WO2011130921A1 - Inhibiteurs de l'activité d'akt - Google Patents

Inhibiteurs de l'activité d'akt Download PDF

Info

Publication number
WO2011130921A1
WO2011130921A1 PCT/CN2010/072132 CN2010072132W WO2011130921A1 WO 2011130921 A1 WO2011130921 A1 WO 2011130921A1 CN 2010072132 W CN2010072132 W CN 2010072132W WO 2011130921 A1 WO2011130921 A1 WO 2011130921A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
phenyl
phenylthiazol
heterocyclyl
cycloalkyl
Prior art date
Application number
PCT/CN2010/072132
Other languages
English (en)
Inventor
Peng Liang
Morihiro Mitsuya
Yoshio Ogino
Changhe Qi
Hidekazu Takahashi
Paul Tempest
Jiabing Wang
Zhenzhen Wang
Shaohua Zhang
Nanyan Zhou
Jiuxiang Zhu
Original Assignee
Merck Sharp & Dohme Corp.
Banyu Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp & Dohme Corp., Banyu Pharmaceutical Co., Ltd. filed Critical Merck Sharp & Dohme Corp.
Priority to PCT/CN2010/072132 priority Critical patent/WO2011130921A1/fr
Priority to US13/642,958 priority patent/US20130102605A1/en
Priority to EP11772684.4A priority patent/EP2579872A4/fr
Priority to PCT/US2011/033363 priority patent/WO2011133733A1/fr
Publication of WO2011130921A1 publication Critical patent/WO2011130921A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/28Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/30Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/42Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/50Nitrogen atoms bound to hetero atoms
    • C07D277/52Nitrogen atoms bound to hetero atoms to sulfur atoms, e.g. sulfonamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to compounds which are inhibitors of the activity of one or more of the isoforms of the serine/threonine kinase, Akt (also known as PKB; hereinafter referred to as "Akt").
  • Akt serine/threonine kinase
  • the present invention also relates to pharmaceutical compositions comprising such compounds and methods of using the instant compounds in the treatment of cancer.
  • Apoptosis (programmed cell death) plays essential roles in embryonic development and pathogenesis of various diseases, such as degenerative neuronal diseases, cardiovascular diseases and cancer. Recent work has led to the identification of various pro- and anti-apoptotic gene products that are involved in the regulation or execution of programmed cell death.
  • anti-apoptotic genes such as Bcl2 or Bcl-xL
  • pro-apoptotic genes such as Bax or Bad
  • the execution of programmed cell death is mediated by caspase-1 related proteinases, including caspase-3, caspase-7, caspase-8 and caspase-9 etc (Thornberry et al. Science, 281 : 1312-1316 (1998)).
  • PI3K phosphatidylinositol 3' -OH kinase
  • Akt phosphatidylinositol 3' -OH kinase
  • PI3K platelet derived growth factor
  • NGF nerve growth factor
  • IGF-1 insulin-like growth factor-1
  • phosphatidylinositol (3,4,5)-triphosphate Ptdlns(3,4,5)-P3
  • Akt serine/threonine kinase
  • Aktl/ PKBa Three members of the Akt subfamily of second-messenger regulated serine/threonine protein kinases have been identified and termed Aktl/ PKBa, Akt2/PKB , and Akt3/PKBy (hereinafter referred to as "Aktl”, “Akt2” and "Akt3"), respectively.
  • the isoforms are homologous, particularly in regions encoding the catalytic domains. Akts are activated by phosphorylation events occurring in response to PI3K signaling.
  • PI3K phosphorylates membrane inositol phospholipids, generating the second messengers phosphatidyl-inositol 3,4,5-trisphos- phate and phosphatidylinositol 3,4-bisphosphate, which have been shown to bind to the PH domain of Akt.
  • the current model of Akt activation proposes recruitment of the enzyme to the membrane by 3'-phosphorylated phosphoinositides, where phosphorylation of the regulatory sites of Akt by the upstream kinases occurs (B.A. Hemmings, Science 275:628-630 (1997); B.A. Hemmings, Science 276:534 (1997); J. Downward, Science 279:673-674 (1998)).
  • Aktl Phosphorylation of Aktl occurs on two regulatory sites, Thr308 in the catalytic domain activation loop and on Ser473 near the carboxy terminus (D. R. Alessi et al. EMBO J. 15:6541-6551 (1996) and R. Meier et al. J. Biol. Chem. 272:30491-30497 (1997)).
  • Equivalent regulatory phosphorylation sites occur in Akt2 and Akt3.
  • the upstream kinase which phosphorylates Akt at the activation loop site has been cloned and termed 3'-phosphoinositide - dependent protein kinase 1 (PDK1).
  • PDK1 phosphorylates not only Akt, but also p70 ribosomal S6 kinase, p90RSK, serum and glucocorticoid-regulated kinase (SGK), and protein kinase C.
  • the upstream kinase phosphorylating the regulatory site of Akt near the carboxy terminus has not been identified yet, but recent reports imply a role for the integrin-linked kinase (ILK-1), a serine/threonine protein kinase, or autophosphorylation.
  • ILK-1 integrin-linked kinase
  • serine/threonine protein kinase or autophosphorylation.
  • Akt2 is overexpressed in a significant number of ovarian (J. Q. Cheng et al. Proc. Natl. Acad. Sci. U.S.A. 89:9267- 9271(1992)) and pancreatic cancers (J. Q. Cheng et al. Proc. Natl. Acad. Sci. U.S.A. 93 :3636- 3641 (1996)).
  • Akt3 was found to be overexpressed in breast and prostate cancer cell lines (Nakatani et al. J. Biol. Chem. 274:21528-21532 (1999).
  • the tumor suppressor PTEN a protein and lipid phosphatase that specifically removes the 3' phosphate of Ptdlns(3,4,5)-P3, is a negative regulator of the PI3K/Akt pathway (Li et al. Science 275: 1943-1947 (1997), Stambolic et al. Cell 95:29-39 (1998), Sun et al. Proc. Natl. Acad. Sci. U.S.A. 96:6199-6204 (1999)).
  • Germline mutations of PTEN are responsible for human cancer syndromes such as Cowden disease (Liaw et al. Nature Genetics 16:64-67 (1997)).
  • PTEN is deleted in a large percentage of human tumors and tumor cell lines without functional PTEN show elevated levels of activated Akt (Li et al. supra, Guldberg et al. Cancer Research 57:3660-3663 (1997), Risinger et al. Cancer Research 57:4736-4738 (1997)).
  • Akt activation and activity can be achieved by inhibiting PI3K with inhibitors such as LY294002 and wortmannin.
  • inhibitors such as LY294002 and wortmannin.
  • PI3K inhibition has the potential to indiscriminately affect not just all three Akt isozymes but also other PH domain-containing signaling molecules that are dependent on Pdtlns(3,4,5)-P3, such as the Tec family of tyrosine kinases.
  • Akt can be activated by growth signals that are independent of PI3K.
  • Akt activity can be inhibited by blocking the activity of the upstream kinase PDK1. No specific PDK1 inhibitors have been disclosed.
  • inhibition of PDK1 would result in inhibition of multiple protein kinases whose activities depend on PDK1, such as atypical PKC isoforms, SGK, and S6 kinases (Williams et al. Curr. Biol. 10:439-448 (2000).
  • the compounds disclosed in these patent applications contain mono-, bi- and tri-cyclic core moieties.
  • the compounds of the instant invention contain a thiazole core moiety which has not been previously disclosed.
  • Akt inhibitors substituted with a methyl amine moiety are known.
  • the compounds of the instant invention may have superior drug-like properties compared to prior disclosed Akt inhibitors.
  • compositions that comprise the novel compounds that are inhibitors of Akt.
  • the instant invention provides for substituted thiazoles that inhibit Akt activity.
  • the compounds disclosed selectively inhibit one or two of the Akt isoforms.
  • the invention also provides for compositions comprising such inhibitory compounds and methods of inhibiting Akt activity by administering the compound to a patient in need of treatment of cancer.
  • the compounds of the instant invention are useful in the inhibition of the activity of the serine/threonine kinase Akt.
  • the inhibitors of Akt activity are illustrated by the Formula A:
  • R2 is independently selected from (C 1 -C 6 )alkyl, 0(C 1 -C 6 )alkyl, CO 2 H, halo, OH and H2;
  • R 3 and R 4 are independently selected from H, (C 1 -C 6 )alkyl, 0(C 1 -C 6 )alkyl, CO 2 H, halo, OH and NH 2 , or R 3 and R 4 can come together to form a (C 3 -C7)cycloalkyl, said cycloalkyl optionally substituted with one or more substituents selected from: (C 1 -C 6 )alkyl, 0(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, CO 2 H, halo, CN, OH and NH2;
  • R a is (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, aryl, or heterocyclyl;
  • R 3 and R 4 are independently selected from H, (C 1 -C 6 )alkyl, 0(C 1 -C 6 )alkyl, CO 2 H, halo, OH and H2, or R 3 and R 4 can come together to form a (C 3 -C7)cycloalkyl, said cycloalkyl optionally substituted with one or more substituents selected from: (C 1 -C 6 )alkyl, 0(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, CO 2 H, halo, CN, OH and H 2 ;
  • Rb is independently H and (C 1 -C 6 )alkyl
  • R 3 ' and R 4 ' are independently selected from H, OH and (C 1 -C 4 )alkyl;
  • Rb is independently H and (C 1 -C 6 )alkyl
  • the instant invention includes HCl salts of the following compounds:
  • the compounds of the present invention may have asymmetric centers, chiral axes, and chiral planes (as described in: E.L. Eliel and S.H. Wilen, Stereochemistry of Carbon
  • any variable e.g. R2, etc.
  • its definition on each occurrence is independent at every other occurrence.
  • combinations of substituents and variables are permissible only if such combinations result in stable compounds.
  • Lines drawn into the ring systems from substituents represent that the indicated bond may be attached to any of the substitutable ring atoms. If the ring system is bicyclic, it is intended that the bond be attached to any of the suitable atoms on either ring of the bicyclic moiety.
  • one or more silicon (Si) atoms can be incorporated into the compounds of the instant invention in place of one or more carbon atoms by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art from readily available starting materials.
  • Carbon and silicon differ in their covalent radius leading to differences in bond distance and the steric arrangement when comparing analogous C-element and Si-element bonds. These differences lead to subtle changes in the size and shape of silicon-containing compounds when compared to carbon.
  • size and shape differences can lead to subtle or dramatic changes in potency, solubility, lack of off target activity, packaging properties, and so on.
  • the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
  • the present invention is meant to include all suitable isotopic variations of the compounds of generic Formula A.
  • different isotopic forms of hydrogen (H) include protium (1H) and deuterium (2H).
  • Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
  • Isotopically-enriched compounds within generic Formula A can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically- enriched reagents and/or intermediates.
  • substituents and substitution patterns on the compounds of the instant invention can be selected by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results.
  • the phrase "optionally substituted with one or more substituents" should be taken to be equivalent to the phrase
  • alkyl is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms.
  • C 1 -C 10 as in “(C 1 -C 10 )alkyl” is defined to include groups having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbons in a linear or branched arrange-ment.
