WO2011130391A1 - Turbines - Google Patents

Turbines Download PDF

Info

Publication number
WO2011130391A1
WO2011130391A1 PCT/US2011/032292 US2011032292W WO2011130391A1 WO 2011130391 A1 WO2011130391 A1 WO 2011130391A1 US 2011032292 W US2011032292 W US 2011032292W WO 2011130391 A1 WO2011130391 A1 WO 2011130391A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
blades
blade
turbines
turbine according
Prior art date
Application number
PCT/US2011/032292
Other languages
French (fr)
Inventor
Robert Perless
B. Holt Thrasher
Talbot P. Thrasher
Original Assignee
Arcjet Holdings Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcjet Holdings Llc filed Critical Arcjet Holdings Llc
Priority to EP11769515A priority Critical patent/EP2558715A1/en
Priority to CA2796344A priority patent/CA2796344A1/en
Publication of WO2011130391A1 publication Critical patent/WO2011130391A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention generally relates to turbines that efficiently process air or fluid flow while producing substantially no vibrational effects.
  • Wind power refers to the conversion of wind energy into a useful form of energy, such as electricity. Wind energy is an attractive alternative to fossil fuels because it is plentiful, renewable, widely distributed, clean, and produces no greenhouse gas emissions. Wind energy accounts for about 1.5% of worldwide electricity usage, and approximately eighty countries around the world use wind power on a commercial basis (World Wind Energy Report 2008: Report, World Wind Energy Association, February 2009; and Worldwatch Institute: Wind Power Increase in 2008 Exceeds 10-year Average Growth Rate, May 2009). Further, world wind generation capacity has more than quadrupled between the years 2000 and 2006, doubling about every three years.
  • Wind energy is typically obtained from two sources.
  • Large scale wind farms i.e., a set of individual turbines that are interconnected to a power collection system and communications network
  • small- scale wind turbines are wind generation systems used for electricity generation for individual commercial or residential buildings.
  • a problem with small-scale turbines is the vibrational effects that they generate during operation and power production. Vibrational effects are translated throughout a building, resulting in shaking of the building or even structural cracking. Vibrational effects also produce a great amount of wear on the turbine itself (e.g. the blades, axle, and bearings).
  • Another problem with small scale turbines is that they process turbulent airflow inefficiently. That is a particular problem in urban environments in which surrounding buildings disrupt airflow, thus increasing turbulence.
  • the invention generally relates to turbines that efficiently process air or fluid flow while producing substantially no vibrational effects. It has been found that the angle of a turbine's blade influences vibrational effects and also affects the ability of a turbine to process turbulent air or fluid flow. Turbines of the invention include blades that have an angle such that vibrational effects from rotation of the blades are substantially eliminated while the turbine operates. Further, the angle of the blade also allows the turbine to efficiently process any type of air flow, particularly turbulent air flow. Since turbines of the invention can operate while producing substantially no vibrational effects and can efficiently process turbulent air flow, turbines of the invention are ideal for power production for commercial or residential buildings, particularly buildings in an urban environment as well as rural and coastal areas.
  • Turbines of the invention include a rotatable shaft and at least one blade connected to the rotatable shaft.
  • the turbine blades include any angle that results in elimination of substantially all vibrational effects from rotation of the blades while the turbine operates. Exemplary blade angles include angles of about 180° or greater, about 270° or greater, or about 360° or greater. In a particular embodiment, the blade angle is 270° or greater.
  • turbines of the invention include blades that have a helical shape.
  • Blades for the turbines of the invention may include numerous other features that enhance operation without producing vibrational effects.
  • the turbine blades may include a bulbous portion at a leading edge of the blade.
  • the turbine blades may include a winglet at a trailing edge of the blade.
  • the turbine blades include both a bulbous portion at a leading edge of the blade and a winglet at a trailing edge of the blade.
  • Turbine blades of the invention may have a cross section that is any shape.
  • the cross section of the turbine blade is substantially that of an airfoil.
  • Blades for turbines of the invention may be constructed using numerous different materials or combinations of materials.
  • the turbine blades have a foam core for an interior of the blade, which is then covered with a carbon fiber shell, fiberglass composite shell, or a polymeric shell.
  • the interior of the blade is hollow and the blade is constructed as a carbon fiber shell, fiberglass composite shell, a polymeric shell, or a metal shell.
  • Turbines of the invention may have many different uses, such as a wind turbine or a water turbine.
  • the turbine is a wind turbine.
  • the turbine is a wind turbine.
  • turbines of the invention are unidirectional turbines, which refers to a turbine that is capable of rotating regardless of the direction of air or fluid flow. Thus, the turbines do not need to be pointed into the direction of the wind or fluid to be effective.
  • a turbine's blade effects the efficiency at which the turbine processes wind.
  • the turbine blade will rotate about the shaft of the turbine at a speed greater than actual wind speed.
  • a turbine including a rotatable shaft, and a plurality of blades connected to the rotatable shaft, in which each blade includes a helical shape and the blades are twisted to such a degree that the blades rotate about the shaft at a speed greater than the actual wind speed.
  • Exemplary angles include angles of about 180° or greater, about 270° or greater, or about 360° or greater. In a particular embodiment, the blade angle is about 270° or greater.
  • Figure 1 is a picture showing an exemplary turbine of the invention.
  • Figure 2 provides a schematic cross-sectional side view of a turbine illustrating zones of thrust efficiency.
  • Figure 3 shows an example of a prior art vertical axis turbine.
  • Figure 4 is a schematic showing the airfoil shaped cross section of blades of turbines of the invention.
  • Figure 5 is picture showing a magnified view of a bulbous portion at a leading edge of a blade of a turbine of the invention.
  • Figure 6 provides an illustrative schematic for calculating dimensions of a bulbous portion.
  • Figure 7 is picture showing a magnified view of a winglet at a trailing edge of a blade of a turbine of the invention.
  • Figure 8 is a schematic showing a top view of a multi-blade turbine of the invention.
  • Figure 9 is a graph showing that turbines of the invention produce substantially no vibrational effects during operation. This graph showing turbines having a blade angle of 180° and 270° respectively.
  • Turbines of the invention include a rotatable shaft and at least one blade connected to the rotatable shaft.
  • Turbines of the invention are configured to operate without producing substantial vibrational effects and to efficiently process air flow, particularly turbulent air flow. Elimination of vibrational effects during operation and ability to efficiently process air flow makes turbines of the invention ideal for power generation for a residential or commercial building.
  • FIG. 1 shows an exemplary turbine 100 of the invention.
  • Turbine 100 includes a rotatable shaft 101 and at least one blade 102.
  • the rotatable shaft 101 may be made from any suitable material, such as metals, plastics, or polymers. In certain embodiments, the rotatable shaft is made from aluminum.
  • the turbine shown in Figure 1 includes two blades, 102a and 102b. However, turbines of the invention may include only a single blade or may include more than two blades, such as three blades, four blades, five blades, etc.
  • the blades 102 may be made from any suitable material, such as metals, plastics, foams, polymers, or a combination thereof.
  • the turbine blades have a foam core for an interior of the blade, which is then covered with a carbon fiber, fiberglass composite, metal, or polymeric shell.
  • the interior of the blade is hollow and the blade is constructed as a carbon fiber, fiberglass composite, metal, or polymeric shell.
  • the blades 102a and 102b are connected to the rotatable shaft 101 by connecting members 103.
