WO2011131088A1 - 数据报文处理方法、入口隧道路由器及*** - Google Patents

数据报文处理方法、入口隧道路由器及*** Download PDF

Info

Publication number
WO2011131088A1
WO2011131088A1 PCT/CN2011/072490 CN2011072490W WO2011131088A1 WO 2011131088 A1 WO2011131088 A1 WO 2011131088A1 CN 2011072490 W CN2011072490 W CN 2011072490W WO 2011131088 A1 WO2011131088 A1 WO 2011131088A1
Authority
WO
WIPO (PCT)
Prior art keywords
host
mapping
dns
module
packet
Prior art date
Application number
PCT/CN2011/072490
Other languages
English (en)
French (fr)
Inventor
晏祥彪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011131088A1 publication Critical patent/WO2011131088A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • H04L61/103Mapping addresses of different types across network layers, e.g. resolution of network layer into physical layer addresses or address resolution protocol [ARP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4505Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols
    • H04L61/4511Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols using domain name system [DNS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5084Providing for device mobility

Definitions

  • the present invention relates to the field of communications, and more particularly to a data packet processing method, an ingress tunnel router and a system in a Location Identity Separation Protocol (LISP) network.
  • LISP Location Identity Separation Protocol
  • 3G and 4G are the core of the research on next-generation networks in the field of wireless communication, aiming to improve the quality of wireless mobile communication based on the all-IP packet core network; the next-generation network and the next-generation Internet are the convergence of next-generation networks in the telecommunication network and the Internet, respectively.
  • Research; China's next-generation Internet aims to build a next-generation Internet based on IPv6; although various studies vary widely, the widely accepted view of various studies is that the future network is a unified bearer network based on packets. Therefore, research on the next generation network architecture will use the Internet as the main reference.
  • the Internet has maintained rapid development since its birth. It has become the most successful and most vital communication network.
  • the transmitted address is the received address, and the path is reversible, so the IP address with dual attributes of identity and location can work very well.
  • the IP address also represents the identity and location that exactly met the network needs of the time. From the perspective of the network environment at the time, this design scheme is simple and effective, simplifying the hierarchy of the protocol stack. But there is no doubt that there is an internal contradiction between the identity attribute of the IP address and the location attribute.
  • the identity attribute of an IP address requires that any two IP addresses be equal.
  • IP address location attribute requires IP address
  • the IP addresses in the same subnet should be in a contiguous IP address block, so that the IP address prefixes in the network topology can be aggregated, thus reducing the router device.
  • the entry of the routing table guarantees the scalability of the routing system.
  • DHCP Dynamic Host Configuration Protocol
  • NAT Network Address Translator
  • the user status of the Internet has changed dramatically.
  • the Internet was basically used by people who are in a common group and trusted by each other.
  • the traditional Internet protocol stack is also designed based on such a set of devices; the current Internet users are mixed, people It is difficult to continue to trust each other. In this case, the Internet, which lacks embedded security mechanisms, needs to change.
  • Routing scalability issues There is a basic assumption about the scalability of Internet routing systems:
  • the address is assigned according to the topology, or the topology is deployed according to the address, and the two must choose one.
  • the identity attribute of an IP address requires that the IP address be assigned based on the organization to which the terminal belongs (rather than the network topology), and this allocation must be stable and cannot be changed frequently; the location attribute of the IP address requires the IP address to be based on the network.
  • the topology is allocated to ensure the scalability of the routing system. In this way, the two attributes of the IP address create conflicts, which eventually leads to the scalability problem of the Internet routing system.
  • the identity attribute of the IP address requires that the IP address should not change as the location of the terminal changes. This ensures that the communication bound to the identity is not interrupted, and that the terminal can still use its identity after the terminal is moved.
  • the communication link is established; the location attribute of the IP address requires the IP address to change as the terminal location changes, so that the IP address can be aggregated in the new network topology, otherwise the network must reserve a separate route for the mobile terminal.
  • Information which causes a sharp increase in routing table entries.
  • a number of township issues Many townships usually refer to terminals or networks that access the Internet through multiple ISP networks. The advantages of multiple township technologies include increasing network reliability, supporting traffic load balancing across multiple ISPs, and increasing overall available bandwidth.
  • IP addresses require that a plurality of home terminals always display the same identity to other terminals, regardless of whether the multiple township terminals access the Internet through several ISPs; and the location attribute of the IP address requires that multiple township terminals are different.
  • the ISP network uses different IP addresses to communicate, so that the IP address of the terminal can be aggregated in the topology of the ISP network.
  • IP address contains both the identity information and the location information of the terminal
  • both the communication peer and the malicious eavesdropper can obtain the identity information and topology location information of the terminal according to the IP address of the terminal.
  • the dual attribute problem of IP address is one of the fundamental reasons that plague the Internet to continue to develop. Separating the identity attribute and location attribute of an IP address is a good way to solve the problems faced by the Internet.
  • the new network will be designed based on this idea, and propose a network structure of separate mapping of identity information and location information to solve some serious drawbacks of the existing Internet.
  • the basic idea of all identity and location separation schemes is to separate the identity and location dual attributes originally bound to the IP address.
  • Some of the schemes use the application layer's URL (Uniform Resource Locator, which is an identification method for completely describing the address of web pages and other resources on the Internet.) or FQDN (Fully Qualified Domain Name) As a terminal identity, etc.; some schemes introduce a new namespace as an identity, such as HIP (Host Identity Protocol) to add a host identity on the network layer identified by the IP address; some schemes classify IP addresses, Part of the IP is used as the identity identifier, and some IPs are used as the location identifier.
  • the LID Licator/ID Separation Protocol
  • EID endpoint ID
  • RLOC Ringing Locator
  • the most representative one is a network-based solution.
  • the core idea is to divide the network into two parts, one part is the transmission network or the forwarding network, which is located at the center of the whole network; the other part is the edge network or the access network.
  • the access switch router is connected to the forwarding network; the address space and routing information of the access network and the forwarding network are isolated from each other.
  • the LISP scheme divides the IP address into an EID identity and an RLOC route identifier, and the EID is used as the identity of the end host.
  • the RLOC is the route identifier of the ITR/ETR (ingress Tunnel Router/Egress Tunnel Router).
  • the routing prefix information of the network host that is, the routing prefix information of the EID does not spread to the forwarding network, but the EID prefix information and the RLOC information are registered by the ITR/ETR on the mapping server.
  • the host 1 sends a packet to the host 2, the source address is EID ( a ), and the destination address is EID ( b ).
  • the ingress tunnel router ITR receives the 4 ⁇ message, it queries the mapping server to obtain the egress tunnel to which the end host 2 belongs.
  • the route identifier RLOC2 of the router ETR (the RLOC2 is also called the route identifier of the end host 2), and then the packet is encapsulated by the RLOC1 and the RLOC2 and sent to the ETR through the forwarding network.
  • the ETR receiving packet is decapsulated and sent to the host 2.
  • the advantage of the network-based location identity separation scheme is that the terminal does not need to be modified, and the existing terminal is directly used, thereby reducing the impact of the network evolution on the user, and also reducing the cost of the network transformation, but the solution has a problem.
  • the ITR receives the packet from the host to the host 2, it needs to go to the mapping server to find the mapping information of the EID/RLOC. After the mapping information is obtained, the ITR needs to be encapsulated and forwarded. This query process takes time. The ITR must perform the received packet. Cache, the longer the waiting time, the larger the amount of data cached, which will consume a lot of resources of the ITR device, affecting the normal forwarding performance of the ITR. At the same time, there are security risks, and it is easy to form an attack on the mapping server. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a data packet processing method and an ingress tunnel router and system to improve data packet forwarding efficiency.
  • the present invention provides a data packet processing method, which is implemented based on a location identity separation (LISP) network, and uses a domain name system (DNS) server to store a correspondence between a host domain name and an identity (EID).
  • the method includes:
  • the source host sends a DNS query message to the DNS server, where the domain name of the destination host is carried, and the DNS server returns a DNS response containing the EID of the destination host to the source host.
  • ITR Ingress Tunnel Router
  • the ITR queries the mapping server according to the EID of the destination host to obtain a route identifier (RLOC) of the destination host;
  • the ITR After receiving the data packet sent by the source host to the destination host, the ITR forwards the data packet according to the RLOC of the destination host.
  • the ITR intercepts the DNS response packet from the received forwarding network packet by: according to the DNS packet format, the port number of the DNS, the identity of the DNS, or the routing identifier of the DNS, Whether the forwarding network packet is a DNS response packet.
  • the DNS query message is forwarded to the DNS server by the ITR.
  • the method further includes: after the ITR intercepts the EID of the destination host from the DNS response packet, the DNS response packet is sent. Forwarding to the source terminal; the source terminal sends a data packet to the destination host according to the EID of the destination host in the DNS response packet.
  • the step C includes: before the ITR queries the mapping server, first queries the local cache. If there is no mapping relationship between the EID and the RLOC of the destination host in the local cache, the mapping query request is sent to the mapping server according to the mapping server. The mapping query response obtains the RLOC of the destination host, and caches the mapping between the EID and the RLOC of the destination host.
  • step D after receiving the data packet sent by the source host to the destination host, the ITR first queries the local cache, and if the local cache does not have or is querying the mapping between the EID and the RLOC of the destination host, After the relationship is received, the packet is forwarded after waiting for the mapping query response of the mapping server.
  • the ITR uses the encapsulation mode to implement data packet forwarding.
  • the source address and the destination address of the data packet sent by the source host are the EIDs of the source host and the destination host respectively.
  • the method further includes: when the ITR forwards the data packet
  • the RLOC of the source host and the destination host are used to encapsulate the data packets sent by the source host.