  • (C 1 -C 10 )alkyl specifically includes methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, i-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and so on.
  • cycloalkyl means a monocyclic saturated aliphatic hydrocarbon group having the specified number of carbon atoms.
  • cycloalkyl includes cyclopropyl, methyl-cyclopropyl, 2,2-dimethyl-cyclobutyl, 2-ethyl-cyclopentyl, cyclohexyl, and so on.
  • Alkoxy represents either a cyclic or non-cyclic alkyl group of indicated number of carbon atoms attached through an oxygen bridge. "Alkoxy” therefore encompasses the definitions of alkyl and cycloalkyl above.
  • alkenyl refers to a non- aromatic hydrocarbon radical, straight, branched or cyclic, containing from 2 to 10 carbon atoms and at least one carbon to carbon double bond. Preferably one carbon to carbon double bond is present, and up to four non-aromatic carbon-carbon double bonds may be present.
  • (C 2 - C 10 )alkenyl means an alkenyl radical having from 2 to 10 carbon atoms.
  • Alkenyl groups include ethenyl, propenyl, butenyl, 2-methylbutenyl and cyclohexenyl. The straight, branched or cyclic portion of the alkenyl group may contain double bonds and may be substituted if a substituted alkenyl group is indicated.
  • alkynyl refers to a hydrocarbon radical straight, branched or cyclic, containing from 2 to 10 carbon atoms and at least one carbon to carbon triple bond. Up to three carbon-carbon triple bonds may be present.
  • (C 2 -C 10 )alkynyl means an alkynyl radical having from 2 to 10 carbon atoms.
  • Alkynyl groups include ethynyl, propynyl, butynyl, 3- methylbutynyl and so on.
  • the straight, branched or cyclic portion of the alkynyl group may contain triple bonds and may be substituted if a substituted alkynyl group is indicated.
  • substituents may be defined with a range of carbons that includes zero, such as (C 0- C 6 )alkylene-aryl. If aryl is taken to be phenyl, this definition would include phenyl itself as well as -CH2Ph, -CH2CH2Ph, CH(CH3)CH2CH(CH3)Ph, and so on.
  • aryl is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 atoms in each ring, wherein at least one ring is aromatic.
  • aryl elements include phenyl, naphthyl, tetrahydro-naphthyl, indanyl and biphenyl.
  • the aryl substituent is bicyclic and one ring is non-aromatic, it is understood that attachment is via the aromatic ring.
  • heteroaryl represents a stable monocyclic or bicyclic ring of up to 7 atoms in each ring, wherein at least one ring is aromatic and contains from 1 to 4 heteroatoms selected from the group consisting of O, N and S.
  • Heteroaryl groups within the scope of this definition include but are not limited to: acridinyl, carbazolyl, cinnolinyl,
  • heteroaryl is also understood to include the N-oxide derivative of any nitrogen-containing heteroaryl. In cases where the heteroaryl substituent is bicyclic and one ring is non-aromatic or contains no
  • heteroatoms it is understood that attachment is via the aromatic ring or via the heteroatom containing ring, respectively.
  • heteraoaryl moieties for substituent Q include but are not limited to: 2-benzimidazolyl, 2-quinolinyl, 3 -quinolinyl, 4-quinolinyl, 1 -isoquinolinyl, 3- isoquinolinyl and 4-isoquinolinyl.
  • the term "heterocycle” or “heterocyclyl” as used herein is intended to mean a 3- to 10-membered aromatic or nonaromatic heterocycle containing from 1 to 4 heteroatoms selected from the group consisting of O, N and S, and includes bicyclic groups.
  • Heterocyclyl therefore includes the above mentioned heteroaryls, as well as dihydro and tetrathydro analogs thereof. Further examples of “heterocyclyl” include, but are not limited to the following: benzoimidazolyl, benzoimidazolonyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl,
  • benzothiophenyl benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthpyridinyl, oxadiazolyl, oxazolyl, oxazoline, isoxazoline, oxetanyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, tetrahydropyranyl, tetrazolyl,
  • halo or halogen as used herein is intended to include chloro (CI), fluoro (F), bromo (Br) and iodo (I).
  • n 0.
  • Rl when Rl is heterocyclyl, said heterocyclyl is selected from pyridine, pyrazine, pyrazole, pyrimidine, piperazine, oxazine, thiazole and thiophene, all of which are optionally substituted with R9.
  • Rl when Rl is heterocyclyl, said heterocyclyl is selected from pyridine and pyrazine.
  • Rl is heterocyclyl, which may be substituted with R9.
  • Rl is pyridine, pyrazine, pyrazole, pyrimidine, piperazine, oxazine, thiazole and thiophene, all of which are optionally substituted with R9.
  • Rl is pyridine and pyrazine.
  • R 3 and R 4 are independently selected from H, (C 1 -C 4 )alkyl, 0(C 1 -C 4 )alkyl, CO 2 H, halo, OH and NH 2 , or R 3 and R 4 can come together to form a (C 3 - C7)cycloalkyl, said cycloalkyl optionally substituted with one or more substituents selected from: (C 1 -C 4 )alkyl, 0(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkyl, CO 2 H, halo, CN, OH and NH 2.
  • R 3 and R 4 are independently selected from H, (C 1 -C 4 )alkyl, 0(C 1 -C 4 )alkyl, CO 2 H, halo, OH and NH 2 , or R 3 and R 4 can come together to form cyclobutyl, said cyclobutyl is optionally substituted with one or more substituents selected from: (C 1 -C 4 )alkyl, 0(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkyl, CO 2 H, halo, CN, OH and NH 2 ;
  • R 3 and R 4 can come together to form cyclobutyl, said cyclobutyl is optionally substituted with one or more substituents selected from OH and methyl.
  • R 3 ' and R 4 ' are independently selected from H, OH and methyl.
  • R 3 ' and R 4 ' are independently selected from OH and methyl.
  • R' is selected from H, (C 1 -C 6 )alkyl, halo, OH, CF3, NH 2 , (Ci- C 6 )alkyl-aryl, (C 1 -C 6 )alkyl-heterocyclyl, 0(C 1 -C 6 )alkyl, (C 3 -C7)cycloalkyl, aryl, heteroaryl and heterocyclyl, wherein said alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are optionally substituted with one or more substituents selected from (C 1 -C 6 )alkyl, 0(C 1 -C 6 )alkyl,
  • R' is selected from H, (C 1 -C 6 )alkyl, halo, OH, CF3, H2, (Ci- C 6 )alkyl-aryl, (C 1 -C 6 )alkyl-heterocyclyl, 0(C 1 -C 6 )alkyl, (C 3 -C7)cycloalkyl, aryl, heteroaryl and heterocyclyl.
  • R' is selected from H and (C 1 -C 6 )alkyl.
  • R9 is selected from (C 1 -C 6 )alkyl, halo, OH, CF3, H2, and 0(C 1 -C 6 )alkyl.
  • R9 is selected from: (C 1 -C 6 )alkyl, OH and 0(C 1 -C 6 )alkyl.
  • the inhibitors of Akt activity are illustrated by the Formula B, wherein
  • said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are further optionally substituted with one or more substituents selected from H, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkenyl, (C 1 -C 4 )alkynyl, (C 3 -C5)cycloalkyl, halo, OH, CF3, CO 2 H, CN, phenyl and NR 7 R 8 ;
  • inhibitors of Akt activity are illustrated by the Formula B, wherein
  • R 3 and R 4 are independently selected from H, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkenyl, (Ci- C 4 )alkynyl, (C 3 -C5)cycloalkyl, halo, OH, CF3, CO 2 H, CN, phenyl and NH2, said alkyl, alkenyl, alkynyl, cycloalkyl and phenyl are optionally substituted with one or more substituents selected from H, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkenyl, (C 1 -C 4 )alkynyl, (C 3 -C5)cycloalkyl, halo, OH, CF3, CO 2 H, CN, phenyl and NH2, or R 3 and R 4 can be taken together to form a (C 3 -C5)cycloalkyl, said cycloalkyl is optionally substituted with one
  • inhibitors of Akt activity are illustrated by the Formula B, wherein
  • R 3 and R 4 are independently selected from H, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkenyl, (Ci- C 4 )alkynyl, (C 3 -C5)cycloalkyl, halo, OH, CF3, CO 2 H, CN, phenyl and NH 2 , said alkyl, alkenyl, alkynyl, cycloalkyl and phenyl are optionally substituted with one or more substituents selected from H, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkenyl, (C 1 -C 4 )alkynyl, (C 3 -C5)cycloalkyl, halo, OH, CF3, CO 2 H, CN, phenyl and ⁇ 3 ⁇ 4, or R 3 and R 4 can be taken together to form a (C 3 -C5)cycloalkyl, said cycloalkyl is optionally
  • inhibitors of Akt activity are illustrated by the Formula B, wherein
  • R 3 and R 4 can come together to form cyclobutyl, said cyclobutyl is optionally substituted with one or more substituents selected from OH and methyl.
  • the free form of compounds of Formula A is the free form of compounds of Formula A, as well as the pharmaceutically acceptable salts and stereoisomers thereof.
  • Some of the isolated specific compounds exemplified herein are the protonated salts of amine compounds.
  • the term "free form” refers to the amine compounds in non-salt form.
  • the encompassed pharmaceutically acceptable salts not only include the isolated salts exemplified for the specific compounds described herein, but also all the typical pharmaceutically acceptable salts of the free form of compounds of Formula A.
  • the free form of the specific salt compounds described may be isolated using techniques known in the art.
  • the free form may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
  • a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
  • the free forms may differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise pharmaceutically equivalent to their respective free forms for purposes of the invention.
  • the pharmaceutically acceptable salts of the instant compounds can be synthesized from the compounds of this invention which contain a basic or acidic moiety by conventional chemical methods.
  • the salts of the basic compounds are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents.
  • the salts of the acidic compounds are formed by reactions with the appropriate inorganic or organic base.
  • pharmaceutically acceptable salts of the compounds of this invention include the conventional non-toxic salts of the compounds of this invention as formed by reacting a basic instant compound with an inorganic or organic acid.
  • conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like, as well as salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic (TFA) and the like.
  • inorganic acids such as hydroch
  • suitable “pharmaceutically acceptable salts” refers to salts prepared form pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases.
  • Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine caffeine, choline, N ⁇ -dibenzylethylenediamine, diethylamin, 2- diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine tripropylamine, tromethamine and the like.
  • basic ion exchange resins such as arginine, betaine caffeine
  • the compounds of the present invention are potentially internal salts or zwitterions, since under physiological conditions a deprotonated acidic moiety in the compound, such as a carboxyl group, may be anionic, and this electronic charge might then be balanced off internally against the cationic charge of a protonated or alkylated basic moiety, such as a quaternary nitrogen atom.
  • the compounds of the instant invention are inhibitors of the activity of Akt and are thus useful in the treatment or prevention of cancer, in particular cancers associated with irregularities in the activity of Akt and downstream cellular targets of Akt.
  • cancers include, but are not limited to, ovarian, pancreatic, breast and prostate cancer, as well as cancers
