WO2011130812A2 - Suspensions for preparing biosilicate-based bone grafts (scaffolds), thus obtained bone grafts and methods for producing same - Google Patents

Suspensions for preparing biosilicate-based bone grafts (scaffolds), thus obtained bone grafts and methods for producing same Download PDF

Info

Publication number
WO2011130812A2
WO2011130812A2 PCT/BR2011/000099 BR2011000099W WO2011130812A2 WO 2011130812 A2 WO2011130812 A2 WO 2011130812A2 BR 2011000099 W BR2011000099 W BR 2011000099W WO 2011130812 A2 WO2011130812 A2 WO 2011130812A2
Authority
WO
WIPO (PCT)
Prior art keywords
bone
biosilicate
scaffolds
bone grafts
suspensions
Prior art date
Application number
PCT/BR2011/000099
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2011130812A3 (en
Inventor
Ana Candida Martins Rodrigues
Oscar Peitl Filho
Edgar Dutra Zanotto
Murilo Camuri Crovace
Carlos Alberto Fortulan
Original Assignee
Fundação Universidade Federal De São Carlos
Universidade De São Paulo - Usp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundação Universidade Federal De São Carlos, Universidade De São Paulo - Usp filed Critical Fundação Universidade Federal De São Carlos
Publication of WO2011130812A2 publication Critical patent/WO2011130812A2/en
Publication of WO2011130812A3 publication Critical patent/WO2011130812A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/08Methods for forming porous structures using a negative form which is filled and then removed by pyrolysis or dissolution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention belongs to the field of bone graft or scaffoid materials, more specifically, tissue engineering scaffoids obtained from Biosilicate®, the suspensions used for the preparation of such scaffoids and the processes and techniques for obtaining such bone grafts. .
  • scaffolds should favor cell attachment, growth and differentiation of these cells. Ideally, scaffolds should be developed to degrade slowly after implantation into the patient and be gradually replaced by the new tissue formed. Thus, one of the main features of scaffolds is that they exhibit "bioactivity", i.e., ability to interact with and bond with or promote their regeneration.
  • An ideal scaffold must meet several criteria for effective bone regeneration, see Karageorgiou, V .; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, v.26, p.5474-5491, 2005; Gauthier, O. et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, v.11, no. 3, p.133-139, 1998; Salty, AJ; et al., Bone tissue engineering: state of the art and future trends.
  • osteoconduction ie the ability to allow cell migration, adhesion and proliferation, following the synthesis of bone matrix
  • Present osteoinduction ie be able to induce bone tissue formation directly from osteoblasts
  • Another desirable feature would be the different X-ray opacity of bone to allow a radiographic distinction between the implanted scaffold and the newly formed tissue.
  • Bioactive glasses and glass ceramics (case of Biosilicate ® , object of Brazilian application published PI 03006441, of the same Applicants and incorporated herein in full by reference) can meet the first three criteria described above: they have excellent bioactivity, can have controlled solubility and have osteoconduction and osteoinduction. These advantages make Biosilicate® a suitable material for the manufacture of scaffolds.
  • bioactive glasses have the highest level of bioactivity among known materials, including bioactive ceramics. This means that they react with living tissues at a higher rate.
  • bioactive glasses have the disadvantages of low mechanical strength and low fracture toughness. For this reason, bioactive glasses are used so far only in the form of granules.
  • Biosilicate ® a Na 2 0-CaO-Si0 2 -P 2 0 5 vitroceramic system
  • Biosilicate ® a Na 2 0-CaO-Si0 2 -P 2 0 5 vitroceramic system
  • Scaffolds can be made from numerous types of materials, including metals, polymers, ceramics, or composites thereof. If they are made from non-resorbable materials such as metals, stainless steels and titanium alloys are used.
  • Metal implants used for bone regeneration are generally made of two layers, the inner part being solid metal, while metallic particles form a porous surface coating.
  • the thickness of the porous layer may range from a few nanometers to hundreds of microns, depending on the manufacturing technique.
  • Different techniques have been employed for the preparation of porous coating including plasma spraying in the case of implants with porosity in the range of 50-60% and pore size ranging from 200 to 400 ⁇ , according to Nishiguchi, S. et al. Alkali and heat-treated porous titanium for orthopedic implants. Journal of Biomedical Materials Research, v.54, n.2, p.198-208, 2001.
  • sintering is also employed, see Pilliar, RM; Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dentistry, v.7, no.4, p.305-34, 1998.
  • Examples of completely porous metal scaffolds are titanium meshes with 86% porosity and an average pore size of approximately 250 ⁇ , which were used to repair cranial defects, according to the articles by Van Den Dolder, J. et al. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials, v.24, no. O, p.1745-1750, 2003 and Sikkavitsas, V. I. et al. Influence of the in vitro culture period on the in vivo performance of cell titanium bone tissue-engineered constructs using a cranial rat size defect model. Journal of Biomedical Materials Research A, v.67, n.3, p.944-951, 2003.
  • metals over other types of materials are their excellent mechanical strength.
  • the main disadvantage of metals is that they are almost inert, that is, they are not able to bind to bone tissue or promote its regeneration.
  • the first technique (a) usually consists of preparing a biphasic composite containing a continuous matrix of precursor ceramic particles and a homogeneously dispersed sacrificial phase in the matrix, which is then extracted to generate pores in the microstructure.
  • Camilo, CC Alumina / hydroxyapatite / bioglass implant implants mechanical and in vitro analyzes. 2006. 145f. Dissertation (Master in Mechanical Engineering) - School of Engineering of S ⁇ o Carlos, University of S ⁇ o Paulo, S ⁇ o Carlos, 2006, obtained hydroxyapatite and Bioglass ® infiltrated alumina scaffoids by this technique. Initially, the author prepared a slip containing alumina and dispersed sucrose particles. After drying of the slip, the obtained powder was isostatically pressed into tablets. The pellets were immersed in water for sucrose removal and then sintered at high temperatures ( ⁇ 1400 ° C). Scaffoids with approximately 70% porosity and relatively high mechanical strength were obtained.
  • the replication technique (b) consists of dipping a foam into a slip containing the material of interest, namely the ceramic particles. Then the green body goes through a burning process, where polymer elimination and dust sintering occurs.
  • Zhang, MQ et al Preparation of porous hydroxyapatite scaffolds by combination of gel-casting and polymer sponge methods. Biomaterials, v.24, n.19, p.3293-3302, 2003 produced hydroxyapatite scaffolds with porosity ranging from 70-77%, and the pores had sizes ranging from 200 to 400 ⁇ .
  • porous materials are produced by incorporating gases and / or surfactants into a suspension which is subsequently adjusted to maintain the bubble structure formed. In most cases, the consolidated foams are sintered at high temperatures.
  • HA hydroxyapatite
  • TCP tricalcium phosphate
  • Bioactive glass scaffolds have been manufactured using only sol-gel, gel-casting and direct foaming techniques, see articles by Jones, J.R .; Boccaccini, A.R. Cellular ceramics in biomedical applications: tissue engineering. In: Scheffler, Colombo P, editors. Cellular ceramics: structure, manufacturing, processing and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA; P. 550-573, 2005 and Jones, J.R .; Hench, L.L. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. Journal of Biomedical Materials Research B: Applied Biomaterials, v.68, p.36-44, 2004.
  • Still a technique applicable to obtaining ceramic scaffolds is the rapid prototyping of ceramics or direct manufacture. It is a modern technique that is in the early stages of development. In addition to enabling the creation of parts in a short time makes it possible to three-dimensionally manufacture parts with the geometry that conventional manufacturing techniques are unable to perform.
  • the three-dimensional manufacturing process encompasses the manufacture of a part from a three-dimensional digital CAD model. This model is then layered by a slicing algorithm, where each slice is approximately 100 ⁇ thick, thus generating detailed information about each cross section that added one by one generates the three-dimensional volume.
  • 3D printing which employs binder spray on ceramic powders; later the part can be sintered; The method also applies to isostatic pressing to improve densification.
  • Three-dimensional printing is potentially of great interest in the area of biomaterials where pore presence is desirable, as well as pore morphology, distribution and interconnection. In this area the featured products are alumina, hydroxyapatite, zirconia, and apatite based cements.
  • PI9200074-6 describes a process for obtaining composite bone graft material consisting of animal bone and collagen.
  • PI9810693-7 describes a moldable bioactive composition that can be used in tissue reconstruction;
  • the composition includes bioactive glasses, calcium phosphate ceramics and / or polysaccharides, but does not include a bioactive glass ceramic such as Biosilicate ® of the present application.
  • the invention further involves the addition of biological agents (before and / or after granulation) such as: growth factors (PDGF, TGF-b, IGF, FGF, BDGF and / or bone morphogenetic proteins), antibiotics (vancomycin, tobramycin and / or gentamicin), salts (strontium salt, magnesium salt and sodium salt), anesthetics (lidocaine or bipivacaine) and also anti-inflammatory drugs such as tromethamine.
  • biological agents such as: growth factors (PDGF, TGF-b, IGF, FGF, BDGF and / or bone morphogenetic proteins), antibiotics (vancomycin, tobramycin and / or gentamicin), salts (strontium salt, magnesium salt and sodium salt), anesthetics (lidocaine or bipivacaine) and also anti-inflammatory drugs such as tromethamine.
  • biological agents such as: growth factors (PDGF, TGF-b, IGF, FGF, BDGF and /
  • Biosilicate ® has since been used to refer to glass ceramics belonging to this class of materials. This term, when used singularly, means a particular composition.
  • Biosilicate ® has special characteristics that put it at a great advantage over current compounds for the treatment of dentin hypersensitivity. Because it is totally crystalline, it has the advantage over bioactive glasses of obtaining more regular particles, less abrasive and devoid of sharp surfaces that can be aggressive to the gingival tissue and mucous membranes.
  • Biosilicate ® In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate ® ). Journal of Biomedical Materials Research A, v. 82, p. 545-557, 2007, Biosilicate ® and Bioglass ® were submitted to osteogenic bone cell culture in order to evaluate their properties comparatively. It was observed that although both materials induced osteogenesis in vitro, significantly larger areas of calcified bone matrix were formed on the surface of Biosilicate ® . The authors also suggested that these results indicate that Biosilicate ® is an osteoinductive material, having a higher bioactivity level than commercial apatite vitroceramics, and similar to the "golden standard" Bioglass ® - 45S5. This feature confirms, once again, that Biosilicate ® is a potential candidate for the development of scaffoids for use as bone grafts.
  • the suspensions of the invention for preparing Biosilicate ® based bone grafts comprise, in particular, 10-50% of solids, with 50-98% porogenic agent and 2-50% Biosilicate ® and 50-90% liquids. 0.5-15% binder and 85 to 99.5% liquid medium.
  • Suspensions / compositions comprising said starting materials are processed by techniques of a) addition and deletion of porogenic agents, (b) replica (c) direct foaming and (d) rapid ceramic prototyping.
  • the binder, liquid medium and Biosilicate ® are combined in the appropriate proportions and the suspension obtained is subjected to grinding, after which the porogenic agent is added. After mixing and homogenization the suspension is dried, sieved and the obtained powder is formed under pressure. The object formed in any shape useful for the desired purpose is then burned (sintered) to produce the bone or scaffold graft. At this stage the porogenic agent is eliminated by firing, and a porous structure suitable for use as a scaffold is obtained. The scaffold is recovered for use as a bone graft.
  • Biosilicate ® suspensions are processed by the replica method, a foam such as polyurethane (PU) is impregnated with a suspension containing ceramic particles to produce a macroporous material exhibiting the same morphology as the original porous material. Subsequently, the impregnated foam is pressed between two metal sieves to remove excess suspension and to prevent the formation of closed cells. The foam dries at room temperature for 12 hours. Cell opening can be controlled using a foam with the following desired characteristics and the number of times this foam is impregnated with the Biosilicate ® suspension.