  • Figure 1 shows two connecting members 103a and 103b, however more or less connecting members may be used. In certain embodiments, only a single connecting member is used. In other embodiments, more than two connecting members are used. The number of connecting member will depend on numerous factors, such as the dimensions of the turbine or the environmental surrounding of the turbine (e.g., high wind speed area, low wind speed area, turbulent wind area, proximity to other buildings, where the turbine is mounted, etc.). Since the blades 102 are fixedly mounted to the rotatable shaft 101, rotation of the blades 102 results in rotation of the shaft 101.
  • the connecting members 103a and 103b are shown as radial spokes, connecting at three points to the blades 102a and 102b.
  • the radial spokes may be made from any materials, such as metals, plastics, polymers, or combinations thereof.
  • the connecting members are made from aluminum. While Figure 1 showing connecting members 103 as radial spokes, numerous other configures may be used, such as discs.
  • Blades 102a and 102b are shown to have a helical shape.
  • the helical shape of the blades enhances ability of the turbine to operate without producing vibrational forces.
  • the helical shape also enhances the ability of the turbine to process turbulent air flow.
  • the helical shape of the blades 102 allows turbines of the invention to operate as vertical axis turbines, such as shown in Figure 1 where the rotatable shaft 101 is perpendicular to the ground.
  • FIG. 2 provides a schematic cross-sectional side view of a turbine illustrating zones of thrust efficiency. As shown in Figure 2, the least efficient thrust zones are at the outer edges and the most efficient thrust zone is near the center. Figure 2 shows that the efficiency of the thrust varies continuously from a minimum at a first outer edge, to a maximum at a midpoint, to a minimum at a second outer edge. It is the different efficiencies of the thrust of the air or fluid with respect to the prior art turbine blades that generate the pulsing effect.
  • Figure 3 shows an example of a prior art vertical axis turbine.
  • the helical configuration of the blades of the turbines of the invention ensures that a portion of the blades 102 are always positioned optimally with respect to air or fluid flow.
  • the continuous helical blades provide a continuous speed of rotation uninterrupted by accelerations and decelerations that accompany other prior art turbines, such as shown in Figure 3, as the blades pass through the least and most efficient thrust zones.
  • the helical blades may be divided into two halves, in which one half is a left-handed helix and the other half is a right-handed helix. In this manner, the components of the thrust force that extend parallel to the rotatable shaft 101 cancel each other out. However, all left-handed or all right-handed helixes or any other suitable helical configuration may be provided if desired.
  • the helical shape of the blades reduces the pulsing effect seen with prior art vertical axis turbines, thus also reducing vibrational effects
  • the helical shape alone does not eliminate vibrational effects that occur while the turbine operates.
  • the angle of a turbine's blade influences vibrational effects that a turbine produces while operating. It is this angle that leads to elimination of substantially all vibrational effects produced from a turbine's blades while the turbine is operating.
  • the blades 102 of turbines of the invention 100 are designed to have such an angle that substantially all vibrational effects are eliminated while the turbine is operating.
  • the blades 102 may have any angle that results is elimination of substantially all vibrational effects while the turbine is operating.
  • the blades 102a and 102b shown in Figure 1 has an angle of about 270°. However, other angles may be used that eliminate substantially all vibrational effects, such as about 180°, about 360° or greater, about 450° or greater, about 540° or greater, about 630° or greater, or about 720° or greater.
  • Other exemplary angles includes an angle of about 180°, of about 185°, of about 190°, of about 195°, of about 200°, of about 210°, of about 220°, of about 230°, of about 240°, of about 250°, of about 260°, of about 270°, of about 280°, of about 290°, of about 300°, of about 310°, of about 320°, of about 330°, of about 340°, of about 350°, of about 360°, of about 405°, of about 450°, of about 495°, of about 540°, of about 585°, of about 630°, of about 675°, or of about 720°.
  • the blades 102 have a cross section shape that is an airfoil.
  • blades for the turbines of the invention may have a cross section that is any shape.
  • Figure 4 is a schematic showing the airfoil shaped cross section of blades 102.
  • the blades have increased deep camber to accommodate rotational motion of the turbine.
  • Camber refers to the asymmetry between the top and the bottom curves of an airfoil in cross-section.
  • Camber is added to an airfoil to increase lift and/or increase the critical angle of attack.
  • Figure 4 panel A provides a schematic of a blade having normal camber.
  • Figure 4 panel B provides a schematic of a blade having increased deep camber.
  • the increased deep camber in blades of turbines of the invention provides for increased lift and ease of start-up from a stationary position, e.g., turbines of the invention may be self-starting.
  • Blades for the turbines of the invention may include numerous other features that enhance the ability of turbines of the invention to operate without producing substantial vibrational effects.
  • the blades 102 are configured such that each point of the blade is a uniform distance from the rotatable shaft 101, as shown in Figure 4 panel B.
  • blades 102 of the invention include a bulbous portion 105 at a leading edge of the blades 102 ( Figures 1 and 5).
  • the bulbous portion can be of any dimensions depending on the amount of aerodynamic resistance and friction drag that is desired. Generally, the dimensions of the bulbous portion 105 will depend on the dimension of the blades 102, and the bulbous portion will be designed to minimize aerodynamic resistance and friction drag.
  • Figure 6 provides a schematic of a bulbous portion 105.
  • L is the overall length of the bulbous portion and R is the radius of the base of the bulbous portion 105.
  • y is the radius at any point x, as x varies from 0, at the tip of the bulbous portion 105, to L.
  • the equation defines the 2-dimensional profile of the bulbous portion 105.
  • the full body of revolution of the bulbous portion 105 is formed by rotating the profile around the centerline ( C/L). Note that the equation describes the "perfect" shape; practical nose cones are often blunted or truncated for manufacturing or aerodynamic reasons.
  • blade 102 of the invention include a winglet 106 at a trailing edge of the blades 102 ( Figures 1 and 7).
  • the winglet 106 provides additional stabilization to the blade 102 as it rotates. The increased stabilization leads to further reduction of any vibrational effects that are generated during operation of turbines of the invention.
  • winglet 106 reduces drag of blades 102 by altering the airflow near the trailing edge of the blades 102.
  • the winglet 106 also increase the lift generated at the trailing edge of the blades 102 (by smoothing the airflow across the blade near the trailing edge) and reduces the lift-induced drag caused by vortices generated at the trailing edge of the blades 102, improving lift-to-drag ratio.
  • Exemplary angles include 5°, 10°, 20°, 45°, 90°, 120°, or 270°.
  • the winglet 106 is oriented at 90°, or perpendicular, to the trailing edge of wing 102 ( Figures 1 and 7).
  • Winglets 106 also increase efficiency by reducing vortex interference with laminar airflow near the trailing edge of the blades 102, by moving the confluence of low-pressure and high-pressure air away from the surface of the blades 102. Vortices generate turbulence at the trailing edge of the blades 102, which turbulence delaminates the airflow over a small triangular section of the trailing edge of the blades 102, which destroys lift in that area. The winglet 106 drives the area where the vortex forms upwards away from the blade surface.
  • the lift-drag relationship allows for a generation of thrust by the airfoil shaped blades 102.
  • the blades 102 have a high camber profile in certain embodiments in which the camber is premised on an outer airfoil surface with a constant circumferential radius that allows for the outer surface of the wing behind the 1 ⁇ 4 chord point to rotate around the center of rotation maximizing laminar flow and minimizing trailing edge turbulence and thus thrust loss (Figure 4).
  • the inner surface of the wing behind the 1 ⁇ 4 chord point is constrained to
  • the chord length and rotation diameter are balanced to allow for a circumference coverage, consistently along the vertical helix, of less than 25% to allow for air and fluid flow between the blades (Figure 4). This will minimize blade trailing edge turbulence effects on the following leading edge flow. This spacing will improve the aerodynamic lift to drag ratio capability.
  • the bulbous portion forward of the 1 ⁇ 4 chord point may be a symmetric bull nose rotated to a tangential arrangement of the direction of rotation.
  • the blades 102 may be designed with any width to height ratio that is desired.
  • the width to height ratio of the blades will depend on numerous factors, such as the dimensions of the turbine or the environmental surrounding of the turbine (e.g., high wind speed area, low wind speed area, turbulent wind area, proximity to other buildings, where the turbine is mounted, etc.).
  • the blades 102 have a width to height ratio of 1 width to 1.5 height.
  • Turbines of the invention are unidirectional turbines, which refers to a turbine that is capable of rotating regardless of the direction of air or fluid flow. Thus, the turbines of the invention do not need to be pointed into the direction of the wind or fluid to be effective. Regardless of the direction of air or fluid flow, blades of the turbine rotate in the same direction, the direction of the leading edge of the blades. Turbines may be oriented in any direction with respect to the ground, such as horizontally, vertically, or angled. Figure 1 shows an embodiment in which the turbine is oriented as a vertical axis turbine. In certain embodiments, the turbines of the invention are oriented such that the blades are mounted transversely to the direction of air or fluid flow for rotation in a plane parallel to the direction of air or fluid flow.
  • Turbines of the invention may be fabricated and manufactured using methods well known by one of skill in the art.
  • An exemplary protocol for manufacturing a turbine of the invention is provided here.
  • the manufacture of the turbines is based on a foam core composite skin sandwich structure, which are pre-fabricated and then attached to welded aluminum connecting members configured around a center rotatable axis. Briefly, an inner diameter mold is produced using a barrel shaped form. A cylindrical frame constructed of wood members is covered using a pliable thin sheet material to produce a constant diameter cylinder. Small cross section thermoplastic foam wing sections are cut into an airfoil shape and bonded together on the foam cylinder along a helical scribe line to ensure a constant rotation angle up the cylinder. The bonded foam core is then hand shaped to the prescribed airfoil configuration using shaping tools and/or patterns.
  • the foam core assembly is then cover with two layers of Egyptian cotton fabric, which had been saturated with an epoxy resin and smoothed to the surface contour of the foam core.
  • This method produces a standard sandwich structure as a cocured composite skin construction.
  • the skin materials are then allowed to cure.
  • the materials are subsequently hand sanded for aerodynamic smoothness as well as aesthetics.
  • Winglets and bulbous portions are then fabricated using a similar method of thermoplastic foam cores and then secondarily bonded to the ends of each blade.
  • the blades are then attached to aluminum welded radial spokes.
  • the radial spokes are constructed to create a center of rotation based on a symmetric helical rotation dynamic.
  • the radial spokes are constructed with an attachment angle that extends from the center but is not perpendicular the vertical axis of rotation. This angle is replicated at the opposite angle from its opposing radial spokes.
  • the radial spokes are subsequently attached to the rotatable shaft.
  • the rotatable shaft is connected to a base using a standard two ring roller bearing attachment which allows for the shaft and thus the turbine to be held in a vertical position.
  • This shaft positioning at the base allows for structural support and in tandem with a connection to an electrical generator below the turbine.
  • an alternate fabrication method is envisioned. Having a foam cavity mold in which the blade cores are pre-fabricated, with end details as well as pre-inserted attachment fittings (bosses, pre positioned hard points for attachments, or inserts) is a more efficient and consistent method for the core fabrication. This method allows for multiple identical part configurations, which can be subsequently, assemble into a 270° / 360° / 720° flexible turbine configuration from a set of easy to assemble
  • FIG. 8 Another embodiment of the turbines of the invention uses a multi-blade arrangement for improved balancing and constant power generating capability.
  • Figure 8 By examining the cross section of the turbine from a top view ( Figure 8), the multiple blades exhibit their angle of attacks that are distinctly spaced with regard to the air/fluid flow. In this configuration, one blade will be at a higher lift generating angle at the same time that another blade is in a minimized lift and a (potentially maximized) drag angle, with the third somewhere in between still generating lift.
  • the continuous helix with a 360° rotation provides a balanced angle of attack by the vanes causing a continuously constant multi-blade profile with regard to the fluid flow direction. Since each blade will have one section view in every possible angle of attack due to the 360° helical rotation, the lift and thus thrust is continuous and stable with respect to the wind speed. Since there are three equally spaced blades in the circumference of the rotation, the dynamic balance of the aerodynamic forces is constant. Because the largest portions of the mass of the rotating body (the blades) are at a maximum distance from the axis of rotation, the potential for out of balance mechanical forces is high. However, this is overcome by the lightweight structure of the blades of the turbines of the invention, which generate greater aerodynamic forces than rotational mass inertia forces.
  • the open-ended radial spoke mounting of the blades allows for non-perpendicular wind flow to be harnessed.
  • the helical arrangement also optimizes this energy generating situation as the vertical fluid flow component will still see a balanced elongated airfoil cross sections, thus providing additional generation with the bulbous portion and attachment of winglets at the upper and lower ends.
  • Turbines of the invention may be connected in any suitable manner to an electrical generator by methods known in the art.
  • turbines of the invention can be efficiently configured as an optimal unit or module and combined in a modular array to harness water or wind power.
  • the power available from a prior art propeller turbine is proportional to the circumferential velocity of the blades, which increases with distance from the turbine shaft.
  • prior art turbines are traditionally designed with a maximum diameter.
  • the turbines of the invention are advantageous in this regard, since its available power is proportional to a frontal rectangular area equal to the product of its diameter and its length, and the length is not related to angular velocity or centrifugal forces.
  • a relatively small turbines of the invention can be optimized for airfoil profile, angular velocity, diameter, and length, and an entire power system can be assembled from such modules. Such a power system can exploit a common generator for a number of modules and is simple to build and maintain.
  • One or more electrical generators are provided in communication with the array of turbines.
  • a generator may be individually associated with each turbine, or plural turbines may be connected via a suitable transmission to a single generator.
  • the array of turbines may be located in any suitable windy location, as is known in the art, for example for locating traditional windmill-type wind farms.
  • turbines of the invention are self- starting and provide uniform non-oscillating rotation, as compared to the prior art turbines.
  • the turbines provide unidirectional rotation for any wind direction. Also, birds are likely to perceive the turbines of the invention as a solid wall, minimizing the danger of collisions for birds.
  • Turbines of the invention may also be screened to prevent collisions with birds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention generally relates to turbines that efficiently process air or fluid flow while producing substantially no vibrational effects. In certain embodiments, the invention provides a turbine including a rotatable shaft, and at least one blade connected to the rotatable shaft, in which the blade includes a helical shape and an angle of about 180° or greater.