  • the source and destination addresses of the encapsulated data packets are the RLOC of the source host and the destination host, respectively.
  • the packet also includes the EID of the source host and the destination host.
  • the present invention also provides an ingress tunnel router (ITR) located in a location identity separation (LISP) network, where the LISP network includes a DNS
  • the server is configured to: save the correspondence between the domain name and the identity of the host, the DNS query message sent by the host to be the host, and the EID of the host that carries the destination host to the host.
  • DNS response message, the ITR includes:
  • a listening module which is connected to the packet processing module, and configured to: listen to the DNS response packet, and intercept the identity identifier ( EID ) of the destination host in the response packet;
  • mapping query module which is connected to the listening module, and configured to: query the mapping server to obtain a routing identifier (RLOC) of the destination host according to the intercepted EID of the destination host; and a packet processing module,
  • the mapping query module and the listening module are connected, and are configured to: receive the data packet sent by the source host to the destination host, forward the data packet according to the RLOC obtained by the mapping query module; and receive and forward the packet from the forwarding network. The message sent to the source host of the ITR.
  • the listening module of the ITR is configured to listen to the DNS response packet in the forwarding network packet received by the packet processing module according to the following: a DNS packet format, a DNS port number, and a DNS
  • the identity identifier or the routing identifier of the DNS determines whether the received forwarding network packet is a DNS response.
  • the packet processing module is further configured to receive and forward a DNS query message sent by the source host to the DNS server and a DNS response message sent by the DNS server to the source host.
  • the ITR further includes a mapping information caching module connected to the mapping query module, where the mapping information caching module is configured to: a mapping relationship between an EID of the cache end host and an RLOC; the mapping query module is configured to pass the following The mode of obtaining the RLOC of the destination host: querying the mapping information cache module before querying the mapping server, if the mapping information cache module does not have the mapping relationship between the EID and the RLOC of the destination host, and then sending a mapping query request to the mapping server, The RLOC of the destination host is obtained according to the mapping query response of the mapping server.
  • the mapping query module is further configured to: save the mapping relationship between the EID and the RLOC of the destination host in the mapping information cache module.
  • the packet processing module of the ITR is configured to perform data packet forwarding by: after receiving the data packet sent by the source host to the destination host, notifying the mapping query module to query the mapping information cache module If there is no EID of the destination host in the mapping information cache module And the RLOC mapping relationship, after waiting for the mapping query module to receive the mapping query response of the mapping server, and then forwarding the packet.
  • the message processing module of the ITR is configured to implement data packet forwarding by using a package.
  • the present invention further provides a data message processing system, which is implemented based on a location identity separation (LISP) network, where the system includes an end host, an ingress tunnel router (ITR), and a DNS server. among them:
  • the end host includes a domain name query module and a packet sending and receiving module, wherein the domain name querying module is configured to: send a DNS query message carrying the domain name of the destination host to the DNS server, and receive the destination end returned by the DNS server The EID DNS response packet of the host; the packet sending and receiving module is configured to: send a data packet and receive a data packet to the destination host according to the destination host EID in the DNS response packet;
  • the ITR includes:
  • the listening module is connected to the packet processing module, and is configured to: listen to the DNS response packet, and intercept the identity identifier (EID) of the destination host in the response packet;
  • mapping query module which is connected to the listening module, and configured to: query the mapping server to obtain a routing identifier (RLOC) of the destination host according to the intercepted EID of the destination host; and a packet processing module,
  • the mapping query module and the listening module are connected, and are configured to: receive the data packet sent by the source host to the destination host, forward the data packet according to the RLOC obtained by the mapping query module; and receive and forward the packet from the forwarding network.
  • the DNS server is configured to: save the correspondence between the domain name and the identity of the host, the DNS query message sent by the host, and the DNS response to the host.
  • the listening module of the ITR is configured to listen to the DNS response packet in the forwarding network packet received by the packet processing module according to the following: a DNS packet format, a DNS port number, and a DNS
  • the identity identifier or the routing identifier of the DNS determines whether the received forwarding network packet is a DNS response.
  • the packet processing module is further configured to receive and forward a DNS query message sent by the source host to the DNS server and a DNS response message sent by the DNS server to the source host.
  • the ITR further includes a mapping information caching module connected to the mapping query module, where the mapping information caching module is configured to map a relationship between an EID of the cache host and an RLOC; and the mapping query module is configured to be configured as follows Obtaining the RLOC of the destination host: Querying the mapping information cache module before querying the mapping server, if the mapping information cache module does not have the mapping relationship between the EID and the RLOC of the destination host, and then sending a mapping query request to the mapping server, according to The mapping query response of the mapping server obtains the RLOC of the destination host.
  • the mapping query module is further configured to save the mapping relationship between the EID and the RLOC of the destination host in the mapping information cache module.
  • the packet processing module of the ITR is configured to perform data packet forwarding by: after receiving the data packet sent by the source host to the destination host, notifying the mapping query module to query the mapping information cache module If there is no mapping between the EID and the RLOC of the destination host in the mapping information cache module, the mapping query module waits for the mapping query response of the mapping server to perform packet forwarding.
  • the source address and the destination address of the data packet sent by the source host received by the packet processing module of the ITR are respectively an EID of the source host and the destination host; and the processing module further sets The data packet sent by the source host is encapsulated by the RLOC of the source host and the destination host.
  • the source and destination addresses of the encapsulated data packets are the source host and the destination host respectively.
  • the RLOC of the destination host also includes the EID of the source host and the destination host.
  • the data packet processing method and the main idea of the access service node of the present invention are based on a location identity separation (LISP) network.
  • ILR ingress tunnel router
  • FIG. 1 Schematic diagram of the composition of the network architecture with identity and location separation
  • FIG. 2 is a schematic flowchart of a data packet processing and processing method according to the present invention.
  • 3 is a schematic structural diagram of a module of an access service node according to the present invention
  • 4 is a block diagram showing the structure of a data message processing system of the present invention.
  • the data packet processing method and the main idea of the access service node of the present invention are based on a location identity separation (LISP) network.
  • ILR ingress tunnel router
  • the present invention is based on a location identity separation LISP (Locator/ID Separation Protocol) protocol network architecture to implement the mapping information transmission method of the present invention
  • the ITR Ingress Tunnel Router, the ingress tunnel router
  • receives the packet sent by the source host according to
  • the source host queries the packet returned by the domain name system (DNS) to hear the EID of the destination host, and then queries the mapping server for the EID/RLOC mapping information, so that the ITR waits after receiving the packet sent by the source host.
  • DNS domain name system
  • Querying the mapping information requires storing a large number of received packets, which affects the ITR forwarding performance.
  • the network architecture of the LISP protocol is a network-based location identity separation scheme.
  • the IP address of the existing Internet is divided into an EID (Endpoint identifier) and a Routing Locator (RLOC).
  • EID Endpoint identifier
  • RLOC Routing Locator
  • the advantage of the solution is that the current terminal host does not need to be changed.
  • the protocol stack, the compatibility of the terminal is good, the focus is on solving the scalability of the network routing scale, traffic engineering and mobility.
  • the network architecture of LISP is shown in Figure 1.
  • the terminal equipment, the ingress tunnel router ITR and the egress tunnel router ETR identified by the EID are used as the connection between the access network and the forwarding network. Understandably, the ingress tunnel router ITR and the egress tunnel router ETR are relatively speaking.
  • mapping information transmission method including:
  • the source host sends a DNS query message to the DNS server according to the domain name of the destination host to be accessed, where the domain name of the destination host is carried, and the DNS server returns the identity of the host including the destination host to the source host.
  • EID IP address
  • the source host uses the DNS client protocol to query the DNS server to obtain the identity EID of the destination host according to the domain name of the destination host.
  • the DNS server returns a response packet containing the destination host identity EID.
  • the source ingress tunnel router ITR listens to the response packet and intercepts the EID of the destination host.
  • the DNS server identity is a well-known address set by the system.
  • the DNS query and DNS response messages sent by the source host must be forwarded by the ITR.
  • the format of the DNS packet is as follows:
  • Identification field used for message identification, terminal setting, the DNS server uses the identifier to return the result;
  • Flag field 16 bits, the definition of the important bit segment is as follows:
  • QR 0 means query text
  • the problem part of the DNS query message usually has only one problem.
  • the format includes the query name, query type and query class.
  • the query name is the domain name that needs to be searched, such as "ZTE.COM.CN".
  • the query class is 1 refers to the Internet address IP, and the present invention is an identity.
  • the resource record in the DNS response message is as follows:
  • the domain name is the name corresponding to the resource data in the record, and its format is the same as the format of the previous query name segment.
  • Type Description The type code of the RR, which is the same as the previous query type value. Usually 1 for Internet data.
  • the lifetime is the number of seconds the client keeps the resource record, and the resource record typically has a lifetime of 2 days.
  • the resource data length indicates the number of resource data, the format of which depends on the value of the field type field, and for the type A resource data is a 4-byte IP address, which is an EID in the present invention.
  • the ITR intercepts the DNS response packet, and intercepts the identity identifier EID of the destination host in the response packet.
  • the ITR listens to the DNS response packet from the received forwarding network packet (the packet received from the forwarding network in the present invention is called a forwarding network packet), and determines whether the packet is a DNS response packet. Then, the EID of the destination host in the DNS response packet is extracted in real time, and the listening function is completed, and the DNS response packet is forwarded to the source host. After the source host receives the DNS response packet, the destination address is generated. The EID data packet of the host is sent to the ITR.
  • the ITR can determine whether the received packet is a DNS response packet according to the following three methods:
  • the ITR determines whether it is a DNS response packet according to the above-mentioned DNS packet format.
  • the DNS supports UDP and TCP, and uses a specific port number.
  • the port number of the DNS is 53
  • the destination port number of the DNS query is 53
  • the source port number of the DNS response is 53.
  • ITR Determine whether it is a DNS response packet according to the source port number; 3.
  • the DNS has a specific identity and route identifier. The ITR judges according to the identity or route identifier in the source address.
  • the ITR queries the mapping server according to the destination host EID to obtain the RLOC of the egress tunnel router to which the destination host belongs.
  • the ITR local cache has a mapping relationship
  • the ITR intercepts the mapping relationship of the local cache after intercepting the EID of the destination host. If the mapping relationship of the destination host is not found in the local cache, the ITR sends the mapping relationship to the mapping server of the location identity separation network. Mapping the query request, querying the RLOC of the egress tunnel router to which the destination host belongs according to the mapping of the mapping server, and storing the EID and RLOC of the destination host in the local cache according to the RLOC of the egress tunnel router to which the destination host belongs. Mapping relationship;
  • the ITR intercepts the destination host EID and directly queries the mapping server for the RLOC of the egress tunnel router to which the destination host belongs.
  • the query request carries the EID of the destination host, and queries the mapping server of the location identity separation network to query the mapping information, that is, the RLOC of the egress tunnel router to which the destination host belongs.
  • the ITR After receiving the data packet sent by the source host to the destination host, the ITR forwards the data packet according to the RLOC of the destination host.
  • the local cache is first queried. If the local cache does not have or is querying the destination host.
  • the mapping between the AID and the RID caches the data packet and waits for the response of the mapping query to be forwarded. If the mapping information returned by the mapping server is received, the data packet of the terminal should be received immediately.
  • the RLOC is cached in the local mapping table, so that the ITR can directly perform local query after receiving the data packet of the terminal.
  • the source and destination addresses of the data packets sent by the source host are the EIDs of the source and destination hosts.
  • the ITR After receiving the data packet sent by the source host to the destination host, the ITR queries the local cache according to the destination host EID in the data packet to obtain the destination host RLOC, and encapsulates the data packet by using the queried RLOC.
  • the source and destination addresses of the data packets are the source and destination hosts respectively.
  • the RLOC, and the encapsulated message also includes the EID of the source and destination hosts; and then sent to the egress tunnel router ETR through the forwarding network, and the ETR is decapsulated and sent to the destination host.
  • the ITR intercepts the DNS response packet, and intercepts the EID of the destination host in advance before receiving the data packet of the host, and forwards the mapping to the local host without mapping the mapping of the destination host locally.
  • the server performs queries to reduce the buffering of data packets, reduce the size of the buffer, and reduce the amount of data management tasks, so that the ITR device has more resources for data forwarding and improves the processing efficiency of the forwarding data.
  • the present invention further provides an ingress tunnel router (ITR), which is located in a location identity separation (LISP) network, where the LISP network includes a DNS server.
  • ITR ingress tunnel router
  • LISP location identity separation
  • the DNS query message carrying the domain name of the destination host sent by the host, and the DNS response packet carrying the EID of the destination host are returned to the end host.
  • the ITR includes:
  • a listening module which is connected to the packet processing module, and configured to listen to the DNS response packet, and intercept the identity identifier ( EID ) of the destination host in the response packet;
  • mapping query module which is connected to the listening module, and configured to query the mapping server to obtain a routing identifier (RLOC) of the destination host according to the intercepted EID of the destination host;
  • a message processing module which is connected to the mapping query module and the listening module, and configured to: receive, process, and forward data messages, DNS query and response messages, and mapping queries and response messages, and related to the present invention.
  • the device is configured to: receive a data packet sent by the source host to the destination host, forward the data packet according to the RLOC obtained by the mapping query module, and receive and forward the sent from the forwarding network to the source host of the ITR. Message.
  • the intercepting module of the ITR intercepts the DNS response packet from the forwarding network packet received by the packet processing module, according to the format of the DNS packet, the port number of the DNS, the identity of the DNS, or the DNS.
  • the route identifier determines whether the received forwarding network packet is a DNS response packet.
  • the packet processing module is further configured to: receive and forward a DNS query message sent by the source host to the DNS server, and a DNS response message sent by the DNS server to the source host.
  • the ITR further includes a mapping information cache module connected to the mapping query module.
  • the mapping information cache module is configured to: a mapping relationship between the EID of the cache host and the RLOC; before the mapping query module queries the mapping server, query the mapping information cache module first, if there is no destination end in the mapping information cache module
  • the mapping relationship between the EID and the RLOC of the host is sent to the mapping server, and the RLOC of the destination host is obtained according to the mapping query response of the mapping server, and the mapping between the EID and the RLOC of the destination host is saved to the mapping information cache module. relationship.
  • the packet processing module of the ITR After receiving the data packet sent by the source host to the destination host, the packet processing module of the ITR notifies the mapping query module to query the mapping information cache module, if there is no destination host in the mapping information cache module. After the mapping between the EID and the RLOC, the packet processing module internally caches the data packet, and waits for the mapping query module to receive the mapping query response of the mapping server, and then forwards the packet.
  • the packet processing module of the ITR implements data packet forwarding by using an encapsulation, as described above.
  • the present invention further provides a data message processing system, which is implemented based on a location identity separation (LISP) network, where the system includes an end host, an ingress tunnel router (ITR), and a DNS server, where:
  • the end host includes a domain name query module and a packet sending and receiving module, wherein the domain name querying module is configured to: send a DNS query message carrying the domain name of the destination host to the DNS server, and receive the destination end returned by the DNS server a DNS response packet of the EID of the host; the packet sending and receiving module is configured to send a data packet and receive a data packet to the destination host according to the destination host EID in the DNS response packet;
  • the ITR includes:
  • a listening module which is connected to the packet processing module, and configured to listen to the DNS response packet, and intercept the identity identifier (EID) of the destination host in the response packet;
  • mapping query module which is connected to the listening module, and configured to query the mapping server to obtain a routing identifier (RLOC) of the destination host according to the intercepted EID of the destination host;
  • a message processing module which is connected to the mapping query module and the listening module, and configured to: receive, process, and forward data messages, DNS query and response messages, and mapping queries and response messages, and related to the present invention.
  • the setting is: receiving the data packet sent by the source host to the destination host, Forwarding and forwarding the data packet according to the RLOC obtained by the mapping query module; and receiving and forwarding the packet sent from the forwarding network to the source host of the ITR;
  • the DNS server is configured to: save the correspondence between the domain name and the identity of the host, the DNS query message sent by the host, and the DNS response to the host.
  • the interception module of the ITR intercepts from the forwarded network packet received by the packet processing module
  • the DNS response packet is used to determine whether the received forwarding network packet is a DNS response packet according to the format of the DNS packet, the port number of the DNS, the identity of the DNS, or the routing identifier of the DNS.
  • the packet processing module is further configured to receive and forward a DNS query message sent by the source host to the DNS server and a DNS response message sent by the DNS server to the source host.
  • the ITR further includes a mapping information caching module connected to the mapping query module, where the mapping information caching module is configured to: a mapping relationship between an EID and an RLOC of the cache host; and the mapping query module queries the mapping server before querying
  • the mapping information cache module if the mapping information cache module does not have the mapping relationship between the EID and the RLOC of the destination host, sends a mapping query request to the mapping server, and obtains the RLOC of the destination host according to the mapping query response of the mapping server, and
  • the mapping information cache module saves the mapping relationship between the EID of the destination host and the RLOC.
  • the ITR packet processing module After receiving the data packet sent by the source host to the destination host, the ITR packet processing module notifies the mapping query module to query the mapping information cache module, if the mapping information cache module does not have the EID and RLOC of the destination host. In the mapping relationship, the packet processing module internally caches the data packet, and waits for the mapping query module to receive the mapping query response of the mapping server, and then forwards the packet.
  • the source and destination addresses of the data packets sent by the source host received by the ITR packet processing module are the EIDs of the source and destination hosts respectively.
  • the RLOCs of the source and destination hosts are used.
  • the data packet sent by the source host is encapsulated.
  • the source and destination addresses of the encapsulated data packet are the RLOC of the source and destination hosts, and the encapsulated packet also includes the EID of the source and destination hosts.
  • the egress tunnel router decapsulates and restores the received data packets.
  • the location identity separation (LISP) network further includes a mapping server configured to return an RLOC according to an ITR (or ETR) query.
  • the data packet processing method and the access service node of the present invention are implemented based on a location identity separation (LISP) network, which improves the forwarding efficiency of the ITR to the source host data packet, and improves the forwarding performance of the ITR.
  • LISP location identity separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

数据报文处理方法、 入口隧道路由器及***
技术领域
本发明涉及通信领域, 尤其是一种涉及位置身份分离协议(LISP ) 网络 中的数据报文处理方法、 入口隧道路由器及***。
背景技术
3G和 4G是无线通信领域对下一代网络的研究核心, 旨在基于全 IP分 组核心网提高无线移动通信的质量; 下一代网络和下一代互联网 分别是电 信网和互联网领域对下一代网络融合的研究; 中国下一代互联网 旨在构建基 于 IPv6 的下一代互联网; 虽然各种研究存在很大差异,但是各种研究普遍接 受的观点是: 未来网络是基于分组的统一承载网络。 因此研究下一代网络构 架将以互联网为主要参考对象。 互联网从其诞生以来一直保持高速发展, 已 成为当前最成功、 最具生命力的通信网络, 其灵活可扩展性、 高效的分组交 换、 终端强大的功能等特点非常符合新一代网络的设计需要, 互联网将是新 一代网络设计的主要参考蓝本。 然而, 互联网的结构还远远没有达到最优, 存在很多重大的设计问题。 除 IP地址空间无法满足应用需要外, 还主要表现 在以下方面: 互联网发明于二十世纪七十年代, 人们难以预计今天世界上将存在大量 的移动终端和多家乡终端, 因此当时的互联网协议栈主要是针对以"固定"方 式连接的终端而设计。 在当时的网络环境下, 由于终端基本上不会从一个位 置移动到其它位置, 发送的地址就是接收的地址, 路经是可逆的, 所以具有 身份和位置双重属性的 IP地址能够非常好的工作, IP地址的身份属性与位置 属性之间没有产生任何冲突。 IP地址同时代表身份和位置恰恰满足了当时的 网络需求。 从当时的网络环境来看, 这种设计方案简单有效, 简化了协议栈 的层次结构。 但毋庸置疑的是, IP地址的身份属性与位置属性之间存在着内 部矛盾。 IP地址的身份属性要求任意两个 IP地址都是平等的, 虽然 IP地址 可以按照组织机构进行分配, 但是连续编码的 IP地址之间没有必然的关系, 或者至少在拓朴位置上没有必然的关系; IP地址的位置属性则要求 IP地址 基于网络拓朴(而不是组织机构)进行分配, 处于同一个子网内的 IP地址都 应该处于一个连续的 IP地址块中, 这样才可以使网络拓朴中的 IP地址前缀 聚合, 从而减少路由器设备的路由表的条目, 保证路由***的可扩展性。
伴随着网络规模和技术的发展, 一些动态分配 IP地址的技术逐步出现, 口动态主机配置协议(DHCP, Dynamic Host Configuration Protocol ) , 这就 开始打破 IP地址唯一表示一个终端的 4叚定。 私有 IP地址空间的使用和网络 地址转换(NAT, Network Address Translator )技术的诞生使得情况继续恶 化。在这种情况下同时具有身份属性与位置属性的 IP地址将难以继续胜任它 的角色, IP地址的双重属性问题已经凸显出来。 除了技术层面的需求发生了 显著变化以外, 互联网的用户状况也已经发生了巨大的改变。 在互联网诞生 之后的最初几年中, 互联网基本上被一些处于共同团体且相互信任的人员使 用, 传统互联网协议栈也是基于此种 4叚设而设计的; 而目前的互联网用户则 是鱼龙混杂, 人们难以继续互相信任。 在这种情况下, 缺乏内嵌安全性机制 的互联网也需要发生变革。
总的来说, IP地址双重属性的内在矛盾将导致如下主要问题:
1. 路由可扩展问题。 关于互联网路由***的可扩展性存在一个基本的假 定:
"地址按照拓朴进行分配, 或者拓朴按照地址进行部署, 二者必选其一"。 IP地址的身份属性要求 IP地址基于终端所属的组织机构(而不是网络拓朴) 进行分配, 而且这种分配要保持一定的稳定性, 不能经常改变; 而 IP地址的 位置属性要求 IP地址基于网络拓朴进行分配, 以便保证路由***的可扩展 性。 这样, IP地址的两种属性就产生了冲突, 最终引发了互联网路由***的 可扩展问题。
2. 移动性问题。 IP地址的身份属性要求 IP地址不应该随着终端位置的 改变而变化, 这样才能够保证绑定在身份上的通信不中断, 也能够保证终端 在移动后,其它终端仍能够使用它的身份与之建立通信联系; 而 IP地址的位 置属性则要求 IP地址随着终端位置的改变而改变, 以便 IP地址能够在新的 网络拓朴中聚合, 否则网络就必须为移动后的终端保留单独的路由信息, 从 而造成路由表条目的急剧增长。 3. 多家乡问题。多家乡通常指终端或网络同时通过多个 ISP 的网络接入 到互联网。 多家乡技术的优点包括增加网络的可靠性、 支持多个 ISP之间的 流量负载均衡和提高总体可用带宽等。 但是, IP地址双重属性的内在矛盾使 得多家乡技术难以实现。 IP地址的身份属性要求一个多家乡终端始终对其它 终端展现不变的身份, 无论该多家乡终端是通过几个 ISP接入到互联网; 而 IP地址的位置属性则要求一个多家乡终端在不同的 ISP 网络中使用不同的 IP地址通信, 这样才能保证终端的 IP地址能够在 ISP 网络的拓朴中聚合。
4. 安全和位置隐私问题。 由于 IP地址同时包含终端的身份信息和位置 信息,所以通信对端和恶意窃听者都可以才艮据一个终端的 IP地址同时获得该 终端的身份信息和拓朴位置信息。 总的来说, 自从传统互联网的体系结构建 立以来, 互联网的技术环境和用户群体都已经发生了翻天覆地的变化, 互联 网需要随之进行革新。 IP地址的双重属性问题是困扰互联网继续发展的根本 原因之一,将 IP地址的身份属性和位置属性进行分离,是解决互联网所面临 问题的一个很好的思路。 新网络将基于这种思路进行设计, 提出一种身份信 息与位置信息分离映射的网络结构,以解决现有互联网存在的一些严重弊端。
为了解决身份和位置的问题, 业界进行了大量的研究和探索, 所有身份 与位置分离方案的基本思想都是将原本绑定在 IP地址上的身份与位置双重 属性分离。 其中, 有些方案釆用应用层的 URL (统一资源定位符 Uniform Resource Locator, URL是用于完整地描述 Internet上网页和其他资源的地址的 一种标识方法。 ) 或 FQDN (合格域名 Fully Qualified Domain Name ) 作为 终端的身份标识等; 有些方案引入了新的名字空间作为身份标识, 如 HIP ( Host Identity Protocol )在以 IP地址为位置标识的网络层上增加主机标识; 有些方案将 IP地址进行分类, 部分 IP作为身份标识, 部分 IP作为位置标 识,如 LISP ( Locator/ID Separation Protocol ,位置身份分离协议)中使用 EID ( endpoint ID )作为身份标识, RLOC ( Routing Locator )作为路由标识等。
其中比较有代表性的是基于网络的解决方案, 其核心思想是将网络分为 两个部分, 一个部分是传输网络或者转发网络, 位于整个网络的中心; 另一 部分是边缘网络或者接入网络, 通过接入交换路由器连接到转发网络; 其中 接入网络和转发网络的地址空间和路由信息是相互隔离的。 如图 1所示, LISP方案中将 IP地址分成 EID身份标识和 RLOC路由标 识, EID 作为端主机的身份标识, RLOC 为 ITR/ETR ( Ingress Tunnel Router/Egress Tunnel Router )路由器的路由标识,接入网络端主机的路由前缀 信息, 即 EID的路由前缀信息不扩散到转发网络, 而是由 ITR/ETR将 EID前 缀信息以及 RLOC信息注册在映射服务器上。端主机 1向端主机 2发送报文, 源地址为 EID ( a ) , 目的地址为 EID ( b ) , 入口隧道路由器 ITR收到 4艮文 后, 查询映射服务器, 得到端主机 2所属的出口隧道路由器 ETR的路由标识 RLOC2 ( RLOC2也称为端主机 2的路由标识 ) , 然后使用 RLOC1和 RLOC2 封装报文后通过转发网络发送到 ETR, ETR接收报文解封装后发送给端主机 2。
上述基于网络的位置身份分离方案的优点是不需要对终端进行修改, 直 接利用现有的终端, 降低网络演进对用户的影响, 同时也可以降低网络改造 的成本, 但是该方案存在一个问题, 当 ITR收到端主机 1到端主机 2的报文 时, 需要到映射服务器查找 EID/RLOC的映射信息, 得到映射信息以后进行 封装转发, 这个查询过程需要时间, ITR必须对接收到的报文进行緩存, 等 待的时间越长,緩存的数据量越大,必然消耗 ITR设备大量的资源,影响 ITR 正常的转发性能; 同时还存在安全方面的隐患, 容易形成对映射服务器的攻 击。 发明内容
本发明要解决的技术问题是提供一种数据报文处理方法及入口隧道路由 器及***, 以提高数据报文转发效率。
为解决以上技术问题, 本发明提供一种数据报文处理方法, 该方法基于 位置身份分离 (LISP ) 网络实现, 并使用域名***(DNS )服务器保存端主 机域名和身份标识 (EID)的对应关系, 该方法包括:
A、源端主机向 DNS服务器发送 DNS查询报文,其中携带目的端主机的 域名, 所述 DNS服务器向所述源端主机返回包含目的端主机的 EID的 DNS 响应 4艮文;
B、 入口隧道路由器(ITR )侦听 DNS 响应报文, 截获响应报文中的目 的端主机的 EID;
C、 所述 ITR根据所述目的端主机的 EID向映射服务器查询获取所述目 的端主机的路由标识(RLOC ) ; 以及
D、 所述 ITR接收所述源端主机发送给目的端主机的数据报文后, 根据 所述目的端主机的 RLOC进行数据报文转发。
优选地,步骤 B中, ITR从收到的转发网络报文中通过如下方式侦听 DNS 响应报文: 根据 DNS报文格式、 DNS的端口号、 DNS的身份标识或 DNS的 路由标识, 判断收到的转发网络报文是否为 DNS响应报文。
优选地, 步骤 A中, 所述 DNS查询报文经过 ITR转发至 DNS服务器; 所述方法还包括: 所述 ITR从 DNS响应报文中截获目的端主机的 EID后, 将所述 DNS响应报文转发给源终端; 所述源终端根据所述 DNS响应报文中 的目的端主机的 EID向目的端主机发送数据报文。
优选地, 步骤 C包括: 所述 ITR向映射服务器查询前,先查询本地緩存, 若本地緩存中没有目的端主机的 EID和 RLOC的映射关系, 则向映射服务器 发送映射查询请求, 根据映射服务器的映射查询响应获取目的端主机的 RLOC, 并緩存目的端主机的 EID和 RLOC的映射关系。
优选地, 步骤 D中, 所述 ITR接收到所述源端主机发送给目的端主机的 数据报文后, 先查询本地緩存, 若本地緩存中没有或者正在查询目的端主机 的 EID和 RLOC的映射关系,则等待收到所述映射服务器的映射查询响应后, 再进行报文转发。
优选地, 步骤 D中, 所述 ITR釆用封装方式实现数据报文转发。
优选地, 步骤 D中, 所述源端主机发送的数据报文中源地址和目的地址 分别为源端主机和目的端主机的 EID; 所述方法还包括: 所述 ITR进行数据 报文转发时, 用源端主机和目的端主机的 RLOC对源端主机发送的数据报文 进行封装, 封装后的数据报文的源地址和目的地址分别为源端主机和目的端 主机的 RLOC, 封装后的报文中还包括源端主机和目的端主机的 EID。
为解决以上技术问题, 本发明还提供一种入口隧道路由器, 该入口隧道 路由器 (ITR )位于位置身份分离 (LISP ) 网络, 所述 LISP 网络包括 DNS 服务器, 所述 DNS服务器设置成: 保存端主机域名和身份标识的对应关系, 接收端主机发送的携带目的端主机的域名的 DNS查询报文, 以及, 向端主机 返回携带目的端主机的 EID的 DNS响应报文, 所述 ITR包括:
侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 截 获响应报文中目的端主机的身份标识( EID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据截获的目的端 主机的 EID向映射服务器查询获取目的端主机的路由标识(RLOC ) ; 以及 报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RLOC 进行数据报文转发; 以及, 接收及转发从转发网络发来的发送给该 ITR下源 端主机的 ^艮文。
优选地, 所述 ITR的侦听模块是设置成从所述报文处理模块收到的转发 网络报文中通过如下方式侦听 DNS响应报文: 根据 DNS报文格式、 DNS的 端口号、 DNS的身份标识或 DNS的路由标识, 判断收到的转发网络报文是 否为 DNS响应 4艮文。
优选地,所述报文处理模块还设置成接收并转发源端主机发送给 DNS服 务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
优选地,所述 ITR还包括与所述映射查询模块连接的映射信息緩存模块, 该映射信息緩存模块设置成: 緩存端主机的 EID和 RLOC的映射关系; 所述 映射查询模块是设置成通过如下方式获取目的端主机的 RLOC: 向映射服务 器查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中没有目的 端主机的 EID和 RLOC的映射关系, 再向映射服务器发送映射查询请求, 根 据映射服务器的映射查询响应获取目的端主机的 RLOC; 映射查询模块还设 置成: 在所述映射信息緩存模块中保存目的端主机的 EID和 RLOC的映射关 系。
优选地, 所述 ITR的报文处理模块是设置成通过如下方式进行数据报文 转发: 接收到所述源端主机发送给目的端主机的数据报文后, 通知映射查询 模块查询映射信息緩存模块, 若映射信息緩存模块中没有目的端主机的 EID 和 RLOC映射关系, 则等待映射查询模块收到所述映射服务器的映射查询响 应后, 再进行报文转发。
优选地,所述 ITR的报文处理模块是设置成釆用封装实现数据报文转发。 为解决以上技术问题, 本发明还提供一种数据报文处理***, 该数据报 文处理***基于位置身份分离 (LISP ) 网络实现, 该***包括端主机、 入口 隧道路由器(ITR ) 及 DNS服务器, 其中:
所述端主机, 包括域名查询模块及报文收发模块, 其中, 域名查询模块 设置成: 向 DNS服务器发送携带目的端主机的域名的 DNS查询报文, 以及 接收所述 DNS服务器返回的携带目的端主机的 EID的 DNS响应报文; 报文 收发模块设置成:根据所述 DNS响应报文中的目的端主机 EID向目的端主机 发送数据报文及接收数据报文;
所述 ITR包括:
侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 截 获响应报文中目的端主机的身份标识(EID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据截获的目的端 主机的 EID向映射服务器查询获取目的端主机的路由标识(RLOC ) ; 以及 报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RLOC 进行数据报文转发; 以及, 接收及转发从转发网络发来的发送给该 ITR下源 端主机的 ^艮文;
DNS服务器设置成: 保存端主机域名和身份标识的对应关系, 接收端主 机发送的 DNS查询 文, 以及向端主机返回 DNS响应 4艮文。
优选地, 所述 ITR的侦听模块是设置成从所述报文处理模块收到的转发 网络报文中通过如下方式侦听 DNS响应报文: 根据 DNS报文格式、 DNS的 端口号、 DNS的身份标识或 DNS的路由标识, 判断收到的转发网络报文是 否为 DNS响应 4艮文。
优选地,所述报文处理模块还设置成接收并转发源端主机发送给 DNS服 务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。 优选地,所述 ITR还包括与所述映射查询模块连接的映射信息緩存模块, 该映射信息緩存模块设置成緩存端主机的 EID和 RLOC的映射关系; 所述映 射查询模块是设置成通过如下方式获取目的端主机的 RLOC: 向映射服务器 查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中没有目的端 主机的 EID和 RLOC的映射关系, 再向映射服务器发送映射查询请求, 根据 映射服务器的映射查询响应获取目的端主机的 RLOC; 映射查询模块还设置 成在所述映射信息緩存模块中保存目的端主机的 EID和 RLOC的映射关系。
优选地, 所述 ITR的报文处理模块是设置成通过如下方式进行数据报文 转发: 接收到所述源端主机发送给目的端主机的数据报文后, 通知映射查询 模块查询映射信息緩存模块, 若映射信息緩存模块中没有目的端主机的 EID 和 RLOC映射关系, 则等待映射查询模块收到所述映射服务器的映射查询响 应后, 再进行报文转发。
优选地, 所述 ITR的报文处理模块接收的所述源端主机发送的数据报文 中源地址和目的地址分别为源端主机和目的端主机的 EID; 所述 ^艮文处理模 块还设置成: 在进行数据报文转发时, 用源端主机和目的端主机的 RLOC对 源端主机发送的数据报文进行封装, 封装后的数据报文的源地址和目的地址 分别为源端主机和目的端主机的 RLOC, 封装后的报文中还包括源端主机和 目的端主机的 EID。
本发明数据报文处理方法及接入业务节点的主要思想基于位置身份分离 ( LISP ) 网络, 入口隧道路由器(ITR ) 收到源端主机发送的数据报文前, 根据源端主机查询 DNS ( domain name system, 域名***)返回的数据报文侦 听到目的端主机的 EID, 并向映射服务器查询 EID/RLOC的映射信息, 从而 提高 ITR对源端主机数据报文的转发效率, 改善 ITR的转发性能。 附图概述
图 1身份和位置分离的网络架构的组成示意图;
图 2 是本发明数据报文处理处理方法的流程示意图;
图 3 是本发明接入服务节点的模块结构示意图; 图 4是本发明数据报文处理***的模块结构示意图。
本发明的较佳实施方式
本发明数据报文处理方法及接入业务节点的主要思想是基于位置身份分 离 (LISP )网络, 入口隧道路由器(ITR ) 收到源端主机发送的数据报文前, 根据源端主机查询 DNS ( domain name system, 域名***)返回的数据报文侦 听到目的端主机的 EID, 并向映射服务器查询 EID/RLOC的映射信息, 从而 提高对源端主机数据报文的转发效率, 改善转发性能。 本发明基于位置身份分离 LISP ( Locator/ID Separation Protocol )协议网 络架构下的实施本发明的映射信息的传输方法, ITR(Ingress Tunnel Router , 入口隧道路由器)收到源主机发送的报文前, 根据源主机查询 DNS ( domain name system, 域名***)返回的报文侦听到目的端主机的 EID, 并向映射服 务器查询 EID/RLOC的映射信息, 从而解决 ITR收到源主机发送的报文以后 等待查询映射信息, 需要存储收到的大量报文, 导致影响 ITR转发性能的问 题。
LISP协议网络架构是一种基于网络的位置身份分离方案, 将现有互联网 的 IP地址分为身份标识 EID ( Endpoint identifier )和路由标识 RLOC ( Routing Locator ) , 方案的优点是不需要改变目前终端主机的协议栈, 终端的兼容性 好, 重点在于解决网络路由规模的可扩展性、 流量工程和移动性。 LISP的网 络架构示意图见图 1 , 以 EID标识的终端设备、 入口隧道路由器 ITR和出口 隧道路由器 ETR作为接入网络和转发网络的连接。 可理解地, 入口隧道路由 器 ITR和出口隧道路由器 ETR是相对而言的。
图 2为本发明实施例的映射信息传输方法的流程图, 包括:
201 : 源端主机根据要访问的目的端主机的域名向 DNS服务器发送 DNS 查询报文, 其中携带目的端主机的域名, 所述 DNS服务器向所述源端主机返 回包含目的端主机的身份标识 (EID)的 DNS响应报文;
在传统的 DNS服务器中存储端主机的域名和 IP地址的对应关系, 在本 发明的身份和位置分离网络中, DNS服务器中存储端主机的域名和身份标识 (即端主机的身份属性)的对应关系, 同时 DNS服务器在身份和位置分离网 络中有自己的身份标识和路由标识。
源端主机和目的端主机通信时, 源端主机根据目的端主机的域名利用 DNS客户端协议查询 DNS服务器以得到目的端主机的身份标识 EID, DNS 服务器返回包含目的端主机身份标识 EID的响应报文,源入口隧道路由器 ITR 侦听该响应报文, 截获目的端主机的 EID。
DNS服务器身份标识是***设定的公知地址, 源端主机发送的 DNS查 询才艮文和 DNS响应艮文必须经过 ITR转发。
DNS的报文格式如下:
标识 标志
问题数 资源记录数
授权的资源记录数 额外资源记录数
查询问题
回答(资源记录数可变)
授权(资源记录数可变)
额外信息 (资源记录数可变)
其中:
标识字段: 用于报文标识, 终端设置, DNS服务器使用该标识返回结果; 标志字段: 16位, 重要位段的定义如下:
位数 名称 说明
1位 QR 0表示查询艮文
1表示响应才艮文
4位 Opcode 0表示标准查询
1位 AA 表示 4受权回答
1位 TC 表示可切断 4位 Rcode 返回码, 0表示无差错
DNS查询报文中的问题部分通常只有一个问题, 格式包括查询名、 查询 类型和查询类, 查询名就是需要查找的域名, 如 "ZTE.COM.CN" 。 查询类 为 1是指互联网地址 IP, 本发明为身份标识。
DNS响应报文中的资源记录, 在 DNS报文格式中的最后 3个字段, 回 答字段、 授权字段和额外字段, 釆用资源记录格式, 格式如下:
Figure imgf000013_0001
其中: 域名是记录中资源数据对应的名字, 它的格式和前面的查询名字 段格式一样。
类型说明 RR的类型码, 它和前面的查询类型值是一样的。 通常为 1 , 表示互 联网数据。
生存时间是客户程序保留该资源记录的秒数, 资源记录通常的生存时间为 2 天。
资源数据长度说明资源数据的数量,该数据的格式依赖域类型字段的值, 对于类型 A资源数据是 4字节的 IP地址, 本发明中为 EID。
202, ITR侦听 DNS响应报文, 截获响应报文中的目的端主机的身份标 识 EID;
ITR从收到的转发网络报文(本发明中将从转发网络接收的报文称为转 发网络报文) 中侦听 DNS响应报文, 判断该报文是否是 DNS的响应报文, 如果是, 则实时提取 DNS响应报文中的目的端主机的 EID, 完成侦听功能, 并将 DNS响应报文转发给源端主机, 源端主机接收到该 DNS响应报文后, 生成目的地址为目的端主机的 EID的数据报文, 并发送给 ITR。
ITR可根据以下三种方式判断接收的报文是否为 DNS响应报文:
1、 ITR根据上述的 DNS的报文格式判断是否为 DNS响应报文;
2、 DNS均支持 UDP和 TCP, 并使用特定的端口号, 如 DNS的端口号 为 53 , DNS的查询 ^艮文的目的端口号为 53 , DNS响应 4艮文的源端口号为 53 , ITR根据源端口号判断是否为 DNS响应报文; 3、 DNS有特定的身份标识及路由标识, ITR根据源端地址中的身份标识 或路由标识进行判断。
203 , ITR根据目的端主机 EID向映射服务器查询获取目的端主机所属的 出口隧道路由器的 RLOC;
若 ITR本地緩存有映射关系, 则 ITR截获目的端主机 EID后先查询本地 緩存的映射关系, 若在本地緩存中未查到目的端主机的映射关系, 则 ITR向 位置身份分离网络的映射服务器发送映射查询请求, 根据映射服务器的映射 查询目的端主机的所属的出口隧道路由器的 RLOC, 并根据映射服务器返回 的目的端主机所属的出口隧道路由器的 RLOC, 在本地緩存保存目的端主机 的 EID和 RLOC的映射关系;
若 ITR本地緩存中没有保存映射关系, 则 ITR截获目的端主机 EID后直 接向映射服务器查询目的端主机所属的出口隧道路由器的 RLOC。
ITR向映射服务器查询目的端主机的 RLOC时, 查询请求中携带目的端 主机的 EID, 向位置身份分离网络的映射服务器查询映射信息, 即目的端主 机所属的出口隧道路由器的 RLOC。
204, ITR接收所述源端主机发送给目的端主机的数据报文后, 根据所述 目的端主机的 RLOC进行数据报文转发。
接收数据报文与获得映射服务器返回的 RLOC之间一定有时间差, 多数 情况是先收到终端的数据报文, 这种情况下先查询本地緩存, 若本地緩存中 没有或者正在查询目的端主机的 AID和 RID的映射关系, 则緩存数据报文, 等待收到映射查询响应后, 再进行报文转发; 如果先收到映射服务器返回的 映射信息, 不管是否收到终端的数据报文, 应该立即将 RLOC进行本地映射 表的緩存, 这样 ITR收到终端的数据报文以后就可以直接进行本地查询。
源端主机发送的数据报文中源、 目的地址分别为源、 目的端主机的 EID,
ITR接收所述源端主机发送给目的端主机的数据报文后, 根据数据报文中的 目的端主机 EID查询本地緩存获取目的端主机 RLOC , 利用查询到的 RLOC 封装该数据报文, 封装后的数据报文的源、 目的地址分别为源、 目的端主机 的 RLOC, 且封装报文中还包括源、 目的端主机的 EID; 然后通过转发网络 发送给出口隧道路由器 ETR, ETR解封装后发送给目的端主机。
本发明中, 通过 ITR侦听 DNS响应报文, 在收到端主机的数据报文前, 提前截获目的端主机的 EID, 并在本地未緩存目的端主机的映射关系的情况 下, 提前向映射服务器进行查询, 从而减少数据报文的緩存, 减少緩存器的 大小,减少数据管理的任务量,使得 ITR设备有更多的资源来进行数据转发, 提高转发数据的处理效率。
图 3所示, 为实现以上方法, 本发明还提供了一种入口隧道路由器, 该 入口隧道路由器(ITR, Ingress Tunnel Router )位于位置身份分离 (LISP ) 网 络, 所述 LISP网络包括 DNS服务器, 用于保存端主机域名和身份标识的对 应关系,接收端主机发送的携带目的端主机的域名的 DNS查询报文, 以及向 端主机返回携带目的端主机的 EID的 DNS响应报文,
与本发明相关地, ITR包括:
侦听模块, 其与报文处理模块连接, 并设置成侦听 DNS响应报文, 截获 响应报文中目的端主机的身份标识( EID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成根据截获的目的端主 机的 EID向映射服务器查询获取目的端主机的路由标识(RLOC ) ;
报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收、 处理并转发数据艮文、 DNS查询及响应艮文以及映射查询及响应艮文, 与本发明相关地, 其设置成: 接收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RLOC进行数据报文转发; 以及, 接收及转发从转 发网络发来的发送给 ITR下源端主机的报文。
进一步地, 所述 ITR的侦听模块从所述报文处理模块收到的转发网络报 文中侦听 DNS响应报文, 根据 DNS报文格式、 DNS的端口号、 DNS的身份 标识或 DNS的路由标识, 判断收到的转发网络报文是否为 DNS响应报文。
进一步地,所述报文处理模块还设置成:接收并转发源端主机发送给 DNS 服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
进一步地, 所述 ITR还包括与所述映射查询模块连接的映射信息緩存模 块, 该映射信息緩存模块设置成: 緩存端主机的 EID和 RLOC的映射关系; 所述映射查询模块向映射服务器查询前, 先查询所述映射信息緩存模块, 若 映射信息緩存模块中没有目的端主机的 EID和 RLOC的映射关系, 再向映射 服务器发送映射查询请求, 根据映射服务器的映射查询响应获取目的端主机 的 RLOC, 并向所述映射信息緩存模块保存目的端主机的 EID和 RLOC的映 射关系。
进一步地, 所述 ITR的报文处理模块接收到所述源端主机发送给目的端 主机的数据报文后, 通知映射查询模块查询映射信息緩存模块, 若映射信息 緩存模块中没有目的端主机的 EID和 RLOC映射关系, 则报文处理模块内部 緩存该数据报文,等待映射查询模块收到所述映射服务器的映射查询响应后, 再进行报文转发。
所述 ITR的报文处理模块釆用封装实现数据报文转发, 具体如上所述。 图 4所示, 本发明还提供一种数据报文处理***, 该***基于位置身份 分离(LISP )网络实现, 该***包括端主机、 入口隧道路由器(ITR )及 DNS 服务器, 其中:
所述端主机, 包括域名查询模块及报文收发模块, 其中, 域名查询模块 设置成: 向 DNS服务器发送携带目的端主机的域名的 DNS查询报文, 以及 接收所述 DNS服务器返回的携带目的端主机的 EID的 DNS响应报文; 报文 收发模块设置成根据所述 DNS响应报文中的目的端主机 EID向目的端主机发 送数据报文及接收数据报文;
所述 ITR包括:
侦听模块, 其与报文处理模块连接, 并设置成侦听 DNS响应报文, 截获 响应报文中目的端主机的身份标识(EID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成根据截获的目的端主 机的 EID向映射服务器查询获取目的端主机的路由标识( RLOC ) ;
报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收、 处理并转发数据艮文、 DNS查询及响应艮文以及映射查询及响应艮文, 与本发明相关地, 其设置成: 接收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RLOC进行数据报文转发; 以及, 接收及转发从转 发网络发来的发送给 ITR下源端主机的报文;
DNS服务器设置成: 保存端主机域名和身份标识的对应关系, 接收端主 机发送的 DNS查询 文, 以及向端主机返回 DNS响应 4艮文。
所述 ITR 的侦听模块从所述报文处理模块收到的转发网络报文中侦听
DNS响应报文, 并根据 DNS报文格式、 DNS的端口号、 DNS的身份标识或 DNS的路由标识, 判断收到的转发网络报文是否为 DNS响应报文。
所述报文处理模块还设置成接收并转发源端主机发送给 DNS服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
所述 ITR还包括与所述映射查询模块连接的映射信息緩存模块, 该映射 信息緩存模块设置成: 緩存端主机的 EID和 RLOC的映射关系; 所述映射查 询模块向映射服务器查询前, 先查询所述映射信息緩存模块, 若映射信息緩 存模块中没有目的端主机的 EID和 RLOC的映射关系, 再向映射服务器发送 映射查询请求, 根据映射服务器的映射查询响应获取目的端主机的 RLOC, 并向所述映射信息緩存模块保存目的端主机的 EID和 RLOC的映射关系。
所述 ITR的报文处理模块接收到所述源端主机发送给目的端主机的数据 报文后, 通知映射查询模块查询映射信息緩存模块, 若映射信息緩存模块中 没有目的端主机的 EID和 RLOC映射关系, 则报文处理模块内部緩存该数据 报文, 等待映射查询模块收到所述映射服务器的映射查询响应后, 再进行报 文转发。
所述 ITR的报文处理模块接收的所述源端主机发送的数据报文中源、 目 的地址分别为源、 目的端主机的 EID, 进行数据报文转发时, 用源、 目的端 主机的 RLOC对源端主机发送的数据报文进行封装,封装后的数据报文的源、 目的地址分别为源、 目的端主机的 RLOC, 且封装后的报文中还包括源、 目 的端主机的 EID。
出口隧道路由器 ( ETR )对接收的数据报文进行解封装还原。
进一步地, 所述位置身份分离 (LISP ) 网络还包括映射服务器, 所述映 射服务器设置成根据 ITR (或 ETR)的查询返回 RLOC。 工业实用性
与现有技术相比, 本发明数据报文处理方法及接入业务节点基于位置身 份分离 (LISP ) 网络实现, 提高了 ITR对源端主机数据报文的转发效率, 改 善了 ITR的转发性能。

Claims

权 利 要 求 书
1、一种数据报文处理方法,其特征在于,该方法基于位置身份分离( LISP ) 网络实现, 并使用域名***(DNS )服务器保存端主机域名和身份标识 (EID) 的对应关系, 该方法包括:
A、源端主机向 DNS服务器发送 DNS查询报文,其中携带目的端主机的 域名, 所述 DNS服务器向所述源端主机返回包含目的端主机的 EID的 DNS 响应 4艮文;
B、 入口隧道路由器(ITR )侦听 DNS响应报文, 截获侦听到的 DNS响 应才艮文中的目的端主机的 EID;
C、 所述 ITR根据所述目的端主机的 EID向映射服务器查询获取所述目 的端主机的路由标识(RLOC ) ; 以及
D、 所述 ITR接收所述源端主机发送给目的端主机的数据报文后, 根据 所述目的端主机的 RLOC进行数据报文转发。
2、 如权利要求 1所述的方法, 其中, 步骤 B中, 所述 ITR是从收到的 转发网络报文中通过如下方式侦听 DNS响应报文:根据 DNS报文格式、 DNS 的端口号、 DNS的身份标识或 DNS的路由标识, 判断收到的转发网络报文 是否为 DNS响应报文。
3、 如权利要求 1所述的方法, 其中, 步骤 A中, 所述 DNS查询报文经 过 ITR转发至 DNS服务器; 所述方法还包括: 所述 ITR从 DNS响应报文中截获目的端主机的 EID 后, 将所述 DNS响应报文转发给源终端; 所述源终端根据所述 DNS响应报 文中的目的端主机的 EID向目的端主机发送数据报文。
4、 如权利要求 1 所述的方法, 其中, 所述 ITR根据所述目的端主机的 EID向映射服务器查询获取所述目的端主机的 RLOC的步骤包括: 所述 ITR 向映射服务器查询前,先查询本地緩存,若本地緩存中没有目的端主机的 EID 和 RLOC的映射关系, 则向映射服务器发送映射查询请求, 根据映射服务器 的映射查询响应获取目的端主机的 RLOC,并緩存目的端主机的 EID和 RLOC 的映射关系。
5、 如权利要求 1所述的方法, 其中, 步骤 D中, 根据所述目的端主机 的 RLOC进行数据报文转发的步骤包括: 所述 ITR接收到所述源端主机发送 给目的端主机的数据报文后, 先查询本地緩存, 若本地緩存中没有或者正在 查询目的端主机的 EID和 RLOC的映射关系, 则等待收到所述映射服务器的 映射查询响应后, 再进行 ^文转发。
6、 如权利要求 1所述的方法, 其中, 步骤 D中, 所述 ITR釆用封装方 式实现数据报文转发。
7、 如权利要求 1所述的方法, 其中, 步骤 D中, 所述源端主机发送的 数据 文中源地址和目的地址分别为源端主机和目的端主机的 EID; 所述方法还包括: 所述 ITR进行数据报文转发时, 用源端主机和目的端 主机的 RLOC对源端主机发送的数据报文进行封装, 封装后的数据报文的源 地址和目的地址分别为源端主机和目的端主机的 RLOC, 封装后的报文中还 包括源端主机和目的端主机的 EID。
8、 一种入口隧道路由器, 其特征在于, 该入口隧道路由器(ITR )位于 位置身份分离 (LISP ) 网络, 所述 LISP网络包括域名***(DNS )服务器, 所述 DNS服务器设置成: 保存端主机域名和身份标识(EID ) 的对应关系, 接收端主机发送的携带目的端主机的域名的 DNS查询报文, 以及, 向端主机 返回携带目的端主机的 EID的 DNS响应报文, 所述 ITR包括:
侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 截 获侦听到的 DNS响应报文中目的端主机的 EID;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据截获的目的端 主机的 EID向映射服务器查询以获取目的端主机的路由标识(RLOC ) ; 以 及
报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 并根据映射查询模块获取的 RLOC 进行数据报文转发; 以及, 接收及转发从转发网络发来的发送给所述
ITR下的源端主机的艮文。
9、 如权利要求 8所述入口隧道路由器, 其中, 所述侦听模块是设置成从 所述报文处理模块收到的转发网络报文中通过如下方式侦听 DNS响应报文: 根据 DNS报文格式、 DNS的端口号、 DNS的身份标识或 DNS的路由标识, 判断报文处理模块收到的转发网络报文是否为 DNS响应报文。
10、 如权利要求 8所述的入口隧道路由器, 其中, 所述报文处理模块还设置成接收并转发源端主机发送给 DNS服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
11、 如权利要求 8所述的入口隧道路由器, 还包括与所述映射查询模块 连接的映射信息緩存模块,所述映射信息緩存模块设置成:緩存端主机的 EID 和 RLOC的映射关系; 所述映射查询模块是设置成通过如下方式获取目的端主机的 RLOC: 向 映射服务器查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中 没有目的端主机的 EID和 RLOC的映射关系, 再向映射服务器发送映射查询 请求, 根据映射服务器的映射查询响应获取目的端主机的 RLOC; 所述映射查询模块还设置成: 在所述映射信息緩存模块中保存目的端主 机的 EID和 RLOC的映射关系。
12、 如权利要求 8所述的入口隧道路由器, 其中, 所述报文处理模块是 设置成通过如下方式进行数据报文转发: 在接收到所述源端主机发送给目的 端主机的数据报文后, 通知映射查询模块查询映射信息緩存模块, 若映射信 息緩存模块中没有目的端主机的 EID和 RLOC映射关系, 则等待映射查询模 块收到所述映射服务器的映射查询响应后, 再进行报文转发。
13、 如权利要求 8所述的入口隧道路由器, 其中, 所述报文处理模块是 设置成釆用封装实现数据报文转发。
14、 一种数据报文处理***, 其特征在于, 该数据报文处理***基于位 置身份分离 (LISP ) 网络实现, 该***包括端主机、 入口隧道路由器(ITR ) 及域名***(DNS )服务器, 其中:
所述端主机包括域名查询模块及报文收发模块, 其中, 域名查询模块设 置成: 向 DNS服务器发送携带目的端主机的域名的 DNS查询报文, 以及接 收所述 DNS服务器返回的携带目的端主机的身份标识( EID )的 DNS响应报 文;报文收发模块设置成: 根据所述 DNS响应报文中的目的端主机的 EID向 目的端主机发送数据报文, 以及接收数据报文;
所述 ITR包括:
侦听模块, 其与报文处理模块连接, 并设置成: 侦听 DNS响应报文, 截 获侦听到的 DNS响应报文中目的端主机的身份标识(EID ) ;
映射查询模块, 其与所述侦听模块连接, 并设置成: 根据侦听模块截获 的目的端主机的 EID向映射服务器查询获取目的端主机的路由标识( RLOC ); 以及
报文处理模块, 其与所述映射查询模块及侦听模块连接, 并设置成: 接 收源端主机发送给目的端主机的数据报文, 根据映射查询模块获取的 RLOC 进行数据报文转发; 以及, 接收及转发从转发网络发来的发送给所述 ITR下 的源端主机的报文;
所述 DNS服务器设置成: 保存端主机域名和身份标识的对应关系,接收 端主机发送的 DNS查询报文, 以及向端主机返回 DNS响应报文。
15、 如权利要求 14所述的***, 其中, 所述侦听模块是设置成从所述报 文处理模块收到的转发网络报文中通过如下方式侦听 DNS 响应报文: 根据 DNS报文格式、 DNS的端口号、 DNS的身份标识或 DNS的路由标识, 判断 收到的转发网络报文是否为 DNS响应报文。
16、 如权利要求 14所述的***, 其中, 所述报文处理模块还设置成接收并转发源端主机发送给 DNS服务器的 DNS查询报文以及 DNS服务器发送给源端主机的 DNS响应报文。
17、 如权利要求 14所述的***, 其中, 所述 ITR还包括与所述映射查询 模块连接的映射信息緩存模块, 所述映射信息緩存模块设置成緩存端主机的 EID和 RLOC的映射关系; 所述映射查询模块是设置成通过如下方式获取目的端主机的 RLOC: 向 映射服务器查询前, 先查询所述映射信息緩存模块, 若映射信息緩存模块中 没有目的端主机的 EID和 RLOC的映射关系, 再向映射服务器发送映射查询 请求, 根据映射服务器的映射查询响应获取目的端主机的 RLOC; 所述映射查询模块还设置成: 在所述映射信息緩存模块中保存目的端主 机的 EID和 RLOC的映射关系。
18、 如权利要求 14所述的***, 其中, 所述报文处理模块是设置成通过 如下方式进行数据报文转发: 接收到所述源端主机发送给目的端主机的数据 报文后, 通知映射查询模块查询映射信息緩存模块, 若映射信息緩存模块中 没有目的端主机的 EID和 RLOC映射关系, 则等待映射查询模块收到所述映 射服务器的映射查询响应后, 再进行报文转发。
19、 如权利要求 14所述的***, 其中, 所述源端主机发送给目的端主机 的数据报文中源地址和目的地址分别为源端主机和目的端主机的 EID;
所述报文处理模块还设置成: 在进行数据报文转发时, 用源端主机和目 的端主机的 RLOC对源端主机发送的数据报文进行封装, 封装后的数据报文 的源地址和目的地址分别为源端主机和目的端主机的 RLOC, 封装后的报文 中还包括源端主机和目的端主机的 EID。
PCT/CN2011/072490 2010-04-20 2011-04-07 数据报文处理方法、入口隧道路由器及*** WO2011131088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010153056.2A CN102238058B (zh) 2010-04-20 2010-04-20 数据报文处理方法、入口隧道路由器及***
CN201010153056.2 2010-04-20

Publications (1)

Publication Number Publication Date
WO2011131088A1 true WO2011131088A1 (zh) 2011-10-27

Family

ID=44833698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072490 WO2011131088A1 (zh) 2010-04-20 2011-04-07 数据报文处理方法、入口隧道路由器及***

Country Status (2)

Country Link
CN (1) CN102238058B (zh)
WO (1) WO2011131088A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915455A (zh) * 2016-04-06 2016-08-31 杭州华三通信技术有限公司 位置标识分离协议多归属实现方法及装置
US20180139133A1 (en) * 2016-11-11 2018-05-17 Futurewei Technologies, Inc. Method to Optimize Mapping for Multiple Locations of a Device in Mobility

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167483B (zh) * 2011-12-15 2016-02-24 ***通信集团公司 一种基于隧道的数据转发方法、设备及***
CN103825795A (zh) * 2013-12-05 2014-05-28 青岛海信电子设备股份有限公司 Ipip隧道自动识别创建的方法
CN103841028B (zh) * 2014-03-24 2017-02-08 杭州华三通信技术有限公司 一种报文转发方法及设备
CN103957161B (zh) * 2014-04-04 2017-12-29 新华三技术有限公司 一种报文转发方法及其装置
CN103973574B (zh) * 2014-05-19 2017-12-15 新华三技术有限公司 位置与身份分离协议网络中的数据报文转发方法及装置
CN104022956B (zh) * 2014-06-11 2017-05-10 新华三技术有限公司 一种名址分离协议网络中的数据报文处理方法和装置
CN111800458B (zh) * 2020-05-22 2021-04-23 浙商银行股份有限公司 一种Kubernetes容器云平台的动态负载均衡方法及***
CN112911617A (zh) * 2021-01-20 2021-06-04 广东工贸职业技术学院 数据传输方法、装置、计算机设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法
CN101656765A (zh) * 2009-09-14 2010-02-24 中兴通讯股份有限公司 身份位置分离网络的名址映射***及数据传输方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法
CN101656765A (zh) * 2009-09-14 2010-02-24 中兴通讯股份有限公司 身份位置分离网络的名址映射***及数据传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGBIN LUO ET AL.: "A DHT-based Identifier-to-locator Mapping Approach for a Scalable Internet", IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, vol. 20, no. 10, October 2009 (2009-10-01), pages 1 - 13 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915455A (zh) * 2016-04-06 2016-08-31 杭州华三通信技术有限公司 位置标识分离协议多归属实现方法及装置
US20180139133A1 (en) * 2016-11-11 2018-05-17 Futurewei Technologies, Inc. Method to Optimize Mapping for Multiple Locations of a Device in Mobility
US10554551B2 (en) * 2016-11-11 2020-02-04 Futurewei Technologies, Inc. Method to optimize mapping for multiple locations of a device in mobility

Also Published As

Publication number Publication date
CN102238058B (zh) 2015-05-13
CN102238058A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
WO2011131088A1 (zh) 数据报文处理方法、入口隧道路由器及***
Atkinson et al. Identifier-locator network protocol (ILNP) architectural description
US8661525B2 (en) Implementation method and system of virtual private network
KR101399002B1 (ko) 가상 사설 네트워크의 실현 방법 및 시스템
WO2011124132A1 (zh) 数据通信***及方法
WO2011069399A1 (zh) 地址映射方法及接入业务节点
WO2011131097A1 (zh) 数据报文处理方法、***及接入服务节点
US20060153230A1 (en) IPv6 / IPv4 translator
WO2011035710A1 (zh) 面向用户的通信方法和路由注册方法及设备及通信***
WO2011157126A2 (zh) 一种报文转发方法和网间路由装置
WO2011032462A1 (zh) 一种数据传输、接收的方法及***及路由器
Yan et al. Is DNS ready for ubiquitous Internet of Things?
US8547998B2 (en) Tunneling IPv6 packet through IPv4 network using a tunnel entry based on IPv6 prefix and tunneling IPv4 packet using a tunnel entry based on IPv4 prefix
WO2009074077A1 (fr) Méthode de réalisation de services anycast, méthode d'envoi de demandes anycast, et routeur anycast
CN111654443A (zh) 一种云环境下虚机IPv6地址直接访问公网的方法
WO2011124121A1 (zh) 网间数据通讯***及方法
Pappas et al. Mobile host location tracking through DNS
WO2012075768A1 (zh) 身份位置分离网络的监听方法和***
Cisco Configuring TCP/IP
Cisco Configuring IP
WO2012122710A1 (zh) 一种承载网络及数据传输方法
KR101124635B1 (ko) IPv4/IPv6 연동 게이트웨이
WO2012075770A1 (zh) 身份位置分离网络的阻断方法和***
WO2012083685A1 (zh) 一种提高映射路由表使用效率的方法及***
Jung et al. A new inter-networking architecture for mobile oriented internet environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771541

Country of ref document: EP

Kind code of ref document: A1