)に示す断面四角形ユニットのB-B線断面図である。 図4(a)は、本発明の第一実施形態のハニカム構造体を構成する断面三角形ユニットの一例を模式的に示す斜視図であり、図4(b)は、図4(a)に示す断面三角形ユニットのC-C線断面図である。 図5(a)は、本発明の第一実施形態のハニカム構造体を構成する断面異形ユニットの一例を模式的に示す斜視図であり、図5(b)は、図5(a)に示す断面異形ユニットのD-D線断面図である。 本発明の第二実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図6に示したハニカム構造体のE-E線断面図である。 本発明の第三実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図8に示したハニカム構造体のF-F線断面図である。 本発明の第四実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図10に示したハニカム構造体のG-G線断面図である。 本発明の第五実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図12に示したハニカム構造体のH-H線断面図である。 本発明の第五実施形態のハニカム構造体を構成する断面長方形ユニットの一例を模式的に示す斜視図である。 本発明の第六実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図15に示したハニカム構造体のI-I線断面図である。 図17(a)、図17(b)、図17(c)、図17(d)及び図17(e)は、本発明のハニカム構造体に係る断面異形ユニットの一例を模式的に示す側面図である。 図18(a)、図18(b)、図18(c)及び図18(d)は、本発明のハニカム構造体に係る断面正方形ユニットの端面の一例を模式的に示す側面図である。 図19(a)、図19(b)、図19(c)及び図19(d)は、本発明のハニカム構造体に係る断面異形ユニットの端面の一例を模式的に示す側面図である。 図20(a)、図20(b)、図20(c)及び図20(d)は、本発明のハニカム構造体に係る断面三角形ユニットの端面の一例を模式的に示す側面図である。
本発明者らは、上述した従来のハニカム構造体の製造方法における研削加工工程での問題を解決すべく、鋭意検討を行った。
その結果、ハニカム焼成体として長手方向に垂直な断面の形状が四角形である断面四角形ユニットと、長手方向に垂直な断面の形状が三角形である断面三角形ユニットとを使用し、断面四角形ユニットを組み合わせてなる断面四角形ユニット集合体の外周面に形成された凹部に断面三角形ユニットを嵌め込んでなる構成を有するセラミックブロックを採用するとともに、該セラミックブロックの外周面に部分的に厚さが異なるシール材層を形成することにより、上記問題を解決することができることを見出した。
即ち、本発明者らは、上述した構成を採用することにより、製造時において研削加工工程を行わずとも円柱状等の所望の形状を有するハニカム構造体を製造することが可能であり、ハニカム構造体の製造コストを低く抑えることができることを見出し、本発明を完成させた。
なお、ハニカム構造体の形状は、長手方向に垂直な断面の形状が円であるものに限られず、断面の形状が長円、楕円、又は略三角形等であってもよい。セラミックブロックの断面の形状も、上記ユニットを組み合わせることにより、長円、楕円、又は、略三角形等に近い形状とすることができる。
また、セラミックブロックの断面の形状が長円、楕円、又は、略三角形等に近い形状であるということは、それぞれの形状の外周から部分的に凸部又は凹部があるが、それぞれの形状に近似している形状のことをいう。
また、断面の形状が略三角形とは、三角形の頂点部分が曲線となっている形状のことをいう。
(第一実施形態)
以下、本発明のハニカム構造体の一実施形態である第一実施形態について図面を参照しながら説明する。
図1は、本発明の第一実施形態のハニカム構造体の一例を模式的に示した斜視図であり、図2(a)は、図1に示すハニカム構造体のA-A線断面図であり、図2(b)は、図2(a)に示すA-A線断面図における一の凹部近傍を拡大して示す部分拡大断面図である。
なお、図2(b)では、凹部に嵌め込まれる断面直角二等辺三角形ユニット、及び、凹部と断面直角二等辺三角形ユニットとの間に形成される接着材層を省略して示している。
図1及び図2(a)に示す本実施形態のハニカム構造体10は、セラミックブロック20と、セラミックブロック20の外周面23に形成されたシール材層30とからなる。
また、ハニカム構造体10の形状は円柱状である。ハニカム構造体10の長手方向に垂直な断面の形状は円形であり、その直径(図2(a)中、符号Rで示す)は190mm以上である。
なお、ハニカム構造体の長手方向に垂直な断面の形状が長円、楕円、略三角形の場合は、各形状の中心を通る、外周の2点の間の線分のうち最も長い線分の長さが190mm以上であることが望ましい。
セラミックブロック20は、炭化ケイ素の多孔質セラミックからなるハニカム焼成体21が接着材層22を介して複数個結束されることにより構成されている。
また、セラミックブロック20の長手方向に垂直な断面の形状は、12角形である。
複数個のハニカム焼成体21は、図3(a)、図3(b)、図4(a)、図4(b)、図5(a)及び図5(b)に示すように、互いに異なる形状を有する3種類のユニットから構成されている。
図3(a)は、本発明の第一実施形態のハニカム構造体を構成する断面四角形ユニットの一例を模式的に示す斜視図であり、図3(b)は、図3(a)に示す断面四角形ユニットのB-B線断面図である。
図4(a)は、本発明の第一実施形態のハニカム構造体を構成する断面三角形ユニットの一例を模式的に示す斜視図であり、図4(b)は、図4(a)に示す断面三角形ユニットのC-C線断面図である。
図5(a)は、本発明の第一実施形態のハニカム構造体を構成する断面異形ユニットの一例を模式的に示す斜視図であり、図5(b)は、図5(a)に示す断面異形ユニットのD-D線断面図である。
図3(a)及び図3(b)に示すハニカム焼成体21aは、その長手方向(図3(a)中、両矢印aで示す)に垂直な断面の形状(以下、ユニット等の長手方向に垂直な断面の形状のことを、単に断面形状ともいう)が四角形である断面四角形ユニットである。具体的にいうと、断面四角形ユニットは、その断面形状において互いに長さが略等しい4つの辺を有し、一の辺と他の辺とが直交してなる4つの角部を有している。即ち、断面四角形ユニット21aは、その断面形状が正方形の断面正方形ユニットである。
断面正方形ユニット21aは、第一の端面41a及び第二の端面41bを有しており、第一の端面41a(第二の端面41b)の一辺の長さ(図3(a)中、両矢印Lで示す長さ)は、31.5~38.7mmが望ましい。
また、断面正方形ユニット21aの長手方向の長さは、101.6~381.6mm(4~15inch)が望ましい。
断面正方形ユニット21aは、長手方向に垂直な断面の面積が小容量セル42bより相対的に大きい大容量セル42a、及び、長手方向に垂直な断面の面積が大容量セル42aより相対的に小さい小容量セル42bを有する。
大容量セル42aは、その長手方向に垂直な断面の形状が八角形であり、小容量セル42bは、その長手方向に垂直な断面の形状が四角形である。
図3(b)に示すように、大容量セル42aは、第一の端面41a側の端部が開口しており、第二の端面41b側の端部が封止材43aにより封止されている。
一方、小容量セル42bは、第二の端面41b側の端部が開口しており、第一の端面41a側の端部が封止材43bにより封止されている。
そのため、大容量セル42a及び小容量セル42bを隔てるセル壁44がフィルタとして機能するようになっている。即ち、大容量セル42aに流入した排ガスGは、必ずこれらのセル壁44を通過した後、小容量セル42bから流出するようになっている。
なお、本明細書においては、各ユニットの形状やセルの形状を三角形、四角形等の名称で表現しているが、本明細書における三角形、四角形とは、完全な直線のみからなる厳密な図形を意味するものではなく、その角(頂点)が直線や曲線で面取りされていて三角形、四角形と実質的に同視し得る形状を包含する。また、本明細書において「直角」、「平行」、「直角二等辺三角形」等の語は数学的に厳密な形状を意味するものではなく、「直角」、「平行」、「直角二等辺三角形」等の形状と実質的に同視し得る形状を包含する。
次に、別のユニットの構成について詳しく説明する。
図4(a)、図4(b)に示すハニカム焼成体21bは、第一の端面41a及び第二の端面41bを有しており、その断面形状が三角形である断面三角形ユニットである。
具体的にいうと、断面三角形ユニット21bは、その断面形状が直角二等辺三角形である断面直角二等辺三角形ユニットであり、図3(a)、図3(b)に示す断面正方形ユニット21aの第一の端面41aの対角線と第二の端面41bの対角線とを通る平面で断面正方形ユニット21aを二等分した形状と一致している。
以下の説明では、断面直角二等辺三角形ユニット21bにおける上記直角二等辺三角形の斜辺を含む側面を第三の側面B3とし、第三の側面B3以外の二つの側面をそれぞれ第一の側面B1、第二の側面B2ということにする。
断面直角二等辺三角形ユニット21bの断面形状において、第一の側面B1及び第二の側面B2を構成する上記直角二等辺三角形の斜辺以外の二辺の長さは、それぞれ31.5~38.7mmが望ましく、第三の側面B3を構成する上記二等辺三角形の斜辺の長さは、40.9~54.9mmが望ましい。
また、断面直角二等辺三角形ユニット21bの長手方向の長さ(図4(a)中、両矢印bで示す長さ)は、断面正方形ユニット21aの長手方向の長さと略同じであり、101.6~381.6mmが望ましい。