  • Cancers that may be treated by the compounds, compositions and methods of the invention include, but are not limited to: Cardiac: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma,
  • Nervous system skull (osteoma, hemangioma, granuloma, xanthoma, osteitis deformans), meninges (meningioma, meningio sarcoma, gliomatosis), brain (astrocytoma, medulloblastoma, glioma, ependymoma, germinoma [pinealoma], glioblastoma multiform, oligodendroglioma, schwannoma, retinoblastoma, congenital tumors), spinal cord neurofibroma, meningioma, glioma, sarcoma); Gynecological: uterus (endometrial carcinoma), cervix (cerv
  • Cancers that may be treated by the compounds, compositions and methods of the invention include, but are not limited to: breast, prostate, colon, colorectal, lung, non small cell lung, brain, testicular, stomach, pancrease, skin, small intestine, large intestine, throat, head and neck, oral, bone, liver, bladder, kidney, thyroid and blood.
  • Cancers that may be treated by the compounds, compositions and methods of the invention include: breast, prostate, colon, ovarian, colorectal and lung (non small cell).
  • Cancers that may be treated by the compounds, compositions and methods of the invention include: breast, colon, (colorectal) and lung (non small cell).
  • Cancers that may be treated by the compounds, compositions and methods of the invention include: lymphoma and leukemia.
  • the utility of angiogenesis inhibitors in the treatment of cancer is known in the literature, see J. Rak et al. Cancer Research, 55:4575-4580, 1995 and Dredge et al, Expert Opin. Biol. Ther. (2002) 2(8):953-966, for example.
  • the role of angiogenesis in cancer has been shown in numerous types of cancer and tissues: breast carcinoma (G. Gasparini and A L. Harris, J. Clin. Oncol, 1995, 13 :765-782; M. Toi et al, Japan. J. Cancer Res., 1994, 85: 1045-1049); bladder carcinomas (A.J. Dickinson et al, Br. J. Urol, 1994, 74:762-766); colon carcinomas (L.M. Ellis et al, Surgery, 1996, 120(5): 871-878); and oral cavity tumors (J.K
  • Akt inhibitors disclosed in the instant application are also useful in the instant application.
  • Tumors which have undergone neovascularization show an increased potential for metastasis.
  • angiogenesis is essential for tumor growth and metastasis.
  • the Akt inhibitors disclosed in the present application are therefore also useful to prevent or decrease tumor cell metastasis.
  • a method of treating or preventing a disease in which angiogenesis is implicated which is comprised of administering to a mammal in need of such treatment a therapeutically effective amount of a compound of the present invention.
  • Ocular neovascular diseases are an example of conditions where much of the resulting tissue damage can be attributed to aberrant infiltration of blood vessels in the eye (see WO 00/30651, published 2 June 2000).
  • the undesireable infiltration can be triggered by ischemic retinopathy, such as that resulting from diabetic retinopathy, retinopathy of prematurity, retinal vein occlusions, etc., or by degenerative diseases, such as the choroidal neovascularization observed in age-related macular degeneration.
  • ischemic retinopathy such as that resulting from diabetic retinopathy, retinopathy of prematurity, retinal vein occlusions, etc.
  • degenerative diseases such as the choroidal neovascularization observed in age-related macular degeneration.
  • Inhibiting the growth of blood vessels by administration of the present compounds would therefore prevent the infiltration of blood vessels and prevent or treat diseases where angiogenesis is implicated, such as ocular diseases like retinal vascularization, diabetic retinopathy, age-related macular degeneration, and the like.
  • a method of treating or preventing a non-malignant disease in which angiogenesis is implicated including but not limited to: ocular diseases (such as, retinal vascularization, diabetic retinopathy and age-related macular degeneration), atherosclerosis, arthritis, psoriasis, obesity and Alzheimer's disease (Dredge et al, Expert Opin. Biol. Ther. (2002) 2(8):953-966).
  • a method of treating or preventing a disease in which angiogenesis is implicated includes: ocular diseases (such as, retinal vascularization, diabetic retinopathy and age-related macular degeneration), atherosclerosis, arthritis and psoriasis.
  • hyperproliferative disorders such as restenosis, inflammation, autoimmune diseases and allergy/asthma.
  • the compounds of the invention are also useful in preparing a medicament that is useful in treating the diseases described above, in particular cancer.
  • the instant compound is a selective inhibitor whose inhibitory efficacy is dependent on the PH domain.
  • the compound exhibits a decrease in in vitro inhibitory activity or no in vitro inhibitory activity against truncated Akt proteins lacking the PH domain.
  • the instant compound is selected from the group of a selective inhibitor of Aktl, a selective inhibitor of Akt2 and a selective inhibitor of both Aktl and Akt2.
  • the instant compound is selected from the group of a selective inhibitor of Aktl, a selective inhibitor of Akt2, a selective inhibitor of Akt3 and a selective inhibitor of two of the three Akt isoforms.
  • the instant compound is a selective inhibitor of all three Akt isoforms, but is not an inhibitor of one, two or all of such Akt isoforms that have been modified to delete the PH domain, the hinge region or both the PH domain and the hinge region.
  • the present invention is further directed to a method of inhibiting Akt activity which comprises administering to a mammal in need thereof a pharmaceutically effective amount of the instant compound.
  • the compounds of this invention may be administered to mammals, including humans, either alone or, in combination with pharmaceutically acceptable carriers, excipients or diluents, in a pharmaceutical composition, according to standard pharmaceutical practice.
  • the compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
  • compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs.
  • compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations.
  • Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example,
  • the tablets may be uncoated or they may be coated by known techniques to mask the unpleasant taste of the drug or delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
  • a water soluble taste masking material such as hydroxypropylmethyl-cellulose or hydroxypropylcellulose, or a time delay material such as ethyl cellulose, cellulose acetate buryrate may be employed.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethylene-oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan mono
  • the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose, saccharin or aspartame.
  • preservatives for example ethyl, or n-propyl p-hydroxybenzoate
  • coloring agents for example ethyl, or n-propyl p-hydroxybenzoate
  • flavoring agents such as sucrose, saccharin or aspartame.
  • sweetening agents such as sucrose, saccharin or aspartame.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin.
  • the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol.
  • Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation.
  • These compositions may be preserved by the addition of an anti-oxidant such as butylated hydroxyanisol or alpha-tocopherol.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives.
  • Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • compositions of the invention may also be in the form of an oil-in-water emulsion.
  • the oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these.
  • Suitable emulsifying agents may be naturally-occurring phosphatides, for example soy bean lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and
  • condensation products of the said partial esters with ethylene oxide for example polyoxyethylene sorbitan monooleate.
  • ethylene oxide for example polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening, flavouring agents,
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.
  • sweetening agents for example glycerol, propylene glycol, sorbitol or sucrose.
  • Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.
  • compositions may be in the form of sterile injectable aqueous solutions.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • the sterile injectable preparation may also be a sterile injectable oil-in-water microemulsion where the active ingredient is dissolved in the oily phase.
  • the active ingredient may be first dissolved in a mixture of soybean oil and lecithin.
  • the oil solution then introduced into a water and glycerol mixture and processed to form a microemulation.
  • the injectable solutions or microemulsions may be introduced into a patient's blood-stream by local bolus injection.
  • a continuous intravenous delivery device may be utilized.
  • An example of such a device is the Deltec CADD-PLUSTM model 5400 intravenous pump.
  • the pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension for intramuscular and subcutaneous administration.
  • This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butane diol.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • Compounds of Formula A may also be administered in the form of suppositories for rectal administration of the drug.
  • These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.
  • topical use creams, ointments, jellies, solutions or suspensions, etc., containing the compound of Formula A are employed. (For purposes of this application, topical application shall include mouth washes and gargles.)
  • the compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles and delivery devices, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in the art.
  • the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
  • Compounds of the present invention may also be delivered as a suppository employing bases such as cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.
  • the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, and response of the individual patient, as well as the severity of the patient's symptoms.
  • the dosage regimen utilizing the compounds of the instant invention can be selected in accordance with a variety of factors including type, species, age, weight, sex and the type of cancer being treated; the severity (i.e., stage) of the cancer to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed.
  • An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to treat, for example, to prevent, inhibit (fully or partially) or arrest the progress of the disease.
  • compounds of the instant invention can be administered in a total daily dose of up to 10,000 mg.
  • Compounds of the instant invention can be administered once daily (QD), or divided into multiple daily doses such as twice daily (BID), and three times daily (TID).
  • Compounds of the instant invention can be administered at a total daily dosage of up to 10,000 mg, e.g., 2,000 mg, 3,000 mg, 4,000 mg, 6,000 mg, 8,000 mg or 10,000 mg, which can be administered in one daily dose or can be divided into multiple daily doses as described above.
  • compounds of the instant invention can be administered in a total daily dose of up to 1,000 mg.
  • Compounds of the instant invention can be administered once daily (QD), or divided into multiple daily doses such as twice daily (BID), and three times daily (TID).
