WO2011125972A1 - 観察装置及び観察方法 - Google Patents

観察装置及び観察方法 Download PDF

Info

Publication number
WO2011125972A1
WO2011125972A1 PCT/JP2011/058510 JP2011058510W WO2011125972A1 WO 2011125972 A1 WO2011125972 A1 WO 2011125972A1 JP 2011058510 W JP2011058510 W JP 2011058510W WO 2011125972 A1 WO2011125972 A1 WO 2011125972A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
observation
observation object
output
sensitive factor
Prior art date
Application number
PCT/JP2011/058510
Other languages
English (en)
French (fr)
Inventor
寛人 黒田
新 米谷
基芳 馬場
正行 高須
Original Assignee
株式会社Cadenz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Cadenz filed Critical 株式会社Cadenz
Priority to US13/639,786 priority Critical patent/US9080974B2/en
Publication of WO2011125972A1 publication Critical patent/WO2011125972A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02024Measuring in transmission, i.e. light traverses the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium

Definitions

  • the present invention relates to an observation apparatus and an observation method for observing an observation object.
  • contrast agent such as barium or a dye
  • these contrast agents are for obtaining a sensitizing effect (contrast improvement, etc.) of a captured image by creating a shadow in the observation object when the observation object is irradiated with X-rays or the like.
  • the role and the like are essentially different from the sensitive factor of the present invention.
  • the problem to be solved by the present invention is to provide an observation apparatus and an observation method capable of clearly acquiring information related to a boundary portion where the medium inside the observation object changes.
  • the electromagnetic waves are output and output.
  • An output unit that changes the dipole moment of the sensitive factor contained in the observation object by electromagnetic waves, a signal electromagnetic wave that arrives through the observation object among the electromagnetic waves output by the output unit, and the observation object
  • a detection unit that detects a reference electromagnetic wave that arrives without passing through, and an analysis unit that analyzes a structure of the observation object based on a detection result of the detection unit, and the electromagnetic wave output by the output unit is Pulsed laser light that is intermittently output in a pulse shape, and the wavelength of the electromagnetic wave output by the output unit is before absorption of the irradiated electromagnetic wave by the sensitive factor occurs. It is set within the absorption wavelength band of the induction factor.
  • a sensitivity factor introduction stage for introducing a sensitivity factor that changes the dipole moment in response to electromagnetic waves in the observation object;
  • An electromagnetic wave is output from the output unit, and the signal electromagnetic wave arriving through the observation object among the electromagnetic waves output from the output unit while changing the dipole moment of the sensitive factor in the observation object by the output electromagnetic wave.
  • the electromagnetic wave output from the laser beam is pulsed laser light that is intermittently output in a pulse shape, and the wavelength of the electromagnetic wave output from the output unit is irradiated by the sensitive factor. Absorption of electromagnetic waves is set in said absorption wavelength bands of the induction factor occurring.
  • the dipole moment of the sensitive factor changes includes not only the change in magnitude or direction of the dipole moment of the sensitive factor but also the induction of the dipole moment from the state of noness. .
  • an electromagnetic wave is output from the output unit to the observation target, and the signal electromagnetic wave arriving through the observation target among the electromagnetic waves output from the output unit by the detection unit, and the observation target
  • a reference electromagnetic wave that arrives without passing through an object is detected, and the structure of the observation object is analyzed based on the detection result of the detection unit.
  • the signal electromagnetic wave and the reference electromagnetic wave are detected while changing the dipole moment of the sensitive factor included in the observation object by the output electromagnetic wave.
  • the boundary part where the medium in the observation object changes if a sensitivity factor is included on either side of the boundary part, due to the change of the dipole moment of the sensitivity factor, The dielectric constant of the medium containing the sensitive factor changes. For this reason, it is possible to positively generate a difference in the dielectric constant values of the media on both sides of the boundary, or to positively increase the difference in the dielectric constant values.
  • the electromagnetic wave is accurately reflected at the boundary of the medium in the observation object.
  • signal electromagnetic waves that have passed through the observation object and reference electromagnetic waves that have not passed through the observation object are detected, and the reference electromagnetic wave and the signal electromagnetic wave are compared, for example. Can be obtained in a simple state. For example, based on the reference electromagnetic wave and based on the degree of change of the signal electromagnetic wave generated by passing through the observation object, information on the boundary portion of the medium in the observation object can be acquired in a clear state.
  • a signal electromagnetic wave transmitted through an observation object is detected by a detection unit.
  • the signal electromagnetic wave detected by the detection unit includes one or a plurality of reflected wave components reflected a plurality of times (for example, even number of times) at the surface of the observation object or the boundary portion of the medium inside thereof.
  • the phase of the reflected wave component changes as it enters the detection unit as the path length caused by reflection increases.
  • the boundary of the medium in the observation object by detecting information on the phase difference between the phase of the reference electromagnetic wave and the phase of the reflected wave component included in the signal electromagnetic wave, for example, based on the information on the detected phase difference, the boundary of the medium in the observation object.
  • the distance along the incident direction of the electromagnetic wave between the part and the surface of the observation object, or the distance along the incident direction of the electromagnetic wave between the boundary portions of the medium in the observation object can be detected.
  • the signal electromagnetic wave detected by the detection unit includes one or a plurality of reflected wave components that are reflected one or more times (for example, an odd number of times) at the surface of the observation target or the boundary portion of the medium inside thereof. ing.
  • the phase of the reflected wave component changes as it enters the detection unit as the path length caused by reflection increases.
  • the boundary of the medium in the observation object By detecting information on the phase difference between the phase of the reference electromagnetic wave and the phase of the reflected wave component included in the signal electromagnetic wave, for example, based on the information on the detected phase difference, the boundary of the medium in the observation object The distance along the incident direction of the electromagnetic wave between the part and the surface of the observation object, or the distance along the incident direction of the electromagnetic wave between the boundary portions of the medium in the observation object can be detected. Furthermore, in this case, when a plurality of reflected wave components are included in the signal electromagnetic wave, the reflected wave component whose phase is delayed is the deeper boundary along the incident direction from the incident surface of the electromagnetic wave to the observation object. It can be seen that the reflected wave component is reflected by the reflection surface such as a part and returned.
  • the information regarding the position (for example, depth etc.) on the basis of the incident surface of the observation target of the reflection target such as the boundary portion where the electromagnetic wave is reflected in the observation target can be acquired. Furthermore, based on the acquired information, for example, information on the shape, size, and the like of the boundary portion of the medium in a cross section obtained by cutting the observation object in an arbitrary cross section can be acquired.
  • the medium in the observation object is acquired based on the detection result. It is also possible to acquire information related to the boundary portion. For example, when a region (for example, an object) having different surroundings and medium exists in the observation target, an electromagnetic wave incident on the observation target is reflected on the surface of the region (a boundary portion of the medium). For this reason, in the portion where the region exists when viewed from the irradiation side of the electromagnetic wave in the observation target, the observation target is not affected by the reflection on the surface of the region compared to other portions where the region does not exist.
  • the intensity of the signal electromagnetic wave emitted to the side opposite to the electromagnetic wave irradiation side decreases, and the intensity of the signal electromagnetic wave emitted from the observation object to the electromagnetic wave irradiation side increases. Therefore, by observing the distribution of the intensity of the signal electromagnetic wave emitted from the observation object when viewed from the electromagnetic wave irradiation side to the electromagnetic wave irradiation side or the opposite side of the irradiation side, based on the intensity of the reference electromagnetic wave, the observation object It is possible to acquire information related to the outer shape or size of the medium existing in the region (for example, an object) as viewed from the electromagnetic wave irradiation side.
  • the electromagnetic wave irradiation side As another example, based on only the distribution of the intensity of the signal electromagnetic wave emitted from the observation object when viewed from the electromagnetic wave irradiation side to the electromagnetic wave irradiation side or the opposite side of the irradiation side without using the reference electromagnetic wave.
  • the electromagnetic wave output from the output unit is pulsed laser light that is coherent light. For this reason, the dipole moment of the sensitive factor contained in the observation object can be effectively changed in conjunction with the phase of the laser light by the laser light output from the output unit, which allows the dielectric constant in the observation object to be changed.
  • the distribution can be changed effectively.
  • the laser beam output from the output unit is a pulsed laser beam that is intermittently output in the form of pulses
  • the intensity of each pulse of the pulsed laser beam while suppressing the output level of the pulsed laser beam per unit time can be increased.
  • the dipole moment of the sensitive factor is effectively changed by causing the large-amplitude electromagnetic wave generated by the laser beam to act on the sensitive factor in the observation target.
  • the output level of the pulse laser beam per unit time is suppressed, the influence on the observation object due to the irradiation of the pulse laser beam can be suppressed.
  • the pulse wavelength width (bandwidth) can be increased by the uncertainty principle.
  • Information on the structure of the cross section along the irradiation direction of the pulsed laser light in the observation object based on the phase difference between the reflected light of the pulsed laser light applied to the observation object and the reference light that has not passed through the observation object
  • the resolution with respect to the irradiation direction of the cross section of the observation object can be improved by increasing the pulse wavelength width (band width) of the pulse laser beam.
  • the wavelength of the electromagnetic wave output from the output unit is absorbed by the sensitive factor when the electromagnetic wave is irradiated to the sensitive factor. It was found that when the sensitive factor was set to a value within the absorption wavelength band, the dipole moment change could be effectively induced in the sensitive factor by the irradiated electromagnetic wave. In other words, it has been found that even when the sensitive factor is irradiated with an electromagnetic wave having a wavelength that does not cause the sensitive factor to absorb the electromagnetic wave, an effective change in the dipole moment of the sensitive factor does not occur.
  • the combination of the electromagnetic wave wavelength and the type of the sensitive factor was determined by complicated trial and error.
  • a preferable combination of the wavelength of the electromagnetic wave and the type of the sensitive factor can be easily determined.
  • the sensitive factor can be advantageously selected.
  • the sensitive factor introduction stage a sensitive factor that changes the dipole moment in response to electromagnetic waves is actively introduced into the observation object.
  • the information regarding the structure of the part can be acquired in a clearer state by introducing a sensitive factor into a part (for example, a part of a medium, a structure, or the like) to be observed in the observation object.
  • the observation apparatus 1 includes an output unit 11, a detection unit 12, a control unit 13, a display unit 14, and an operation unit 15. Used for structure observation.
  • the control unit 13 mainly corresponds to the analysis unit of the present invention.
  • the control unit 13 also plays a role in detecting a phase difference between a reference electromagnetic wave 32 and a signal electromagnetic wave 33 described later.
  • the Z direction is the front direction when facing the observation object 2 side from the output unit 11, the direction in which the electromagnetic wave is irradiated, the incident direction in which the electromagnetic wave is incident on the observation object 2, or
  • the electromagnetic wave that has passed through the observation object 2 or reflected by the observation object 2 when viewed from the detection unit 12 generally corresponds to the arrival direction in which the electromagnetic wave arrives.
  • the X direction and the Y direction are directions perpendicular to the Z direction and are perpendicular to each other.
  • the observation object 2 includes a plurality of media, and at least one of the plurality of media includes a sensitive factor that changes the dipole moment in response to electromagnetic waves.
  • the sensitive factor is included in the medium of the observation object 2 in a normal state, the observation object is observed before or during the observation using the observation apparatus 1.
  • the material is positively introduced into the medium of the object 2.
  • sensitive factors include physiologically active substances.
  • the step of introducing the sensitive factor is referred to as a sensitivity factor introduction stage, and the observation object 2 is irradiated with the electromagnetic wave of the output unit 11 to be observed.
  • the process of observing the internal structure of the object 2 is called an observation stage.
  • the introduction of the sensitivity factor in the sensitivity factor introduction step is performed by, for example, penetrating the sensitivity factor into the observation object 2 through the surface of the observation object 2 or through gaps between a plurality of media appearing on the surface.
  • the method to introduce is mentioned. In this case, a method of immersing the observation object 2 in a liquid sensitive factor or a method of spraying or applying a liquid sensitive factor on the surface of the observation object 2 can be employed.
  • Another method for introducing the sensitive factor is a method of injecting a liquid sensitive factor into the observation object 2.
  • a method of injecting a liquid sensitive factor into a predetermined part (for example, a predetermined medium or internal structure) in the observation object 2 using a predetermined injection device or the like can be employed.
  • the observation object 2 in FIG. 2 includes a medium 21 that forms the basic structure of the observation object 2 and a medium 22 that is embedded in the medium 21.
  • the sensitive factor is contained in the medium 22, for example.
  • an observation regarding the shape, size, and the like of a portion where the medium 22 exists inside the observation object 2 is performed.
  • the output unit 11 outputs an electromagnetic wave 31 in the direction (plus Z direction) in which the observation target object 2 is installed under the control of the control unit 13, and the sensitive factor included in the observation target object 2 is output by the output electromagnetic wave 31. Change the dipole moment. More specific contents of the electromagnetic wave 31 to be output to the output unit 11 will be described later.
  • the detection unit 12 controls the reference electromagnetic wave 32 that arrives through the observation object 2 and the signal electromagnetic wave 33 that arrives through the observation object 2 among the electromagnetic waves 31 output by the output unit 11 under the control of the control unit 13. To detect. More specifically, the detection unit 12 includes a first detection unit 121, a second detection unit 122, a first drive unit 123, a second drive unit 124, and a signal processing unit 125.
  • the first detection unit 121 is disposed at a position facing the output unit 11 along the Z direction with the observation object 2 interposed therebetween. Then, the first detection unit 121 detects the reference electromagnetic wave 32 under the control of the control unit 14, converts the detected reference electromagnetic wave 32 into an electrical signal (first detection signal), and provides the signal processing unit 125 with the electrical signal.
  • the second detection unit 122 is arranged at a position that is not hidden behind the observation object 2 when the observation object 2 is viewed from the output unit 11 on the plus Z direction side with respect to the observation object 2. Then, the second detection unit 122 detects the signal electromagnetic wave 33 under the control of the control unit 14, converts the detected signal electromagnetic wave 33 into an electric signal (second detection signal), and provides the signal processing unit 125 with the electric signal.
  • the electromagnetic wave 31 output from the output unit 11 is transmitted from the output unit 11 and then propagates while spreading outward. For this reason, a part of the electromagnetic wave 31 also enters the first detection unit 121 arranged at a position off the output axis of the electromagnetic wave 31 output from the output unit 11.
  • a more specific configuration of the first and second detection units 121 and 122 includes, for example, a reception antenna, a reception circuit, and the like.
  • the second detection unit 122 is disposed at a position facing the output unit 11 with the observation object 2 interposed therebetween. Then, the second detection unit 122 outputs the observation object 2 out of the electromagnetic wave 31 output from the output unit 11 and incident on the observation object 2 to the side opposite to the irradiation side where the output unit 11 is located (plus Z direction). The transmitted electromagnetic wave 31 is detected as a signal electromagnetic wave 33. As a modification regarding this point, as shown in FIG. 3, the second detection unit 122 as viewed from the observation object 2 may be arranged on the irradiation side (minus Z direction side) of the electromagnetic wave 31 where the output unit 11 is arranged. May be.
  • the second detection unit 122 uses, as the reference electromagnetic wave 32, the electromagnetic wave 31 reflected from the observation object 2 in the minus Z direction among the electromagnetic waves 31 output from the output unit 11 and incident on the observation object 2.
  • the first detection unit 121 may also be arranged on the minus Z direction side of the observation object 2.
  • the electromagnetic wave 31 output from the output unit 11 is reflected by a reference object that reflects the electromagnetic wave and is incident on the first detection unit 121.
  • the first detection unit 121 is installed to be movable along the Z direction.
  • the first drive unit 123 moves the first detection unit 121 along the Z direction under the control of the control unit 13.
  • the path length of the electromagnetic wave 31 from the output unit 11 to the detection by the first detection unit 121 can be changed.
  • the first drive unit 123 detects the relative position change of the phase of the reference electromagnetic wave 32 and the phase of the signal electromagnetic wave 33 while moving the first detection unit 121 along the Z direction.
  • information regarding the phase difference between the reference electromagnetic wave 32 and the signal electromagnetic wave 33 can be easily obtained.
  • the second detection unit 122 can be moved along the Z direction instead of the first detection unit 121, and the second detection unit 122 is moved to the Z direction by a second drive unit 124 described later. You may make it move along a direction. In this case, the first drive unit 123 may be omitted.
  • the second detection unit 122 is installed so as to be independently movable along each of the X and Y directions.
  • the second drive unit 124 moves the second detection unit 122 independently along the X and Y directions under the control of the control unit 13.
  • the second detection unit 122 may be moved along only one of the X and Y directions by the second driving unit 124.
  • the first detection unit 121 and the second detection unit 122 are substantially equivalent to each other when the electromagnetic wave 31 is detected in a state where the observation object 2 is not arranged (reference setting state). It is set to be.
  • this reference setting state for example, the path length of the electromagnetic wave 31 from the first detection unit 121 to the output unit 11 is substantially equal to the path length of the electromagnetic wave 31 from the first detection unit 121 to the output unit 11. Is set to The position of the first detection unit 121 at this time is set as a reference setting position.
  • the signal processing unit 125 performs processing such as signal processing or detection processing on the first and second detection signals given from the first and second detection units 121 and 122 under the control of the control unit 13, The result is given to the control unit 13.
  • processing such as signal processing or detection processing on the first and second detection signals given from the first and second detection units 121 and 122 under the control of the control unit 13, The result is given to the control unit 13.
  • an operational amplifier may be incorporated in the signal processing unit 125 and various arithmetic processes may be performed on the first and second detection signals.
  • the control unit 13 performs control processing of the observation apparatus 1 and analysis processing related to the structure of the observation object 2 based on the detection result of the reference electromagnetic wave 32 and the signal electromagnetic wave 33 by the detection unit 12.
  • the display unit 14 displays operation information for operating the observation apparatus 1 and an image related to the structure of the observation object 2 by the control unit 13. Examples of the image displayed by the display unit 14 include, for example, an image showing a cross-sectional structure of the observation object 2 (for example, boundary portions 23a and 23b of the media 21 and 22 described later).
  • the operation unit 15 receives an operation input for the observation apparatus 1.
  • the operation of the observation apparatus 1 (particularly, the control unit 13) and how information related to the structure of the observation object 2 is acquired using the observation apparatus 1 will be described.
  • the sensitive factor is applied to a part of the observation object 2 (for example, any one of the media 21 and 22). You may make it introduce.
  • the output unit 11 outputs an electromagnetic wave 31 to the observation object 2, and the first and second detection units 121 and 122 of the detection unit 11 detect the reference electromagnetic wave 32 and the signal electromagnetic wave 33, respectively. Is done.
  • the first and second detection signals which are the detection results, are given to the signal processing unit 125, and processing on the first and second detection signals is performed by the signal processing unit 125.
  • the processing in the signal processing unit 125 includes mixing processing of the first detection signal and the second detection signal, correlation processing (multiplication, etc.), detection of the intensity of each detection signal, or detection of the intensity difference between them. Can be mentioned.
  • the result of the processing in the signal processing unit 125 is given to the control unit 13 and used for analyzing the structure of the observation object 2 and generating a display image related to the structure.
  • the reference electromagnetic wave 32 and the signal electromagnetic wave 33 are detected while changing the dipole moment of the sensitive factor included in the observation object 2 by the output electromagnetic wave 31.
  • the dipole moment of the sensitive factor in the observation object 2 is positively changed by the electromagnetic wave 31, so that the dipole moment of the sensitive factor is changed in the observation object 2 while the electromagnetic wave 31 is being irradiated.
  • the distribution of the dielectric constant in the observation object 2 changes.
  • the dielectric constant that is, the refractive index of the medium 22 changes due to a change in the dipole moment of the sensitive factor.
  • the electromagnetic wave 31 needs to be a coherent electromagnetic wave. This is because if the phases of the electromagnetic waves 31 are not aligned, when the electromagnetic waves 31 are incident on the observation object 2, the electromagnetic field associated with the electromagnetic waves 31 acts on the sensitive factors in the observation object 2 with different phases. This is because the action of the sensitive factor on the dipole moment by the electromagnetic wave 31 also varies, and an effective change in the dipole moment of the sensitive factor cannot be obtained.
  • a coherent electromagnetic wave as the electromagnetic wave 31 the dipole moment of the sensitive factor can be effectively changed in conjunction with the phase of the electromagnetic wave by the electromagnetic wave 31, and thereby the permittivity distribution in the observation object 2 is effectively changed. Can be changed.
  • radio waves for example, microwaves, etc.
  • radio waves that have a longer wavelength than light and are generated by an antenna are coherent in a normal state unless aggressive scattering processing such as passing through an interference grating is performed.
  • coherent light that is, laser light.
  • the wavelength of the electromagnetic wave 31 is preferably set to a value belonging to an absorption wavelength band in which the electromagnetic wave is absorbed by the sensitive factor included in the observation object 2.
  • the sensitive factor when a sensitive factor is positively introduced into the observation object 2 during observation, the sensitive factor includes the wavelength of the electromagnetic wave 31 output from the output unit 11 within the effective absorption wavelength band. It is preferable to select a factor and introduce it into the observation object 2.
  • the change of the dipole moment of the sensitive factor due to the irradiation of the electromagnetic wave 31 is a kind of quantum state change
  • the irradiation is performed when the change of the dipole moment of the sensitive factor occurs. It is considered that a part of the absorbed electromagnetic wave 31 is absorbed by the sensitive factor, and the energy of the absorbed electromagnetic wave 31 is converted into a change in the dipole moment. For this reason, even if the sensitive factor is irradiated with the electromagnetic wave 31 having a wavelength at which absorption is not performed, it is considered that the dipole moment of the sensitive factor does not change.
  • the reason why the lower limit (lower reference level) of the effective absorption wavelength band is set is that an effective change in the distribution of the dielectric constant in the observation object 2 occurs if there is no absorption of the electromagnetic wave 31 above a predetermined level by the sensitive factor. This is because the change of the dipole moment of the sensitive factor that can only be made is not obtained.
  • the upper limit (upper reference level) of the effective absorption wavelength band is set because the sensitivity of the electromagnetic wave 31 irradiated to the observation object 2 depends on the sensitivity factor when the sensitivity of the electromagnetic wave 31 by the sensitive factor is excessively large.
  • the lower limit reference level of the effective absorption wavelength band is set to, for example, about 0.22 (for example, 0.22), and the upper limit reference level is set to, for example, about 3 (for example, 3).
  • the combination of the wavelength of the electromagnetic wave 31 and the type of the sensitive factor was determined by complicated trial and error.
  • a preferable combination of the wavelength of the electromagnetic wave 31 and the type of the sensitive factor can be easily determined by utilizing the relationship between the electromagnetic wave absorption characteristics of the sensitive factor and the wavelength of the electromagnetic wave 31 for observation.
  • the sensitive factor can be advantageously selected.
  • the energy of the electromagnetic wave 31 absorbed by the sensitive factor is converted not only to the change of the dipole moment but also to other quantum-theoretical state changes such as a thermal vibration mode. For this reason, it is not easy to measure how much of the energy of the electromagnetic wave 31 absorbed by the sensitive factor is converted into the change of the dipole moment.
  • the effective absorption wavelength band of the sensitive factor can be examined relatively easily, the selection work can be dramatically improved by selecting a preferable combination of the wavelength of the electromagnetic wave 31 and the type of the sensitive factor. Is done.
  • the sensitive factor includes not only a sensitive substance itself that generates electromagnetic wave sensitivity in which the dipole moment is changed by receiving the electromagnetic wave 31, but also a solution (sensitive solution) in which such a sensitive substance is dissolved in a solvent. .
  • a sensitive solution that is a liquid is preferable because the introduction process is easier.
  • the visible to near-infrared wavelength region has the following technical meaning.
  • the upper limit of the specific example of the wavelength of the laser beam used as the electromagnetic wave 31 is set to the near infrared region because the resolution at the time of acquiring information about the cross-sectional structure of the observation object 2 deteriorates when the wavelength is longer than that. Because.
  • the technique of this embodiment is applied to the observation object 2 including water (for example, a living tissue such as a human fundus). This is because it cannot be effectively applied to observation.
  • the lower limit of the specific example of the wavelength of the laser light is set in the visible region because ultraviolet light has a great influence on living tissue and is not suitable for observation of human tissue. Therefore, by using laser light belonging to the visible to near-infrared wavelength region as the electromagnetic wave 31, information regarding the cross-sectional structure of the observation object 2 such as a living tissue can be acquired with an advantageous resolution.
  • the range of the wavelength of the laser beam used as the electromagnetic wave 31 is indicated by a numerical value, it is about 360 nm or more (for example, 360 nm or more) and about 2.5 ⁇ m or less (for example, 2.5 ⁇ m or less).
  • ICG indocyanine Green
  • the reason why water is included in the test sample is based on the electromagnetic wave sensitivity effect of water (the effect of changing the dipole moment in response to the electromagnetic wave), which is a main component of living tissue. That is, when a living tissue is selected as the observation object 2, in order to function effectively as a sensitive factor, it is necessary to exhibit an electromagnetic wave sensitive effect superior to water. From this point of view, when the observation object 2 is a living tissue, a dipole moment (or dielectric constant) of water with respect to the observation electromagnetic wave 31 (for example, laser light of a specific wavelength) is a characteristic required for the sensitive factor. It can be said that the dipole moment (or dielectric constant) of the sensitive factor needs to change with a degree of change higher than the degree of change.
  • the absorbance is measured using a light source unit 41 that can irradiate light of a specific wavelength and a light receiving unit 42 that detects the intensity of incident light.
  • the wavelength of the light output from the light source unit 41 can be changed.
  • the light source unit 41 is provided with two light emitting ports for measurement and reference, and the light receiving unit 42 is also provided with two light receiving portions for measurement and reference.
  • a quartz cell 43 in which a solution to be a test sample is placed is placed between the light emission port for measurement of the light source unit 41 and the light reception unit for measurement of the light reception unit 42, and light for measurement of the light source unit 41 is placed.
  • An empty reference quartz cell 43 containing nothing is placed between the emission port and the light receiving unit for measurement of the light receiving unit 42.
  • the light of each wavelength emitted from each light emission port of the light source unit 41 is transmitted through the quartz cell 43 containing the test solution and the empty reference quartz cell 43, respectively, to each light receiving portion of the light receiving unit 42. Receive light and detect the received light intensity. Subsequently, using the received light intensity of the reference light receiving unit as a reference, the received light intensity of the measurement light receiving unit is divided by the received light intensity, and the logarithmic value of the divided value is used as the absorbance of each wavelength. Thereby, the absorbance at each wavelength of the test sample can be measured while excluding the influence of the container (quartz cell) for storing the test sample.
  • 6 to 9 are graphs showing the measurement results (absorption wavelength spectrum) of the absorbance of each test sample, the horizontal axis indicates the wavelength of the irradiated light, and the vertical axis indicates the absorbance of each wavelength.
  • 6 shows the absorption wavelength spectrum of the brilliant blue aqueous solution
  • FIG. 7 shows the absorption wavelength spectrum of the pentacene ethanol solution
  • FIG. 8 shows the absorption wavelength spectrum of the ICG aqueous solution
  • FIG. 9 shows the absorption wavelength spectrum of water.
  • concentration of medium such as ICG dissolved in each solution.
  • the solute concentration may be set low.
  • the detection target 2 is a living tissue or the like, it is necessary to set the medium concentration in consideration of the influence on the living tissue.
  • the above effective absorption wavelength band for the brilliant blue aqueous solution is, for example, in the range of about 500 nm to about 750 nm.
  • the effective absorption wavelength band of the pentacene ethanol solution is, for example, in the range of about 430 nm to about 880 nm.
  • the effective absorption wavelength band of the ICG aqueous solution is in the range of about 500 nm to about 950 nm, for example. From the measurement results of FIG.
  • the effective absorption wavelength band of water is, for example, in the range of about 900 nm to about 1050 nm and in the range of 1120 nm to 1300 nm, and there are several absorption wavelength bands in the infrared region. .
  • the absorption wavelength band of water is distributed on the longer wavelength side than the visible region, the absorption wavelength characteristics in the visible region of the brilliant blue aqueous solution and the ICG aqueous solution are mainly solutes. It turns out that it depends on the influence of brilliant blue and ICG.
  • ethanol does not have an absorption wavelength band in the visible region, it can be understood that the absorption wavelength characteristic in the visible region of the pentacene ethanol solution is mainly due to the influence of pentacene.
  • the wavelength of light (laser light) used as the electromagnetic wave 31 for observation is specifically specified, and it is examined which of the above four types of test samples is preferable as a sensitive factor.
  • the wavelength of the laser beam is about 800 nm
  • the ICG aqueous solution contains the wavelength of 800 nm near the center of the effective absorption wavelength band, so that it can be understood that it is most preferable as a sensitive factor.
  • the pentacene ethanol solution can also be used as a sensitive factor because it contains a wavelength of 800 nm although it is at the bottom of the effective absorption wavelength band.
  • the brilliant blue aqueous solution and water do not include a wavelength of 800 nm within the effective absorption wavelength band, and thus it is difficult to use as a sensitive factor.
  • the test since the test is actually performed using the optical coherence tomography shown in FIG. 12 described later, the test result will be described later.
  • physiologically active substances such as pigments (including organic pigments and inorganic pigments) can be mentioned.
  • pigments including organic pigments and inorganic pigments
  • Various pigments are known, but many pigments have an absorption wavelength band that absorbs light in the visible to near-infrared wavelength region. For this reason, by using a dye as the sensitive factor, the degree of freedom of the combination of the wavelength of the electromagnetic wave for observation and the dye used as the sensitive factor can be expanded.
  • an organic dye is used as a sensitive factor, there is an advantage that the organic dye present in the living tissue can be used as the sensitive factor because many organic dyes exist in the living tissue.
  • physiologically active substances examples include proteins, cholesterol, fat globules, lipids, erythrocytes, leukocytes, and platelets.
  • sensitive factors examples include water, ice, alcohol, glass, quartz, diamond, plastic, and semiconductor.
  • the laser beam used as the electromagnetic wave 31 is preferably a pulsed laser beam that is intermittently output in a pulse shape.
  • pulsed laser light for example, ultrashort pulsed laser light
  • the intensity of each pulse of the pulsed laser light while suppressing the output level of the pulsed laser light per unit time (Amplitude) can be increased.
  • the dipole moment of the sensitive factor is effectively changed by causing a large-amplitude electromagnetic wave from the laser light to act on the sensitive factor in the observation object 2.
  • the output level of the pulse laser beam per unit time is suppressed, the influence on the observation object 2 by irradiation with the pulse laser beam can be suppressed.
  • the pulse wavelength width (bandwidth) can be increased by the uncertainty principle.
  • the cross-sectional structure along the irradiation direction of the pulse laser light in the observation object 2 based on the phase difference between the reflected light of the pulse laser light irradiated on the observation object 2 and the reference light that has not passed through the observation object 2 In the case of acquiring information on the relationship, the resolution with respect to the irradiation direction of the cross section of the observation object 2 can be improved by increasing the pulse wavelength width (band width) of the pulse laser beam.
  • the pulse laser beam intermittently output at a predetermined pulse period is intermittently emitted at an intermittent period larger than the pulse period.
  • the pulse time width of the pulse laser beam used as the electromagnetic wave 31 is such that the electromagnetic wave emission accompanying the state transition from the sensitive factor in the observation object 2 excited by the pulse laser light after the pulse laser light is incident on the observation object 2. It is preferably shorter than the length of time until it is done.
  • the pulse time width is the so-called full width at half maximum, and is the width of the pulse waveform when the pulse waveform is cut along the horizontal axis at the half value portion of the peak value.
  • the full width at half maximum also refers to the pulse wavelength width described later.
  • the pulse time width of the pulsed laser light is such that electromagnetic waves are emitted due to state transitions from sensitive factors in the observed object 2 excited by the pulsed laser light after the pulsed laser light is incident on the observed object 2. It becomes shorter than the time length (for example, the order of about 100 microseconds) until it is done.
  • the change in the dipole moment of the sensitive factor due to the pulsed laser light in the observation object 2 occurs almost simultaneously with the incidence of the pulsed laser light on the observation object 2, and in the observation object 2 excited by the pulsed laser light. It is earlier than the timing at which light emission accompanying the state transition is made from the sensitive factor.
  • the dipole moment of the sensitive factor is changed before the light emission accompanying the state transition from the sensitive factor is changed, and the dielectric in the observation object 2 is changed.
  • the distribution of the rate changes, and the pulse laser beam affected by the change in the distribution of the dielectric constant is emitted out of the observation object 2 as reflected light or transmitted light.
  • the structure in the observation object 2 using the pulse laser light is not affected by the emitted light emitted from the sensitive factor in the observation object 2 excited by the pulse laser light along with the state transition. Information can be acquired.
  • the pulse time width of the pulse laser beam used as the electromagnetic wave 31 is set to a value of 10 femtoseconds or more (for example, 10 femtoseconds or more) and 1 picosecond or less (for example, 1 picosecond or less). Is preferred. That is, it is preferable to use femtosecond pulsed laser light having a pulse time width of femtosecond scale as the pulsed laser light used as the electromagnetic wave 31. Such a pulse laser beam having an extremely short pulse time width may be referred to as an ultrashort pulse laser beam.
  • the lower limit of the pulse time width of the pulse laser beam is set to 10 femtoseconds.
  • the pulse laser beam having a pulse time width of less than 10 femtoseconds has an increased pulse time width due to dispersion when passing through the optical system. This is because it is large and difficult to generate.
  • the upper limit of the pulse time width is set to 1 picosecond because the pulse wavelength width of the pulsed laser light, which is determined in relation to the pulse time width by the uncertainty principle, becomes smaller when the pulse time width is longer than 1 picosecond. This is because the resolution at the time of observing the cross-sectional structure or the like of the imaging object 2 is too low.
  • the pulse time width of the pulse laser beam is about 10 femtoseconds, resolution of about 1 ⁇ m or finer than that can be expected, and if it is about 100 femtoseconds, resolution of about 1 to 3 ⁇ m can be expected. If it is about picoseconds, a resolution of about 10 ⁇ m or larger can be expected.
  • the pulse time width of the pulse laser beam used as the electromagnetic wave 31 to a value of 10 femtoseconds or more and 1 picosecond or less, while suppressing the output level of the pulse laser per unit time,
  • the intensity (amplitude) of each pulse By increasing the intensity (amplitude) of each pulse, the dipole moment of the sensitive factor in the observation object 2 can be effectively changed by the pulse laser beam.
  • information regarding the cross-sectional structure and the like of the observation object 2 can be acquired with high resolution.
  • pulsed laser light examples include those shown in FIGS.
  • the pulse time width of the pulse laser light is about 100 femtoseconds, and the pulse wavelength width is about 15 nm.
  • the peak wavelength of this pulse laser beam (the wavelength at the peak of the pulse waveform) is about 795 nm.
  • the observation object 2 When the observation object 2 is irradiated with the electromagnetic wave 31, as shown in FIG. 4, the surfaces 2 a and 2 b in the minus Z direction side and the plus Z direction of the observation object 2 and the boundary between the medium 21 and the medium 22. Reflection of the electromagnetic wave 31 may occur at the portions 23a and 23b.
  • the signal electromagnetic wave 33 detected by the second detection unit 122 when a transmitted wave is detected by the second detection unit 122, the signal electromagnetic wave 33 detected by the second detection unit 122 includes the surface 2 a, 2 b of the observation object 2 or One or a plurality of reflected wave components reflected a plurality of times (for example, an even number of times) at the boundary portions 23a and 23b of the mediums 21 and 22 therein are included.
  • the phase of the reflected wave component changes when it enters the second detection unit 122 as the path length caused by the reflection increases. Therefore, by detecting information regarding the phase difference between the phase when the reference electromagnetic wave 32 is incident on the first detection unit 121 and the phase of the reflected wave component included in the signal electromagnetic wave 33, information regarding the detected phase difference is detected. For example, the distance along the Z direction between the boundary portions 23a and 23b of the mediums 21 and 22 in the observation object 2 and the surfaces 2a and 2b of the observation object 2 or the medium 21 in the observation object 2 , 22 can be detected in the Z direction between the boundary portions 23a and 23b.
  • the reflection of the electromagnetic wave 31 at the boundary portions 23a and 23b among the surfaces 2a and 2b and the boundary portions 23a and 23b of the observation object 2 is most prominent.
  • the reflected wave component 33a that is reflected once at the boundary portions 23a and 23a (two times in total) and emitted in the plus Z direction Based on the information related to the phase difference from the reference electromagnetic wave 32, the distance along the Z direction between the boundary portions 23a and 23b can be detected.
  • the detection of the information regarding the phase difference between the reference electromagnetic wave 32 and the reflected wave component included in the signal electromagnetic wave 33 is performed as follows, for example. While detecting the reference electromagnetic wave 32 and the signal electromagnetic wave 33, the first detection unit 121 is moved in the Z direction (for example, plus Z direction) from the reference setting position by the first driving unit 123, and the first detection unit 121 is detected. The change in the processing result of the signal processing unit 125 that occurs with the movement of 121 is analyzed. For example, the signal processing unit 125 may perform mixing or correlation processing of the first detection signal and the second detection signal.
  • the reflected wave component included in the reference electromagnetic wave 32 and the signal electromagnetic wave 33 is based on the moving distance from the reference setting position of the first detection unit 121 when the value of the signal given from the signal processing unit 125 becomes maximum. Information regarding the phase difference (or path difference) between the two may be acquired.
  • the signal electromagnetic wave 33 may include a plurality of reflected wave components having different path lengths.
  • the value of the signal given from the signal processing unit 125 forms a plurality of peaks according to the number of reflected wave components.
  • the phase difference between the reference electromagnetic wave 32 and each reflected wave component included in the signal electromagnetic wave 33 (or Information on the path difference).
  • the second detection unit 122 is moved in the X direction and the Y direction by the second driving unit 124, so that the entire observation object 2 is related to the structures of the boundary portions 23 a and 23 b of the media 21 and 22.
  • Information can be acquired. For example, it is possible to acquire information related to the structures of the boundary portions 23a and 23b of the media 21 and 22 in a cross section obtained by cutting the observation target object 2 along an arbitrary cross section parallel to the Z direction.
  • the signal electromagnetic wave 33 detected by the second detection unit 122 is one or more times (for example, an odd number) on the surfaces 2a and 2b of the observation object 2 or the boundary portions 23a and 23b of the media 21 and 22 inside thereof. Times) reflected one or more reflected wave components. Even in this case, the phase of the reflected wave component changes when it enters the second detection unit 122 as the path length caused by the reflection increases.
  • the distance along the Z direction between the boundary portions 23a and 23b of the mediums 21 and 22 in the observation object 2 and the surfaces 2a and 2b of the observation object 2 or the medium 21 in the observation object 2 , 22 can be detected in the Z direction between the boundary portions 23a and 23b.
  • the reflected wave component whose phase is delayed is more along the plus Z direction from the surface 23a of the observation object 2. It can be seen that it is a component that has been reflected back by a reflecting surface such as the deep boundaries 23a, 23b. For this reason, the information regarding the position (for example, depth etc.) on the basis of the surface 2a etc. of the observation target object 2 of the reflection surfaces such as the boundary portions 23a, 23b where the electromagnetic wave 31 is reflected in the observation target object 2 can be acquired. . Furthermore, based on the acquired information, for example, information on the shape, size, and the like of the boundary portions 23a and 23b of the mediums 21 and 22 in a cross section obtained by cutting the observation object 2 in an arbitrary cross section can be acquired.
  • the observation target is based on the detection result of the reference electromagnetic wave 32 and the signal electromagnetic wave 33.
  • the observation target is based on the detection result.
  • Information regarding the boundary portions 23a and 23b of the media 21 and 22 in the object 2 can also be acquired.
  • the electromagnetic wave 31 incident on the observation object 2 is reflected by the surface of the medium 22 (boundaries 23 a and 23 b of the mediums 21 and 22).
  • the portion where the medium 22 exists is compared with the other portions where the medium 22 does not exist at the boundary portions 23a and 23b. Due to the influence of reflection, the intensity of the signal electromagnetic wave 33 emitted from the observation object 2 in the plus Z direction decreases, and the intensity of the signal electromagnetic wave 31 emitted from the observation object 2 in the minus Z direction increases.
  • the observation object 2 Information regarding the outer shape or size of the portion where the medium 22 is present viewed from the minus Z direction can be acquired.
  • the sensitive factor when the sensitive factor is positively introduced into the observation object 2, the following effects can be obtained. That is, by introducing the sensitive factor into a portion (for example, a part of a medium, a structure, or the like) in the observation target 2 that is to be observed, information regarding the structure of the portion can be acquired in a clearer state. .
  • a portion for example, a part of a medium, a structure, or the like
  • the following configuration can also be adopted as a configuration for detecting information regarding the phase difference between the reference electromagnetic wave 32 and the reflected wave component included in the signal electromagnetic wave 33. That is, the signal processing unit 125 advances and retreats at least one phase of the first detection signal obtained by detecting the reference electromagnetic wave 32 and the second detection signal obtained by detecting the signal electromagnetic wave 33 with a variable adjustment range. You may make it make it. Thereby, the relative position of the phase of the reference electromagnetic wave 32 and the phase of the signal electromagnetic wave 33 is adjusted while the signal processor 125 adjusts the advance / retreat width of the phase of at least one of the first detection signal and the second detection signal.
  • the first drive unit 123 for moving the first detection unit 121 along the Z direction can be omitted, and the configuration of the observation apparatus 1 can be simplified.
  • the signal processing unit 125 plays the role of the phase adjustment unit according to the present invention.
  • the electromagnetic wave 31 is detected by the first and second detection units 121 and 122 in a state where the observation object 2 is not arranged, and the first detection signal and the second detection result obtained as a result are detected.
  • the signal processing unit 125 adjusts the phase of the first detection signal or the second detection signal so that the phase of the detection signal becomes equal.
  • the reference electromagnetic wave 32 and the signal electromagnetic wave 33 are detected in a state where the observation object 2 is installed, and the second relative to the phase of the first detection signal is based on the first and second detection signals obtained as a result.
  • the amount of phase shift (phase difference) of the detection signal is detected.
  • the reference electromagnetic wave 32 and the signal electromagnetic wave 33 are individually detected by the first detection unit 121 and the second detection unit 122.
  • the reference electromagnetic wave 32 and the signal electromagnetic wave 33 are superposed using a waveguide means or the like, and the interference wave obtained by the superposition is detected by the first detection unit 121 or the second detection unit 122. May be.
  • information on the intensity of the interference wave obtained as a result of the detection may be acquired by the signal processing unit 125 and the result may be given to the control unit 13. In this case, one of the detection units 121 and 122 may be omitted.
  • the second detection unit 122 that detects the signal electromagnetic wave 33 is moved in the X direction and the Y direction. It is done. That is, the structure which provided the some detection element (for example, receiving antenna etc.) which detects the signal electromagnetic wave 33 arrange
  • the arrangement form of the plurality of detection elements is, for example, an arrangement in a substantially linear shape along the X direction or the Y direction, or an arrangement in a substantially planar shape (for example, in a matrix of multiple columns and multiple rows) along the XY plane. And the like. In this case, all or part of the functions of the second drive unit 124 that moves the second detection unit 122 in the X direction and the Y direction may be omitted.
  • An optical coherence tomometer 1A shown in FIG. 12 is a specific example of the observation apparatus 1 in FIG. 1, and portions corresponding to the configuration of the observation apparatus 1 in FIG. To avoid.
  • the output unit 11 outputs a pulse laser beam 31a shown in FIGS. 10 and 12 as an electromagnetic wave for observation. More specifically, the output unit 11 includes a mode-locked titanium sapphire ultrashort pulse laser device as a light source unit.
  • the pulse frequency of the pulse laser beam 31a is 82 MHz, and the output level per second is about 15 mW.
  • the optical coherence tomography 1A is provided with a split coupling optical system 46.
  • the split coupling optical system 46 splits the pulsed laser light 31a output from the output unit 11 into irradiation light 31b directed toward the observation object 2 and reference light 31c directed toward a reference object (for example, a mirror) 47, and observation.
  • the interference light 48 is generated by superimposing the reflected light of the irradiation light 31 b reflected by the object 2 and the reflected light of the reference light 31 c reflected by the reference object 47.
  • a half mirror is used in the configuration shown in FIG. 12, but branched light having two input / output ends branched on both the light incident side and the light emitting side.
  • a fiber (or light guide) may be used.
  • the optical path length between the split coupling optical system 46 and the observation object 2 and the optical path length between the split coupling optical system 46 and the reference object 47 are set to be substantially equivalent.
  • the optical path length of the irradiation light 31b that is reflected and reaches the split coupling optical system 46 is equal to the optical path length of the reference light 31c that is reflected by the reference object 47 and reaches the split coupling optical system 46, two reflected waves
  • the intensity of the interference light 48 generated by the above forms a maximum value.
  • the reflected light of the irradiation light 31 from the observation object 2 has a depth direction in the observation object 2. A plurality of lights having different reflection positions are included.
  • the reference object 47 is driven (scanned) as indicated by an arrow A1 along the optical axis direction (incident direction) when the reference light 31b is incident on the reference object 47 to change the optical path length of the reference light 31b.
  • the split coupling optical system 46 The intensity of the interference light 48 output from the laser beam forms a maximum value. Therefore, based on the position information of the reference object 47 and the information on the intensity of the interference light 48, information (tomographic image or the like) related to the cross-sectional structure of the observation object 2 is obtained.
  • the reference object 47 is movable along the direction indicated by the arrow A1 (the optical axis direction of the reference light 31c), and is driven in the direction indicated by the arrow A1 by the drive unit 49 that is operated by the control of the control unit 13. .
  • the observation object 2 instead of driving the reference object 47 along the optical axis direction of the reference light 31c, the observation object 2 may be driven along the optical axis direction of the irradiation light 31b by the drive unit 49.
  • the irradiation light 31a is applied to the observation object 2.
  • the cross-sectional structure of the observation object 2 at each coordinate point in the Y-axis direction may be detected by moving the incident position in the Y-axis direction.
  • the movement of the incident position of the irradiation light 31a on the observation object 2 is performed by inserting an optical system for optical path conversion that moves the optical path of the irradiation light 31a in the Y-axis direction on the optical path of the irradiation light 31a, for example.
  • it is performed by moving the observation object 2 in the Y-axis direction with respect to the optical coherence tomography 2A.
  • the light receiving unit 12 a of the detection unit 12 receives the interference light 48 output from the split coupling optical system 46, converts it into an electrical signal (detection signal), and sends it to the control unit 13.
  • the light receiving unit 12a is configured using a semiconductor light receiving element such as an avalanche diode.
  • an optical system such as a lens for adjusting the interference light 48 incident on the light receiving unit 12a may be disposed in front of the light receiving unit 12a of the detection unit 12.
  • the control unit 13 drives the reference object 47 in the direction indicated by the arrow A1 via the drive unit 49, and converts the position information of the reference object 47 and information obtained from the detection signal (information on the intensity of interference light, etc.).
  • Information (tomographic image or the like) related to the cross-sectional structure of the observation object 2 is formed by the analysis processing based on the analysis processing.
  • FIG. 13 is a cross-sectional view schematically showing a cross-sectional configuration of the first test structure 2 ⁇ / b> A used as the observation object 2.
  • the first test structure 2A is configured by immersing a mending tape laminate formed by bonding four mending tapes 50 in a solution as a test material for a predetermined time. By immersing the mending tape laminate in the solution, the solution soaks into a slight gap between the mending tapes 50 on which the solution is laminated, and a thin film layer 50 a of the solution is formed between the mending tapes 50.
  • the surface of the mending tape laminate also has the solution or the solute dissolved in the solution.
  • a thin film layer 50b is formed.
  • the solution or A thin film layer 50c made of a solute dissolved in the solution is formed.
  • the thickness of one layer of the mending tape used for the test structure 2A is about 40 to 50 ⁇ m, of which the thickness of the tape substrate is about 20 to 30 ⁇ m, and the remaining thickness part is the adhesive and the gap part. It has become.
  • An arrow A2 in FIG. 13 indicates an incident direction when the irradiation light 31b is incident on the test structure 2A.
  • a mending tape laminate immersed in a brilliant blue aqueous solution a mending tape laminate immersed in a pentacene ethanol solution, and a mending tape laminate immersed in an ICG aqueous solution.
  • Four types were prepared: one obtained by immersing a mending tape laminate in water.
  • the affinity between water and the tape base material of the mending tape is low, so the water is removed from the tape base material as the mending tape laminate is pulled up from the water.
  • the thin film layer 50b is not formed without remaining on the surface of the mending tape laminate.
  • a thin film layer 50b made of pentacene is formed on the surface of the substrate (after being pulled up, ethanol as a solvent is vaporized).
  • an ICG aqueous solution is used as the solution, the affinity between the solute ICG and the tape base material of the mending tape is good. Therefore, by immersing the mending tape laminate in the solution, A thin film layer 50b made of ICG is formed on the surface (water that is a solvent evaporates after pulling up).
  • the adhesive, water, and each solute have good affinity. Therefore, the brilliant blue, pentacene, or ICG thin film layer 50c is formed by immersing the mending tape laminate in each solution. It is formed. When the mending tape laminate is immersed in water, the water adhering to the back surface of the mending tape laminate evaporates, so the thin film layer 50c on the back surface is observed without it. .
  • FIGS. FIGS. 14 and 15 show the observation results when using a mending tape laminate dipped in a brilliant blue aqueous solution
  • FIGS. 16 and 17 use mending tape laminate dipped in a pentacene ethanol solution.
  • 18 and FIG. 19 show the observation results when a mending tape laminate is immersed in an ICG aqueous solution
  • FIGS. 20 and 21 show the mending tape laminate in water.
  • the observation result when using a soaked one is shown.
  • the horizontal axis of the graphs of FIGS. 14, 16, 18 and 20 corresponds to the coordinate value along the optical axis direction of the reference light 31c of the reference object 47
  • the vertical axis represents the light reception unit 12a receiving light.
  • the intensity of the interference light is digitized.
  • the portion where the waveform rises in a pulse shape is the surface of the mending tape laminate in the first test structure 2A (or the thin film layer 50b of the solution formed on the surface), This corresponds to the back surface (or the thin film layer 50 c formed on the back surface) and the thin film layer 50 a of the solution formed in the gap between the mending tapes 50.
  • the reference laser beam 31a of the reference object 47 is moved at a predetermined pitch along the optical axis direction, and the pulse laser beam 31a is 1.5 seconds for each coordinate value (coordinate point) of the reference object 47. Irradiation was performed. For this reason, the intensity value of the interference light at each coordinate value (coordinate point) in FIGS. 14, 16, 18 and 20 corresponds to the integrated value of the received light amount of the interference light for 1.5 seconds.
  • FIGS. 15, 17, 19 and 21 show tomographic images formed based on the detection results of FIGS. 14, 16, 18 and 20.
  • FIG. 15, 17, 19 and 20 the white line extending in the lateral direction is the portion where the solution, which is a test sample between the mending tapes in the mending tape laminate, is soaked (thin film layer 50a of the solution). , And the front and back surfaces of the mending tape laminate (or the thin film layers 50b and 50c of the solution formed on the front or back surface).
  • the observation result when using what immersed the mending tape laminated body in water is demonstrated.
  • the surface of the mending tape laminate is detected, and the first and second layers of the three thin film layers 50 a of water formed between the mending tapes 50.
  • the thin film layer 50a is detected, detection of the back surface of the third thin film layer 50a and the mending tape laminate 50 is unclear.
  • the images of the back surfaces of the third thin film layer 50a and the mending tape laminate 50 are unclear.
  • the observation results are examined in each case where a brilliant blue aqueous solution, a pentacene ethanol solution, or an ICG aqueous solution is used as the test material.
  • the thin film layers 50b and 50c and the mending tape 50 formed on the front and back surfaces of the mending tape laminate are shown in the graph of FIG.
  • Each thin film layer 50b is clearly detected.
  • the sensitivity (the value obtained by dividing the detection signal value indicated by the arrow A3 in FIG. 20 by the detection signal value indicated by the arrow A5 in FIG. 16) compared with the case of being immersed in water is also improved by 1.33 times. From this point, it can be seen that an effective sensitizing effect is obtained.
  • the clarity of the images of the thin film layers 50a to 50c is also improved as a whole for the cross-sectional image of FIG.
  • each of the thin film layers 50b and 50c and the mending tape 50 formed on the front and back surfaces of the mending tape laminate is shown in the graph of FIG.
  • the thin film layer 50b is detected very clearly. For this reason, it turns out that the strong electromagnetic wave sensitivity effect by ICG aqueous solution or ICG is acquired.
  • the sensitivity (the value obtained by dividing the detection signal value indicated by the arrow A6 in FIG. 20 by the detection signal value indicated by the arrow A6 in FIG. 18) compared with the case of being immersed in water is also improved by 1.78 times. It can be seen from this point that a high sensitizing effect is obtained.
  • the clarity of the images of the thin film layers 50a to 50c is improved as a whole for the cross-sectional image of FIG.
  • the following test was performed using the optical coherence tomography 2A of FIG.
  • the test is performed using a second test structure 2B provided with first and second two cell parts 51 and 52.
  • Water 53 is stored in the first cell unit 51
  • an ICG aqueous solution 54 is stored in the second cell unit 52.
  • Each of the cell portions 51 and 52 is formed by forming two concave portions having a depth of 2 mm on the surface of the acrylic plate 55 and covering the surface of the acrylic plate 55 on which the concave portions are formed with a thin glass plate 56.
  • the irradiation light 31b of the optical coherence tomography 2A of FIG. 12 is irradiated to the 2nd test structure 2B from the direction shown by arrow A11 in FIG.
  • FIG. 24 is a view showing a graph of a detection signal obtained when observing the first cell portion 51 in which water 53 is stored
  • FIG. 25 is for observing the second cell portion 52 in which the ICG aqueous solution 54 is stored. It is a figure which shows the graph of the detection signal obtained when doing.
  • the configurations of the horizontal and vertical axes of the graphs of FIGS. 24 and 25 are the same as those of the graph of FIG.
  • the first peak of the signal waveform is a reflection detected by the surface of the glass plate 56 of the second test structure 2B. What should be noted are the peaks indicated by arrows A12 and A13, which correspond to the reflection at the interface between the glass plate 56 and the water 52 or the ICG aqueous solution 54.
  • FIG. 26 shows a cross-sectional image regarding the configuration of the cross section along the cross-sectional line L of the second test structure 2B of FIG. 22 formed based on the detection signals of FIGS. 24 and 25.
  • the white line extending in the lateral direction indicated by the arrow A14 corresponds to the boundary surface between the water 53 and the glass plate 56
  • the white line extending in the lateral direction indicated by the arrow A15 in the right region in FIG. This corresponds to the boundary surface between 54 and the glass plate 56.
  • the white line of the arrow A15 appears much more clearly than the white line of the arrow A14.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 観察対象物の内部の媒質が変化する境界部に関する情報を鮮明に取得できる観察装置及び観察方法を提供する。 この観察装置1は、電磁波31に感応して双極子モーメントが変化する感応因子を含んだ観察対象物2を観察するための装置である。出力部11は、電磁波31を出力し、出力した電磁波31によって観察対象物2に含まれる感応因子の双極子モーメントを変化させる。検出部12は、出力部11が出力した電磁波31のうちの観察対象物2を経て到来する信号電磁波33、及び観察対象物2を経ずに到来する参照電磁波32を検出する。制御部13は、検出部12の検出結果に基づいて観察対象物2の構造を解析する。電磁波31は、パルス状に断続的に出力されるパルスレーザー光である。電磁波31の波長は、感応因子の吸収波長帯域内に設定される。

Description

観察装置及び観察方法



 本発明は、観察対象物を観察する観察装置及び観察方法に関する。





 観察対象物に対して電磁波を照射し、その反射波等を受信して観察対象物の内部の構造に関する情報を取得する技術として、各種のレーダ技術が提案されている(例えば、特許文献1参照)。この種の従来のレーダ装置では、例えば、観察対象物内における媒質が変化する境界部で反射された電磁波を検出し、その検出結果に基づいて観察対象物内の構造(例えば、観察対象物中に存在する物体等)に関する情報が取得される。





特開2007-327935号公報



 しかしながら、従来の特許文献1等に記載のレーダ装置では、観察対象物内における媒質の境界部における誘電率の変化の度合いが小さい場合、媒質の境界部での電磁波の反射が十分に行われず、媒質の境界部の検出ができない、又は境界部の検出が不鮮明になることがある。





 なお、観察対象物のX線撮像等でバリウム又は色素等の造影剤を用いる例がある。しかし、それらの造影剤は、観察対象物にX線等が照射された際に観察対象物中に陰を作ることにより、撮像画像の増感効果(コントラスト向上等)を得るためのものであり、本願発明の感応因子とは役割等が本質的に異なっている。





 そこで、本発明の解決すべき課題は、観察対象物の内部の媒質が変化する境界部に関する情報を鮮明に取得できる観察装置及び観察方法を提供することである。





 上記の課題を解決するため、この発明の観察装置に関する局面では、電磁波に感応して双極子モーメントが変化する感応因子を含んだ観察対象物を観察する観察装置において、電磁波を出力し、出力した電磁波によって前記観察対象物に含まれる前記感応因子の双極子モーメントを変化させる出力部と、前記出力部が出力した電磁波のうちの前記観察対象物を経て到来する信号電磁波、及び前記観察対象物を経ずに到来する参照電磁波を検出する検出部と、前記検出部の検出結果に基づいて、前記観察対象物の構造を解析する解析部と、を備え、前記出力部が出力する前記電磁波は、パルス状に断続的に出力されるパルスレーザー光であり、前記出力部が出力する前記電磁波の波長は、前記感応因子による照射された電磁波の吸収が生じる前記感応因子の吸収波長帯域内に設定される。





 また、この発明の観察方法に関する局面では、観察対象物を観察する観察方法において、前記観察対象物内に、電磁波に感応して双極子モーメントが変化する感応因子を導入する感応因子導入段階と、出力部から電磁波を出力し、出力した電磁波によって前記観察対象物内の前記感応因子の双極子モーメントを変化させながら、前記出力部が出力した電磁波のうちの前記観察対象物を経て到来する信号電磁波、及び前記観察対象物を経ずに到来する参照電磁波を検出部により検出し、前記検出部の検出結果に基づいて、前記観察対象物の構造を解析する観察段階と、を備え、前記出力部が出力する前記電磁波は、パルス状に断続的に出力されるパルスレーザー光であり、前記出力部が出力する前記電磁波の波長は、前記感応因子による照射された電磁波の吸収が生じる前記感応因子の吸収波長帯域内に設定される。





 <用語に関する記載>



 本願において、「感応因子の双極子モーメントが変化する」とは、感応因子の双極子モーメントの大きさ又は向きが変化することの他に、双極子モーメントが無の状態から誘起されることも含む。





 この発明の観察装置に関する上記局面では、観察対象物に対して出力部により電磁波を出力し、検出部により、出力部が出力した電磁波のうちの観察対象物を経て到来する信号電磁波、及び観察対象物を経ずに到来する参照電磁波が検出され、その検出部の検出結果に基づいて、観察対象物の構造が解析される。このとき、出力した電磁波によって観察対象物に含まれる感応因子の双極子モーメントを変化させながら、信号電磁波と参照電磁波とが検出される。観察対象物内の感応因子の双極子モーメントを電磁波により積極的に変化させることにより、電磁波が照射されている間、観察対象物内では、感応因子の双極子モーメントが変化し、観察対象物内における誘電率の分布が変化する。これにより、観察対象物内における媒質が変化する境界部において、その境界部を挟んだ両側のいずれか一方側に感応因子が含まれている場合には、感応因子の双極子モーメントの変化により、感応因子が含まれている側の媒質の誘電率が変化する。このため、境界部の両側の媒質の誘電率の値について、積極的に差を生じさせること、あるいは誘電率の値の差を積極的に増大させることができる。その結果、観察対象物内の媒質の境界部において電磁波が的確に反射されるようになる。このため、観察対象物を経た信号電磁波と観察対象物を経ていない参照電磁波と検出し、参照電磁波と信号電磁波とを比較すること等により、観察対象物内の媒質の境界部等に関する情報を鮮明な状態で取得できる。例えば、参照電磁波を基準とし、観察対象物を経たことにより生じた信号電磁波の変化度合等に基づいて、観察対象物内の媒質の境界部等に関する情報を鮮明な状態で取得できる。





 例えば、例として、検出部により観察対象物を透過した信号電磁波を検出する場合について説明する。検出部により検出される信号電磁波には、観察対象物の表面又はその内部の媒質の境界部で複数回(例えば、偶数回)反射された1又は複数の反射波成分が含まれている。その反射波成分は、反射により生じた経路長の増大に伴い、検出部に入射するときの位相が変化する。それ故、参照電磁波の位相と信号電磁波に含まれる反射波成分の位相との位相差に関する情報を検出することにより、その検出した位相差に関する情報に基づいて、例えば観察対象物内の媒質の境界部と観察対象物の表面との電磁波の入射方向に沿った距離、又は、観察対象物内の媒質の境界部間の電磁波の入射方向に沿った距離等を検出できる。





 他の例として、検出部により観察対象物内の媒質の境界部で反射されて電磁波の出力部側に帰ってきた信号電磁波を検出する場合について説明する。この場合、検出部が検出する信号電磁波には、観察対象物の表面又はその内部の媒質の境界部で1又は複数回(例えば、奇数回)反射された1又は複数の反射波成分が含まれている。そして、この場合においても、その反射波成分は、反射により生じた経路長の増大に伴い、検出部に入射するときの位相が変化する。それ故、参照電磁波の位相と信号電磁波に含まれる反射波成分の位相との位相差に関する情報を検出することにより、その検出した位相差に関する情報に基づいて、例えば観察対象物内の媒質の境界部と観察対象物の表面との電磁波の入射方向に沿った距離、又は、観察対象物内の媒質の境界部間の電磁波の入射方向に沿った距離等を検出できる。さらに、この場合において、信号電磁波に複数の反射波成分が含まれている場合、位相がより遅れている反射波成分ほど、電磁波の観察対象物への入射面から入射方向に沿ってより深い境界部等の反射面で反射されて帰ってきた反射波成分であることが分かる。このため、観察対象物内における電磁波反射された境界部等の反射面の観察対象物の入射面等を基準とした位置(例えば、深さ等)に関する情報を取得できる。さらに、その取得情報に基づいて、例えば観察対象物を任意の断面で切った断面における媒質の境界部等の形状、サイズ等に関する情報も取得できる。





 また他の例として、参照電磁波及び信号電磁波の検出結果に基づいて、参照電磁波の強度を基準とした信号電磁波の強度に関する情報を取得することにより、その検出結果に基づいて観察対象物内の媒質の境界部に関する情報を取得することもできる。例えば、観察対象物内に周囲と媒質の異なる領域(例えば、物体)が存在している場合、観察対象物内に入射した電磁波が前記領域の表面(媒質の境界部)で反射される。このため、観察対象物内における電磁波の照射側から見て前記領域が存在する部分では、前記領域が存在しない他の部分と比べて、前記領域の表面での反射の影響により、観察対象物を電磁波の照射側と反対側に出射する信号電磁波の強度が低下し、観察対象物から電磁波の照射側に出射する信号電磁波の強度は増大する。よって、参照電磁波の強度を基準として、電磁波の照射側から見たときの観察対象物から電磁波の照射側又は照射側の反対側に出射する信号電磁波の強度の分布を調べることにより、観察対象物内に存在する媒質が周囲と異なる領域(例えば、物体)の電磁波の照射側から見た外形又は大きさ等に関する情報を取得できる。





 また他の例として、参照電磁波を利用せずに、電磁波の照射側から見たときの観察対象物から電磁波の照射側又は照射側の反対側に出射する信号電磁波の強度の分布のみに基づいて、観察対象物内に存在する媒質が周囲と異なる領域(例えば、物体)の電磁波の照射側から見た外形又は大きさ等に関する情報を取得することもできる。





 また、観察装置に関する上記局面では、出力部が出力する電磁波がコヒーレントな光であるパルスレーザー光である。このため、出力部が出力したレーザー光によって観察対象物に含まれる感応因子の双極子モーメントをレーザー光の位相に連動させて有効に変化させることができ、これによって観察対象物内における誘電率の分布を有効に変化させることができる。





 また、出力部から出力されるレーザー光がパルス状に断続的に出力されるパルスレーザー光であるため、単位時間当たりのパルスレーザー光の出力レベルを抑制しながらパルスレーザー光の各パルスの強度(振幅)を大きくできる。これにより、パルスレーザー光が観察対象物内に入射した際に、観察対象物内にてレーザー光による大振幅の電磁波を感応因子に作用させて、感応因子の双極子モーメントを有効に変化させることができる。また、単位時間当たりのパルスレーザー光の出力レベルは抑制されているため、パルスレーザー光の照射による観察対象物への影響を抑制できる。





 また、パルスレーザー光のパルス時間幅を短くすることにより、不確定性原理により、パルス波長幅(バンド幅)を大きくできる。観察対象物に照射したパルスレーザー光の反射光と、観察対象物を経ていない参照光との位相差等に基づいて観察対象物内のパルスレーザー光の照射方向に沿った断面の構造に関する情報を取得する場合には、パルスレーザー光のパルス波長幅(バンド幅)を大きくすることにより、観察対象物の断面の前記照射方向に対する分解能を向上させることができる。





 また、観察装置に関する上記局面に関し、本願発明者らの研究により、出力部が出力する電磁波の波長を、その電磁波が感応因子に照射されたときに、照射された電磁波が感応因子によって吸収される感応因子の吸収波長帯域内の値に設定すると、照射した電磁波により感応因子に双極子モーメントの変化を効果的に誘起させ得ることが分かった。換言すると、感応因子による電磁波の吸収が生じないような波長の電磁波を感応因子に照射しても、感応因子の双極子モーメントの有効な変化は生じないことが分かった。これは、電磁波の照射による感応因子の双極子モーメントの変化は量子論的な状態変化の一種であり、感応因子の双極子モーメントの変化が生じる際には照射した電磁波の一部が感応因子によって吸収され、その吸収された電磁波のエネルギーが双極子モーメントの変化に転換されているからであると考えられる。





 この感応因子の電磁波吸収特性と観察用の電磁波の波長との関係が分かる前は、電磁波の波長と感応因子の種類の組み合わせを煩雑な試行錯誤により決定していたが、感応因子の電磁波吸収特性と観察用の電磁波の波長との関係を利用することにより、電磁波の波長と感応因子の種類の好ましい組み合わせを容易に決定できるようになった。





 また、各波長の電磁波に対する感応因子の吸収特性は比較的容易に計測できるため、感応因子の選定を有利に行うことができる。





 また、この発明の観察方法に関する上記局面では、上述の観察装置に関する上記局面とほぼ同様な効果が得られるとともに、さらに以下の効果が得られる。すなわち、感応因子導入段階で、観察対象物内に、電磁波に感応して双極子モーメントが変化する感応因子が積極的に導入される。このため、観察対象物内の特に観察対象となる部分(例えば、一部の媒質、構造物等)に感応因子を導入することにより、その部分の構造に関する情報をより鮮明な状態で取得できる。





本発明の一実施形態に係る観察装置の構成を示すブロック図である。 一例として挙げられる観察対象物の構成を示す斜視図である。 図1の観察装置の変形例の一部の構成を示す図である。 図2の観察対象物の断面の構成を拡大して示す図である。 感応因子に関する試験試料の各波長の電磁波に対する吸収度を計測する際の様子を示す説明図である。 ブリリアントブルー水溶液の吸収波長スペクトルを示すグラフである。 ペンタセンエタノール溶液の吸収波長スペクトルを示すグラフである。 インドシアニンブルー水溶液の吸収波長スペクトルを示すグラフである。 水の吸収波長スペクトルを示すグラフである。 観察用のパルスレーザー光の横軸を時間としたときのパルス波形を示すグラフである。 図10のパルスレーザー光の横軸を波長としたときのパルス波形を示すグラフである。 図1の観察装置の一具体例である光干渉断層計の構成を示すブロック図である。 第1の試験構造物であるメンディングテープ積層物の断面の構成を模式的に示す断面図である。 図13のメンディングテープ積層物をブリリアントブルー水溶液に浸したものを用いて観察を行い、それによって得られた検出信号のグラフを示す図である。 図14の観察によって得られた検出信号に基づいて形成された断層画像を示す図である。 図13のメンディングテープ積層物をペンタセンエタノール溶液に浸したものを用いて観察を行い、それによって得られた検出信号のグラフを示す図である。 図16の観察によって得られた検出信号に基づいて形成された断層画像を示す図である。 図13のメンディングテープ積層物をインドシアニンブルー水溶液に浸したものを用いて観察を行い、それによって得られた検出信号のグラフを示す図である。 図18の観察によって得られた検出信号に基づいて形成された断層画像を示す図である。 図13のメンディングテープ積層物を水に浸したものを用いて観察を行い、それによって得られた検出信号のグラフを示す図である。 図20の観察によって得られた検出信号に基づいて形成された断層画像を示す図である。 第1及び第2の2つのセル部を有する第2の試験構造物の構成を示す平面図である。 図22の第2の試験構造物の断面線Lに沿った断面の構成を示す断面図である。 図22の水が溜められた第1のセル部を観察した際に得られる検出信号のグラフを示す図である。 図22のインドシアニンブルー水溶液が溜められた第2のセル部を観察した際に得られる検出信号のグラフを示す図である。 検出信号に基づいて形成された図22の第2の試験構造物の断面線Lに沿った断面の構成に関する断層画像を示す図である。



 図1を参照して、本発明の一実施形態に係る観察装置について説明する。本実施形態に係る観察装置1は、図1に示すように、出力部11、検出部12、制御部13、表示部14及び操作部15を備えて構成されており、観察対象物2内の構造の観察に用いられる。本発明の解析部には、主に制御部13が相当している。また、制御部13は、後述する参照電磁波32と信号電磁波33との位相差の検出等に関する役割も担っている。なお、本実施形態及び図面において、Z方向は、出力部11から観察対象物2側を向いたときの正面方向、電磁波が照射される方向、電磁波が観察対象物2に入射する入射方向、又は、検出部12から見て観察対象物2を透過した或いは観察対象物2で反射された電磁波が到来する到来方向に概ね対応している。また、X方向及びY方向は、Z方向に垂直な方向であり、かつ互いに垂直な関係にある。





 観察対象物2は、複数の媒質からなっており、その複数の媒質のうちの少なくともいずれか一つは、電磁波に感応して双極子モーメントが変化する感応因子を含んでいる。この感応因子は、観察対象物2の媒質中に通常の状態で含まれているものである場合の他に、観察装置1を用いた観察を行う前又は観察を行っている最中に観察対象物2の媒質中に積極的に導入したものである場合がある。感応因子の具体例としては、例えば生理活性物質などが挙げられる。





 ここで、感応因子を観察対象物2内に積極的に導入する場合において、感応因子を導入する工程を感応因子導入段階といい、観察対象物2に出力部11の電磁波を照射して観察対象物2の内部構造等を観察する工程を観察段階という。感応因子導入段階での感応因子の導入は、例えば、観察対象物2の表面を介して、又は表面に現れた複数の媒質の間の隙間を介して感応因子を浸透により観察対象物2内に導入する方法が挙げられる。この場合、観察対象物2を液体状の感応因子中に浸漬する方法、あるいは、液体状の感応因子を観察対象物2の表面に散布又は塗布する方法などが採用可能である。また、感応因子の他の導入方法として、液体状の感応因子を観察対象物2内に注入する方法が挙げられる。この場合、液体状の感応因子を所定の注入器具等を用いて観察対象物2内の所定部位(例えば、所定の媒質又は内部構造)に注入する方法等が採用可能である。





 観察対象物2の具体例としては、一例として図2に示すものが挙げられる。この図2の観察対象物2は、観察対象物2の基本構造を形成する媒質21と、その媒質21中に埋め込まれるようにして存在する媒質22とからなっている。前記感応因子は、例えば媒質22中に含まれている。この図2の観察対象物2に対する観察では、例えば観察対象物2の内部における媒質22が存在する部分の形状、サイズ等に関する観察が行われる。





 出力部11は、制御部13の制御により、観察対象物2が設置された方向(プラスZ方向)に向けて電磁波31を出力し、出力した電磁波31によって観察対象物2に含まれる感応因子の双極子モーメントを変化させる。出力部11に出力させる電磁波31のより具体的な内容については後述する。





 検出部12は、制御部13の制御により、出力部11が出力した電磁波31のうちの観察対象物2を経ずに到来する参照電磁波32、及び観察対象物2を経て到来する信号電磁波33を検出する。より具体的には、検出部12は、第1の検出ユニット121、第2の検出ユニット122、第1の駆動部123、第2の駆動部124及び信号処理部125を備えている。





 第1の検出ユニット121は、観察対象物2を挟んで出力部11とZ方向に沿って対向する位置に配置される。そして、第1の検出ユニット121は、制御部14の制御により参照電磁波32を検出し、検出した参照電磁波32を電気信号(第1の検出信号)に変換して信号処理部125に与える。第2の検出ユニット122は、観察対象物2よりもプラスZ方向側における出力部11から観察対象物2を見たときに観察対象物2の陰に隠れない位置に配置される。そして、第2の検出ユニット122は、制御部14の制御により信号電磁波33を検出し、検出した信号電磁波33を電気信号(第2の検出信号)に変換して信号処理部125に与える。出力部11から出力される電磁波31は、出力部11から出力された後、外側に広がりながら伝搬する。このため、出力部11から出力される電磁波31の出力軸から外れた位置に配置された第1の検出ユニット121にも、電磁波31の一部が入射する。第1及び第2の検出ユニット121,122のより具体的な構成としては、例えば受信アンテナ、受信回路等を備えて構成されている。





 図1に示す構成では、第2の検出ユニット122が観察対象物2を挟んで出力部11と対向する位置に配置される。そして、第2の検出ユニット122が、出力部11から出力されて観察対象物2に入射した電磁波31のうちの観察対象物2を出力部11のある照射側と反対側(プラスZ方向)に透過した電磁波31を信号電磁波33として検出する。この点に関する変形例として、図3に示すように、観察対象物2から見て第2の検出ユニット122を出力部11が配置される電磁波31の照射側(マイナスZ方向側)に配置しもてもよい。この場合、第2の検出ユニット122は、出力部11から出力されて観察対象物2に入射した電磁波31のうちの観察対象物2にてマイナスZ方向に反射された電磁波31を参照電磁波32として検出する。またこの場合、第1の検出ユニット121も観察対象物2のマイナスZ方向側に配置してもよい。この場合、出力部11から出力された電磁波31を、電磁波を反射する参照物体で反射させて、第1の検出ユニット121に入射させる。





 また、第1の検出ユニット121は、Z方向に沿って移動可能に設置されている。第1の駆動部123は、制御部13の制御により、第1の検出ユニット121をZ方向に沿って移動させる。これにより、出力部11から出力されて第1の検出ユニット121に検出されるまでの電磁波31の経路長を変化させることができる。例えば、後述するように第1の駆動部123によって第1の検出ユニット121をZ方向に沿って移動させつつ、参照電磁波32の位相と信号電磁波33の位相の相対的な位置変化等を検出することにより、参照電磁波32と信号電磁波33との位相差に関する情報を容易に取得できる。





 この点に関する変形例として、第1の検出ユニット121の代わりに第2の検出ユニット122をZ方向に沿って移動可能にし、後述する第2の駆動部124により、第2の検出ユニット122をZ方向に沿って移動させるようにしてもよい。この場合、第1の駆動部123を省略してもよい。





 また、第2の検出ユニット122は、X及びYの各方向に沿って独立して移動可能に設置されている。第2の駆動部124は、制御部13の制御により、第2の検出ユニット122をX及びYの各方向に沿って独立して移動させる。これにより、観察対象物2をマイナスZ方向から見たとき、X方向及びY方向の任意の位置で観察対象物2の構造に関する情報を取得できる。この点に関する変形例として、第2の駆動部124によって第2の検出ユニット122を、X又はYのいずれか一方の方向のみに沿って移動させるようにしてもよい。





 ここで、第1の検出ユニット121と第2の検出ユニット122とは、観察対象物2が配置されていない状態(基準設定状態)において電磁波31の検出を行ったときに、互いに実質的に等価になるように設定されている。この基準設定状態では、例えば、第1の検出ユニット121から出力部11までの電磁波31の経路長と第1の検出ユニット121から出力部11までの電磁波31の経路長とが実質的に等しくなるように設定されている。このときの第1の検出ユニット121の位置を基準設定位置とする。





 信号処理部125は、制御部13の制御により、第1及び第2の検出ユニット121,122から与えられる第1及び第2の検出信号に対して信号処理又は検出処理等の処理を行い、その結果を制御部13に与える。例えば、信号処理部125にオペアンプを組み込み、第1及び第2の検出信号に対して種々の演算処理を施すようにしてもよい。





 制御部13は、観察装置1の制御と、検出部12による参照電磁波32及び信号電磁波33の検出結果に基づいた観察対象物2の構造に関する解析処理等を行う。表示部14は、制御部13により、観察装置1の操作のための操作情報、及び観察対象物2の構造に関する画像等が表示される。表示部14によって表示される画像の例としては、例えば観察対象物2の断面の構造(例えば、後述する媒質21,22の境界部23a,23b)を示す画像等が挙げられる。操作部15は、観察装置1に対する操作入力を受け付ける。





 次に、この観察装置1(特に、制御部13)の動作、及び、観察装置1を用いて観察対象物2の構造に関する情報がどのように取得されるのかについて説明する。なお、観察装置1を用いて観察対象物2の観察を行う前に(あるいは観察を行いながら)、観察対象物2内の一部(例えば、いずれかの媒質21,22)に前記感応因子を導入するようにしてもよい。





 この観察装置1では、観察対象物2に対して出力部11により電磁波31を出力し、検出部11の第1及び第2の検出ユニット121,122により、参照電磁波32及び信号電磁波33がそれぞれ検出される。その検出結果である第1及び第2の検出信号が信号処理部125に与えられ、その第1及び第2の検出信号に対する処理が信号処理部125により行われる。この信号処理部125での処理は、第1の検出信号と第2の検出信号との混合処理、相関処理(掛け算等)、各検出信号の強度の検出、又はそれらの強度差の検出等が挙げられる。信号処理部125での処理の結果は、制御部13に与えられ、観察対象物2の構造の解析及び構造に関する表示画像の生成に用いられる。





 電磁波32,33の検出処理の際、出力した電磁波31によって観察対象物2に含まれる感応因子の双極子モーメントを変化させながら、参照電磁波32と信号電磁波33とが検出される。このように観察対象物2内の感応因子の双極子モーメントを電磁波31により積極的に変化させることにより、電磁波31が照射されている間、観察対象物2内では、感応因子の双極子モーメントが変化し、観察対象物2内における誘電率の分布が変化する。これにより、例えば感応因子が媒質22に含まれている場合には、感応因子の双極子モーメントの変化により媒質22の誘電率、すなわち屈折率が変化する。このため、媒質21と媒質22との境界部において、境界部の両側の媒質21,22の誘電率の値について、積極的に差を生じさせること、あるいは誘電率の値の差を積極的に増大させることができる。その結果、媒質21,22の境界部において電磁波が的確に反射されるようになる。





 このため、参照電磁波32及び信号電磁波33の検出により得られる第1の検出信号と第2の検出信号とを比較すること等により、観察対象物2内の媒質21,22の境界部等に関する情報を鮮明な状態で取得できる。例えば、参照電磁波32を基準とし、観察対象物2を経たことにより生じた信号電磁波33の変化度合等に基づいて、観察対象物2内の媒質21,22の境界部等に関する情報を鮮明な状態で取得できる。





 次に、観察対象物2の観察に用いられる電磁波31の好ましい例について、より具体的に説明する。





 まず、電磁波31は、コヒーレントな電磁波である必要がある。これは、電磁波31の位相が揃っていないと、電磁波31が観察対象物2内に入射した際、観察対象物2内の感応因子に電磁波31に付随した電磁場がバラバラの位相で作用することとなり、電磁波31による感応因子の双極子モーメントへの作用もバラバラになり、感応因子の双極子モーメントの有効な変化が得られないからである。電磁波31にコヒーレントな電磁波を用いることにより、電磁波31によって感応因子の双極子モーメントを電磁波の位相に連動させて有効に変化させることができ、これによって観察対象物2内における誘電率の分布を有効に変化させることができる。





 なお、光よりも波長が長く、アンテナにより生成される電波(例えば、マイクロ波等)は、干渉格子に通される等の積極的な散乱処理が行われない限り、通常の状態ではコヒーレントである。しかし、電磁波31として光を用いる場合は、コヒーレントな光、すなわちレーザー光を用いる必要がある。





 また、電磁波31の波長は、観察対象物2に含まれる感応因子による電磁波の吸収が生じる吸収波長帯域内に属する値に設定されるのが好ましい。換言すれば、観察に際して観察対象物2に感応因子を積極的に導入する場合には、感応因子として、その前記有効吸収波長帯域内に出力部11が出力する電磁波31の波長を含むような感応因子を選択して観察対象物2内に導入するのが好ましい。





 これは、本願発明者らの研究により、観察対象物2に照射する電磁波31の波長を観察対象物2に含まれる感応因子の吸収波長帯域内の値に設定すると、照射した電磁波31により感応因子に双極子モーメントの変化を効果的に誘起させ得ることが分かったからである。換言すれば、感応因子にその吸収波長帯域外の波長の電磁波を照射しても、感応因子に吸収されず、感応因子の双極子モーメントも有効に変化しない。この点に関する原理的な説明としては、電磁波31の照射による感応因子の双極子モーメントの変化は量子論的な状態変化の一種であるため、感応因子の双極子モーメントの変化が生じる際には照射した電磁波31の一部が感応因子によって吸収され、その吸収された電磁波31のエネルギーが双極子モーメントの変化に転換されているものと考えられる。このため、吸収が行われない波長の電磁波31を感応因子に照射しても、感応因子の双極子モーメントの変化等も生じないと考えられる。





 電磁波31の波長について、より好ましくは、電磁波31を観察対象物2に含まれる感応因子に照射したときに感応因子による電磁波31の吸収度(Absorbance)が所定の下限基準レベル以上、かつ所定の上限基準レベル以下になるような有効吸収波長帯域内に設定するのが好ましい。吸収度Absは、感応因子に電磁波31を照射したときの電磁波31の入射強度をIinとし、透過強度をIoutとしたとき、



  Abs=-log(Iout/Iin)



で与えられる無次元量である。なお、上の対数は常用対数である。





 上記の有効吸収波長帯域の下限(下限基準レベル)を設定したのは、感応因子による電磁波31の所定レベル以上の吸収がないと、観察対象物2内の誘電率の分布の有効な変化を生じさせるだけの感応因子の双極子モーメントの変化が得られないからである。また、有効吸収波長帯域の上限(上限基準レベル)を設定したのは、感応因子による電磁波31の吸収度が必要以上に大きすぎると、観察対象物2に照射した電磁波31のうち、感応因子により吸収される電磁波31の割合が大きくなりすぎ、観察のために観察対象物2から取得される電磁波(透過波又は反射波)の強度が弱くなりすぎ、検出精度が低下するという問題があるからである。有効吸収波長帯域の下限基準レベルは例えば0.22程度(例えば、0.22)に設定され、上限基準レベルは例えば3程度(例えば、3)に設定される。





 このような感応因子の電磁波吸収特性と観察用の電磁波31の波長との関係が分かる前は、電磁波31の波長と感応因子の種類の組み合わせを煩雑な試行錯誤により決定していた。しかし、このような感応因子の電磁波吸収特性と観察用の電磁波31の波長との関係を利用することにより、電磁波31の波長と感応因子の種類の好ましい組み合わせを容易に決定できるようになった。





 また、各波長の電磁波31に対する感応因子の吸収特性は比較的容易に計測できるため、感応因子の選定を有利に行うことができる。





 なお、感応因子に吸収された電磁波31のエネルギーは双極子モーメントの変化だけでなく、熱的な振動モード等の他の量子論的な他の状態変化に転換される。このため、感応因子に吸収された電磁波31のエネルギーのどのくらいの割合が双極子モーメントの変化に転換されたのかを計測するのは容易でない。しかし、感応因子の有効吸収波長帯域は比較的容易に調べられるため、それを利用して電磁波31の波長と感応因子の種類の好ましい組み合わせを選定することにより、その選定作業が飛躍的に効率化される。





 次に、いくつかの試験試料について各波長の電磁波の吸収度を計測し、それらの試料が電磁波31との関係で感応因子として採用可能か検討してみる。なお、感応因子とは、電磁波31を受けてその双極子モーメントが変化する電磁波感応が生じる感応物質そのものだけでなく、そのような感応物質が溶媒に溶解してなる溶液(感応溶液)も含むものとする。感応因子を観察対象物2内に導入する場合は、液体である感応溶液の方が導入処理も容易であり、好ましい。





 なお、ここでは電磁波31として、可視から近赤外の波長領域に属するレーザー光を用いる場合における、感応因子の好ましい例について議論する。電磁波31の波長の具体例として可視から近赤外の波長領域を挙げるのは、次のような技術的な意味がある。電磁波31として用いるレーザー光の波長の具体例の上限を近赤外領域に設定したのは、波長がそれ以上長くなると観察対象物2の断面の構造等に関する情報を取得する際の分解能が悪化するからである。また、波長が近赤外領域よりも長くなると、水により吸収される割合が大きくなり、本実施形態の技術を水を含んだ観察対象物2(例えば、人の眼底部等の生体組織)の観察に有効に適用できなくなるからである。また、レーザー光の波長の具体例の下限を可視領域に設定したのは、紫外光は生体組織への影響が大きく、人体組織の観察には適さないからである。それ故、電磁波31として可視から近赤外の波長領域に属するレーザー光を用いることにより、有利な分解能で生体組織等の観察対象物2の断面の構造等に関する情報を取得できる。なお、電磁波31として用いるレーザー光の波長の範囲を数値により示すと、360nm程度以上(例えば、360nm以上)、かつ2.5μm程度以下(例えば、2.5μm以下)ということになる。





 ここでは、試験試料として、ブリリアントブルー(Brilliant Blue FCF (C37H34N2Na2O9S3))を水に溶かしてなるブリリアントブルー水溶液、ペンタセン(Pentacene (C22H14))をエタノールに溶かしてなるペンタセンエタノール溶液、インドシアニングリーン(Indocyanine Green)(以下、「ICG」と記す)を水に溶かしてなるICG水溶液、及び、水を用いた。インドシアニングリーンは、人体への使用が承認されているとともに、人体等の生体組織内に導入した際に生体への影響が小さいため、生体組織の観察に有効である。





 なお、試験試料に水を含めたのは、生体組織の主要な構成要素である水の電磁波感応効果(電磁波に感応して双極子モーメントが変化する効果)を基準とするためである。すなわち、観察対象物2として生体組織を選択した場合、感応因子として有効に機能するためには、水よりも優位な電磁波感応効果を発揮する必要があるからである。この観点より、観察対象物2が生体組織である場合には、感応因子に求められる特性として、観察用の電磁波31(例えば、特定の波長のレーザー光)に対する水の双極子モーメント(又は誘電率)の変化度よりも高い変化度で感応因子の双極子モーメント(又は誘電率)が変化する必要があると言える。





 吸収度の測定は、図5に示すように、特定の波長の光を照射可能な光源ユニット41と、入射した光の強度を検出する受光ユニット42とを用いて行われる。光源ユニット41が出力する光の波長は変化可能となっている。光源ユニット41には計測用及び参照用の2つの光出射口が設けられており、同じく受光ユニット42にも計測用と参照用の2つの光受光部が設けられている。光源ユニット41の計測用の光出射口と受光ユニット42の計測用の受光部との間には、試験試料となる溶液が入れられた石英セル43が置かれ、光源ユニット41の計測用の光出射口と受光ユニット42の計測用の受光部との間には、何も入っていない空の参照用の石英セル43が置かれる。そして、光源ユニット41の各光出射口から出射した各波長の光を、試験溶液の入った石英セル43及び空の参照用の石英セル43にそれぞれ透し、受光ユニット42の各受光部にそれぞれ受光させ、受光強度を検出する。続いて、参照用の受光部の受光強度を基準として、その受光強度で計測用の受光部の受光強度を割り算し、その割り算値の対数値を各波長の吸収度とする。これによって、試験試料を格納する容器(石英セル)等の影響を除外しながら、試験試料の各波長における吸収度を計測できる。





 図6ないし図9は、各試験試料の吸収度の計測結果(吸収波長スペクトル)を示すグラフであり、横軸は照射した光の波長が設定され、縦軸は各波長の吸収度が設定されている。また、図6はブリリアントブルー水溶液の吸収波長スペクトルを示し、図7はペンタセンエタノール溶液の吸収波長スペクトルを示し、図8はICG水溶液の吸収波長スペクトルを示し、図9は水の吸収波長スペクトルを示している。なお、各溶液に溶かされるICG等の媒質濃度については特に限定はない。ICG等の溶質による高い電磁波感応効果(電磁波に感応して双極子モーメントが変化する度合い)を希望するのであれば、溶質濃度を高く設定すればよく、逆に低い電磁波感応効果で十分である場合には、溶質濃度を低く設定すればよい。但し、検出対象物2を生体組織等する場合には、生体組織に対する影響を考慮して媒質濃度を設定する必要がある。





 図6の計測結果より、ブリリアントブルー水溶液に関する上記の有効吸収波長帯域は、例えば約500nmから約750nmの範囲であることが分かった。図7の計測結果より、ペンタセンエタノール溶液の有効吸収波長帯域は、例えば約430nmから約880nmの範囲であることが分かった。図8の計測結果より、ICG水溶液の上記有効吸収波長帯域は、例えば約500nmから約950nmの範囲であることが分かった。図9の計測結果より、水の有効吸収波長帯域は、例えば約900nmから約1050nmの範囲、及び1120nmから1300nmの範囲にあり、さらに赤外領域にいくつかの吸収波長帯域があることが分かった。なお、図9の計測結果より、水の吸収波長帯域は可視領域よりも長波長側に分布しているため、ブリリアントブルー水溶液及びICG水溶液の可視領域での吸収波長特性は、主に溶質であるブリリアントブルー及びICGの影響に依るものであることが分かる。また、エタノールも可視領域に吸収波長帯域を有さないことが分かっているため、ペンタセンエタノール溶液の可視領域での吸収波長特性についても、主にペンタセンの影響によるものであることが分かる。





 観察用の電磁波31として用いる光(レーザー光)の波長を具体的に特定して、感応因子として上記4種類の試験試料のどれか好ましいかを検討する。例えば、レーザー光の波長を約800nmとした場合、ICG水溶液が、有効吸収波長帯域の中央付近に800nmの波長を含んでいるため、感応因子として最も好ましいであろうということが分かる。また、ペンタセンエタノール溶液も、有効吸収波長帯域の裾部分ではあるが800nmの波長を含んでいるため、感応因子として使用可能ということが分かる。また、ブリリアントブルー水溶液、及び、水については、その有効吸収波長帯域内に800nmの波長を含まないため、感応因子として使用困難ということが分かる。なお、この点に関連しては、後述の図12に示す光干渉断層計を用いて実際に試験を行っているので、その試験結果を後述する。





 ここで、感応因子として有望な材料について記載する。まずは、色素(有機色素と無機色素を含む)等の生理活性物質が挙げられる。色素として種々のものが知られているが、色素は可視から近赤外の波長領域に光を吸収する吸収波長帯域を有しているものが多い。このため、感応因子に色素を用いることにより、観察用の電磁波の波長と、感応因子として用いる色素の組合せの自由度を拡大できる。また、感応因子として有機色素を用いる場合、有機色素は生体組織内に多く存在するため、生体組織内に存在する有機色素を感応因子として利用できるという利点がある。他の生理活性物質としては、例えばタンパク、コレステロール、脂肪球、脂質、赤血球、白血球、血小板などが挙げられる。この他、感応因子として水、氷、アルコール、ガラス、石英、ダイヤモンド、プラスチック、半導体なども挙げられる。但し、これらの材料の吸収波長特性と観察用の電磁波の波長との関係が上記の条件を満たす必要がある。





 また、電磁波31として用いられるレーザー光は、パルス状に断続的に出力されるパルスレーザー光であるのが好ましい。





 電磁波31としてパルス状に断続的に出力されパルスレーザー光(例えば、超短パルスレーザー光)を用いることにより、単位時間当たりのパルスレーザー光の出力レベルを抑制しながらパルスレーザー光の各パルスの強度(振幅)を大きくできる。これにより、パルスレーザー光が観察対象物2内に入射した際に、観察対象物2内にてレーザー光による大振幅の電磁波を感応因子に作用させて、感応因子の双極子モーメントを有効に変化させることができる。また、単位時間当たりのパルスレーザー光の出力レベルは抑制されているため、パルスレーザー光の照射による観察対象物2への影響を抑制できる。





 また、パルスレーザー光のパルス時間幅を短くすることにより、不確定性原理により、パルス波長幅(バンド幅)を大きくできる。観察対象物2に照射したパルスレーザー光の反射光と、観察対象物2を経ていない参照光との位相差等に基づいて観察対象物2内のパルスレーザー光の照射方向に沿った断面の構造に関する情報を取得する場合には、パルスレーザー光のパルス波長幅(バンド幅)を大きくすることにより、観察対象物2の断面の前記照射方向に対する分解能を向上させることができる。





 また、観察対象物2内の構造等が時間的に変化している場合には、所定のパルス周期で断続的に出力されるパルスレーザー光を、そのパルス周期よりも大きな間欠周期で間欠的にチョップして観察対象物2に照射することにより、時間的に変化する観察対象物2内の構造等に関する情報を、ストロボ撮影的に短い時間間隔(間欠周期)で取得できる。





 電磁波31として用いるパルスレーザー光のパルス時間幅は、パルスレーザー光が観察対象物2に入射されてから、パルスレーザー光により励起された観察対象物2内の感応因子から状態遷移に伴う電磁波放出が為されるまでの時間長よりも短いことが好ましい。ここで、パルス時間幅とは、いわゆる半値全幅のことをと言い、パルス波形をピーク値の半値の部分で横軸に沿って切断したときのパルス波形の幅である。後述するパルス波長幅についても同様に半値全幅のことを言う。





 これにより、パルスレーザー光のパルス時間幅が、パルスレーザー光が観察対象物2に入射されてから、パルスレーザー光により励起された観察対象物2内の感応因子から状態遷移に伴う電磁波放出が為されるまでの時間長(例えば、100マイクロ秒程度のオーダー)よりも短くなる。一方、観察対象物2内のパルスレーザー光による感応因子の双極子モーメントの変化は、パルスレーザー光の観察対象物2への入射とほぼ同時に生じ、パルスレーザー光により励起された観察対象物2内の感応因子から状態遷移に伴う光放出が為されるタイミングよりも早い。このため、パルスレーザー光が観察対象物2に入射した際、感応因子からの状態遷移に伴う光放出が為される前に、感応因子の双極子モーメントが変化して観察対象物2内の誘電率の分布が変化し、その誘電率の分布の変化の影響を受けたパルスレーザー光が反射光又は透過光として観察対象物2外に出射する。その結果、パルスレーザー光により励起された観察対象物2内の感応因子から状態遷移に伴って放出される放出光の影響を受けることなく、パルスレーザー光を用いて観察対象物2内の構造に関する情報を取得できる。





 具体的には、例えば、電磁波31として用いるパルスレーザー光のパルス時間幅を、10フェムト秒以上(例えば、10フェムト秒以上)、かつ1ピコ秒以下(例えば、1ピコ秒以下)の値とするのが好ましい。すなわち、電磁波31として用いるパルスレーザー光として、パルス時間幅がフェムト秒スケールのフェムト秒パルスレーザー光を用いるのが好ましい。このようなパルス時間幅が極めて短いパルスレーザー光を超短パルスレーザー光と呼ぶこともある。





 ここで、パルスレーザー光のパルス時間幅の下限を10フェムト秒としたのは、パルス時間幅が10フェムト秒未満のパルスレーザー光は、光学系を通過した際の分散によるパルス時間幅の拡大が大きく、生成が困難だからである。また、パルス時間幅の上限を1ピコ秒としたのは、不確定性原理によりパルス時間幅との関係で定まるパルスレーザー光のパルス波長幅が、パルス時間幅が1ピコ秒より長くなると小さくなりすぎて、撮像対象物2の断面の構造等を観察する際の分解能が低下しすぎるからである。例えば、パルスレーザー光のパルス時間幅が10フェムト秒程度であれば1μm程度かそれよりも微細なスケールの分解能が期待でき、100フェムト秒程度であれば1~3μm程度の分解能が期待でき、1ピコ秒程度であれば10μm程度かそれよりも大きなスケールの分解能が期待できる。





 それ故、電磁波31として用いるパルスレーザー光のパルス時間幅を10フェムト秒以上、かつ1ピコ秒以下の値とすることにより、単位時間当たりのパルスレーザーの出力レベルを抑制しながら、パルスレーザー光の各パルスの強度(振幅)を大きくして、パルスレーザー光により観察対象物2内の感応因子の双極子モーメントを有効に変化させることができる。また、観察対象物2の断面の構造等に関する情報を高い分解能で取得できる。





 このようなパルスレーザー光の一例としては、図10及び図11に示すものが挙げられる。このパルスレーザー光のパルス時間幅は100フェムト秒程度となっており、パルス波長幅は15nm程度となっている。また、このパルスレーザー光のピーク波長(パルス波形のピークでの波長)は、約795nmとなっている。





 次に、図4を参照して、電磁波31の照射による観察対象物2に含まれる感応因子が双極子モーメントの変化を利用して観察対象物2内の構造等の検出がどのようにして行われるのかを説明する。





 電磁波31が上記の観察対象物2に照射された場合、図4に示すように、観察対象物2のマイナスZ方向側及びプラスZ方向の表面2a,2b、及び媒質21と媒質22との境界部23a,23bにて電磁波31の反射が生じ得る。このため、図1に示すように、第2の検出ユニット122により透過波を検出する場合、第2の検出ユニット122により検出される信号電磁波33には、観察対象物2の表面2a,2b又はその内部の媒質21,22の境界部23a,23bで複数回(例えば、偶数回)反射された1又は複数の反射波成分が含まれている。その反射波成分は、反射により生じた経路長の増大に伴い、第2の検出ユニット122に入射するときの位相が変化する。それ故、参照電磁波32が第1の検出ユニット121に入射するときの位相と信号電磁波33に含まれる反射波成分の位相との位相差に関する情報を検出することにより、その検出した位相差に関する情報に基づいて、例えば観察対象物2内の媒質21,22の境界部23a,23bと観察対象物2の表面2a,2bとのZ方向に沿った距離、又は、観察対象物2内の媒質21,22の境界部23a,23b間のZ方向に沿った距離等を検出できる。





 例えば、観察対象物2の表面2a,2b及び境界部23a,23bのうち、境界部23a,23bでの電磁波31の反射が最も顕著である場合について説明する。この場合、信号電磁波33に含まれる反射波成分のうち、図4に示すように、境界部23a,23aで1回ずつ(合計2回)反射されてプラスZ方向の出射する反射波成分33aと参照電磁波32との位相差に関する情報に基づいて、境界部23a,23b間のZ方向に沿った距離を検出できる。





 参照電磁波32と信号電磁波33に含まれる反射波成分との位相差に関する情報の検出は、例えば次のようにして行われる。参照電磁波32及び信号電磁波33の検出を行いながら、第1の検出ユニット121を第1の駆動部123により上記基準設定位置からZ方向(例えば、プラスZ方向)に移動させ、第1の検出ユニット121の移動に伴って生じる信号処理部125の処理結果の変化を解析する。例えば、信号処理部125に、第1の検出信号と第2の検出信号との混合又は相関処理等を行わせてもよい。そして、信号処理部125から与えられる信号の値が極大となったときの第1の検出ユニット121の基準設定位置からの移動距離に基づいて、参照電磁波32と信号電磁波33に含まれる反射波成分との位相差(又は経路差)に関する情報を取得してもよい。





 また、信号電磁波33に経路長の異なる複数の反射波成分が含まれている場合がある。この場合には、第1の検出ユニット121を移動させる過程で、信号処理部125から与えられる信号の値が、反射波成分の数に応じて複数回のピークを形成する。この場合も、その信号の各ピークに対応する第1の検出ユニット121の基準設定位置からの移動距離に基づいて、参照電磁波32と信号電磁波33に含まれる各反射波成分との位相差(又は経路差)に関する情報が得られる。





 また、第2の駆動部124によって第2の検出ユニット122をX方向、Y方向に移動させることにより、観察対象物2内の全体について、媒質21,22の境界部23a,23b等の構造に関する情報を取得できる。例えば、観察対対象物2をZ方向と平行な任意の断面で切った断面における媒質21,22の境界部23a,23b等の構造に関する情報を取得できる。





 他の例として、図3に示すように、第2の検出ユニット122により反射波を検出する場合について説明する。この場合、第2の検出ユニット122が検出する信号電磁波33には、観察対象物2の表面2a,2b又はその内部の媒質21,22の境界部23a,23bで1又は複数回(例えば、奇数回)反射された1又は複数の反射波成分が含まれている。そして、この場合においても、その反射波成分は、反射により生じた経路長の増大に伴い、第2の検出ユニット122に入射するときの位相が変化する。それ故、参照電磁波32が第1の検出ユニット121に入射するときの位相と信号電磁波33に含まれる反射波成分の位相との位相差に関する情報を検出することにより、その検出した位相差に関する情報に基づいて、例えば観察対象物2内の媒質21,22の境界部23a,23bと観察対象物2の表面2a,2bとのZ方向に沿った距離、又は、観察対象物2内の媒質21,22の境界部23a,23b間のZ方向に沿った距離等を検出できる。





 さらに、反射型の構成では、信号電磁波33に複数の反射波成分が含まれている場合、位相がより遅れている反射波成分ほど、観察対象物2の表面23aからプラスZ方向に沿ってより深い境界部23a,23b等の反射面で反射されて帰ってきた成分であることが分かる。このため、観察対象物2内における電磁波31が反射された境界部23a,23b等の反射面の観察対象物2の表面2a等を基準とした位置(例えば、深さ等)に関する情報を取得できる。さらに、その取得情報に基づいて、例えば観察対象物2を任意の断面で切った断面における媒質21,22の境界部23a,23b等の形状、サイズ等に関する情報も取得できる。





 また他の例として、参照電磁波32及び信号電磁波33の検出結果に基づいて、参照電磁波32の強度を基準とした信号電磁波33の強度に関する情報を取得することにより、その検出結果に基づいて観察対象物2内の媒質21,22の境界部23a,23bに関する情報を取得することもできる。例えば図2に示す観察対象物2の場合、観察対象物2内に入射した電磁波31が媒質22の表面(媒質21,22の境界部23a,23b)で反射される。このため、観察対象物2内におけるマイナスZ方向(電磁波31の照射側)から見て、媒質22が存在する部分では、媒質22が存在しない他の部分と比べて、境界部23a,23bでの反射の影響により、観察対象物2からプラスZ方向に出射する信号電磁波33の強度が低下し、観察対象物2からマイナスZ方向に出射する信号電磁波31の強度は増大する。よって、参照電磁波32の強度を基準として、マイナスZ方向から見たときの観察対象物2からマイナスZ方向又はプラスZ方向に出射する信号電磁波31の強度の分布を調べることにより、観察対象物2内における媒質22が存在する部分のマイナスZ方向から見た外形又は大きさ等に関する情報を取得できる。





 また他の例として、参照電磁波32を利用せずに、マイナスZ方向から見たときの観察対象物2からマイナスZ方向又はプラスZ方向に出射する信号電磁波31の強度の分布を調べることにより、観察対象物2内における媒質22が存在する部分のマイナスZ方向から見た外形又は大きさ等に関する情報を取得することもできる。





 また、観察対象物2内に前記感応因子を積極的に導入する場合には、以下のような効果が得られる。すなわち、観察対象物2内の特に観察対象となる部分(例えば、一部の媒質、構造物等)に前記感応因子を導入することにより、その部分の構造に関する情報をより鮮明な状態で取得できる。





 なお、上述の図1の観察装置1において、参照電磁波32と信号電磁波33に含まれる反射波成分との位相差に関する情報を検出するための構成としては、次の構成も採用可能である。すなわち、信号処理部125が、参照電磁波32の検出により得られる第1の検出信号、及び信号電磁波33の検出により得られる第2の検出信号の少なくともいずれか一方の位相を可変な調整幅で進退させるようにしてもよい。これにより、第1の検出信号及び第2の検出信号の少なくともいずれか一方の位相の進退幅を信号処理部125により調整しつつ、参照電磁波32の位相と信号電磁波33の位相の相対的な位置変化等を検出することにより、参照電磁波32と信号電磁波33との位相差に関する情報を容易に取得できる。この構成では、第1の検出ユニット121をZ方向に沿って移動させるための第1の駆動部123を省略でき、観察装置1の構成の簡略化が図れる。なお、この構成では、信号処理部125が本発明に係る位相調節部の役割を担っている。





 この構成のより具体的な動作等について説明する。なお、まず基準設定として、観察対象物2が配置されていない状態で、第1及び第2の検出ユニット121,122により電磁波31を検出し、その結果得られる第1の検出信号と第2の検出信号の位相が等しくなるように、信号処理部125により第1の検出信号又は第2の検出信号の位相が進退されて調節される。続いて、観察対象物2を設置した状態で、参照電磁波32及び信号電磁波33を検出し、その結果得られる第1及び第2の検出信号に基づいて、第1の検出信号の位相に対する第2の検出信号の位相のずれ量(位相差)を検出する。





 また、上述の図1に示す観察装置1では、参照電磁波32と信号電磁波33とを第1の検出ユニット121と第2の検出ユニット122とによって個別に検出した。この点に関する変形例として、参照電磁波32と信号電磁波33とを導波手段等を用いて重畳させ、その重畳により得られた干渉波を第1の検出ユニット121又は第2の検出ユニット122により検出してもよい。そして、その検出の結果得られる干渉波の強度に関する情報等を、信号処理部125により取得し、その結果を制御部13に与えるようにしてもよい。この場合、検出ユニット121,122の一方は省略してもよい。





 また、上述の図1に示す観察装置1では、信号電磁波33を検出する第2の検出ユニット122をX方向、Y方向に移動させる構成としたが、この点に関する変形例として次の構成が挙げられる。すなわち、第2の検出ユニット122に、略線状又は略面状に配置された信号電磁波33を検出する複数の検出要素(例えば、受信アンテナ等)を設けた構成が挙げられる。複数の検出要素の配置形態は、例えばX方向又はY方向に沿って略線状に配置する形態、あるいは、XY平面に沿って略面状(例えば、複数列、複数行のマトリクス状)に配置する形態等が挙げられる。この場合、第2の検出ユニット122をX方向、Y方向に移動させる第2の駆動部124の全部又は一部の機能を省略してもよい。





 次に、図12に示す光干渉断層計1Aを用いて実際に観察対象物2の観察を行った結果について説明する。図12に示す光干渉断層計1Aは、図1の観察装置1の一具体例であり、図1の観察装置1の構成と対応する部分には同一の参照符号を付して説明の重複を回避する。





 この光干渉断層計1Aでは、出力部11が観察用の電磁波として図10及び図12に示すパルスレーザー光31aを出力する。より具体的には、出力部11は光源ユニットとしてモード同期チタンサファイア超短パルスレーザー装置を備えて構成されている。パルスレーザー光31aのパルス周波数は82MHzであり、1秒当たりの出力レベルは15mW程度である。





 また、この光干渉断層計1Aでは、分割結合光学系46が備えられている。この分割結合光学系46は、出力部11から出力されたパルスレーザー光31aを観察対象物2に向かう照射光31bと参照物体(例えば、ミラー)47に向かう参照光31cとに分割するとともに、観察対象物2で反射された照射光31bの反射光と、参照物体47で反射された参照光31cの反射光とを重畳させて干渉光48を生成する。分割結合光学系46の主な構成要素として、図12に示す構成ではハーフミラーが用いられているが、光の入射側及び出射側の双方に分岐した2つの入出力端を有する分岐型の光ファイバ(あるいは、導光体)を用いてもよい。





 分割結合光学系46と観察対象物2との間の光路長と、分割結合光学系46と参照物体47との間の光路長とは実質的に等価に設定されており、観察対象物2で反射されて分割結合光学系46に到達する照射光31bの光路長と、参照物体47で反射されて分割結合光学系46に到達する参照光31cの光路長とが等しいときに、2つの反射波により生成される干渉光48の強度が極大値を形成する。一方、上述の図4の例で示したように、内部構造を有する観察対象物2の場合、観察対象物2からの照射光31の反射光には、観察対象物2内における深さ方向の反射位置が異なる複数の光が含まれることとなる。





 このため、参照物体47を参照光31bが参照物体47に入射する際の光軸方向(入射方向)に沿って矢印A1で示すように駆動(走査)して参照光31bの光路長を変化させれば、照射光31bの反射光に含まれる観察対象物2内における深さ方向の反射位置が異なる各光の光路長に、参照光31bの光路長が一致する度に、分割結合光学系46から出力される干渉光48の強度が極大値を形成する。よって、参照物体47の位置情報と、干渉光48の強度に関する情報とに基づいて、観察対象物2の断面の構造に関する情報(断層画像等)が得られる。参照物体47は、矢印A1で示す方向(参照光31cの光軸方向)に沿って移動可能となっており、制御部13の制御により動作する駆動部49によって矢印A1で示す方向に駆動される。変形例として、参照物体47を参照光31cの光軸方向に沿って駆動する代わりに、駆動部49により観察対象物2を照射光31bの光軸方向に沿って駆動してもよい。





 なお、この光干渉断層計1Aにおいて、観察対象物2の所定方向(例えば、図12のY軸方向)に沿った断面の画像を取得する際には、照射光31aの観察対象物2への入射位置をY軸方向に移動させて、Y軸方向の各座標点における観察対象物2の断面の構造を検出すればよい。照射光31aの観察対象物2への入射位置の移動は、例えば、照射光31a等の光路上に照射光31aの光路をY軸方向に移動させる光路変換用の光学系を挿入することにより、あるいは、観察対象物2を光干渉断層計2Aに対してY軸方向に移動させることにより行われる。





 検出部12の受光ユニット12aは、分割結合光学系46から出力された干渉光48を受光して電気信号(検出信号)に変換し、制御部13に送る。例えば、受光ユニット12aはアバランシェ・ダイオード等の半導体受光素子を用いて構成されている。また、検出部12の受光ユニット12aの前段には、受光ユニット12aに入射する干渉光48を調節するためのレンズ等の光学系が配置される場合がある。制御部13は、駆動部49を介して参照物体47を矢印A1で示す方向に駆動するとともに、参照物体47の位置情報と、検出信号により得られる情報(干渉光の強度に関する情報等)とに基づいた解析処理により、観察対象物2の断面の構造に関する情報(断層画像等)を形成する。





 図13は、観察対象物2として用いられる第1の試験構造物2Aの断面の構成を模式的に示す断面図である。この第1の試験構造物2Aは、4枚のメンディングテープ50を貼り合わせてなるメンディングテープ積層物を試験材料である溶液に所定時間だけ浸すことにより構成されている。メンディングテープ積層物を溶液に浸すことにより、溶液が積層された各メンディングテープ50の間の僅かな隙間に染み込み、メンディングテープ50の間に溶液の薄膜層50aが形成される。これとともに、溶液又は溶液中に溶かされた溶質とメンディングテープ50のテープ基材との親和性がある場合には、メンディングテープ積層物の表面にも、溶液又は溶液に溶かされた溶質からなる薄膜層50bが形成される。また、溶液又は溶液中に溶かされた溶質とメンディングテープ50のテープ基材の裏面に付与された粘着剤との親和性がある場合には、メンディングテープ積層物の裏面にも、溶液又は溶液に溶かされた溶質からなる薄膜層50cが形成される。なお、試験構造物2Aに用いられるメンディングテープ1層分の厚みは40~50μm程度あり、そのうち、テープ基材の厚みが20~30μm程度あり、残りの厚み部分が粘着剤と隙間の部分となっている。図13中の矢印A2は、試験構造物2Aに照射光31bを入射させる際の入射方向を示している。





 ここでは、第1の試験構造物2Aとして、メンディングテープ積層物をブリリアントブルー水溶液に浸したもの、メンディングテープ積層物をペンタセンエタノール溶液に浸したもの、メンディングテープ積層物をICG水溶液に浸したもの、及びメンディングテープ積層物を水に浸したものの4種類を用意した。但し、試験材料として水を用いた場合には、水とメンディングテープのテープ基材との親和性が低いため、メンディングテープ積層物が水中から引き上げられるのに伴って、水がテープ基材によって弾かれてメンディングテープ積層物の表面に残らず、薄膜層50bは形成されない。また、試験材料としてブリリアントブルー水溶液を用いた場合にも、水及びその溶質であるブリリアントブルーとメンディングテープのテープ基材との親和性が低いため、メンディングテープ積層物がブリリアント水溶液中から引き上げられるのに伴って、ブリリアントブルー水溶液がテープ基材によって弾かれてメンディングテープ積層物の表面に残らず、薄膜層50bは形成されない。溶液としてペンタセンエタノール溶液を用いた場合には、その溶質であるペンタセンとメンディングテープのテープ基材との親和性がよいため、メンディングテープ積層物の溶液への浸漬により、メンディングテープ積層物の表面にペンタセンからなる薄膜層50bが形成される(引き上げ後、溶媒であるエタノールは気化する)。溶液としてICG水溶液を用いた場合には、その溶質であるICGとメンディングテープのテープ基材との親和性がよいため、メンディングテープ積層物の溶液への浸漬により、メンディングテープ積層物の表面にICGからなる薄膜層50bが形成される(引き上げ後、溶媒である水は蒸発する)。メンディングテープ積層物の裏面については、粘着剤と、水及び各溶質との親和性がよいため、メンディングテープ積層物の各溶液への浸漬により、ブリリアントブルー、ペンタセン又はICGの薄膜層50cが形成される。なお、メンディングテープ積層物を水に浸漬した場合には、メンディングテープ積層物の裏面に付着した水が蒸発するため、裏面の水の薄膜層50cについてはそれが無い状態で観察が行われる。





 その観察結果を図14ないし図21に示す。図14及び図15はメンディングテープ積層物をブリリアントブルー水溶液に浸したものを用いたときの観察結果を示し、図16及び図17はメンディングテープ積層物をペンタセンエタノール溶液に浸したものを用いたときの観察結果を示し、図18及び図19はメンディングテープ積層物をICG水溶液に浸したものを用いたときの観察結果を示し、図20及び図21はメンディングテープ積層物を水に浸したものを用いたときの観察結果を示している。また、図14、図16、図18及び図20のグラフの横軸は、参照物体47の参照光31cの光軸方向に沿った座標値に対応しており、縦軸は受光ユニット12aが受光した干渉光の強度を数値化したものである。これらのグラフに示す信号波形のうち、波形がパルス状に立ち上がっている部分が、第1の試験構造物2Aにおけるメンディングテープ積層物の表面(又は表面に形成された溶液の薄膜層50b)、裏面(又は裏面に形成された薄膜層50c)、及び、各メンディングテープ50間の隙間に形成された溶液の薄膜層50aに対応している。





 なお、今回の観察では、参照物体47の参照光31cを光軸方向に沿って所定ピッチで移動させながら、参照物体47の各座標値(座標点)ごとに1.5秒ずつパルスレーザー光31aの照射を行った。このため、図14、図16、図18及び図20の各座標値(座標点)における干渉光の強度値は、1.5秒間の干渉光の受光光量の積算値に対応している。





 図15、図17、図19及び図21は、図14、図16、図18及び図20の検出結果に基づいて形成された断層画像を示している。図15、図17、図19及び図20中の横方向に延びる白いラインが、メンディングテープ積層物における各メンディングテープの間の試験試料である溶液が染み込んだ部分(溶液の薄膜層50a)、及びメンディングテープ積層物の表面及び裏面(あるいは、表面又は裏面に形成された溶液の薄膜層50b,50c)に対応している。





 図20及び図21を参照して、メンディングテープ積層物を水に浸したものを用いたときの観察結果について説明する。ここで、図20のグラフより、メンディングテープ積層物の表面が検出されているとともに、メンディングテープ50間に形成される3つの水の薄膜層50aのうちの1層目と2層目の薄膜層50aは検出されているが、3層目の薄膜層50a及びメンディングテープ積層物50の裏面の検出が不明瞭になっている。また、図21の断面画像についても、3層目の薄膜層50a及びメンディングテープ積層物50の裏面の画像が不明瞭である。この試験材料に水を用いたときの観察結果を基準として、試験材料にブリリアントブルー水溶液、ペンタセンエタノール溶液又はICG水溶液を用いた各場合について観察結果を検討していく。





 メンディングテープ積層物をブリリアントブルー水溶液に浸したものを用いた場合では、図14のグラフより、メンディングテープ積層物の表面の検出は明瞭である。しかし、メンディングテープ50間に形成される3つのブリリアントブルー水溶液の薄膜層50b及びメンディングテープ積層物の裏面に形成されたブリリアントブルーの薄膜層50cについて、その検出が不明瞭である。このため、ブリリアントブルー水溶液による電磁波感応効果は殆ど得られていないことが分かる。図20の矢印A3で示すメンディングテープ積層物の表面の検出信号値と、図14の矢印A4で示すメンディングテープ積層物の表面の検出信号値を比較しても、有効な差は得られていない。また、図15の断面画像についても、メンディングテープ積層物の表面、メンディングテープ50間の各薄膜層50a、及び裏面の薄膜層50cの画像が不明瞭である。





 メンディングテープ積層物をペンタセンエタノール溶液に浸したものを用いた場合では、図16のグラフより、メンディングテープ積層物の表面及び裏面に形成された薄膜層50b,50c及びメンディングテープ50間の各薄膜層50bが明瞭に検出されている。このため、ペンタセンエタノール溶液又はペンタセンによる電磁波感応効果が有効に得られていることが分かる。水に浸した場合と比較した増感度(図20の矢印A3で示す検出信号値で、図16の矢印A5で示す検出信号値を割り算した値)も、1.33倍に向上しており、この点からも有効な増感効果が得られていることが分かる。また、図17の断面画像についても、全体的に各薄膜層50a~50cの画像の明瞭度が向上している。





 メンディングテープ積層物をICG水溶液に浸したものを用いた場合では、図18のグラフより、メンディングテープ積層物の表面及び裏面に形成された薄膜層50b,50c及びメンディングテープ50間の各薄膜層50bが非常に明瞭に検出されている。このため、ICG水溶液又はICGによる強い電磁波感応効果が得られていることが分かる。水に浸した場合と比較した増感度(図20の矢印A3で示す検出信号値で、図18の矢印A6で示す検出信号値を割り算した値)も、1.78倍に向上しており、この点からも高い増感効果が得られていることが分かる。また、図19の断面画像についても、全体的に各薄膜層50a~50cの画像の明瞭度が向上している。





 次に、水とICG水溶液の電磁波感応効果の違いを分かりやすく示すため、図12の光干渉断層計2Aを用いて次のような試験を行った。試験は、図22及び図23に示すように、第1及び第2の2つセル部51,52が設けられた第2の試験構造物2Bを用いて行われる。第1のセル部51には水53が溜められ、第2のセル部52にはICG水溶液54が溜められている。各セル部51,52は、アクリル板55の表面に深さ2mmの凹部を2つ形成し、その凹部が形成されたアクリル板55の表面に薄いガラス板56を被せることにより形成されている。そして、図12の光干渉断層計2Aの照射光31bが、図23中の矢印A11に示す方向から第2の試験構造物2Bに照射される。





 図24は水53が溜められた第1のセル部51を観察した際に得られる検出信号のグラフを示す図であり、図25はICG水溶液54が溜められた第2のセル部52を観察した際に得られる検出信号のグラフを示す図である。図24及び図25のグラフの横軸及び縦軸の構成は上述の図14等のグラフと同じである。図24及び図25のグラフにおいて、信号波形の最初のピークは第2の試験構造物2Bのガラス板56の表面による反射が検出されたものである。注目すべきは、矢印A12,13で示すピークであり、これらがガラス板56と、水52又はICG水溶液54との境界面での反射に対応している。





 図24及び図25の観察結果より、水52に比較してICG水溶液54の方がガラス板56との境界面での照射光31bの反射強度が大幅に向上しており、有効な電磁波感応効果が得られていることが分かる。





 図26は、図24及び図25の検出信号に基づいて形成された図22の第2の試験構造物2Bの断面線Lに沿った断面の構成に関する断面画像を示しており、図26内の左側領域において矢印A14で示す横方向に延びる白いラインが水53とガラス板56との境界面に対応しており、図26内の右側領域において矢印A15で示す横方向に延びる白いラインがICG水溶液54とガラス板56との境界面に対応している。図26の断面画像においても、矢印A14の白いラインよりも矢印A15の白いラインの方が格段に明瞭に現れていることが分かる。





 1 観察装置、1A 光干渉断層計、2 観察対象物、2A 第1の試験構造物、2B 第2の試験構造物、11 出力部、12 検出部、13 制御部、14 表示部、15 操作部、21,22 媒質、31 電磁波、31a パルスレーザー光、31b 照射光、31c 参照光、32 参照電磁波、33 信号電磁波、46 分割結合光学系、47 参照物体、48 干渉光、49 駆動部、121 第1の検出ユニット、122 第2の検出ユニット、123 第1の駆動部、124 第2の駆動部、125 信号処理部。

Claims (18)




  1.  電磁波に感応して双極子モーメントが変化する感応因子を含んだ観察対象物を観察する観察装置において、



     電磁波を出力し、出力した電磁波によって前記観察対象物に含まれる前記感応因子の双極子モーメントを変化させる出力部と、



     前記出力部が出力した電磁波のうちの前記観察対象物を経て到来する信号電磁波、及び前記観察対象物を経ずに到来する参照電磁波を検出する検出部と、



     前記検出部の検出結果に基づいて、前記観察対象物の構造を解析する解析部と、



    を備え、



     前記出力部が出力する前記電磁波は、パルス状に断続的に出力されるパルスレーザー光であり、



     前記出力部が出力する前記電磁波の波長は、前記感応因子による照射された電磁波の吸収が生じる前記感応因子の吸収波長帯域内に設定されることを特徴とする観察装置。





  2.  請求項1に記載の観察装置において、



     前記出力部が前記電磁波として出力する前記パルスレーザー光は、フェムト秒パルスレーザー光であることを特徴とする観察装置。





  3.  請求項1に記載の観察装置において、



     前記出力部が前記電磁波として出力する前記パルスレーザー光のパルス時間幅は、前記パルスレーザー光が前記観察対象物に入射されてから、前記パルスレーザー光により励起された前記観察対象物内の前記感応因子から状態遷移に伴う電磁波放出が為されるまでの時間長よりも短いことを特徴とする観察装置。





  4.  請求項1に記載の観察装置において、



     前記出力部が前記電磁波として出力する前記パルスレーザー光のパルス時間幅は、10フェムト秒以上、かつ1ピコ秒以下の値であることを特徴とする観察装置。





  5.  請求項1ないし請求項4のいずれかに記載の観察装置において、



     前記出力部が出力する前記電磁波の波長は、その電磁波が前記感応因子に照射されたときに前記感応因子による電磁波の吸収度が所定の下限基準レベル以上になるような値に設定されることを特徴とする観察装置。





  6.  請求項5に記載の観察装置において、



     前記出力部が出力する前記電磁波の波長は、その電磁波が前記感応因子に照射されたときに前記感応因子による電磁波の吸収度が所定の下限基準レベル以上、かつ所定の上限基準レベル以下になるような値に設定されることを特徴とする観察装置。





  7.  請求項1に記載の観察装置において、



     前記出力部が出力する前記電磁波は、可視から近赤外の波長領域に属するにレーザー光であることを特徴とする観察装置。





  8.  請求項7に記載の観察装置において、



     前記観察対象物は、生体組織であることを特徴とする観察装置。





  9.  請求項1に記載の観察装置において、



     前記感応因子は、色素であることを特徴とする観察装置。





  10.  請求項9に記載の観察装置において、



     前記感応因子は、有機色素であることを特徴とする観察装置。





  11.  請求項7に記載の観察装置において、



     前記観察対象物は、生体組織であり、



     前記感応因子は、インドシアニングリーンであることを特徴とする観察装置。





  12.  請求項1に記載の観察装置において、



     前記検出部は、前記参照電磁波と前記信号電磁波とが重畳された干渉波を検出することを特徴とする観察装置。





  13.  請求項1に記載の観察装置において、



     前記検出部は、前記参照電磁波に対する前記信号電磁波の変化度合を検出することを特徴とする観察装置。





  14.  請求項12に記載の観察装置において、



     前記観察装置は、



     前記出力部から出力された前記パルスレーザー光を前記観察対象物に向かう照射光と参照物体に向かう参照光とに分割するとともに、前記観察対象物を経由した前記照射光と前記参照物体を経由した前記参照光とを重畳させて干渉光を生成する分割結合光学系をさらに備え、



     前記検出部は、前記分割結合光学系から与えられた前記干渉光を検出することを特徴とする観察装置。





  15.  観察対象物を観察する観察方法であって、



     前記観察対象物内に、電磁波に感応して双極子モーメントが変化する感応因子を導入する感応因子導入段階と、



     出力部から電磁波を出力し、出力した電磁波によって前記観察対象物内の前記感応因子の双極子モーメントを変化させながら、前記出力部が出力した電磁波のうちの前記観察対象物を経て到来する信号電磁波、及び前記観察対象物を経ずに到来する参照電磁波を検出部により検出し、前記検出部の検出結果に基づいて、前記観察対象物の構造を解析する観察段階と、



    を備え、



     前記出力部が出力する前記電磁波は、パルス状に断続的に出力されるパルスレーザー光であり、



     前記出力部が出力する前記電磁波の波長は、前記感応因子による照射された電磁波の吸収が生じる前記感応因子の吸収波長帯域内に設定されることを特徴とする観察方法。





  16.  請求項15に記載の観察方法において、



     前記感応因子導入段階では、前記感応因子を、溶媒に溶解させた溶液の状態で前記観察対象物内に導入することを特徴とする観察方法。





  17.  請求項16に記載の観察方法において、



     前記感応因子導入段階では、前記感応因子の溶液を注入器具を用いて前記観察対象物内に導入することを特徴とする観察方法。





  18.  請求項16に記載の観察方法において、



     前記感応因子導入段階では、前記感応因子の溶液を、前記観察対象物の表面、又は前記観察対象物の前記表面に現れた複数の媒質間の隙間を介して、浸透により前記観察対象物内に導入することを特徴とする観察方法。
PCT/JP2011/058510 2010-04-06 2011-04-04 観察装置及び観察方法 WO2011125972A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/639,786 US9080974B2 (en) 2010-04-06 2011-04-04 Observation device and method of observing

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010087567 2010-04-06
JP2010-087567 2010-04-06
JP2010-231308 2010-10-14
JP2010231308 2010-10-14
JP2011-001898 2011-01-07
JP2011001898A JP4852173B1 (ja) 2010-04-06 2011-01-07 観察装置及び観察方法

Publications (1)

Publication Number Publication Date
WO2011125972A1 true WO2011125972A1 (ja) 2011-10-13

Family

ID=44762907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058510 WO2011125972A1 (ja) 2010-04-06 2011-04-04 観察装置及び観察方法

Country Status (3)

Country Link
US (1) US9080974B2 (ja)
JP (1) JP4852173B1 (ja)
WO (1) WO2011125972A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157703A1 (ja) * 2013-03-29 2014-10-02 国立大学法人三重大学 生体染色剤
US10359271B2 (en) * 2012-12-05 2019-07-23 Perimeter Medical Imaging, Inc. System and method for tissue differentiation in imaging

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236909B2 (ja) * 2013-06-24 2017-11-29 株式会社リコー 浸透過程計測装置及び浸透過程計測方法
EP3718462A4 (en) * 2017-11-28 2021-08-18 Mie University DETECTION PROCESS
CN113660762A (zh) * 2021-09-20 2021-11-16 三兄弟(珠海)科技有限公司 一种用于材料检测的量子态电磁波发生装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244243A (ja) * 1998-03-04 1999-09-14 Fuji Photo Film Co Ltd グルコース濃度測定方法および装置
JP2000037355A (ja) * 1998-07-24 2000-02-08 Fuji Photo Film Co Ltd グルコース濃度測定方法および装置
JP2003121347A (ja) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd グルコース濃度測定方法および測定装置
JP2004340581A (ja) * 2003-05-13 2004-12-02 Institute Of Tsukuba Liaison Co Ltd 時間シアリング光コヒーレンストモグラフィー装置及び方法
JP2005211355A (ja) * 2004-01-29 2005-08-11 Kochi Univ Of Technology 近赤外発光による経皮的リンパ観察装置
JP2007260192A (ja) * 2006-03-29 2007-10-11 Namiki Precision Jewel Co Ltd 光照射プローブ及び光照射プローブを用いた眼底観察装置、眼底手術装置、内視鏡
JP2008272256A (ja) * 2007-04-27 2008-11-13 Univ Of Tsukuba 偏光感受型光コヒーレンストモグラフィー装置、該装置の信号処理方法、及び該装置における表示方法
JP2009520548A (ja) * 2005-12-22 2009-05-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血糖濃度の非侵襲測定システム
JP2009128099A (ja) * 2007-11-21 2009-06-11 Konica Minolta Opto Inc 濃度測定方法、及び濃度測定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500953B2 (en) * 2003-01-25 2009-03-10 Seno Medical Instruments, Inc. High contrast optoacoustic imaging using nanoparticles
TWI340763B (en) * 2003-02-20 2011-04-21 Nippon Kayaku Kk Seal agent for photoelectric conversion elements and photoelectric conversion elements using such seal agent
CN1917806A (zh) * 2004-02-10 2007-02-21 光视有限公司 高效低相干干涉测量
JP2006195240A (ja) * 2005-01-14 2006-07-27 Fuji Photo Film Co Ltd 断層画像化装置
EP1866616B1 (en) * 2005-04-05 2013-01-16 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using minimum phase functions
JP2007327935A (ja) 2006-05-11 2007-12-20 Yamaguchi Univ 媒質内の物体の計測方法
US8064059B2 (en) * 2008-11-04 2011-11-22 Alipasha Vaziri Optical pulse duration measurement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244243A (ja) * 1998-03-04 1999-09-14 Fuji Photo Film Co Ltd グルコース濃度測定方法および装置
JP2000037355A (ja) * 1998-07-24 2000-02-08 Fuji Photo Film Co Ltd グルコース濃度測定方法および装置
JP2003121347A (ja) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd グルコース濃度測定方法および測定装置
JP2004340581A (ja) * 2003-05-13 2004-12-02 Institute Of Tsukuba Liaison Co Ltd 時間シアリング光コヒーレンストモグラフィー装置及び方法
JP2005211355A (ja) * 2004-01-29 2005-08-11 Kochi Univ Of Technology 近赤外発光による経皮的リンパ観察装置
JP2009520548A (ja) * 2005-12-22 2009-05-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血糖濃度の非侵襲測定システム
JP2007260192A (ja) * 2006-03-29 2007-10-11 Namiki Precision Jewel Co Ltd 光照射プローブ及び光照射プローブを用いた眼底観察装置、眼底手術装置、内視鏡
JP2008272256A (ja) * 2007-04-27 2008-11-13 Univ Of Tsukuba 偏光感受型光コヒーレンストモグラフィー装置、該装置の信号処理方法、及び該装置における表示方法
JP2009128099A (ja) * 2007-11-21 2009-06-11 Konica Minolta Opto Inc 濃度測定方法、及び濃度測定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOUCHI T ET AL.: "Spectroscopic Measurement of Scattering Media by Parallel-Detection-Based Optical Coherence Tomograp", OPTICAL REVIEW, vol. 12, no. 6, 1 December 2005 (2005-12-01), pages 486 - 489 *
POVAZAY B ET AL.: "Submicrometer axial resolution optical cohorence tomography", OPTICS LETTERS, vol. 27, no. 20, 15 October 2002 (2002-10-15), pages 1800 - 1802 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359271B2 (en) * 2012-12-05 2019-07-23 Perimeter Medical Imaging, Inc. System and method for tissue differentiation in imaging
WO2014157703A1 (ja) * 2013-03-29 2014-10-02 国立大学法人三重大学 生体染色剤
JPWO2014157703A1 (ja) * 2013-03-29 2017-02-16 国立大学法人三重大学 生体染色剤
US11293870B2 (en) 2013-03-29 2022-04-05 Mie University Vital stain

Also Published As

Publication number Publication date
US20130087724A1 (en) 2013-04-11
JP4852173B1 (ja) 2012-01-11
JP2012103235A (ja) 2012-05-31
US9080974B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
US7858940B2 (en) Information acquisition apparatus and information aquisition method using terahertz wave for acquiring information on object
RU2475181C2 (ru) Фотоакустическое измерительное устройство
US8997572B2 (en) Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
EP2553425B1 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
US9116111B2 (en) Acoustic signal receiving apparatus and imaging apparatus
JP5349839B2 (ja) 生体情報イメージング装置
US20070015992A1 (en) System and method for optoacoustic imaging
JP4852173B1 (ja) 観察装置及び観察方法
EP3133980B1 (en) Device and method for frequency-domain thermoacoustic sensing
US20120275262A1 (en) Section-illumination photoacoustic microscopy with ultrasonic array detection
US20140127707A1 (en) Subject information acquiring apparatus and method
EP0826958A2 (en) Method and apparatus for obtaining information on the optical absorption of a scattering medium
JP2013238401A (ja) 電磁波を用いる測定装置及び測定方法
Contini et al. Effects of time-gated detection in diffuse optical imaging at short source-detector separation
JP2004520583A (ja) サンプルを調査する装置及び方法
JPH06129984A (ja) 散乱吸収体内部の吸収情報計測装置及び方法
US8812085B2 (en) System and method for measuring the ratio of forward-propagating to back-propagating second harmonic-generation signal, and applications thereof
DE4400674A1 (de) Photoakustischer Sensor
US20170276919A1 (en) Depth and speed enhanced orthogonal beam stimulated fluorescent and stimulated raman emission for in-vivo imaging
JP2007178414A (ja) 糖度検査方法および検査システム
JP2013195176A (ja) 電磁波パルス測定装置及び方法、及びそれを用いた応用装置
JPH10246697A (ja) 光学的検査方法及び光学的検査装置
US10041881B2 (en) NDIR glucose detection in liquids
JP4945422B2 (ja) 成分濃度測定装置
JP2013205079A (ja) 生体成分計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13639786

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11765872

Country of ref document: EP

Kind code of ref document: A1