図4(a)、図4(b)に示す断面直角二等辺三角形ユニット21bに形成されたセルは、上述した断面正方形ユニット21aと同様に、八角形の断面形状を有する大容量セル42aと、四角形の断面形状を有する小容量セル42bとからなる。
大容量セル42a及び小容量セル42bを隔てるセル壁44は、断面直角二等辺三角形ユニット21bの外周部を構成する外壁である第一の側面B1、第二の側面B2及び第三の側面B3に結合している。
図4(b)に示すように、大容量セル42aは、第一の端面41a側の端部が開口しており、第二の端面41b側の端部で封止材43aにより封止されている。一方、小容量セル42bは、第二の端面41b側の端部が開口しており、第一の端面41a側の端部で封止材43bにより封止されている。
そのため、断面正方形ユニット21aと同様に、大容量セル42aと小容量セル42bとを隔てるセル壁44がフィルタとして機能するようになっている。
次に、さらに別のユニットの構成について詳しく説明する。
図5(a)、図5(b)に示すハニカム焼成体21cは、第一の端面41a及び第二の端面41bを有しており、その断面形状が、少なくとも第一の辺と、上記第一の辺と直角を形成する第二の辺と、上記直角と対向する傾斜辺とを含んで構成された断面異形ユニットである。
具体的な断面異形ユニット21cの断面形状は、第一の辺51と、第二の辺52と、傾斜辺53と、第三の辺54を有し、第一の辺51と第二の辺52の形成する角度は直角であり、傾斜辺53はその直角に対向して設けられている。傾斜辺53は直線からなる。また、第三の辺54は傾斜辺53と第二の辺52を接続している辺であり、第一の辺51は第三の辺54と平行になっている。
即ち、断面異形ユニット21cは、その断面形状が台形である断面台形ユニットである。
以下の説明では、断面台形ユニット21cの第一の辺51を含む側面を第一の側面C1とし、第二の辺52を含む側面を第二の側面C2とし、第三の辺54を含む側面を第三の側面C3とし、傾斜辺53を含む側面を第四の側面C4ということにする。
断面台形ユニット21cの断面形状において、第一の辺51の長さは、12.0~25.5mmが望ましく、第二の辺52の長さは、第一の辺51の長さより長く、49.8~56.9mmが望ましく、第三の辺54の長さは、3.6~10.0mmが望ましい。
また、断面台形ユニット21cの長手方向の長さ(図5(a)中、両矢印cで示す長さ)は、断面正方形ユニット21aの長手方向の長さと略同じであり、101.6~381.6mmが望ましい。
図5(a)、図5(b)に示す断面台形ユニット21cに形成されたセルは、上述した断面正方形ユニット21aと同様に、略八角形の断面形状を有する大容量セル42aと、略四角形の断面形状を有する小容量セル42bとからなる。
大容量セル42a及び小容量セル42bを隔てるセル壁44は、断面台形ユニット21cの外周部を構成する外壁である第一の側面C1、第二の側面C2、第三の側面C3及び第四の側面C4に結合している。
図5(b)に示すように、大容量セル42aは、第一の端面41a側の端部が開口しており、第二の端面41b側の端部で封止材43aにより封止されている。一方、小容量セル42bは、第二の端面41b側の端部が開口しており、第一の端面41a側の端部で封止材43bにより封止されている。
そのため、断面正方形ユニット21aと同様、大容量セル42aと小容量セル42bとを隔てるセル壁44がフィルタとして機能するようになっている。
ここで、上述した各ユニットを用いて構成されるセラミックブロック20の詳細な構成について、図2(a)及び図2(b)を用いて以下に説明する。
図2(a)に示すセラミックブロック20は、13個の断面正方形ユニット21aと、8個の断面直角二等辺三角形ユニット21bと、8個の断面台形ユニット21cとの合計29個のハニカム焼成体が接着材層22を介して複数個結束されることにより構成されている。
なお、接着材層22には、アルミナファイバ等の無機繊維と、炭化ケイ素等の無機粒子と、シリカゾル等の無機バインダと、カルボキシメチルセルロース等の有機バインダ等とが含まれている。
また、接着材層22の厚みは、0.5~2.0mmが望ましい。
具体的にいうと、セラミックブロック20は、13個の断面正方形ユニット21aが接着材層22を介して互いに結束されることにより、断面形状が20角形の断面正方形ユニット集合体24が構成されている。
断面正方形ユニット集合体24の外周面25には、凹部26a及び凸部26bが階段状に形成されており、凹部26aは8つ存在している。
一の凹部26aの詳細な構成について説明する。図2(b)において両矢印で示された領域である凹部26aは、第一の断面正方形ユニット21aの第一の側面A1と、第一の側面A1に対して略垂直方向に立設している第二の断面正方形ユニット21a’の第二の側面A2と、接着材層とを含んで構成されている。上記接着材層は、第一の断面正方形ユニット21aと第一の断面正方形ユニット21aに隣り合う第三の断面正方形ユニット21a’’との間に形成された接着材層22、及び、第三の断面正方形ユニット21a’’と第二の断面正方形ユニット21a’との間に形成された接着材層22’から構成されている。
この凹部26aには、図2(a)に示すように、断面直角二等辺三角形ユニット21bが接着材層22を介して嵌め込まれている。
即ち、第一の断面正方形ユニット21aの第一の側面A1と、断面直角二等辺三角形ユニット21bの第一の側面B1とが接着材層22を介して互いに接しており、第二の断面正方形ユニット21a’の第二の側面A2と、断面直角二等辺三角形ユニット21bの第二の側面B2とが接着材層22を介して互いに接している。
断面直角二等辺三角形ユニット21bの第三の側面B3は、断面正方形ユニットの側面とは接していない。
また、他の凹部と断面直角二等辺三角形ユニットとの関係も同様であり、8つの凹部26aには、それぞれ断面直角二等辺三角形ユニット21bが接着材層22を介して嵌め込まれている。
断面直角二等辺三角形が上述のように配置されているので、断面正方形ユニット集合体24の外周面25に形成された凹凸が解消されている。
断面直角二等辺三角形ユニット21bの第三の側面B3は、断面台形ユニットの第二の側面C2と接着材層を介して接している。断面台形ユニット21cの第一の側面C1は、隣り合う他の断面台形ユニット21c’の第一の側面C1’と接着材層を介して接している。また、断面台形ユニット21cの第四の側面C4は、セラミックブロック20の外周面23の一部を構成している。他の断面台形ユニットも同様の構成となっている。
このため、セラミックブロック20の長手方向に垂直な断面の形状は、12角形である。
次に、シール材層30について説明する。
シール材層30は、セラミックブロック20の外周面23に形成されており、部分的に厚さが異なっている。そのため、ハニカム構造体10の形状は、円柱状を呈している。
シール材層30の最も厚い部分の厚み(図2(a)中、両矢印間の距離X)と、シール材層30の最も薄い部分の厚み(図2(a)中、両矢印間の距離Y)との比(シール材層の最も厚い部分の厚み:シール材層30の最も薄い部分の厚み)は、20:1~5:3が望ましく、4:1~3:1がより望ましく、7.8:2.3~8.3:3.0がさらに望ましい。
具体的には、シール材層30の最も厚い部分の厚みは、5~10mmが望ましく、8~9mmがより望ましく、8.2~8.7mmがさらに望ましい。
また、シール材層30の最も薄い部分の厚みは、0.5~3mmが望ましく、1~2.5mmがより望ましく、1.6~2.3mmがさらに望ましい。
シール材層30の最も厚い部分の厚みとシール材層30の最も薄い部分の厚みとの比が上記範囲であると、PMの捕集効率を高めることができるとともに、再生処理時の熱応力を充分に緩和することができる。
これに対して、シール材層の最も厚い部分の厚みが、10mmを超えると、シール材層の厚さが厚すぎる部分が多くなり、ハニカム構造体の端面においてセルが開口している領域が少なくなって、ハニカム構造体の大きさの割にPMの捕集効率が低くなることがある。なお、上記シール材層の最も厚い部分の厚みの下限値は、特に限定されないが、5mmであることが好ましい。
また、上記シール材層の最も薄い部分の厚みが、0.5mm未満であると、シール材層の厚さが薄すぎて、再生処理時の熱応力を緩和しにくくなることがある。
シール材層30の材質は、上述した接着材層22と同じである。
シール材層30がセラミックブロック20の外周面23に形成されていることにより衝撃等の外力が吸収されるので、ハニカム構造体10は破損しにくい。
次に、本実施形態のハニカム構造体の製造方法について説明する。
本実施形態のハニカム構造体の製造方法は、
セラミック原料を成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体を作成する成形工程と、
上記ハニカム成形体を焼成してハニカム焼成体を作製する焼成工程と、
複数の上記ハニカム焼成体を接着材層を介して接着させてセラミックブロックを作製する結束工程と、
上記セラミックブロックの外周面にシール材層を形成するシール材層形成工程を含むハニカム構造体の製造方法であって、
上記成形工程及び上記焼成工程では、少なくとも断面四角形ユニット及び断面三角形ユニットを作製し、
上記断面四角形ユニットの長手方向に垂直な断面の形状は、四角形であり、
上記断面三角形ユニットの長手方向に垂直な断面の形状は、三角形であり、外周部に外壁が形成されており、
上記結束工程では、複数の上記断面四角形ユニットを接着材層を介して接着させることにより、外周面に凹部及び凸部が階段状に形成された断面四角形ユニット集合体を作製し、
上記断面三角形ユニットを接着材層を介して上記凹部に嵌め込み、
上記シール材層形成工程では、上記シール材層の厚さが部分的に異なるように上記シール材層を形成することを特徴とする。
本実施形態のハニカム構造体の製造方法において、上記結束工程では、第一の断面四角形ユニットの第一の側面と第二の断面四角形ユニットの第二の側面とを含んで上記凹部を形成し、
上記第一の側面と上記断面三角形ユニットの第一の側面とを接着材層を介して互いに接着し、
上記第二の側面と上記断面三角形ユニットの第二の側面とを接着材層を介して互いに接着し、
上記断面三角形ユニットの第三の側面を上記断面四角形ユニットのいずれの側面とも互いに接着させないことが望ましい。
本実施形態のハニカム構造体の製造方法において、上記成形工程及び上記焼成工程では、その形状が断面正方形である断面四角形ユニットを作製し、
その形状が断面直角三角形であり、かつ、上記断面四角形ユニットの第一の端面の対角線と第二の端面の対角線とを通る平面で上記断面四角形ユニットを二等分した形状と一致している断面三角形ユニットを作製し、
上記結束工程では、上記直角三角形の斜辺を含む側面を上記断面四角形ユニットのいずれの側面とも互いに接着させないことが望ましい。
本実施形態のハニカム構造体の製造方法において、上記成形工程及び上記焼成工程では、その長手方向に垂直な断面の形状が、少なくとも第一の辺と、上記第一の辺と直角を形成する第二の辺と、上記直角と対向する傾斜辺とを含んで構成されており、その外周部に外壁が形成された断面異形ユニットを作製し、
上記結束工程では、上記傾斜辺を含む側面が上記セラミックブロックの外周面を構成するように上記断面異形ユニットを配置することが望ましい。
本実施形態のハニカム構造体の製造方法において、上記結束工程では、上記断面異形ユニットの第二の辺を含む側面を上記断面三角形ユニットと接着材層を介して接着させることが望ましい。
以下、本実施形態のハニカム構造体の製造方法を工程順に説明する。
まず、セラミック原料としての平均粒子径の異なる炭化ケイ素粉末等のセラミック粉末と、有機バインダと液状の可塑剤、潤滑剤、水等を混合して、成形体製造用の湿潤混合物を調製する。
続いて、上記湿潤混合物を押出成形機に投入して押出成形する成形工程を行い、所定の形状のハニカム成形体を作製する。
具体的には、図3(a)及び図3(b)に示すような、断面視八角形の大容積セルと断面視四角形の小容積セルとを有し、断面形状が正方形であるハニカム成形体を作製する。また、金型の形状を変更して、図4(a)及び図4(b)に示すような、断面形状が直角二等辺三角形であるハニカム成形体を作製し、図5(a)及び図5(b)に示すような、断面形状が台形であるハニカム成形体を作製する。
なお、断面形状が正方形であるハニカム成形体は、後述する焼成工程を経て断面正方形ユニットとなる。断面形状が直角二等辺三角形であるハニカム成形体は、後述する焼成工程を経て断面直角二等辺三角形形ユニットとなる。断面形状が台形であるハニカム成形体は、後述する焼成工程を経て断面台形ユニットとなる。
以下の工程で、ハニカム成形体というときはこれら3種のハニカム成形体を区別せずに指すものとする。
次に、ハニカム成形体の両端を切断装置を用いて切断する切断工程を行い、ハニカム成形体を所定の長さに切断し、切断したハニカム成形体を乾燥機を用いて乾燥する。
次いで、セルのいずれか一方の端部に、封止材となる封止材ペーストを所定量充填し、セルを目封じする。このような工程を経て、セル封止ハニカム成形体を作製する。
なお、封止材ペーストとしては、上記湿潤混合物を用いることができる。
次に、セル封止ハニカム成形体中の有機物を脱脂炉中で加熱する脱脂工程を行い、ハニカム脱脂体を作製する。このハニカム脱脂体の形状は図3(a)、図3(b)、図4(a)、図4(b)、図5(a)及び図5(b)に示す各ハニカム焼成体の形状とほぼ同様である。
そして、ハニカム脱脂体を焼成炉に搬送し、アルゴン雰囲気下、2000~2300℃で焼成する焼成工程を行うことによって、図3(a)、図3(b)、図4(a)、図4(b)、図5(a)及び図5(b)に示す形状のハニカム焼成体、すなわち、断面正方形ユニット、断面直角二等辺三角形ユニット及び断面台形ユニットを作製する。
続いて、ハニカム焼成体の所定の側面に接着材ペースト層を形成し、接着材ペースト層を加熱固化して接着材層とし、接着材層を介して複数のハニカム焼成体を結束させてセラミックブロックとする結束工程を行う。
接着材ペーストとしては、無機繊維及び/又はウィスカ、無機バインダ、並びに、有機バインダを含む接着材ペーストが好適に用いられる。
この結束工程においては、まず、断面正方形ユニットの側面に接着材ペーストを塗布して接着材ペースト層を形成する。そして、この接着材ペースト層の上に、順次他の断面正方形ユニットを積層する工程を繰り返す。これにより、図1、図2(a)及び図2(b)に示す断面形状が20角形の断面正方形ユニット集合体を作製する。
次に、断面正方形ユニット集合体の外周面に形成された8つの凹部にそれぞれ接着材ペーストを塗布して接着材ペースト層を形成する。
そして、第一の断面正方形ユニットの第一の側面と、断面直角二等辺三角形ユニットの第一の側面とが接着材ペースト層を介して互いに接し、第二の断面正方形ユニットの第二の側面と、断面直角二等辺三角形ユニットの第二の側面とが接着材ペースト層を介して互いに接するように、8つの凹部にそれぞれ断面直角二等辺三角形ユニットを1個ずつ嵌め込む。
続けて、断面直角二等辺三角形ユニットの第三の側面に接着材ペーストを塗布して接着材ペースト層を形成する。
そして、断面直角二等辺三角形ユニットの第三の側面と、一の断面台形ユニットの第二の側面とが接着材ペースト層を介して互いに接するように、断面直角二等辺三角形ユニットと、断面台形ユニットとを接着する。
同様にして、他の断面台形ユニットについても断面直角二等辺三角形ユニットと接着材ペースト層で接着する。この際、一の断面台形ユニットの第一の側面と、他の断面台形ユニットの第一の側面との間にも接着材ペースト層を形成する。
これにより、13個の断面正方形ユニットと、8個の断面直角二等辺三角形ユニットと、8個の断面台形ユニットとが接着材ペースト層で結束された、図1、図2(a)に示す断面形状が20角形のセラミックブロックを作製する。
続いて、セラミックブロックの外周面にシール材ペーストを塗布し、シール材ペーストを乾燥固化させてシール材層(コート層)を形成するシール材層形成工程を行い、円柱状のハニカム構造体を製造する。
ここで、セラミックブロックの外周面に塗布するシール材ペーストの厚さを、例えば、断面台形ユニットの側面では薄くなり、断面正方形ユニット(断面正方形ユニット集合体)の側面では厚くなるように調整することにより、本工程を経て製造されたハニカム構造体の形状が円柱状となるようにシール材ペーストを塗布する。例えば、製造されたハニカム構造体において、シール材層の最も厚い部分の厚みと、シール材層の最も薄い部分の厚みとの比が、20:1~5:3となるようにシール材ペーストを塗布する。具体的には、製造されたハニカム構造体において、シール材層の最も厚い部分の厚みが、5~10mmとなり、シール材層の最も薄い部分の厚みが、0.5~3mmとなるように、シール材ペーストを塗布する。
なお、上記シール材ペーストとしては、上記接着材ペーストと同様のペーストを使用することができる。
以上の工程によって、ハニカム構造体を製造する。
なお、シール材ペーストとしては、上記接着材ペーストと同様のペーストを使用すればよいが、シール材ペーストとして異なる組成のペーストを使用してもよい。
以上の工程によって、本実施形態のハニカム構造体を製造することができる。
以下に、本実施形態のハニカム構造体の作用効果について列挙する。
(1)本実施形態のハニカム構造体は、製造時において、セラミックブロックの外周面を研削する研削加工工程を行う必要がなく、製造コストを低く抑えることができる。この理由について、以下に説明する。
まず、セラミックブロックが断面正方形ユニット集合体のみから構成されている場合について考えてみる。
断面正方形ユニット集合体の外周面には、凹部及び凸部が階段状に形成されており、凹凸が存在している。そのため、断面正方形ユニット集合体の外周面に略均一の厚さのシール材層を形成した場合には、断面正方形ユニット集合体の形状に由来してハニカム構造体の形状が角柱状となり、円柱状等にはならない。
そこで、ハニカム構造体の形状を円柱状等とするためには、断面正方形ユニット集合体に対して予め研削加工を施すことにより、断面正方形ユニット集合体の形状を円柱状等に加工することが考えられるが、研削加工を施した場合には、製造コストが高くなってしまう。
特に、大型のハニカム構造体を製造しようとすると、セラミックブロックの外周面を多量に研削する必要があり、製造コストがかなり高くなり、加工時間も長くなることが懸念される。
これに対し、本実施形態のハニカム構造体では、断面正方形ユニット集合体の外周面に形成された凹部に断面三角形ユニットが接着材層を介して嵌め込まれており、凹部及び凸部により形成される凹凸が解消されている。そのため、セラミックブロックの形状は、断面正方形ユニット集合体よりも円柱状等にできるだけ近い多角柱状となっている。
従って、このセラミックブロックに対して研削加工を施すことなく、部分的に厚さの異なるシール材層を外周面に形成するだけで、円柱状等のハニカム構造体を容易に製造することができる。それゆえ、製造コストを低く抑えることができる。
また、セラミックブロックの外周面に形成されたシール材層の厚さが部分的に異なっているので、円柱状等の所望形状のハニカム構造体とすることができる。
(2)特に、本実施形態のハニカム構造体では、断面台形ユニットの傾斜辺を含む第三の側面がセラミックブロックの外周面を構成しているため、セラミックブロックの形状が円柱状等により近く、上述した作用効果(1)を好適に享受することができる。
(3)また、シール材層の最も厚い部分の厚みと、シール材層の最も薄い部分の厚みとの比が、20:1~5:3である場合には、PMの補集効率を高めることができるとともに、再生処理時の熱応力を充分に緩和することができる。
