WO2011129325A1 - Superconducting coil and method for manufacturing the same - Google Patents

Superconducting coil and method for manufacturing the same Download PDF

Info

Publication number
WO2011129325A1
WO2011129325A1 PCT/JP2011/059078 JP2011059078W WO2011129325A1 WO 2011129325 A1 WO2011129325 A1 WO 2011129325A1 JP 2011059078 W JP2011059078 W JP 2011059078W WO 2011129325 A1 WO2011129325 A1 WO 2011129325A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superconducting
superconducting wire
adhesive layer
superconducting coil
Prior art date
Application number
PCT/JP2011/059078
Other languages
French (fr)
Japanese (ja)
Inventor
真司 藤田
正志 原口
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2011129325A1 publication Critical patent/WO2011129325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting coil and a method for manufacturing a superconducting coil.
  • Superconducting coils are used in various applications such as magnetic resonance imaging equipment (MRI) or superconducting magnetic energy storage equipment (SMES).
  • metallic superconductors such as NbTi have been widely used as superconducting wires constituting superconducting coils.
  • bismuth superconductors such as Bi 2 Sr 2 CaCu 2 O 8 + ⁇ (Bi2212) and Bi 2 Sr 2 Ca 2 Cu 3 O 10 + ⁇ (Bi2223), or REBa 2 Cu 3 O 7- ⁇ (RE123, RE: Development of oxide high-temperature superconducting wires using rare earth-based superconductors represented by rare earth elements is progressing. Since this oxide high-temperature superconducting wire has a critical temperature higher than that of metal superconducting wires, it can be used at higher temperatures, and development of application to coils and the like is also progressing.
  • One of the manufacturing processes of an oxide superconducting coil is an impregnation process in which a superconducting wire is fixed and the coil is integrated.
  • a vacuum impregnation method using an epoxy resin for example, see Patent Document 1
  • a thermosetting resin is bonded to the glass fiber to prepare a semi-cured glass tape made of a thermosetting resin, and this glass tape is wound together with the superconducting wire, and the glass tape and the superconducting wire are heated.
  • a method of integrating is disclosed.
  • JP 2001-189226 A Japanese Patent Laid-Open No. 11-168008
  • the present invention has been made in view of such a conventional situation, and is capable of suppressing deterioration that occurs when a superconducting wire is used at a low temperature and having a good current density, and a method for manufacturing a superconducting coil.
  • the purpose is to provide.
  • a superconducting coil according to the first aspect of the present invention includes a base material, an intermediate layer provided on the base material, an oxide superconducting layer provided on the intermediate layer, and the oxidation
  • a superconducting wire comprising a metal layer provided on the superconducting layer, an adhesive layer, and a buffer layer disposed between the adhesive layer and the metal layer of the superconducting wire, wherein the superconducting wire is It is formed so as to be wound through an adhesive layer.
  • it is preferable that a plurality of buffer layers are disposed between the adhesive layer and the metal layer of the superconducting wire.
  • the superconducting coil according to the first aspect of the present invention includes an inner adhesive layer provided at a position close to the superconducting wire, and an outer adhesive layer provided at a position further away from the superconducting wire than the inner adhesive layer. It is preferable.
  • the adhesive layer is preferably a layer obtained by curing a semi-cured thermosetting resin.
  • the buffer layer is preferably an insulating layer.
  • the insulating layer is preferably made of a polyimide tape.
  • the buffer layer is preferably a stabilization layer.
  • the stabilizing layer is preferably made of copper or a nichrome alloy.
  • the oxide superconducting layer includes REBa 2 Cu 3 O y (wherein RE represents a rare earth element, and 6.5 ⁇ y ⁇ 7.1) or (wherein, n is 2 or 3.) Bi 2 Sr 2 Ca n-1 Cu n O 4 + 2n + ⁇ is preferably made of composed oxide superconductor composition.
  • a polyimide tape or a tape in which a semi-cured thermosetting resin is laminated on one side or both sides of the polyimide tape is wrapped around the superconducting wire. It is preferable.
  • the method of manufacturing a superconducting coil according to the second aspect of the present invention includes a base material, an intermediate layer provided on the base material, an oxide superconducting layer provided on the intermediate layer, and an oxide superconducting layer. A superconducting wire provided with the formed metal layer is prepared, and the superconducting wire is wound so that a buffer layer is disposed between the adhesive layer and the metal layer of the superconducting wire.
  • a polyimide tape or a tape in which a semi-cured thermosetting resin is laminated on one or both sides of the polyimide tape is wrapped around the superconducting wire. It is preferable.
  • a tape with an adhesive layer in which a semi-cured thermosetting resin is formed on one or both surfaces of the tape-shaped buffer layer is prepared, and the adhesive layer is attached. It is preferable to wind a tape around the superconducting wire.
  • the superconducting wire is loaded at a low temperature due to the difference in thermal shrinkage between the adhesive layer and the superconducting wire. Stress is reduced by the buffer layer. Therefore, it is possible to effectively suppress deterioration of superconducting characteristics due to this stress. Further, by preparing a laminated tape integrated by laminating a buffer layer and an adhesive layer, and using a coated superconducting wire formed by winding this laminated tape around the superconducting wire, a coated superconducting wire is obtained. Since the thickness can be reduced, a decrease in the current density of the superconducting coil can be effectively suppressed. In particular, when a prepreg is used as the adhesive layer and a resin tape such as polyimide is used as the buffer layer, the above effect can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a superconducting coil according to the present invention and an example of a superconducting coil device using the superconducting coil.
  • FIG. 2A is a schematic perspective view showing an example of a coated superconducting wire provided in the superconducting coil shown in FIG. 2B is a schematic perspective view showing an example of a superconducting wire provided in the superconducting coil shown in FIG.
  • the superconducting coil A of this embodiment is formed by winding a tape-shaped superconducting wire 10 around a cylindrical winding frame 2 via a buffer layer 20 and an adhesive layer 30.
  • the reel 2 is provided with flange portions 2a and 2a at both ends thereof.
  • a buffer layer 20, an adhesive layer 30, and a buffer layer 20 are arranged in this order between the superconducting wires 10 of each turn adjacent to the radial direction of the winding frame 2.
  • the coil device S shown in FIG. 1 has a configuration in which the superconducting wire 10 is wound around the outer peripheral surface of the winding frame 2 so as to have the required number of layers.
  • the superconducting wire 10 used in the superconducting coil A of the present embodiment includes an intermediate layer 12, an oxide superconducting layer 13, and a metal layer 14 on a long tape-like base material 11. It has the structure laminated
  • the base material 11 a base material that can be used as a normal superconducting wire is used.
  • the shape of the substrate 11 is preferably a long plate shape or a sheet shape.
  • a material made of a heat-resistant metal is preferable.
  • heat resistant metals an alloy is preferable, and a nickel (Ni) alloy or a copper (Cu) alloy is more preferable.
  • Hastelloy registered trademark, manufactured by Haynes Co., Ltd.
  • Hastelloy is preferable if it is a commercial product, and has a different amount of components such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co), etc.
  • the thickness of the substrate 11 may be appropriately adjusted according to the purpose, and is usually preferably 10 to 500 ⁇ m, and more preferably 20 to 200 ⁇ m. If the thickness of the base material 11 is 10 ⁇ m or more, the strength required for the superconducting wire 10 can be obtained, but if the thickness is 20 ⁇ m or more, this strength is further improved, which is preferable. On the other hand, if the thickness of the substrate 11 is 500 ⁇ m or less, the critical current density required for the superconducting wire 10 can be obtained, but it is preferable to make this thickness 200 ⁇ m or less because the critical current density can be further improved. .
  • the intermediate layer 12 controls the crystal orientation of the oxide superconducting layer 13 and prevents the metal element in the base material 11 from diffusing into the oxide superconducting layer 13.
  • the intermediate layer 12 functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) between the base material 11 and the oxide superconducting layer 13.
  • the material of the intermediate layer 12 is preferably a metal oxide whose physical characteristics show intermediate values between the substrate 11 and the oxide superconducting layer 13.
  • preferred materials for the intermediate layer 12 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2.
  • the intermediate layer 12 may be a single layer or a plurality of layers.
  • the layer made of the metal oxide preferably has crystal orientation, and in the case of a plurality of layers, the outermost layer (layer adjacent to the oxide superconducting layer 13). Preferably have at least crystal orientation.
  • the intermediate layer 12 may have a multi-layer structure in which a cap layer is further laminated on the metal oxide layer.
  • the cap layer has a function of controlling the orientation of the oxide superconducting layer 13 and a function of preventing the elements constituting the oxide superconducting layer 13 from diffusing into the intermediate layer 12, or the oxide superconducting layer 13. It has a function of suppressing the reaction of the gas used when laminating with the intermediate layer 12.
  • the orientation of the cap layer is controlled by the metal oxide layer.
  • the cap layer is epitaxially grown on the surface of the metal oxide layer, and then undergoes a process of grain growth (overgrowth) in the lateral direction (plane direction), and crystal grains are selectively grown in the in-plane direction.
  • the formed layer is preferable.
  • Such a cap layer has a higher degree of in-plane orientation than the metal oxide layer.
  • the material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specific examples of preferable materials are CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr. 2 O 3 , Ho 2 O 3 , Nd 2 O 3 and the like.
  • the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
  • the thickness of the intermediate layer 12 may be appropriately adjusted according to the purpose, but is usually 0.1 to 5 ⁇ m.
  • the thickness of the cap layer is usually 0.1 to 1.5 ⁇ m.
  • the intermediate layer 12 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, ion beam assisted sputtering (hereinafter abbreviated as IBAD method), chemical vapor deposition (CVD), or the like.
  • IBAD method ion beam assisted sputtering
  • CVD chemical vapor deposition
  • the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 13 or the cap layer is high.
  • the IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface when depositing a metal oxide.
  • an argon (Ar) ion beam is used as the ion beam.
  • the intermediate layer 12 made of Gd 2 Zr 2 O 7 , MgO or ZrO 2 —Y 2 O 3 (YSZ) can reduce the value of ⁇ (FWHM: full width at half maximum), which is an index representing the degree of orientation in the IBAD method. Therefore, it is particularly suitable.
  • a bed layer may be interposed between the intermediate layer 12 and the base material 11 as necessary.
  • the bed layer has high heat resistance and reduces interfacial reactivity between the intermediate layer 12 and the substrate 11.
  • This bed layer is also used to obtain the orientation of the film (intermediate layer 12) disposed thereon.
  • Such a bed layer is made of, for example, yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or the like.
  • This bed layer is formed on the substrate 11 by a film forming method such as sputtering, and has a thickness of 10 to 200 nm, for example.
  • a structure in which a diffusion preventing layer is interposed between the base material 11 and the bed layer may be used.
  • the diffusion preventing layer prevents the constituent elements of the base material 11 from diffusing into the bed layer.
  • This diffusion prevention layer is made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), or a rare earth metal oxide, and has a thickness of, for example, 10 to 400 nm. Since the crystallinity of the diffusion preventing layer is not limited, it may be formed by a film forming method such as a normal sputtering method.
  • the diffusion preventing layer between the base material 11 and the bed layer, it is possible to effectively diffuse a part of the constituent elements of the base material 11 into the oxide superconducting layer 13 through the bed layer. Can be suppressed.
  • the base material 11 is necessarily heated or heat-treated, and as a result, the base material 11 receives a thermal history. .
  • a diffusion prevention layer as mentioned above, it can suppress effectively that a part of component element of the base material 11 diffuses into the oxide superconducting layer 13 via a bed layer.
  • An example of a case where a diffusion preventing layer is interposed between the base material 11 and the bed layer includes a combination using Al 2 O 3 as the diffusion preventing layer and Y 2 O 3 as the bed layer.
  • a material including an oxide superconductor having a generally known composition can be widely applied.
  • REBa 2 Cu 3 O y (wherein RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd, etc., and 6.5 ⁇ y ⁇ 7.1) or Bi.
  • a material containing an oxide superconductor represented by a composition of 2 Sr 2 Ca n-1 Cu n O 4 + 2n + ⁇ (where n is 2 or 3) can be used.
  • the oxide superconducting layer 13 is formed by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or the like; coating pyrolysis (MOD), etc. It can be laminated on the layer 12, and it is particularly preferable to use a laser vapor deposition method.
  • the oxide superconducting layer 13 has a thickness of about 0.5 to 5 ⁇ m and preferably a uniform thickness.
  • the metal layer 14 functions as a current bypass when a partial region of the oxide superconducting layer 13 attempts to transition to the normal conducting state, thereby stabilizing the state of the oxide superconducting layer 13 and generating heat. This suppresses burning of the oxide superconducting layer 13.
  • the metal layer 14 is preferably a metal having good conductivity, and specifically includes a metal made of silver or a silver alloy.
  • the structure of the metal layer 14 may be a single layer structure or a laminated structure of two or more layers.
  • the thickness of the metal layer 14 is preferably 1 to 30 ⁇ m. By setting the thickness of the metal layer 14 to 1 ⁇ m or more, a higher effect of stabilizing the oxide superconducting layer 13 can be obtained.
  • the superconducting wire 10 can be thinned.
  • the metal layer 14 can be laminated
  • the superconducting wire 10 having such a configuration is provided with a buffer layer 20 so as to cover the outer peripheral surface, and further, an adhesive layer 30 is provided on the outer peripheral surface of the buffer layer 20.
  • a coated superconducting wire 1 is formed. By winding the coated superconducting wire 1 around the winding frame 2, a superconducting coil A as shown in FIG. 1 can be formed.
  • the buffer layer 20 is provided between the superconducting wire 10 and the adhesive layer 30.
  • the thermal shrinkage rate of the adhesive layer 30 is different from the thermal shrinkage rate of the superconducting wire 10. Accordingly, stress is applied to the superconducting wire 10. Due to this stress, the characteristics of the superconducting wire 10 are deteriorated.
  • the buffer layer 20 is preferably an insulating layer or a stabilization layer.
  • the insulating layer that is the buffer layer 20 is made of an insulating resin.
  • the material for the insulating layer include polyimide resin, polyamide resin, epoxy resin, acrylic resin, phenol resin, melamine resin, polyester resin, silicon resin, silicon resin, alkyd resin, and vinyl resin.
  • the thickness of the insulating layer is not particularly limited and can be adjusted as appropriate. However, it is possible to effectively suppress the thermal contraction due to the low temperature of the adhesive layer 30 from affecting the superconducting wire 10 and to reduce the current density as much as possible. In order to suppress it, the thickness of the insulating layer is preferably 25 to 50 ⁇ m.
  • the formation method for example, the method of apply
  • the structure of the insulating layer that is the buffer layer 20 it is preferable to use a structure formed by winding a polyimide tape obtained by processing a polyimide resin into a tape shape around the superconducting wire 10.
  • the buffer layer 20 can be manufactured inexpensively and easily, and the effect of suppressing deterioration of the superconducting wire 10 is also high.
  • the superconducting wire 10 adjacent in the radial direction of the superconducting coil A can be insulated in addition to the above-described effects.
  • the material of the stabilization layer that is the buffer layer 20 examples include materials made of metal such as copper, Cu—Zn alloy, Cu—Ni alloy, Ni—Cr alloy, nickel, and stainless steel. This material is inexpensive and preferable.
  • the thickness of the stabilization layer is not particularly limited and can be adjusted as appropriate. However, since the thermal contraction of the adhesive layer 30 at a low temperature on the superconducting wire 10 can be effectively suppressed, the stabilization layer The thickness is preferably 10 to 300 ⁇ m.
  • the stabilization layer may be formed by a known method. For example, the stabilization layer may be formed by sputtering, or a tape-shaped metal may be provided around the superconducting wire 10 via solder.
  • the periphery of the superconducting wire 10 may be covered with a metal by a plating method.
  • solder material Sn-based materials (Sn—Cu based, Sn—Ag based, Sn—Ag—Cu based, etc.) can be used. Even when a stabilization layer is provided as the buffer layer 20, the above-described effect of suppressing the deterioration of the characteristics of the superconducting wire 10 due to the low temperature or the effect of suppressing the decrease of the current density can be obtained.
  • the stabilizing layer functions as a bypass path along with the metal layer 14 through which the current flowing through the oxide superconducting layer 13 is commutated. Thereby, a higher effect of stabilizing the state of the oxide superconducting layer 13 can be obtained.
  • the adhesive layer 30 has adhesiveness to the buffer layer 20. After the adhesive layer 30 is wound around the winding frame 2 together with the superconducting wire 10, the adhesive layer 30 is cured by heating, the winding structure of the superconducting wire 10 is fixed, and the superconducting coil A is formed. If such a forming method can be realized, the type of the adhesive layer 30 is not particularly limited. Specifically, the structure of the adhesive layer 30 includes a structure formed of a thermosetting resin, and the state of the coated superconducting wire 1 before being wound around the winding frame 2 is a semi-cured heat. A curable resin is preferred.