  • PU polyurethane
  • Biosilicate ® scaffolds are processed by the direct foaming method, a gas (which may be air) is introduced into the Biosilicate ® suspension containing one or more surfactants; This process is followed by drying and burning of the suspension.
  • a gas which may be air
  • Biosilicate® suspensions are processed by the rapid prototyping method, Laywise Slurry Deposition, SDM and Fused Deposition odelling, Thermojet and 3D Printing techniques can be employed.
  • the scaffolds of the invention therefore comprise materials obtained from highly crystalline and bioactive glass ceramics - Biosilicate ® -, the scaffolds having total porosity ranging from 65-95% (macroporosity in the range 60 - 90%) and average pore size from 100 and 600 pm when suspensions or slips are derived from the addition of porogenic agents.
  • the scaffolds of the invention obtained by the replica method have a cellular structure similar to that of trabecular bone, with interconnected pores in the range of 100 - 1200 pm and total porosity of 70 to 98%.
  • the invention provides suspensions based on Biosilicate ® , liquid medium, binder and porogenic agent processed to obtain scaffolds in formats suitable for various purposes.
  • the invention also provides biosilicate based suspensions for processing by the replica method.
  • the invention also provides Biosilicate ® based suspensions to be processed by the direct foaming method.
  • the invention also provides Biosilicate ® based suspensions for processing by the rapid prototyping method.
  • the invention also provides tissue engineering scaffolds made from highly crystalline and bioactive glass ceramics - Biosilicate ® .
  • the invention also provides scaffolds which in in vitro osteogenesis tests form significantly larger areas of calcified bone matrix on the surface of Biosilicate compared to commercial apatite vitroceramics.
  • the invention further provides scaffolds based on Biosilicate ® , an osteoinductive material.
  • the invention further provides scaffolds based on Biosilicate ® , an osteoconductive material.
  • FIGURE 1 is a simplified flowchart of one embodiment of the scaffold of the invention via addition of porogenic agent.
  • FIGURE 2 is a representation of the general composition of the suspensions of the invention processed by the method via addition of porogenic agent.
  • Attached FIGURE 3 is a graph of tablet firing stages for obtaining scaffolds, where Ta: Ambient temperature; Tr1: Removal temperature of porogenic agent or PU foam; Tr2: Binder removal temperature; Ts: Scaffold sintering temperature.
  • Attached FIGURE 4 is a set of SEM micrographs for scaffoids obtained by addition of porogenic agent. Porogenic agents are cassava starch ( Figures 4A and 4B) and carbon black (Figure 4C and Figure 4D) as porogenic agents.
  • Figures 4A and Figure 4C are images of the fracture surface of the scaffoids.
  • Figures 4B and Figure 4D are images of epoxy resin embedded scaffoids.
  • Figure 4A 150 times magnification.
  • Figure 4B Magnification 30 times.
  • Figure 4C Magnification 60 times.
  • Figure 4D Magnification 40 times.
  • FIGURE 5 is a set of SEM SEMs for the scaffoids obtained by the replica method.
  • Figure 5A 20x magnification.
  • Figure 5B 60 times magnification.
  • the structure revealed by these micrographs resembles trabecular bone and have total porosity greater than 90% and pore size greater than 400 Dm.
  • the invention is directed to obtaining bone grafts or scaffoids from suspensions based on a bioactive glass ceramic, Biosilicate ® , the suspensions being processed in various ways to obtain the final product in the appropriate format for the desired end application.
  • a bioactive glass ceramic Biosilicate ®
  • suspension may mean composition according to the method used to obtain scaffoids.
  • a first aspect of the invention is suspensions containing Biosilicate ® .
  • a second aspect of the invention is obtained bone grafts or scaffoids of superior mechanical properties and high bioactivity. Still a third aspect are the processes which, applied to said suspensions of Biosilicate ® , allow the obtaining of said scaffolds.
  • the bone grafts or scaffolds of the invention are obtained from Biosilicate ® suspensions.
  • Biosilicate ® is a bioactive glass ceramic, object of Brazilian application PI 0306441, by the same Applicants, and incorporated herein in its entirety by reference.
  • the Biosilicate ® powder used in sintering tests and scaffold manufacture exhibits particle size distribution ranging from 0.1 to 30 pm.
  • the best sintering temperature for Biosilicate ® is in the range of 900-1200 ° C for 30 min at 12h.
  • porogenic agents used to make the suspensions in the method of obtaining scaffolds via elimination of these agents comprise a wide variety of materials employed in the manufacture of macroporous ceramics, including natural and synthetic organic materials, liquids, salts and even metals. Ideally porogenic agents should have low coefficient of thermal expansion, be easily removable, do not generate toxic gases and leave no residues that could negatively affect the bioactivity of the material.
  • the porogenic agent used is not critical, a multitude of such agents being useful for the purposes of the invention.
  • the non-limiting porogenic agents used in the invention are selected from naphthalene. (PA), maize starch, cassava starch, polyethylene microspheres and granulated carbon black.
  • porogenic agent particles between 150 and 1300 ⁇ are used.
  • the porogenic agents remain in an electric sieve shaker for 15-120 minutes.
  • the average pore size and total porosity of the scaffold end product can be controlled by the amount and particle size distribution of the porogenic agent used.
  • scaffold resorption rate can be controlled by the particle size distribution of the Biosilicate ® powder.
  • the suspensions of the invention based on Biosilicate ® contain, as a liquid portion, a binder and a liquid medium.
  • Binders useful for the purposes of the invention are selected from polyvinyl acetate (PVA), polyvinyl alcohol (PVAL), latex or polyvinyl butyral (PVB), dextrin, lignosulfonate, bentonite, cane molasses.
  • PVA polyvinyl acetate
  • PVAL polyvinyl alcohol
  • PVB polyvinyl butyral
  • dextrin dextrin
  • lignosulfonate bentonite
  • bentonite cane molasses.
  • Useful liquid media are selected from water, methyl alcohol, ethyl alcohol, isopropyl alcohol, C1 -C3 alcohols, ketones of C 3 -C 5.
  • Biosilicate®-based particle or slip suspensions as used in the method via porogenic agents are defined below.
  • the scheme of Figure 2 illustrates these suspensions.
  • the suspensions contain from 10 to 50% vol. solids and from 50 to 90% vol. of liquids, more specifically, from 20 to 50% vol. solids and from 50 to 80% vol. of liquids.
  • the solids part is composed of 2-50% vol. Biosilicate ® and by 50-98% vol. porogenic agent, more specifically, by 10-40% vol. of Biosilicate and 60-90% vol. porogenic agent.
  • the liquid portion is comprised of 0.5-15% vol., More specifically 1-10% vol. of a binder (defined above in this report), and by 85-99.5% vol., more specifically 90-99% vol. of a liquid medium (also defined above).
  • the prepared suspension is milled in a spray mill (or ball mill) using grinding media which may be agate, alumina and / or zirconia.
  • the grinding time varies between 1 and 12 hours.
  • the suspension containing the porogenic agent is dried at room temperature for 12h or in an oven for 30 min. at 6 h.
  • the granulated powder from the drying of the suspension is sieved.
  • the granulometry of the powder is a function of the granulometry of the porogenic agent.
  • the granulated powder is formed by two pressing steps: (1) the first stage being uniaxial or bi-axial pressing, performed at low pressures (10-50 MPa) to prevent fracture and / or excessive deformation of the porogenic agent; (2) isostatic pressing at higher pressures (50-300 MPa) to improve the packing of the Biosilicate without fracture / deformation of the porogenic agent, which leads to superior mechanical properties of scaffolds.
  • the pressing allows to obtain bodies with varied geometries according to the desired end use.
  • the shaped bodies are subjected to the firing step, performed in different stages: (1) body heating at slow rates (0.5-3 ° C / min) to temperature (between 90 and 800 ° C) suitable for porogenic agent removal; (2) plateau time from 30 min to 6 hours at this temperature; (3) heating the resulting body in (2) to the appropriate binder removal temperature (200-800 ° C), using heating rates between 0.5-3 ° C / min; (4) plateau time from 30 min to 4 hours at this temperature; (5) heating the resulting body at (4) at faster rates (5-20 ° C / min) to the appropriate Biosilicate ® sintering temperature (900-1200 ° C); (6) plateau time from 30 min to 10 hours at this temperature, obtaining the bone graft; (7) graft cooling to room temperature, with cooling rates ranging from 2 to 15 ° C / min. This procedure is illustrated in Figure 3.
  • the bone graft or scaffold is recovered in the desired shape for use in various applications.
  • a particle suspension comprising from 10 to 70% vol., More specifically from 20 to 50% vol. Is used. solids and from 30 to 90% vol., more specifically, 50 to 80% vol. of liquids.
  • the solids part is composed exclusively of Biosilicate ® .
  • the liquid portion is comprised of 1-15% vol., More specifically, from 2 to 10% vol. of a binder and by 85-99% vol., more specifically, 90-98% vol. of a liquid medium.
  • the liquid medium and the binder are as explained above in this report.
  • the suspension milling and milling time are as for the suspension treated by the method via addition of porogenic agent.
  • a desired cell-opening and density polymeric foam is then introduced into the suspension.
  • the polymeric material constituting the foam is not critical, and may be any, for example, polyurethane (PU), and may be of any shape.
  • the contact time of the foam in the suspension containing Biosilicate ® varies between 15 min and 4 hours, after which the impregnated foam is removed and compressed to remove excess suspension, avoiding the formation of closed cells.
  • the thickness of the walls formed around the foam cells is controlled by bringing the foam back into contact with the suspension.
  • the Biosilicate ® impregnated foam is dried at temperatures ranging from 25 to 120 ° C for times from 1 to 12 hours.
  • the impregnated foam firing step is performed in different stages: (1) heating the body at slow rates (0.5-3 ° C / min) to the temperature (between 150 and 600 ° C) suitable for foam removal polymeric; (2) plateau time from 30 min to 6 hours at this temperature; (3) heating the resulting body in (2) to the appropriate binder removal temperature (200-800 ° C), using heating rates between 0.5-3 ° C / min; (4) plateau time from 30 min to 4 hours at this temperature; (5) heating the resulting body at (4) at faster rates (5-20 ° C / min) to the appropriate Biosilicate ® sintering temperature (900-1200 ° C); (6) 30 min landing time.
  • Tr1 is the porogenic agent removal temperature
  • Tr2 is the binder or PU foam removal temperature
  • Ts is the scaffold sintering temperature.
  • the tablets are cooled to room temperature.
  • Still one method that applies to the preparation of scaffoids from Biosilicate ® based suspensions is by incorporating a gas into a suspension containing Biosilicate ® and one or more surfactants followed by drying and burning (a method known as direct foaming). "). In the case of the foaming agent, the suspension is stirred vigorously.
  • Rapid prototyping is a method of obtaining scaffoids that also applies to the present suspensions / compositions.
  • Biosilicate ® suspensions / compositions processed by the non-limiting methods described above give rise to bone grafts or scaffoids that meet the required requirements of these materials.
  • the scaffoids of the invention obtained from highly crystalline and bioactive vitroceramics - Biosilicate ® - have porosity total ranging between 65-95% (macroporosity in the range 60-90%) and average pore size between 100 and 600 pm when suspensions or slips derive from the addition of porogenic agents.
  • Figure 4 illustrates this structure.
  • the scaffolds of the invention obtained by the replica method have a cellular structure similar to that of trabecular bone, with interconnected pores in the range of 100 - 1200 pm and total porosity of 70 to 98%.
  • Figure 5 illustrates this structure.
  • the scaffolds of the invention being produced from Biosilicate ®, a bioactive and resorbable material, having excellent osteoconduction and osteoinduction, with interconnected porous structure and with adequate mechanical properties represent a highly interesting bone graft option.
  • Biosilicate ® scaffolds produced combine the biological stimulus to promote bone regeneration with an interconnected macroporous structure necessary to allow growth of bone tissue within it. These characteristics are superior to those of the products currently on the market.
  • Biosilicate ® scaffolds find general application in dental, orthopedic, maxillofacial and craniofacial surgeries.
  • Bone grafts may also be employed in cases of bone neoplasia and stabilization of spinal segments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