  • Compounds of the instant invention can be administered at a total daily dosage of up to 1,000 mg, e.g., 200 mg, 300 mg, 400 mg, 600 mg, 800 mg or 1,000 mg, which can be administered in one daily dose or can be divided into multiple daily doses as described above.
  • intermittent administration of a compound of the instant invention may be administration one to six days per week or it may mean administration in cycles (e.g. daily administration for two to eight consecutive weeks, then a rest period with no administration for up to one week) or it may mean administration on alternate days.
  • the compounds of the instant invention may be administered according to any of the schedules described above, consecutively for a few weeks, followed by a rest period.
  • the compounds of the instant invention may be administered according to any one of the schedules described above from two to eight weeks, followed by a rest period of one week, or twice daily at a dose of 100 - 500 mg for three to five days a week.
  • the compounds of the instant invention may be administered three times daily for two consecutive weeks, followed by one week of rest.
  • any one or more of the specific dosages and dosage schedules of the compounds of the instant invention may also be applicable to any one or more of the therapeutic agents to be used in the combination treatment (hereinafter refered to as the "second therapeutic agent").
  • the specific dosage and dosage schedule of this second therapeutic agent can further vary, and the optimal dose, dosing schedule and route of administration will be determined based upon the specific second therapeutic agent that is being used.
  • the route of administration of the compounds of the instant invention is independent of the route of administration of the second therapeutic agent.
  • the administration for a compound of the instant invention is oral administration.
  • the administration for a compound of the instant invention is intravenous administration.
  • a compound of the instant invention is administered orally or intravenously, and the second therapeutic agent can be administered orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery by catheter or stent, subcutaneously, intraadiposally,
  • a compound of the instant invention and second therapeutic agent may be administered by the same mode of administration, i.e. both agents administered e.g. orally, by IV.
  • a compound of the instant invention by one mode of administration, e.g. oral, and to administer the second therapeutic agent by another mode of administration, e.g. IV or any other ones of the
  • the first treatment procedure, administration of a compound of the instant invention can take place prior to the second treatment procedure, i.e., the second therapeutic agent, after the treatment with the second therapeutic agent, at the same time as the treatment with the second therapeutic agent, or a combination thereof.
  • a total treatment period can be decided for a compound of the instant invention.
  • the second therapeutic agent can be administered prior to onset of treatment with a compound of the instant invention or following treatment with a compound of the instant invention.
  • anti-cancer treatment can be administered during the period of administration of a compound of the instant invention but does not need to occur over the entire treatment period of a compound of the instant invention.
  • the instant compounds are also useful in combination with therapeutic,
  • chemotherapeutic and anti-cancer agents Combinations of the presently disclosed compounds with therapeutic, chemotherapeutic and anti-cancer agents are within the scope of the invention. Examples of such agents can be found in Cancer Principles and Practice of Oncology by V.T. Devita and S. Hellman (editors), 6 th edition (February 15, 2001), Lippincott Williams & Wilkins Publishers. A person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved.
  • Such agents include the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic/cyto static agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors and other angiogenesis inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors, inhibitors of cell proliferation and survival signaling, bisphosphonates, aromatase inhibitors, siRNA therapeutics, ⁇ -secretase inhibitors, agents that interfere with receptor tyrosine kinases (RTKs) and agents that interfere with cell cycle checkpoints.
  • the instant compounds are particularly useful when co-administered with radiation therapy.
  • Estrogen receptor modulators refers to compounds that interfere with or inhibit the binding of estrogen to the receptor, regardless of mechanism.
  • Examples of estrogen receptor modulators include, but are not limited to, tamoxifen, raloxifene, idoxifene, LY353381, LY117081, toremifene, fulvestrant, 4-[7-(2,2-dimethyl-1-oxopropoxy-4-methyl-2-[4-[2-(l- piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]-phenyl-2,2-dimethylpropanoate, 4,4'- dihydroxybenzophenone-2,4-dinitrophenyl-hydrazone, and SH646.
  • Androgen receptor modulators refers to compounds which interfere or inhibit the binding of androgens to the receptor, regardless of mechanism.
  • Examples of androgen receptor modulators include finasteride and other 5a-reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate.
  • Retinoid receptor modulators refers to compounds which interfere or inhibit the binding of retinoids to the receptor, regardless of mechanism.
  • retinoid receptor modulators include bexarotene, tretinoin, 13-cis-retinoic acid, 9-cis-retinoic acid, a- difluoromethylornithine, ILX23-7553, trans-N-(4'-hydroxyphenyl) retinamide, and N-4- carboxyphenyl retinamide.
  • Cytotoxic/cytostatic agents refer to compounds which cause cell death or inhibit cell proliferation primarily by interfering directly with the cell's functioning or inhibit or interfere with cell myosis, including alkylating agents, tumor necrosis factors, intercalators, hypoxia activatable compounds, microtubule inhibitor s/microtubule- stabilizing agents, inhibitors of mitotic kinesins, histone deacetylase inhibitors, inhibitors of kinases involved in mitotic progression, inhibitors of kinases involved in growth factor and cytokine signal transduction pathways, antimetabolites, biological response modifiers, hormonal/anti-hormonal therapeutic agents, haematopoietic growth factors, monoclonal antibody targeted therapeutic agents, topoisomerase inhibitors, proteosome inhibitors, ubiquitin ligase inhibitors, and aurora kinase inhibitors.
  • cytotoxic/cyto static agents include, but are not limited to, sertenef, cachectin, ifosfamide, tasonermin, lonidamine, carboplatin, altretamine, prednimustine, dibromodulcitol, ranimustine, fotemustine, nedaplatin, oxaliplatin, temozolomide, heptaplatin, estramustine, improsulfan tosilate, trofosfamide, nimustine, dibrospidium chloride, pumitepa, lobaplatin, satraplatin, profiromycin, cisplatin, irofulven, dexifosfamide, cis-aminedichloro(2- methyl-pyridine)platinum, benzylguanine, glufosfamide, GPX100, (trans, trans, trans)-bis-mu- (hexane-1,6-di
  • hypoxia activatable compound is tirapazamine.
  • proteosome inhibitors include but are not limited to lactacystin and MLN-341 (Velcade).
  • microtubule inhibitors/microtubule-stabilising agents include paclitaxel, vindesine sulfate, 3',4'-didehydro-4'-deoxy-8'-norvincaleukoblastine, docetaxol, rhizoxin, dolastatin, mivobulin isethionate, auristatin, cemadotin, RPR109881, BMS 184476, vinflunine, cryptophycin, 2,3,4,5,6-pentafluoro-N-(3-fluoro-4-methoxyphenyl) benzene sulfonamide, anhydrovinblastine, N,N-dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-prolyl-L- proline-t-butylamide, TDX258, the epothilones (see for example U.S. Pat. Nos. 6,284,781 and 6,288,237)
  • topoisomerase inhibitors are topotecan, hycaptamine, irinotecan, rubitecan, 6-ethoxypropionyl-3 ',4'-0-exo-benzylidene-chartreusin, 9-methoxy-N,N-dimethyl-5- nitropyrazolo[3,4,5-kl]acridine-2-(6H) propanamine, l-amino-9-ethyl-5-fluoro-2,3-dihydro-9- hydroxy-4-methyl- 1 H, 12H-benzo [de]pyrano [3 ' ,4 ' :b, 7] -indolizino [ 1 ,2b] quinoline-
  • inhibitors of mitotic kinesins are described in Publications WO03/039460, WO03/050064, WO03/050122, WO03/049527, WO03/049679, WO03/049678, WO04/039774, WO03/079973, WO03/099211, WO03/105855, WO03/106417, WO04/037171, WO04/058148, WO04/058700, WO04/126699, WO05/018638, WO05/019206, WO05/019205, WO05/018547, WO05/017190,
  • inhibitors of mitotic kinesins include, but are not limited to inhibitors of KSP, inhibitors of MKLPl, inhibitors of CENP-E, inhibitors of MCAK and inhibitors of Rab6-KIFL.
  • histone deacetylase inhibitors include, but are not limited to, SAHA, TSA, oxamflatin, PXD101, MG98 and scriptaid. Further reference to other histone deacetylase inhibitors may be found in the following manuscript; Miller, T. A. et al. J. Med. Chem.
  • “Inhibitors of kinases involved in mitotic progression” include, but are not limited to, inhibitors of aurora kinase, inhibitors of Polo-like kinases (PLK; in particular inhibitors of PLK-1), inhibitors of bub- 1 and inhibitors of bub-Rl .
  • An example of an "aurora kinase inhibitor” is VX-680.
  • Antiproliferative agents includes antisense RNA and DNA oligonucleotides such as G3139, ODN698, RVASKRAS, GEM231, and INX3001, and antimetabolites such as enocitabine, carmofur, tegafur, pentostatin, doxifluridine, trimetrexate, fludarabine, capecitabine, galocitabine, cytarabine ocfosfate, fosteabine sodium hydrate, raltitrexed, paltitrexid, emitefur, tiazofurin, decitabine, nolatrexed, pemetrexed, nelzarabine, 2'-deoxy-2'-methylidenecytidine, 2'- fluoromethylene-2 ' -deoxycytidine, N- [5 -(2, 3 -dihydro-benzofuryl)sulfonyl] -N' -(3 ,4- dich
  • monoclonal antibody targeted therapeutic agents include those therapeutic agents which have cytotoxic agents or radioisotopes attached to a cancer cell specific or target cell specific monoclonal antibody. Examples include Bexxar.
  • HMG-CoA reductase inhibitors refers to inhibitors of 3-hydroxy-3- methylglutaryl-CoA reductase.
  • HMG-CoA reductase inhibitors include but are not limited to lovastatin (MEVACOR®; see U.S. Patent Nos. 4,231,938,
  • simvastatin ZOCOR®; see U.S. Patent Nos. 4,444,784, 4,820,850 and 4,916,239)
  • pravastatin PRAVACHOL®; see U.S. Patent Nos. 4,346,227, 4,537,859, 4,410,629, 5,030,447 and 5, 180,589)
  • fluvastatin see U.S. Patent Nos. 5,354,772, 4,911, 165, 4,929,437, 5, 189, 164, 5, 118,853, 5,290,946 and 5,356,896)
  • atorvastatin LIPITOR®; see U.S. Patent Nos.
  • HMG-CoA reductase inhibitor as used herein includes all pharmaceutically acceptable lactone and open-acid forms (i.e., where the lactone ring is opened to form the free acid) as well as salt and ester forms of compounds which have HMG-CoA reductase inhibitory activity, and therefor the use of such salts, esters, open-acid and lactone forms is included within the scope of this invention.
  • Prenyl-protein transferase inhibitor refers to a compound which inhibits any one or any combination of the prenyl-protein transferase enzymes, including farnesyl-protein transferase (FPTase), geranylgeranyl-protein transferase type I (GGPTase-I), and geranylgeranyl- protein transferase type-II (GGPTase-II, also called Rab GGPTase).
  • FPTase farnesyl-protein transferase
  • GGPTase-I geranylgeranyl-protein transferase type I
  • GGPTase-II geranylgeranyl- protein transferase type-II
  • prenyl-protein transferase inhibitors can be found in the following publications and patents: WO 96/30343, WO 97/18813, WO 97/21701, WO 97/23478, WO 97/38665, WO 98/28980, WO 98/29119, WO 95/32987, U.S. Patent No. 5,420,245, U.S. Patent No. 5,523,430, U.S. Patent No. 5,532,359, U.S. Patent No. 5,510,510, U.S. Patent No.
  • Angiogenesis inhibitors refers to compounds that inhibit the formation of new blood vessels, regardless of mechanism.
  • angiogenesis inhibitors include, but are not limited to, tyrosine kinase inhibitors, such as inhibitors of the tyrosine kinase receptors Flt-1 (VEGFRl) and Flk-l/KDR (VEGFR2), inhibitors of epidermal-derived, fibroblast-derived, or platelet derived growth factors, MMP (matrix metalloprotease) inhibitors, integrin blockers, interferon-a, interleukin-12, pentosan polysulfate, cyclooxygenase inhibitors, including
  • NSAIDs nonsteroidal anti-inflammatories
  • PNAS Vol. 89, p. 7384 (1992); JNCI, Vol. 69, p. 475 (1982); Arch. OpthalmoL, Vol. 108, p.573 (1990); Anat. Rec, Vol. 238, p. 68 (1994); FEBS Letters, Vol. 372, p. 83 (1995); Clin, Orthop. Vol. 313, p. 76 (1995); J. Mol. Endocrinol., Vol. 16, p.107 (1996); Jpn. J. Pharmacol, Vol. 75, p. 105 (1997); Cancer Res.,
  • NSAIDs nonsteroidal anti-inflammatories
  • steroidal anti-inflammatories such as corticosteroids, mineralocorticoids, dexamethasone, prednisone, prednisolone, methylpred, betamethasone
  • carboxyamidotriazole combretastatin A-4, squalamine, 6-0-chloroacetyl-carbonyl)-fumagillol, thalidomide, angiostatin, troponin- 1, angiotensin II antagonists (see Fernandez et al, J. Lab. Clin. Med. 105: 141-145 (1985)), and antibodies to VEGF (see, Nature Biotechnology, Vol. 17, pp.963-968 (October 1999); Kim et al, Nature, 362, 841-844 (1993); WO 00/44777; and WO 00/61186).
  • therapeutic agents that modulate or inhibit angiogenesis and may also be used in combination with the compounds of the instant invention include agents that modulate or inhibit the coagulation and fibrinolysis systems (see review in Clin. Chem. La. Med. 38:679-692
  • TAFIa inhibitors have been described in U.S. Ser. Nos. 60/310,927 (filed August 8, 2001) and 60/349,925 (filed January 18, 2002).
  • Agents that interfere with cell cycle checkpoints refer to compounds that inhibit protein kinases that transduce cell cycle checkpoint signals, thereby sensitizing the cancer cell to DNA damaging agents.
  • agents include inhibitors of ATR, ATM, the CHK11 and CHK12 kinases and cdk and cdc kinase inhibitors and are specifically exemplified by 7- hydroxystaurosporin, flavopiridol, CYC202 (Cyclacel) and BMS-387032.
  • RTKs receptor tyrosine kinases
  • agents include inhibitors of c-Kit, Eph, PDGF, Flt3 and c-Met.
  • Further agents include inhibitors of RTKs as described by Bume- Jensen and Hunter, Nature, 411 :355-365, 2001.
  • “Inhibitors of cell proliferation and survival signalling pathway” refer to compounds that inhibit signal transduction cascades downstream of cell surface receptors. Such agents include inhibitors of serine/threonine kinases (including but not limited to inhibitors of Akt such as described in WO 02/083064, WO 02/083139, WO 02/083140, US 2004-0116432, WO 02/083138, US 2004-0102360, WO 03/086404, WO 03/086279, WO 03/086394, WO 03/084473, WO 03/086403, WO 2004/041162, WO 2004/096131, WO 2004/096129, WO 2004/096135, WO 2004/096130, WO 2005/100356, WO 2005/100344, US 2005/029941, US 2005/44294, US 2005/43361, 60/734188, 60/652737, 60/670469), inhibitors of Raf kinase (for example BAY-43- 9006 ),
  • NSAID's which are potent COX-2 inhibiting agents.
  • an NSAID is potent if it possesses an IC 50 for the inhibition of COX-2 of ⁇ or less as measured by cell or microsomal assays.
  • NSAID's which are selective COX-2 inhibitors are defined as those which possess a specificity for inhibiting COX-2 over COX-1 of at least 100 fold as measured by the ratio of IC50 for COX-2 over IC50 for COX-1 evaluated by cell or microsomal assays.
  • Such compounds include, but are not limited to those disclosed in U.S. Patent 5,474,995, U.S. Patent 5,861,419, U.S. Patent 6,001,843, U.S. Patent 6,020,343, U.S. Patent 5,409,944, U.S. Patent 5,436,265, U.S. Patent 5,536,752, U.S.
  • Inhibitors of COX-2 that are particularly useful in the instant method of treatment are: 3-phenyl-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone; and 5-chloro-3-(4-methylsulfonyl)phenyl-2-(2-methyl-5-pyridinyl)pyridine; or a pharmaceutically acceptable salt thereof.
  • angiogenesis inhibitors include, but are not limited to, endostatin, ukrain, ranpirnase, IM862, 5-methoxy-4-[2-methyl-3-(3-methyl-2-butenyl)oxiranyl]-1- oxaspiro[2,5]oct-6-yl(chloroacetyl)carbamate, acetyldinanaline, 5-amino-1-[[3,5-dichloro-4-(4- chlorobenzoyl)phenyl]methyl]- 1H- 1 ,2,3-triazole-4-carboxamide,CMl 01 , squalamine,
  • combretastatin RPI4610, NX31838, sulfated mannopentaose phosphate, 7,7-(carbonyl-bis[imino- N-methyl-4,2-pyrrolocarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino]-bis-(1,3 -naphthalene disulfonate), and 3-[(2,4-dimethylpyrrol-5-yl)methylene]-2-indolinone (SU5416).
  • integrated circuit blockers refers to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the ⁇ ⁇ 3 integrin, to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the ⁇ 5 integrin, to compounds which antagonize, inhibit or counteract binding of a
  • physiological ligand to both the ⁇ ⁇ 3 integrin and the ⁇ ⁇ 5 integrin, and to compounds which antagonize, inhibit or counteract the activity of the particular integrin(s) expressed on capillary endothelial cells.
  • the term also refers to antagonists of the ⁇ ⁇ 6 , ⁇ ⁇ ⁇ 8 , ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 1 , ⁇ 5 ⁇ 1 , ⁇ 6 ⁇ 1 and ⁇ 6 ⁇ 4 integrins.
  • the term also refers to antagonists of any combination of ⁇ ⁇ 3 , ⁇ ⁇ ⁇ 5 , ⁇ ⁇ ⁇ 6 , ⁇ ⁇ ⁇ 8 , ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 6 , ⁇ 5 ⁇ 1 , ⁇ 6 1 6 and ⁇ 6 ⁇ 4 integrins.
  • tyrosine kinase inhibitors include N- (trifluoromethylphenyl)-5-methylisoxazol-4-carboxamide, 3-[(2,4-dimethylpyrrol-5- yl)methylidenyl)indolin-2-one, 17-(allylamino)- 17-demethoxygeldanamycin, 4-(3 -chloro-4- fluorophenylamino)-7-methoxy-6-[3-(4-morpholinyl)propoxyl]quinazoline, N-(3-ethynylphenyl)- 6,7-bis(2-methoxyethoxy)-4-quinazolinamine, BIBX1382, 2,3,9, 10, 11, 12-hexahydro-l 0- (hydroxymethyl)-10-hydroxy-9-methyl-9, 12-epoxy-1H-diindolo[1,2,3-fg:3',2', l '-kl]pyrrolo[3,4-
  • Combinations with compounds other than anti-cancer compounds are also encompassed in the instant methods.
  • combinations of the instantly claimed compounds with PPAR- ⁇ (i.e., PPAR-gamma) agonists and PPAR- ⁇ (i.e., PPAR-delta) agonists are useful in the treatment of certain malingnancies.
  • PPAR- ⁇ and PPAR- ⁇ are the nuclear peroxisome proliferator-activated receptors ⁇ and ⁇ .
  • the expression of PPAR- ⁇ on endothelial cells and its involvement in angiogenesis has been reported in the literature (see J. Cardiovasc. Pharmacol. 1998; 31 :909-913; J. Biol. Chem. 1999;274:9116-9121; Invest.
  • PPAR- ⁇ agonists and PPAR- ⁇ / ⁇ agonists include, but are not limited to, thiazolidinediones (such as DRF2725, CS-011, troglitazone, rosiglitazone, and pioglitazone), fenofibrate, gemfibrozil, clofibrate, GW2570, SB219994, AR-H039242, JTT-501, MCC-555, GW2331, GW409544, NN2344, KRP297, P0110, DRF4158, NN622, GI262570, PNU182716, DRF552926, 2-[(5,7- dipropyl-3-trifluoromethyl-1,2-benzisoxazol-6-yl)oxy]-2-methylpropionic acid (disclosed in USSN 09/782,856), and 2(R)-7-(3-(2-chloro-4-(4-fluorophenoxy) phenoxy)propi
  • Another embodiment of the instant invention is the use of the presently disclosed compounds in combination with gene therapy for the treatment of cancer.
  • Gene therapy can be used to deliver any tumor suppressing gene. Examples of such genes include, but are not limited to, p53, which can be delivered via recombinant virus-mediated gene transfer (see U.S.
  • Patent No. 6,069, 134 for example
  • a uPA/uPAR antagonist (Adenovirus-Mediated Delivery of a uPA/uPAR Antagonist Suppresses Angiogenesis-Dependent Tumor Growth and Dissemination in Mice," Gene Therapy, August 1998;5(8): 1105-13), and interferon gamma (J. Immunol.
  • the compounds of the instant invention may also be administered in combination with an inhibitor of inherent multidrug resistance (MDR), in particular MDR associated with high levels of expression of transporter proteins.
  • MDR inhibitors include inhibitors of p- glycoprotein (P-gp), such as LY335979, XR9576, OC144-093, R101922, VX853 and PSC833 (valspodar).
  • a compound of the present invention may be employed in conjunction with antiemetic agents to treat nausea or emesis, including acute, delayed, late-phase, and anticipatory emesis, which may result from the use of a compound of the present invention, alone or with radiation therapy.
  • a compound of the present invention may be used in conjunction with other anti-emetic agents, especially neurokinin- 1 receptor antagonists, 5HT3 receptor antagonists, such as ondansetron, granisetron, tropisetron, and zatisetron, GABAB receptor agonists, such as baclofen, a corticosteroid such as Decadron (dexamethasone), Kenalog, Aristocort, Nasalide, Preferid, Benecorten or others such as disclosed in U.S. Patent Nos.
  • neurokinin- 1 receptor antagonists especially 5HT3 receptor antagonists, such as ondansetron, granisetron, tropisetron, and zatisetron, GABAB receptor agonists, such as baclofen, a corticosteroid such as Decadron (dexamethasone), Kenalog, Aristocort, Nasalide, Preferid, Benecorten or others such as disclosed in U.S. Patent Nos.
  • an antidopaminergic such as the phenothiazines (for example prochlorperazine, fluphenazine, thioridazine and mesoridazine), metoclopramide or dronabinol.
  • phenothiazines for example prochlorperazine, fluphenazine, thioridazine and mesoridazine
  • metoclopramide metoclopramide or dronabinol.
  • conjunctive therapy with an anti-emesis agent selected from a neurokinin- 1 receptor antagonist, a 5HT3 receptor antagonist and a corticosteroid is disclosed for the treatment or prevention of emesis that may result upon administration of the instant compounds.
  • Neurokinin- 1 receptor antagonists of use in conjunction with the compounds of the present invention are fully described, for example, in U.S. Patent Nos. 5, 162,339, 5,232,929, 5,242,930, 5,373,003, 5,387,595, 5,459,270, 5,494,926, 5,496,833, 5,637,699, 5,719, 147;
  • the neurokinin- 1 receptor antagonist for use in conjunction with the compounds of the present invention is selected from: 2-(R)-(l-(R)-(3,5- bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(3-(5-oxo-1H,4H-1,2,4- triazolo)methyl)morpholine, or a pharmaceutically acceptable salt thereof, which is described in U.S. Patent No. 5,719, 147.
  • a compound of the instant invention may also be administered with an agent useful in the treatment of anemia.
  • an anemia treatment agent is, for example, a continuous eythropoiesis receptor activator (such as epoetin alfa).
  • a compound of the instant invention may also be administered with an agent useful in the treatment of neutropenia.
  • a neutropenia treatment agent is, for example, a
  • G-CSF human granulocyte colony stimulating factor