  • thermosetting resin that forms the adhesive layer 30 is not particularly limited as long as it is a resin that is cured by heating, and examples thereof include an epoxy resin, a phenol resin, an alkyd resin, a polyimide resin, and a silicon resin.
  • the adhesive layer 30 is more preferably a so-called prepreg which is made semi-cured by drying after impregnating the thermosetting resin with paper or cloth. By using a prepreg as the adhesive layer 30, the handling property at the time of winding the superconducting wire 10 (coated superconducting wire 1) is further improved.
  • the thickness of the adhesive layer 30 is not particularly limited and can be adjusted as appropriate. However, while suppressing the decrease in current density as much as possible while firmly fixing each superconducting wire 10 that is wound and adjacent in the radial direction of the winding frame 2.
  • the thickness of the adhesive layer 30 is preferably 5 to 100 ⁇ m.
  • the formation method of the contact bonding layer 30 is not specifically limited. For example, a method in which a semi-cured thermosetting resin is formed by applying a thermosetting resin to the superconducting wire 10 on which the buffer layer 20 is formed is dried. Moreover, the method of coat
  • the adhesive layer 30 can be formed.
  • the winding structure of the superconducting wire 10 is fixed and formed by winding the coated superconducting wire 1 around the winding frame 2 and curing the adhesive layer 30 by heating.
  • the heating temperature and time at this time can be appropriately changed depending on the type or thickness of the thermosetting resin constituting the adhesive layer 30.
  • the heating temperature is 120 to 150 ° C. and the heating time is about 2 to 3 hours. is there. Under such conditions, the superconducting coil A in which the winding structure of the superconducting wire 10 is firmly fixed can be formed.
  • the buffer layer 20 is directed to the superconducting wire 10 in a laminate (laminated body) integrated by stacking the buffer layer 20 and the adhesive layer 30.
  • a laminate laminate
  • a semi-cured thermosetting resin adheresive layer 30
  • a prepreg is formed on one surface of a tape (buffer layer 20) formed of a resin such as polyimide.
  • a laminated body hereinafter sometimes referred to as “buffer layer tape T with an adhesive layer”.
  • a polyimide tape with a prepreg in which a prepreg containing an epoxy resin is provided on one surface of a tape formed of a polyimide resin.
  • FIGS. 3A and 3B As a method for providing such a buffer layer tape T with an adhesive layer around the superconducting wire 10, specifically, a method shown in FIGS. 3A and 3B can be cited.
  • the buffer layer with the adhesive layer is halved (1/2 L) of the width L for each winding so that the buffer layer 20 faces the superconducting wire 10 and the adhesive layer 30 faces the outside.
  • the buffer layer tape T with an adhesive layer having a width L is wound around the superconducting wire 10 so that the layer tapes T overlap each other (hereinafter, this method may be referred to as “1/2 wrap winding”).
  • the buffer layer tape T with the adhesive layer is formed in a spiral shape on the superconducting wire 10 so that the buffer layer tapes T overlap each other.
  • the buffer layer 20 and the adhesive layer 30 can be easily provided on the superconducting wire 10 by winding the buffer layer tape T with the adhesive layer around the outer periphery of the superconducting wire 10 by this 1/2 wrap winding.
  • the buffer layer tape T with the adhesive layer is overlapped by 1/2 L each time it is wound, so that the effect of suppressing the deterioration of characteristics that occurs when the coated superconducting wire 1 is used at a low temperature, and the superconducting wire 10 Insulation, adhesion, and airtightness can be further improved as compared with the configuration shown in FIG. 2A.
  • the buffer layer tape T with the adhesive layer is wound around the superconducting wire 10 by 1/2 wrapping and wound around the winding frame 2
  • the buffer layer 20 the adhesive layer 30, the buffer layer 20, and the adhesive A four-layer structure in which the layers 30 are provided in this order is formed around the superconducting wire 10.
  • the buffer layer tape T with an adhesive layer having a width L is not overlapped for each winding so that the buffer layer 20 faces the superconducting wire 10 and the adhesive layer 30 faces the outside.
  • a buffer layer tape T with an adhesive layer having a width L is wound around the superconducting wire 10 (hereinafter, this method may be referred to as “butt wrap winding”).
  • the buffer layer tape T with the adhesive layer is spirally formed on the superconducting wire 10 so that the buffer layer tapes T do not overlap and the side surfaces of the adjacent buffer layer tapes T are in contact with each other. Formed.
  • the buffer layer 20 and the adhesive layer 30 can be easily provided on the superconducting wire 10 by winding the buffer layer tape T with the adhesive layer around the outer periphery of the superconducting wire 10 by this butt wrapping. Furthermore, since the buffer layer tape T with an adhesive layer having a width L is wound so as not to overlap each time it is wound, the coated superconducting wire 1 can be thinned. Furthermore, in addition to the effect of suppressing deterioration of characteristics when the coated superconducting wire 1 is used at a low temperature, and the insulation and adhesiveness of the superconducting wire 10, the effect of suppressing the decrease in the current density of the superconducting coil A, It is improved compared with the case where the conventional glass tape is used.
  • the superconducting coil A of this embodiment has a configuration in which a buffer layer 20 is provided around the superconducting wire 10 and an adhesive layer 30 is provided around the buffer layer 20. For this reason, it can suppress effectively that a stress is applied to the superconducting wire 10 by shrinkage
  • the coated superconducting wire 1 formed by winding a laminated tape integrated by laminating the buffer layer 20 and the adhesive layer 30 is formed on the winding frame 2 and the superconducting wire 10.
  • the superconducting coil A has a configuration in which a prepreg is used as the adhesive layer 30 and a resin tape such as polyimide is used as the buffer layer 20, the coated superconducting wire 1 is thinned, and the current density is effectively reduced. Can be suppressed.
  • the coated superconducting wire 1 having a configuration in which the buffer layer 20 is provided around the superconducting wire 10 and the adhesive layer 30 is provided around the buffer layer 20 is provided on the reel 2.
  • the superconducting coil A formed by being wound around is described.
  • the present invention is not limited to this.
  • the superconducting wire 10 is wound around the winding frame 2 via the adhesive layer 30, and the buffer layer 20 is interposed between the adhesive layer 30 and the metal layer 14 of the superconducting wire 10. Any superconducting coil A may be used. Therefore, a superconducting coil can be formed using a coated superconducting wire having another configuration and structure.
  • second to ninth embodiments of the present invention will be described.
  • the configuration of the coated superconducting wire is different from that of the first embodiment described above, but the same configuration is adopted for the superconducting wire and the superconducting coil which are the other parts. Therefore, in the following description, the configuration of the coated superconducting wire will be mainly described, and description of other parts will be omitted. Moreover, in the following embodiment, the same code
  • FIG. 4A is a schematic cross-sectional view of a coated superconducting wire 1B used in the superconducting coil according to the second embodiment of the present invention.
  • the coated superconducting wire 1B of the present embodiment has a configuration in which the second buffer layer 22, the first buffer layer 21, and the adhesive layer 31 are provided in this order around the superconducting wire 10.
  • the 1st buffer layer 21 and the contact bonding layer 31 are integrated by laminating
  • resin tape T 1 with a single-sided adhesive layer examples include the same material as that of the buffer layer 20 of the first embodiment.
  • a resin tape such as polyimide is wound around the superconducting wire 10, and then the adhesive layer 31 faces outward on the superconducting wire 10 around which the resin tape is wound. how to wind the used single-sided adhesive layer with the resin tape T 1 in.
  • the tape winding method described above or the number of tapes used is the same as in the first embodiment.
  • the coated superconducting wire 1B of the present embodiment has a configuration in which the superconducting wire 10 is further covered with a second buffer layer 22 in addition to the configuration of the first embodiment. Accordingly, even when the adhesive layer 31 contracts due to use at a low temperature, the superconducting wire 10 is stressed due to the contraction and the characteristics of the superconducting wire 10 are deteriorated in the case of the first embodiment. It can suppress even more effectively than. Therefore, in the superconducting coil of the present embodiment, in addition to the effects of the first embodiment, even when a larger stress is applied to the superconducting wire 10 than in the case of the first embodiment, it is possible to prevent deterioration of the characteristics of the superconducting wire 10. .
  • FIG. 4B is a schematic cross-sectional view of a coated superconducting wire 1C used in the superconducting coil of the third embodiment of the present invention.
  • the coated superconducting wire 1C of this embodiment has a configuration in which a second buffer layer 22, an adhesive layer 31, a first buffer layer 21, and an adhesive layer 31 are provided in this order around the superconducting wire 10.
  • the two adhesive layers 31 and the first buffer layer 21 are integrated by being laminated, that is, the adhesive layers 31 and 31 such as prepregs on both surfaces of the first buffer layer 21 such as polyimide.
  • Is formed from a resin tape T 2 hereinafter sometimes referred to as “resin tape T 2 with a double-sided adhesive layer”).
  • the second buffer layer 22 is the same as the second buffer layer 22 of the second embodiment.
  • the two adhesive layers 31 are an inner adhesive layer provided at a position close to the superconducting wire 10 and an outer adhesive layer provided at a position farther from the superconducting wire 10 than the inner adhesive layer.
  • one inner adhesive layer is provided between the outer adhesive layer and the superconducting wire 10, but a plurality of inner adhesive layers may be provided.
  • a resin tape such as polyimide is wound around the superconducting wire 10
  • the superconducting wire 10 around which the resin tape is wound is wrapped around the resin tape T 2 with a double-sided adhesive layer. A method of further winding is formed.
  • the structure of the coated superconducting wire 1C of the present embodiment includes a resin tape in which the second buffer layer 22 and the adhesive layer 31 are laminated, and the first buffer layer 21 and the adhesive layer.
  • the structure using the resin tape on which 31 is laminated may be used.
  • As the structure of a resin tape shown in single-sided adhesive layer with the resin tape T 1 of the aforementioned second embodiment structure is employed. In the present embodiment, it may be formed by winding two such resin tapes. The tape winding method described above or the number of tapes used is the same as in the first embodiment.
  • the coated superconducting wire 1C of the present embodiment has a configuration in which the superconducting wire 10 is further covered with the second buffer layer 22 and the adhesive layer 31 in addition to the configuration of the first embodiment. Thereby, in addition to the effect of 1st Embodiment, the airtightness or insulation of the superconducting wire 10 can be improved further.
  • FIG. 4C is a schematic cross-sectional view of a coated superconducting wire 1D used in the superconducting coil according to the fourth embodiment of the present invention.
  • the third buffer layer 23 is laminated on the upper surface 10a of the metal layer 14 of the superconducting wire 10.
  • the 1st buffer layer 21 and the contact bonding layer 31 are provided in this order around the laminated body comprised by the superconducting wire 10 and the 3rd buffer layer 23.
  • the first buffer layer 21 and adhesive layer 31 are integrated by stacking, to form a single-sided adhesive layer with the resin tape T 1.
  • Examples of the material of the third buffer layer 23 include the same material as that of the stabilization layer that is the buffer layer 20 of the first embodiment.
  • a stabilization layer (third buffer layer 23) is laminated on the metal layer 14 of the superconducting wire 10 by bonding a metal tape made of copper or the like with solder.
  • the single-sided adhesive layer-attached resin tape T 1 is wound around the superconducting wire 10 and the third buffer layer 23 so that the adhesive layer 31 faces outward.
  • the tape winding method described above or the number of tapes used is the same as in the first embodiment.
  • the superconducting wire 10 usually has a width of about 5 to 10 mm and a thickness of about 100 to 200 ⁇ m. Therefore, when a stress is applied to the superconducting wire 10, the influence of the stress generated from the side surface of the superconducting wire 10 is small. On the other hand, since the upper surface of the superconducting wire 10 occupies a large area in the wire and is close to the oxide superconducting layer 13, the influence of the stress applied from the upper surface of the superconducting wire 10 is increased. Therefore, as in this embodiment, the use of the configuration in which the third buffer layer 23 is further provided on the upper surface (the upper surface of the metal layer) 10a of the superconducting wire 10 causes the adhesive layer 31 to contract due to use at a low temperature.
  • the stress applied to the superconducting wire 10 and the deterioration of the characteristics of the superconducting wire 10 can be suppressed more effectively than in the case of the first embodiment. Therefore, in the superconducting coil of the present embodiment, in addition to the effects of the first embodiment, even when a larger stress is applied to the superconducting wire 10 than in the case of the first embodiment, the deterioration of the characteristics of the superconducting wire 10 can be suppressed. .
  • FIG. 4D is a schematic cross-sectional view of a coated superconducting wire 1E used in the superconducting coil according to the fifth embodiment of the present invention.
  • the third buffer layer 23 is laminated on the upper surface 10a of the metal layer 14 of the superconducting wire 10.
  • an adhesive layer 31, a first buffer layer 21, and an adhesive layer 31 are provided in this order around the laminate formed by the superconducting wire 10 and the third buffer layer 23.
  • the coated superconducting wire 1E of the present embodiment has a configuration in which an adhesive layer 31 is provided around the laminate formed by the superconducting wire 10 and the third buffer layer 23 in addition to the configuration of the fourth embodiment. .
  • the adhesive layer 31 touches the side surface of the superconducting wire 10.
  • the third buffer layer 23 that is small and provided on the upper surface can suppress the influence of stress on the superconducting wire 10. Therefore, the superconducting coil of the present embodiment can achieve the same effects as the superconducting coil A of the fourth embodiment.
  • surroundings of the superconducting wire 10 and the 3rd buffer layer 23 are covered with the contact bonding layer 31, the insulation or airtightness of the superconducting wire 10 is improved rather than the case of 4th Embodiment.
  • FIG. 5A is a schematic cross-sectional view of a coated superconducting wire 1F used in a superconducting coil according to a sixth embodiment of the present invention.
  • a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10. It has a configuration. Therefore, in addition to the effects of the second embodiment, even when the adhesive layer 31 contracts when used at a low temperature, the superconducting wire 10 is stressed and the characteristics of the superconducting wire 10 deteriorate. Further, it can be suppressed more effectively than in the case of the second embodiment.
  • FIG. 5B is a schematic cross-sectional view of a coated superconducting wire 1G used in the superconducting coil according to the seventh embodiment of the present invention.
  • the coated superconducting wire 1G of the present embodiment has a configuration in which a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10 in addition to the configuration of the coated superconducting wire 1C of the third embodiment.
  • a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10 in addition to the configuration of the coated superconducting wire 1C of the third embodiment.
  • FIG. 5C is a schematic cross-sectional view of a coated superconducting wire 1H used for the superconducting coil of the eighth embodiment of the present invention.
  • the second buffer layer 22 is provided around the superconducting wire 10, and the adhesive layer 31, the first buffer layer 21, and the adhesive layer 31 are formed on the upper surface of the second buffer layer 22.
  • the first buffer layer 21 and the two adhesive layers 31, 31 are a resin tape T 2 with a double-sided adhesive layer integrated by laminating a plurality of layers. Is formed.
  • the material of the second buffer layer 22 examples include the same material as that of the buffer layer 20 of the first embodiment.
  • the method of forming the coating superconducting wire 1H for example, the second buffer layer 22 is formed by winding a resin tape such as polyimide superconducting wire 10, then, a double-sided adhesive layer with the resin tape T 2, the second It is provided on the upper surface of the buffer layer 22 along the longitudinal direction of the wire (hereinafter sometimes referred to as “longitudinal attachment”). Even if the configuration in which the adhesive layer 31 is provided only on the upper surface of the superconducting wire 10 as in this embodiment, when the coated superconducting wire 1H is wound concentrically around the winding frame 2, it is adjacent in the radial direction of the winding frame 2.
  • An adhesive layer 31 is disposed between the superconducting wires 10 that perform. Therefore, by hardening the plurality of superconducting wires 1 adjacent to each other in the radial direction of the winding frame 2 by heating, each superconducting wire 10 can be fixed and a superconducting coil can be formed.
  • the superconducting coil of the present embodiment is formed from the coated superconducting wire 1H that is made thinner than the coated superconducting wire constituting the superconducting coils of the first to seventh embodiments, so that the effect of the first embodiment is achieved.
  • the current density can be further prevented from lowering than in the first embodiment.
  • FIG. 5D is a schematic cross-sectional view of a coated superconducting wire 1J used in the superconducting coil according to the ninth embodiment of the present invention.
  • the coated superconducting wire 1J of the present embodiment has a configuration in which a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10 in addition to the configuration of the coated superconducting wire 1H of the eighth embodiment.
  • a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10 in addition to the configuration of the coated superconducting wire 1H of the eighth embodiment.
  • each part constituting the superconducting coil is an example, and can be appropriately changed without departing from the scope of the present invention.
  • a 1.0 ⁇ m thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the Ce 2 O layer by a PLD method, and a 10 ⁇ m silver layer (metal layer) is formed on the oxide superconducting layer by a sputtering method.
  • a superconducting wire was produced by forming.
  • Example 1 A buffer layer (stabilization layer) was formed by laminating a 0.1 mm-thick copper tape on the silver layer (metal layer) of the superconducting wire produced above through solder. Next, a tape in which two polyimide tapes (12.5 ⁇ m thick) were stacked on the laminate formed by the superconducting wire and the buffer layer was wound by butt wrapping as shown in FIG. 3B. Next, a coated superconducting wire having a structure shown in FIG. 5D was produced by laminating (vertically attaching) a double-sided adhesive layer resin tape along the longitudinal direction of the wire on the laminate around which the tape was wound.
  • Example 1 In the double-sided adhesive layer resin tape, epoxy resin prepregs each having a thickness of 5.75 ⁇ m are laminated on both sides of a polyimide tape (12.5 ⁇ m thickness).
  • Such a structure of Example 1 is indicated by “ ⁇ ” in “Example 1” of Table 1.
  • the obtained coated superconducting wire was concentrically wound around a cylindrical winding frame a plurality of times to produce a superconducting coil having an inner diameter of 70 mm and an outer diameter of 71 mm.
  • the superconducting coil was cooled in liquid nitrogen, and the critical current value (Ic0) was measured under a self-magnetic field. Then, after heating the same superconducting coil at 150 ° C.
  • the critical current value (Ic) was measured in liquid nitrogen under a self-magnetic field. . Further, the superconducting coil of Example 1 was evaluated based on a value (Ic / Ic0) obtained by dividing the critical current value (Ic) by the critical current value (Ic0). The measured value of the critical current value in Example 1 is shown on the right side of Table 1.
  • Example 2 to 21 and Comparative Examples 1 and 2 In Examples 2 to 21 and Comparative Examples 1 and 2, the same superconducting wire as the superconducting wire in Example 1 was used, and a superconducting coil was formed in the same manner as in Example 1.
  • the structures of “stabilizing layer”, “buffer layer (1)”, and “buffer layer (2) + adhesive layer” in Examples 2 to 21 and Comparative Examples 1 and 2 are shown in Table 1 as “ ⁇ ".
  • the measurement values of the critical current values in Examples 2 to 21 and Comparative Examples 1 and 2 are shown on the right side of Table 1.
  • the critical current values Ic0 and Ic were measured by the same measurement method as in Example 1, and the measurement was performed.
  • the superconducting coils of Examples 2 to 21 and Comparative Examples 1 and 2 were evaluated.
  • Examples 9,10,17,18, the configuration shown in FIG. 4A is.
  • Examples 5,6,13,14, the configuration shown in FIG. 4B (Example 5 and 13, with double-sided adhesive layer resin tape T 2 are stacked in double configuration) it is.
  • Example 20 has a structure as shown in FIG. 4C (structure-sided adhesive layer resin tape T 1 is stacked in a double).
  • Example 19 has a structure as shown in FIG. 4D (configuration with double-sided adhesive layer resin tape T 2 are stacked double).
  • Examples 7,8,15,16, the configuration shown in FIG. 5A (Example 7, 15, the one-sided adhesive layer resin tape T 1 is stacked in a double structure) is.
  • Example 2 the configuration shown in FIG. 5B (Example 2, 11 is with double-sided adhesive layer resin tape T 2 are stacked in double configuration) it is.
  • Example 4 has the configuration shown in FIG. 5C.
  • Example 21 is a coated superconducting wire having the configuration shown in FIG. 2A (a configuration in which buffer layer tapes T with adhesive layers are laminated in a double layer). In Comparative Example 1, a glass cloth prepreg tape was used.
  • Table 1 shows the total thickness of the buffer layer and the adhesive layer in each of the coated superconducting wires of Examples 1 to 21 and Comparative Examples 1 and 2. Also, Ic / Ic0 of each superconducting coil is calculated, and a superconducting coil whose value is greater than 0.9 is used when the adhesive layer is cured by heating (after fixing the superconducting wire) and is used at a low temperature. It was determined that the deterioration of the characteristics of the sample was suppressed, and was shown as “good” in Table 1. The determination results are also shown in Table 1.
  • the superconducting coil of the present invention it is possible to obtain an oxide superconducting coil that can suppress deterioration that occurs when a superconducting wire is used in a low temperature region and that has a good current density.
  • a Superconducting coil 1 (1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1J) Coated superconducting wire 2 Winding frame 10 Superconducting wire 11 Base material 12 Intermediate layer 13 Oxide superconducting layer 14 Metal layer 20 Buffer layer 21 First buffer layer 22 Second buffer layer 23 Third buffer layer 30... Adhesive layer

Abstract

Disclosed is a superconducting coil which is provided with: a superconducting wire material (10) provided with a substrate (11), an intermediate layer (12) disposed on the substrate (11), an oxide superconducting layer (13) disposed on the intermediate layer (12), and a metal layer (14) disposed on the oxide superconducting layer (13); an adhesive layer (30); and buffer layers (20, 21, 22, 23) arranged between the adhesive layer (30) and the metal layer (14) of the superconducting wire material (10), and the superconducting coil is formed in such a way that the superconducting wire material (10) winds around the adhesive layer (30).

Description

超電導コイル及びその製造方法Superconducting coil and manufacturing method thereof
 本発明は、超電導コイル及び超電導コイルの製造方法に関する。
 本願は、2010年4月16日に、日本国に出願された特願2010-095378号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a superconducting coil and a method for manufacturing a superconducting coil.
This application claims priority based on Japanese Patent Application No. 2010-095378 filed in Japan on April 16, 2010, the contents of which are incorporated herein by reference.
 超電導コイルは、磁気共鳴画像診断装置(MRI)又は超電導磁気エネルギー貯蔵装置(SMES)といった様々な用途に使用される。これまで、超電導コイルを構成する超電導線材として、NbTi等の金属系超電導体が広く用いられてきた。しかしながら、近年、BiSrCaCu8+δ(Bi2212)、BiSrCaCu10+δ(Bi2223)などのビスマス系超電導体、又はREBaCu7-δ(RE123、RE:希土類元素)で表される希土類系超電導体を用いた酸化物高温超電導線材の開発が進んでいる。この酸化物高温超電導線材は、金属系超電導線材に比べて臨界温度が高温であるため、より高い温度での使用が可能であることから、コイル等への応用の開発も進んでいる。 Superconducting coils are used in various applications such as magnetic resonance imaging equipment (MRI) or superconducting magnetic energy storage equipment (SMES). Until now, metallic superconductors such as NbTi have been widely used as superconducting wires constituting superconducting coils. However, in recent years, bismuth superconductors such as Bi 2 Sr 2 CaCu 2 O 8 + δ (Bi2212) and Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ (Bi2223), or REBa 2 Cu 3 O 7-δ (RE123, RE: Development of oxide high-temperature superconducting wires using rare earth-based superconductors represented by rare earth elements is progressing. Since this oxide high-temperature superconducting wire has a critical temperature higher than that of metal superconducting wires, it can be used at higher temperatures, and development of application to coils and the like is also progressing.
 酸化物超電導コイルの製造工程のひとつに、超電導線材を固定してコイルを一体化する含浸工程がある。この含浸工程の方法としては、エポキシ樹脂による真空含浸方法(例えば、特許文献1参照)が知られている。また、ガラス繊維に熱硬化性樹脂を結合させて、熱硬化性樹脂からなる半硬化状のガラステープを準備し、このガラステープを超電導線材と共に巻き線し、ガラステープ及び超電導線材を加熱して一体化させる方法(特許文献2参照)が開示されている。 One of the manufacturing processes of an oxide superconducting coil is an impregnation process in which a superconducting wire is fixed and the coil is integrated. As a method for the impregnation step, a vacuum impregnation method using an epoxy resin (for example, see Patent Document 1) is known. Also, a thermosetting resin is bonded to the glass fiber to prepare a semi-cured glass tape made of a thermosetting resin, and this glass tape is wound together with the superconducting wire, and the glass tape and the superconducting wire are heated. A method of integrating (see Patent Document 2) is disclosed.
特開2001-189226号公報JP 2001-189226 A 特開平11-168008号公報Japanese Patent Laid-Open No. 11-168008
 しかしながら、特許文献1および2に記載の方法では、加熱によって硬化されたエポキシ樹脂等の熱硬化性樹脂と、酸化物超電導線材との熱収縮率の差により、超電導線材を使用する低温域において酸化物超電導線材に応力がかかり、この線材が劣化してしまうという問題があった。
 また、特許文献2に示されるような、半硬化状のガラステープを線材と共に巻き線し、ガラステープ及び線材を加熱して一体化させる方法の場合、工程は非常に簡素化される。しかしながら、製造上、ガラステープの厚みを薄くすることには限界がある。ゆえに、このガラステープの厚みに起因して、コイル断面において超電導線材が占める割合が減少し、電流密度が低下してしまうという問題があった。
However, in the methods described in Patent Documents 1 and 2, oxidation is performed in a low temperature region using a superconducting wire due to a difference in thermal shrinkage between a thermosetting resin such as an epoxy resin cured by heating and an oxide superconducting wire. There is a problem that stress is applied to the superconducting wire, and the wire is deteriorated.
Moreover, in the case of the method of winding a semi-hardened glass tape with a wire and heating and integrating the glass tape and the wire as shown in Patent Document 2, the process is greatly simplified. However, in production, there is a limit to reducing the thickness of the glass tape. Therefore, due to the thickness of the glass tape, there is a problem that the ratio of the superconducting wire in the coil cross section decreases and the current density decreases.
 本発明は、このような従来の実情に鑑みてなされたものであり、超電導線材を低温で使用する際に生じる劣化を抑制でき、かつ電流密度が良好な酸化物超電導コイル及び超電導コイルの製造方法の提供を目的とする。 The present invention has been made in view of such a conventional situation, and is capable of suppressing deterioration that occurs when a superconducting wire is used at a low temperature and having a good current density, and a method for manufacturing a superconducting coil. The purpose is to provide.
 上記課題を解決するため、本発明の第1態様の超電導コイルは、基材と、前記基材上に設けられた中間層と、前記中間層上に設けられた酸化物超電導層と、前記酸化物超電導層上に設けられた金属層とを備える超電導線材と、接着層と、前記接着層と前記超電導線材の前記金属層との間に配された緩衝層とを備え、前記超電導線材が前記接着層を介して巻回するように形成されている。
 本発明の第1態様の超電導コイルにおいては、前記接着層と前記超電導線材の前記金属層との間に複数の緩衝層が配されていることが好ましい。
 本発明の第1態様の超電導コイルにおいては、前記超電導線材に近い位置に設けられた内側接着層と、前記内側接着層よりも前記超電導線材から離れた位置に設けられた外側接着層とを有することが好ましい。
 本発明の第1態様の超電導コイルにおいては、前記接着層は、半硬化状の熱硬化性樹脂が硬化された層であることが好ましい。
 本発明の第1態様の超電導コイルにおいては、前記緩衝層が、絶縁層であることが好ましい。
 本発明の第1態様の超電導コイルにおいては、前記絶縁層が、ポリイミドテープよりなることが好ましい。
 本発明の第1態様の超電導コイルにおいては、前記緩衝層が、安定化層であることが好ましい。
 本発明の第1態様の超電導コイルにおいては、前記安定化層が、銅又はニクロム合金よりなることが好ましい。
 本発明の第1態様の超電導コイルにおいては、前記酸化物超電導層が、REBaCu(式中、REは希土類元素を表し、6.5<y<7.1である。)又はBiSrCan-1Cu4+2n+δ(式中、nは2又は3である。)なる組成の酸化物超電導体よりなることが好ましい。
 本発明の第1態様の超電導コイルにおいては、ポリイミドテープ、又は、ポリイミドテープの片面若しくは両面に半硬化状の熱硬化性樹脂が積層されたテープが、前記超電導線材の外側にラップ巻きされていることが好ましい。
 本発明の第2態様の超電導コイルの製造方法は、基材,前記基材上に設けられた中間層,前記中間層上に設けられた酸化物超電導層,及び前記酸化物超電導層上に設けられた金属層を備える超電導線材を準備し、前記接着層と前記超電導線材の前記金属層との間に緩衝層が配置するように、前記超電導線材を巻回する。
 本発明の第2態様の超電導コイルの製造方法においては、ポリイミドテープ、又は、ポリイミドテープの一面若しくは両面に半硬化状の熱硬化性樹脂が積層されたテープを前記超電導線材の外側にラップ巻きすることが好ましい。
 本発明の第2態様の超電導コイルの製造方法においては、テープ状の前記緩衝層の一面または両面に半硬化状の熱硬化性樹脂が形成された接着層付きテープを準備し、前記接着層付きテープを前記超電導線材の外側に巻くことが好ましい。
In order to solve the above problems, a superconducting coil according to the first aspect of the present invention includes a base material, an intermediate layer provided on the base material, an oxide superconducting layer provided on the intermediate layer, and the oxidation A superconducting wire comprising a metal layer provided on the superconducting layer, an adhesive layer, and a buffer layer disposed between the adhesive layer and the metal layer of the superconducting wire, wherein the superconducting wire is It is formed so as to be wound through an adhesive layer.
In the superconducting coil according to the first aspect of the present invention, it is preferable that a plurality of buffer layers are disposed between the adhesive layer and the metal layer of the superconducting wire.
The superconducting coil according to the first aspect of the present invention includes an inner adhesive layer provided at a position close to the superconducting wire, and an outer adhesive layer provided at a position further away from the superconducting wire than the inner adhesive layer. It is preferable.
In the superconducting coil according to the first aspect of the present invention, the adhesive layer is preferably a layer obtained by curing a semi-cured thermosetting resin.
In the superconducting coil of the first aspect of the present invention, the buffer layer is preferably an insulating layer.
In the superconducting coil according to the first aspect of the present invention, the insulating layer is preferably made of a polyimide tape.
In the superconducting coil according to the first aspect of the present invention, the buffer layer is preferably a stabilization layer.
In the superconducting coil according to the first aspect of the present invention, the stabilizing layer is preferably made of copper or a nichrome alloy.
In the superconducting coil according to the first aspect of the present invention, the oxide superconducting layer includes REBa 2 Cu 3 O y (wherein RE represents a rare earth element, and 6.5 <y <7.1) or (wherein, n is 2 or 3.) Bi 2 Sr 2 Ca n-1 Cu n O 4 + 2n + δ is preferably made of composed oxide superconductor composition.
In the superconducting coil according to the first aspect of the present invention, a polyimide tape or a tape in which a semi-cured thermosetting resin is laminated on one side or both sides of the polyimide tape is wrapped around the superconducting wire. It is preferable.
The method of manufacturing a superconducting coil according to the second aspect of the present invention includes a base material, an intermediate layer provided on the base material, an oxide superconducting layer provided on the intermediate layer, and an oxide superconducting layer. A superconducting wire provided with the formed metal layer is prepared, and the superconducting wire is wound so that a buffer layer is disposed between the adhesive layer and the metal layer of the superconducting wire.
In the method of manufacturing a superconducting coil according to the second aspect of the present invention, a polyimide tape or a tape in which a semi-cured thermosetting resin is laminated on one or both sides of the polyimide tape is wrapped around the superconducting wire. It is preferable.
In the method for manufacturing a superconducting coil according to the second aspect of the present invention, a tape with an adhesive layer in which a semi-cured thermosetting resin is formed on one or both surfaces of the tape-shaped buffer layer is prepared, and the adhesive layer is attached. It is preferable to wind a tape around the superconducting wire.
 上記第1態様の超電導コイル及び上記第2態様の製造方法により製造される超電導コイルによれば、低温において、接着層と超電導線材との熱収縮率の差に起因して超電導線材へ負荷される応力が、緩衝層によって低減される。ゆえに、この応力に起因する超電導特性の劣化を効果的に抑制できる。
 また、緩衝層と接着層とを積層することによって一体化された積層テープを準備し、この積層テープを超電導線材に巻回することによって形成された被覆超電導線材を用いることにより、被覆超電導線材を薄型化できるため、超電導コイルの電流密度の低下を効果的に抑制できる。特に、接着層としてプリプレグが用いられ、緩衝層としてポリイミドなどの樹脂テープが用いられている場合、上記の効果を得ることができる。
According to the superconducting coil of the first aspect and the superconducting coil manufactured by the manufacturing method of the second aspect, the superconducting wire is loaded at a low temperature due to the difference in thermal shrinkage between the adhesive layer and the superconducting wire. Stress is reduced by the buffer layer. Therefore, it is possible to effectively suppress deterioration of superconducting characteristics due to this stress.
Further, by preparing a laminated tape integrated by laminating a buffer layer and an adhesive layer, and using a coated superconducting wire formed by winding this laminated tape around the superconducting wire, a coated superconducting wire is obtained. Since the thickness can be reduced, a decrease in the current density of the superconducting coil can be effectively suppressed. In particular, when a prepreg is used as the adhesive layer and a resin tape such as polyimide is used as the buffer layer, the above effect can be obtained.
本発明の第1実施形態に係る超電導コイルを用いた超電導コイル装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the superconducting coil apparatus using the superconducting coil which concerns on 1st Embodiment of this invention. 図1に示す超電導コイルに使用される被覆超電導線材の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the covering superconducting wire used for the superconducting coil shown in FIG. 図1に示す超電導コイルに使用される超電導線材の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the superconducting wire used for the superconducting coil shown in FIG. 超電導線材への緩衝層を設ける方法の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the method of providing the buffer layer in a superconducting wire. 超電導線材への緩衝層を設ける方法の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the method of providing the buffer layer in a superconducting wire. 本発明の第2実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire concerning a 5th embodiment of the present invention. 本発明の第6実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire concerning a 6th embodiment of the present invention. 本発明の第7実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る被覆超電導線材の概略断面図である。It is a schematic sectional drawing of the covering superconducting wire which concerns on 9th Embodiment of this invention.
 以下、本発明に係る超電導コイルの実施形態について説明する。
 以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
(第1実施形態)
 図1は、本発明に係る超電導コイルの一実施形態および超電導コイルを用いた超電導コイル装置の一例を示す概略断面図である。図2Aは、図1に示す超電導コイルが備える被覆超電導線材の一例を示す概略斜視図である。図2Bは、図1に示す超電導コイルが備える超電導線材の一例を示す概略斜視図である。
Hereinafter, embodiments of the superconducting coil according to the present invention will be described.
In each drawing used for the following description, the scale of each member is appropriately changed in order to make each member a recognizable size.
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing an embodiment of a superconducting coil according to the present invention and an example of a superconducting coil device using the superconducting coil. FIG. 2A is a schematic perspective view showing an example of a coated superconducting wire provided in the superconducting coil shown in FIG. 2B is a schematic perspective view showing an example of a superconducting wire provided in the superconducting coil shown in FIG.
 図1に示すように、本実施形態の超電導コイルAは、テープ状の超電導線材10が緩衝層20及び接着層30を介して円筒状の巻枠2に巻回されて形成されている。巻枠2は、その両端部にフランジ部2a、2aが設けられている。超電導コイルAは、巻枠2の径方向に隣接する各ターンの超電導線材10間に、緩衝層20、接着層30、緩衝層20がこの順に配されている。図1に示すコイル装置Sは、巻枠2の外周面に超電導線材10が必要な層数になるように巻回された構成を有する。 As shown in FIG. 1, the superconducting coil A of this embodiment is formed by winding a tape-shaped superconducting wire 10 around a cylindrical winding frame 2 via a buffer layer 20 and an adhesive layer 30. The reel 2 is provided with flange portions 2a and 2a at both ends thereof. In the superconducting coil A, a buffer layer 20, an adhesive layer 30, and a buffer layer 20 are arranged in this order between the superconducting wires 10 of each turn adjacent to the radial direction of the winding frame 2. The coil device S shown in FIG. 1 has a configuration in which the superconducting wire 10 is wound around the outer peripheral surface of the winding frame 2 so as to have the required number of layers.
 本実施形態の超電導コイルAに使用される超電導線材10は、図2Bに示すように、長尺テープ状の基材11上に、中間層12、酸化物超電導層13、及び金属層14がこの順に積層された構成を有する。 As shown in FIG. 2B, the superconducting wire 10 used in the superconducting coil A of the present embodiment includes an intermediate layer 12, an oxide superconducting layer 13, and a metal layer 14 on a long tape-like base material 11. It has the structure laminated | stacked in order.
 基材11としては、通常の超電導線材として使用可能な基材が用いられる。基材11の形状としては、長尺のプレート状又はシート状であることが好ましい。基材11の材質としては、耐熱性の金属からなる材質が好ましい。耐熱性の金属の中でも、合金が好ましく、ニッケル(Ni)合金又は銅(Cu)合金がより好ましい。なかでも、市販品であればハステロイ(登録商標、ヘインズ社製)が好適であり、モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。
 基材11の厚さは、目的に応じて適宜調整すればよく、通常は、10~500μmであることが好ましく、20~200μmであることがより好ましい。基材11の厚さを10μm以上とれば超電導線材10に必要とされる強度が得られるが、この厚さを20μm以上とすればこの強度が一層向上するため好ましい。一方、基材11の厚さを500μm以下とすれば超電導線材10に必要とされる臨界電流密度が得られるが、この厚さを200μm以下とすることで臨界電流密度を一層向上させられるため好ましい。
As the base material 11, a base material that can be used as a normal superconducting wire is used. The shape of the substrate 11 is preferably a long plate shape or a sheet shape. As a material of the base material 11, a material made of a heat-resistant metal is preferable. Among heat resistant metals, an alloy is preferable, and a nickel (Ni) alloy or a copper (Cu) alloy is more preferable. Among them, Hastelloy (registered trademark, manufactured by Haynes Co., Ltd.) is preferable if it is a commercial product, and has a different amount of components such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co), etc. Any type of C, G, N, W, etc. can be used.
The thickness of the substrate 11 may be appropriately adjusted according to the purpose, and is usually preferably 10 to 500 μm, and more preferably 20 to 200 μm. If the thickness of the base material 11 is 10 μm or more, the strength required for the superconducting wire 10 can be obtained, but if the thickness is 20 μm or more, this strength is further improved, which is preferable. On the other hand, if the thickness of the substrate 11 is 500 μm or less, the critical current density required for the superconducting wire 10 can be obtained, but it is preferable to make this thickness 200 μm or less because the critical current density can be further improved. .
 中間層12は、酸化物超電導層13の結晶配向性を制御し、かつ基材11中の金属元素が酸化物超電導層13へと拡散するのを防止する。そして、この中間層12は、基材11と酸化物超電導層13との物理的特性(熱膨張率又は格子定数等)の差を緩和するバッファー層として機能する。中間層12の材質は、物理的特性が基材11と酸化物超電導層13との中間的な値を示す金属酸化物が好ましい。中間層12の好ましい材質として具体的には、GdZr、MgO、ZrO-Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物が挙げられる。
 中間層12は、単層でもよいし、複数層でもよい。例えば、前記金属酸化物からなる層(金属酸化物層)は、結晶配向性を有していることが好ましく、複数層である場合には、最外層(酸化物超電導層13に隣接する層)が少なくとも結晶配向性を有していることが好ましい。
The intermediate layer 12 controls the crystal orientation of the oxide superconducting layer 13 and prevents the metal element in the base material 11 from diffusing into the oxide superconducting layer 13. The intermediate layer 12 functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) between the base material 11 and the oxide superconducting layer 13. The material of the intermediate layer 12 is preferably a metal oxide whose physical characteristics show intermediate values between the substrate 11 and the oxide superconducting layer 13. Specifically, preferred materials for the intermediate layer 12 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
The intermediate layer 12 may be a single layer or a plurality of layers. For example, the layer made of the metal oxide (metal oxide layer) preferably has crystal orientation, and in the case of a plurality of layers, the outermost layer (layer adjacent to the oxide superconducting layer 13). Preferably have at least crystal orientation.
 中間層12は、前記金属酸化物層の上に、さらにキャップ層が積層された複数層構造を有してもよい。キャップ層は、酸化物超電導層13の配向性を制御する機能を有するとともに、酸化物超電導層13を構成する元素が中間層12へと拡散するのを防止する機能、又は酸化物超電導層13を積層する時に使用するガスが中間層12と反応するのを抑制する機能等を有する。前記金属酸化物層により、キャップ層の配向性が制御される。 The intermediate layer 12 may have a multi-layer structure in which a cap layer is further laminated on the metal oxide layer. The cap layer has a function of controlling the orientation of the oxide superconducting layer 13 and a function of preventing the elements constituting the oxide superconducting layer 13 from diffusing into the intermediate layer 12, or the oxide superconducting layer 13. It has a function of suppressing the reaction of the gas used when laminating with the intermediate layer 12. The orientation of the cap layer is controlled by the metal oxide layer.
 キャップ層は、前記金属酸化物層の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒がその面内方向に選択成長するという過程を経て形成された層であることが好ましい。このようなキャップ層は、前記金属酸化物層よりも高い面内配向度が得られる。
 キャップ層の材質としては、上記機能を発現し得るも材質であれば特に限定されないが、好ましい材質として具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が挙げられる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe-M-O系酸化物を含んでいてもよい。
The cap layer is epitaxially grown on the surface of the metal oxide layer, and then undergoes a process of grain growth (overgrowth) in the lateral direction (plane direction), and crystal grains are selectively grown in the in-plane direction. The formed layer is preferable. Such a cap layer has a higher degree of in-plane orientation than the metal oxide layer.
The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specific examples of preferable materials are CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr. 2 O 3 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the cap layer is CeO 2 , the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
 中間層12の厚さは、目的に応じて適宜調整すればよいが、通常は、0.1~5μmである。
 中間層12が、前記金属酸化物層の上にキャップ層が積層された複数層構造である場合には、キャップ層の厚さは、通常は、0.1~1.5μmである。
The thickness of the intermediate layer 12 may be appropriately adjusted according to the purpose, but is usually 0.1 to 5 μm.
When the intermediate layer 12 has a multi-layer structure in which a cap layer is laminated on the metal oxide layer, the thickness of the cap layer is usually 0.1 to 1.5 μm.
 中間層12は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシストスパッタ法(以下、IBAD法と略記する)、化学気相成長法(CVD法)等の物理的蒸着法;塗布熱分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で積層できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層13又はキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、金属酸化物を蒸着させる時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶の軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO-Y(YSZ)からなる中間層12は、IBAD法における配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。 The intermediate layer 12 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, ion beam assisted sputtering (hereinafter abbreviated as IBAD method), chemical vapor deposition (CVD), or the like. Method: coating pyrolysis method (MOD method); lamination can be performed by a known method for forming an oxide thin film such as thermal spraying. In particular, the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 13 or the cap layer is high. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface when depositing a metal oxide. Usually, an argon (Ar) ion beam is used as the ion beam. For example, the intermediate layer 12 made of Gd 2 Zr 2 O 7 , MgO or ZrO 2 —Y 2 O 3 (YSZ) can reduce the value of ΔΦ (FWHM: full width at half maximum), which is an index representing the degree of orientation in the IBAD method. Therefore, it is particularly suitable.
 中間層12と基材11との間には、必要に応じてベッド層が介在されていてもよい。ベッド層は、耐熱性が高く、中間層12と基材11との界面反応性を低減する。このベッド層は、その上に配される膜(中間層12)の配向性を得るためにも用いられる。このようなベッド層は、例えば、イットリア(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)等から構成される。このベッド層は、例えばスパッタリング法等の成膜法により基材11上に形成され、その厚さは例えば10~200nmである。 A bed layer may be interposed between the intermediate layer 12 and the base material 11 as necessary. The bed layer has high heat resistance and reduces interfacial reactivity between the intermediate layer 12 and the substrate 11. This bed layer is also used to obtain the orientation of the film (intermediate layer 12) disposed thereon. Such a bed layer is made of, for example, yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or the like. This bed layer is formed on the substrate 11 by a film forming method such as sputtering, and has a thickness of 10 to 200 nm, for example.
 さらに、本発明においては、基材11とベッド層との間に拡散防止層が介在された構造を用いてもよい。拡散防止層は、基材11の構成元素がベッド層へと拡散するのを防止する。この拡散防止層は、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から構成され、その厚さは例えば10~400nmである。拡散防止層の結晶性は制限されていないので、通常のスパッタ法等の成膜法により形成すればよい。
 このように基材11とベッド層との間に拡散防止層を介在させることにより、基材11の構成元素の一部がベッド層を介して酸化物超電導層13に拡散することを効果的に抑制できる。具体的に、中間層12又は酸化物超電導層13等の層を形成する際に、必然的に基材11等が加熱されたり熱処理されるため、その結果として、基材11は熱履歴を受ける。このため、上記のように拡散防止層を設ける場合においては、基材11の構成元素の一部がベッド層を介して酸化物超電導層13に拡散することを効果的に抑制できる。基材11とベッド層との間に拡散防止層を介在させる場合の例としては、拡散防止層としてAl、ベッド層としてYを用いる組み合わせが挙げられる。
Furthermore, in the present invention, a structure in which a diffusion preventing layer is interposed between the base material 11 and the bed layer may be used. The diffusion preventing layer prevents the constituent elements of the base material 11 from diffusing into the bed layer. This diffusion prevention layer is made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), or a rare earth metal oxide, and has a thickness of, for example, 10 to 400 nm. Since the crystallinity of the diffusion preventing layer is not limited, it may be formed by a film forming method such as a normal sputtering method.
Thus, by interposing the diffusion preventing layer between the base material 11 and the bed layer, it is possible to effectively diffuse a part of the constituent elements of the base material 11 into the oxide superconducting layer 13 through the bed layer. Can be suppressed. Specifically, when the layer such as the intermediate layer 12 or the oxide superconducting layer 13 is formed, the base material 11 is necessarily heated or heat-treated, and as a result, the base material 11 receives a thermal history. . For this reason, when providing a diffusion prevention layer as mentioned above, it can suppress effectively that a part of component element of the base material 11 diffuses into the oxide superconducting layer 13 via a bed layer. An example of a case where a diffusion preventing layer is interposed between the base material 11 and the bed layer includes a combination using Al 2 O 3 as the diffusion preventing layer and Y 2 O 3 as the bed layer.
 酸化物超電導層13の材料としては、通常知られている組成の酸化物超電導体を含む材料を広く適用できる。具体的には、REBaCu(式中、REはY、La、Nd、Sm、Er、Gd等の希土類元素を表し、6.5<y<7.1である。)又はBiSrCan-1Cu4+2n+δ(式中、nは2又は3である)なる組成で表される酸化物超電導体を含む材料を用いることができる。このような材料の中でも、GdBaCu、YBaCuy、BiSrCaCu8+δ、BiSrCaCu10+δの組成で表される材料が好ましく、GdBaCu、YBaCuがより好ましい。
 酸化物超電導層13を、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;塗布熱分解法(MOD法)等で中間層12上に積層でき、なかでもレーザ蒸着法を用いることが好ましい。
 酸化物超電導層13の厚みは、0.5~5μm程度であって、均一な厚みであることが好ましい。
As a material of the oxide superconducting layer 13, a material including an oxide superconductor having a generally known composition can be widely applied. Specifically, REBa 2 Cu 3 O y (wherein RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd, etc., and 6.5 <y <7.1) or Bi. A material containing an oxide superconductor represented by a composition of 2 Sr 2 Ca n-1 Cu n O 4 + 2n + δ (where n is 2 or 3) can be used. Among these materials, materials represented by the composition of GdBa 2 Cu 3 O y , YBa 2 Cu 3 O y, Bi 2 Sr 2 Ca 1 Cu 2 O 8 + δ , Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ are included. GdBa 2 Cu 3 O y and YBa 2 Cu 3 O y are more preferable.
The oxide superconducting layer 13 is formed by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or the like; coating pyrolysis (MOD), etc. It can be laminated on the layer 12, and it is particularly preferable to use a laser vapor deposition method.
The oxide superconducting layer 13 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.
 金属層14は、酸化物超電導層13の一部領域が常電導状態に遷移しようとした場合に電流のバイパス路として機能し、これによって、酸化物超電導層13の状態を安定化させ、発熱を抑え、酸化物超電導層13の焼損が防止される。
 金属層14は、導電性が良好な金属であることが好ましく、具体的には、銀又は銀合金などからなる金属が挙げられる。金属層14の構造としては、1層構造でもよいし、2層以上の積層構造であってもよい。金属層14の厚さは、1~30μmであることが好ましい。金属層14の厚さを1μm以上とすることで、上記の酸化物超電導層13を安定化する一層高い効果が得られ、30μm以下とすることで、超電導線材10を薄型化できる。
 金属層14は、公知の方法で酸化物超電導層13上に積層できるが、なかでもスパッタ法を用いて金属層14を形成することが好ましい。また、金属層14を形成する最終工程で、酸素熱処理を行うことが好ましい。
The metal layer 14 functions as a current bypass when a partial region of the oxide superconducting layer 13 attempts to transition to the normal conducting state, thereby stabilizing the state of the oxide superconducting layer 13 and generating heat. This suppresses burning of the oxide superconducting layer 13.
The metal layer 14 is preferably a metal having good conductivity, and specifically includes a metal made of silver or a silver alloy. The structure of the metal layer 14 may be a single layer structure or a laminated structure of two or more layers. The thickness of the metal layer 14 is preferably 1 to 30 μm. By setting the thickness of the metal layer 14 to 1 μm or more, a higher effect of stabilizing the oxide superconducting layer 13 can be obtained. By setting the thickness to 30 μm or less, the superconducting wire 10 can be thinned.
Although the metal layer 14 can be laminated | stacked on the oxide superconducting layer 13 by a well-known method, it is preferable to form the metal layer 14 using a sputtering method especially. In addition, it is preferable to perform oxygen heat treatment in the final step of forming the metal layer 14.
 このような構成の超電導線材10は、図2Aに示すように、その外周面を覆うように緩衝層20が設けられ、さらに、緩衝層20の外周面には接着層30が設けられ、これによって、被覆超電導線材1が形成されている。この被覆超電導線材1を巻枠2に巻回させることにより、図1に示すような超電導コイルAを形成することができる。 As shown in FIG. 2A, the superconducting wire 10 having such a configuration is provided with a buffer layer 20 so as to cover the outer peripheral surface, and further, an adhesive layer 30 is provided on the outer peripheral surface of the buffer layer 20. A coated superconducting wire 1 is formed. By winding the coated superconducting wire 1 around the winding frame 2, a superconducting coil A as shown in FIG. 1 can be formed.
 緩衝層20は、超電導線材10と接着層30との間に設けられている。超電導特性を発現させるために超電導コイルAを低温に冷却した場合に、接着層30の熱収縮率の熱収縮率と超電導線材10の熱収縮率とが異なるために、接着層30の収縮等に伴い超電導線材10に応力が加わる。この応力により、超電導線材10の特性が劣化してしまう。本実施形態のように、超電導線材10と接着層30との間に緩衝層20を設けることにより、この緩衝層20によって超電導線材10に加わる応力が低減され、超電導線材10の特性が劣化するのが防止される。
 緩衝層20としては、絶縁層又は安定化層が好ましい。緩衝層20である絶縁層は、絶縁性を有する樹脂からなる。絶縁層の材料としては、具体的には、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、ケイ素樹脂、シリコン樹脂、アルキッド樹脂、ビニル樹脂等が挙げられる。絶縁層の厚さは特に限定されず、適宜調整可能であるが、接着層30の低温による熱収縮が超電導線材10へと影響することを効果的に抑制しつつ、かつ電流密度の低下を極力抑えるためには、絶縁層の厚さは25~50μmであることが好ましい。絶縁層は、公知の方法で形成すればよく、その形成方法としては、例えば、樹脂を塗布して硬化させる方法、又はシート状或いはテープ状に加工された樹脂で超電導線材10を被覆する方法を用いしてもよい。緩衝層20である絶縁層の構造としては、ポリイミド樹脂がテープ状に加工されたポリイミドテープを超電導線材10に巻き付けて形成された構造を用いることが好ましい。この場合、安価で簡便に緩衝層20を製造でき、且つ、超電導線材10の劣化を抑制する効果も高い。緩衝層20として絶縁層が設けられた構成を採用することにより、上述の効果に加えて、超電導コイルAの径方向に隣接する超電導線材10を絶縁することもできる。
The buffer layer 20 is provided between the superconducting wire 10 and the adhesive layer 30. When the superconducting coil A is cooled to a low temperature in order to develop the superconducting characteristics, the thermal shrinkage rate of the adhesive layer 30 is different from the thermal shrinkage rate of the superconducting wire 10. Accordingly, stress is applied to the superconducting wire 10. Due to this stress, the characteristics of the superconducting wire 10 are deteriorated. By providing the buffer layer 20 between the superconducting wire 10 and the adhesive layer 30 as in this embodiment, the stress applied to the superconducting wire 10 by the buffer layer 20 is reduced, and the characteristics of the superconducting wire 10 are deteriorated. Is prevented.
The buffer layer 20 is preferably an insulating layer or a stabilization layer. The insulating layer that is the buffer layer 20 is made of an insulating resin. Specific examples of the material for the insulating layer include polyimide resin, polyamide resin, epoxy resin, acrylic resin, phenol resin, melamine resin, polyester resin, silicon resin, silicon resin, alkyd resin, and vinyl resin. The thickness of the insulating layer is not particularly limited and can be adjusted as appropriate. However, it is possible to effectively suppress the thermal contraction due to the low temperature of the adhesive layer 30 from affecting the superconducting wire 10 and to reduce the current density as much as possible. In order to suppress it, the thickness of the insulating layer is preferably 25 to 50 μm. What is necessary is just to form an insulating layer by a well-known method, As the formation method, for example, the method of apply | coating resin and hardening, or the method of coat | covering the superconducting wire 10 with the resin processed into the sheet form or the tape form It may be used. As the structure of the insulating layer that is the buffer layer 20, it is preferable to use a structure formed by winding a polyimide tape obtained by processing a polyimide resin into a tape shape around the superconducting wire 10. In this case, the buffer layer 20 can be manufactured inexpensively and easily, and the effect of suppressing deterioration of the superconducting wire 10 is also high. By adopting a configuration in which an insulating layer is provided as the buffer layer 20, the superconducting wire 10 adjacent in the radial direction of the superconducting coil A can be insulated in addition to the above-described effects.
 緩衝層20である安定化層の材料としては、銅、Cu-Zn合金、Cu-Ni合金、Ni-Cr合金、ニッケル、ステンレス鋼等の金属からなる材料が挙げられ、中でも銅またはニクロム合金からなる材料が安価であり好ましい。安定化層の厚さは特に限定されず、適宜調整可能であるが、接着層30の低温における熱収縮が超電導線材10へと影響することを効果的に抑制することができるので、安定化層の厚さは10~300μmであることが好ましい。安定化層は、公知の方法で形成すればよく、例えば、スパッタ法により安定化層を形成してもよいし、テープ状の金属をハンダを介して超電導線材10の周囲に設けてもよいし、メッキ法により超電導線材10の周囲を金属で被覆させてもよい。ハンダの材料としては、Sn系の材料(Sn-Cu系、Sn-Ag系、Sn-Ag-Cu系など)を使用できる。緩衝層20として安定化層を設けた場合であっても、上述した低温による超電導線材10の特性の劣化を抑制する効果、又は電流密度の低下を抑制する効果が得られる。さらに、酸化物超電導層13が超電導状態から常電導状態に転位しようとした時に、この安定化層は金属層14とともに、酸化物超電導層13を流れる電流が転流するバイパス路として機能する。これにより、酸化物超電導層13の状態を安定化する一層高い効果が得られる。 Examples of the material of the stabilization layer that is the buffer layer 20 include materials made of metal such as copper, Cu—Zn alloy, Cu—Ni alloy, Ni—Cr alloy, nickel, and stainless steel. This material is inexpensive and preferable. The thickness of the stabilization layer is not particularly limited and can be adjusted as appropriate. However, since the thermal contraction of the adhesive layer 30 at a low temperature on the superconducting wire 10 can be effectively suppressed, the stabilization layer The thickness is preferably 10 to 300 μm. The stabilization layer may be formed by a known method. For example, the stabilization layer may be formed by sputtering, or a tape-shaped metal may be provided around the superconducting wire 10 via solder. The periphery of the superconducting wire 10 may be covered with a metal by a plating method. As the solder material, Sn-based materials (Sn—Cu based, Sn—Ag based, Sn—Ag—Cu based, etc.) can be used. Even when a stabilization layer is provided as the buffer layer 20, the above-described effect of suppressing the deterioration of the characteristics of the superconducting wire 10 due to the low temperature or the effect of suppressing the decrease of the current density can be obtained. Furthermore, when the oxide superconducting layer 13 tries to dislocation from the superconducting state to the normal conducting state, the stabilizing layer functions as a bypass path along with the metal layer 14 through which the current flowing through the oxide superconducting layer 13 is commutated. Thereby, a higher effect of stabilizing the state of the oxide superconducting layer 13 can be obtained.
 接着層30は、緩衝層20に対して接着性を有する。接着層30が超電導線材10と共に巻枠2に巻回された後、接着層30は加熱により硬化され、超電導線材10の巻回構造が固定され、超電導コイルAが形成される。このような形成方法が実現できれば、接着層30の種類は特に限定されない。
 この接着層30の構造としては、具体的には、熱硬化性樹脂より形成された構造が挙げられ、巻枠2に巻回される前の被覆超電導線材1の状態が、半硬化状の熱硬化性樹脂であることが好ましい。熱硬化性樹脂が半硬化状である場合、超電導線材10(被覆超電導線材1)を巻枠2に巻回する時の取り扱い性が良好となる。接着層30を形成する熱硬化性樹脂としては、加熱により硬化する樹脂であれば特に限定されず、例えば、エポキシ樹脂、フェノール樹脂、アルキッド樹脂、ポリイミド樹脂、シリコン樹脂等が挙げられる。接着層30は、紙または布等に前記熱硬化性樹脂を含浸させた後に乾燥して半硬化状となった、所謂、プリプレグであることがより好ましい。接着層30としてプリプレグを使用することにより、超電導線材10(被覆超電導線材1)の巻回時の取り扱い性がより一層良好となる。接着層30の厚さは特に限定されず、適宜調整可能であるが、巻回されて巻枠2の径方向に隣接する各超電導線材10を強固に固定しつつ、電流密度の低下を極力抑えるためには、接着層30の厚さは5~100μmとすることが好ましい。接着層30の形成方法は特に限定されない。例えば、緩衝層20が周囲に形成された超電導線材10に熱硬化性樹脂を塗布した後に乾燥させて半硬化状の熱硬化性樹脂を形成する方法が用いられる。また、シート状又はテープ状のプリプレグを用いて周囲に緩衝層20が形成された超電導線材10を被覆する方法が用いられる。このような方法により、接着層30を形成することができる。超電導コイルAにおいては、被覆超電導線材1を巻枠2に巻回して接着層30を加熱によって硬化することにより、超電導線材10の巻回構造が固定され形成される。この際の加熱温度および時間は、接着層30を構成する熱硬化性樹脂の種類又は厚みにより適宜変更可能であるが、例えば、加熱温度が120~150℃、加熱時間が2~3時間程度である。このような条件において、超電導線材10の巻回構造が強固に固定された超電導コイルAを形成できる。
The adhesive layer 30 has adhesiveness to the buffer layer 20. After the adhesive layer 30 is wound around the winding frame 2 together with the superconducting wire 10, the adhesive layer 30 is cured by heating, the winding structure of the superconducting wire 10 is fixed, and the superconducting coil A is formed. If such a forming method can be realized, the type of the adhesive layer 30 is not particularly limited.
Specifically, the structure of the adhesive layer 30 includes a structure formed of a thermosetting resin, and the state of the coated superconducting wire 1 before being wound around the winding frame 2 is a semi-cured heat. A curable resin is preferred. When the thermosetting resin is semi-cured, the handling property when the superconducting wire 10 (coated superconducting wire 1) is wound around the winding frame 2 becomes good. The thermosetting resin that forms the adhesive layer 30 is not particularly limited as long as it is a resin that is cured by heating, and examples thereof include an epoxy resin, a phenol resin, an alkyd resin, a polyimide resin, and a silicon resin. The adhesive layer 30 is more preferably a so-called prepreg which is made semi-cured by drying after impregnating the thermosetting resin with paper or cloth. By using a prepreg as the adhesive layer 30, the handling property at the time of winding the superconducting wire 10 (coated superconducting wire 1) is further improved. The thickness of the adhesive layer 30 is not particularly limited and can be adjusted as appropriate. However, while suppressing the decrease in current density as much as possible while firmly fixing each superconducting wire 10 that is wound and adjacent in the radial direction of the winding frame 2. For this purpose, the thickness of the adhesive layer 30 is preferably 5 to 100 μm. The formation method of the contact bonding layer 30 is not specifically limited. For example, a method in which a semi-cured thermosetting resin is formed by applying a thermosetting resin to the superconducting wire 10 on which the buffer layer 20 is formed is dried. Moreover, the method of coat | covering the superconducting wire 10 in which the buffer layer 20 was formed in the circumference | surroundings using a sheet-like or tape-like prepreg is used. By such a method, the adhesive layer 30 can be formed. In the superconducting coil A, the winding structure of the superconducting wire 10 is fixed and formed by winding the coated superconducting wire 1 around the winding frame 2 and curing the adhesive layer 30 by heating. The heating temperature and time at this time can be appropriately changed depending on the type or thickness of the thermosetting resin constituting the adhesive layer 30. For example, the heating temperature is 120 to 150 ° C. and the heating time is about 2 to 3 hours. is there. Under such conditions, the superconducting coil A in which the winding structure of the superconducting wire 10 is firmly fixed can be formed.
 上述した緩衝層20および接着層30を配置する方法としては、緩衝層20と接着層30とを積層することによって一体化された積層物(積層体)を、緩衝層20が超電導線材10に向くように、かつ、接着層30が外側に向くように、超電導線材10の周囲に緩衝層20及び接着層30を巻き付けることが好ましい。このような積層物としては、具体的には、ポリイミド等の樹脂より形成されたテープ(緩衝層20)の一方の面にプリプレグ等の半硬化状の熱硬化性樹脂(接着層30)が形成されている積層体(以下、「接着層付き緩衝層テープT」と称することがある)を用いることが好ましい。特に、ポリイミド樹脂より形成されたテープの一方の面に、エポキシ樹脂を含むプリプレグが設けられた、プリプレグ付きポリイミドテープを用いることが好ましい。このように緩衝層20と接着層30とを積層することによって一体化されたテープを用いることにより、従来の超電導コイルのようにガラステープを用いる場合に比べて、被覆超電導線材1を薄型化できる。このため、超電導コイルAの電流密度の低下を抑制できる。 As a method of arranging the buffer layer 20 and the adhesive layer 30 described above, the buffer layer 20 is directed to the superconducting wire 10 in a laminate (laminated body) integrated by stacking the buffer layer 20 and the adhesive layer 30. Thus, it is preferable to wrap the buffer layer 20 and the adhesive layer 30 around the superconducting wire 10 so that the adhesive layer 30 faces outward. As such a laminate, specifically, a semi-cured thermosetting resin (adhesive layer 30) such as a prepreg is formed on one surface of a tape (buffer layer 20) formed of a resin such as polyimide. It is preferable to use a laminated body (hereinafter sometimes referred to as “buffer layer tape T with an adhesive layer”). In particular, it is preferable to use a polyimide tape with a prepreg in which a prepreg containing an epoxy resin is provided on one surface of a tape formed of a polyimide resin. By using the tape integrated by laminating the buffer layer 20 and the adhesive layer 30 in this way, the coated superconducting wire 1 can be made thinner as compared with the case where a glass tape is used like a conventional superconducting coil. . For this reason, the fall of the current density of the superconducting coil A can be suppressed.
 このような接着層付き緩衝層テープTを超電導線材10の周囲に設ける方法としては、具体的には、図3Aおよび図3Bに示す方法が挙げられる。
 図3Aに示す方法においては、緩衝層20が超電導線材10に向くように、かつ、接着層30が外側に向くように、巻回毎に幅Lの半分(1/2L)だけ接着層付き緩衝層テープTが互いに重なり合うようにして、幅Lの接着層付き緩衝層テープTを超電導線材10に巻回させる(以下、この方法を「1/2ラップ巻き」と称することがある)。このような方法においては、接着層付き緩衝層テープTは、緩衝層テープTが互いに重なるように、超電導線材10上にスパイラル状に形成される。
 この1/2ラップ巻きにより超電導線材10の外周に接着層付き緩衝層テープTを巻回させることにより、簡便に緩衝層20及び接着層30を超電導線材10に設けることができる。さらに、巻回毎に接着層付き緩衝層テープTが1/2Lずつ重なり合っていることにより、被覆超電導線材1を低温にて使用した際に生じる特性の劣化を抑制する効果、並びに超電導線材10の絶縁性、接着性、及び気密性を図2Aに示す構成よりも、より一層向上させられる。図3Aに示すように、接着層付き緩衝層テープTを1/2ラップ巻きで超電導線材10に巻回させて巻枠2に巻き付けた場合、緩衝層20、接着層30、緩衝層20、接着層30が、この順に設けられた4層構造が超電導線材10の周囲に形成される。
As a method for providing such a buffer layer tape T with an adhesive layer around the superconducting wire 10, specifically, a method shown in FIGS. 3A and 3B can be cited.
In the method shown in FIG. 3A, the buffer layer with the adhesive layer is halved (1/2 L) of the width L for each winding so that the buffer layer 20 faces the superconducting wire 10 and the adhesive layer 30 faces the outside. The buffer layer tape T with an adhesive layer having a width L is wound around the superconducting wire 10 so that the layer tapes T overlap each other (hereinafter, this method may be referred to as “1/2 wrap winding”). In such a method, the buffer layer tape T with the adhesive layer is formed in a spiral shape on the superconducting wire 10 so that the buffer layer tapes T overlap each other.
The buffer layer 20 and the adhesive layer 30 can be easily provided on the superconducting wire 10 by winding the buffer layer tape T with the adhesive layer around the outer periphery of the superconducting wire 10 by this 1/2 wrap winding. Furthermore, the buffer layer tape T with the adhesive layer is overlapped by 1/2 L each time it is wound, so that the effect of suppressing the deterioration of characteristics that occurs when the coated superconducting wire 1 is used at a low temperature, and the superconducting wire 10 Insulation, adhesion, and airtightness can be further improved as compared with the configuration shown in FIG. 2A. As shown in FIG. 3A, when the buffer layer tape T with the adhesive layer is wound around the superconducting wire 10 by 1/2 wrapping and wound around the winding frame 2, the buffer layer 20, the adhesive layer 30, the buffer layer 20, and the adhesive A four-layer structure in which the layers 30 are provided in this order is formed around the superconducting wire 10.
 図3Bに示す方法においては、緩衝層20が超電導線材10に向くように、かつ、接着層30が外側に向くように、巻回毎に幅Lの接着層付き緩衝層テープTが重ならないように、幅Lの接着層付き緩衝層テープTを超電導線材10に巻回させる(以下、この方法を「突合せラップ巻き」と称することがある)。このような方法においては、接着層付き緩衝層テープTは、緩衝層テープTが重ならないように、かつ、隣接する緩衝層テープTの側面が互いに接触するように、超電導線材10上にスパイラル状に形成される。
 この突合せラップ巻きにより超電導線材10の外周に接着層付き緩衝層テープTを巻回させることにより、簡便に緩衝層20及び接着層30を超電導線材10に設けることができる。さらに、巻回毎に幅Lの接着層付き緩衝層テープTが重ならないようにして巻回しているので、被覆超電導線材1を薄型化できる。さらに、被覆超電導線材1を低温にて使用した際の特性の劣化を抑制する効果、並びに超電導線材10の絶縁性、及び接着性に加え、超電導コイルAの電流密度の低下を抑制する効果を、従来のガラステープを用いた場合よりも、向上させられる。
In the method shown in FIG. 3B, the buffer layer tape T with an adhesive layer having a width L is not overlapped for each winding so that the buffer layer 20 faces the superconducting wire 10 and the adhesive layer 30 faces the outside. Next, a buffer layer tape T with an adhesive layer having a width L is wound around the superconducting wire 10 (hereinafter, this method may be referred to as “butt wrap winding”). In such a method, the buffer layer tape T with the adhesive layer is spirally formed on the superconducting wire 10 so that the buffer layer tapes T do not overlap and the side surfaces of the adjacent buffer layer tapes T are in contact with each other. Formed.
The buffer layer 20 and the adhesive layer 30 can be easily provided on the superconducting wire 10 by winding the buffer layer tape T with the adhesive layer around the outer periphery of the superconducting wire 10 by this butt wrapping. Furthermore, since the buffer layer tape T with an adhesive layer having a width L is wound so as not to overlap each time it is wound, the coated superconducting wire 1 can be thinned. Furthermore, in addition to the effect of suppressing deterioration of characteristics when the coated superconducting wire 1 is used at a low temperature, and the insulation and adhesiveness of the superconducting wire 10, the effect of suppressing the decrease in the current density of the superconducting coil A, It is improved compared with the case where the conventional glass tape is used.
 図3Aおよび図3Bに示す巻回方法においては、1枚の接着層付き緩衝層テープTを超電導線材10に巻回している例を示しているが、本発明はこれに限定されない。2枚以上の接着層付き緩衝層テープTを重ね合わせた状態で、超電導線材10に1/2ラップ巻き、或いは、突合せラップ巻きすることも可能である。 In the winding method shown in FIGS. 3A and 3B, an example is shown in which one buffer layer tape T with an adhesive layer is wound around the superconducting wire 10, but the present invention is not limited to this. In a state where two or more buffer layer tapes T with an adhesive layer are overlapped, it is possible to wind the superconducting wire 10 by 1/2 wrap or butt wrap.
 本実施形態の超電導コイルAは、超電導線材10の周囲に緩衝層20が設けられ、緩衝層20の周囲に接着層30が設けられた構成を有する。このため、超電導コイルAを冷却した時の接着層30の収縮により、超電導線材10に応力がかかることを効果的に抑制できる。従って、本発明によれば、低温における超電導線材10の特性の劣化を抑制することが可能な超電導コイルを提供できる。
 また、本実施形態の超電導コイルAは、緩衝層20と接着層30とを積層することによって一体化された積層テープを巻回して形成された被覆超電導線材1が巻枠2に超電導線材10に巻回された構成を有する。特に、超電導コイルAは、接着層30としてプリプレグを用い、緩衝層20としてポリイミドなどの樹脂テープを用いた構成を有しているので、被覆超電導線材1を薄型化して、電流密度の低下を効果的に抑制できる。
The superconducting coil A of this embodiment has a configuration in which a buffer layer 20 is provided around the superconducting wire 10 and an adhesive layer 30 is provided around the buffer layer 20. For this reason, it can suppress effectively that a stress is applied to the superconducting wire 10 by shrinkage | contraction of the contact bonding layer 30 when the superconducting coil A is cooled. Therefore, according to this invention, the superconducting coil which can suppress the deterioration of the characteristic of the superconducting wire 10 in low temperature can be provided.
In the superconducting coil A of this embodiment, the coated superconducting wire 1 formed by winding a laminated tape integrated by laminating the buffer layer 20 and the adhesive layer 30 is formed on the winding frame 2 and the superconducting wire 10. It has a wound configuration. In particular, since the superconducting coil A has a configuration in which a prepreg is used as the adhesive layer 30 and a resin tape such as polyimide is used as the buffer layer 20, the coated superconducting wire 1 is thinned, and the current density is effectively reduced. Can be suppressed.
 上述した第1実施形態においては、超電導線材10の周囲に緩衝層20が設けられ、さらに、緩衝層20の周囲には接着層30が設けられた構成を有する被覆超電導線材1が、巻枠2に巻回されて形成される超電導コイルAについて説明した。しかしながら、本発明はこれに限定されない。本発明においては、超電導線材10が接着層30を介して巻枠2に巻回され、かつ、接着層30と超電導線材10の金属層14との間に緩衝層20が介在された構成を有する超電導コイルAであればよい。従って、他の構成および構造の被覆超電導線材を用いて超電導コイルを形成することもできる。以下、本発明の第2~第9実施形態について説明する。以下に示す実施形態においては、上述の第1実施形態とは、被覆超電導線材の構成が異なっているが、それ以外の部分である超電導線材および超電導コイルについては同様の構成が採用されている。そのため、以下の説明においては、被覆超電導線材の構成を主に説明し、その他の部分の説明は省略する。また、以下の実施形態において、上記第1実施形態と同じ構成要素には同じ符号を付し、説明は省略する。 In the first embodiment described above, the coated superconducting wire 1 having a configuration in which the buffer layer 20 is provided around the superconducting wire 10 and the adhesive layer 30 is provided around the buffer layer 20 is provided on the reel 2. The superconducting coil A formed by being wound around is described. However, the present invention is not limited to this. In the present invention, the superconducting wire 10 is wound around the winding frame 2 via the adhesive layer 30, and the buffer layer 20 is interposed between the adhesive layer 30 and the metal layer 14 of the superconducting wire 10. Any superconducting coil A may be used. Therefore, a superconducting coil can be formed using a coated superconducting wire having another configuration and structure. Hereinafter, second to ninth embodiments of the present invention will be described. In the embodiment described below, the configuration of the coated superconducting wire is different from that of the first embodiment described above, but the same configuration is adopted for the superconducting wire and the superconducting coil which are the other parts. Therefore, in the following description, the configuration of the coated superconducting wire will be mainly described, and description of other parts will be omitted. Moreover, in the following embodiment, the same code | symbol is attached | subjected to the same component as the said 1st Embodiment, and description is abbreviate | omitted.
(第2実施形態)
 図4Aは、本発明の第2実施形態の超電導コイルに使用される被覆超電導線材1Bの概略断面図である。本実施形態の被覆超電導線材1Bは、超電導線材10の周囲に、第2緩衝層22、第1緩衝層21、及び接着層31が、この順に設けられた構成を有する。本実施形態において、第1緩衝層21と接着層31は積層することによって一体化されており、上記第1実施形態の接着層付き緩衝層テープTと同様に、片面にプリプレグ等の接着層が設けられたポリイミド等の樹脂テープT(以下、「片面接着層付き樹脂テープT」と称することがある。)より形成されている。第2緩衝層22の材料としては、第1実施形態の緩衝層20と同様の材料が挙げられる。
 この被覆超電導線材1Bを形成する方法としては、例えば、超電導線材10にポリイミド等の樹脂テープを巻回し、次に、樹脂テープが巻回された超電導線材10に、接着層31が外側に向くように片面接着層付き樹脂テープTを巻回する方法が用いられる。なお、上述したテープの巻回方法又は使用するテープの枚数は、上記第1実施形態と同様である。
(Second Embodiment)
FIG. 4A is a schematic cross-sectional view of a coated superconducting wire 1B used in the superconducting coil according to the second embodiment of the present invention. The coated superconducting wire 1B of the present embodiment has a configuration in which the second buffer layer 22, the first buffer layer 21, and the adhesive layer 31 are provided in this order around the superconducting wire 10. In this embodiment, the 1st buffer layer 21 and the contact bonding layer 31 are integrated by laminating | stacking, and adhesive layers, such as a prepreg, are provided on one side like the buffer layer tape T with the contact bonding layer of the said 1st Embodiment. It is formed from a provided resin tape T 1 such as polyimide (hereinafter sometimes referred to as “resin tape T 1 with a single-sided adhesive layer”). Examples of the material of the second buffer layer 22 include the same material as that of the buffer layer 20 of the first embodiment.
As a method of forming the coated superconducting wire 1B, for example, a resin tape such as polyimide is wound around the superconducting wire 10, and then the adhesive layer 31 faces outward on the superconducting wire 10 around which the resin tape is wound. how to wind the used single-sided adhesive layer with the resin tape T 1 in. The tape winding method described above or the number of tapes used is the same as in the first embodiment.
 本実施形態の被覆超電導線材1Bは、上記第1実施形態の構成に加えて、さらに第2緩衝層22により超電導線材10が被覆された構成を有する。これにより、低温での使用により接着層31の収縮が起きた場合でも、超電導線材10へとこの収縮に起因した応力がかかり超電導線材10の特性が劣化してしまうことを第1実施形態の場合よりもより一層効果的に抑制できる。従って、本実施形態の超電導コイルでは、第1実施形態の効果に加えて、第1実施形態の場合よりも大きな応力が超電導線材10に加わった場合でも、超電導線材10の特性の劣化を防止できる。 The coated superconducting wire 1B of the present embodiment has a configuration in which the superconducting wire 10 is further covered with a second buffer layer 22 in addition to the configuration of the first embodiment. Accordingly, even when the adhesive layer 31 contracts due to use at a low temperature, the superconducting wire 10 is stressed due to the contraction and the characteristics of the superconducting wire 10 are deteriorated in the case of the first embodiment. It can suppress even more effectively than. Therefore, in the superconducting coil of the present embodiment, in addition to the effects of the first embodiment, even when a larger stress is applied to the superconducting wire 10 than in the case of the first embodiment, it is possible to prevent deterioration of the characteristics of the superconducting wire 10. .
(第3実施形態)
 図4Bは、本発明の第3実施形態の超電導コイルに使用される被覆超電導線材1Cの概略断面図である。本実施形態の被覆超電導線材1Cは、超電導線材10の周囲に第2緩衝層22、接着層31、第1緩衝層21、及び接着層31が、この順に設けられた構成を有する。本実施形態において、2層の接着層31と第1緩衝層21とは積層することによって一体化されている、すなわち、ポリイミド等の第1緩衝層21の両面にプリプレグ等の接着層31,31が設けられた樹脂テープT(以下、「両面接着層付き樹脂テープT」と称することがある)より形成されている。第2緩衝層22は、上記第2実施形態の第2緩衝層22と同様である。ここで、2層の接着層31は、超電導線材10に近い位置に設けられた内側接着層と、内側接着層よりも超電導線材10から離れた位置に設けられた外側接着層である。また、本実施形態では、1層の内側接着層が外側接着層と超電導線材10との間に設けられているが、複数の内側接着層が設けられてもよい。
 この被覆超電導線材1Cを形成する方法としては、例えば、超電導線材10にポリイミド等の樹脂テープを巻回し、次に、樹脂テープが巻回された超電導線材10に、両面接着層付き樹脂テープTをさらに巻回して形成する方法が用いられる。
 また、本実施形態の被覆超電導線材1Cの構造としては、図4Bに示す構造例以外に、第2緩衝層22及び接着層31が積層されている樹脂テープと、第1緩衝層21及び接着層31が積層されている樹脂テープとが用いられた構造であってもよい。このような樹脂テープの構造としては、上記第2実施形態の片面接着層付き樹脂テープTに示された構造が採用される。また、本実施形態においては、このような樹脂テープを2枚巻回することによって形成されてもよい。なお、上述したテープの巻回方法又は使用するテープの枚数は、上記第1実施形態と同様である。
(Third embodiment)
FIG. 4B is a schematic cross-sectional view of a coated superconducting wire 1C used in the superconducting coil of the third embodiment of the present invention. The coated superconducting wire 1C of this embodiment has a configuration in which a second buffer layer 22, an adhesive layer 31, a first buffer layer 21, and an adhesive layer 31 are provided in this order around the superconducting wire 10. In the present embodiment, the two adhesive layers 31 and the first buffer layer 21 are integrated by being laminated, that is, the adhesive layers 31 and 31 such as prepregs on both surfaces of the first buffer layer 21 such as polyimide. Is formed from a resin tape T 2 (hereinafter sometimes referred to as “resin tape T 2 with a double-sided adhesive layer”). The second buffer layer 22 is the same as the second buffer layer 22 of the second embodiment. Here, the two adhesive layers 31 are an inner adhesive layer provided at a position close to the superconducting wire 10 and an outer adhesive layer provided at a position farther from the superconducting wire 10 than the inner adhesive layer. In the present embodiment, one inner adhesive layer is provided between the outer adhesive layer and the superconducting wire 10, but a plurality of inner adhesive layers may be provided.
As a method of forming the coated superconducting wire 1C, for example, a resin tape such as polyimide is wound around the superconducting wire 10, and then the superconducting wire 10 around which the resin tape is wound is wrapped around the resin tape T 2 with a double-sided adhesive layer. A method of further winding is formed.
In addition to the structure example shown in FIG. 4B, the structure of the coated superconducting wire 1C of the present embodiment includes a resin tape in which the second buffer layer 22 and the adhesive layer 31 are laminated, and the first buffer layer 21 and the adhesive layer. The structure using the resin tape on which 31 is laminated may be used. As the structure of a resin tape, shown in single-sided adhesive layer with the resin tape T 1 of the aforementioned second embodiment structure is employed. In the present embodiment, it may be formed by winding two such resin tapes. The tape winding method described above or the number of tapes used is the same as in the first embodiment.
 本実施形態の被覆超電導線材1Cは、上記第1実施形態の構成に加えて、さらに第2緩衝層22および接着層31により超電導線材10が被覆された構成を有する。これにより、第1実施形態の効果に加えて、さらに超電導線材10の気密性又は絶縁性を向上させられる。 The coated superconducting wire 1C of the present embodiment has a configuration in which the superconducting wire 10 is further covered with the second buffer layer 22 and the adhesive layer 31 in addition to the configuration of the first embodiment. Thereby, in addition to the effect of 1st Embodiment, the airtightness or insulation of the superconducting wire 10 can be improved further.
(第4実施形態)
 図4Cは、本発明の第4実施形態の超電導コイルに使用される被覆超電導線材1Dの概略断面図である。本実施形態の被覆超電導線材1Dにおいては、超電導線材10の金属層14の上面10aに、第3緩衝層23が積層されている。また、超電導線材10と第3緩衝層23とによって構成された積層体の周囲に、第1緩衝層21と、接着層31とが、この順に設けられている。本実施形態において、第1緩衝層21及び接着層31は積層することによって一体化され、片面接着層付き樹脂テープTを形成している。
 第3緩衝層23の材料としては、第1実施形態の緩衝層20である安定化層と同様の材料が挙げられる。この被覆超電導線材1Dを形成する方法としては、例えば、超電導線材10の金属層14上に、銅などよりなる金属テープを半田で張り合わせることにより安定化層(第3緩衝層23)を積層し、次に、接着層31が外側に向くように片面接着層付き樹脂テープTを超電導線材10及び第3緩衝層23に巻回する。なお、上述したテープの巻回方法又は使用するテープの枚数は、上記第1実施形態と同様である。
(Fourth embodiment)
FIG. 4C is a schematic cross-sectional view of a coated superconducting wire 1D used in the superconducting coil according to the fourth embodiment of the present invention. In the coated superconducting wire 1D of the present embodiment, the third buffer layer 23 is laminated on the upper surface 10a of the metal layer 14 of the superconducting wire 10. Moreover, the 1st buffer layer 21 and the contact bonding layer 31 are provided in this order around the laminated body comprised by the superconducting wire 10 and the 3rd buffer layer 23. FIG. In the present embodiment, the first buffer layer 21 and adhesive layer 31 are integrated by stacking, to form a single-sided adhesive layer with the resin tape T 1.
Examples of the material of the third buffer layer 23 include the same material as that of the stabilization layer that is the buffer layer 20 of the first embodiment. As a method of forming the coated superconducting wire 1D, for example, a stabilization layer (third buffer layer 23) is laminated on the metal layer 14 of the superconducting wire 10 by bonding a metal tape made of copper or the like with solder. Next, the single-sided adhesive layer-attached resin tape T 1 is wound around the superconducting wire 10 and the third buffer layer 23 so that the adhesive layer 31 faces outward. The tape winding method described above or the number of tapes used is the same as in the first embodiment.
 超電導線材10は、通常幅5~10mm程度、厚さ100~200μm程度である。そのため、超電導線材10へ応力がかかった場合、超電導線材10の側面から生じる応力の影響は小さい。一方、超電導線材10の上面は線材中で占める面積が大きく、かつ、酸化物超電導層13に近い為、超電導線材10の上面から加わった応力による影響は大きくなる。そこで、本実施形態のように、超電導線材10の上面(金属層の上面)10aに、さらに第3緩衝層23を設ける構成を用いることにより、低温での使用によって接着層31の収縮が起きた場合でも、超電導線材10へと応力がかかり超電導線材10の特性が劣化してしまうことを、第1実施形態の場合よりも、より一層効果的に抑制できる。従って、本実施形態の超電導コイルでは、第1実施形態の効果に加えて、第1実施形態の場合よりも大きな応力が超電導線材10に加わった場合でも、超電導線材10の特性の劣化を抑制できる。 The superconducting wire 10 usually has a width of about 5 to 10 mm and a thickness of about 100 to 200 μm. Therefore, when a stress is applied to the superconducting wire 10, the influence of the stress generated from the side surface of the superconducting wire 10 is small. On the other hand, since the upper surface of the superconducting wire 10 occupies a large area in the wire and is close to the oxide superconducting layer 13, the influence of the stress applied from the upper surface of the superconducting wire 10 is increased. Therefore, as in this embodiment, the use of the configuration in which the third buffer layer 23 is further provided on the upper surface (the upper surface of the metal layer) 10a of the superconducting wire 10 causes the adhesive layer 31 to contract due to use at a low temperature. Even in this case, the stress applied to the superconducting wire 10 and the deterioration of the characteristics of the superconducting wire 10 can be suppressed more effectively than in the case of the first embodiment. Therefore, in the superconducting coil of the present embodiment, in addition to the effects of the first embodiment, even when a larger stress is applied to the superconducting wire 10 than in the case of the first embodiment, the deterioration of the characteristics of the superconducting wire 10 can be suppressed. .
(第5実施形態)
 図4Dは、本発明の第5実施形態の超電導コイルに使用される被覆超電導線材1Eの概略断面図である。本実施形態の被覆超電導線材1Eにおいては、超電導線材10の金属層14の上面10aに第3緩衝層23が積層されている。また、この超電導線材10と第3緩衝層23とによって構成された積層体の周囲に、接着層31、第1緩衝層21、及び接着層31が、この順に設けられている。本実施形態において、2層の接着層31(内側接着層及び外側接着層)と第1緩衝層21とは積層することによって一体化された両面接着層付き樹脂テープTを形成している。本実施形態の被覆超電導線材1Eは、上記第4実施形態の構成に加えて、超電導線材10と第3緩衝層23とによって形成された積層体の周囲に接着層31が設けられた構成を有する。本実施形態においては、接着層31が超電導線材10の側面に触れているが、上記のように、超電導線材10の側面の面積は非常に小さいので、側面に平行な方向に生じる応力の影響は小さく、上面に設けた第3緩衝層23により、超電導線材10への応力の影響を抑制できる。従って、本実施形態の超電導コイルは、上記第4実施形態の超電導コイルAと同様の効果を奏することができる。さらに、超電導線材10及び第3緩衝層23の周囲が接着層31によって覆われているため、超電導線材10の絶縁性又は気密性を、第4実施形態の場合よりも高められる。
(Fifth embodiment)
FIG. 4D is a schematic cross-sectional view of a coated superconducting wire 1E used in the superconducting coil according to the fifth embodiment of the present invention. In the coated superconducting wire 1E of the present embodiment, the third buffer layer 23 is laminated on the upper surface 10a of the metal layer 14 of the superconducting wire 10. In addition, an adhesive layer 31, a first buffer layer 21, and an adhesive layer 31 are provided in this order around the laminate formed by the superconducting wire 10 and the third buffer layer 23. In the present embodiment, it is formed adhesive layer 31 of the two layers (the inner adhesive layer and an outer adhesive layer) of the double-sided adhesive layer with the resin tape T 2 which is integrated by the first buffer layer 21 is laminated. The coated superconducting wire 1E of the present embodiment has a configuration in which an adhesive layer 31 is provided around the laminate formed by the superconducting wire 10 and the third buffer layer 23 in addition to the configuration of the fourth embodiment. . In the present embodiment, the adhesive layer 31 touches the side surface of the superconducting wire 10. However, as described above, since the area of the side surface of the superconducting wire 10 is very small, the influence of the stress generated in the direction parallel to the side surface is The third buffer layer 23 that is small and provided on the upper surface can suppress the influence of stress on the superconducting wire 10. Therefore, the superconducting coil of the present embodiment can achieve the same effects as the superconducting coil A of the fourth embodiment. Furthermore, since the circumference | surroundings of the superconducting wire 10 and the 3rd buffer layer 23 are covered with the contact bonding layer 31, the insulation or airtightness of the superconducting wire 10 is improved rather than the case of 4th Embodiment.
(第6実施形態)
 図5Aは、本発明の第6実施形態の超電導コイルに使用される被覆超電導線材1Fの概略断面図である。本実施形態の被覆超電導線材1Fにおいては、上記第2実施形態の被覆超電導線1Bの構成に加えて、超電導線材10の上面(金属層14の上面)10aに第3緩衝層23が設けられた構成を有する。そのため、上記第2実施形態の効果に加えて、低温で使用した際に接着層31の収縮が起きた場合でも、超電導線材10へと応力がかかり超電導線材10の特性が劣化してしまうことを、第2実施形態の場合よりも、より一層効果的に抑制できる。
(Sixth embodiment)
FIG. 5A is a schematic cross-sectional view of a coated superconducting wire 1F used in a superconducting coil according to a sixth embodiment of the present invention. In the coated superconducting wire 1F of the present embodiment, in addition to the configuration of the coated superconducting wire 1B of the second embodiment, a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10. It has a configuration. Therefore, in addition to the effects of the second embodiment, even when the adhesive layer 31 contracts when used at a low temperature, the superconducting wire 10 is stressed and the characteristics of the superconducting wire 10 deteriorate. Further, it can be suppressed more effectively than in the case of the second embodiment.
(第7実施形態)
 図5Bは、本発明の第7実施形態の超電導コイルに使用される被覆超電導線材1Gの概略断面図である。本実施形態の被覆超電導線材1Gは、上記第3実施形態の被覆超電導線1Cの構成に加えて、超電導線材10の上面(金属層14の上面)10aに第3緩衝層23が設けられた構成を有する。そのため、上記第3実施形態の効果に加えて、低温で使用した際に接着層31の収縮が起きた場合でも、超電導線材10へと応力がかかり超電導線材10の特性が劣化してしまうことを、第3実施形態の場合よりも、より一層効果的に抑制できる。
(Seventh embodiment)
FIG. 5B is a schematic cross-sectional view of a coated superconducting wire 1G used in the superconducting coil according to the seventh embodiment of the present invention. The coated superconducting wire 1G of the present embodiment has a configuration in which a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10 in addition to the configuration of the coated superconducting wire 1C of the third embodiment. Have Therefore, in addition to the effect of the third embodiment, even when the adhesive layer 31 contracts when used at a low temperature, the superconducting wire 10 is stressed and the characteristics of the superconducting wire 10 deteriorate. Further, it can be more effectively suppressed than in the case of the third embodiment.
(第8実施形態)
 図5Cは、本発明の第8実施形態の超電導コイルに使用される被覆超電導線材1Hの概略断面図である。本実施形態の被覆超電導線材1Hは、超電導線材10の周囲に第2緩衝層22が設けられ、この第2緩衝層22の上面に、接着層31、第1緩衝層21、及び接着層31が、この順に積層された構成を有する。本実施形態において、第1緩衝層21と2層の接着層31,31(内側接着層及び外側接着層)は、複数の層が積層することによって一体化された両面接着層付き樹脂テープTより形成されている。第2緩衝層22の材料としては、第1実施形態の緩衝層20と同様の材料が挙げられる。この被覆超電導線材1Hの形成方法としては、例えば、超電導線材10にポリイミド等の樹脂テープを巻回して第2緩衝層22を形成し、次に、両面接着層付き樹脂テープTを、第2緩衝層22の上面に線材の長手方向に沿って設ける(以下、「縦添え」と称することがある)。本実施形態のように、超電導線材10の上面のみに接着層31を設ける構成を採用しても、被覆超電導線材1Hを巻枠2に同心円状に巻回すると、巻枠2の径方向に隣接する各超電導線材10間に、接着層31が配される。そのため、巻枠2の径方向に隣接する複数の超電導線材1を加熱によって硬化することにより、各超電導線材10を固定し、超電導コイルを形成することができる。本実施形態の超電導コイルは、上記第1~第7実施形態の超電導コイルを構成する被覆超電導線材よりも薄型化された被覆超電導線材1Hより形成されていることにより、上記第1実施形態の効果に加えて、第1実施形態の場合よりも、より一層電流密度の低下を抑制できる。
(Eighth embodiment)
FIG. 5C is a schematic cross-sectional view of a coated superconducting wire 1H used for the superconducting coil of the eighth embodiment of the present invention. In the coated superconducting wire 1H of the present embodiment, the second buffer layer 22 is provided around the superconducting wire 10, and the adhesive layer 31, the first buffer layer 21, and the adhesive layer 31 are formed on the upper surface of the second buffer layer 22. , In this order. In the present embodiment, the first buffer layer 21 and the two adhesive layers 31, 31 (inner adhesive layer and outer adhesive layer) are a resin tape T 2 with a double-sided adhesive layer integrated by laminating a plurality of layers. Is formed. Examples of the material of the second buffer layer 22 include the same material as that of the buffer layer 20 of the first embodiment. The method of forming the coating superconducting wire 1H, for example, the second buffer layer 22 is formed by winding a resin tape such as polyimide superconducting wire 10, then, a double-sided adhesive layer with the resin tape T 2, the second It is provided on the upper surface of the buffer layer 22 along the longitudinal direction of the wire (hereinafter sometimes referred to as “longitudinal attachment”). Even if the configuration in which the adhesive layer 31 is provided only on the upper surface of the superconducting wire 10 as in this embodiment, when the coated superconducting wire 1H is wound concentrically around the winding frame 2, it is adjacent in the radial direction of the winding frame 2. An adhesive layer 31 is disposed between the superconducting wires 10 that perform. Therefore, by hardening the plurality of superconducting wires 1 adjacent to each other in the radial direction of the winding frame 2 by heating, each superconducting wire 10 can be fixed and a superconducting coil can be formed. The superconducting coil of the present embodiment is formed from the coated superconducting wire 1H that is made thinner than the coated superconducting wire constituting the superconducting coils of the first to seventh embodiments, so that the effect of the first embodiment is achieved. In addition, the current density can be further prevented from lowering than in the first embodiment.
(第9実施形態)
 図5Dは、本発明の第9実施形態の超電導コイルに使用される被覆超電導線材1Jの概略断面図である。本実施形態の被覆超電導線材1Jは、上記第8実施形態の被覆超電導線1Hの構成に加えて、超電導線材10の上面(金属層14の上面)10aに第3緩衝層23が設けられた構成を有する。そのため、上記第8実施形態の効果に加えて、低温で使用した際に接着層31の収縮が起きた場合でも、超電導線材10へと応力がかかり超電導線材10の特性が劣化してしまうことを、第8実施形態の場合よりも、より一層効果的に抑制できる。
(Ninth embodiment)
FIG. 5D is a schematic cross-sectional view of a coated superconducting wire 1J used in the superconducting coil according to the ninth embodiment of the present invention. The coated superconducting wire 1J of the present embodiment has a configuration in which a third buffer layer 23 is provided on the upper surface (upper surface of the metal layer 14) 10a of the superconducting wire 10 in addition to the configuration of the coated superconducting wire 1H of the eighth embodiment. Have Therefore, in addition to the effect of the eighth embodiment, even when the adhesive layer 31 contracts when used at a low temperature, the superconducting wire 10 is stressed and the characteristics of the superconducting wire 10 deteriorate. Further, it can be suppressed more effectively than in the case of the eighth embodiment.
 以上、本発明の超電導コイルについて説明したが、上記実施形態において、超電導コイルを構成する各部は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することが可能である。 The superconducting coil of the present invention has been described above. However, in the above embodiment, each part constituting the superconducting coil is an example, and can be appropriately changed without departing from the scope of the present invention.
 以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されない。
「超電導線材の作製」
 幅5mm、厚さ0.1mmのテープ状のハステロイC-276(米国ヘインズ社製、登録商標)製の基材上に、イオンビームアシストスパッタ法(IBAD法)により1.2μm厚のGdZr(GZO;中間層)を形成した。この中間層上に、パルスレーザー蒸着法(PLD法)により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により10μmの銀層(金属層)を形成することにより超電導線材を作製した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.
"Production of superconducting wire"
A 1.2 μm thick Gd 2 Zr film is formed on a tape-shaped Hastelloy C-276 (manufactured by Haynes, USA, registered trademark) having a width of 5 mm and a thickness of 0.1 mm by an ion beam assisted sputtering method (IBAD method). 2 O 7 (GZO; intermediate layer) was formed. On this intermediate layer, CeO 2 (cap layer) having a thickness of 1.0 μm was formed by a pulse laser deposition method (PLD method). Next, a 1.0 μm thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the Ce 2 O layer by a PLD method, and a 10 μm silver layer (metal layer) is formed on the oxide superconducting layer by a sputtering method. A superconducting wire was produced by forming.
(実施例1)
 上記で作製した超電導線材の銀層(金属層)上に、0.1mm厚の銅テープをハンダを介して積層させることにより、緩衝層(安定化層)を形成した。次に、この超電導線材と緩衝層とによって形成された積層体に、ポリイミドテープ(12.5μm厚)が2枚重ねられたテープを、図3Bに示すように、突合せラップ巻きによって巻回した。次いで、テープが巻回された積層体の上に、両面接着層樹脂テープを、線材の長手方向に沿って積層(縦添え)することにより、図5Dに示す構造の被覆超電導線材を作製した。ここで、両面接着層樹脂テープにおいては、ポリイミドテープ(12.5μm厚)の両面に、夫々、厚さ5.75μmのエポキシ樹脂製プリプレグが積層されている。
 このような実施例1の構造は、表1の「実施例1」において「○」で示されている。
 得られた被覆超電導線材を同心円状に円筒状の巻枠に複数回巻回し、内径70mm、外径71mmの超電導コイルを作製した。この超電導コイルを、液体窒素中で冷却し、自己磁場下で臨界電流値(Ic0)を測定した。その後、同じ超電導コイルを、150℃、3時間加熱して、プリプレグを硬化させることにより超電導線材の巻回構造を固定した後、液体窒素中、自己磁場下で臨界電流値(Ic)を測定した。また、臨界電流値(Ic)を臨界電流値(Ic0)で割った値(Ic/Ic0)に基づいて、実施例1の超電導コイルを評価した。このような実施例1における臨界電流値の測定値は、表1の右側に示されている。
Example 1
A buffer layer (stabilization layer) was formed by laminating a 0.1 mm-thick copper tape on the silver layer (metal layer) of the superconducting wire produced above through solder. Next, a tape in which two polyimide tapes (12.5 μm thick) were stacked on the laminate formed by the superconducting wire and the buffer layer was wound by butt wrapping as shown in FIG. 3B. Next, a coated superconducting wire having a structure shown in FIG. 5D was produced by laminating (vertically attaching) a double-sided adhesive layer resin tape along the longitudinal direction of the wire on the laminate around which the tape was wound. Here, in the double-sided adhesive layer resin tape, epoxy resin prepregs each having a thickness of 5.75 μm are laminated on both sides of a polyimide tape (12.5 μm thickness).
Such a structure of Example 1 is indicated by “◯” in “Example 1” of Table 1.
The obtained coated superconducting wire was concentrically wound around a cylindrical winding frame a plurality of times to produce a superconducting coil having an inner diameter of 70 mm and an outer diameter of 71 mm. The superconducting coil was cooled in liquid nitrogen, and the critical current value (Ic0) was measured under a self-magnetic field. Then, after heating the same superconducting coil at 150 ° C. for 3 hours to cure the prepreg and fixing the winding structure of the superconducting wire, the critical current value (Ic) was measured in liquid nitrogen under a self-magnetic field. . Further, the superconducting coil of Example 1 was evaluated based on a value (Ic / Ic0) obtained by dividing the critical current value (Ic) by the critical current value (Ic0). The measured value of the critical current value in Example 1 is shown on the right side of Table 1.
(実施例2~21及び比較例1、2)
 実施例2~21及び比較例1、2においては、上述した実施例1における超電導線材と同じ超電導線材が用いられ、実施例1と同様に超伝導コイルを形成した。
 実施例2~21及び比較例1、2における「安定化層」の構造、「緩衝層(1)」の構造、及び「緩衝層(2)+接着層」の構造は、表1において「○」で示されている。
 実施例2~21及び比較例1、2における臨界電流値の測定値は、表1の右側に示されており、実施例1と同様の測定方法によって臨界電流値Ic0,Icを測定し、実施例2~21及び比較例1、2の超電導コイルを評価した。
 実施例9、10、17、18は、図4Aに示す構成(実施例9、17は、片面接着層付き樹脂テープTが2重に積層された構成)である。
 実施例5、6、13、14は、図4Bに示す構成(実施例5、13は、両面接着層付き樹脂テープTが2重に積層された構成)である。
 実施例20は、図4Cに示す構成(片面接着層付き樹脂テープTが2重に積層された構成)である。
 実施例19は、図4Dに示す構成(両面接着層付き樹脂テープTが2重に積層された構成)である。
 実施例7、8、15、16は、図5Aに示す構成(実施例7、15は、片面接着層付き樹脂テープTが2重に積層された構成)である。
 実施例2、3、11、12は、図5Bに示す構成(実施例2、11は、両面接着層付き樹脂テープTが2重に積層された構成)である。
 実施例4は、図5Cに示す構成である。
 実施例21は、図2Aに示す構成(接着層付き緩衝層テープTが2重に積層された構成)の被覆超電導線材である。
 比較例1においては、ガラスクロスプリプレグテープを用いた。
(Examples 2 to 21 and Comparative Examples 1 and 2)
In Examples 2 to 21 and Comparative Examples 1 and 2, the same superconducting wire as the superconducting wire in Example 1 was used, and a superconducting coil was formed in the same manner as in Example 1.
The structures of “stabilizing layer”, “buffer layer (1)”, and “buffer layer (2) + adhesive layer” in Examples 2 to 21 and Comparative Examples 1 and 2 are shown in Table 1 as “◯ ".
The measurement values of the critical current values in Examples 2 to 21 and Comparative Examples 1 and 2 are shown on the right side of Table 1. The critical current values Ic0 and Ic were measured by the same measurement method as in Example 1, and the measurement was performed. The superconducting coils of Examples 2 to 21 and Comparative Examples 1 and 2 were evaluated.
Examples 9,10,17,18, the configuration shown in FIG. 4A (Example 9,17, the one-sided adhesive layer resin tape T 1 is stacked in a double structure) is.
Examples 5,6,13,14, the configuration shown in FIG. 4B (Example 5 and 13, with double-sided adhesive layer resin tape T 2 are stacked in double configuration) it is.
Example 20 has a structure as shown in FIG. 4C (structure-sided adhesive layer resin tape T 1 is stacked in a double).
Example 19 has a structure as shown in FIG. 4D (configuration with double-sided adhesive layer resin tape T 2 are stacked double).
Examples 7,8,15,16, the configuration shown in FIG. 5A (Example 7, 15, the one-sided adhesive layer resin tape T 1 is stacked in a double structure) is.
Examples 2,3,11,12, the configuration shown in FIG. 5B (Example 2, 11 is with double-sided adhesive layer resin tape T 2 are stacked in double configuration) it is.
Example 4 has the configuration shown in FIG. 5C.
Example 21 is a coated superconducting wire having the configuration shown in FIG. 2A (a configuration in which buffer layer tapes T with adhesive layers are laminated in a double layer).
In Comparative Example 1, a glass cloth prepreg tape was used.
 実施例1~21、および比較例1、2の各被覆超電導線材における緩衝層と接着層の厚さの総計を表1に併記した。また、各超電導コイルのIc/Ic0を計算し、その値が0.9より大きい超電導コイルは、加熱によって接着層が硬化した後(超電導線材の固定後)に低温で使用した際に、超電導線材の特性の劣化が抑制されていると判定され、表1において「良」で示した。判定結果を表1に併記した。また、比較例1の超電導コイルよりも緩衝層と接着層の厚さの総計が薄い超電導コイルの電流密度は、比較例1の超電導コイルの電流密度よりも高いため、電流密度の向上効果あると判定され、表1において「有」で示した。評価結果を表1に併記した。 Table 1 shows the total thickness of the buffer layer and the adhesive layer in each of the coated superconducting wires of Examples 1 to 21 and Comparative Examples 1 and 2. Also, Ic / Ic0 of each superconducting coil is calculated, and a superconducting coil whose value is greater than 0.9 is used when the adhesive layer is cured by heating (after fixing the superconducting wire) and is used at a low temperature. It was determined that the deterioration of the characteristics of the sample was suppressed, and was shown as “good” in Table 1. The determination results are also shown in Table 1. Moreover, since the current density of the superconducting coil in which the total thickness of the buffer layer and the adhesive layer is thinner than that of the superconducting coil of Comparative Example 1 is higher than the current density of the superconducting coil of Comparative Example 1, there is an effect of improving the current density. It was determined and indicated as “Yes” in Table 1. The evaluation results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果より、本発明に係る実施例1~21の超電導コイルは、加熱による超電導線材の固定後に、液体窒素温度まで冷却しても、超電導特性(臨界電流値)の低下が抑制されており、低温における超電導線材の劣化が抑制されていた。これに対し、超電導線材の周囲に、緩衝層を介さずに直接接着層が形成された比較例2では、加熱によって接着層が硬化した後(超電導線材の固定後)に液体窒素温度まで冷却すると、接着層が収縮してクラックが発生し、この収縮に起因した応力により超電導線材も変形、劣化し、Ic/Ic0<0.5と超電導特性が低下していた。また、実施例1~21の超電導コイルは、ガラスクロスプリプレグテープを使用した比較例1よりも、被覆超電導線材を薄型化することができるため、比較例1よりも電流密度の低下を抑制する効果が高いことが明らかである。 From the results shown in Table 1, in the superconducting coils of Examples 1 to 21 according to the present invention, even when the superconducting wire is fixed by heating and then cooled to the liquid nitrogen temperature, the decrease in superconducting characteristics (critical current value) is suppressed. The deterioration of the superconducting wire at a low temperature was suppressed. On the other hand, in Comparative Example 2 in which the adhesive layer was formed directly without a buffer layer around the superconducting wire, when the adhesive layer was cured by heating (after the superconducting wire was fixed), it was cooled to the liquid nitrogen temperature. Then, the adhesive layer contracted to generate cracks, and the superconducting wire also deformed and deteriorated due to the stress resulting from the contraction, and the superconducting characteristics were reduced to Ic / Ic0 <0.5. In addition, since the superconducting coils of Examples 1 to 21 can make the coated superconducting wire thinner than Comparative Example 1 using a glass cloth prepreg tape, the effect of suppressing a decrease in current density as compared with Comparative Example 1 can be reduced. Is apparently high.
 本発明の超電導コイルによれば、超電導線材を低温域で使用する際に生じる劣化を抑制でき、かつ電流密度が良好な酸化物超電導コイルが得られる。 According to the superconducting coil of the present invention, it is possible to obtain an oxide superconducting coil that can suppress deterioration that occurs when a superconducting wire is used in a low temperature region and that has a good current density.
 A 超電導コイル
 1(1A,1B,1C,1D,1E,1F,1G,1H,1J) 被覆超電導線材
 2 巻枠
 10 超電導線材
 11 基材
 12 中間層
 13 酸化物超電導層
 14 金属層
 20 緩衝層
 21 第1緩衝層
 22 第2緩衝層
 23 第3緩衝層
 30…接着層
A Superconducting coil 1 (1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1J) Coated superconducting wire 2 Winding frame 10 Superconducting wire 11 Base material 12 Intermediate layer 13 Oxide superconducting layer 14 Metal layer 20 Buffer layer 21 First buffer layer 22 Second buffer layer 23 Third buffer layer 30... Adhesive layer

Claims (12)

  1.  基材と、前記基材上に設けられた中間層と、前記中間層上に設けられた酸化物超電導層と、前記酸化物超電導層上に設けられた金属層とを備える超電導線材と、
     接着層と、
     前記接着層と前記超電導線材の前記金属層との間に配された緩衝層と、
     を備え、
     前記超電導線材が前記接着層を介して巻回するように形成されている
     ことを特徴とする超電導コイル。
    A superconducting wire comprising a base material, an intermediate layer provided on the base material, an oxide superconducting layer provided on the intermediate layer, and a metal layer provided on the oxide superconducting layer;
    An adhesive layer;
    A buffer layer disposed between the adhesive layer and the metal layer of the superconducting wire;
    With
    The superconducting coil is formed so that the superconducting wire is wound through the adhesive layer.
  2.  請求項1に記載の超電導コイルであって、
     前記接着層と前記超電導線材の前記金属層との間に複数の緩衝層が配されている
     ことを特徴とする超電導コイル
    The superconducting coil according to claim 1,
    A superconducting coil, wherein a plurality of buffer layers are arranged between the adhesive layer and the metal layer of the superconducting wire.
  3.  請求項1又は請求項2に記載の超電導コイルであって、
     前記超電導線材に近い位置に設けられた内側接着層と、前記内側接着層よりも前記超電導線材から離れた位置に設けられた外側接着層とを有する
     ことを特徴とする超電導コイル。
    The superconducting coil according to claim 1 or 2,
    A superconducting coil, comprising: an inner adhesive layer provided at a position near the superconducting wire; and an outer adhesive layer provided at a position farther from the superconducting wire than the inner adhesive layer.
  4.  請求項1から請求項3のいずれか一項に記載の超電導コイルであって、
     前記接着層は、半硬化状の熱硬化性樹脂が硬化された層である
     ことを特徴とする超電導コイル。
    The superconducting coil according to any one of claims 1 to 3,
    The superconducting coil, wherein the adhesive layer is a layer obtained by curing a semi-cured thermosetting resin.
  5.  請求項1又は請求項2に記載の超電導コイルであって、
     前記緩衝層が、絶縁層である
     ことを特徴とする超電導コイル。
    The superconducting coil according to claim 1 or 2,
    The superconducting coil, wherein the buffer layer is an insulating layer.
  6.  請求項5に記載の超電導コイルであって、
     前記絶縁層が、ポリイミドテープよりなる
     ことを特徴とする超電導コイル。
    The superconducting coil according to claim 5,
    The superconducting coil, wherein the insulating layer is made of polyimide tape.
  7.  請求項1又は請求項2に記載の超電導コイルであって、
     前記緩衝層が、安定化層である
     ことを特徴とする超電導コイル。
    The superconducting coil according to claim 1 or 2,
    The superconducting coil, wherein the buffer layer is a stabilization layer.
  8.  請求項7に記載の超電導コイルであって、
     前記安定化層が、銅又はニクロム合金よりなる
     ことを特徴とする記載の超電導コイル。
    The superconducting coil according to claim 7,
    The superconducting coil according to claim 1, wherein the stabilization layer is made of copper or a nichrome alloy.
  9.  請求項1から請求項8のいずれか一項に記載の超電導コイルであって、
     前記酸化物超電導層が、REBaCu(式中、REは希土類元素を表し、6.5<y<7.1である。)又はBiSrCan-1Cu4+2n+δ(式中、nは2又は3である。)なる組成の酸化物超電導体よりなる
     ことを特徴とする超電導コイル。
    The superconducting coil according to any one of claims 1 to 8,
    It said oxide superconducting layer is, REBa 2 Cu 3 O y (wherein, RE represents a rare earth element, 6.5 <y <a 7.1.) Or Bi 2 Sr 2 Ca n-1 Cu n O 4 + 2n + δ (In the formula, n is 2 or 3.) A superconducting coil comprising an oxide superconductor having the composition:
  10.  超電導コイルの製造方法であって、
     基材と、前記基材上に設けられた中間層と、前記中間層上に設けられた酸化物超電導層と、前記酸化物超電導層上に設けられた金属層とを備える超電導線材を準備し、
     前記接着層と前記超電導線材の前記金属層との間に緩衝層が配置するように、前記超電導線材を巻回する
     ことを特徴とする超電導コイルの製造方法。
    A method of manufacturing a superconducting coil, comprising:
    A superconducting wire comprising a substrate, an intermediate layer provided on the substrate, an oxide superconducting layer provided on the intermediate layer, and a metal layer provided on the oxide superconducting layer is prepared. ,
    The method of manufacturing a superconducting coil, wherein the superconducting wire is wound so that a buffer layer is disposed between the adhesive layer and the metal layer of the superconducting wire.
  11.  請求項10に記載の超電導コイルの製造方法であって、
     ポリイミドテープ、又は、ポリイミドテープの一面若しくは両面に半硬化状の熱硬化性樹脂が積層されたテープを前記超電導線材の外側にラップ巻きする
     ことを特徴とする超電導コイルの製造方法。
    It is a manufacturing method of the superconducting coil according to claim 10,
    A method for producing a superconducting coil, comprising wrap-wrapping a polyimide tape or a tape in which a semi-cured thermosetting resin is laminated on one or both sides of a polyimide tape around the outside of the superconducting wire.
  12.  請求項10に記載の超電導コイルの製造方法であって、
     テープ状の前記緩衝層の一面または両面に半硬化状の熱硬化性樹脂が形成された接着層付きテープを準備し、
     前記接着層付きテープを前記超電導線材の外側に巻く
     ことを特徴とする超電導コイルの製造方法。
    It is a manufacturing method of the superconducting coil according to claim 10,
    Preparing a tape with an adhesive layer in which a semi-cured thermosetting resin is formed on one or both sides of the buffer layer of the tape shape,
    The method for producing a superconducting coil, wherein the tape with an adhesive layer is wound around the outside of the superconducting wire.
PCT/JP2011/059078 2010-04-16 2011-04-12 Superconducting coil and method for manufacturing the same WO2011129325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-095378 2010-04-16
JP2010095378 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129325A1 true WO2011129325A1 (en) 2011-10-20

Family

ID=44798697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059078 WO2011129325A1 (en) 2010-04-16 2011-04-12 Superconducting coil and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2011129325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471534B1 (en) 2023-05-10 2024-04-19 三菱電機株式会社 High-temperature superconducting wire and coil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105A (en) * 1981-06-25 1983-01-05 Furukawa Electric Co Ltd:The Manufacture of superconducting coil
JPS6022304A (en) * 1983-07-18 1985-02-04 Hitachi Ltd Superconductive wire for winding
JPH07235227A (en) * 1993-12-28 1995-09-05 Furukawa Electric Co Ltd:The Superconductive cable and superconductive coil
JP2005011702A (en) * 2003-06-19 2005-01-13 Fujikura Ltd Superconducting tape wire material, and manufacturing device and manufacturing method of the same
JP2007012582A (en) * 2005-05-30 2007-01-18 Internatl Superconductivity Technology Center Re-based oxide superconductive wire rod joining method
JP2008140905A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2011108918A (en) * 2009-11-19 2011-06-02 Fujikura Ltd Superconductive coil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105A (en) * 1981-06-25 1983-01-05 Furukawa Electric Co Ltd:The Manufacture of superconducting coil
JPS6022304A (en) * 1983-07-18 1985-02-04 Hitachi Ltd Superconductive wire for winding
JPH07235227A (en) * 1993-12-28 1995-09-05 Furukawa Electric Co Ltd:The Superconductive cable and superconductive coil
JP2005011702A (en) * 2003-06-19 2005-01-13 Fujikura Ltd Superconducting tape wire material, and manufacturing device and manufacturing method of the same
JP2007012582A (en) * 2005-05-30 2007-01-18 Internatl Superconductivity Technology Center Re-based oxide superconductive wire rod joining method
JP2008140905A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2011108918A (en) * 2009-11-19 2011-06-02 Fujikura Ltd Superconductive coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471534B1 (en) 2023-05-10 2024-04-19 三菱電機株式会社 High-temperature superconducting wire and coil

Similar Documents

Publication Publication Date Title
JP5693784B2 (en) Superconducting wire and superconducting coil
JP5501541B1 (en) Oxide superconducting wire and superconducting coil
JP5841862B2 (en) High temperature superconducting wire and high temperature superconducting coil
EP2544198B1 (en) Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
JP5771751B2 (en) High temperature superconducting coil and superconducting equipment
JP2011228479A (en) Superconducting coil
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP2013247281A (en) Oxide superconducting coil
WO2011129245A1 (en) Superconducting wire material, superconducting coil, and superconducting protective device
JP2011108918A (en) Superconductive coil
WO2011129325A1 (en) Superconducting coil and method for manufacturing the same
JP2021061268A (en) Superconducting coil device
JP4835410B2 (en) Superconducting coil
JP2013134856A (en) Oxide superconducting wire material and method for manufacturing the same
JP6005428B2 (en) Superconducting coil and superconducting coil device
JP5694866B2 (en) Superconducting wire
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP2011258696A (en) Superconducting coil and method for manufacturing the same
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP5663244B2 (en) Method for producing enamel-coated superconducting wire
JP2013186966A (en) Oxide superconducting wire and manufacturing method therefor
WO2020203543A1 (en) Superconducting wire connecting structure, and superconducting wire
RU2575664C1 (en) Superconducting wire and superconducting coil
JP6214196B2 (en) Oxide superconducting coil and superconducting equipment provided with the same
JP2013225399A (en) Oxide superconducting wire rod and superconducting coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP