WO2011125834A1 - 正極活物質 - Google Patents

正極活物質 Download PDF

Info

Publication number
WO2011125834A1
WO2011125834A1 PCT/JP2011/058205 JP2011058205W WO2011125834A1 WO 2011125834 A1 WO2011125834 A1 WO 2011125834A1 JP 2011058205 W JP2011058205 W JP 2011058205W WO 2011125834 A1 WO2011125834 A1 WO 2011125834A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
oxide
amorphous phase
Prior art date
Application number
PCT/JP2011/058205
Other languages
English (en)
French (fr)
Inventor
裕司 橋場
圭 吉村
信一 立薗
内藤 孝
拓也 青柳
正 藤枝
Original Assignee
日立化成工業株式会社
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社, 株式会社日立製作所 filed Critical 日立化成工業株式会社
Priority to CN201180017174.3A priority Critical patent/CN102859761B/zh
Priority to JP2012509571A priority patent/JP5759982B2/ja
Priority to US13/637,986 priority patent/US8951436B2/en
Priority to KR1020127025445A priority patent/KR101711525B1/ko
Publication of WO2011125834A1 publication Critical patent/WO2011125834A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode active material.
  • the power source for electric vehicles is required to have a large battery capacity, low cycle deterioration, high-speed charge / discharge, etc. as characteristics, and a lithium ion secondary battery (hereinafter referred to as Li ion secondary battery). Also called a battery).
  • Li ion secondary battery also called a battery.
  • lithium cobaltate As a positive electrode active material of a Li ion secondary battery, the battery capacity of lithium cobaltate is about 150 mAh / g, which is a relatively large capacity. However, lithium cobaltate is not used in electric vehicle applications because of its high activity and a problem with safety at high temperatures and overcharge.
  • Patent Document 1 for the purpose of providing an all solid lithium secondary battery having a large capacity and excellent charge / discharge cycle characteristics, amorphous V 2 O 5 —P 2 O 5 is used as the positive electrode active material. A technique using is disclosed.
  • Patent Document 2 discloses a technique for reducing the average crystallite size of crystals such as lithium iron phosphate and lithium manganese phosphate having an olivine crystal structure to 140 nm or less for the purpose of obtaining good charge / discharge capacity and good load characteristics. Is disclosed.
  • Patent Document 3 for the purpose of obtaining high discharge rate characteristics, discharge current, and battery output, at least one of glass and glass ceramics made of lithium-containing iron vanadium phosphate containing at least one of Co, Mn, and Ni is used. A technique using an electrode active material mainly composed of s is disclosed.
  • Patent Document 4 Co, Ni, Fe, V, Cr, and the like are provided for the purpose of providing a positive electrode active material that maintains good positive electrode performance even when continuously used at a charging voltage of 4 V or higher in a high temperature environment.
  • a technique using a spinel type lithium manganese oxide in which Mn is substituted with at least one transition metal selected from Ti is disclosed.
  • Patent Document 5 discloses a composite oxide of vanadium and lithium or a first transition metal in a positive electrode active material for the purpose of constituting a lithium secondary battery having a large charge / discharge capacity, a high energy density, and a long cycle life. A technique for coexisting an amorphous phase and a crystalline phase is disclosed.
  • JP-A-5-47386 Japanese Patent No. 4058680 JP 2009-16277 A JP 9-35712 A Japanese Patent No. 29783030
  • An object of the present invention is to provide a positive electrode active material that has high safety when used in a lithium ion secondary battery, high charge / discharge cycle maintenance ratio, and high capacity.
  • the positive electrode active material of the present invention includes a crystal phase formed of a plurality of crystallites and an amorphous phase formed in contact with the crystallites, and the amorphous phase includes vanadium oxide and iron oxide. Including one or more metal oxides selected from the group consisting of manganese oxide, nickel oxide and cobalt oxide, wherein the crystalline phase and the amorphous phase are capable of inserting and desorbing lithium ions.
  • the present invention it is possible to provide a positive electrode active material that has a high cycle maintenance ratio in a lithium ion secondary battery and increases the battery capacity.
  • Example positive electrode active material No. It is an SEM image of 1-3.
  • 2B is an enlarged SEM image of the positive electrode active material shown in FIG. 2A. It is a schematic diagram of the SEM image of FIG. 2A. It is a schematic diagram of the enlarged SEM image of FIG. 2B. No. in the example. It is an EDX analysis result of 1-3 amorphous phase. It is sectional drawing which shows the structure of the lithium ion secondary battery of an Example. It is a schematic sectional drawing which shows a lithium ion doping apparatus.
  • the positive electrode active material includes a crystal phase having a structure formed by aggregating a plurality of crystallites and an amorphous phase formed in contact with the crystallites, and the amorphous phase is oxidized Contains one or more metal oxides selected from the group consisting of vanadium, iron oxide, manganese oxide, nickel oxide and cobalt oxide, and the crystalline phase and the amorphous phase can insert and desorb lithium ions It is.
  • the amorphous phase is formed in contact with the crystallite. More specifically, in the powder particle of the positive electrode active material, the surface region of the powder particle, that is, the powder particle and the outside (gas phase or liquid phase) are in contact. The region is formed in the crystallite grain boundary region as shown in the examples described later.
  • the grain boundary region means a region sandwiched between crystallites, and it can be said that the amorphous phase is formed in the grain boundary region.
  • the grain boundary means an interface of crystallites.
  • the embodiment of the present invention includes a positive electrode active material that does not include an amorphous phase between crystallites and that has an amorphous phase only in the surface region of the powder particle.
  • the grain boundary region of the crystal phase is filled with an amorphous phase formed between crystallites. That is, it is preferable that the crystal phase has a structure covered with an amorphous phase. In the present invention, there may be a portion where crystallites are in direct contact to form a grain boundary.
  • the amorphous phase is formed in a grain boundary region sandwiched between crystallites. Furthermore, the amorphous phase may be formed on the surface of the powder particles of the positive electrode active material including the crystalline phase and the amorphous phase, that is, at the interface between the powder particles and the gas phase.
  • the lithium ion can be inserted and removed not only in the crystalline phase but also in the amorphous phase, and the crystalline phase is covered with the amorphous phase. Insertion and desorption into the phase are performed via the amorphous phase, the crystalline phase contributes as the capacity of the battery, and the amorphous phase also contributes as the capacity of the battery. For this reason, deterioration of the crystal phase due to insertion and desorption of lithium ions is suppressed, and the charge / discharge cycle maintenance rate can be improved.
  • the crystalline phase and the amorphous phase form powder particles.
  • the amorphous phase contains phosphorus oxide.
  • the amorphous phase contains vanadium oxide.
  • the amorphous phase includes at least one metal oxide of iron oxide and manganese oxide.
  • the content of the amorphous phase in the powder particles is 6% by volume or more.
  • the content of vanadium, iron, manganese, nickel, and cobalt in the amorphous phase is 0.5 to 9.0 in terms of atomic ratio with respect to the content of phosphorus in the amorphous phase. is there.
  • the crystallite includes an oxide of one or more metals selected from the group consisting of iron, manganese, and vanadium.
  • the crystallite is X y V 2 O 5 (where X is one kind of metal selected from the group consisting of Li, Na, K, Cu, Ag and Fe, and y is , 0.26 to 0.41).
  • the average crystallite size of the crystallite is 300 nm or less.
  • the powder particles are obtained by a crystallization process by heat treatment of an oxide glass containing one kind of metal selected from the group consisting of vanadium, iron, manganese, nickel, and cobalt and phosphorus.
  • the oxide glass contains a monovalent cation element.
  • the positive electrode active material is formed by inserting lithium ions into the powder particles after the crystallization step.
  • the positive electrode active material further contains carbon.
  • FIG. 1A is a schematic diagram illustrating a fine structure of a positive electrode active material (conductive material) of an example.
  • FIG. 1B is a schematic diagram further enlarging the fine structure of the positive electrode active material of FIG. 1A.
  • a crystal of a positive electrode active material has a structure including a secondary particle 102 and an amorphous phase 103a (also referred to as an amorphous oxide phase), and is not in a gap between adjacent secondary particles 102.
  • a crystalline phase 103a is formed.
  • “adjacent” means “adjacent to each other”.
  • the primary particles 101 of the crystal are aggregated to form secondary particles 102 shaped like a bunch of grapes.
  • An amorphous phase 103 a is formed around the secondary particles 102.
  • a fine amorphous phase 103b (represented by a solid line because it is a very narrow region) is formed in the gap between adjacent primary particles 101.
  • the amorphous phase 103 has a low battery capacity.
  • the amorphous phase 103 not only plays a role of increasing the diffusion rate of Li ions that go back and forth between the grain boundary region and the crystallite during charging and discharging, but also amorphous.
  • the number of Li ions that can be inserted into the structure of the mass phase 103 is large. Therefore, not only the cycle maintenance rate of the positive electrode active material can be improved, but also the battery capacity can be improved.
  • the proportion of the amorphous phase of the positive electrode active material for Li ion secondary batteries is preferably 6% by volume or more.
  • the amount of the amorphous phase 103 is larger.
  • the proportion of the amorphous phase 103 is less than 6% by volume, the cycle retention rate of the positive electrode active material is lowered.
  • the positive electrode active material can contain carbon.
  • the added carbon can be coated on the powder surface of the positive electrode active material in addition to the powder form, and both are added to adjust the electric resistance of the positive electrode active material.
  • the amorphous phase of the positive electrode active material includes at least one metal oxide selected from the group consisting of vanadium oxide, iron oxide, manganese oxide, nickel oxide, and cobalt oxide.
  • An oxide of at least one metal selected from the group consisting of vanadium oxide, iron oxide, manganese oxide, nickel oxide, and cobalt oxide is a component that forms an amorphous phase, and is a compound oxide crystal of lithium.
  • a positive electrode active material has been studied as a component.
  • phosphorus oxide or silicon oxide can be further included.
  • Vanadium, iron, manganese, nickel, and cobalt have been studied as positive electrode active materials as components of complex oxide crystals with phosphorus and lithium, and high charge / discharge characteristics even when the complex oxide crystals are in an amorphous state. Indicates.
  • Iron, manganese, nickel, and cobalt have been studied as positive electrode active materials as components of composite oxide crystals with silicon and lithium, and show high charge / discharge characteristics even when the composite oxide crystals are in an amorphous state. .
  • the amorphous phase containing phosphorus, vanadium, iron, manganese, nickel and cobalt contained in the amorphous phase are 0 in atomic ratio (atomic ratio) to phosphorus contained in the amorphous phase. It is preferably from 5 to 9.0.
  • atomic ratio 0.5 to 9.0
  • the effect of improving the battery capacity and the cycle retention ratio is strong.
  • the atomic ratio is less than 0.5 or greater than 9.0, the structure of the amorphous phase becomes unstable with respect to charge / discharge, and the effect of improving the battery capacity and cycle retention rate is reduced.
  • Crystallite The crystallite of the positive electrode active material is an oxide phase containing a transition metal.
  • the crystallite is required to have a large capacity.
  • the transition metal contains vanadium, iron, manganese, cobalt and nickel.
  • the crystallite containing vanadium preferably contains a monoclinic X y V 2 O 5 crystal.
  • the monoclinic X y V 2 O 5 crystal has a cylindrical structure in which cations (X) are regularly bonded between layers of the vanadium oxide layered structure.
  • X is preferably any one of Li, Na, K, Cu, Ag, and Fe from the viewpoint of safety and availability.
  • y is 0.26 to 0.41. If y is too small, the crystal structure becomes weak, and the cycle retention rate decreases. In addition, as y increases, the space for entering Li ions decreases, and the battery capacity decreases.
  • iron, manganese, crystals containing nickel and cobalt LiFePO 4, LiMnPO 4, LiMn 2 O 4, LiCoPO 4, LiNiPO 4, LiCoO 2, LiNiO 2, LiCoVO 4, LiNiVO 4, LiMnO 2, Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 , Li 2 NiSiO 4 and the like are desirable.
  • Any of the crystals has a structure in which Li ions can be inserted, and has high battery characteristics.
  • the average crystallite size of the above crystal is desirably 300 nm or less. If the crystallite size is too large, the movement distance of Li ions becomes large, and the charge / discharge rate becomes slow.
  • the average crystallite size is preferably 5 nm or more, and more preferably 10 nm or more.
  • a positive electrode active material is obtained by heat-processing the oxide glass containing 1 or more types of metals among vanadium, iron, manganese, nickel, and cobalt.
  • the amorphous phase containing phosphorus can form oxide glass by melting and quenching by mixing phosphorus powder with one or more metals of vanadium, iron, manganese, nickel and cobalt. Of these metals, one or more metal elements selected from the group consisting of vanadium, iron, and manganese that can form an amorphous phase that is stable to charge and discharge are preferable.
  • the amorphous phase containing silicon can be produced in the same manner by mixing one or more metals among iron, manganese, nickel and cobalt with silicon oxide powder.
  • a monovalent cation element can be further added to the oxide glass.
  • a monovalent cation is a component for producing crystallites by heat treatment.
  • Crystallites can be generated in the oxide glass by heat-treating the oxide glass at a crystallization start temperature or higher. Since this crystallite is generated in two stages of crystal nucleus generation and crystal growth, the crystal state generated differs depending on the heat treatment conditions.
  • crystallite diameter crystallite diameter
  • the crystallite is kept long at the crystal nucleation temperature, and crystal nuclei are sufficiently precipitated and then grown.
  • a method is generally used in which the crystal nucleation temperature is passed quickly and the crystal is grown while keeping the number of crystal nuclei at a high temperature.
  • the amorphous phase can be present in the structure of the oxide glass even after heat treatment by controlling the precipitation and growth of crystallites.
  • the composition of the amorphous phase is different from the oxide glass before the heat treatment because the ratio of components precipitated as crystallites is small.
  • Table 1 shows the glass compositions prepared and studied.
  • All components are expressed in mass% (mass percent) in terms of oxide.
  • the raw materials for each component are vanadium pentoxide, phosphorus pentoxide, ferric oxide, manganese dioxide, cuprous oxide, cuprous oxide, cobalt oxide, nickel oxide, tungsten oxide, molybdenum oxide, boron oxide and silicon oxide. is there.
  • Lithium carbonate, sodium carbonate, and potassium carbonate were used for lithium, sodium, and potassium.
  • the oxide glass was produced according to the following procedure.
  • 300 g of the mixed powder prepared by mixing and mixing the raw material compounds so as to have the composition shown in Table 1 is put in a platinum crucible and heated at a rate of 5 to 10 ° C./min (° C./min) using an electric furnace. Each was heated to the heating temperature and held for 2 hours. During holding, stirring was performed to obtain a uniform glass. Next, the platinum crucible was taken out from the electric furnace and poured onto a stainless steel plate heated to 200 to 300 ° C. in advance to obtain an oxide glass.
  • the oxide glass shown in Table 1 was processed into a size of 10 ⁇ 10 ⁇ 4 mm to obtain a sample piece. This sample piece was placed on an alumina substrate and No. 1-4, no. 1-18 and No.1. The oxide glass of 1-23 was heated in an electric furnace at 250 ° C. for 50 hours. 1-4, no. 1-18 and No.1. The oxide glass except 1-23 was heated at 420 ° C. for 50 hours to precipitate crystallites in the oxide glass.
  • SEM is an abbreviation for Scanning Electron Microscope: Scanning Electron Microscope
  • EDX is an abbreviation for Energy Dispersive X-ray Spectrometer: Energy Dispersive X-ray Analyzer.
  • FIG. 2A shows No. with crystallites deposited. It is an SEM image of 1-3.
  • FIG. 2B is an enlarged image of FIG. 2A.
  • 2C is a schematic diagram of the SEM image of FIG. 2A, and
  • FIG. 2D is a schematic diagram of the SEM image of FIG. 2B.
  • the primary particles 101 of the crystal aggregate to form secondary particles 102 shaped like a bunch of grapes, and an amorphous phase 103 is formed in the grain boundary region of the secondary particles 102.
  • FIG. 3 shows a composition analysis result obtained by performing SEM-EDX analysis on a part of the amorphous phase shown in the SEM image of FIG. 2B.
  • transition metals contained in the amorphous phase of 1-3 are found to be vanadium and iron, and the ratio of vanadium and iron contained in the amorphous part to phosphorus is based on the number of atoms (atomic ratio) as follows: It can be obtained from the calculation formula.
  • vanadium and iron contained in the 1-3 amorphous phase contained 1.8 in terms of phosphorus (atomic ratio).
  • the sample shown in Table 1 was similarly subjected to SEM-EDX analysis to identify transition metals contained in the amorphous state.
  • the ratio (atomic ratio) of vanadium, iron, manganese, nickel and cobalt contained in the amorphous phase to phosphorus was measured.
  • the X-ray source was Cu, and its output was set to 50 kV and 250 mA.
  • a concentrated optical system with a monochromator was used, and a divergence slit of 0.5 deg, a receiving slit of 0.15 mm, and a scattering slit of 0.5 deg were selected.
  • the scanning axis of X-ray diffraction was a 2 ⁇ / ⁇ interlocking type, and measurement was performed in a range of 5 ⁇ 2 ⁇ ⁇ 100 deg by continuous scanning under conditions of a scanning speed of 1.0 deg / min and sampling of 0.01 deg.
  • the amorphous ratio was calculated from the ratio between the amorphous halo and the crystal-derived diffraction peak in the obtained diffraction pattern. This ratio is considered to represent the volume ratio of the amorphous phase and the crystallite.
  • the diffraction peak due to the crystal cannot be detected if the crystallite contained in the measurement sample is too small on the measurement principle.
  • the size of the crystallite (crystallite diameter) included in the measurement sample is 5 nm or less, a diffraction peak due to the crystal is not detected. Therefore, even if the measurement sample has an amorphous ratio of 100%, it does not indicate that the measurement sample does not contain crystallites.
  • crystals precipitated in the material were identified using ICDD data which is a collection of X-ray diffraction standard data.
  • the main crystals identified are V 2 O 5 crystal, Li 0.3 V 2 O 5 crystal, Na 0.287 V 2 O 5 crystal, Ag 0.33 V 2 O 5 crystal, K 0.33 V 2. They were O 5 crystal, Cu 0.261 V 2 O 5 crystal, Cu 0.41 V 2 O 5 crystal, Fe 0.33 V 2 O 5 crystal, LiMnO 2 crystal and Li 2 FeSiO 4 crystal.
  • the diffraction peak having the highest peak intensity among the diffraction peaks derived from the identified crystals was used as the main detection peak.
  • the (001) plane was used, and Li 0.3 V 2 O 5 crystal, Na 0.287 V 2 O 5 crystal, Ag 0.33 V 2 O 5 crystal, K 0.33 V 2
  • the O 5 crystal Cu 0.261 V 2 O 5 crystal, Cu 0.41 V 2 O 5 crystal and Fe 0.33 V 2 O 5 crystal, the (111) plane is used, and for the LiMnO 2 crystal, (101)
  • the face the (011) face was used for the Li 2 FePO 2 crystal, and the crystallite diameter was calculated therefrom.
  • the following is a method for measuring the crystallite diameter.
  • Detailed measurement was performed by narrow scan at an angle near the detected main peak.
  • integrated scanning was used as the scanning method.
  • the scanning range was measured in the vicinity of the detected main peak.
  • the crystallite size was calculated from the half width of the detected main peak obtained by narrow scan by the Scherrer equation.
  • sample number 1-1 in Table 1 corresponds to sample number 2-1 in Table 2.
  • Example 2 the sample described as “Example” is a preferred specific example of the present invention, and contains one or more kinds of metals of vanadium, iron, manganese, nickel and cobalt in the amorphous phase,
  • the amorphous ratio is 6% by volume or more.
  • No. 1 which is an example containing phosphorus. 2-3 ⁇ No. 2-17, no. 2-19 to No. 2 2-22 and no.
  • vanadium, iron, manganese, nickel and cobalt contained in the amorphous phase have an atomic ratio of 0.5 to 9.0 with respect to phosphorus.
  • the main crystals (mainly precipitated crystals) contained in the sample described as “Example” are V 2 O 5 , Li 0.3 V 2 O 5 , Na 0.287 V 2 O 5 crystals, Ag 0. 33 V 2 O 5 crystal, K 0.33 V 2 O 5 crystal, Cu 0.261 V 2 O 5 crystal, Cu 0.41 V 2 O 5 crystal, Fe 0.33 V 2 O 5 crystal, LiMnO 2 crystal And Li 2 FeSiO 4 crystals.
  • the crystallite diameter is 300 nm or less.
  • FIG. 4 is a schematic diagram showing an example of a lithium ion battery.
  • a description will be given with reference to FIG. 4
  • a positive electrode layer 7 including a positive electrode active material 2 and a conductive auxiliary agent 3 is formed on the surface of the positive electrode current collector 1, and these constitute a positive electrode 9. Further, a negative electrode layer 8 including the negative electrode active material 5 is formed on the surface of the negative electrode current collector 6, and these constitute the negative electrode 10.
  • the negative electrode layer 8 was formed on the copper foil of the negative electrode current collector 6 using the negative electrode active material 5, further roll-pressed, and punched out in the same manner as the positive electrode 9 to produce the negative electrode 10.
  • the coin cell was charged and discharged in the range of 4.5 to 2 V (vs. Li / Li + ) at a current density of 0.2 mA / cm 2 , and the initial capacity, discharge average voltage, energy The density and the capacity retention after 50 cycles were measured.
  • Table 3 shows the results of battery evaluation.
  • the energy density is “x” when less than 700 mAh / g, “ ⁇ ” when 700 mAh / g or more, and the cycle maintenance rate is “ ⁇ ” when less than 70%, and “ ⁇ ” when 70% or more and less than 80%. ”, With 80% or more being“ ⁇ ”, the worse result in both judgments was expressed as“ judgment of battery characteristics ”which is a comprehensive judgment.
  • the crystal phase has a large charge / discharge capacity (initial capacity), but the charge / discharge cycle maintenance rate is low because the crystal phase changes to an amorphous phase by repeated charge / discharge. For this reason, it has been a problem to increase the charge / discharge cycle maintenance rate of the crystal phase.
  • the amorphous phase was conventionally considered to have a low charge / discharge capacity. As shown in 2-4, it was found that the initial capacity and energy density were large. That is, it was found that an amorphous phase having a specific structure as shown in the examples has a large initial capacity and energy density.
  • the example is characterized by the amorphous phase in the grain boundary region of the crystallite, and the type of crystal is not selected. Therefore, LiFePO 4, LiMnPO 4, LiMn 2 O 4, LiCoPO 4, LiNiPO 4, LiCoO 2, LiNiO 2, LiCoVO 4, LiNiVO 4, Li 2 FeSiO 4, Li 2 MnSiO 4, Li 2 CoSiO 4, Li 2 NiSiO It is clear that the same effect can be obtained for crystals such as 4 that can be produced from an amorphous material.
  • FIG. 5 shows a lithium ion doping apparatus.
  • the lithium ion doping apparatus 11 is made of SUS, and can heat the left and right sides of the reaction vessel 14 independently while evacuating the inside.
  • the lithium ion doping apparatus 11 is installed in a glove box purged with nitrogen gas. 2-3 g of positive electrode active material (reference numeral 12) and 5 g of metallic lithium (reference numeral 13) were inserted into the reaction vessel 14 so as not to contact each other. The left portion of the reaction vessel 14 in which the positive electrode active material 12 was inserted was heated with a ribbon heater and evacuated for 3 hours. Subsequently, the valve of the reaction vessel 14 was closed and removed from the vacuum line, and the reaction was carried out for 2 weeks by heating to 350 ° C. with a mantle heater.
  • the initial capacity was 353 mAh / g
  • the operating average voltage was 2.5 V
  • the energy density was 883 mWh / g
  • the cycle retention rate was 91%, indicating high characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リチウムイオン二次電池において高いサイクル維持率を有するとともに、電池容量を増加させる。複数個の結晶子101が集合して形成された構造を有する結晶相と、結晶子101同士の間に形成された非晶質相103a、103bとを含む粉末粒子を含み、非晶質相103a、103bは、酸化バナジウム、酸化鉄、酸化マンガン、酸化ニッケル及び酸化コバルトからなる群から選択される1種類以上の金属酸化物を含み、結晶相及び非晶質相103a、103bは、リチウムイオンの挿入及び脱離を可能とした正極活物質を用いる。

Description

正極活物質
 本発明は、正極活物質に関する。
 電気自動車用の電源は、その特性として、電池容量が大きいこと、サイクル劣化が少ないこと、高速充放電が可能であること等が求められており、リチウムイオン二次電池(以下、Liイオン二次電池とも呼ぶ。)が有力視されている。
 Liイオン二次電池の正極活物質としては、コバルト酸リチウムの電池容量が150mAh/g程度と比較的大容量である。しかし、コバルト酸リチウムは、活性度が高く、高温時や過充電時における安全性に問題が残っているため、電気自動車の用途においては使用されていない。
 このため、安全性の高い材料としてオリビン構造の鉄燐酸リチウム及びマンガン燐酸リチウム、置換型のスピネル構造リチウムマンガン酸化物、酸化バナジウム、バナジン酸リチウム等の更なる特性向上の検討がなされている。
 特許文献1には、大容量で、かつ、充放電サイクル特性に優れた全固体リチウム二次電池を提供することを目的として、正極活物質に非晶質のV-Pを用いる技術が開示されている。
 特許文献2には、良好な充放電容量及び良好な負荷特性を得ることを目的として、オリビン型結晶構造を有する鉄燐酸リチウム、マンガン燐酸リチウム等の結晶の平均結晶子サイズを140nm以下にする技術が開示されている。
 特許文献3には、高い放電レート特性、放電電流及び電池出力を得ることを目的として、Co、Mn及びNiの少なくとも1種を含むリチウム含有鉄バナジウム燐酸塩からなるガラス及びガラスセラミックスの少なくともいずれかを主体としてなる電極活物質を用いる技術が開示されている。
 特許文献4には、高温環境下、4V以上の充電電圧で連続使用した場合でも良好な正極性能が維持される正極活物質を提供することを目的として、Co、Ni、Fe、V、Cr、Tiより選ばれる少なくともいずれか一種の遷移金属によってMnが置換されているスピネル型リチウムマンガン酸化物を用いる技術が開示されている。
 特許文献5には、充放電容量の大きく、高エネルギー密度で、サイクル寿命の長いリチウム二次電池を構成することを目的として、正極活物質中にバナジウムとリチウム又は第一遷移金属の複合酸化物の非晶質相と結晶質相とを共存させる技術が開示されている。
特開平5-47386号公報 特許4058680号公報 特開2009-16277号公報 特開平9-35712号公報 特許2973830号公報
 本発明の目的は、リチウムイオン二次電池に用いた場合に安全性が高く、充放電サイクル維持率が高く、かつ、容量が大きい正極活物質を提供することにある。
 本発明の正極活物質は、複数個の結晶子で形成された結晶相と、前記結晶子と接して形成された非晶質相とを含み、前記非晶質相は、酸化バナジウム、酸化鉄、酸化マンガン、酸化ニッケル及び酸化コバルトからなる群から選択される1種類以上の金属酸化物を含み、前記結晶相及び前記非晶質相は、リチウムイオンの挿入及び脱離が可能であることを特徴とする。
 本発明によれば、リチウムイオン二次電池において高いサイクル維持率を有するとともに、電池容量を増加させる正極活物質を提供することができる。
実施例の正極活物質の微細構造を示す模式図である。 図1Aの正極活物質の微細構造を更に拡大して示す模式図である。 実施例の正極活物質No.1-3のSEM画像である。 図2Aに示す正極活物質の拡大SEM画像である。 図2AのSEM画像の模式図である。 図2Bの拡大SEM画像の模式図である。 実施例に係るNo.1-3の非晶質相のEDX分析結果である。 実施例のリチウムイオン二次電池の構造を示す断面図である。 リチウムイオンドープ装置を示す概略断面図である。
 以下、本発明の一実施形態に係る正極活物質について説明する。
 前記正極活物質は、複数個の結晶子が集合して形成された構造を有する結晶相と、前記結晶子と接して形成された非晶質相とを含み、前記非晶質相は、酸化バナジウム、酸化鉄、酸化マンガン、酸化ニッケル及び酸化コバルトからなる群から選択される1種類以上の金属酸化物を含み、前記結晶相及び前記非晶質相は、リチウムイオンの挿入及び脱離が可能である。
 非晶質相は、結晶子と接して形成され、更に具体的には、正極活物質の粉末粒子において、この粉末粒子の表面領域、すなわち粉末粒子と外界(気相又は液相)とが接する領域や、後述の実施例に示すように結晶子の粒界領域に形成されている。
 ここで、粒界領域とは、結晶子同士の間に挟まれた領域をいい、非晶質相は、粒界領域に形成されているということができる。また、この場合、粒界とは、結晶子の界面をいう。
 なお、本発明の実施形態には、結晶子同士の間に非晶質相を含まない正極活物質であって、上記の粉末粒子の表面領域にだけ非晶質相を有するものも含むものとする。
 前記正極活物質において、結晶相の粒界領域は、結晶子同士の間に形成された非晶質相で充たされていることが好ましい。すなわち、結晶相は、非晶質相で覆われた構造になっていることが好ましい。なお、本発明においては、結晶子同士が直接接触して粒界を形成している部分があってもよい。
また、非晶質相は、結晶子同士の間に挟まれた粒界領域に形成されているということもできる。さらに、非晶質相は、結晶相と非晶質相とを含む正極活物質の粉末粒子の表面、すなわち、粉末粒子と気相との界面に形成されていてもよい。
 結晶相だけでなく、非晶質相においてもリチウムイオンの挿入及び脱離が可能である構成、及び、結晶相が非晶質相に覆われている構成により、充放電に伴うリチウムイオンの結晶相への挿入及び脱離が非晶質相を経由して行われ、結晶相が電池の容量として寄与するとともに、非晶質相も電池の容量として寄与する。このため、リチウムイオンの挿入及び脱離による結晶相の劣化が抑制され、充放電サイクル維持率を向上させることができる。
 以下、本発明の正極活物質の様々な実施の形態について例示する。
 前記正極活物質においては、結晶相及び非晶質相が粉末粒子を形成している。
 前記正極活物質において、非晶質相は、酸化リンを含む。
 前記正極活物質において、前記非晶質相は、酸化バナジウムを含む。
 前記正極活物質において、前記非晶質相は、酸化鉄及び酸化マンガンのうち少なくともいずれか1種類の金属酸化物を含む。
 前記正極活物質においては、前記粉末粒子における前記非晶質相の含有量が6体積%以上である。
 前記正極活物質においては、前記非晶質相におけるバナジウム、鉄、マンガン、ニッケル及びコバルトの含有量が、非晶質相におけるリンの含有量に対してアトミック比で0.5~9.0である。
 前記正極活物質において、前記結晶子は、鉄、マンガン及びバナジウムからなる群から選択される1種類以上の金属の酸化物を含む。
 前記正極活物質において、前記結晶子は、X(ただし、Xは、Li、Na、K、Cu、Ag及びFeからなる群から選択される1種類の金属であり、yは、0.26~0.41である。)である。
 前記正極活物質においては、前記結晶子の平均結晶子サイズが300nm以下である。
 前記正極活物質において、前記粉末粒子は、バナジウム、鉄、マンガン、ニッケル及びコバルトからなる群から選択される1種類の金属と、リンとを含む酸化物ガラスの熱処理による結晶化工程によって得られる。
 前記正極活物質において、前記酸化物ガラスは、一価の陽イオン元素を含む。
 前記正極活物質は、前記結晶化工程の後、前記粉末粒子にリチウムイオンを挿入することによって形成されたものである。
 前記正極活物質は、さらに、カーボンを含む。
 以下、図を用いて説明する。
 (正極活物質)
 図1Aは、実施例の正極活物質(導電性材料)の微細構造を示す模式図である。また、図1Bは、図1Aの正極活物質の微細構造を更に拡大して示す模式図である。
 図1Aにおいて、正極活物質の結晶は、二次粒子102及び非晶質相103a(非晶質酸化物相とも呼ぶ。)を含む構成を有し、相隣る二次粒子102の隙間に非晶質相103aが形成されている。ここで、「相隣る」とは、「互いに隣接する」の意である。
 図1Bにおいては、結晶の一次粒子101が凝集してぶどうの房のような形状の二次粒子102を形成している。この二次粒子102の周囲には、非晶質相103aが形成されている。また、図1Bにおいては、相隣る一次粒子101の隙間に微細な非晶質相103b(非常に狭い領域であるため、実線で表している。)が形成されている。
 非晶質相103a、103bにおいては、相を構成する原子間の距離が大きくなっているため、充放電におけるLiイオンの出入りが結晶子(結晶の一次粒子101)の内部に比べて容易であり、高い充放電サイクル維持率(サイクル維持率とも呼ぶ。)を示す。
 このため、結晶子の粒界領域が、原子間の距離の大きい構造を有する非晶質相103で充たされている場合、充放電時において粒界領域と結晶子とを行き来するLiイオンの拡散速度を上げる役割を果たし、Liイオン二次電池用正極活物質のサイクル維持率を向上させることができる。
 一般に、非晶質相103は、電池容量が低いことが知られていた。
 これに対して、実施例の正極活物質において、非晶質相103は、充放電時において粒界領域と結晶子とを行き来するLiイオンの拡散速度を上げる役割を果たすだけでなく、非晶質相103の構造内に挿入できるLiイオンの数が多い。そのため、正極活物質のサイクル維持率を向上させるだけでなく、電池容量も向上させることができる。
 Liイオン二次電池用正極活物質の非晶質相の割合は6体積%以上であることが好ましい。
 サイクル維持率を向上させるためには、上記の非晶質相103が多いほど望ましく、非晶質相103の割合が6体積%未満の場合、正極活物質のサイクル維持率が低下してしまう。
 正極活物質は、カーボンを含ませることも可能である。添加するカーボンは、粉末状のほか、正極活物質の粉末表面にコーティングすることができ、いずれも正極活物質の電気抵抗を調整するために添加される。
 (非晶質相)
 正極活物質の非晶質相は、酸化バナジウム、酸化鉄、酸化マンガン、酸化ニッケル及び酸化コバルトからなる群から選択される少なくとも一種類の金属酸化物を含む。
 酸化バナジウム、酸化鉄、酸化マンガン、酸化ニッケル及び酸化コバルトからなる群から選択される少なくとも一種類の金属の酸化物は、非晶質相を形成する成分であり、リチウムとの複合酸化物結晶の成分として正極活物質に検討されている。
 非晶質相の成分としては、さらに、酸化リン又は酸化ケイ素を含ませることが出来る。
 バナジウム、鉄、マンガン、ニッケル及びコバルトは、リン及びリチウムとの複合酸化物結晶の成分として正極活物質に検討されており、この複合酸化物結晶が非晶質状態であっても高い充放電特性を示す。
 鉄、マンガン、ニッケル及びコバルトは、ケイ素及びリチウムとの複合酸化物結晶の成分として正極活物質に検討されており、この複合酸化物結晶が非晶質状態であっても高い充放電特性を示す。
 バナジウム、鉄、マンガン、ニッケル及びコバルトは、リンと共に非晶質相に含ませると、電池容量が大きく、サイクル特性が高い電池を得ることができる。すなわち、高い電池特性を得ることができる。
 鉄、マンガン、ニッケル及びコバルトは、ケイ素と共に非晶質相に含ませると、電池容量が大きく、サイクル特性が高い電池を得ることができる。すなわち、高い電池特性を得ることができる。
また、リンを含有する非晶質相については、非晶質相に含まれるバナジウム、鉄、マンガン、ニッケル及びコバルトが、非晶質に含まれるリンに対してアトミック比(原子数比)で0.5~9.0であることが好ましい。アトミック比が0.5~9.0の場合、電池容量及びサイクル維持率を向上させる効果が強く現れる。アトミック比が0.5未満の場合、若しくは9.0よりも大きい場合、非晶質相の構造が充放電に対して不安定になり、電池容量及びサイクル維持率を向上させる効果が低下する。
 (結晶子)
 正極活物質の結晶子は、遷移金属を含む酸化物相である。
 電池容量の向上には、正極活物質へのリチウムイオンの挿入及び脱離が容易に行われることが必要である。結晶子は、それに加えて大容量を有することが要求される。
 そのため、遷移金属は、バナジウム、鉄、マンガン、コバルト及びニッケルを含むことが望ましい。
 バナジウムを含む結晶子は、単斜晶のX結晶を含むことが好ましい。
 単斜晶のX結晶は、バナジウム酸化物の層状構造の層間を陽イオン(X)が規則的に結合した、筒状の構造である。Xは、安全性や入手のし易さから、Li、Na、K、Cu、Ag及びFeのうちのいずれかが好ましい。yは、0.26~0.41である。yが小さすぎると結晶の構造が弱くなりサイクル維持率が低下する。また、yが大きくなるとLiイオンの入る空間が少なくなり、電池容量が小さくなる。
 また、鉄、マンガン、ニッケル及びコバルトを含んだ結晶は、LiFePO、LiMnPO、LiMn、LiCoPO、LiNiPO、LiCoO、LiNiO、LiCoVO,LiNiVO、LiMnO、LiFeSiO、LiMnSiO、LiCoSiO、LiNiSiO等が望ましい。
いずれの結晶も、Liイオンを挿入可能な構造であり、高い電池特性を有する結晶である。
 上記の結晶の平均結晶子サイズは300nm以下であることが望ましい。結晶子サイズが大きすぎるとLiイオンの移動距離が大きくなるため、充放電速度が遅くなる。また、平均結晶子サイズは、5nm以上であることが望ましく、10nm以上であることが更に望ましい。
 (結晶子及び非晶質相の生成)
 正極活物質は、バナジウム、鉄、マンガン、ニッケル及びコバルトのうち1種類以上の金属を含む酸化物ガラスを熱処理することにより得られる。
 リンを含む非晶質相は、バナジウム、鉄、マンガン、ニッケル及びコバルトのうち一種類以上の金属と、リン粉末とを混合し、溶融急冷法により酸化物ガラスを形成することができる。これらの金属のうち、充放電に対して安定な非晶質相を形成することができるバナジウム、鉄及びマンガンからなる群から選択される1種類以上の金属元素であることが好ましい。ケイ素を含む非晶質相は、鉄、マンガン、ニッケル及びコバルトのうち一種類以上の金属と酸化ケイ素粉末とを混合し、同様に作製することができる。
 酸化物ガラスは、更に一価の陽イオン元素を添加することもできる。一価の陽イオンは、熱処理により結晶子を作るための成分である。
 酸化物ガラスを結晶化開始温度以上で熱処理することにより、酸化物ガラス中に結晶子を生成させることができる。この結晶子は、結晶核の生成及び結晶の成長の2段階で生成するため、熱処理条件により生成する結晶状態が異なる。
 結晶子の直径(結晶子径)を小さくする場合は、結晶核生成温度で長く保持し、十分に結晶核を析出させ、その後、成長させる。
 また、結晶子径を大きくする場合は、結晶核生成温度を速く通過させ、結晶核の数を少ない状態で高温に保持して結晶を成長させる方法が一般的である。
 非晶質相は、結晶子の析出及び成長を制御することにより、熱処理後も酸化物ガラスの構造内に存在させることができる。非晶質相の組成は、結晶子として析出した成分の比率が少なくなっているため、熱処理前の酸化物ガラスとは組成が異なっている。
 以下、実施例を用いて更に詳細に説明する。ただし、本発明は、ここで取り上げた実施例の記載に限定されることはなく、適宜組み合わせてもよい。
 (酸化物ガラスの作製)
 表1は、作製・検討したガラス組成を示したものである。
 いずれの成分も酸化物換算の質量%(質量パーセント)で表示した。各成分の原料は、五酸化バナジウム、五酸化リン、酸化第二鉄、二酸化マンガン、酸化第一銀、酸化第一銅、酸化コバルト、酸化ニッケル、酸化タングステン、酸化モリブデン、酸化ホウ素及び酸化ケイ素である。リチウム、ナトリウム、カリウムについては、炭酸リチウム、炭酸ナトリウム、炭酸カリウムを用いた。
 酸化物ガラスの作製は、以下の手順で行った。
 原料化合物を表1の組成となるように配合・混合した混合粉末300gを白金ルツボに入れ、電気炉を用いて5~10℃/min(℃/分)の昇温速度で表1に記載の加熱温度までそれぞれ加熱して2時間保持した。保持中は均一なガラスとするために攪拌した。次に、白金ルツボを電気炉から取り出し、予め200~300℃に加熱しておいたステンレス板上に流し込み、酸化物ガラスを得た。
Figure JPOXMLDOC01-appb-T000001
 (結晶子の析出)
 表1に示す酸化物ガラスを10×10×4mmのサイズに加工して試料片とした。この試料片をアルミナ基板に載せて、No.1-4、No.1-18及びNo.1-23の酸化物ガラスは250℃の電気炉で50時間加熱し、No.1-4、No.1-18及びNo.1-23を除く酸化物ガラスは420℃で50時間加熱し、酸化物ガラス中に結晶子を析出させた。
 (非晶質相の観察)
 次いで、SEM-EDXを用いて結晶子及び非晶質相の観察及び組成分析を行った。ここで、SEMは、Scanning Electron Microscope:走査型電子顕微鏡の略称であり、EDXは、Energy Dispersive X-ray Spectrometer:エネルギー分散型X線分析装置の略称である。
 図2Aは、結晶子が析出したNo.1-3のSEM画像である。図2Bは、図2Aを更に拡大した画像である。また、図2Cは、図2AのSEM画像の模式図であり、図2Dは、図2BのSEM画像の模式図である。
 図2A及び2Cにおいては、結晶の一次粒子101が凝集してぶどうの房のような形状の二次粒子102を形成し、この二次粒子102の粒界領域には非晶質相103を形成していることが分かる。図2B及び2Dは、結晶の一次粒子101の粒界領域に微細な非晶質相103が形成していることが分かる。
 また、図3は、図2BのSEM画像に示された非晶質相の一部についてSEM-EDX分析を行って得た組成分析結果である。
 図3から、結晶子が析出したNo.1-3の非晶質相に含まれる遷移金属は、バナジウム及び鉄であることが分かり、非晶質部に含まれるバナジウム及び鉄のリンに対する比率は、原子数基準(アトミック比)で以下の計算式より求めることができる。
Figure JPOXMLDOC01-appb-M000002
 上記数式より、結晶子が析出したNo.1-3の非晶質相に含まれるバナジウム及び鉄は、リンに対する比率(アトミック比)で1.8含有していることが分かる。
 表1に示す試料について同様にSEM-EDX分析を行い、非晶質に含まれる遷移金属を同定した。また、非晶質相にリンが検出された試料については、非晶質相に含まれるバナジウム、鉄、マンガン、ニッケル及びコバルトのリンに対する比率(アトミック比)を測定した。
 (結晶子の評価)
 次いで、表1に示す試料を平均粒径5μmの粉末に粉砕し、得られた粉末の結晶状態を評価した。広角X線回折装置(リガク製、RINT2500HL)を使用して非晶質率の測定し、結晶の同定及び結晶子径の測定を行った。結晶の同定及び非晶質率の測定条件は次の通りである。
 X線源はCuであり、その出力は50kV、250mAと設定した。モノクロメータ付の集中法光学系を使用し、ダイバージェンススリットは0.5deg、レシービングスリットは0.15mm、スキャッタリングスリットは0.5degを選択した。X線回折の走査軸は2θ/θ連動式で、連続走査による5≦2θ≦100degの範囲を、走査速度1.0deg/min、サンプリング0.01degの条件で測定を行った。
 非晶質率は、得られた回折パターンの非晶質起因のハローと結晶起因の回折ピークとの割合から算出した。この割合は、非晶質相及び結晶子の体積の割合を表すと考える。
 ただし、結晶に起因する回折ピークは、測定原理上、測定試料に含まれる結晶子が小さすぎると検出されない。実施例の分析に使用した広角X線回折装置は、測定試料に含まれる結晶子の大きさ(結晶子径)が5nm以下であると、結晶に起因する回折ピークが検出されない。そのため、測定試料の非晶質率が100%であっても、測定試料が結晶子を含まないことを示すものではない。
 結晶の同定は、X線回折標準データ集であるICDDデータを用いて材料中に析出している結晶を同定した。同定された主な結晶は、V結晶、Li0.3結晶、Na0.287結晶、Ag0.33結晶、K0.33結晶、Cu0.261結晶、Cu0.41結晶、Fe0.33結晶、LiMnO結晶及びLiFeSiO結晶であった。
 結晶子径は、同定した結晶起因の回折ピークの内、最も高いピーク強度の回折ピークを検出メインピークとした。V結晶については(001)面を用い、Li0.3結晶、Na0.287結晶、Ag0.33結晶、K0.33結晶、Cu0.261結晶、Cu0.41結晶及びFe0.33結晶については(111)面を用い、LiMnO結晶については(101)面を用い、LiFePO結晶については(011)面を用い、そこから結晶子径を算出した。
 以下、結晶子径の測定方法である。
 検出メインピーク近傍の角度でナロースキャンにより詳細な測定を行った。ナロースキャンの測定は、走査法に積算走査を用いた。走査範囲は、検出メインピーク近傍に絞って測定した。ナロースキャンで得られた検出メインピークの半値幅からScherrerの式により結晶子径を算出した。
 表2に測定結果を示す。
 ここで、表1と表2とで試料番号の下2桁が等しい試料が、原料のガラス組成物と、その原料を用いて作製した正極活物質とに対応している。すなわち、例えば、表1の試料番号1-1と表2の試料番号2-1とが対応している。
Figure JPOXMLDOC01-appb-T000003
 表1及び2において、「実施例」と記載した試料は、本願発明の好ましい具体例であり、非晶質相にバナジウム、鉄、マンガン、ニッケル及びコバルトの何れか一種類以上の金属を含み、非晶質率は6体積%以上である。さらに、リンを含む実施例であるNo.2-3~No.2-17、No.2-19~No.2-22及びNo.2-24は、非晶質相に含まれるバナジウム、鉄、マンガン、ニッケル及びコバルトがリンに対してアトミック比で0.5~9.0である。
 試料No.2-4、No.2-18及びNo.2-23は、X線回折で算出した非晶質率が100%であったが、TEM観察により平均結晶子径がそれぞれ3nmの結晶子が析出していることを確認した。しかし、析出結晶の同定には至らなかった。
 また、「実施例」と記載した試料に含まれる主結晶(主な析出結晶)は、V、Li0.3、Na0.287結晶、Ag0.33結晶、K0.33結晶、Cu0.261結晶、Cu0.41結晶、Fe0.33結晶、LiMnO結晶及びLiFeSiO結晶である。結晶子径は300nm以下である。
 一方、上記の実施例の構成を満たさない試料は、本願発明外又は本願発明中の好ましくない具体例として、「比較例」と記載することにした。
 (電池の評価)
 次に、Liイオン二次電池の評価について説明する。
 図4は、リチウムイオン電池の一例を示す模式図である。以下、本図を参照して説明する。
 本図において、正極集電体1の表面には、正極活物質2と導電補助剤3とを含む正極層7が形成してあり、これらが正極9を構成している。また、負極集電体6の表面には、負極活物質5を含む負極層8が形成してあり、これらが負極10を構成している。
 具体的には、粉砕して平均粒子径5μmに調整した粉末(正極活物質2)90質量%、カーボンブラック(導電補助剤3)10質量%、及びバインダー5質量%を混合し、ノルマルメチルピロリドンを添加して15Pa・sの粘度にしたペーストを作製した。作製したペーストを正極集電体1のアルミ箔上にドクターブレードを用いて塗布し、乾燥させて正極層7を作製した。正極層7及び正極集電体1を共にパンチで打ち抜いて正極9を作製した。
 負極活物質5を用いて負極集電体6の銅箔上に負極層8を形成し、さらにロールプレスを行い、正極9と同様にパンチで打ち抜いて負極10を作製した。
 正極電極9と負極電極10との間にセパレータ4を挟んでコイン形セルを3つ作製した。
 ここで、電解液としてホウフッ化リチウム(LiBF)を1モル含有した炭酸エチレン(EC)と炭酸ジエチル(DEC)の混合溶媒(EC:DEC=1:3)を用い、リチウムイオンの供給源としてリチウム箔を用いた。
 No.2-1~2-23及びNo.2-25の試料については、0.2mA/cmの電流密度で、4.2~1.5V(vs.Li/Li)の範囲でコインセルの充放電を行い、初期容量、放電平均電圧、エネルギー密度及び100サイクル後の容量維持率を測定した。
 No.2-24の試料については、0.2mA/cmの電流密度で、4.5~2V(vs.Li/Li)の範囲でコインセルの充放電を行い、初期容量、放電平均電圧、エネルギー密度及び50サイクル後の容量維持率を測定した。
 表3に電池評価の結果を示す。
 本表において、エネルギー密度は、700mAh/g未満を「×」、700mAh/g以上を「○」とし、サイクル維持率は、70%未満を「×」、70%以上かつ80%未満を「△」、80%以上を「○」とした上で、両方の判定において悪い方の結果を総合判定である「電池特性の判定」として表した。
Figure JPOXMLDOC01-appb-T000004
 表3において、非晶質部にバナジウム、鉄、マンガン、ニッケル及びコバルトを含まないNo.2-18及びNo.2-23はエネルギー密度及びサイクル維持率が低い。また、非晶質率0%のNo.2-1、非晶質率1%のNo.2-2は、エネルギー密度は大きいが、サイクル維持率が低い。これに対して、表3に記載された実施例(No.2-3~2-17、No.2-19~No.2-22及びNo.2-24~No.2-25)は、いずれもエネルギー密度が700mWh/g以上であり、サイクル維持率は80%以上であった。特に、試料No.2-24は、放電平均電圧が高い。
 一般に、結晶相は、充放電容量(初期容量)は大きいが、充放電の繰り返しによって結晶相が非晶質相に変化するため、充放電サイクル維持率が低い。このため、結晶相の充放電サイクル維持率を高めることが課題となっていた。
 一方、非晶質相は、従来、充放電容量が低いと考えられていたが、表4のNo.2-4に示すように、初期容量及びエネルギー密度が大きいことがわかった。つまり、実施例に示すような特定の構成を有する非晶質相は、初期容量及びエネルギー密度が大きいことがわかった。
 これは、本発明に至る検討過程において判明した新たな知見である。
 以上からわかるように、実施例は、結晶子の粒界領域の非晶質相に特徴があり、結晶の種類を選択しない。このため、LiFePO、LiMnPO、LiMn、LiCoPO、LiNiPO、LiCoO、LiNiO、LiCoVO、LiNiVO、LiFeSiO、LiMnSiO、LiCoSiO、LiNiSiO等、非晶質から作製できる結晶についても、同様の効果を得られることは明らかである。
 (Liイオンドープ)
 図5にリチウムイオンドープ装置を示す。
 本図において、リチウムイオンドープ装置11は、SUS製であり、内部を真空に引きながら反応容器14の左右を独立に加熱できるようになっている。
 本装置の操作手順は次の通りである。
 リチウムイオンドープ装置11を窒素ガスでパージしたグローブボックス内に設置し、No.2-3の正極活物質(符号12)10g及び金属リチウム(符号13)5gを互いに接触しないように反応容器14に挿入した。正極活物質12を挿入した反応容器14の左側部分をリボンヒーターで加熱して3時間真空引きした。次いで、反応容器14のバルブを閉じて真空ラインより外し、マントルヒーターで350℃に加熱し2週間反応させた。
 露点-90℃のグローブボックス内で反応容器14から取り出し、リチウムイオンの供給源としてリチウム箔を用いずに、表3の実施例であるNo.2-3と同様に初期容量及び高速充放電の評価を実施した。
 その結果、初期容量は353mAh/g、作動平均電圧は2.5V、エネルギー密度は883mWh/g、サイクル維持率は91%であり、高い特性を示すことを確認した。
 1:正極集電体、2:正極活物質、3:導電補助剤、4:セパレータ、5:負極活物質、6:負極集電体、7:正極層、8:負極層、9:正極、10:負極、11:リチウムドープ装置、12:正極活物質、13:金属リチウム、14:反応容器、101:一次粒子、102:二次粒子、103:非晶質相。

Claims (14)

  1.  複数個の結晶子で形成された結晶相と、前記結晶子と接して形成された非晶質相とを含み、前記非晶質相は、酸化バナジウム、酸化鉄、酸化マンガン、酸化ニッケル及び酸化コバルトからなる群から選択される1種類以上の金属酸化物を含み、前記結晶相及び前記非晶質相は、リチウムイオンの挿入及び脱離が可能であることを特徴とする正極活物質。
  2.  前記結晶相及び前記非晶質相が粉末粒子を形成していることを特徴とする請求項1記載の正極活物質。
  3.  前記非晶質相は、酸化リンを含むことを特徴とする請求項1又は2に記載の正極活物質。
  4.  前記非晶質相は、酸化バナジウムを含むことを特徴とする請求項3記載の正極活物質。
  5.  前記非晶質相は、酸化鉄及び酸化マンガンのうち少なくともいずれか1種類の金属酸化物を含むことを特徴とする請求項1~4のいずれか一項に記載の正極活物質。
  6.  前記粉末粒子における前記非晶質相の含有量が6体積%以上であることを特徴とする請求項2~5のいずれか一項に記載の正極活物質。
  7.  前記非晶質相におけるバナジウム、鉄、マンガン、ニッケル及びコバルトの含有量が、非晶質相におけるリンの含有量に対してアトミック比で0.5~9.0であることを特徴とする請求項1~6のいずれか一項に記載の正極活物質。
  8.  前記結晶子は、鉄、マンガン及びバナジウムからなる群から選択される1種類以上の金属の酸化物を含むことを特徴とする請求項1~7のいずれか一項に記載の正極活物質。
  9.  前記結晶子は、X(ただし、Xは、Li、Na、K、Cu、Ag及びFeからなる群から選択される1種類の金属であり、yは、0.26~0.41である。)であることを特徴とする請求項8記載の正極活物質。
  10.  前記結晶子の平均結晶子サイズが300nm以下であることを特徴とする請求項1~9のいずれか一項に記載の正極活物質。
  11.  前記粉末粒子は、バナジウム、鉄、マンガン、ニッケル及びコバルトからなる群から選択される1種類の金属と、リンとを含む酸化物ガラスの熱処理による結晶化工程によって得られることを特徴とする請求項2~10のいずれか一項に記載の正極活物質。
  12.  前記酸化物ガラスは、一価の陽イオン元素を含むことを特徴とする請求項11記載の正極活物質。
  13.  前記結晶化工程の後、前記粉末粒子にリチウムイオンを挿入することによって形成されたことを特徴とする請求項11又は12に記載の正極活物質。
  14.  さらに、カーボンを含むことを特徴とする請求項1~13のいずれか一項に記載の正極活物質。
PCT/JP2011/058205 2010-03-31 2011-03-31 正極活物質 WO2011125834A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180017174.3A CN102859761B (zh) 2010-03-31 2011-03-31 正极活性物质
JP2012509571A JP5759982B2 (ja) 2010-03-31 2011-03-31 正極活物質
US13/637,986 US8951436B2 (en) 2010-03-31 2011-03-31 Positive electrode active material
KR1020127025445A KR101711525B1 (ko) 2010-03-31 2011-03-31 정극 활물질

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-079938 2010-03-31
JP2010079938 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125834A1 true WO2011125834A1 (ja) 2011-10-13

Family

ID=44762772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058205 WO2011125834A1 (ja) 2010-03-31 2011-03-31 正極活物質

Country Status (6)

Country Link
US (1) US8951436B2 (ja)
JP (1) JP5759982B2 (ja)
KR (1) KR101711525B1 (ja)
CN (1) CN102859761B (ja)
TW (1) TWI435492B (ja)
WO (1) WO2011125834A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469631A1 (en) * 2010-12-24 2012-06-27 Hitachi Ltd. Positive electrode active material for secondary battery and magnesium secondary battery using the same
EP2468693A3 (en) * 2010-12-24 2012-08-22 Hitachi Ltd. Thermoelectric Conversion Material
WO2014013837A1 (ja) * 2012-07-19 2014-01-23 株式会社 日立製作所 リチウムイオン二次電池用活物質粒子およびそれを用いたリチウムイオン二次電池
JPWO2013129150A1 (ja) * 2012-03-01 2015-07-30 日立金属株式会社 電極活物質、この電極活物質を用いた電極及び二次電池
WO2019004288A1 (ja) * 2017-06-30 2019-01-03 国立大学法人九州大学 非水系二次電池用の正極活物質、およびそれを用いた非水系二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102318013B (zh) * 2009-03-27 2014-12-03 株式会社日立制作所 导电性浆料及具备使用其的电极配线的电子部件
JP6051514B2 (ja) * 2010-12-02 2016-12-27 ソニー株式会社 固体電解質電池および正極活物質
US9337478B2 (en) * 2012-02-14 2016-05-10 Shailesh Upreti Composite silicon or composite tin particles
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery
WO2020066909A1 (ja) * 2018-09-25 2020-04-02 東レ株式会社 二次電池用電極およびリチウムイオン二次電池
CN114420932B (zh) * 2022-01-05 2024-03-01 齐鲁工业大学 一种高性能含有变价金属离子氧化物微晶玻璃电极材料及制备方法和应用
CN114583102B (zh) * 2022-02-21 2023-08-15 远景动力技术(江苏)有限公司 正极活性材料、电化学装置和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883606A (ja) * 1994-09-09 1996-03-26 Hitachi Ltd リチウム二次電池
JPH11283627A (ja) * 1998-01-30 1999-10-15 Canon Inc リチウム二次電池及びその製造方法
JP2001076724A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd リチウム電池用正極材料とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111511B2 (ja) 1991-06-28 2000-11-27 スズキ株式会社 自動車用灰皿
JPH0547386A (ja) 1991-08-16 1993-02-26 Nippon Telegr & Teleph Corp <Ntt> 全固体リチウム二次電池
JPH0935712A (ja) 1995-07-25 1997-02-07 Sony Corp 正極活物質及びその製造方法、これを用いた非水電解液二次電池
US6517974B1 (en) * 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
CN1179886C (zh) * 2002-08-15 2004-12-15 武汉大学 一种碱金属钒氧化物的合成方法
JP5118905B2 (ja) 2007-07-06 2013-01-16 トヨタ自動車株式会社 電極活物質、電極、非水電解質二次電池、車両、電池搭載機器、および電極活物質の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883606A (ja) * 1994-09-09 1996-03-26 Hitachi Ltd リチウム二次電池
JPH11283627A (ja) * 1998-01-30 1999-10-15 Canon Inc リチウム二次電池及びその製造方法
JP2001076724A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd リチウム電池用正極材料とその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469631A1 (en) * 2010-12-24 2012-06-27 Hitachi Ltd. Positive electrode active material for secondary battery and magnesium secondary battery using the same
CN102544467A (zh) * 2010-12-24 2012-07-04 株式会社日立制作所 二次电池用正极活性物质及使用该正极活性物质的镁二次电池
EP2468693A3 (en) * 2010-12-24 2012-08-22 Hitachi Ltd. Thermoelectric Conversion Material
US8802963B2 (en) 2010-12-24 2014-08-12 Hitachi, Ltd. Thermoelectric conversion material
JPWO2013129150A1 (ja) * 2012-03-01 2015-07-30 日立金属株式会社 電極活物質、この電極活物質を用いた電極及び二次電池
WO2014013837A1 (ja) * 2012-07-19 2014-01-23 株式会社 日立製作所 リチウムイオン二次電池用活物質粒子およびそれを用いたリチウムイオン二次電池
JP2014022204A (ja) * 2012-07-19 2014-02-03 Hitachi Ltd リチウムイオン二次電池用活物質粒子およびそれを用いたリチウムイオン二次電池
WO2019004288A1 (ja) * 2017-06-30 2019-01-03 国立大学法人九州大学 非水系二次電池用の正極活物質、およびそれを用いた非水系二次電池
JPWO2019004288A1 (ja) * 2017-06-30 2020-04-23 株式会社村田製作所 非水系二次電池用の正極活物質、およびそれを用いた非水系二次電池
JP7047841B2 (ja) 2017-06-30 2022-04-05 株式会社村田製作所 非水系二次電池用の正極活物質、およびそれを用いた非水系二次電池
US11355752B2 (en) 2017-06-30 2022-06-07 Murata Manufacturing Co., Ltd. Positive electrode active substance for non-aqueous secondary battery and non-aqueous secondary battery including the same

Also Published As

Publication number Publication date
TWI435492B (zh) 2014-04-21
CN102859761B (zh) 2015-06-10
KR20130004491A (ko) 2013-01-10
TW201212363A (en) 2012-03-16
JP5759982B2 (ja) 2015-08-05
JPWO2011125834A1 (ja) 2013-07-11
KR101711525B1 (ko) 2017-03-02
US20130015410A1 (en) 2013-01-17
CN102859761A (zh) 2013-01-02
US8951436B2 (en) 2015-02-10

Similar Documents

Publication Publication Date Title
JP5759982B2 (ja) 正極活物質
Gabrielli et al. A new approach for compensating the irreversible capacity loss of high-energy Si/C| LiNi0. 5Mn1. 5O4 lithium-ion batteries
EP2872451B1 (en) Doped nickelate compounds
TWI501456B (zh) Non-aqueous electrolyte battery negative electrode material and non-aqueous electrolyte battery anode material manufacturing method and lithium-ion battery
WO2010114104A1 (ja) リン酸鉄リチウム粒子の製造方法および二次電池の製造方法
JP7188081B2 (ja) 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
CN107408689B (zh) 非水电解质二次电池用正极活性物质及二次电池
Lavela et al. On the benefits of Cr substitution on Na4MnV (PO4) 3 to improve the high voltage performance as cathode for sodium-ion batteries
JP2014056722A (ja) リン酸化合物、二次電池用正極材料、および二次電池の製造方法
US20130078519A1 (en) Production process for lithium-silicate-based compound
Kosova et al. Synthesis of nanosized materials for lithium-ion batteries by mechanical activation. Studies of their structure and properties
Nisar et al. Impact of surface coating on electrochemical and thermal behaviors of a Li-rich Li 1.2 Ni 0.16 Mn 0.56 Co 0.08 O 2 cathode
JP6536141B2 (ja) 複合活物質の製造方法
JP7238880B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
Moustafa et al. NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries
EP4266407A1 (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
Gryzlov et al. Behavior of LiFePO4/CPVDF/Ag-based cathode materials obtained using polyvinylidene fluoride as the carbon source
JP7159639B2 (ja) 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
US20120217451A1 (en) Process for producing phosphate compound and method for producing secondary battery
JP2013119492A (ja) リチウムシリケート系化合物及びその製造方法
JP2012204322A (ja) 非水電解質二次電池用活物質の製造方法
Kim et al. Effect of annealing temperature on the interfacial interaction of LiNi 0.5 Mn 1.5 O 4 thin film cathode with stainless-steel substrate
Darjazi et al. LiNi0. 5Mn1. 5O4 Thin Films Grown by Magnetron Sputtering under Inert Gas Flow Mixtures as High‐Voltage Cathode Materials for Lithium‐Ion Batteries
Garhi et al. Coprecipitation synthesis of Co-doped LiMn1. 5Ni0. 5O4 material as 5 V cathode of Li-ion batteries with huge rate capability for high power applications
WO2012086722A1 (ja) ケイ酸-バナジン酸化合物、二次電池用正極、および二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017174.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509571

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127025445

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13637986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765734

Country of ref document: EP

Kind code of ref document: A1