Description

TURBINES
Related Application
The present application claims the benefit of and priority to U.S. provisional application serial number 61/323,956, filed April 14, 2010, the content of which is incorporated by reference herein in its entirety.
Field of the invention
The invention generally relates to turbines that efficiently process air or fluid flow while producing substantially no vibrational effects.
Background
Wind power refers to the conversion of wind energy into a useful form of energy, such as electricity. Wind energy is an attractive alternative to fossil fuels because it is plentiful, renewable, widely distributed, clean, and produces no greenhouse gas emissions. Wind energy accounts for about 1.5% of worldwide electricity usage, and approximately eighty countries around the world use wind power on a commercial basis (World Wind Energy Report 2008: Report, World Wind Energy Association, February 2009; and Worldwatch Institute: Wind Power Increase in 2008 Exceeds 10-year Average Growth Rate, May 2009). Further, world wind generation capacity has more than quadrupled between the years 2000 and 2006, doubling about every three years.
Wind energy is typically obtained from two sources. Large scale wind farms (i.e., a set of individual turbines that are interconnected to a power collection system and communications network) are used to generate power for small communities and larger cities. In contrast, small- scale wind turbines are wind generation systems used for electricity generation for individual commercial or residential buildings.
A problem with small-scale turbines is the vibrational effects that they generate during operation and power production. Vibrational effects are translated throughout a building, resulting in shaking of the building or even structural cracking. Vibrational effects also produce a great amount of wear on the turbine itself (e.g. the blades, axle, and bearings). Another problem with small scale turbines is that they process turbulent airflow inefficiently. That is a particular problem in urban environments in which surrounding buildings disrupt airflow, thus increasing turbulence.
There is a need for turbines that deliver power to a generator while producing
substantially no vibrational effects and that operate efficiently in an urban environment.
Summary
The invention generally relates to turbines that efficiently process air or fluid flow while producing substantially no vibrational effects. It has been found that the angle of a turbine's blade influences vibrational effects and also affects the ability of a turbine to process turbulent air or fluid flow. Turbines of the invention include blades that have an angle such that vibrational effects from rotation of the blades are substantially eliminated while the turbine operates. Further, the angle of the blade also allows the turbine to efficiently process any type of air flow, particularly turbulent air flow. Since turbines of the invention can operate while producing substantially no vibrational effects and can efficiently process turbulent air flow, turbines of the invention are ideal for power production for commercial or residential buildings, particularly buildings in an urban environment as well as rural and coastal areas.
Turbines of the invention include a rotatable shaft and at least one blade connected to the rotatable shaft. The turbine blades include any angle that results in elimination of substantially all vibrational effects from rotation of the blades while the turbine operates. Exemplary blade angles include angles of about 180° or greater, about 270° or greater, or about 360° or greater. In a particular embodiment, the blade angle is 270° or greater. In certain embodiments, turbines of the invention include blades that have a helical shape.
Blades for the turbines of the invention may include numerous other features that enhance operation without producing vibrational effects. For example, the turbine blades may include a bulbous portion at a leading edge of the blade. Additionally, the turbine blades may include a winglet at a trailing edge of the blade. In certain embodiments, the turbine blades include both a bulbous portion at a leading edge of the blade and a winglet at a trailing edge of the blade.
Turbine blades of the invention may have a cross section that is any shape. In certain embodiments, the cross section of the turbine blade is substantially that of an airfoil. Blades for turbines of the invention may be constructed using numerous different materials or combinations of materials. In an exemplary embodiment, the turbine blades have a foam core for an interior of the blade, which is then covered with a carbon fiber shell, fiberglass composite shell, or a polymeric shell. In other embodiments, the interior of the blade is hollow and the blade is constructed as a carbon fiber shell, fiberglass composite shell, a polymeric shell, or a metal shell.
Turbines of the invention may have many different uses, such as a wind turbine or a water turbine. In a particular embodiment, the turbine is a wind turbine. In certain
embodiments, turbines of the invention are unidirectional turbines, which refers to a turbine that is capable of rotating regardless of the direction of air or fluid flow. Thus, the turbines do not need to be pointed into the direction of the wind or fluid to be effective.
It has also been found that the angle of a turbine's blade effects the efficiency at which the turbine processes wind. In fact, at a certain angle, the turbine blade will rotate about the shaft of the turbine at a speed greater than actual wind speed. Thus, another aspect of the invention provides a turbine including a rotatable shaft, and a plurality of blades connected to the rotatable shaft, in which each blade includes a helical shape and the blades are twisted to such a degree that the blades rotate about the shaft at a speed greater than the actual wind speed. Exemplary angles include angles of about 180° or greater, about 270° or greater, or about 360° or greater. In a particular embodiment, the blade angle is about 270° or greater.
Brief Description of the Drawings
Figure 1 is a picture showing an exemplary turbine of the invention.
Figure 2 provides a schematic cross-sectional side view of a turbine illustrating zones of thrust efficiency.
Figure 3 shows an example of a prior art vertical axis turbine.
Figure 4 is a schematic showing the airfoil shaped cross section of blades of turbines of the invention.
Figure 5 is picture showing a magnified view of a bulbous portion at a leading edge of a blade of a turbine of the invention.
Figure 6 provides an illustrative schematic for calculating dimensions of a bulbous portion.
Figure 7 is picture showing a magnified view of a winglet at a trailing edge of a blade of a turbine of the invention. Figure 8 is a schematic showing a top view of a multi-blade turbine of the invention.
Figure 9 is a graph showing that turbines of the invention produce substantially no vibrational effects during operation. This graph showing turbines having a blade angle of 180° and 270° respectively.
Detailed Description
Turbines of the invention include a rotatable shaft and at least one blade connected to the rotatable shaft. Turbines of the invention are configured to operate without producing substantial vibrational effects and to efficiently process air flow, particularly turbulent air flow. Elimination of vibrational effects during operation and ability to efficiently process air flow makes turbines of the invention ideal for power generation for a residential or commercial building.
Figure 1 shows an exemplary turbine 100 of the invention. Turbine 100 includes a rotatable shaft 101 and at least one blade 102. The rotatable shaft 101 may be made from any suitable material, such as metals, plastics, or polymers. In certain embodiments, the rotatable shaft is made from aluminum. The turbine shown in Figure 1 includes two blades, 102a and 102b. However, turbines of the invention may include only a single blade or may include more than two blades, such as three blades, four blades, five blades, etc. The blades 102 may be made from any suitable material, such as metals, plastics, foams, polymers, or a combination thereof. In an exemplary embodiment, the turbine blades have a foam core for an interior of the blade, which is then covered with a carbon fiber, fiberglass composite, metal, or polymeric shell. In other embodiments, the interior of the blade is hollow and the blade is constructed as a carbon fiber, fiberglass composite, metal, or polymeric shell.
The blades 102a and 102b are connected to the rotatable shaft 101 by connecting members 103. Figure 1 shows two connecting members 103a and 103b, however more or less connecting members may be used. In certain embodiments, only a single connecting member is used. In other embodiments, more than two connecting members are used. The number of connecting member will depend on numerous factors, such as the dimensions of the turbine or the environmental surrounding of the turbine (e.g., high wind speed area, low wind speed area, turbulent wind area, proximity to other buildings, where the turbine is mounted, etc.). Since the blades 102 are fixedly mounted to the rotatable shaft 101, rotation of the blades 102 results in rotation of the shaft 101. The connecting members 103a and 103b are shown as radial spokes, connecting at three points to the blades 102a and 102b. The radial spokes may be made from any materials, such as metals, plastics, polymers, or combinations thereof. In certain embodiments, the connecting members are made from aluminum. While Figure 1 showing connecting members 103 as radial spokes, numerous other configures may be used, such as discs.
Blades 102a and 102b are shown to have a helical shape. The helical shape of the blades enhances ability of the turbine to operate without producing vibrational forces. The helical shape also enhances the ability of the turbine to process turbulent air flow. The helical shape of the blades 102 allows turbines of the invention to operate as vertical axis turbines, such as shown in Figure 1 where the rotatable shaft 101 is perpendicular to the ground.