The invention relates to the production of bone grafts or scaffolds from suspensions based on a bioactive glass-ceramic, Biosilicate®, composed of Na2O-CaO-SiO2-P2O5. The suspensions containing Biosilicate® powder are processed in various ways (direct foaming, rapid prototyping or polymer sponge method) to produce the scaffold (graft or prosthesis) having the suitable shape for achieving the desired bone regeneration. The scaffolds produced using Biosilicate® and the present method achieve a porosity from 65-95% and an average pore size from 100-600μm, when the suspensions are obtained by adding a pore-forming material. The scaffolds obtained by the polymer sponge method have a structure similar to that of trabecular bone, with interconnected pores of 100-200μm and a total porosity from 70-98%. The finished prosthesis consists of a bioactive and resorbable material with excellent bone induction and bone conduction, with a structure of interconnected pores that retains suitable mechanical properties. In view of these features, the thus produced scaffold or prosthesis is an excellent alternative for bone grafts used in odontological, orthopedic, maxillofacial, craniofacial surgery, in cases of bone neoplasia and to stabilise segments of the vertebral column. In this context, the present application seeks protection for: Biosilicate® suspensions used to produce bone grafts, the method for producing these grafts and the various scaffolds (bone grafts) produced by this method.

Description

SUSPENSÕES PARA PREPARAÇÃO DE ENXERTOS ÓSSEOS (SCAFFOLDS) À BASE DE BIOSILICATO, ENXERTOS ÓSSEOS OBTIDOS E PROCESSOS DE OBTENÇÃO DOS MESMOS CAMPO DA INVENÇÃO  SUSPENSIONS FOR PREPARATION OF BIOSYLLATE-BASED SCAFFOLDS, BONE GRAVES OBTAINED, AND PROCESSES FOR OBTAINING THE SAME FIELD OF THE INVENTION
A presente invenção pertence ao campo dos materiais para enxertos ósseos ou scaffoids, mais especificamente, a scaffoids obtidos a partir de Biosilicato® aplicáveis em engenharia de tecidos, às suspensões utilizadas para a preparação desses scaffoids e aos processos e técnicas para a obtenção desses enxertos ósseos.  The present invention belongs to the field of bone graft or scaffoid materials, more specifically, tissue engineering scaffoids obtained from Biosilicate®, the suspensions used for the preparation of such scaffoids and the processes and techniques for obtaining such bone grafts. .
FUNDAMENTOS DA INVENÇÃO BACKGROUND OF THE INVENTION
Atualmente muitas lesões ósseas não são adequadamente tratadas porque defeitos ósseos acima de um tamanho crítico não podem ser reparados através do crescimento natural do tecido, sendo necessária a introdução de um enxerto. O enxerto ósseo é o segundo tecido mais comumente transplantado, sendo o sangue de longe o primeiro. Mais de 500 mil procedimentos de enxerto ósseo ocorrem anualmente nos Estados Unidos e 2,2 milhões em todo o mundo a fim de reparar lesões ósseas em ortopedia, neurocirurgia e odontologia, vide Giannoudis, P.V. et ai., Bone substitutes: an update. Injury, V.36S, p.S20-S27, 2005.  Currently many bone lesions are not adequately treated because bone defects above a critical size cannot be repaired through natural tissue growth and the introduction of a graft is required. The bone graft is the second most commonly transplanted tissue, with blood by far the first. More than 500,000 bone graft procedures occur annually in the United States and 2.2 million worldwide to repair bone injuries in orthopedics, neurosurgery and dentistry, see Giannoudis, P.V. et al., Bone substitutes: an update. Injury, V.36S, p.S20-S27, 2005.
Apesar do uso do enxerto autógeno (proveniente do próprio paciente) ainda ser considerada a melhor estratégia para o tratamento de lesões, a pequena quantidade de material disponível, os riscos de infecção e a necessidade de cirurgias adicionais, tornam a terapia insatisfatória. Uma alternativa seria o uso de enxertos alógenos (provenientes de um doador) ou xenógenos (provenientes de animais), porém o grande risco de rejeição e transmissão de doenças limitam a utilização destes. Por essas razões, enxertos aloplásticos (artificiais), também conhecidos como scaffoids, têm sido desenvolvidos. Scaffolds são estruturas tridimensionais macroporosas que atuam como matrizes temporárias, permanentes ou mistas, proporcionando um ambiente e arquitetura específicos para o desenvolvimento e regeneração do tecido ósseo. Although the use of autogenous graft (from the patient himself) is still considered the best strategy for treating lesions, the small amount of material available, the risks of infection and the need for additional surgery make the therapy unsatisfactory. An alternative would be the use of allogeneic (donor) or xenogeneic (animal) grafts, but the high risk of rejection and disease transmission limit their use. For these reasons, alloplastic (artificial) grafts, also known as scaffoids, have been developed. Scaffolds are macroporous three-dimensional structures that act as temporary, permanent or mixed matrices, providing a specific environment and architecture for bone tissue development and regeneration.
Os scaffolds devem favorecer a fixação celular, o crescimento e a diferenciação destas células. Idealmente, os scaffolds devem ser desenvolvidos para degradar de forma lenta após a implantação no paciente e serem substituídos gradualmente pelo novo tecido formado. Desta maneira, uma das principais características dos scaffolds é que eles apresentem "bioatividade", i.e., capacidade de interagir com tecidos vivos (humanos) e se ligar a eles ou promover a regeneração dos mesmos.  Scaffolds should favor cell attachment, growth and differentiation of these cells. Ideally, scaffolds should be developed to degrade slowly after implantation into the patient and be gradually replaced by the new tissue formed. Thus, one of the main features of scaffolds is that they exhibit "bioactivity", i.e., ability to interact with and bond with or promote their regeneration.
Um scaffold ideal deve satisfazer vários critérios para atuar de forma efetiva na regeneração óssea, vide Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, v.26, p.5474-5491 , 2005; Gauthier, O. et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, v.11 , n.3, p.133-139, 1998; Salgado, A.J.; et al., Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience, v.4, p.743-765, 2004; Chen Q. Z.; et al., 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, v.27, p.2414-2425, 2006; Jones, J.R et al.; Bioactive glass scaffolds for bone regeneration. Elements, v.3, p.393-399, 2007. An ideal scaffold must meet several criteria for effective bone regeneration, see Karageorgiou, V .; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, v.26, p.5474-5491, 2005; Gauthier, O. et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, v.11, no. 3, p.133-139, 1998; Salty, AJ; et al., Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience, v.4, p.743-765, 2004; Chen QZ; et al., 45S5 Bioglass ® -derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, v.27, p.2414-2425, 2006; Jones, JR et al .; Bioactive glass scaffolds for bone regeneration. Elements, v.3, p.393-399, 2007.
Tais critérios são:  Such criteria are:
> Ser produzido a partir de um material bioativo e reabsorvível;  > Be made from bioactive and resorbable material;
> Possuir excelente osteocondução, ou seja, capacidade de permitir a migração, aderência e proliferação das células, dando sequência à síntese da matriz óssea; > Apresentar osteoindução, ou seja, ser capaz de induzir a formação do tecido ósseo diretamente a partir de osteoblastos; > Have excellent osteoconduction, ie the ability to allow cell migration, adhesion and proliferation, following the synthesis of bone matrix; > Present osteoinduction, ie be able to induce bone tissue formation directly from osteoblasts;
> Possuir estrutura altamente porosa e interconectada (porosidade > 70%, com poros interconectados > 150 μΐη);  > Have a highly porous and interconnected structure (porosity> 70%, with interconnected pores> 150 μΐη);
> Apresentar propriedades mecânicas adequadas (o mais próximo possível do osso hospedeiro);  > Have adequate mechanical properties (as close as possible to the host bone);
> Poder ser fabricado em formas complexas e irregulares.  > Can be manufactured in complex and irregular shapes.
Outra característica desejável seria a opacidade aos raios-X diferente da do osso, de forma a permitir uma distinção radiográfica entre o scaffold implantado e o novo tecido formado.  Another desirable feature would be the different X-ray opacity of bone to allow a radiographic distinction between the implanted scaffold and the newly formed tissue.
Até o presente momento não existe um scaffold que satisfaça todos estes critérios. Os vidros e vitrocerâmicas bioativos (caso do Biosilicato®, objeto do pedido brasileiro publicado PI 03006441 , das mesmas Requerentes e aqui integralmente incorporado como referência) podem satisfazer os três primeiros critérios descritos acima: apresentam excelente bioatividade, podem apresentar solubilidade controlada e possuem osteocondução e osteoindução. Estas vantagens tornam o Biosilicato® um material adequado para a fabricação de scaffolds. To date there is no scaffold that meets all these criteria. Bioactive glasses and glass ceramics (case of Biosilicate ® , object of Brazilian application published PI 03006441, of the same Applicants and incorporated herein in full by reference) can meet the first three criteria described above: they have excellent bioactivity, can have controlled solubility and have osteoconduction and osteoinduction. These advantages make Biosilicate® a suitable material for the manufacture of scaffolds.
Dentre uma infinidade de materiais utilizados na síntese de scaffolds, os materiais mais utilizados são as cerâmicas de hidroxiapatita, β-TCP, α-TCP (fosfatos de tri-cálcio, na forma de cimentos) e polímeros como os poliácidos lácticos e glicólicos. No entanto, se pode também utilizar alguns vidros que possuem propriedades bioativas, sendo capazes de se ligar quimicamente ao tecido vivo. Os vidros bioativos possuem o maior nível de bioatividade dentre os materiais conhecidos, incluindo as cerâmicas bioativas. Isso significa que estes reagem com os tecidos vivos a uma taxa mais alta. Por outro lado, os vidros bioativos possuem como desvantagens a baixa resistência mecânica e a baixa tenacidade à fratura. Por esse motivo, vidros bioativos são utilizados, até o momento, apenas na forma de grânulos. Among a multitude of materials used in scaffold synthesis, the most widely used materials are hydroxyapatite ceramics, β-TCP, α-TCP (tri-calcium phosphate in cement form) and polymers such as lactic and glycolic polyacids. However, some glasses that have bioactive properties can also be used and are capable of chemically binding to living tissue. Bioactive glasses have the highest level of bioactivity among known materials, including bioactive ceramics. This means that they react with living tissues at a higher rate. On the other hand, bioactive glasses have the disadvantages of low mechanical strength and low fracture toughness. For this reason, bioactive glasses are used so far only in the form of granules.
De forma a contornar o problema relacionado à competência mecânica, pesquisas dos Requerentes levaram ao desenvolvimento de uma vitrocerâmica do sistema Na20-CaO-Si02-P205 denominada Biosilicato®, que possui propriedades mecânicas comparáveis às cerâmicas e, ao mesmo tempo, alta bioatividade (praticamente igual a dos biovidros dos quais derivam). Estas características fazem do Biosilicato® um candidato extremamente interessante para estimular a regeneração óssea e sustentar o novo tecido ósseo formado na forma de scaffolds. Até o presente momento este material tem sido utilizado na forma de partículas micrométricas apenas no tratamento da hipersensibilidade dentinária. In order to circumvent the problem of mechanical competence, Applicant research has led to the development of a Na 2 0-CaO-Si0 2 -P 2 0 5 vitroceramic system called Biosilicate ® , which has mechanical properties comparable to ceramics and at the same time. time, high bioactivity (practically the same as the bioglass from which they are derived). These features make Biosilicate ® an extremely interesting candidate for stimulating bone regeneration and sustaining new bone tissue formed in the form of scaffolds. To date this material has been used as micrometer particles only in the treatment of dentin hypersensitivity.
Os scaffolds podem ser fabricados a partir de inúmeros tipos de materiais, incluindo metais, polímeros, cerâmicas, ou ainda, compósitos destes. No caso de serem confeccionados a partir de materiais não reabsorvíveis como os metais, são empregados principalmente os aços inoxidáveis e as ligas de titânio.  Scaffolds can be made from numerous types of materials, including metals, polymers, ceramics, or composites thereof. If they are made from non-resorbable materials such as metals, stainless steels and titanium alloys are used.
Implantes metálicos usados para regeneração óssea são geralmente constituídos de duas camadas, sendo a parte interna de metal sólido, enquanto que partículas metálicas formam um recobrimento superficial poroso.  Metal implants used for bone regeneration are generally made of two layers, the inner part being solid metal, while metallic particles form a porous surface coating.
A espessura da camada porosa pode variar de poucos nanômetros até centenas de mícrons, dependendo da técnica de fabricação. Diferentes técnicas têm sido empregadas para a preparação do recobrimento poroso incluindo "plasma-spraying", no caso de implantes com porosidade na faixa de 50-60% e tamanho de poros variando entre 200 e 400 μητι, conforme Nishiguchi, S. et al. Alkali and heat-treated porous titanium for orthopedic implants. Journal of Biomedical Materials Research, v.54, n.2, p.198-208, 2001. No caso de implantes com 35% de porosidade e tamanho de poros variando enre 50 e 200 μΐη, emprega-se também a sinterização, vide Pilliar, R. M.; Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dentistry, v.7, n.4, p.305-3 4, 1998. The thickness of the porous layer may range from a few nanometers to hundreds of microns, depending on the manufacturing technique. Different techniques have been employed for the preparation of porous coating including plasma spraying in the case of implants with porosity in the range of 50-60% and pore size ranging from 200 to 400 μητι, according to Nishiguchi, S. et al. Alkali and heat-treated porous titanium for orthopedic implants. Journal of Biomedical Materials Research, v.54, n.2, p.198-208, 2001. In the case of implants with 35% porosity and pore size ranging between 50 and 200 μΐη, sintering is also employed, see Pilliar, RM; Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dentistry, v.7, no.4, p.305-34, 1998.
Outras técnicas incluem usinagem, ataque químico e jateamento, mas resultam em poros muito pequenos, vide Pilliar, R. M.; Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dentistry, v.7, n.4, p.305- 314, 1998.  Other techniques include machining, chemical attack and blasting, but result in very small pores, see Pilliar, R. M .; Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dentistry, v.7, no. 4, p.305-314, 1998.
Exemplos de scaffolds metálicos completamente porosos são as malhas de titânio com porosidade de 86% e tamanho médio de poros de aproximadamente 250 μΐη, que foram usadas para reparar defeitos craniais, conforme os artigos de Van Den Dolder, J. et al. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials, v.24, n. 0, p.1745-1750, 2003 e Sikkavitsas, V. I. et al. Influence of the in vitro culture period on the in vivo performance of cell titanium bone tissue-engineered constructs using a rat cranial size defect model. Journal of Biomedical Materials Research A, v.67, n.3, p.944-951, 2003. A maior vantagem dos metais em relação aos outros tipos de materiais é a sua excelente resistência mecânica. Todavia, os metais possuem como principal desvantagem o fato de serem quase inertes, ou seja, não são capazes de se ligar ao tecido ósseo ou promover sua regeneração. Além disso, há riscos de toxidez relacionados à acumulação de íons metálicos.  Examples of completely porous metal scaffolds are titanium meshes with 86% porosity and an average pore size of approximately 250 μΐη, which were used to repair cranial defects, according to the articles by Van Den Dolder, J. et al. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials, v.24, no. O, p.1745-1750, 2003 and Sikkavitsas, V. I. et al. Influence of the in vitro culture period on the in vivo performance of cell titanium bone tissue-engineered constructs using a cranial rat size defect model. Journal of Biomedical Materials Research A, v.67, n.3, p.944-951, 2003. The greatest advantage of metals over other types of materials is their excellent mechanical strength. However, the main disadvantage of metals is that they are almost inert, that is, they are not able to bind to bone tissue or promote its regeneration. In addition, there are toxicity hazards related to the accumulation of metal ions.
No caso dos polímeros, vários métodos têm sido desenvolvidos para gerar scaffolds altamente porosos, incluindo "fiber bonding", colagem de solvente/lixiviação de material particulado (solvent casting/particulate leaching), "gas foaming", "freeze-drying" e separação de fases seguida de emulsificação, vide Hutmacher, D.W. Scaffolds in tissue engineeríng bone and cartilage. Biomaterials, v.21, p.2529-2543, 2000. Uma grande desvantagem destes materiais quando implantados, contudo, é a excreção de produtos da degradação ácida (ou "acídica") que podem levar a respostas inflamatórias, conforme os quatro artigos a seguir: Mikos, A.G.; e Temenoff, J.S. Formation of highly porous bíodegradable scaffolds for tissue engineeríng. Electronic Journal of Biotechnology, v.3, n.2, p.1-5, 2000; Agrawal, C.M.; Ray, R.B. Bíodegradable polymeric scaffolds for musculoskeletal tissue engineeríng. Journal of Biomedical Materials Research, v. 55, n.2, p.141-150, 2001; Maquet, V.; e Jerome, R. Design of macroporous bíodegradable polymer scaffolds for cell transplantation. Materials Science Fórum, v.250, p.15-42, 1997 e Griffith, L. G. Polymeric biomaterials. Acta Materialia, v.48, n. , p.263-277, 2000. In the case of polymers, several methods have been developed to generate highly porous scaffolds, including fiber bonding, solvent casting / particulate leaching, gas foaming, freeze-drying and separation. followed by emulsification, see Hutmacher, DW Scaffolds in tissue Engineer bone and cartilage. Biomaterials, v.21, p.2529-2543, 2000. A major disadvantage of these materials when implanted, however, is the excretion of acid (or "acidic") degradation products that can lead to inflammatory responses, as the four articles to following: Mikos, AG; and Temenoff, JS Formation of highly porous biodegradable scaffolds for tissue engineer. Electronic Journal of Biotechnology, v.3, no.2, p.1-5, 2000; Agrawal, CM; Ray, RB Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, v. 55, no. 2, p.141-150, 2001; Maquet, V .; and Jerome, R. Design of macroporous biodegradable polymer scaffolds for cell transplantation. Materials Science Forum, v.250, p.15-42, 1997 and Griffith, LG Polymeric biomaterials. Acta Materialia, v.48, no. , p.263-277, 2000.
Outra limitação é a ausência de bioatividade, o que significa que estes polímeros não permitem a fixação do tecido ósseo em sua superfície. Além disso, todas estas técnicas requerem o uso de solventes orgânicos, que podem reduzir a habilidade das células em formar novos tecidos in vivo, vide Schliephake, H. et al. Enhancement of bone ingrowth into a porous hydroxyl-apatite matrix using a resorbable polylactic membrane: an experimental pilot study. Journal of Oral and Maxillofacial Surgery, v.52, n.1, p.57-63, 1994 e Mikos, A.G.; e Temenoff, J.S. Formation of highly porous bíodegradable scaffolds for tissue engineeríng. Electronic Journal of Biotechnology, v.3, n.2, p.1-5, 2000.  Another limitation is the absence of bioactivity, which means that these polymers do not allow the fixation of bone tissue on its surface. In addition, all of these techniques require the use of organic solvents, which may reduce the ability of cells to form new tissues in vivo, see Schliephake, H. et al. Enhancement of bone ingrowth into a porous hydroxyl-apatite matrix using a resorbable polylactic membrane: an experimental pilot study. Journal of Oral and Maxillofacial Surgery, v.52, no. 1, p.57-63, 1994 and Mikos, A.G .; and Temenoff, J.S. Formation of highly porous biodegradable scaffolds for tissue engineer. Electronic Journal of Biotechnology, v.3, no.2, p.1-5, 2000.
De acordo com Colombo, P. Conventional and novel processing methods for cellular ceramics. Philosophical Transactions of the Royai Society A, v.364, p.109-124, 2006 e Studart, A. R. et al. Processing routes to macroporous ceramics: a review. Journal of the American Ceramic Society, v.89, n.6, p.1771-1789, 2006, dentre as várias técnicas de obtenção de cerâmicas macroporosas encontradas na literatura, destacam-se três: (a) o método da adição e eliminação de agentes porogênicos {"sacrificial template method"); (b) a técnica da réplica (também conhecida como "polymer sponge method"), (c) a técnica conhecida como "direct foaming". According to Colombo, P. Conventional and novel processing methods for cellular ceramics. Philosophical Transactions of the Royai Society A, v.364, p.109-124, 2006 and Studart, AR et al. Processing routes to macroporous ceramics: a review. Journal of the American Ceramic Society, v.89, n.6, p.1771-1789, 2006, among the various techniques for obtaining macroporous ceramics found in the literature, three stand out: (a) the method of addition and elimination porogenic agents ("sacrificial template method"); (b) the technique of replica (also known as "polymer sponge method"), (c) the technique known as "direct foaming".
A primeira técnica (a) usualmente consiste na preparação de um compósito bifásico contendo uma matriz contínua de partículas cerâmicas precursoras e uma fase de sacrifício dispersa homogeneamente na matriz, que é posteriormente extraída para gerar poros na microestrutura.  The first technique (a) usually consists of preparing a biphasic composite containing a continuous matrix of precursor ceramic particles and a homogeneously dispersed sacrificial phase in the matrix, which is then extracted to generate pores in the microstructure.
Camilo, C. C. Escafoldes para implantes ósseos em alumina/hidroxiapatita /biovidro: análises mecânica e in vitro. 2006. 145f. Dissertação (Mestrado em Engenharia Mecânica) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2006, obteve scaffoids de alumina infiltrados com hidroxiapatita e Bioglass® através desta técnica. Inicialmente, a autora preparou uma barbotina contendo alumina e partículas de sacarose dispersas. Após a secagem da barbotina, o pó obtido foi prensado isostaticamente na forma de pastilhas. As pastilhas foram imersas em água para a remoção da sacarose e posteriormente sinterizadas a altas temperaturas (~ 1400°C). Scaffoids com aproximadamente 70% de porosidade e resistência mecânica relativamente alta foram obtidos. Camilo, CC Alumina / hydroxyapatite / bioglass implant implants: mechanical and in vitro analyzes. 2006. 145f. Dissertation (Master in Mechanical Engineering) - School of Engineering of São Carlos, University of São Paulo, São Carlos, 2006, obtained hydroxyapatite and Bioglass ® infiltrated alumina scaffoids by this technique. Initially, the author prepared a slip containing alumina and dispersed sucrose particles. After drying of the slip, the obtained powder was isostatically pressed into tablets. The pellets were immersed in water for sucrose removal and then sintered at high temperatures (~ 1400 ° C). Scaffoids with approximately 70% porosity and relatively high mechanical strength were obtained.
Utilizando procedimento similar, Monaretti, F.H. Estudo de método e técnicas de manufatura de corpos porosos estruturais para engenharia de tecidos. 2005. 92f. Dissertação (Mestrado em Engenharia Mecânica) de Mestrado, - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2005, obteve scaffoids de alumina utilizando o naftaleno como agente porogênico ao invés da sacarose.  Using a similar procedure, Monaretti, F.H. Study of method and techniques of fabrication of structural porous bodies for tissue engineering. 2005. 92f. Master's Dissertation (Master in Mechanical Engineering) - School of Engineering of São Carlos, University of São Paulo, São Carlos, 2005, obtained alumina scaffoids using naphthalene as porogenic agent instead of sucrose.
A técnica da réplica (b) consiste na imersão de uma espuma em uma barbotina contendo o material de interesse, ou seja, as partículas cerâmicas. Em seguida o corpo verde passa por um processo de queima, onde ocorre a eliminação do polímero e a sinterização do pó. Através desta técnica, Zhang, M.Q. et al. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials, v.24, n.19, p.3293-3302, 2003 produziram scaffolds de hidroxiapatita com porosidade variando entre 70-77%, sendo que os poros apresentavam tamanhos variando entre 200 e 400 μΐη. The replication technique (b) consists of dipping a foam into a slip containing the material of interest, namely the ceramic particles. Then the green body goes through a burning process, where polymer elimination and dust sintering occurs. Through this technique, Zhang, MQ et al. Preparation of porous hydroxyapatite scaffolds by combination of gel-casting and polymer sponge methods. Biomaterials, v.24, n.19, p.3293-3302, 2003 produced hydroxyapatite scaffolds with porosity ranging from 70-77%, and the pores had sizes ranging from 200 to 400 μΐη.
Apenas recentemente, a técnica da réplica foi utilizada por Chen, Q.Z. et al . 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, v.27, p.2414-2425, 2006 para a fabricação de scaffolds a partir do Bioglass®. Através desta técnica, os autores conseguiram obter com sucesso estruturas vitrocerâmicas altamente porosas, com porosidade de aproximadamente 90% e poros com diâmetro na faixa de 510-720 μιη. Only recently, the replica technique was used by Chen, QZ et al. 45S5 Bioglass ® -derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, v.27, p.2414-2425, 2006 for the manufacture of scaffolds from Bioglass ® . Through this technique, the authors were able to successfully obtain highly porous glass ceramic structures with porosity of approximately 90% and pores with diameter in the range 510-720 μιη.
No caso do método de "direct foaming" (c), materiais porosos são produzidos através da incorporação de gases e/ou surfactantes em uma suspensão, que é subsequentemente ajustada para manter a estrutura de bolhas formada. Na maioria dos casos, as espumas consolidadas são sinterizadas a altas temperaturas. Ebaretonbofa, E. et al. High porosity hydroxyapatite foam scaffolds for bone substitute. Journal of Porous Materials, v.9, n.4, p.257-263, 2002 obtiveram scaffolds de hidroxiapatita altamente porosos (porosidade > 90%) através deste método, porém, com baixa resistência mecânica (0,2 Pa) e poros pobremente interconectados.  In the case of the direct foaming method (c), porous materials are produced by incorporating gases and / or surfactants into a suspension which is subsequently adjusted to maintain the bubble structure formed. In most cases, the consolidated foams are sintered at high temperatures. Ebaretonbofa, E. et al. High porosity hydroxyapatite foam scaffolds for bone substitute. Journal of Porous Materials, v.9, n.4, p.257-263, 2002 obtained highly porous hydroxyapatite scaffolds (porosity> 90%) by this method, but with low mechanical strength (0.2 Pa) and pores. poorly interconnected.
Tancred, D. C et al. Development of a new synthetic bone graft. Journal of Materials Science: Materials in Medicine, v.9, n.12, p.819- 823, 2004 descreveram um novo processo de obtenção de scaffolds, onde uma barbotina composta de hidroxiapatita (HA) e fosfato de tricálcio (TCP) é depositada em um molde negativo de cera. Após a secagem, a cera é removida e o scaffold cerâmico é queimado. Este método permitiu a obtenção, com reprodutibilidade, de estruturas com porosidade similar à do osso trabecular. Tancred, D.C. et al. Development of a new synthetic bone graft. Journal of Materials Science: Materials in Medicine, v.9, n.12, p.819- 823, 2004 described a new process for obtaining scaffolds, where a hydroxyapatite (HA) and tricalcium phosphate (TCP) slip is deposited in a negative wax mold. After drying, the wax is removed and the ceramic scaffold is burned. This method allowed reproducibility of structures with porosity similar to those of the trabecular bone.
Como a maioria das cerâmicas baseadas em fosfatos de cálcio (HA, TCP, β-TCP, etc.) geralmente apresenta uma lenta cinética de ligação ao tecido ósseo e baixa taxa de reabsorção, scaffolds obtidos a partir de vidros tornaram-se uma alternativa promissora.  Since most calcium phosphate-based ceramics (HA, TCP, β-TCP, etc.) often have slow bone tissue binding kinetics and low resorption rates, scaffolds obtained from glass have become a promising alternative. .
Scaffolds de vidros bioativos têm sido fabricados apenas a partir de técnicas sol-gel, "gel-casting" e "direct foaming", vide os artigos por Jones, J.R.; Boccaccini, A.R. Cellular ceramics in biomedical applications: tissue engineering. In: Scheffler , Colombo P, editors. Cellular ceramics: structure, manufacturing, processing and applications. Weinheim: Wiley-VCH Verlag GmbH & Co KgaA; p. 550- 573, 2005 e Jones, J.R.; Hench, L.L. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. Journal of Biomedical Materials Research B: Applied Biomaterials, v.68, p.36- 44, 2004.  Bioactive glass scaffolds have been manufactured using only sol-gel, gel-casting and direct foaming techniques, see articles by Jones, J.R .; Boccaccini, A.R. Cellular ceramics in biomedical applications: tissue engineering. In: Scheffler, Colombo P, editors. Cellular ceramics: structure, manufacturing, processing and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA; P. 550-573, 2005 and Jones, J.R .; Hench, L.L. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. Journal of Biomedical Materials Research B: Applied Biomaterials, v.68, p.36-44, 2004.
Sepúlveda, P. e Hench, L.L. Synthesis of bioactive macroporous scaffolds. In: Congresso Brasileiro de Cerâmica, 45, 2001 , Florianópolis. Anais. Florianópolis, 2001 obtiveram scaffolds através da adição de agentes espumantes durante a preparação via sol-gel de vidros, usando precursores alcóxidos. Três sistemas foram testados a fim de verificar a aplicabilidade desta rota de fabricação: Si02, Si02-CaO e Si02-CaO- P205. Foram obtidos scaffolds cilíndricos de 25 x 20 mm contendo poros interconectados de 100-500 μη e poros nanométricos na faixa de 2-50 nm, inerentes ao processo sol-gel. Sepulveda, P. and Hench, LL Synthesis of bioactive macroporous scaffolds. In: Brazilian Congress of Ceramics, 45, 2001, Florianópolis. Annals Florianópolis, 2001 obtained scaffolds by the addition of foaming agents during preparation via glass sol-gel using alkoxide precursors. Three systems were tested to verify the applicability of this manufacturing route: Si0 2 , Si0 2 -CaO and Si0 2 -CaO-P 2 0 5 . 25 x 20 mm cylindrical scaffolds containing 100-500 μη interconnected pores and nanometric pores in the 2-50 nm range inherent to the sol-gel process were obtained.
Navarro, M. et al. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials, v.25, p.4233-4241 , 2004, descreveram um método de obtenção de vidros e vitrocerâmicas porosas do sistema P205-CaO-Na20-Ti02. O método consiste na adição de um agente espumante (H202) em uma suspensão de partículas de vidro, seguida da secagem da suspensão e subsequente sinterização da estrutura porosa obtida. Navarro, M. et al. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials, v.25, p.4233-4241, 2004, described a method for obtaining P 2 0 5 -CaO-Na 2 0-Ti0 2 system porous glass and ceramics. The method consists of adding of a foaming agent (H 2 0 2 ) in a glass particle suspension, followed by drying of the suspension and subsequent sintering of the obtained porous structure.
Ainda uma técnica aplicável à obtenção de scaffolds cerâmicos é a prototipagem rápida de cerâmica ou manufatura direta. Trata-se de uma técnica moderna que está em fase inicial de desenvolvimento. Além de possibilitar a criação de peças em um curto espaço de tempo torna possível a fabricação tridimensional de peças com a geometria que técnicas de manufatura convencionais não são capazes de efetuar. O processo de manufatura tridimensional engloba a fabricação de uma peça a partir de um modelo digital em CAD tridimensional. Este modelo é então dividido em camadas por um algoritmo de fatiamento, onde cada fatia possui aproximadamente 100 μπι de espessura, gerando assim informações detalhadas sobre cada corte transversal que adicionados um a um gera o volume tridimensional.  Still a technique applicable to obtaining ceramic scaffolds is the rapid prototyping of ceramics or direct manufacture. It is a modern technique that is in the early stages of development. In addition to enabling the creation of parts in a short time makes it possible to three-dimensionally manufacture parts with the geometry that conventional manufacturing techniques are unable to perform. The three-dimensional manufacturing process encompasses the manufacture of a part from a three-dimensional digital CAD model. This model is then layered by a slicing algorithm, where each slice is approximately 100 μπι thick, thus generating detailed information about each cross section that added one by one generates the three-dimensional volume.
Os principais métodos aplicados em cerâmica são citados a seguir: The main methods applied in ceramics are as follows:
• Laywise Slurry Deposition - LSD, onde uma barbotina de cerâmica com polímero polimerizável a laser é prototipada (ligando as partículas cerâmicas); em seguida o material não exposto ao laser é removido por lixiviação e o material conformado é sinterizado;• Laywise Slurry Deposition - LSD, where a laser polymerizable polymer ceramic slip is prototyped (bonding the ceramic particles); then the non-laser exposed material is leached out and the shaped material is sintered;
• Seletive Laser Sinteríng - SLS, quando pós cerâmicos (ou ligante entre os pós cerâmicos) são pré-sinterizados por incidência de laser; • Selective Laser Sintering - SLS, when ceramic powders (or binder between ceramic powders) are pre-sintered by laser incidence;