  • a compound of the instant invention may also be administered with an immunologic-enhancing drug, such as levamisole, isoprinosine and Zadaxin.
  • an immunologic-enhancing drug such as levamisole, isoprinosine and Zadaxin.
  • a compound of the instant invention may also be useful for treating or preventing cancer in combination with P450 inhibitors including: xenobiotics, quinidine, tyramine,
  • ketoconazole testosterone, quinine, methyrapone, caffeine, phenelzine, doxorubicin,
  • troleandomycin cyclobenzaprine, erythromycin, ***e, furafyline, cimetidine, dextromethorphan, ritonavir, indinavir, amprenavir, diltiazem, terfenadine, verapamil, Cortisol, itraconazole, mibefradil, nefazodone and nelfinavir.
  • a compound of the instant invention may also be useful for treating or preventing cancer in combination with Pgp and/or BCRP inhibitors including: cyclosporin A, PSC833, GF120918, cremophorEL, fumitremorgin C, Kol32, Kol34, Iressa, Imatnib mesylate, EKI-785, CI 1033, novobiocin, diethylstilbestrol, tamoxifen, resperpine, VX-710, tryprostatin A, flavonoids, ritonavir, saquinavir, nelfinavir, omeprazole, quinidine, verapamil, terfenadine, ketoconazole, nifidepine, FK506, amiodarone, XR9576, indinavir, amprenavir, Cortisol, testosterone, LY335979, OC 144-093, erythromycin, vincristine, digoxin and talinolo
  • a compound of the instant invention may also be useful for treating or preventing cancer, including bone cancer, in combination with bisphosphonates (understood to include bisphosphonates, diphosphonates, bisphosphonic acids and diphosphonic acids).
  • bisphosphonates include but are not limited to: etidronate (Didronel), pamidronate (Aredia), alendronate (Fosamax), risedronate (Actonel), zoledronate (Zometa), ibandronate (Boniva), incadronate or cimadronate, clodronate, EB-1053, minodronate, neridronate, piridronate and tiludronate including any and all pharmaceutically acceptable salts, derivatives, hydrates and mixtures thereof.
  • a compound of the instant invention may also be useful for treating or preventing breast cancer in combination with aromatase inhibitors.
  • aromatase inhibitors include but are not limited to: anastrozole, letrozole and exemestane.
  • a compound of the instant invention may also be useful for treating or preventing cancer in combination with siRNA therapeutics.
  • the compounds of the instant invention may also be administered in combination with ⁇ -secretase inhibitors and/or inhibitors of NOTCH signaling.
  • Such inhibitors include compounds described in WO 01/90084, WO 02/30912, WO 01/70677, WO 03/013506, WO 02/36555, WO 03/093252, WO 03/093264, WO 03/093251, WO 03/093253, WO 2004/039800, WO 2004/039370, WO 2005/030731, WO 2005/014553, USSN 10/957,251, WO 2004/089911, WO 02/081435, WO 02/081433, WO 03/018543, WO 2004/031137, WO 2004/031139, WO 2004/031138, WO 2004/101538, WO 2004/101539 and WO 02/47671 (including LY-450139).
  • a compound of the instant invention may also be useful for treating or preventing cancer in combination with PARP inhibitors.
  • a compound of the instant invention may also be useful for treating cancer in combination with the following therapeutic agents: abarelix (Plenaxis depot®); aldesleukin (Prokine®); Aldesleukin (Proleukin®); Alemtuzumabb (Campath®); alitretinoin (Panretin®); allopurinol (Zyloprim®); altretamine (Hexalen®); amifostine (Ethyol®); anastrozole
  • bendamustine hydrochloride (Treanda®); bevacuzimab (Avastin®); bexarotene capsules
  • Turetin® bexarotene gel
  • Turetin® bexarotene gel
  • bleomycin Blenoxane®
  • bortezomib Velcade®
  • busulfan intravenous Busulfex®
  • busulfan oral Myleran®
  • calusterone Methosarb®
  • capecitabine (Xeloda®); carboplatin (Paraplatin®); carmustine (BCNU®, BiCNU®); carmustine (Gliadel®); carmustine with Polifeprosan 20 Implant (Gliadel Wafer®); celecoxib (Celebrex®); cetuximab (Erbitux®); chlorambucil (Leukeran®); cisplatin (Platinol®); cladribine (Leustatin®, 2-CdA®); clofarabine (Clolar®); cyclophosphamide (Cytoxan®, Neosar®); cyclophosphamide (Cytoxan Injection®); cyclophosphamide (Cytoxan Tablet®); cytarabine (Cytosar-U®);
  • cytarabine liposomal (DepoCyt®); dacarbazine (DTIC-Dome®); dactinomycin, actinomycin D (Cosmegen®); dalteparin sodium injection (Fragmin®); Darbepoetin alfa (Aranesp®); dasatinib (Sprycel®); daunorubicin liposomal (DanuoXome®); daunorubicin, daunomycin
  • doxorubicin® daunorubicin, daunomycin (Cerubidine®); degarelix (Firmagon®); Denileukin diftitox (Ontak®); dexrazoxane (Zinecard®); dexrazoxane hydrochloride (Totect®); docetaxel (Taxotere®); doxorubicin (Adriamycin PFS®); doxorubicin (Adriamycin®, Rubex®);
  • doxorubicin (Adriamycin PFS Injection®); doxorubicin liposomal (Doxil®); dromostanolone propionate (Dromostanolone ®); dromostanolone propionate (Masterone Injection®);
  • Neatin® floxuridine (intraarterial) (FUDR®); fludarabine (Fludara®); fluorouracil, 5-FU (Adrucil®); fulvestrant (Faslodex®); gefitinib (Iressa®); gemcitabine (Gemzar®); gemtuzumab ozogamicin (Mylotarg®); goserelin acetate (Zoladex Implant®); goserelin acetate (Zoladex®); histrelin acetate (Histrelin implant®); hydroxyurea (Hydrea®); Ibritumomab Tiuxetan (Zevalin®); idarubicin (Idamycin®); ifosfamide (IFEX®); imatinib mesylate (Gleevec®); interferon alfa 2a (Roferon A®); Interferon alfa-2b (Intron A®); ioben
  • irinotecan (Camptosar®); ixabepilone (Ixempra®); lapatinib tablets (Tykerb®); lenalidomide (Revlimid®); letrozole (Femara®); leucovorin (Wellcovorin®, Leucovorin®); Leuprolide Acetate (Eligard®); levamisole (Ergamisol®); lomustine, CCNU (CeeBU®); meclorethamine, nitrogen mustard (Mustargen®); megestrol acetate (Megace®); melphalan, L-PAM (Alkeran®);
  • mercaptopurine 6-MP (Purinethol®); mesna (Mesnex®); mesna (Mesnex tabs®); methotrexate (Methotrexate®); methoxsalen (Uvadex®); mitomycin C (Mutamycin®); mitotane (Lysodren®); mitoxantrone (Novantrone®); nandrolone phenpropionate (Durabolin-50®); nelarabine
  • Oprelvekin Neuromega®
  • oxaliplatin paclitaxel
  • Paxene® paclitaxel
  • Taxol® paclitaxel protein-bound particles
  • Abraxane® palifermin
  • pamidronate Adraxane®
  • panitumumab Vectibix®
  • pazopanib tablets Votrienttm®
  • pegademase Adagen (Pegademase Bovine)®
  • pegaspargase Oncaspar®
  • Pegfilgrastim Nelasta®
  • pemetrexed disodium pemetrexed disodium
  • temozolomide Temodar®
  • temsirolimus Torisel®
  • teniposide VM-26 (Vumon®)
  • testolactone Teslac®
  • thioguanine 6-TG
  • Thioguanine® thiotepa
  • topotecan Hycamtin®
  • toremifene Fareston®
  • Tositumomab Bexxar®
  • tositumomab Bexxar®; Trastuzumab (Herceptin®); tretinoin, ATRA (Vesanoid®); Uracil Mustard (Uracil Mustard Capsules®); valrubicin (Valstar®); vinblastine (Velban®); vincristine (Oncovin®); vinorelbine (Navelbine®); vorinostat (Zolinza®); and zoledronate (Zometa®).
  • the scope of the instant invention encompasses the use of the instantly claimed compounds in combination with a second compound selected from: an estrogen receptor modulator, an androgen receptor modulator, a retinoid receptor modulator, a cytotoxic/cyto static agent, an antiproliferative agent, a prenyl-protein transferase inhibitor, an HMG-CoA reductase inhibitor, an HIV protease inhibitor, a reverse transcriptase inhibitor, an angiogenesis inhibitor, PPAR- ⁇ agonists, PPAR- ⁇ agonists, an inhibitor of inherent multidrug resistance, an anti-emetic agent, an agent useful in the treatment of anemia, an agent useful in the treatment of neutropenia, an immunologic-enhancing drug, an inhibitor of cell proliferation and survival signaling, a bisphosphonate, an aromatase inhibitor, an siRNA therapeutic, ⁇ -secretase inhibitors, agents that interfere with receptor tyrosine kinases (RTKs), an agent that interferes with a cell cycle checkpoint
  • administration means introducing the compound or a prodrug of the compound into the system of the animal in need of treatment.
  • a compound of the invention or prodrug thereof is provided in combination with one or more other active agents (e.g., a cytotoxic agent, etc.)
  • administration and its variants are each understood to include concurrent and sequential introduction of the compound or prodrug thereof and other agents.
  • composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • terapéuticaally effective amount means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
  • treating cancer refers to administration to a mammal afflicted with a cancerous condition and refers to an effect that alleviates the cancerous condition by killing the cancerous cells, but also to an effect that results in the inhibition of growth and/or metastasis of the cancer.
  • the angiogenesis inhibitor to be used as the second compound is selected from a tyrosine kinase inhibitor, an inhibitor of epidermal-derived growth factor, an inhibitor of fibroblast-derived growth factor, an inhibitor of platelet derived growth factor, an MMP (matrix metalloprotease) inhibitor, an integrin blocker, interferon-a, interleukin-12, pentosan polysulfate, a cyclooxygenase inhibitor, carboxyamidotriazole, combretastatin A-4, squalamine, 6-0-chloroacetyl-carbonyl)-fumagillol, thalidomide, angiostatin, troponin- 1, or an antibody to VEGF.
  • the estrogen receptor modulator is tamoxifen or raloxifene.
  • a method of treating cancer comprises administering a therapeutically effective amount of a compound of the instant invention in combination with radiation therapy and/or in combination with a second compound selected from: an estrogen receptor modulator, an androgen receptor modulator, a retinoid receptor modulator, a cytotoxiccyto static agent, an antiproliferative agent, a prenyl-protein transferase inhibitor, an HMG-CoA reductase inhibitor, an HIV protease inhibitor, a reverse transcriptase inhibitor, an angiogenesis inhibitor, PPAR- ⁇ agonists, PPAR- ⁇ agonists, an inhibitor of inherent multidrug resistance, an anti-emetic agent, an agent useful in the treatment of anemia, an agent useful in the treatment of neutropenia, an immunologic-enhancing drug, an inhibitor of cell proliferation and survival signaling, a bisphosphonate, an aromatase inhibitor, an siRNA therapeutic, ⁇ -secretase inhibitors, agents that interfere with receptor tyros
  • Yet another embodiment of the invention is a method of treating cancer that comprises administering a therapeutically effective amount of a compound of the instant invention in combination with paclitaxel or trastuzumab.
  • the invention further encompasses a method of treating or preventing cancer that comprises administering a therapeutically effective amount of a compound of the instant invention in combination with a COX-2 inhibitor.
  • the instant invention also includes a pharmaceutical composition useful for treating or preventing cancer that comprises a therapeutically effective amount of a compound of the instant invention and a second compound selected from: an estrogen receptor modulator, an androgen receptor modulator, a retinoid receptor modulator, a cytotoxic/cyto static agent, an antiproliferative agent, a prenyl-protein transferase inhibitor, an HMG-CoA reductase inhibitor, an HIV protease inhibitor, a reverse transcriptase inhibitor, an angiogenesis inhibitor, a PPAR- ⁇ agonist, a PP AR- ⁇ agonist, an inhibitor of cell proliferation and survival signaling, a second compound selected from: an estrogen receptor modulator, an androgen receptor modulator, a retinoid receptor modulator, a cytotoxic/cyto static agent, an antiproliferative agent, a prenyl-protein transferase inhibitor, an HMG-CoA reductase inhibitor, an HIV protease inhibitor, a reverse transcriptase inhibitor
  • the compounds of this invention may be prepared by employing reactions as shown in the following Reaction Scheme, in addition to other standard manipulations that are known in the literature or exemplified in the experimental procedures.
  • the illustrative Reaction Scheme below therefore, is not limited by the compounds listed or by any particular substituents employed for illustrative purposes.
  • Substituent numbering as shown in the Reaction Scheme does not necessarily correlate to that used in the claims and often, for clarity, a single substituent is shown attached to the compound where multiple substituents are allowed under the definitions of Formula A herein above.
  • intermediate 1-6 was prepared via 6 steps.
  • Step A tert-butyl (lR,3R)-1-(4-cyanophenyl)-3-hydroxy-3-methylcyclobutylcarbamate
  • Step B tert-butyl (lR,3R)-3-hydroxy-3-methyl-1-(4-(2-phenylacetyl)phenyl)
  • Step C tert-butyl( 1 R, 3R)- 1 -(4-(2-bromo-2-phenylacetyl)phenyl)-3 -hydroxy-3 - methylcyclobutylcarbamate (1-4)
  • Step D tert-butyl(lR,3R)-1-(4-(2-amino-5-phenylthiazol-4-yl)phenyl)-3-hydroxy-3- methylcyclobutylcarbamate (1-5)
  • Step E tert-butyl(lR,3R)-1-(4-(2-bromo-5-phenylthiazol-4-yl)phenyl)-3-hydroxy
  • Step A tert-butyl (lR,3R)-3-hydroxy-1-(4-(2-(6-methoxypyridin-3-yl)-5-phenylthiazol-4-yl) phenyl)-3 -methylcyclobutylcarbamate (2-0)
  • Step B (lR,3R)-3-amino-3-(4-(2-(6-methoxypyridin-3-yl)-5-phenylthiazol-4-yl)phenyl)
  • intermediate 1-6 was prepared via 6 steps. Cyanation catalyzed by palladium gave intermediate 1-2 which was treated with i-PropylMgCl and subsequently by BnMgCl to afford intermediate 1-3. Bromination of 1-3 was effected with NBS, followed by thiourea and amylnitrite/CuBr2 provided 1-6.
  • Step A tert-butyl (lR,3R)-3-hydroxy-1-(4-(2-(5-methoxypyridin-3-yl)-5-phenylthiazol-4-yl) phenyl)-3 -methylcyclobutylcarbamate (3-0)
  • Step B (lR,3R)-3-amino-3-(4-(2-(5-methoxypyridin-3-yl)-5-phenylthiazol-4-yl)phenyl)
  • compound 4-1 was prepared via 2 steps: neucleophilic substitution with amines followed by the standard de-Boc protocol.
  • Step A tert-butyl (lR,3R)-3-hydroxy-3-methyl-1-(4-(5-phenyl-2-(4-(pyrazin-2-yl) piperazin- 1 -yl)thiazol-4-yl)phenyl)cyclobutylcarbamate (4-0)
  • Step B ( lR,3R)-3 -amino- 1 -methyl-3 -(4-(5-phenyl-2-(4-(pyrazin-2-yl)piperazin- 1 -yl)
  • Step A tert-butyl l-(4-(2-(nicotinamido)-5-phenylthiazol-4-yl)phenyl)cyclobutylcarbamate
  • the pS2neo vector (deposited in the ATCC on April 3, 2001 as ATCC PTA-3253) was prepared as follows: The pRmHA3 vector (prepared as described Nucl. Acid Res.
  • pS2neo-l This plasmid contains a polylinker between a metallothionine promoter and an alcohol dehydrogenase poly A addition site. It also has a neo resistance gene driven by a heat shock promoter.
  • the pS2neo-l vector was cut with Psp5II and BsiWI.
  • Human Aktl gene was amplified by PCR (Clontech) out of a human spleen cDNA (Clontech) using the 5' primer:
  • a middle T tag was added to the 5' end of the full length Aktl gene using the PCR primer: 5 ' GT ACGATGCTGAACGAT ATCTTCG 3' (SEQ.ID.NO. : 5).
  • the resulting PCR product encompassed a 5' Kpnl site and a 3' BamHI site which were used to subclone the fragment in frame with a biotin tag containing insect cell expression vector, pS2neo.
  • Aktl pleckstrin homology domain ( PH ) deleted (Aaa 4-129, which includes deletion of a portion of the Aktl hinge region) version of Aktl
  • PCR deletion mutagenesis was done using the full length Aktl gene in the pS2neo vector as template.
  • TATTC 3' (SEQ.ID.NO. : 7)) which encompassed the deletion and 5' and 3' flanking primers which encompassed the Kpnl site and middle T tag on the 5' end.
  • the final PCR product was digested with Kpnl and Smal and ligated into the pS2neo full length Aktl KpnI/Smal cut vector, effectively replacing the 5' end of the clone with the deleted version.
  • Human Akt3 gene was amplified by PCR of adult brain cDNA (Clontech) using the amino terminal oligo primer:
  • primers included a 5' EcoRI/Bglll site and a 3' Xbal/Bglll site for cloning purposes.
  • the resultant PCR product was cloned into the EcoRI and Xbal sites of pGEM4Z (Promega).
  • pGEM4Z Promega
  • a middle T tag was added to the 5' end of the full length Akt3 clone using the PCR primer:
  • the resultant PCR product encompassed a 5' Kpnl site which allowed in frame cloning with the biotin tag containing insect cell expression vector, pS2neo.
  • Human Akt2 gene was amplified by PCR from human thymus cDNA (Clontech) using the amino terminal oligo primer:
  • the DNA containing the cloned Aktl, and Akt2 genes in the pS2neo expression vector was purified and used to transfect Drosophila S2 cells (ATCC) by the calcium phosphate method. Pools of antibiotic (G418, 500 ⁇ / ⁇ 1) resistant cells were selected. Cell were expanded to a 1.0 L volume (-7.0 x 10 6 / ml), biotin and CuS0 4 were added to a final concentration of 50 ⁇ and 50 mM respectively. Cells were grown for 72 h at 27°C and harvested by centrifugation. The cell paste was frozen at -70°C until needed.
  • the soluble fraction was purified on a Protein G Sepharose fast flow (Pharmacia) column loaded with 9mg/ml anti-middle T monoclonal antibody and eluted with 75 ⁇ EYMPME (SEQ.ID.NO.
  • Akt isoforms were assayed utilizing a GSK-derived biotinylated peptide substrate. The extent of peptide phosphorylation was determined by Homogeneous Time
  • HTRF Resolved Fluorescence
  • SA-APC streptavidin-linked allophycocyanin
  • Enzyme diluent 18000 uL 10 x R for AKT assay buffer, 9600 uL 250 mM MgC12, 12000 uL 1 M KCl, 18000 uL 50%Glycerol, 900 uL 0.2 M DTT, 121500 uL MilliQ water.
  • Enzyme mixture (E-Mix): To 72 mL Enzyme diluent, added 4.3 uL of a 100 nM
  • activated AKT1 1.9 uL of a 225 nM stock of activated Akt2 so concentration AKT1 and Akt2 were 6 pM.
  • Stop Buffer was added manually to wells acting as Background control wells.
  • ATP/Peptide working solution 10000 uL 10 x R for AKT assay buffer, 5000 uL 50% glycerol, 250 uL 0.2M DTT, 600 uL 50 mM ATP, 100 uL 1 mM GSK3 peptide, 34050 uL MilliQ water.
  • Stop kinase reactions by adding 10 uL Stop Buffer, using Multidrop 384, to wells other than background wells.
  • Compounds of the instant invention described in Schemes and Tables above were tested in the assay described above (Example 4) and were found to have IC 50 of ⁇ 50 ⁇ against one or more of Aktl, Akt2 and Akt3.
  • Compound 2-1 has an IC 50 of 91 nM against Aktl and 26 nM against Akt2.
  • Compound 3-1 has an IC 50 of 40 nM against Aktl and 25 nM against Akt2.
  • Cells for example LnCaP or a PTEN (-/-) tumor cell line with activated Akt/PKB
  • Akt/PKB activated Akt/PKB
  • Controls included untreated cells, vehicle treated cells and cells treated with either LY294002 (Sigma) or wortmanin (Sigma) at 20 ⁇ or 200 nM, respectively.
  • the cells were incubated for 2, 4 or 6 hrs, and the media removed, The cells were washed with PBS, scraped and transferred to a centrifuge tube. They were pelleted and washed again with PBS.
  • the cell pellet was resuspended in lysis buffer (20 mM Tris pH8, 140 mM NaCl, 2 mM EDTA, 1% Triton, 1 mM Na Pyrophosphate, 10 mM i ⁇ -Glycerol Phosphate, 10 mM NaF, 0.5 mm NaV0 4 , 1 ⁇ Microsystine, and lx Protease Inhibitor Cocktail), placed on ice for 15 minutes and gently vortexed to lyse the cells. The lysate was spun in a Beckman tabletop ultra centrifuge at 100,000 x g at 4°C for 20min. The
  • IP immunoprecipitated
  • Human tumor cell lines which exhibit a deregulation of the PI3K pathway (such as
  • LnCaP, PC 3 , C 3 3a, OVCAR-3, MDA-MB-468, A2780 or the like are injected subcutaneously into the left flank of 6-10 week old female nude (also male mice [age 10-14 weeks] are used for prostate tumor xenografts [LnCaP and PC 3 ]) mice (Harlan) on day 0.
  • the mice are randomly assigned to a vehicle, compound or combination treatment group.
  • the inhibitor test compound may be administered by a continuous infusion pump.
  • Compound, compound combination or vehicle is delivered in a total volume of 0.2 ml. Tumors are excised and weighed when all of the vehicle-treated animals exhibited lesions of 0.5 - 1.0 cm in diameter, typically 4 to 5.5 weeks after the cells were injected. The average weight of the tumors in each treatment group for each cell line is calculated.
  • This procedure describes a sandwich immunoassay used to detect multiple phosphorylated proteins in the same well of a 96 well format plate. Cell lysates are incubated in
  • Block Multiplex Plates (Meso Scale Discovery, Gaithersburg, MD) with 3% Blocker A in IX Tris Wash Buffer, 150 ⁇ 1/well. Cover with plate sealer, incubate on Micromix shaker RT 2h
  • IX RCM 51 Dilute Secondary Antibodies in 1% Blocker A in IX Tris Wash Buffer: Anti phospho AKT (T308), Anti phospho Tuberin (T1462), alone or in combination. Add 25 ⁇ 1/well, cover with plate sealer, incubate on Micromix shaker RT 3h. Wash with IX RCM 51. Dilute Ru-
  • Ru-GAR Ruthenylated Goat anti Rabbit
  • IPX RCM 51 IPX TTBS. RCM 51
  • IX 2PmM Tris pH 7.5, 14PmM NaCl, P.1% Tween-2P
  • Akt serine/threonine kinase Activated endogenous Akt is capable of phosphorylatinga specific Akt substrate (GSK3P) peptide which is biotinylated. Detection is performed by Homogeneous Time Resolved Fluorescence (HTRF) using a Europium Kryptate [Eu(K)] coupled antibody specific for the phosphopeptide and streptavidin linked XL665 fluorophore which will bind to the biotin moiety on the peptide. When the [Eu(K)] and XL665 are in proximity (i.e. bound to the same phosphopeptide molecule) a non-radiative energy transfer takes place from the Eu(K) to the XL665, followed by emission of light from XL665 at 665 nm.
  • HTRF Homogeneous Time Resolved Fluorescence
  • the assay can be used to detect inhibitors of all three Akt isozymes (Aktl, Akt2, and Akt3) from multiple different species if specific antibodies to each exist.
  • IP Kinase Cell Lysis Buffer IX TBS; 0.2% Tween 20; IX Protease Inhibitor Cocktail III (Stock is 100X, Calbiochem, 539134); IX Phosphatase Inhibitor Cocktail I (Stock is 100X, Calbiochem, 524624); and IX Phosphatase Inhibitor Cocktail II (Stock is 100X, Calbiochem, 524625).
  • IP Kinase Assay Buffer IX Assay Buffer; 50 mM KCl; 150 ⁇ ATP; 10 mM MgCl 2 ; 5% Glycerol; 1 mM DTT; 1 Tablet Protease Inhibitor Cocktail per 50 ml Assay Buffer; and 0.1% BSA
  • GSK3P Substrate Solution IP Kinase Assay Buffer; and 500 nM Biotinylated GSK3P peptide.
  • Lance Buffer 50 mM Hepes pH 7.5; 0.1% BSA; and 0. l%Triton X-100.
  • Lance Detection Buffer Lance Buffer; 13.3 ⁇ g/ml SA-APC; and 0.665 nM EuK Ab a- phospho (Ser-21) GSK3B
  • Seed C 3 3a cells Step: Plate 60,000 C 3 3a cells/well in 96 well microtiter plate.
  • Rabbit-IgG 150 ng/well/100 ul: Bl 1 - Gl 1 on every plate (Aktl and Akt2)
  • J. Akt Immunoprecipitation Step To the 100 ⁇ of PBS from Step(I) add 5 ⁇ of thawed cell lystate for Aktl plates and 10 ⁇ of thawed cell lysate for Akt2 plates. NOTE: Thaw cell lysate on ice. Mix thawed lysate by pipetting up & down 10X before transferring to antibody plates. Keep the cell lysate plates on ice. After transfer of cell lysate to the antibody plates refreeze the cell lysate plates at -70°C.

Abstract

La présente invention concerne des thiazoles substitués qui inhibent l'activité d'Akt. En particulier, les composés selon l'invention inhibent sélectivement une ou deux des isoformes d'Akt. La présente invention concerne également des compositions comprenant de tels composés inhibiteurs et des méthodes d'inhibition de l'activité d'Akt par administration du composé à un patient nécessitant le traitement d'un cancer.
PCT/CN2010/072132 2010-04-23 2010-04-23 Inhibiteurs de l'activité d'akt WO2011130921A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2010/072132 WO2011130921A1 (fr) 2010-04-23 2010-04-23 Inhibiteurs de l'activité d'akt
US13/642,958 US20130102605A1 (en) 2010-04-23 2011-04-21 Inhibitors of akt activity
EP11772684.4A EP2579872A4 (fr) 2010-04-23 2011-04-21 Inhibiteurs de l'activité akt
PCT/US2011/033363 WO2011133733A1 (fr) 2010-04-23 2011-04-21 Inhibiteurs de l'activité akt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072132 WO2011130921A1 (fr) 2010-04-23 2010-04-23 Inhibiteurs de l'activité d'akt

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/642,958 Continuation US20130102605A1 (en) 2010-04-23 2011-04-21 Inhibitors of akt activity

Publications (1)

Publication Number Publication Date
WO2011130921A1 true WO2011130921A1 (fr) 2011-10-27

Family

ID=44833647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072132 WO2011130921A1 (fr) 2010-04-23 2010-04-23 Inhibiteurs de l'activité d'akt

Country Status (1)

Country Link
WO (1) WO2011130921A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286150A (zh) * 2016-04-11 2017-10-24 中国科学院上海有机化学研究所 N‑杂环类化合物、其中间体、制备方法、药物组合物和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096135A2 (fr) * 2003-04-24 2004-11-11 Merck & Co., Inc. Inhibiteurs de l'activite de l'akt
WO2005100344A1 (fr) * 2004-04-09 2005-10-27 Merck & Co., Inc. Inhibiteurs de l'activite d'akt
WO2007084391A2 (fr) * 2006-01-18 2007-07-26 Amgen Inc. Composes thiazole et procedes d'utilisation
WO2008070016A2 (fr) * 2006-12-06 2008-06-12 Merck & Co., Inc. Inhibiteurs de l'activité akt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096135A2 (fr) * 2003-04-24 2004-11-11 Merck & Co., Inc. Inhibiteurs de l'activite de l'akt
WO2005100344A1 (fr) * 2004-04-09 2005-10-27 Merck & Co., Inc. Inhibiteurs de l'activite d'akt
WO2007084391A2 (fr) * 2006-01-18 2007-07-26 Amgen Inc. Composes thiazole et procedes d'utilisation
WO2008070016A2 (fr) * 2006-12-06 2008-06-12 Merck & Co., Inc. Inhibiteurs de l'activité akt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286150A (zh) * 2016-04-11 2017-10-24 中国科学院上海有机化学研究所 N‑杂环类化合物、其中间体、制备方法、药物组合物和应用

Similar Documents

Publication Publication Date Title
AU2007328286B2 (en) Inhibitors of Akt activity
US8207169B2 (en) Substituted [1,2,4]triazolo[4′,3′:1,6]pyrido[2,3-b]pyrazines of the formula D
US20120028918A1 (en) Pharmaceutical compositions and methods of making same
US8691825B2 (en) Inhibitors of AKT activity
EP2299825B1 (fr) Inhibiteurs de l'activité akt
EP2405756B1 (fr) Inhibiteurs de l'activité akt
US20110288090A1 (en) Inhibitors of AKT Activity
US20100022573A1 (en) Inhibitors of akt activity
US20130102605A1 (en) Inhibitors of akt activity
WO2011130921A1 (fr) Inhibiteurs de l'activité d'akt
US20120252806A1 (en) Inhibitors of akt activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850055

Country of ref document: EP

Kind code of ref document: A1