特に、シール材層の最も厚い部分の厚みが、5~10mmであり、シール材層の最も薄い部分の厚みが、0.5~3mmである場合には、PMの補集効率をより高めることができるとともに、再生処理時の熱応力をより充分に緩和することができる。
(4)また、ハニカム焼成体に形成された多数のセルは、断面形状が八角形である大容量セルと、断面形状が四角形である小容量セルとからなる。
本実施形態のハニカム構造体を排ガスの浄化に使用する場合には、排ガスが流入する流入側セルを大容量セルとし、排ガスが流出する流出側セルを小容量セルとすることにより、流入側セルの表面積の総量を大きくすることができる。
従って、排ガス浄化時には、流入側セルの表面積の総量と流出側セルの表面積の総量とが等しいハニカム構造体と比較して、PMの堆積層の厚さを薄くすることができる。そのため、圧力損失の上昇を抑制したり、PMの捕集限界量を多くしたりすることができる。
また、一定量のPMを補集する場合で比較すると、PMの堆積層の厚さが薄くなって、PMを燃焼させやすくなる。
さらに、セルの形状がPMの補集に特に適した形状であるので、PMの捕集効率を高めることができる。
(第二実施形態)
以下、本発明のハニカム構造体の一実施形態である第二実施形態について図面を参照しながら説明する。
本実施形態のハニカム構造体では、ハニカム焼成体として断面正方形ユニットと断面直角二等辺三角形ユニットとを使用し、使用するハニカム焼成体の個数が異なり、セラミックブロックの断面形状が八角形であること以外は、本発明の第一実施形態で述べたハニカム構造体と同様の構成を有している。
従って、本発明の第一実施形態のハニカム構造体についての説明と重複する事項については、説明を省略する。
図6は、本発明の第二実施形態のハニカム構造体の一例を模式的に示す斜視図であり、図7は、図6に示したハニカム構造体のE-E線断面図である。
図6、図7に示す本実施形態のハニカム構造体110は、セラミックブロック120と、セラミックブロック120の外周面123に形成されたシール材層130とからなる。
セラミックブロック120は、断面形状が12角形である1個の断面正方形ユニット集合体124と、4個の断面直角二等辺三角形ユニット121bとからなり、その断面形状は八角形である。
断面正方形ユニット集合体124は、12個の断面正方形ユニット121aが接着材層122を介して接着されることにより構成されている。
断面正方形ユニット121a及び断面直角二等辺三角形ユニット121bの構成については、本発明の第一実施形態で説明した断面正方形ユニット21a及び断面直角二等辺三角形ユニット21bと同様である。
断面正方形ユニット集合体124の外周面125には、凹部126a及び凸部126bが階段状に形成されており、凹部126aは4個存在している。
そして、4個の凹部126aには、それぞれ断面直角二等辺三角形ユニット121bが接着材層122を介して嵌め込まれている。
セラミックブロック120の外周面123には、部分的に厚さが異なるシール材層130が形成されており、ハニカム構造体110の形状は円柱状である。
本実施形態のハニカム構造体を製造する方法については、断面正方形ユニットを12個、断面直角二等辺三角形ユニットを4個作製し、結束工程で図6、図7に示す形状のセラミックブロック120が作製されるようにハニカム焼成体を適宜組み合わせること以外は、本発明の第一実施形態のハニカム構造体を製造する方法と同様であるので説明を省略する。
本実施形態のハニカム構造体においても、本発明の第一実施形態と同様の作用効果(1)、(3)及び(4)を奏することができる。
(第三実施形態)
以下、本発明の一実施形態である第三実施形態について説明する。
本実施形態では、ハニカム焼成体として断面正方形ユニットと、断面直角二等辺三角形ユニットを使用するが、使用するハニカム焼成体の個数が多いこと(32個)以外は、本発明の第二実施形態で述べたハニカム構造体と同様の構成を有している。
従って、本発明の第二実施形態のハニカム構造体についての説明と重複する事項については、説明を省略する。
図8は、本発明の第三実施形態のハニカム構造体の一例を模式的に示す斜視図であり、図9は、図8に示したハニカム構造体のF-F線断面図である。
図8、図9に示す本実施形態のハニカム構造体210は、セラミックブロック220と、セラミックブロック220の外周面223に形成されたシール材層230とからなる。
セラミックブロック220は、断面形状が20角形である1個の断面正方形ユニット集合体224と、8個の断面直角二等辺三角形ユニット221bとからなり、その断面形状は八角形である。
断面正方形ユニット集合体224は、24個の断面正方形ユニット221aが接着材層222を介して結束されることにより構成されている。
断面正方形ユニット221a及び断面直角二等辺三角形ユニット221bの構成については、本発明の第一実施形態で説明した断面正方形ユニット21a及び断面直角二等辺三角形ユニット21bと同様である。
断面正方形ユニット集合体224の外周面225には、凹部226a及び凸部226bが階段状に形成されており、凹部226aが8個存在している。
そして、8個の凹部226aには、それぞれ断面直角二等辺三角形ユニット221bが接着材層222を介して嵌め込まれている。
セラミックブロック220の外周面223には、部分的に厚さが異なるシール材層230が形成されており、ハニカム構造体210の形状は円柱状である。
本実施形態のハニカム構造体を製造する方法については、断面正方形ユニットを24個、断面直角二等辺三角形ユニットを8個作製し、結束工程で図8、図9に示す形状のセラミックブロック220が作製されるように、ハニカム焼成体を適宜組み合わせること以外は、本発明の第一実施形態のハニカム構造体を製造する方法と同様であるので、説明を省略する。
本実施形態のハニカム構造体においても、本発明の第一実施形態と同様の作用効果(1)、(3)及び(4)を発揮することができる。
(第四実施形態)
以下、本発明の一実施形態である第四実施形態について説明する。
本実施形態では、ハニカム焼成体として断面正方形ユニットと、断面直角二等辺三角形ユニットを使用するが、使用するハニカム焼成体の個数が多いこと(45個)以外は、本発明の第二実施形態で述べたハニカム構造体と同様の構成を有している。
従って、本発明の第二実施形態のハニカム構造体についての説明と重複する事項については、説明を省略する。
図10は、本発明の第四実施形態のハニカム構造体の一例を模式的に示す斜視図であり、図11は、図10に示したハニカム構造体のG-G線断面図である。
図10、図11に示す本実施形態のハニカム構造体310は、セラミックブロック320と、セラミックブロック320の外周面323に形成されたシール材層330とからなる。
セラミックブロック320は、断面形状が20角形である1個の断面正方形ユニット集合体324と、8個の断面直角二等辺三角形ユニット321bとからなり、その断面形状は八角形である。
断面正方形ユニット集合体324は、37個の断面正方形ユニット321aが接着材層322を介して結束されることにより構成されている。
断面正方形ユニット321a及び断面直角二等辺三角形ユニット321bの構成については、本発明の第一実施形態で説明した断面正方形ユニット21a及び断面直角二等辺三角形ユニット21bと同様である。
断面正方形ユニット集合体324の外周面325には、凹部326a及び凸部326bが階段状に形成されており、凹部326aが8個存在している。
そして、8個の凹部326aには、それぞれ断面直角二等辺三角形ユニット321bが接着材層322を介して嵌め込まれている。
セラミックブロック320の外周面323には、部分的に厚さが異なるシール材層330が形成されており、ハニカム構造体310の形状は円柱状である。
本実施形態のハニカム構造体を製造する方法については、断面正方形ユニットを37個、断面直角二等辺三角形ユニットを8個作製し、結束工程で図10、図11に示す形状のセラミックブロック320が作製されるように、ハニカム焼成体を適宜組み合わせること以外は、本発明の第一実施形態のハニカム構造体を製造する方法と同様であるので、説明を省略する。
本実施形態のハニカム構造体においても、本発明の第一実施形態と同様の作用効果(1)、(3)及び(4)を発揮することができる。
(第五実施形態)
以下、本発明の一実施形態である第五実施形態について説明する。
本実施形態では、ハニカム焼成体として断面正方形ユニットと、断面直角二等辺三角形ユニットと、断面形状が長方形の断面四角形ユニット(以下、単に、断面長方形ユニットともいう)とを使用すること以外は、本発明の第二実施形態で述べたハニカム構造体と同様の構成を有している。
従って、本発明の第二実施形態のハニカム構造体の説明と重複する事項については、説明を省略する。
図12は、本発明の第五実施形態のハニカム構造体の一例を模式的に示す斜視図であり、図13は、図12に示したハニカム構造体のH-H線断面図である。
図12、図13に示す本実施形態のハニカム構造体410は、セラミックブロック420と、セラミックブロック420の外周面423に形成されたシール材層430とからなる。
セラミックブロック420は、断面形状が12角形である1個の断面四角形ユニット集合体424と、4個の断面直角二等辺三角形ユニット421bとからなり、その断面形状は八角形である。
断面四角形ユニット集合体424は、4個の断面正方形ユニット421aと、長手方向に垂直な断面の形状が長方形である8個の断面長方形ユニット421cとから構成されている。
断面正方形ユニット421aは、本発明の第一実施形態で説明した断面正方形ユニット21aと同様の構成を有しているので、説明を省略する。
断面長方形ユニット421cの構成について図面を用いて説明する。
図14は、本発明の第五実施形態のハニカム構造体を構成する断面長方形ユニットの一例を模式的に示す斜視図である。
断面長方形ユニット421cは、その長手方向(図14中、両矢印dで示す)の長さが断面正方形ユニット421a及び後述する断面直角二等辺三角形ユニット421bの長手方向の長さと略一致している。
また、断面長方形ユニット421cの長手方向に垂直な断面における長辺L’の長さは、断面正方形ユニット421aの長手方向に垂直な断面における一辺の長さLと略一致している。
断面長方形ユニット421cの長手方向に垂直な断面における短辺l’の長さは、断面正方形ユニット421aの長手方向に垂直な断面における一辺の長さLの略半分の長さである。
図14に示す断面長方形ユニット421cに形成された多数のセルは、上述した断面正方形ユニット21aと同様に、セル壁444を隔てて長手方向に並設されている。また、多数のセルは、八角形の断面形状を有する大容量セル442aと、四角形の断面形状を有する小容量セル442bとからなる。
大容量セル442aは、第一の端面441a側の端部が開口しており、第二の端面441b側の端部で封止材により封止されている。一方、小容量セル442bは、第二の端面441b側の端部が開口しており、第一の端面441a側の端部で封止材により封止されている。
そのため、断面正方形ユニット21aと同様、大容量セル442aと小容量セル442bとを隔てるセル壁444がフィルタとして機能するようになっている。
次に、図13を参照しながら、断面直角二等辺三角形ユニット421b及び断面四角形ユニット集合体424の構成について説明する。
断面直角二等辺三角形ユニット421bは、長手方向に垂直な断面における第一の側面B1を構成する辺の長さ及び第二の側面B2を構成する辺の長さが、断面長方形ユニット421cの長手方向に垂直な断面における短辺l’の長さと略一致していること以外は、本発明の第一実施形態における断面直角二等辺三角形ユニット21bと同様の構成を有している。
図13に示す断面四角形ユニット集合体424では、4個の断面正方形ユニット421aが接着材層422を介して断面形状が正方形になるように互いに結束されており、結束された一の断面正方形ユニット421aの第一の側面A1には、第一の断面長方形ユニット421cの長側面D1が接着材層422を介して接しており、上記一の断面正方形ユニット421aの第二の側面A2には、第二の断面長方形ユニット421c’の長側面D1’が接着材層422を介して接している。同様にして、合計で8個の断面長方形ユニット421cが、断面正方形ユニット421aと接着材層422を介して接している。
このような構成を有する断面四角形ユニット集合体424の断面形状は、12角形である。
また、断面四角形ユニット集合体424の外周面425には、凹部426a及び凸部426bが階段状に形成されており、凹部426aは4つ存在している。
一の凹部426aの詳細な構成をみてみると、第一の断面長方形ユニット421cの第一の短側面D2と、断面直角二等辺三角形ユニット421bの第一の側面B1とが接着材層422を介して互いに接しており、第二の断面長方形ユニット421c’の第二の短側面D2’と、断面直角二等辺三角形ユニット421bの第二の側面B2とが接着材層422を介して互いに接している。断面直角二等辺三角形ユニット421bの第三の側面B3は、セラミックブロック420の外周面423を構成している。
また、他の凹部と断面三角形ユニットとの関係も同様であり、4つの凹部426bには、それぞれ断面直角二等辺三角形ユニット421bが接着材層422を介して嵌め込まれている。
セラミックブロック420の外周面423には、部分的に厚さが異なるシール材層430が形成されており、ハニカム構造体410の形状は円柱状である。
本実施形態のハニカム構造体を製造する方法については、断面正方形ユニットを4個、断面直角二等辺三角形ユニットを4個、断面長方形ユニットを8個作製し、結束工程で図12、図13に示す形状のセラミックブロック420が作製されるようにハニカム焼成体を適宜組み合わせること以外は、本発明の第一実施形態のハニカム構造体を製造する方法と同様であるので説明を省略する。
なお、焼成後に断面長方形ユニットとなり、長手方向に垂直な断面の形状が長方形であるハニカム成形体を作製するためには、作製するハニカム成形体の形状に応じた押出成形用金型を使用すればよい。
本実施形態のハニカム構造体においても、本発明の第一実施形態と同様の作用効果(1)、(3)及び(4)を発揮することができる。
(第六実施形態)
以下、本発明の一実施形態である第六実施形態について説明する。
本実施形態では、ハニカム焼成体として断面正方形ユニットと、断面三角形ユニットと、断面長方形ユニットを使用するが、上記断面三角形ユニットが本発明の第一実施形態で説明した断面直角二等辺三角形ユニットと同様の形状を有しており、セラミックブロックを構成するハニカム焼成体の数が116個であり、セラミックブロックの断面形状が32角形であって、下記するようにハニカム焼成体の組み合わせ方が異なること以外は、本発明の第五実施形態で述べたハニカム構造体と略同様の構成を有している。
従って、本発明の第五実施形態のハニカム構造体についての説明と重複する事項については、説明を省略する。
図15は、本発明の第六実施形態のハニカム構造体の一例を模式的に示す斜視図であり、図16は、図15に示したハニカム構造体のI-I線断面図である。
図15、図16に示す本実施形態のハニカム構造体510は、セラミックブロック520と、セラミックブロック520の外周面523に形成されたシール材層530とからなる。
セラミックブロック520は、断面形状が44角形である1個の断面四角形ユニット集合体524と、8個の断面直角二等辺三角形ユニット521bとからなり、その断面形状は32角形である。
断面四角形ユニット集合体524は、88個の断面正方形ユニット521aが接着材層522を介して結束されることにより構成された1個の断面正方形ユニット集合体527と、断面正方形ユニット集合体527の外周面528に接着材層522を介して接している4個の断面長方形ユニット集合体529とから構成されている。断面長方形ユニット集合体529のうち、2個の断面長方形ユニット集合体529aは、6個の断面長方形ユニット521cから構成されており、2個の断面長方形ユニット集合体529bは、4個の断面長方形ユニット521cから構成されている。
断面正方形ユニット521a、断面直角二等辺三角形ユニット521bの構成については、本発明の第一実施形態で説明した断面正方形ユニット21a、断面直角二等辺三角形ユニット21bと同様である。また、断面長方形ユニット521cの構成については、本発明の第五実施形態で説明した断面長方形ユニット421cと同様である。
断面四角形ユニット集合体524の外周面525には、凹部526a及び凸部526bが階段状に形成されており、凹部526aは20個存在している。
そして、20個の凹部526aのうち、8個の凹部526aには、それぞれ断面直角二等辺三角形ユニット521bが接着材層522を介して嵌め込まれている。
セラミックブロック520の外周面523には、部分的に厚さが異なるシール材層530が形成されており、ハニカム構造体510の形状は円柱状である。
本実施形態のハニカム構造体を製造する方法については、断面正方形ユニットを88個、断面直角二等辺三角形ユニットを8個、断面長方形ユニットを20個作製し、結束工程で図15、図16に示す形状のセラミックブロック520が作製されるように、ハニカム焼成体を適宜組み合わせること以外は、本発明の第五実施形態のハニカム構造体を製造する方法と同様であるので、説明を省略する。
本実施形態のハニカム構造体においても、本発明の第一実施形態と同様の作用効果(1)、(3)及び(4)を発揮することができる。
(その他の実施形態)
本発明のハニカム構造体において、断面四角形ユニットとしては、上述した断面正方形ユニットや断面長方形ユニットに限られず、例えば、ひし形や平行四辺形等の断面形状を有する断面四角形ユニット、及び、これらの断面形状と実質的に同視しうる断面形状を有する断面略四角形ユニット等であってもよい。
本発明のハニカム構造体において、断面三角形ユニットとしては、上述した断面直角二等辺三角形ユニットに限られず、断面四角形ユニット集合体の外周面に形成された凹部に嵌め込むことができる形状であれば、その形状は特に限定されず、例えば、略直角三角形や、略二等辺三角形や、略正三角形等の断面形状を有する断面三角形ユニット、及び、これらの断面形状と実質的に同視しうる断面形状を有する断面略三角形ユニット等であってもよい。
本発明のハニカム構造体において、断面異形ユニットとしては、上述した断面台形ユニットの他にも、下記する断面形状の断面扇形ユニットや断面台形ユニット等を使用してもよい。
図17(a)、図17(b)、図17(c)、図17(d)及び図17(e)は、本発明のハニカム構造体に係る断面異形ユニットの一例を模式的に示す側面図である。
図17(a)、図17(b)及び図17(c)は、断面扇形ユニットを示しており図17(d)及び図17(e)は、断面台形ユニットを示している。
各図面に示す各断面扇形ユニット及び各断面台形ユニットは、上述した大容量セル及び小容量セルの代わりに、長手方向に垂直な断面の形状が四角形であるセルを備えている。
本発明のハニカム構造体におけるセルは、上述した大容量セルと小容量セルとの組み合わせから構成されていてもよいし、その長手方向に垂直な断面の面積が同一であるセルから構成されていてもよい。長手方向に垂直な断面の面積が同一であるセルから構成されている場合は、長手方向に垂直な断面の形状が例えば四角形等であってもよく、どのような断面の形状を有していてもよい。
断面扇形ユニットとしては、長手方向に垂直な断面の形状が1つの円弧及び2つの直線部からなる形状、1つの円弧及び3つの直線部からなる形状、1つの円弧及び4つの直線部からなる形状等が挙げられる。断面扇形ユニットの形状は、少なくとも1つの円弧と2つの直線部を備えていればよく、円弧の数が2つ以上であってもよく、直線部の数が5つ以上であってもよい。
図17(a)は、長手方向に垂直な断面の形状が1つの円弧及び2つの直線部からなる断面扇形ユニットの一例を示している。図17(a)に示す断面扇形ユニット610の長手方向に垂直な断面における形状は、第一の辺611と、第二の辺612と、傾斜辺613を有する。
第一の辺611と第二の辺612の形成する角度は直角であり、傾斜辺613はその直角に対向して設けられている。傾斜辺613は円弧からなる。
傾斜辺613は第一の辺611及び第二の辺612に接続している。
図17(b)は、長手方向に垂直な断面の形状が1つの円弧及び3つの直線部からなる断面扇形ユニットの一例を示している。この断面扇形ユニットは、本発明の第一実施形態のハニカム構造体の説明で説明した第二の形状のユニットと同じ形状である。
図17(b)に示す断面扇形ユニット620の長手方向に垂直な断面における形状は、第一の辺621と、第二の辺622と、傾斜辺623と、第三の辺624を有する。
第一の辺621と第二の辺622の形成する角度は直角であり、傾斜辺623はその直角に対向して設けられている。傾斜辺623は円弧からなる。
第三の辺624は傾斜辺623と第一の辺621を接続している辺であり、第三の辺624は第二の辺622と平行になっている。
図17(c)は、長手方向に垂直な断面の形状が1つの円弧及び4つの直線部からなる断面扇形ユニットの一例を示している。図17(c)に示す断面扇形ユニット630の長手方向に垂直な断面における形状は、第一の辺631と、第二の辺632と、傾斜辺633と、第三の辺634と、第四の辺635を有する。
第一の辺631と第二の辺632の形成する角度は直角であり、傾斜辺633はその直角に対向して設けられている。傾斜辺633は円弧からなる。
第三の辺634は傾斜辺633と第一の辺631を接続している辺であり、第三の辺634は第二の辺632と平行になっている。
第四の辺635は傾斜辺633と第二の辺632を接続している辺であり、第四の辺635は第一の辺631と平行になっている。
断面台形ユニットとしては、長手方向に垂直な断面の形状が4つの直線部からなる形状、5つの直線部からなる形状等が挙げられる。
断面台形ユニットの形状は、その直線部が少なくとも1つの傾斜辺と2つの辺(第一の辺及び第二の辺)を備えていればよく、傾斜辺の数が2つ以上であってもよく、直線部の数が6つ以上であってもよい。なお、「断面台形ユニット」の断面形状は台形に限定されるものではなく、五角形、六角形等の多角形であってもよい。
図17(d)は、長手方向に垂直な断面の形状が4つの直線部からなる断面台形ユニットの一例を示している。図17(d)に示す断面台形ユニット710の長手方向に垂直な断面における形状は、第一の辺711と、第二の辺712と、傾斜辺713と、第三の辺714を有する。
第一の辺711と第二の辺712の形成する角度は直角であり、傾斜辺713はその直角に対向して設けられている。傾斜辺713は直線からなる。
第三の辺714は傾斜辺713と第一の辺711を接続している辺であり、第三の辺714は第二の辺712と平行になっている。
図17(e)は、長手方向に垂直な断面の形状が5つの直線部からなる断面台形ユニットの一例を示している。図17(e)に示す断面台形ユニット720の長手方向に垂直な断面における形状は、第一の辺721と、第二の辺722と、傾斜辺723と、第三の辺724と、第四の辺725とを有する。
第一の辺721と第二の辺722の形成する角度は直角であり、傾斜辺723はその直角に対向して設けられている。傾斜辺723は直線からなる。
第三の辺724は傾斜辺723と第一の辺721を接続している辺であり、第三の辺724は第二の辺722と平行になっている。
第四の辺725は傾斜辺723と第二の辺722を接続している辺であり、第四の辺725は第一の辺721と平行になっている。
本発明のハニカム構造体では、例えば、図3(a)、図3(b)に示す断面正方形ユニットのように、ハニカム焼成体の断面形状における各辺の交点部分が角部となっていてもよいが、上記角部に対応する部分が、面取りが施された形状となっていてもよい。
上記角部に対応する部分に面取りが施された形状とは、例えば、ハニカム焼成体の外周の角部に対応する部分が、円弧状の曲線から構成されたR面取り形状や、上記角部を直線で切り落とし鈍角のみが存在するように構成されたC面取り形状が挙げられる。
上記R面取り形状のR寸法や上記C面取り形状のC寸法としては、望ましい下限が0.3mmであり、より望ましい下限が0.5mmであり、一方、望ましい上限は2.5mmである。
上記寸法が0.3mm未満であると、上記角部に熱応力が集中することを充分に抑制することができなかったり、上記角部に位置するセルにおける気体の流動性を充分に向上させることができなかったりする場合がある。また、上記寸法が2.5mmを超えると、角部の丸みが大きすぎるために、角部に位置するセルにおいて、鋭角となる角部が生じるので、逆にクラックが発生しやすくなってしまうおそれがある。
なお、R寸法とは、R面取り形状における円弧の半径を意味する。また、C寸法とは、角部を本来構成する2つの辺のうち、C面取りでより長く切り取られた側の辺についての切り取られた長さを意味する。
本発明のハニカム構造体の断面において、ユニット(ハニカム焼成体)が占める面積の割合(ハニカム焼成体占有率)は、87~93%であることが好ましい。
また、上記多数のセルが大容量セルと小容量セルとからなる場合には、上記小容量セルの上記長手方向に垂直な断面の面積に対する上記大容量セルの上記長手方向に垂直な断面の面積の面積比が、1.4~2.4であることが望ましい。
上述した大容量セルと小容量セルとを設けた場合、PMの捕集効率が向上するからである。
また、各ハニカム焼成体が有するセルの形態は、これまでの実施形態において説明した形態に限定されるものではない。
図18(a)、図18(b)、図18(c)及び図18(d)は、本発明のハニカム構造体に係る断面正方形ユニットの端面の一例を模式的に示す側面図である。
これらの図に示すセルの形態は、いずれも大容量セルと小容量セルとが交互に配設された形態である。
図18(a)に示すハニカム焼成体820では、大容量セル821aの長手方向に垂直な断面の形状が角部に相当する部分が円弧状になっている四角形である。小容量セル821bの長手方向に垂直な断面の形状は、四角形である。
図18(b)に示すハニカム焼成体830では、大容量セル831a及び小容量セル831bの長手方向に垂直な断面がセルの各辺が曲線である形状である。
即ち、図18(b)ではセル壁833の断面形状が曲線である。
大容量セル831aの断面形状は、セル壁833がセルの断面の中心から外側に向かって凸の形状である。
一方、小容量セル831bの断面形状は、セル壁833がセルの断面の外側から中心に向かって凸の形状である。
セル壁833はハニカム焼成体の断面の水平方向及び垂直方向に対して起伏する「波形」の形状を有しており、隣り合うセル壁833の波形の山の部分(正弦曲線でいう振幅の極大値の部分)が互いに最近接することで、セルの断面形状が外側に膨らんだ大容量セル831aとセルの断面形状が内側に凹んだ小容量セル831bとが形成される。なお、波形の振幅は一定でもよくまた変化しても良いが、一定であることが好ましい。
図18(c)に示すハニカム焼成体870では、大容量セル871aの長手方向に垂直な断面の形状は四角形であり、小容量セル871bの長手方向に垂直な断面の形状は四角形である。
図18(d)に示すハニカム焼成体880では、大容量セル881a及び小容量セル881bの長手方向に垂直な断面の形状が、角部に相当する部分が円弧状になっている四角形である。
ハニカム焼成体が大容量セルと小容量セルを有する場合、隣り合う大容量セルの長手方向に垂直な断面の重心間距離と、隣り合う小容量セルの長手方向に垂直な断面の重心間距離とは、等しいことが望ましい。
「隣り合う大容量セルの長手方向に垂直な断面の重心間距離」とは、一の大容量セルの長手方向に垂直な断面における重心と、隣り合う大容量セルの長手方向に垂直な断面における重心との最小の距離をいい、一方、「隣り合う小容量セルの長手方向に垂直な断面の重心間距離」とは、一の小容量セルの長手方向に垂直な断面における重心と、隣り合う小容量セルの重心との最小の距離のことをいう。
上記2つの重心間距離が等しいとき、再生時に熱が均一に拡散することで、ハニカム構造体内部の局所的な温度の偏りがなくなり、長期間繰り返し使用しても、熱応力に起因するクラック等が発生することのない耐久性に優れたハニカム構造体となるからである。
ハニカム焼成体が有するセルが大容量セルと小容量セルからなる場合について、断面正方形ユニットを例にして説明したが、断面三角形ユニットや断面長方形ユニット等のハニカム焼成体が大容量セルと小容量セルを備えていても良い。
図19(a)、図19(b)、図19(c)及び図19(d)は、本発明のハニカム構造体に係る断面異形ユニットの端面の一例を模式的に示す側面図である。
これらの図面に示す断面異形ユニット910、920、960及び970は、それぞれ大容量セル911a、921a、961a、971a及び小容量セル911b、921b、961b、971bが交互に配設されてなる。
大容量セル及び小容量セルの形状は、上述した断面正方形ユニットの場合と同様であるので、その詳細な説明は省略する。
図20(a)、図20(b)、図20(c)及び図20(d)は、本発明のハニカム構造体に係る断面三角形ユニットの端面の一例を模式的に示す側面図である。
これらの図面に示す断面三角形ユニット1010、1020、1060及び1070は、それぞれ大容量セル1011a、1021a、1061a、1071a及び小容量セル1011b、1021b、1061b、1071bが交互に配設されてなる。
大容量セル及び小容量セルの形状は、上述した断面正方形ユニットの場合と同様であるので、その詳細な説明は省略する。
本発明のハニカム構造体において、上記ハニカム焼成体のセル壁の厚さは、特に限定されないが、0.2~0.4mmが望ましい。
ハニカム焼成体のセル壁の厚さが0.2mm未満であると、ハニカム構造を支持するセル壁の厚さが薄くなり、ハニカム構造体(ハニカム焼成体)の強度を保つことができなくなるおそれがあり、一方、上記厚さが0.4mmを超えると、圧力損失の上昇を引き起こす場合があるからである。
本発明のハニカム構造体において、上記ハニカム焼成体の断面におけるセル密度は特に限定されないが、望ましい下限は、31.0個/cm(200個/in)、望ましい上限は、93個/cm(600個/in)、より望ましい下限は、38.8個/cm(250個/in)、より望ましい上限は、77.5個/cm(500個/in)である。
本発明のハニカム構造体の断面の形状は、上述したような円形(正円形)に限定されるものでなく、例えば、楕円形や、長円形、略三角形等であってもよい。
本発明のハニカム構造体において、上記ハニカム焼成体の気孔率は特に限定されないが、35~60%であることが望ましい。
ハニカム焼成体からなるハニカム構造体をフィルタとして使用する場合、ハニカム焼成体の気孔率が35%未満であると、ハニカム構造体がすぐに目詰まりを起こすことがあり、一方、ハニカム焼成体の気孔率が60%を超えると、ハニカム焼成体の強度が低下して容易に破壊されることがあるからである。
本発明のハニカム構造体において、上記ハニカム焼成体の平均気孔径は、5~30μmであることが望ましい。
ハニカム焼成体からなるハニカム構造体をフィルタとして使用する場合、ハニカム焼成体の平均気孔径が5μm未満であると、パティキュレートが容易に目詰まりを起こすことがあり、一方、ハニカム焼成体の平均気孔径が30μmを超えると、パティキュレートが気孔を通り抜けてしまい、該パティキュレートを捕集することができず、フィルタとして機能することができないことがあるからである。
なお、上記気孔率及び気孔径は、例えば、水銀圧入法、アルキメデス法、走査型電子顕微鏡(SEM)による測定等の従来公知の方法により測定することができる。
本発明のハニカム構造体において、上記ハニカム焼成体の構成材料の主成分は、炭化ケイ素に限定されるわけではなく、他のセラミック原料として、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック等のセラミック粉末が挙げられる。
これらのなかでは、非酸化物セラミックが好ましく、炭化ケイ素又はケイ素含有炭化ケイ素が特に好ましい。耐熱性、機械強度、熱伝導率等に優れるからである。
また、本発明のハニカム構造体には、触媒が担持されていてもよい。
ハニカム構造体にCO、HC及びNOx等の排ガス中の有害なガス成分を浄化することが可能となる触媒を担持させることにより、触媒反応により排ガス中の有害なガス成分を充分に浄化することが可能となる。また、PMの燃焼を助ける触媒を担持させることにより、PMをより容易に燃焼除去することが可能となる。
これまで、ハニカム構造体としては、セルのいずれか一方の端部が封止されており、フィルタとして機能するハニカム構造体について説明を行ったが、本発明のハニカム構造体は、セルの端部が封止されていなくてもよい。このようなハニカム構造体は、触媒担体として好適に使用することが可能となる。
上述したハニカム構造体の製造方法では、ハニカム焼成体を接着材を介して逐次組み立てる方法について説明したが、セラミックブロックを作製する方法は、特に限定されるものでない。例えば、以下の方法によりセラミックブロックを作製してもよい。
はじめに、ハニカム焼成体をスペーサを介して縦横に複数個並列することにより、その長手方向に垂直な断面の形状が作製するセラミックブロックの形状と略同一である、ハニカム焼成体の並列体を作製する。
このとき、各ハニカム焼成体の間にはスペーサの厚さ分の空隙が形成される。
続いて、円筒状の筒状体を有する充填装置内にハニカム焼成体の並列体を設置し、ハニカム焼成体の間に形成された空隙、及び、ハニカム焼成体と筒状体の間に形成された空隙にシール材ペーストを充填する。
充填装置は、円筒状等の筒状体とシール材ペースト供給器を備えている。筒状体の内径は設置するハニカム焼成体の並列体の直径より少し大きくなっており、ハニカム焼成体の並列体を筒状体の内部空間に設置した際に、筒状体とハニカム焼成体の並列体との間に空隙が形成されるように構成されている。
シール材ペースト供給器は、シール材ペースト室に収容されたシール材ペーストをハニカム焼成体間の空隙と、筒状体とハニカム焼成体の並列体の間の空隙に同時に充填することができるように構成されている。
このようなハニカム焼成体の並列体と充填装置を用いて、ハニカム焼成体の間の空隙、及び、ハニカム焼成体と筒状体の間に形成された空隙にシール材ペーストを充填する。続いて、シール材ペーストを乾燥固化させることによってハニカム焼成体間の接着材層とシール材層(コート層)とを同時に形成する。
すなわち、上記方法はセラミックブロックを作製する結束工程とセラミックブロックの外周面にシール材層を形成するシール材層形成工程を同時に行う方法である。
10、110、210、310、410、510 ハニカム構造体
20、120、220、320、420、520 セラミックブロック
21a、121a、221a、321a、421a、521a 断面四角形ユニット(ハニカム焼成体)
21b、121b、221b、321b、421b、521b 断面三角形ユニット(ハニカム焼成体)
22、122、222、322、422、522 接着材層
23、123、223、323、423、523 セラミックブロックの外周面
24、124、224、324、424、524 断面四角形ユニット集合体
25、125、225、325、425、525 断面四角形ユニット集合体の外周面
26a、126a、226a、326a、426a、526a 凹部
26b、126b、226b、326b、426b、526b 凸部
30、130、230、330、430、530 シール材層
42a、442a 大容量セル
42b、442b 小容量セル
44、444 セル壁

Claims (19)

  1. 多数のセルがセル壁を隔てて長手方向に並設されたハニカム焼成体が接着材層を介して複数個結束されてなるセラミックブロックと、
    前記セラミックブロックの外周面に形成されたシール材層とからなるハニカム構造体であって、
    前記セラミックブロックは、長手方向に垂直な断面の形状が四角形である断面四角形ユニットが接着材層を介して複数個結束されてなる断面四角形ユニット集合体と、長手方向に垂直な断面の形状が三角形であり、外周部に外壁が形成された断面三角形ユニットとを含んでなり、
    前記断面四角形ユニット集合体の外周面には、凹部及び凸部が階段状に形成されており、
    前記凹部には、前記断面三角形ユニットが接着材層を介して嵌め込まれており、
    前記シール材層の厚さが部分的に異なっていることを特徴とするハニカム構造体。
  2. 前記凹部は、第一の断面四角形ユニットの第一の側面と、第二の断面四角形ユニットの第二の側面とを含んでなり、
    前記第一の側面と、前記断面三角形ユニットの第一の側面とが接着材層を介して互いに接しており、
    前記第二の側面と、前記断面三角形ユニットの第二の側面とが接着材層を介して互いに接しており、
    前記断面三角形ユニットの第三の側面は、前記断面四角形ユニットのいずれの側面とも互いに接していない請求項1に記載のハニカム構造体。
  3. 前記断面四角形ユニットの形状は、断面正方形であり、
    前記断面三角形ユニットの形状は、断面直角三角形であり、かつ、前記断面四角形ユニットの第一の端面の対角線と、第二の端面の対角線とを通る平面で前記断面四角形ユニットを二等分した形状と一致しており、
    前記断面三角形ユニットの第三の側面は、前記直角三角形の斜辺を含む側面である請求項2に記載のハニカム構造体。
  4. 前記ハニカム焼成体には、断面異形ユニットがさらに含まれており、
    前記断面異形ユニットの長手方向に垂直な断面の形状は、少なくとも第一の辺と、前記第一の辺と直角を形成する第二の辺と、前記直角と対向する傾斜辺とを含んで構成されており、
    前記断面異形ユニットの外周部には外壁が形成されており、
    前記傾斜辺を含む側面は、前記セラミックブロックの外周面を構成している請求項1~3のいずれかに記載のハニカム構造体。
  5. 前記断面異形ユニットの第二の辺を含む側面が、前記断面三角形ユニットと接着材層を介して接している請求項4に記載のハニカム構造体。
  6. 前記シール材層の最も厚い部分の厚みと、前記シール材層の最も薄い部分の厚みとの比が、20:1~5:3である請求項1~5のいずれかに記載のハニカム構造体。
  7. 前記シール材層の最も厚い部分の厚みが、5~10mmであり、前記シール材層の最も薄い部分の厚みが、0.5~3mmである請求項1~6のいずれかに記載のハニカム構造体。
  8. 前記ハニカム焼成体の数は25個以上である請求項1~7のいずれかに記載のハニカム構造体。
  9. 前記ハニカム構造体の長手方向に垂直な断面の形状が円形であり、直径が190mm以上である請求項1~8のいずれかに記載のハニカム構造体。
  10. 前記セラミックブロックの長手方向に垂直な断面の形状は、八角形である請求項1~9のいずれかに記載のハニカム構造体。
  11. 前記セラミックブロックの長手方向に垂直な断面の形状は、32角形である請求項1~9のいずれかに記載のハニカム構造体。
  12. 前記多数のセルの前記長手方向に垂直な断面の形状が四角形である請求項1~11のいずれかに記載のハニカム構造体。
  13. 前記多数のセルは、大容量セルと、小容量セルとからなり、前記大容量セルの前記長手方向に垂直な断面の面積は、前記小容量セルの前記長手方向に垂直な断面の面積より大きい請求項1~12のいずれかに記載のハニカム構造体。
  14. 前記大容量セルの前記長手方向に垂直な断面の形状は四角形であり、前記小容量セルの前記長手方向に垂直な断面の形状は四角形である請求項13に記載のハニカム構造体。
  15. 前記大容量セルの前記長手方向に垂直な断面の形状は八角形であり、前記小容量セルの前記長手方向に垂直な断面の形状は四角形である請求項13に記載のハニカム構造体。
  16. 長手方向に垂直な断面の形状が四角形であるセルでは、少なくとも一つの角部に相当する部分が円弧状となっている請求項14又は15に記載のハニカム構造体。
  17. 前記大容量セル及び前記小容量セルの前記長手方向に垂直な断面におけるセルの各辺の形状は、曲線である請求項1~16のいずれかに記載のハニカム構造体。
  18. 前記多数のセルのいずれか一方の端部が封止されている請求項1~17のいずれかに記載のハニカム構造体。
  19. 前記ハニカム構造体の前記長手方向に垂直な断面の形状は、円、長円、楕円、又は、略三角形である請求項1~18のいずれかに記載のハニカム構造体。
PCT/JP2010/057184 2010-04-22 2010-04-22 ハニカム構造体 WO2011132298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/057184 WO2011132298A1 (ja) 2010-04-22 2010-04-22 ハニカム構造体
EP11155968.8A EP2392554B1 (en) 2010-04-22 2011-02-25 Honeycomb structured body
US13/090,262 US8685885B2 (en) 2010-04-22 2011-04-20 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057184 WO2011132298A1 (ja) 2010-04-22 2010-04-22 ハニカム構造体

Publications (1)

Publication Number Publication Date
WO2011132298A1 true WO2011132298A1 (ja) 2011-10-27

Family

ID=44246509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057184 WO2011132298A1 (ja) 2010-04-22 2010-04-22 ハニカム構造体

Country Status (3)

Country Link
US (1) US8685885B2 (ja)
EP (1) EP2392554B1 (ja)
WO (1) WO2011132298A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132297A1 (ja) * 2010-04-22 2011-10-27 イビデン株式会社 ハニカム構造体
WO2011132295A1 (ja) * 2010-04-22 2011-10-27 イビデン株式会社 ハニカム構造体
WO2013047790A1 (ja) * 2011-09-30 2013-04-04 日本碍子株式会社 ハニカム構造体
US8734555B2 (en) * 2012-06-12 2014-05-27 Bha Altair, Llc Device for filtering fluid in a power generating system
JP5992857B2 (ja) * 2013-03-29 2016-09-14 日本碍子株式会社 ハニカム構造体
JP6022985B2 (ja) * 2013-03-29 2016-11-09 日本碍子株式会社 ハニカム構造体
JP6111122B2 (ja) * 2013-03-29 2017-04-05 日本碍子株式会社 ハニカム構造体及びその製造方法
WO2021138034A1 (en) * 2020-01-03 2021-07-08 Corning Incorporated Ceramic honeycomb articles with improved isostatic strength, and method for fabricating same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2003201823A (ja) * 2002-10-15 2003-07-18 Ibiden Co Ltd 排ガス浄化装置用フィルタ
JP2004154718A (ja) * 2002-11-07 2004-06-03 Ibiden Co Ltd ハニカムフィルタの製造方法及びハニカムフィルタ
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079165A2 (ja) * 2004-02-23 2005-09-01 Ibiden Co Ltd ハニカム構造体及び排気ガス浄化装置
US20070006458A1 (en) * 2005-07-06 2007-01-11 Jankowski Paul E Exhaust treatment device, a diesel particulate filter, and method of making the same
DE102006036498A1 (de) * 2006-07-28 2008-02-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zusammengesetzter Wabenkörper
JP4997068B2 (ja) 2006-12-25 2012-08-08 日本碍子株式会社 接合体及びその製造方法
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2009066388A1 (ja) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
ATE517236T1 (de) * 2008-03-24 2011-08-15 Ibiden Co Ltd Wabenstrukturkörper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2003201823A (ja) * 2002-10-15 2003-07-18 Ibiden Co Ltd 排ガス浄化装置用フィルタ
JP2004154718A (ja) * 2002-11-07 2004-06-03 Ibiden Co Ltd ハニカムフィルタの製造方法及びハニカムフィルタ
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法

Also Published As

Publication number Publication date
US8685885B2 (en) 2014-04-01
EP2392554B1 (en) 2016-02-24
EP2392554A1 (en) 2011-12-07
US20110263419A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
WO2011132298A1 (ja) ハニカム構造体
JP4880581B2 (ja) セラミックハニカム構造体
EP2368619B1 (en) Ceramic honeycomb structures
WO2012132004A1 (ja) ハニカム構造体及び排ガス浄化装置
WO2009101682A1 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
WO2005079165A2 (ja) ハニカム構造体及び排気ガス浄化装置
WO2009101683A1 (ja) ハニカム構造体の製造方法
WO2006087932A1 (ja) ハニカム構造体
WO2014061320A1 (ja) 集塵用ハニカムフィルタ
KR20080102179A (ko) 허니콤 세그먼트, 허니콤 구조체 및 그 제조 방법
WO2007111280A1 (ja) ハニカム構造体
JP6014526B2 (ja) ハニカム構造体
JP5242178B2 (ja) スペーサー付ハニカムセグメント、及びハニカム構造体
JP5848884B2 (ja) ハニカム構造体
US10850223B2 (en) Plugged honeycomb structure
WO2011132295A1 (ja) ハニカム構造体
JP5877740B2 (ja) 接合型ハニカムフィルタ
US8883286B2 (en) Honeycomb structure
EP2221099B1 (en) Honeycomb structure
JP5234970B2 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP2012250901A (ja) ハニカム構造体及び排ガス浄化装置
WO2011117963A1 (ja) ハニカム構造体
WO2011132297A1 (ja) ハニカム構造体
JP5313878B2 (ja) ハニカムセグメントを用いたハニカム構造体
JP2011240332A (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850239

Country of ref document: EP

Kind code of ref document: A1