• Suspension Deposition Modeling -SDM - baseada no principio de adição-subtração onde um corpo poroso é preenchido com barbotinas cerâmicas tipo gelcasting e cimentos; a matriz polimérica (suporte) é removida posteriormente por degradação térmica; • Fused Deposition Modelling - FDM, quando ocorre a extrusão em camadas de uma barbotína cerâmica que contém fase liquida solúvel, que se volatiliza parcialmente entre as deposições conferindo estabilidade dimensional e adesão com a camada subsequente; • Suspension Deposition Modeling -SDM - based on the principle of addition-subtraction where a porous body is filled with gelcasting ceramic fins and cements; the polymeric matrix (support) is subsequently removed by thermal degradation; • Fused Deposition Modeling - FDM, when a layered extrusion of a soluble liquid phase ceramic slip occurs, which partially volatilises between depositions for dimensional stability and adhesion with the subsequent layer;
• Thermojet, onde um substrato poroso em cera é manufaturado e preenchido com um cimento cerâmico. Após liga química do cimento a resina é removida por degradação térmica e o cimento cerâmico pode ser sinterizado.  • Thermojet, where a porous wax substrate is manufactured and filled with a ceramic cement. After chemical cement bonding the resin is removed by thermal degradation and the ceramic cement can be sintered.
• Impressão 3D, que emprega o spray de ligante sobre pós cerâmicos; posteriormente a peça pode ser sinterizada; o método também se aplica à prensagem isostática para melhorar a densificação. A impressão tridimensional é potencialmente de grande interesse na área de biomateriais onde a presença de poros é desejável, bem como a morfologia, distribuição e interconexão dos poros. Nesta área os produtos em destaque são a alumina, a hidroxiapatita, a zircônia, e os cimentos baseados em apatita.  • 3D printing, which employs binder spray on ceramic powders; later the part can be sintered; The method also applies to isostatic pressing to improve densification. Three-dimensional printing is potentially of great interest in the area of biomaterials where pore presence is desirable, as well as pore morphology, distribution and interconnection. In this area the featured products are alumina, hydroxyapatite, zirconia, and apatite based cements.
Na literatura científica sobre o assunto destacam-se os seguintes documentos: Eanes, E.D. Crystal growth of mineral phases in skeletal tissues. Prog. Crystal Growth Charact., v.3, p.3-15, 1980; Gibson, L. Current status of calcium phosphate-based biomedical implant material in the USA. In: www.medical-devices-faradav.com. 2003; Hubner, H.; Dõrre, E. Alumina: Processing, Properties, and Applications, Berlin, Springer- Verlag, 1984, Laqui, T. et al, A. Microfabrication of dental root implants with a porous surface layer by microstereolithography. In Proceedings of the 2nd International Conference on Advanced Research an Rapid Prototyping. Leiria, Portugal, p. 47-51. 2005, Wilson, C.E.; Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro- architecture by rapid prototyping for bone-tissue-engineering research. In HA scaffoids for bone-tissue research. P123-132. 2003. In the scientific literature on the subject, the following documents stand out: Eanes, ED Crystal growth of mineral phases in skeletal tissues. Prog. Crystal Growth Charact., V.3, p.3-15, 1980; Gibson, L. Current status of calcium phosphate-based biomedical implant material in the USA. In: www.medical-devices-faradav.com. 2003; Hubner, H .; Dor, E. Alumina: Processing, Properties, and Applications, Berlin, Springer-Verlag, 1984, Laqui, T. et al, A. Microfabrication of dental root implants with a porous surface layer by microstereolithography. In Proceedings of the 2nd International Conference on an Advanced Research Rapid Prototyping. Leiria, Portugal, p. 47-51. 2005, Wilson, CE; Design and manufacture of standardized hydroxyapatite scaffolds with a defined macro- architecture by rapid prototyping for bone-tissue-engineering research. In HA scaffoids for bone-tissue research. P123-132. 2003
Assim, todas as técnicas de obtenção de scaffoids empregando suspensões são aplicáveis às suspensões da invenção à base de Biosilicato®. Thus, all techniques for obtaining scaffoids employing suspensions are applicable to the Biosilicate ® based suspensions of the invention.
A literatura de patentes cita os seguintes documentos sobre o assunto:  The patent literature cites the following documents on the subject:
O pedido brasileiro publicado PI0509318-0 descreve um método de um dispositivo profético biologicamente ativo para a reconstrução do tecido ósseo; o processo consiste na fabricação de um molde negativo do defeito ósseo por prototipagem rápida e subsequente preenchimento do molde e obtenção de uma cerâmica sinterizada porosa; não há informação sobre a composição química do material cerâmico.  Published Brazilian Application PI0509318-0 describes a method of a biologically active prophetic device for bone tissue reconstruction; The process consists of fabricating a negative bone defect mold by rapid prototyping and subsequent mold filling and obtaining a porous sintered ceramic; There is no information on the chemical composition of the ceramic material.
O pedido brasileiro publicado PI0204440-4 descreve um processo de obtenção de blocos porosos (scaffoids) ou grânulos utilizando fosfatos de cálcio na forma de pastas.  Published Brazilian application PI0204440-4 describes a process for obtaining porous blocks (scaffoids) or granules using calcium phosphates in paste form.
A patente PI9200074-6 descreve um processo de obtenção de material compósito para enxerto ósseo, consistindo de osso animal e colágeno.  PI9200074-6 describes a process for obtaining composite bone graft material consisting of animal bone and collagen.
A patente PI9810693-7 descreve uma composição bioativa moldável que pode ser utilizada na reconstrução de tecidos; a composição inclui vidros bioativos, cerâmicas de fosfato de cálcio e/ou polissacarídeos, mas não inclui uma vitrocerâmica bioativa como o Biosilicato® do presente pedido. PI9810693-7 describes a moldable bioactive composition that can be used in tissue reconstruction; The composition includes bioactive glasses, calcium phosphate ceramics and / or polysaccharides, but does not include a bioactive glass ceramic such as Biosilicate ® of the present application.
O pedido brasileiro publicado PI0601618-9 descreve um processo de deposição de minerais em scaffoids porosos, mas não há informação sobre como ou a partir de que material os scaffoids são fabricados.  Published Brazilian application PI0601618-9 describes a process of mineral deposition in porous scaffoids, but there is no information on how or from what material scaffoids are manufactured.
A publicação internacional WO02/067820A1 intitulada "Manufacture of bone graft substitutes descreve aparatos, métodos e composições para a manufatura de enxertos ósseos através da compactação de vários tipos de materiais na forma granular, formando estruturas tridimensionais mecanicamente competentes e que permitam o crescimento do tecido ósseo em seu interior. São utilizados materiais como o tecido ósseo alógeno (proveniente de um doador), materiais cerâmicos (hidroxiapatita, sulfato de cálcio, alumina, sílica, carbonato de cálcio, fosfato de cálcio, tartarato de cálcio ou vidro bioativo), materiais poliméricos (metilcelulose, carboximetilcelulose de sódio, hidropropilmetilcelulose, PLA, PGA, cera ou gelatina) matriz bovina desmineralizada ou uma mistura destes. A invenção ainda envolve a adição de agentes biológicos (antes e/ou após a granulação) como: fatores de crescimento (PDGF, TGF-b, IGF, FGF, BDGF e/ou proteínas morfogenéticas do osso), antibióticos (vancomicina, tobramicina e/ou gentamicina), sais (sal de estrôncio, sal de magnésio e sal de sódio), anestésicos (lidocaína ou bipivacaína) e também drogas antiinflamatórias como a trometamina. International publication WO02 / 067820A1 entitled "Manufacture of bone graft substitutes" describes apparatus, methods and compositions for the manufacture of bone grafts by compacting various types of materials into granular form, forming mechanically competent three-dimensional structures that allow the growth of bone tissue within them. Materials such as allogeneic bone tissue (from a donor), ceramic materials (hydroxyapatite, calcium sulfate, alumina, silica, calcium carbonate, calcium phosphate, calcium tartrate or bioactive glass), polymeric materials (methylcellulose, carboxymethylcellulose) are used. sodium, hydropropyl methylcellulose, PLA, PGA, wax or gelatin) demineralized bovine matrix or a mixture thereof. The invention further involves the addition of biological agents (before and / or after granulation) such as: growth factors (PDGF, TGF-b, IGF, FGF, BDGF and / or bone morphogenetic proteins), antibiotics (vancomycin, tobramycin and / or gentamicin), salts (strontium salt, magnesium salt and sodium salt), anesthetics (lidocaine or bipivacaine) and also anti-inflammatory drugs such as tromethamine.
O pedido publicado norte-americano US 2006198939A1 descreve um método de obtenção de escafoldes através do método da réplica, porém utilizando pós cerâmicos baseados em fosfatos de cálcio; além disso, os scaffolds de fosfato de cálcio obtidos são impregnados com polímeros biodegradáveis.  US Published Application US 2006198939A1 describes a method of obtaining scapholds by the replication method, but using calcium phosphate-based ceramic powders; In addition, the calcium phosphate scaffolds obtained are impregnated with biodegradable polymers.
Outras publicações são: WO03026714A1 , GB2454326; EP1731179; CN1528471 e US 6.187.046  Other publications are: WO03026714A1, GB2454326; EP1731179; CN1528471 and US 6,187,046
Desde 2001 , pesquisas dos Requerentes foram dirigidas para o desenvolvimento de um material bioativo com características especialmente projetadas para a utilização no tratamento da hipersensibilidade dentinária, mas que não apresentasse as desvantagens dos biovidros para incorporação em produtos de higiene oral. Como resultado foram obtidos vitrocerâmicos em pó, que apresentam distribuição de tamanho de partículas e nível de bioatividade adequados para utilização no tratamento da hipersensibilidade dentinária, denominada Biosilicato® (publicação internacional WO2004074199A1 e pedido publicado brasileiro PI03006441). Since 2001, Applicants' research has been directed towards the development of a bioactive material with characteristics specially designed for use in the treatment of dentin hypersensitivity, but which does not present the disadvantages of bioglass for incorporation into oral hygiene products. As a result were obtained glass ceramic, which present particle size distribution and bioactivity level suitable for use in the treatment of dentin hypersensitivity, called Biosilicate ® (international publication WO2004074199A1 and Brazilian published application PI03006441).
O termo Biosilicato® vem desde então sendo empregado para designar vitrocerâmicos pertencentes a essa classe de materiais. Esse termo, quando utilizado no singular, designa uma composição em particular. The term Biosilicate ® has since been used to refer to glass ceramics belonging to this class of materials. This term, when used singularly, means a particular composition.
A publicação internacional WO2004074199A1 intitulada "Processo de preparação de biosilicatos particulados bioativos e reabsorvíveis, composições para preparar ditos biosilicatos, biosilicatos particulados bioativos e reabsorvíveis e uso dos mesmos no tratamento de afecções bucais" descreve a obtenção do Biosilicato®, incluindo composições químicas do vidro e os tratamentos térmicos envolvidos, reivindicando o uso deste material na forma de pó em tratamentos odontológicos. A publicação em questão não reivindica a utilização do Biosilicato® para qualquer outra aplicação que não seja odontológica. International publication WO2004074199A1 entitled "Process for the preparation of bioactive and resorbable particulate biosilicates, compositions for preparing said biosilicate, bioactive and resorbable particulate biosilicates and their use in the treatment of oral conditions" describes the production of Biosilicate ® , including chemical compositions of glass and the heat treatments involved, claiming the use of this material as a powder in dental treatments. The publication in question does not claim to use Biosilicate ® for any non-dental application.
O Biosilicato® possui características especiais que o coloca em grande vantagem em relação aos compostos atuais para o tratamento da hipersensibilidade dentinária. Por ser totalmente cristalino, apresenta como vantagem sobre os vidros bioativos a possibilidade de obtenção de partículas mais regulares, menos abrasivas e desprovidas de superfícies cortantes que podem ser agressivas para o tecido gengival e para as mucosas. Biosilicate ® has special characteristics that put it at a great advantage over current compounds for the treatment of dentin hypersensitivity. Because it is totally crystalline, it has the advantage over bioactive glasses of obtaining more regular particles, less abrasive and devoid of sharp surfaces that can be aggressive to the gingival tissue and mucous membranes.
Em 11 de setembro de 2003 foi aprovado o projeto "Avaliação clínica da eficácia do Biosilicato® no tratamento da hipersensibilidade dentinária" (Proc. N. 2003.1.654.58.7) no Comité de Ética em Pesquisa da Faculdade de Odontologia de Ribeirão Preto (FORP - USP) para a aplicação do Biosilicato® em seres humanos. Nestes testes o Biosilicato® mostrou excelentes resultados, eliminando completamente a hipersensibilidade dentinária da grande maioria dos pacientes em poucas aplicações, de acordo com as metodologias de aplicação utilizadas. On September 11, 2003, the project "Clinical Evaluation of the Effectiveness of Biosilicate ® in the Treatment of Dentin Hypersensitivity" (Proc. N. 2003.1.654.58.7) was approved by the Research Ethics Committee of the Ribeirão Preto School of Dentistry (FORP). - USP) for the application of Biosilicate ® in humans. In these tests Biosilicate ® showed excellent results, completely eliminating the dentin hypersensitivity of the vast majority of patients in a few applications, according to the application methodologies used.
Em um recente estudo por Moura, J. et al. In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate®). Journal of Biomedical Materials Research A, v. 82, p. 545-557, 2007, o Biosilicato® e o Bioglass® foram submetidos a uma cultura osteogênica de células ósseas com a finalidade de avaliar comparativamente suas propriedades. Foi observado que, embora ambos os materiais tenham induzido osteogênese in vitro, áreas significativamente maiores de matriz óssea calcificada foram formadas na superfície do Biosilicato®. Os autores sugeriram ainda que estes resultados indicam que o Biosilicato® é um material osteoindutivo, possuindo um nível de bioatividade maior do que as vitrocerâmicas de apatita comerciais, e similar ao "golden standard" Bioglass® - 45S5. Esta característica vem confirmar, mais uma vez, que o Biosilicato® é um candidato potencial para o desenvolvimento de scaffoids para uso como enxerto ósseo. In a recent study by Moura, J. et al. In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate ® ). Journal of Biomedical Materials Research A, v. 82, p. 545-557, 2007, Biosilicate ® and Bioglass ® were submitted to osteogenic bone cell culture in order to evaluate their properties comparatively. It was observed that although both materials induced osteogenesis in vitro, significantly larger areas of calcified bone matrix were formed on the surface of Biosilicate ® . The authors also suggested that these results indicate that Biosilicate ® is an osteoinductive material, having a higher bioactivity level than commercial apatite vitroceramics, and similar to the "golden standard" Bioglass ® - 45S5. This feature confirms, once again, that Biosilicate ® is a potential candidate for the development of scaffoids for use as bone grafts.
Já foram obtidos resultados sobre scaffoids fabricados a partir do Biosilicato® como detalhado no artigo por Rennó, A. C. M.; et al., Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffoids. Photomedicine & Laser Surgery, v. 12, p. 124, 2009. Results have already been obtained on scaffoids made from Biosilicate ® as detailed in the article by Rennó, ACM; et al., Effect of 830 nm laser phototherapy on in vitro grown osteoblasts on Biosilicate scaffoids. Photomedicine & Laser Surgery, v. 12, p. 124, 2009.
Assim, seria interessante que a técnica dispusesse de processos de obtenção de scaffoids a partir de suspensões de uma vitrocerâmica altamente cristalina e bioativa como o Biosilicato® para aplicação em enxertos ósseos, já que o mercado ainda não dispõe de scaffoids com a elevada bioatividade requerida por esses artigos. Thus, it would be interesting that the technique had processes to obtain scaffoids from suspensions of a highly crystalline and bioactive glass ceramic such as Biosilicate ® for application in bone grafts, since the market does not yet have scaffoids with the high bioactivity required by these articles.
SUMÁRIO DA INVENÇÃO SUMMARY OF THE INVENTION
De modo amplo, as suspensões da invenção para preparação de enxertos ósseos (scaffoids) à base de Biosilicato® compreendem, em uma modalidade, em relação ao volume total da suspensão, de 10-50% de sólidos sendo estes sólidos constituídos de 50 a 98% de agente porogênico e de 2 a 50% de Biosilicato® e de 50 a 90% de líquidos, sendo estes líquidos constituídos de 0,5-15% de ligante e de 85 a 99,5% de meio líquido. Broadly, the suspensions of the invention for preparing Biosilicate ® based bone grafts (scaffoids) comprise, in particular, 10-50% of solids, with 50-98% porogenic agent and 2-50% Biosilicate ® and 50-90% liquids. 0.5-15% binder and 85 to 99.5% liquid medium.
As suspensões/composições compreendendo os materiais de partida citados são processadas através de técnicas de a) adição e eliminação de agentes porogênicos, (b) réplica (c) "direct foaming" e (d) prototipagem rápida em cerâmica.  Suspensions / compositions comprising said starting materials are processed by techniques of a) addition and deletion of porogenic agents, (b) replica (c) direct foaming and (d) rapid ceramic prototyping.
No processo de preparação de scaffolds por adição e eliminação de agentes porogênicos, o ligante, meio líquido e Biosilicato® são combinados nas proporções adequadas e a suspensão obtida é submetida a moagem, após o que é adicionado o agente porogênico. Após mistura e homogeneização a suspensão é seca, peneirada e o pó obtido é conformado sob pressão. O objeto formado em qualquer formato útil para a finalidade desejada é então queimado (sinterizado) para produzir o enxerto ósseo ou scaffold. Nesta etapa o agente porogênico é eliminado através de queima, e uma estrutura porosa própria para uso como scaffold é obtida. O scaffold é recuperado para uso como enxerto ósseo. In the process of preparing scaffolds by addition and elimination of porogenic agents, the binder, liquid medium and Biosilicate ® are combined in the appropriate proportions and the suspension obtained is subjected to grinding, after which the porogenic agent is added. After mixing and homogenization the suspension is dried, sieved and the obtained powder is formed under pressure. The object formed in any shape useful for the desired purpose is then burned (sintered) to produce the bone or scaffold graft. At this stage the porogenic agent is eliminated by firing, and a porous structure suitable for use as a scaffold is obtained. The scaffold is recovered for use as a bone graft.
Quando as suspensões de Biosilicato® são processadas pelo método da réplica, uma espuma, como de poliuretano (PU) é impregnada com uma suspensão contendo partículas cerâmicas, de modo a produzir um material macroporoso exibindo a mesma morfologia do material poroso original. Posteriormente, a espuma impregnada é pressionada entre duas peneiras metálicas, de maneira a remover o excesso da suspensão e evitar a formação de células fechadas. A secagem da espuma ocorre à temperatura ambiente por 12 horas. A abertura de células pode ser controlada utilizando-se uma espuma com as características desejadas e pelo número de vezes em que esta espuma é impregnada com a suspensão de Biosilicato®. When Biosilicate ® suspensions are processed by the replica method, a foam such as polyurethane (PU) is impregnated with a suspension containing ceramic particles to produce a macroporous material exhibiting the same morphology as the original porous material. Subsequently, the impregnated foam is pressed between two metal sieves to remove excess suspension and to prevent the formation of closed cells. The foam dries at room temperature for 12 hours. Cell opening can be controlled using a foam with the following desired characteristics and the number of times this foam is impregnated with the Biosilicate ® suspension.
Já quando os scaffolds de Biosilicato® são processados pelo método direct foaming, um gás (podendo ser ar) é introduzido na suspensão de Biosilicato® contendo um ou mais surfactantes; este processo é seguido de secagem e queima da suspensão. When Biosilicate ® scaffolds are processed by the direct foaming method, a gas (which may be air) is introduced into the Biosilicate ® suspension containing one or more surfactants; This process is followed by drying and burning of the suspension.
E quando as suspensões de Biosilicato® são processadas pelo método de prototipagem rápida, podem ser empregadas as técnicas de Laywise Slurry Deposition, SDM e Fused Deposition odelling, Thermojet e Impressão 3D.  And when Biosilicate® suspensions are processed by the rapid prototyping method, Laywise Slurry Deposition, SDM and Fused Deposition odelling, Thermojet and 3D Printing techniques can be employed.
Os scaffolds da invenção compreendem, portanto, materiais obtidos a partir de vitrocerâmicas altamente cristalinas e bioativas - Biosilicato® -, os scaffolds apresentando porosidade total variando entre 65 -95% (macroporosidade na faixa 60 - 90%) e tamanho médio de poros entre 100 e 600 pm quando as suspensões ou barbotinas derivam da adição de agentes porogênicos. The scaffolds of the invention therefore comprise materials obtained from highly crystalline and bioactive glass ceramics - Biosilicate ® -, the scaffolds having total porosity ranging from 65-95% (macroporosity in the range 60 - 90%) and average pore size from 100 and 600 pm when suspensions or slips are derived from the addition of porogenic agents.
Já os scaffolds da invenção obtidos pelo método da réplica possuem uma estrutura celular similar à do osso trabecular, com poros interconectados na faixa de 100 - 1200 pm e porosidade total de 70 a 98%.  The scaffolds of the invention obtained by the replica method have a cellular structure similar to that of trabecular bone, with interconnected pores in the range of 100 - 1200 pm and total porosity of 70 to 98%.
Assim, independentemente do processo utilizado na obtenção dos scaffolds à base de Biosilicato® - via agente porogênico, réplica, direct foaming ou prototipagem rápida - as características descritas acima de porosidade total e tamanho de poros serão adequadas para o uso final pretendido. Thus, regardless of the process used to obtain Biosilicate ® based scaffolds - via porogenic agent, replica, direct foaming or rapid prototyping - the characteristics described above for total porosity and pore size will be suitable for the intended end use.
Assim, a invenção provê suspensões à base de Biosilicato®, meio líquido, ligante e agente porogênico processadas para obtenção dos scaffolds nos formatos adequados para as diversas finalidades. A invenção provê igualmente suspensões à base de Biosilicato para serem processadas pelo método de réplica. Thus, the invention provides suspensions based on Biosilicate ® , liquid medium, binder and porogenic agent processed to obtain scaffolds in formats suitable for various purposes. The invention also provides biosilicate based suspensions for processing by the replica method.
A invenção provê também suspensões à base de Biosilicato® para serem processadas pelo método de direct foaming. The invention also provides Biosilicate ® based suspensions to be processed by the direct foaming method.
A invenção provê também suspensões à base de Biosilicato® para serem processadas pelo método de prototipagem rápida. The invention also provides Biosilicate ® based suspensions for processing by the rapid prototyping method.
A invenção provê também scaffolds aplicáveis em engenharia de tecidos obtidos a partir de vitrocerâmicas altamente cristalinas e bioativas - o Biosilicato®. The invention also provides tissue engineering scaffolds made from highly crystalline and bioactive glass ceramics - Biosilicate ® .
A invenção provê também scaffolds que em testes de osteogênese in vitro formam áreas significativamente maiores de matriz óssea calcificada na superfície do Biosilicato® em comparação com vitrocerâmicas de apatita comerciais.  The invention also provides scaffolds which in in vitro osteogenesis tests form significantly larger areas of calcified bone matrix on the surface of Biosilicate compared to commercial apatite vitroceramics.
A invenção provê ainda scaffolds à base de Biosilicato®, um material osteoindutivo. The invention further provides scaffolds based on Biosilicate ® , an osteoinductive material.
A invenção provê ainda scaffolds à base de Biosilicato®, um material osteocondutivo. The invention further provides scaffolds based on Biosilicate ® , an osteoconductive material.
BREVE DESCRIÇÃO DOS DESENHOSBRIEF DESCRIPTION OF DRAWINGS
A FIGURA 1 anexa é um fluxograma simplificado de uma modalidade de obtenção do scaffold da invenção, via adição de agente porogênico. The accompanying FIGURE 1 is a simplified flowchart of one embodiment of the scaffold of the invention via addition of porogenic agent.
A FIGURA 2 anexa é uma representação da composição geral das suspensões da invenção processadas pelo método via adição de agente porogênico.  The accompanying FIGURE 2 is a representation of the general composition of the suspensions of the invention processed by the method via addition of porogenic agent.
A FIGURA 3 anexa é um gráfico de estágios de queima das pastilhas para a obtenção de scaffolds, onde Ta: Temperatura ambiente; Tr1 : Temperatura de remoção do agente porogênico ou da espuma de PU; Tr2: Temperatura de remoção do ligante; Ts: Temperatura de sinterização do scaffold. A FIGURA 4 anexa é um conjunto de micrografias MEV para os scaffoids obtidos por adição de agente porogênico. Os agentes porogênicos são amido de mandioca (Figuras 4A e 4B) e negro de fumo (Figura 4C e Figura 4D) como agentes porogênicos. As Figuras 4A e a Figura 4C são imagens da superfície de fratura dos scaffoids. As Figuras 4B e a Figura 4D são imagens dos scaffoids embutidos em resina epóxi. Figura 4A: ampliação de 150 vezes. Figura 4B: ampliação 30 de vezes. Figura 4C: ampliação 60 de vezes. Figura 4D: ampliação 40 de vezes. Attached FIGURE 3 is a graph of tablet firing stages for obtaining scaffolds, where Ta: Ambient temperature; Tr1: Removal temperature of porogenic agent or PU foam; Tr2: Binder removal temperature; Ts: Scaffold sintering temperature. Attached FIGURE 4 is a set of SEM micrographs for scaffoids obtained by addition of porogenic agent. Porogenic agents are cassava starch (Figures 4A and 4B) and carbon black (Figure 4C and Figure 4D) as porogenic agents. Figures 4A and Figure 4C are images of the fracture surface of the scaffoids. Figures 4B and Figure 4D are images of epoxy resin embedded scaffoids. Figure 4A: 150 times magnification. Figure 4B: Magnification 30 times. Figure 4C: Magnification 60 times. Figure 4D: Magnification 40 times.
A FIGURA 5 anexa é um conjunto de micrografias de MEV para os scaffoids obtidos pelo método da réplica. Figura 5A: ampliação de 20 vezes. Figura 5B: Ampliação de 60 vezes. A estrutura revelada por esta micrografias assemelha-se ao osso trabecular e possuem porosidade total maior que 90 % e tamanho de poros maiores que 400 Dm.  Attached FIGURE 5 is a set of SEM SEMs for the scaffoids obtained by the replica method. Figure 5A: 20x magnification. Figure 5B: 60 times magnification. The structure revealed by these micrographs resembles trabecular bone and have total porosity greater than 90% and pore size greater than 400 Dm.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
A invenção é dirigida para a obtenção de enxertos ósseos ou scaffoids a partir de suspensões à base de uma vitrocerâmica bioativa, o Biosilicato®, as suspensões sendo processadas de diversas maneiras para a obtenção do produto final no formato adequado para a aplicação final desejada. The invention is directed to obtaining bone grafts or scaffoids from suspensions based on a bioactive glass ceramic, Biosilicate ® , the suspensions being processed in various ways to obtain the final product in the appropriate format for the desired end application.
No decorrer do presente relatório, o termo suspensão pode significar composição, conforme o método usado para a obtenção dos scaffoids.  Throughout this report, the term suspension may mean composition according to the method used to obtain scaffoids.
Portanto, um primeiro aspecto da invenção são as suspensões contendo o Biosilicato®. Therefore, a first aspect of the invention is suspensions containing Biosilicate ® .
Um segundo aspecto da invenção são os enxertos ósseos ou scaffoids obtidos, de propriedades mecânicas superiores e elevada bioatividade. Ainda um terceiro aspecto são os processos que, aplicados às ditas suspensões de Biosilicato®, permitem a obtenção dos ditos scaffolds. A second aspect of the invention is obtained bone grafts or scaffoids of superior mechanical properties and high bioactivity. Still a third aspect are the processes which, applied to said suspensions of Biosilicate ® , allow the obtaining of said scaffolds.
Os enxertos ósseos ou scaffolds da invenção são obtidos a partir de suspensões de Biosilicato®. The bone grafts or scaffolds of the invention are obtained from Biosilicate ® suspensions.
O Biosilicato® é uma vitrocerâmica bioativa, objeto do pedido brasileiro PI 0306441 , dos mesmos Requerentes, e aqui integralmente incorporado como referência. Para as finalidades da invenção, o Biosilicato® em pó utilizado nos testes de sinterização e na manufatura de scaffolds apresenta distribuição de tamanho de partículas variando de 0,1 a 30 pm. Biosilicate ® is a bioactive glass ceramic, object of Brazilian application PI 0306441, by the same Applicants, and incorporated herein in its entirety by reference. For the purposes of the invention, the Biosilicate ® powder used in sintering tests and scaffold manufacture exhibits particle size distribution ranging from 0.1 to 30 pm.
E é possível controlar a velocidade de reabsorção do scaffold pela distribuição de tamanho de partículas do pó de Biosilicato®. And it is possible to control the rate of resorption of the scaffold by the particle size distribution of the Biosilicate ® powder.
De acordo com os resultados de porosidade e densidade aparente, a melhor temperatura de sinterização para o Biosilicato® está na faixa de 900-1200°C por 30 min a 12h. According to the porosity and bulk density results, the best sintering temperature for Biosilicate ® is in the range of 900-1200 ° C for 30 min at 12h.
Os agentes porogênicos utilizados para compor as suspensões no caso do método de obtenção de scaffolds via eliminação desses agentes compreende uma grande variedade de materiais, empregada na fabricação de cerâmicas macroporosas, incluindo materiais orgânicos naturais e sintéticos, líquidos, sais e até mesmo metais. Idealmente os agentes porogênicos devem possuir baixo coeficiente de expansão térmica, ser facilmente removíveis, não gerar gases tóxicos e não deixar resíduos que possam afetar negativamente a bioatividade do material. O agente porogênico utilizado não é crítico, uma infinidade desses agentes sendo útil para as finalidades da invenção.  The porogenic agents used to make the suspensions in the method of obtaining scaffolds via elimination of these agents comprise a wide variety of materials employed in the manufacture of macroporous ceramics, including natural and synthetic organic materials, liquids, salts and even metals. Ideally porogenic agents should have low coefficient of thermal expansion, be easily removable, do not generate toxic gases and leave no residues that could negatively affect the bioactivity of the material. The porogenic agent used is not critical, a multitude of such agents being useful for the purposes of the invention.
Seja pela facilidade de remoção a altas temperaturas e/ou facilidade de geração de poros grandes no material final, os agentes porogênicos não limitativos utilizados na invenção são selecionados dentre naftaleno (P.A.), amido de milho, amido de mandioca, microesferas de polietileno e negro de fumo granulado. Whether for ease of removal at high temperatures and / or ease of generation of large pores in the final material, the non-limiting porogenic agents used in the invention are selected from naphthalene. (PA), maize starch, cassava starch, polyethylene microspheres and granulated carbon black.
De forma a garantir a obtenção de poros maiores do que 1500 μιη, o que corresponde ao tamanho mínimo necessário para permitir a vascularização do scaffold, são utilizadas partículas de agente porogênico entre 150 e 1300 μητι. Para a separação da faixa granulométrica de interesse, os agentes porogênicos permanecem em agitador de peneiras elétrico por 15-120 minutos.  In order to ensure pores larger than 1500 μιη, which corresponds to the minimum size required to allow scaffold vascularization, porogenic agent particles between 150 and 1300 μητι are used. For the separation of the particle size range of interest, the porogenic agents remain in an electric sieve shaker for 15-120 minutes.
O tamanho médio de poros e a porosidade total do produto final scaffold podem ser controlados pela quantidade e distribuição de tamanho de partículas do agente porogênico utilizado.  The average pore size and total porosity of the scaffold end product can be controlled by the amount and particle size distribution of the porogenic agent used.
Por outro lado, é possível controlar a velocidade de reabsorção do scaffold pela distribuição de tamanho de partículas do pó de Biosilicato®. On the other hand, scaffold resorption rate can be controlled by the particle size distribution of the Biosilicate ® powder.
As suspensões da invenção à base de Biosilicato® contêm, como porção líquida, um ligante e um meio líquido. The suspensions of the invention based on Biosilicate ® contain, as a liquid portion, a binder and a liquid medium.
Ligantes úteis para as finalidades da invenção são selecionados dentre acetato de polivinila (PVA), álcool polivinílico (PVAL), látex ou polivinil butiral (PVB), dextrina, lígnossulfonato, bentonita, melaço de cana.  Binders useful for the purposes of the invention are selected from polyvinyl acetate (PVA), polyvinyl alcohol (PVAL), latex or polyvinyl butyral (PVB), dextrin, lignosulfonate, bentonite, cane molasses.
Meios líquidos úteis são selecionados dentre água, álcool metílico, álcool etílico, álcool isopropílico, álcoois em C1-C3 , cetonas em C3-C5. Useful liquid media are selected from water, methyl alcohol, ethyl alcohol, isopropyl alcohol, C1 -C3 alcohols, ketones of C 3 -C 5.
As suspensões de partículas ou barbotinas à base de Biosilicato® conforme utilizadas no método via agentes porogênicos são definidas a seguir. O esquema da Figura 2 ilustra estas suspensões.  Biosilicate®-based particle or slip suspensions as used in the method via porogenic agents are defined below. The scheme of Figure 2 illustrates these suspensions.
As suspensões contêm de 10 a 50% vol. de sólidos e de 50 a 90% vol. de líquidos, mais especificamente, de 20 a 50% vol. de sólidos e de 50 a 80% vol. de líquidos.  The suspensions contain from 10 to 50% vol. solids and from 50 to 90% vol. of liquids, more specifically, from 20 to 50% vol. solids and from 50 to 80% vol. of liquids.
A parte relativa aos sólidos é composta por 2-50% vol. de Biosilicato® e por 50-98% vol. de um agente porogênico, mais especificamente, por 10-40% vol. de Biosilicato e 60-90% vol. de agente porogênico. A parte relativa ao líquido é composta por 0,5-15% vol., mais especificamente 1-10% vol. de um ligante (definido acima no presente relatório), e por 85-99,5% vol., mais especificamente 90-99% vol. de um meio líquido (igualmente definido acima). The solids part is composed of 2-50% vol. Biosilicate ® and by 50-98% vol. porogenic agent, more specifically, by 10-40% vol. of Biosilicate and 60-90% vol. porogenic agent. The liquid portion is comprised of 0.5-15% vol., More specifically 1-10% vol. of a binder (defined above in this report), and by 85-99.5% vol., more specifically 90-99% vol. of a liquid medium (also defined above).
Conforme o esquema da Figura 1 , ilustrativo da modalidade da invenção para obtenção de enxertos ósseos através do método de adição de agentes porogênicos, em (110) é preparada uma suspensão contendo ligante, meio líquido e Biosilicato®. According to the scheme of Figure 1, illustrative of the embodiment of the invention for obtaining bone grafts by the method of addition of porogenic agents, in (110) a suspension containing binder, liquid medium and Biosilicate ® is prepared.
Em (120) é efetuada moagem da suspensão preparada, em moinho pulverizador (ou moinho de bolas), utilizando meios de moagem que podem ser de ágata, alumina e/ou zircônia.  In (120) the prepared suspension is milled in a spray mill (or ball mill) using grinding media which may be agate, alumina and / or zirconia.
O tempo de moagem varia entre 1 e 12 horas.  The grinding time varies between 1 and 12 hours.
A moagem é seguida em (130) pela adição de agente porogênico definido acima no presente relatório.  Milling is followed by (130) by the addition of porogenic agent defined above in this report.
Em seguida em (140) os meios de moagem são removidos e é efetuada mistura de ligante + meio líquido + Biosilicato® + agente porogênico por tempos variando de 1 a 60 min.  Then (140) the milling media is removed and binder + liquid medium + Biosilicate® + porogenic agent is mixed for times ranging from 1 to 60 min.
Em (150) a suspensão contendo o agente porogênico é seca a temperatura ambiente por 12h ou em estufa por 30 min. a 6 h.  In (150) the suspension containing the porogenic agent is dried at room temperature for 12h or in an oven for 30 min. at 6 h.
Em (160) o pó granulado do resultante da secagem da suspensão é submetido a peneiramento. A granulometría do pó é função da granulometría do agente porogênico.  In (160) the granulated powder from the drying of the suspension is sieved. The granulometry of the powder is a function of the granulometry of the porogenic agent.
Em (170) o pó granulado é conformado por duas etapas de prensagem: (1) a primeira etapa sendo prensagem uniaxial ou bi axial, realizada a baixas pressões (10-50 MPa) para evitar fratura e/ou deformação excessiva dos agente porogênico; (2) prensagem isostática, a pressões mais altas (50-300 MPa) para melhorar o empacotamento do Biosilicato sem que ocorra a fratura/deformação do agente porogênico, o que leva a propriedades mecânicas superiores dos scaffolds. In (170) the granulated powder is formed by two pressing steps: (1) the first stage being uniaxial or bi-axial pressing, performed at low pressures (10-50 MPa) to prevent fracture and / or excessive deformation of the porogenic agent; (2) isostatic pressing at higher pressures (50-300 MPa) to improve the packing of the Biosilicate without fracture / deformation of the porogenic agent, which leads to superior mechanical properties of scaffolds.
A prensagem permite a obtenção de corpos com geometrias variadas conforme o uso final desejado.  The pressing allows to obtain bodies with varied geometries according to the desired end use.
Em (180) os corpos conformados são submetidos à etapa de queima, realizada em diferentes estágios: (1) aquecimento do corpo a taxas lentas (0,5-3°C/min) até a temperatura (entre 90 e 800°C) adequada para a remoção do agente porogênico; (2) tempo de patamar de 30 min a 6 horas nesta temperatura; (3) aquecimento do corpo resultante em (2) até a temperatura adequada para a remoção do ligante (200-800°C), usando taxas de aquecimento entre 0,5-3°C/min; (4) tempo de patamar de 30 min a 4 horas nesta temperatura; (5) aquecimento do corpo resultante em (4) a taxas mais rápidas (5-20°C/min) até a temperatura adequada para sinterização do Biosilicato® (900-1200°C); (6) tempo de patamar de 30 min a 10 horas nesta temperatura, obtendo- se o enxerto ósseo; (7) resfriamento do enxerto até a temperatura ambiente, com taxas de resfriamento variando entre 2 e 15°C/min. Este procedimento é ilustrado na Figura 3. In (180) the shaped bodies are subjected to the firing step, performed in different stages: (1) body heating at slow rates (0.5-3 ° C / min) to temperature (between 90 and 800 ° C) suitable for porogenic agent removal; (2) plateau time from 30 min to 6 hours at this temperature; (3) heating the resulting body in (2) to the appropriate binder removal temperature (200-800 ° C), using heating rates between 0.5-3 ° C / min; (4) plateau time from 30 min to 4 hours at this temperature; (5) heating the resulting body at (4) at faster rates (5-20 ° C / min) to the appropriate Biosilicate ® sintering temperature (900-1200 ° C); (6) plateau time from 30 min to 10 hours at this temperature, obtaining the bone graft; (7) graft cooling to room temperature, with cooling rates ranging from 2 to 15 ° C / min. This procedure is illustrated in Figure 3.
Em (190) é recuperado o enxerto ósseo ou scaffold no formato desejado para uso nas diversas aplicações.  In (190) the bone graft or scaffold is recovered in the desired shape for use in various applications.
Já no caso da obtenção de enxertos ósseos (scaffolds) via método da réplica (ou "polymer sponge method") é utilizada uma suspensão de partículas, compreendendo de 10 a 70% vol., mais especificamente de 20 a 50% vol. de sólidos e de 30 a 90% vol., mais especificamente, 50 a 80% vol. de líquidos. A parte relativa aos sólidos é composta exclusivamente por Biosilicato®. In the case of obtaining bone grafts (scaffolds) via the replica method (or "polymer sponge method") a particle suspension comprising from 10 to 70% vol., More specifically from 20 to 50% vol. Is used. solids and from 30 to 90% vol., more specifically, 50 to 80% vol. of liquids. The solids part is composed exclusively of Biosilicate ® .
A parte relativa ao líquido é composta por 1-15% vol., mais especificamente, de 2 a 10% vol. de um ligante e por 85-99% vol., mais especificamente, 90-98% vol. de um meio líquido. O meio líquido e o ligante são como explicitado acima no presente relatório. The liquid portion is comprised of 1-15% vol., More specifically, from 2 to 10% vol. of a binder and by 85-99% vol., more specifically, 90-98% vol. of a liquid medium. The liquid medium and the binder are as explained above in this report.
A moagem da suspensão e o tempo de moagem são como para a suspensão tratada pelo método via adição de agente porogênico.  The suspension milling and milling time are as for the suspension treated by the method via addition of porogenic agent.
Uma espuma polimérica de abertura de células e densidade desejadas é então introduzida na suspensão. O material polimérico que constitui a espuma não é crítico, e pode ser qualquer, por exemplo, poliuretano (PU), e pode ter qualquer forma. O tempo de contato da espuma na suspensão contendo Biosilicato® varia entre 15 min e 4 horas, após o que a espuma impregnada é retirada e é comprimida para remoção do excesso de suspensão, evitando a formação de células fechadas. A espessura das paredes formadas em torno das células de espuma é controlada colocando novamente a espuma em contato com a suspensão. A espuma impregnada com Biosilicato® é seca a temperaturas variando de 25 a 120°C por tempos de 1 a 12 horas. A desired cell-opening and density polymeric foam is then introduced into the suspension. The polymeric material constituting the foam is not critical, and may be any, for example, polyurethane (PU), and may be of any shape. The contact time of the foam in the suspension containing Biosilicate ® varies between 15 min and 4 hours, after which the impregnated foam is removed and compressed to remove excess suspension, avoiding the formation of closed cells. The thickness of the walls formed around the foam cells is controlled by bringing the foam back into contact with the suspension. The Biosilicate ® impregnated foam is dried at temperatures ranging from 25 to 120 ° C for times from 1 to 12 hours.
A etapa de queima da espuma impregnada é realizada em diferentes estágios: (1 ) aquecimento do corpo a taxas lentas (0,5- 3°C/min) até a temperatura (entre 150 e 600°C) adequada para a remoção da espuma polimérica; (2) tempo de patamar de 30 min a 6 horas nesta temperatura; (3) aquecimento do corpo resultante em (2) até a temperatura adequada para a remoção do ligante (200-800°C), usando taxas de aquecimento entre 0,5-3°C/min; (4) tempo de patamar de 30 min a 4 horas nesta temperatura; (5) aquecimento do corpo resultante em (4) a taxas mais rápidas (5-20°C/min) até a temperatura adequada para sinterização do Biosilicato® (900-1200°C); (6) tempo de patamar de 30 min. a 10 horas nesta temperatura, obtendo-se o enxerto ósseo; (7) resfriamento do enxerto até a temperatura ambiente, com taxas de resfriamento variando entre 2 e 15°C/min. Este procedimento é ilustrado na Figura 3. Nesta Figura, Tr1 é a temperatura de remoção do agente porogênico; Tr2 a temperatura de remoção do ligante ou espuma de PU e Ts a temperatura de sinterização do scaffold. No quarto e último estágio, as pastilhas são resfriadas até a temperatura ambiente. The impregnated foam firing step is performed in different stages: (1) heating the body at slow rates (0.5-3 ° C / min) to the temperature (between 150 and 600 ° C) suitable for foam removal polymeric; (2) plateau time from 30 min to 6 hours at this temperature; (3) heating the resulting body in (2) to the appropriate binder removal temperature (200-800 ° C), using heating rates between 0.5-3 ° C / min; (4) plateau time from 30 min to 4 hours at this temperature; (5) heating the resulting body at (4) at faster rates (5-20 ° C / min) to the appropriate Biosilicate ® sintering temperature (900-1200 ° C); (6) 30 min landing time. at 10 hours at this temperature, obtaining the bone graft; (7) graft cooling to room temperature, with cooling rates ranging from 2 to 15 ° C / min. This procedure is illustrated in Figure 3. In this Figure, Tr1 is the porogenic agent removal temperature; Tr2 is the binder or PU foam removal temperature and Ts is the scaffold sintering temperature. In the fourth and final stage, the tablets are cooled to room temperature.
Ainda um método que se aplica à preparação de scaffoids a partir de suspensões à base de Biosilicato® é pela incorporação de um gás em uma suspensão contendo o Biosilicato® e um ou vários surfactantes .seguido de secagem e queima (método conhecido como "direct foaming"). No caso do agente espumante, a suspensão é agitada de maneira vigorosa. Still one method that applies to the preparation of scaffoids from Biosilicate ® based suspensions is by incorporating a gas into a suspension containing Biosilicate ® and one or more surfactants followed by drying and burning (a method known as direct foaming). "). In the case of the foaming agent, the suspension is stirred vigorously.
A prototipagem rápida é um método de obtenção de scaffoids que também se aplica às presentes suspensões/composições.  Rapid prototyping is a method of obtaining scaffoids that also applies to the present suspensions / compositions.
Deve ficar bem claro para os especialistas que qualquer método conhecido ou que venha a ser desenvolvido ou adaptado para suspensões/composições de qualquer tipo à base de Biosilicato® pode ser usado para preparar os scaffoids da invenção, o método usado na obtenção dos ditos scaffoids não sendo crítico para a obtenção dos mesmos. Ainda, se como consequência do uso desses diferentes métodos, scaffoids com variadas porosidades totais e tamanhos médios de poros forem obtidos, essas características estarão dentro das faixas esperadas para materiais à base de Biosilicato® e portanto totalmente compreendidos dentro do escopo da presente invenção. It should be clear to those skilled in the art that any method known or developed or adapted for suspensions / compositions of any kind based on Biosilicate ® can be used to prepare the scaffoids of the invention, the method used to obtain said non-scaffolds. being critical for obtaining them. Further, if as a consequence of the use of these different methods, scaffoids with varying total porosities and average pore sizes are obtained, these characteristics will be within the expected ranges for Biosilicate ® based materials and therefore fully understood within the scope of the present invention.
As suspensões/composições à base de Biosilicato® processadas pelos métodos não limitativos descritos acima, dão origem a enxertos ósseos ou scaffoids que atendem aos requisitos exigidos desses materiais. Biosilicate ® suspensions / compositions processed by the non-limiting methods described above give rise to bone grafts or scaffoids that meet the required requirements of these materials.
Assim, os scaffoids da invenção obtidos a partir de vitrocerâmicas altamente cristalinas e bioativas - Biosilicato® -, apresentam porosidade total variando entre 65 -95% (macroporosidade na faixa 60 - 90%) e tamanho médio de poros entre 100 e 600 pm quando as suspensões ou barbotinas derivam da adição de agentes porogênicos. A Figura 4 ilustra esta estrutura. Thus, the scaffoids of the invention obtained from highly crystalline and bioactive vitroceramics - Biosilicate ® - have porosity total ranging between 65-95% (macroporosity in the range 60-90%) and average pore size between 100 and 600 pm when suspensions or slips derive from the addition of porogenic agents. Figure 4 illustrates this structure.
Já os scaffolds da invenção obtidos pelo método da réplica possuem uma estrutura celular similar à do osso trabecular, com poros interconectados na faixa de 100 - 1200 pm e porosidade total de 70 a 98%. A Figura 5 ilustra esta estrutura.  The scaffolds of the invention obtained by the replica method have a cellular structure similar to that of trabecular bone, with interconnected pores in the range of 100 - 1200 pm and total porosity of 70 to 98%. Figure 5 illustrates this structure.
Os scaffolds da invenção, sendo produzidos a partir do Biosilicato® um material bioativo e reabsorvível, possuindo excelente osteocondução e osteoindução, com estrutura porosa e interconectada e com propriedades mecânicas adequadas representa uma opção de enxerto ósseo altamente interessante. The scaffolds of the invention, being produced from Biosilicate ®, a bioactive and resorbable material, having excellent osteoconduction and osteoinduction, with interconnected porous structure and with adequate mechanical properties represent a highly interesting bone graft option.
Os scaffolds de Biosilicato® produzidos combinam o estímulo biológico para promover a regeneração óssea com uma estrutura macroporosa interconectada, necessária para permitir o crescimento do tecido ósseo em seu interior. Estas características são superiores às dos produtos atualmente existentes no mercado. The Biosilicate ® scaffolds produced combine the biological stimulus to promote bone regeneration with an interconnected macroporous structure necessary to allow growth of bone tissue within it. These characteristics are superior to those of the products currently on the market.
Os scaffolds de Biosilicato® encontram aplicação de maneira geral em cirurgias odontológicas, ortopédicas, maxilofaciais e craniofaciais. Biosilicate ® scaffolds find general application in dental, orthopedic, maxillofacial and craniofacial surgeries.
Enxertos ósseos também podem ser empregados em casos de neoplasia óssea e estabilização de segmentos da coluna espinhal.  Bone grafts may also be employed in cases of bone neoplasia and stabilization of spinal segments.
Note-se que o produto comercial Bioglass® - 45S5, com nível de bioatividade similar àquele dos materiais da invenção é manufaturado apenas na forma de grânulos, não sendo, portanto, enquadrado na categoria de scaffold e não tendo todas as aplicações que o produto decorrente do presente processo tem. Note that the commercial Bioglass ® - 45S5 product with similar bioactivity to that of the materials of the invention is manufactured in the form of granules only, and therefore does not fall into the scaffold category and does not have all the applications that the product derives from. of the present case has.

Claims

REIVINDICAÇÕES
1. Suspensões para preparação de enxertos ósseos (scaffolds) à base de Biosilicato®, caracterizadas por compreender, em relação ao volume total da suspensão,  1. Biosilicate® based scaffolds for preparation of bone grafts, characterized in that they comprise, in relation to the total volume of the suspension,
a) de 10-50% de sólidos constituídos de 50 a 98% de agente porogênico e de 2 a 50% de Biosilicato® e  a) 10-50% solids consisting of 50 to 98% porogenic agent and 2 to 50% Biosilicate® and
b) de 50 a 90% de líquidos constituídos de 0,5-15% de ligante e de 85 a 99,5% de meio líquido.  (b) 50 to 90% of liquids consisting of 0,5-15% of binder and 85 to 99,5% of liquid medium.
2. Suspensões de acordo com a reivindicação 1 , caracterizadas por compreender, em relação ao volume total da suspensão,  Suspensions according to Claim 1, characterized in that they comprise, in relation to the total volume of the suspension,
a) de 20-50% de sólidos constituídos de 60 a 90% vol. de agente porogênico e de 10 a 40% vol. de Biosilicato® e b) de 50 a 80% de líquidos constituídos de 1-10% de ligante e de 90 a 99% de meio líquido.  a) 20-50% solids consisting of 60 to 90% vol. porogenic agent and from 10 to 40% vol. and b) 50 to 80% liquids consisting of 1-10% binder and 90 to 99% liquid medium.
3. Suspensões de acordo com as reivindicações 1 e 2, caracterizadas por o agente porogênico ser selecionado dentre naftaleno, amido de milho, amido de mandioca, microesferas de polietileno e negro de fumo granulado.  Suspensions according to Claims 1 and 2, characterized in that the porogenic agent is selected from naphthalene, maize starch, cassava starch, polyethylene microspheres and granulated carbon black.
4. Suspensões de acordo com a reivindicação 3, caracterizadas por o tamanho de partícula do agente porogênico estar entre 150-1300 μΓΠ.  Suspensions according to claim 3, characterized in that the particle size of the porogenic agent is between 150-1300 μΓΠ.
5. Suspensões de acordo com a reivindicação 1 , caracterizadas por compreender alternativamente uma suspensão de partículas contendo de 10 a 70% vol. de sólidos e de 30 a 90% vol. de líquidos.  Suspensions according to claim 1, characterized in that it alternatively comprises a particulate suspension containing from 10 to 70% vol. solids and from 30 to 90% vol. of liquids.
6. Suspensões de acordo com a reivindicação 5, caracterizadas por compreender de 20 a 50% vol. de sólidos e de 50 a 80% vol. de líquidos. Suspensions according to claim 5, characterized in that they comprise from 20 to 50% vol. solids and from 50 to 80% vol. of liquids.
7. Suspensões de acordo com as reivindicações 5 e 6, caracterizadas por os sólidos serem constituídos unicamente por Biosilicato®. Suspensions according to Claims 5 and 6, characterized in that the solids consist solely of Biosilicate®.
8. Suspensões de acordo com as reivindicações 1 , 2, 5 e 6, caracterizadas por o ligante ser selecionado dentre álcool polivinílico (PVAL), acetato de polivinila (PVA), látex ou polivinil butiral (PVB), dextrina, lignossulfonato, bentonita, melaço de cana. Suspensions according to claims 1, 2, 5 and 6, characterized in that the binder is selected from polyvinyl alcohol (PVAL), polyvinyl acetate (PVA), latex or polyvinyl butyral (PVB), dextrin, lignosulfonate, bentonite, cane molasses.
9. Suspensões de acordo com as reivindicações 1 , 2, 5 e 6, caracterizadas por o meio líquido ser selecionado dentre água, álcoois em C1-C3 e cetonas em C3-C5  Suspensions according to Claims 1, 2, 5 and 6, characterized in that the liquid medium is selected from water, C1-C3 alcohols and C3-C5 ketones.
10. Enxertos ósseos (scaffolds) obtidos a partir das suspensões de acordo com a reivindicação 1 , caracterizados por apresentar porosidade total variando entre 65 - 95% (macroporosidade de 60- 90%) e tamanho médio de poros entre 100 e 600 pm.  Scaffolds obtained from the suspensions according to claim 1, characterized in that they have total porosity ranging from 65 - 95% (macroporosity 60 - 90%) and average pore size between 100 and 600 pm.
11. Enxertos ósseos de acordo com a reivindicação 10, caracterizados por serem obtidos através do processo via adição de agentes porogênicos.  Bone grafts according to claim 10, characterized in that they are obtained by the process via addition of porogenic agents.
12. Enxertos ósseos de acordo com a reivindicação 10, caracterizados por serem obtidos através do processo de direct foaming.  Bone grafts according to claim 10, characterized in that they are obtained by the direct foaming process.
13. Enxertos ósseos de acordo com a reivindicação 10, caracterizados por serem obtidos através do processo de prototipagem rápida. Bone grafts according to claim 10, characterized in that they are obtained by the rapid prototyping process.
14. Enxertos ósseos de acordo com a reivindicação 10, caracterizados por serem aplicados em cirurgias odontológicas, ortopédicas, maxilofaciais e craniofaciais. Bone grafts according to claim 10, characterized in that they are applied in dental, orthopedic, maxillofacial and craniofacial surgeries.
15. Enxertos ósseos de acordo com a reivindicação 10, caracterizados por serem aplicados em neoplasia óssea e estabilização de segmentos da coluna espinhal ("spinal fusion").  Bone grafts according to claim 10, characterized in that they are applied to bone neoplasia and stabilization of spinal fusion segments.
16. Enxertos ósseos (scaffolds) obtidos a partir das suspensões de acordo com a reivindicação 5, caracterizados por apresentar poros interconectados na faixa de 100-1200 pm e porosidade total de 70 a 98%. Scaffolds obtained from the suspensions according to claim 5, characterized in that they have interconnected pores in the range of 100-1200 pm and total porosity of 70 to 98%.
17. Enxertos ósseos de acordo com a reivindicação 16, caracterizados por serem aplicados em cirurgias odontológicas, ortopédicas, maxilofaciais e craniofaciais. Bone grafts according to claim 16, characterized in that they are applied in dental, orthopedic, maxillofacial and craniofacial surgeries.
18. Enxertos ósseos de acordo com a reivindicação 16, caracterizados por serem aplicados em neoplasia óssea e estabilização de segmentos da coluna espinhal {"spinal fusion").  Bone grafts according to claim 16, characterized in that they are applied to bone neoplasia and stabilization of spinal fusion segments.
19. Enxertos ósseos de acordo com a reivindicação 16, caracterizados por serem obtidos através do processo de réplica.  Bone grafts according to claim 16, characterized in that they are obtained by the replica process.
20. Enxertos ósseos de acordo com a reivindicação 16, caracterizados por serem obtidos através do processo de direct foaming.  Bone grafts according to claim 16, characterized in that they are obtained by the direct foaming process.
21. Enxertos ósseos de acordo com a reivindicação 16, caracterizados por serem obtidos através do processo de prototipagem rápida. Bone grafts according to claim 16, characterized in that they are obtained by the rapid prototyping process.
22. Processo de obtenção de enxertos ósseos (scaffolds) a partir das suspensões de acordo com a reivindicação 1 , caracterizado por compreender as etapas de: Process for obtaining bone grafts (scaffolds) from the suspensions according to claim 1, characterized in that it comprises the steps of:
a) prover uma suspensão (110) contendo ligante, meio líquido e Biosilicato®; a) providing a suspension (110) containing binder, liquid medium and Biosilicate ® ;
b) moer em (120) durante 1 a 12 horas a suspensão de a) em moinho;  b) milling in (120) for 1 to 12 hours the suspension of a) in a mill;
c) retirar do moinho a suspensão moída de b) e adicionar em (130) o agente porogênico, obtendo uma mistura;  c) removing the milled suspension from b) and adding in (130) the porogenic agent, obtaining a mixture;
d) misturar em (140) a mistura de c) durante 1 a 60 minutos;  d) mixing in (140) the mixture of c) for 1 to 60 minutes;
e) secar em (150) a mistura de d), obtendo pó granulado;  e) drying (150) the mixture of d), obtaining granular powder;
f) peneirar em (160) o granulado de e);  f) sieving (160) the granulate of e);
g) conformar em (170) o pó de f) em moldes de qualquer geometria, em duas etapas de prensagem, a primeira por prensagem uniaxial ou biaxial, a pressões de 10-50 MPa e a segunda por prensagem isostática a pressões de 50-300 MPa, obtendo corpos conformados; h) queimar (sinterizar) em (180) os corpos de g), em diferentes estágios: remoção do agente porogênico(entre 90 e 800°C); tempo de patamar de 30 min a 6 horas nesta temperatura; remoção do ligante (200- 800°C), tempo de patamar de 30 min a 4 horas nesta temperatura; aquecimento até a temperatura adequada para sinterização do Biosilicato® (900-1200°C); tempo de patamar de 30 min. a 10 horas nesta temperatura, obtendo o enxerto ósseo; resfriamento do enxerto até a temperatura ambiente; e g) forming (170) the powder of f) into molds of any geometry, in two pressing steps, the first by uniaxial or biaxial pressing at pressures of 10-50 MPa and the second by isostatic pressing at pressures of 50- 300 MPa, obtaining conformed bodies; h) burn (sinter) in (180) the bodies of g), in different stages: removal of the porogenic agent (between 90 and 800 ° C); landing time from 30 min to 6 hours at this temperature; binder removal (200-800 ° C), plateau time from 30 min to 4 hours at this temperature; heating to a temperature suitable for sintering Biosilicate® (900-1200 ° C); landing time 30 min. 10 hours at this temperature, obtaining the bone graft; graft cooling to room temperature; and
i) recuperar em (190) o enxerto ósseo (scaffold) pronto para uso.  (i) recovering (190) the ready-to-use bone scaffold.
23. Processo de obtenção de enxertos ósseos {scaffolds) a partir das suspensões de acordo com a reivindicação 5, caracterizado por compreender as etapas de: Process for obtaining bone grafts (scaffolds) from suspensions according to claim 5, characterized in that it comprises the steps of:
a) prover uma suspensão contendo ligante, meio líquido e Biosilicato®; b) moer durante 1 a 12 horas a suspensão de a) em moinho;  a) providing a suspension containing binder, liquid medium and Biosilicate®; b) grinding the suspension of a) in a mill for 1 to 12 hours;
c) introduzir na suspensão moída de b) uma espuma polimérica e impregnar a mesma com a dita suspensão durante 15 min a 4 horas; d) retirar a espuma impregnada da suspensão e comprimir a mesma para retirar o excesso de suspensão;  c) introducing into the ground suspension b) a polymeric foam and impregnating it with said suspension for 15 min to 4 hours; d) removing the impregnated foam from the suspension and compressing it to remove excess suspension;
e) repetir a etapa c);  e) repeat step c);
f) secar a espuma impregnada com suspensão a temperaturas variando de 25 a 120°C por tempos de 1 a 12 horas, obtendo espuma impregnada e seca;  f) drying the suspended impregnated foam at temperatures ranging from 25 to 120 ° C for times of 1 to 12 hours, obtaining impregnated and dried foam;
g) queimar a espuma impregnada e seca por aquecimento da espuma impregnada entre 150 e 600°C a remoção da espuma polimérica; tempo de patamar de 30 min a 6 horas nesta temperatura; aquecimento até a temperatura adequada para a remoção do ligante (200-800°C); tempo de patamar de 30 min a 4 horas nesta temperatura; aquecimento do corpo resultante até a temperatura para sinterização do Biosilicato® (900-1200°C); tempo de patamar de 30 min. a 10 horas nesta temperatura, obtendo o enxerto ósseo; resfriamento do enxerto até a temperatura ambiente; e recuperação do enxerto ósseo (scaffold) pronto para uso.  g) burning the impregnated foam and heating by heating the impregnated foam between 150 and 600 ° C removing the polymeric foam; plateau time from 30 min to 6 hours at this temperature; heating to the appropriate binder removal temperature (200-800 ° C); plateau time from 30 min to 4 hours at this temperature; heating the resulting body to the sintering temperature of the Biosilicate® (900-1200 ° C); landing time 30 min. 10 hours at this temperature, obtaining the bone graft; graft cooling to room temperature; and ready-to-use bone graft recovery (scaffold).
PCT/BR2011/000099 2010-04-06 2011-04-06 Suspensions for preparing biosilicate-based bone grafts (scaffolds), thus obtained bone grafts and methods for producing same WO2011130812A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1003676A BRPI1003676B1 (en) 2010-04-06 2010-04-06 suspensions for the preparation of biosilicate-based bone scaffolds, obtained bone grafts and processes for obtaining them
BRPI1003676-8 2010-04-06

Publications (2)

Publication Number Publication Date
WO2011130812A2 true WO2011130812A2 (en) 2011-10-27
WO2011130812A3 WO2011130812A3 (en) 2012-11-22

Family

ID=44834550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000099 WO2011130812A2 (en) 2010-04-06 2011-04-06 Suspensions for preparing biosilicate-based bone grafts (scaffolds), thus obtained bone grafts and methods for producing same

Country Status (2)

Country Link
BR (1) BRPI1003676B1 (en)
WO (1) WO2011130812A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191463A (en) * 2013-04-03 2013-07-10 上海师范大学 Three-dimensional ordered porous bracket material of chitosan fiber/bioactive glass and preparation method of three-dimensional ordered porous bracket material
CN104473705A (en) * 2014-12-03 2015-04-01 卢清君 Head maxillofacial bone implant and method for quickly molding same
CN105031733A (en) * 2015-07-24 2015-11-11 深圳爱生再生医学科技有限公司 Wounded tissue restoration body based on 3D cell printing technology and preparation method
CN108137370A (en) * 2015-08-21 2018-06-08 阿尔法生物有限公司 Prepare for substitute sclerous tissues' defect medical material method and medical material prepared therefrom
US10675158B2 (en) 2015-12-16 2020-06-09 Nuvasive, Inc. Porous spinal fusion implant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102020017697A2 (en) * 2020-08-31 2022-03-15 Fundação Universidade Federal De São Carlos Process of preparation of bone grafts and bone grafts obtained

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236458A (en) * 1989-09-06 1993-08-17 S.A. Fbfc International Bioreactive material for a prosthesis or composite implants
US7541049B1 (en) * 1997-09-02 2009-06-02 Linvatec Biomaterials Oy Bioactive and biodegradable composites of polymers and ceramics or glasses and method to manufacture such composites
GB0516157D0 (en) * 2005-08-05 2005-09-14 Imp College Innovations Ltd Process for preparing bioglass scaffolds
CN101288780B (en) * 2008-06-10 2011-05-25 浙江大学 Degradable dynamics enhancement type bioglass base porous composite material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191463A (en) * 2013-04-03 2013-07-10 上海师范大学 Three-dimensional ordered porous bracket material of chitosan fiber/bioactive glass and preparation method of three-dimensional ordered porous bracket material
CN104473705A (en) * 2014-12-03 2015-04-01 卢清君 Head maxillofacial bone implant and method for quickly molding same
CN105031733A (en) * 2015-07-24 2015-11-11 深圳爱生再生医学科技有限公司 Wounded tissue restoration body based on 3D cell printing technology and preparation method
CN108137370A (en) * 2015-08-21 2018-06-08 阿尔法生物有限公司 Prepare for substitute sclerous tissues' defect medical material method and medical material prepared therefrom
EP3339257A4 (en) * 2015-08-21 2019-04-24 Bioalpha Corporation Method of producing medical material for replacing lost portions of hard tissue, and medical material produced through same
US10668182B2 (en) 2015-08-21 2020-06-02 Bioalpha Corporation Method for preparing a medical material for replacing a hard tissue defect and a medical material prepared therefrom
CN108137370B (en) * 2015-08-21 2021-03-02 阿尔法生物有限公司 Method for preparing medical material for replacing hard tissue defect and medical material prepared by same
US10675158B2 (en) 2015-12-16 2020-06-09 Nuvasive, Inc. Porous spinal fusion implant
US11660203B2 (en) 2015-12-16 2023-05-30 Nuvasive, Inc. Porous spinal fusion implant

Also Published As

Publication number Publication date
BRPI1003676B1 (en) 2018-12-26
BRPI1003676A2 (en) 2012-04-17
WO2011130812A3 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
Baino et al. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances
Baino et al. Bioceramics and scaffolds: a winning combination for tissue engineering
Kumar et al. Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm
Tarafder et al. Microwave‐sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
EP2714112B1 (en) Biodegradable composite material
EP1305056B1 (en) Porous synthetic bone graft and method of manufacture thereof
Li et al. Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo
CA2965384A1 (en) Bi-layered bone-like scaffolds
Liu Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation
KR20090108604A (en) Metal oxide scaffolds
WO2011130812A2 (en) Suspensions for preparing biosilicate-based bone grafts (scaffolds), thus obtained bone grafts and methods for producing same
Weng et al. Review of zirconia-based biomimetic scaffolds for bone tissue engineering
WO2007017756A2 (en) Process for preparing a bioactive glass scaffold
EP1117626A1 (en) Foamed ceramics
Rahimnejad et al. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies
JP2021118906A (en) Bone substitute material
KR102636183B1 (en) Collagen matrix or granulated blend of bone substitute materials
Sa et al. Fabrication and evaluation of 3D β-TCP scaffold by novel direct-write assembly method
Liu et al. Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement
Yang Progress of bioceramic and bioglass bone scaffolds for load-bearing applications
KR100853635B1 (en) Porous synthetic bone graft and method of manufacture thereof
Seyedmajidi et al. The effect of eliminating sintering during the synthesis of 3D scaffolds using the gel-casting method on their biological characteristics: in vivo and in vitro evaluations
US11285242B1 (en) Processing and bioactivation of a novel SiC medical device
Maidaniuc et al. Bioceramic-Starch Paste Design for Additive Manufacturing and Alternative Fabrication Methods Applied for Developing Biomedical Scaffolds
Gittings Fabrication and properties of novel open porous calcium phosphate bioceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771420

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771420

Country of ref document: EP

Kind code of ref document: A2