A typical problem with prior art vertical axis turbines is a pulsing effect that is generated during operation of the turbine. Figure 2 provides a schematic cross-sectional side view of a turbine illustrating zones of thrust efficiency. As shown in Figure 2, the least efficient thrust zones are at the outer edges and the most efficient thrust zone is near the center. Figure 2 shows that the efficiency of the thrust varies continuously from a minimum at a first outer edge, to a maximum at a midpoint, to a minimum at a second outer edge. It is the different efficiencies of the thrust of the air or fluid with respect to the prior art turbine blades that generate the pulsing effect. Figure 3 shows an example of a prior art vertical axis turbine. Those turbines operate with a strong pulsation due to accelerations and decelerations as the blades pass discontinuously through the most efficient and least efficient thrust zones. The pulsing effect results in production of vibrational forces, which are detrimental to the turbine or any building that the turbine is associated with.
The helical configuration of the blades of the turbines of the invention ensures that a portion of the blades 102 are always positioned optimally with respect to air or fluid flow. The continuous helical blades provide a continuous speed of rotation uninterrupted by accelerations and decelerations that accompany other prior art turbines, such as shown in Figure 3, as the blades pass through the least and most efficient thrust zones. The helical blades may be divided into two halves, in which one half is a left-handed helix and the other half is a right-handed helix. In this manner, the components of the thrust force that extend parallel to the rotatable shaft 101 cancel each other out. However, all left-handed or all right-handed helixes or any other suitable helical configuration may be provided if desired. While the helical shape of the blades reduces the pulsing effect seen with prior art vertical axis turbines, thus also reducing vibrational effects, it has been found that the helical shape alone does not eliminate vibrational effects that occur while the turbine operates. It has been found that the angle of a turbine's blade influences vibrational effects that a turbine produces while operating. It is this angle that leads to elimination of substantially all vibrational effects produced from a turbine's blades while the turbine is operating. As shown in Figure 1, the blades 102 of turbines of the invention 100 are designed to have such an angle that substantially all vibrational effects are eliminated while the turbine is operating. Thus the blades 102 may have any angle that results is elimination of substantially all vibrational effects while the turbine is operating. The blades 102a and 102b shown in Figure 1 has an angle of about 270°. However, other angles may be used that eliminate substantially all vibrational effects, such as about 180°, about 360° or greater, about 450° or greater, about 540° or greater, about 630° or greater, or about 720° or greater. Other exemplary angles includes an angle of about 180°, of about 185°, of about 190°, of about 195°, of about 200°, of about 210°, of about 220°, of about 230°, of about 240°, of about 250°, of about 260°, of about 270°, of about 280°, of about 290°, of about 300°, of about 310°, of about 320°, of about 330°, of about 340°, of about 350°, of about 360°, of about 405°, of about 450°, of about 495°, of about 540°, of about 585°, of about 630°, of about 675°, or of about 720°.
In certain embodiments, the blades 102 have a cross section shape that is an airfoil.
However, blades for the turbines of the invention may have a cross section that is any shape. Figure 4 is a schematic showing the airfoil shaped cross section of blades 102. In certain embodiments, the blades have increased deep camber to accommodate rotational motion of the turbine. Camber refers to the asymmetry between the top and the bottom curves of an airfoil in cross-section. Camber is added to an airfoil to increase lift and/or increase the critical angle of attack. Figure 4 panel A provides a schematic of a blade having normal camber. Figure 4 panel B provides a schematic of a blade having increased deep camber. The increased deep camber in blades of turbines of the invention provides for increased lift and ease of start-up from a stationary position, e.g., turbines of the invention may be self-starting.
Blades for the turbines of the invention may include numerous other features that enhance the ability of turbines of the invention to operate without producing substantial vibrational effects. In certain embodiments, the blades 102 are configured such that each point of the blade is a uniform distance from the rotatable shaft 101, as shown in Figure 4 panel B.
In other embodiments, blades 102 of the invention include a bulbous portion 105 at a leading edge of the blades 102 (Figures 1 and 5). The bulbous portion can be of any dimensions depending on the amount of aerodynamic resistance and friction drag that is desired. Generally, the dimensions of the bulbous portion 105 will depend on the dimension of the blades 102, and the bulbous portion will be designed to minimize aerodynamic resistance and friction drag.
Methods of designing a bulbous portion are known in the art. See for example, Department of Defense Military Design Handbook (1990), Design of Aerodynamically Stabilized Free Rockets; and Chin SS. (1961), Missile Configuration Design, McGraw-Hill Book Co., Inc., New York, the content of each of which is incorporated by reference herein in its entirety. Figure 6 provides a schematic of a bulbous portion 105. Generally, L is the overall length of the bulbous portion and R is the radius of the base of the bulbous portion 105. y is the radius at any point x, as x varies from 0, at the tip of the bulbous portion 105, to L. The equation defines the 2-dimensional profile of the bulbous portion 105. The full body of revolution of the bulbous portion 105 is formed by rotating the profile around the centerline ( C/L). Note that the equation describes the "perfect" shape; practical nose cones are often blunted or truncated for manufacturing or aerodynamic reasons.
In certain embodiments, blade 102 of the invention include a winglet 106 at a trailing edge of the blades 102 (Figures 1 and 7). The winglet 106 provides additional stabilization to the blade 102 as it rotates. The increased stabilization leads to further reduction of any vibrational effects that are generated during operation of turbines of the invention. Further, winglet 106 reduces drag of blades 102 by altering the airflow near the trailing edge of the blades 102. The winglet 106 also increase the lift generated at the trailing edge of the blades 102 (by smoothing the airflow across the blade near the trailing edge) and reduces the lift-induced drag caused by vortices generated at the trailing edge of the blades 102, improving lift-to-drag ratio.
When turbines of the invention are operating, vortices are produced at the trailing edge of the blades 102 that rotate around from below the blade, striking the surface of the blades 102, and generating a force that angles inward and slightly forward. The winglet 106 converts some of the energy from those vortices into thrust. The upward angle (or cant) of the winglet 106, its inward or outward angle (or toe), as well as its size and shape effect turbine performance. Winglet 106 can be oriented at any angle with respect to the trailing edge of the blade 102.
Exemplary angles include 5°, 10°, 20°, 45°, 90°, 120°, or 270°. In certain embodiments, the winglet 106 is oriented at 90°, or perpendicular, to the trailing edge of wing 102 (Figures 1 and 7).
Winglets 106 also increase efficiency by reducing vortex interference with laminar airflow near the trailing edge of the blades 102, by moving the confluence of low-pressure and high-pressure air away from the surface of the blades 102. Vortices generate turbulence at the trailing edge of the blades 102, which turbulence delaminates the airflow over a small triangular section of the trailing edge of the blades 102, which destroys lift in that area. The winglet 106 drives the area where the vortex forms upwards away from the blade surface.
The lift-drag relationship allows for a generation of thrust by the airfoil shaped blades 102. As discussed above, the blades 102 have a high camber profile in certain embodiments in which the camber is premised on an outer airfoil surface with a constant circumferential radius that allows for the outer surface of the wing behind the ¼ chord point to rotate around the center of rotation maximizing laminar flow and minimizing trailing edge turbulence and thus thrust loss (Figure 4). The inner surface of the wing behind the ¼ chord point is constrained to
accommodate a consistently tapered section for aerodynamic optimization (Figure 4). The chord length and rotation diameter are balanced to allow for a circumference coverage, consistently along the vertical helix, of less than 25% to allow for air and fluid flow between the blades (Figure 4). This will minimize blade trailing edge turbulence effects on the following leading edge flow. This spacing will improve the aerodynamic lift to drag ratio capability. The bulbous portion forward of the ¼ chord point may be a symmetric bull nose rotated to a tangential arrangement of the direction of rotation.
The blades 102 may be designed with any width to height ratio that is desired. The width to height ratio of the blades will depend on numerous factors, such as the dimensions of the turbine or the environmental surrounding of the turbine (e.g., high wind speed area, low wind speed area, turbulent wind area, proximity to other buildings, where the turbine is mounted, etc.). In certain embodiments, the blades 102 have a width to height ratio of 1 width to 1.5 height.
Turbines of the invention are unidirectional turbines, which refers to a turbine that is capable of rotating regardless of the direction of air or fluid flow. Thus, the turbines of the invention do not need to be pointed into the direction of the wind or fluid to be effective. Regardless of the direction of air or fluid flow, blades of the turbine rotate in the same direction, the direction of the leading edge of the blades. Turbines may be oriented in any direction with respect to the ground, such as horizontally, vertically, or angled. Figure 1 shows an embodiment in which the turbine is oriented as a vertical axis turbine. In certain embodiments, the turbines of the invention are oriented such that the blades are mounted transversely to the direction of air or fluid flow for rotation in a plane parallel to the direction of air or fluid flow.
Turbines of the invention may be fabricated and manufactured using methods well known by one of skill in the art. An exemplary protocol for manufacturing a turbine of the invention is provided here. The manufacture of the turbines is based on a foam core composite skin sandwich structure, which are pre-fabricated and then attached to welded aluminum connecting members configured around a center rotatable axis. Briefly, an inner diameter mold is produced using a barrel shaped form. A cylindrical frame constructed of wood members is covered using a pliable thin sheet material to produce a constant diameter cylinder. Small cross section thermoplastic foam wing sections are cut into an airfoil shape and bonded together on the foam cylinder along a helical scribe line to ensure a constant rotation angle up the cylinder. The bonded foam core is then hand shaped to the prescribed airfoil configuration using shaping tools and/or patterns.
The foam core assembly is then cover with two layers of Egyptian cotton fabric, which had been saturated with an epoxy resin and smoothed to the surface contour of the foam core. This method produces a standard sandwich structure as a cocured composite skin construction. The skin materials are then allowed to cure. The materials are subsequently hand sanded for aerodynamic smoothness as well as aesthetics. Winglets and bulbous portions are then fabricated using a similar method of thermoplastic foam cores and then secondarily bonded to the ends of each blade.
The blades are then attached to aluminum welded radial spokes. The radial spokes are constructed to create a center of rotation based on a symmetric helical rotation dynamic. The radial spokes are constructed with an attachment angle that extends from the center but is not perpendicular the vertical axis of rotation. This angle is replicated at the opposite angle from its opposing radial spokes. The radial spokes are subsequently attached to the rotatable shaft.
The rotatable shaft is connected to a base using a standard two ring roller bearing attachment which allows for the shaft and thus the turbine to be held in a vertical position. This shaft positioning at the base allows for structural support and in tandem with a connection to an electrical generator below the turbine.
For larger and more substantial turbine blade construction, an alternate fabrication method is envisioned. Having a foam cavity mold in which the blade cores are pre-fabricated, with end details as well as pre-inserted attachment fittings (bosses, pre positioned hard points for attachments, or inserts) is a more efficient and consistent method for the core fabrication. This method allows for multiple identical part configurations, which can be subsequently, assemble into a 270° / 360° / 720° flexible turbine configuration from a set of easy to assemble
components.
Furthermore, the use of carbon finer fabrics, tapes and other pre-form textile products as well as multiple resin options for varying end use conditions (i.e. weatherproof, UV, decorative, electrically insulative or conductive) is envisioned.
Given the blade construction and airfoil shapes described above, another embodiment of the turbines of the invention uses a multi-blade arrangement for improved balancing and constant power generating capability. By examining the cross section of the turbine from a top view (Figure 8), the multiple blades exhibit their angle of attacks that are distinctly spaced with regard to the air/fluid flow. In this configuration, one blade will be at a higher lift generating angle at the same time that another blade is in a minimized lift and a (potentially maximized) drag angle, with the third somewhere in between still generating lift.
Since lift to drag ratios for airfoils normally range in the 20-1 region, depending on the angle of attack, the premise that two airfoils will be in higher lift to drag angle while one is in a 1: 1 angle, a efficient statically overcoming force is generated to rotate the turbine. For example, two blades would have a 5: 1 and 15: 1 ratio with the third being at a 1: 1 angle. The two high ratio blades will generate an overall rotational force on the turbine equal that far overcoming the one low performing blade. As the turbine rotates, the blades continuously alter their individual angles of attack. This would normally create a pulsed generating effect as seen in a prior art straight wing vertical windmill (Figure 3). But the continuous helix with a 360° rotation provides a balanced angle of attack by the vanes causing a continuously constant multi-blade profile with regard to the fluid flow direction. Since each blade will have one section view in every possible angle of attack due to the 360° helical rotation, the lift and thus thrust is continuous and stable with respect to the wind speed. Since there are three equally spaced blades in the circumference of the rotation, the dynamic balance of the aerodynamic forces is constant. Because the largest portions of the mass of the rotating body (the blades) are at a maximum distance from the axis of rotation, the potential for out of balance mechanical forces is high. However, this is overcome by the lightweight structure of the blades of the turbines of the invention, which generate greater aerodynamic forces than rotational mass inertia forces. The open-ended radial spoke mounting of the blades (Figure 1 for example) allows for non-perpendicular wind flow to be harnessed. The helical arrangement also optimizes this energy generating situation as the vertical fluid flow component will still see a balanced elongated airfoil cross sections, thus providing additional generation with the bulbous portion and attachment of winglets at the upper and lower ends.
Turbines of the invention may be connected in any suitable manner to an electrical generator by methods known in the art. In a further embodiment, turbines of the invention can be efficiently configured as an optimal unit or module and combined in a modular array to harness water or wind power. The power available from a prior art propeller turbine is proportional to the circumferential velocity of the blades, which increases with distance from the turbine shaft. Thus, prior art turbines are traditionally designed with a maximum diameter.
However, the size of such prior art turbines is limited by their strength and possibility of structural failures caused by centrifugal forces and vibrations when the diameter becomes too large.
The turbines of the invention are advantageous in this regard, since its available power is proportional to a frontal rectangular area equal to the product of its diameter and its length, and the length is not related to angular velocity or centrifugal forces. A relatively small turbines of the invention can be optimized for airfoil profile, angular velocity, diameter, and length, and an entire power system can be assembled from such modules. Such a power system can exploit a common generator for a number of modules and is simple to build and maintain. One or more electrical generators are provided in communication with the array of turbines. A generator may be individually associated with each turbine, or plural turbines may be connected via a suitable transmission to a single generator. The array of turbines may be located in any suitable windy location, as is known in the art, for example for locating traditional windmill-type wind farms.
Further, traditional propeller-type wind turbines must be rotated to face the wind direction and sweep a circular cross-sectional area. In contrast, turbines of the invention are self- starting and provide uniform non-oscillating rotation, as compared to the prior art turbines. The turbines provide unidirectional rotation for any wind direction. Also, birds are likely to perceive the turbines of the invention as a solid wall, minimizing the danger of collisions for birds.
Turbines of the invention may also be screened to prevent collisions with birds.
Incorporation by Reference
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
Equivalents
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
EXAMPLES
Example 1 : Elimination of vibrational effects
Several turbines of the invention were constructed having helically shaped blades according to methods described above. Each of the turbines was constructed with a different angle for the blades, 180° and 270° respectively. The turbines were tested in wind conditions to assess the vibrational effects on the structure to which the turbines were attached. Results of the test are shown in Tables 1-2 below and in Figure 9. Table 1: Turbine with blades havin an le of 180°
Figure imgf000015_0001
Data herein show that turbines of the invention generate substantially no vibrational effects during operation (Tables 1-2 and Figure 9). Further, the data show that as the angle of the blade is increased from 180° to 270°, the vibrational effects generated by the turbines decrease (Tables 1-2 and Figure 9). It was also observed that the 270° blade rotated at approximately twice the speed of the 180° blade and still produced substantially no vibrational effects.
Example 2: Rotational speeds
Several turbines of the invention were constructed having helically shaped blades according to methods described above. Each of the turbines was constructed with a different angle for the blades, 180° and 270° respectively. The turbines were tested in wind conditions to assess the rotational speeds in relationship to wind speed. Results of the test are shown in Tables 3-4 below.
Table 3: Turbine with blades having angle of 180°
Figure imgf000015_0002
Table 4: Turbine with blades having angle of 270°
Figure imgf000016_0001
Data herein show that the turbine blade(s) rotated about the shaft of the turbine at a speed greater than actual wind speed.

Claims

What is claimed is:
1. A turbine comprising:
a rotatable shaft; and
at least one blade connected to the rotatable shaft, wherein the blade comprises a helical shape and has an angle of about 180° or greater.
2. The turbine according to claim 1, wherein the blade further comprises a helical shape.
3. The turbine according to claim 1, wherein a leading edge of the blade comprises a bulbous portion.
4. The turbine according to claim 1, wherein a trailing edge of the blade comprises a winglet.
5. The turbine according to claim 1, wherein a leading edge of the blade comprises a bulbous portion and a trailing edge of the blade comprises a winglet.
6. The turbine according to claim 1, wherein a cross section of the blade is shaped as an airfoil.
7. The turbine according to claim 1, wherein the blade comprises an angle of about 270° or greater.
8. The turbine according to claim 1, wherein the blade comprises an angle of about 360° or greater.
9. The turbine according to claim 1, wherein an interior of the blade comprises a foam core and an exterior of the blade a shell made from a material selected from the group consisting of carbon fiber, fiberglass composite, metal, and polymeric.
10. The turbine according to claim 1, wherein the turbine is operably connected to a generator.
11. A turbine, the turbine comprising:
a rotatable shaft; and
a plurality of blades connected to the rotatable shaft, wherein each blade comprises a helical shape and the blades are twisted to such a degree that vibrational effects from rotation of the blades are substantially eliminated.
12. The turbine according to claim 11, wherein a leading edge of the blade comprises a bulbous portion.
13. The turbine according to claim 11, wherein a trailing edge of the blade comprises a winglet.
14. The turbine according to claim 11, wherein a leading edge of the blade comprises a bulbous portion and a tailing edge of the blade comprises a winglet.
15. The turbine according to claim 11, wherein a cross section of the blade is shaped as an airfoil.
16. A wind turbine, the turbine comprising:
a rotatable shaft; and
a plurality of blades connected to the rotatable shaft, wherein each blade comprises a helical shape and the blades are twisted to such a degree that the blades rotate about the shaft at a speed greater than the actual wind speed.
17. The turbine according to claim 16, wherein a leading edge of the blade comprises a bulbous portion.
18. The turbine according to claim 16, wherein a trailing edge of the blade comprises a winglet.
19. The turbine according to claim 16, wherein a leading edge of the blade comprises a bulbous portion and a tailing edge of the blade comprises a winglet.
20. The turbine according to claim 16, wherein a cross section of the blade is shaped as an airfoil.
PCT/US2011/032292 2010-04-14 2011-04-13 Turbines WO2011130391A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11769515A EP2558715A1 (en) 2010-04-14 2011-04-13 Turbines
CA2796344A CA2796344A1 (en) 2010-04-14 2011-04-13 Turbines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32395610P 2010-04-14 2010-04-14
US61/323,956 2010-04-14

Publications (1)

Publication Number Publication Date
WO2011130391A1 true WO2011130391A1 (en) 2011-10-20

Family

ID=44788316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/032292 WO2011130391A1 (en) 2010-04-14 2011-04-13 Turbines

Country Status (4)

Country Link
US (1) US20110255975A1 (en)
EP (1) EP2558715A1 (en)
CA (1) CA2796344A1 (en)
WO (1) WO2011130391A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351639B (en) * 2005-12-29 2011-01-19 格奥尔格·哈曼 Device and system for producing regenerative and renewable energy from wind
EP2497942A1 (en) * 2011-03-08 2012-09-12 Siemens Aktiengesellschaft Winglet for a blade of a wind turbine
KR101558444B1 (en) * 2011-06-01 2015-10-07 고도가이샤 알바트로스 테크놀로지 Natural energy extraction apparatus
KR101157389B1 (en) * 2012-02-03 2012-06-18 주식회사 한림메카트로닉스 Wind power generation apparatus for low wind speed
EP2669192B8 (en) * 2012-05-29 2017-03-01 Ratier-Figeac SAS Propeller blade
AU2013271391A1 (en) * 2012-06-07 2015-01-29 Rajakaruna, Uppala MR Spiral screw fluid turbine having axial void
WO2014179631A1 (en) * 2013-05-03 2014-11-06 Urban Green Energy, Inc. Turbine blade
US20160141911A1 (en) * 2014-11-14 2016-05-19 King Fahd University Of Petroleum And Minerals Offshore power generation system
US10260479B2 (en) 2015-04-28 2019-04-16 Donald E. Moriarty Vortex propeller
ITUB20154896A1 (en) * 2015-10-12 2017-04-12 Giuseppe Cannizzaro WIND SPIRAL CIRCULAR TURBINE ATTRACTED TO TRANSFORM ENERGY, OF MASSES OF AIR IN MOVEMENT, IN PRIMARY ELECTRIC ENERGY.
US9657715B1 (en) * 2016-06-29 2017-05-23 Victor Lyatkher Orthogonal turbine having a balanced blade
USD805474S1 (en) * 2016-11-30 2017-12-19 Chris Bills Vortex propeller
USD818414S1 (en) 2016-11-30 2018-05-22 Chris Bills Vortex propeller
JP2022141245A (en) * 2021-03-15 2022-09-29 株式会社リコー Spiral type blade and micro hydraulic generating equipment
WO2024057935A1 (en) * 2022-09-16 2024-03-21 株式会社Megaderu Rotary wing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588804A (en) * 1994-11-18 1996-12-31 Itt Automotive Electrical Systems, Inc. High-lift airfoil with bulbous leading edge
US20080187432A1 (en) * 2007-02-06 2008-08-07 Preferred Energy, L.L.C. Vertical axis wind turbine
US20080286110A1 (en) * 2007-05-14 2008-11-20 General Electric Company Wind-turbine blade and method for reducing noise in wind turbine
WO2009094092A1 (en) * 2008-01-22 2009-07-30 Parker Daniel B Wind turbine blade assembly and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606697A (en) * 1984-08-15 1986-08-19 Advance Energy Conversion Corporation Wind turbine generator
US5642984A (en) * 1994-01-11 1997-07-01 Northeastern University Helical turbine assembly operable under multidirectional fluid flow for power and propulsion systems
AUPR991402A0 (en) * 2002-01-10 2002-01-31 J. Bertony Pty. Limited A turbine
US20090116968A1 (en) * 2007-11-05 2009-05-07 Mohle Robert E Blade for wind turbines & an improved wind turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588804A (en) * 1994-11-18 1996-12-31 Itt Automotive Electrical Systems, Inc. High-lift airfoil with bulbous leading edge
US20080187432A1 (en) * 2007-02-06 2008-08-07 Preferred Energy, L.L.C. Vertical axis wind turbine
US20080286110A1 (en) * 2007-05-14 2008-11-20 General Electric Company Wind-turbine blade and method for reducing noise in wind turbine
WO2009094092A1 (en) * 2008-01-22 2009-07-30 Parker Daniel B Wind turbine blade assembly and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Wind Turbine for Urban Environment. Newsartide on Quietrevolution", RENEWABLE ENERGY ACCESS., 2006, XP008161289, Retrieved from the Internet <URL:http://wwwquietrevolution.com/downloads/pdf/media/renewablenergyaccess%2020sep06.pdf> [retrieved on 20110617] *

Also Published As

Publication number Publication date
CA2796344A1 (en) 2011-10-20
EP2558715A1 (en) 2013-02-20
US20110255975A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
US20110255975A1 (en) Turbines
US20120128500A1 (en) Turbines
US8678768B2 (en) Vertical axis turbine
US20110027084A1 (en) Novel turbine and blades
US7726934B2 (en) Vertical axis wind turbine
Islam et al. Analysis of the design parameters related to a fixed-pitch straight-bladed vertical axis wind turbine
CA2732543C (en) Horizontal axis airfoil turbine
US20070217917A1 (en) Rotary fluid dynamic utility structure
EP2141355A2 (en) Wind turbine blades with multiple curvatures
CN1623036A (en) Improved turbine
EP2171270A1 (en) Wind turbine blade
JPWO2018194105A1 (en) Vertical axis turbine
US20100266414A1 (en) Fluid energy converter
US6893223B2 (en) Airfoil assembly
CN201433854Y (en) Helical flexible blade turbine
CN201884213U (en) Wind power generator with vertical shaft
US20200132044A1 (en) Wind turbine
CN201433856Y (en) Combined wind driven generator
US20140205462A1 (en) Hvata-hybrid vertical axis turbine assembly operable under omni-directional flow for power generating systems
US9657715B1 (en) Orthogonal turbine having a balanced blade
RU2470181C2 (en) Wind turbine with vertical rotational axis
CN115750196A (en) Wind power blade and wind driven generator
JP2020186697A (en) Wind mill blade and wind power generation device
KR20120028500A (en) Power generation system of vertical wind turbine with conning angle change
Ramachandran et al. Design and Development of Free Flow Vertical Axis Wind Turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11769515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2796344

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011769515

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE