WO2011125087A1 - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
WO2011125087A1
WO2011125087A1 PCT/JP2010/002407 JP2010002407W WO2011125087A1 WO 2011125087 A1 WO2011125087 A1 WO 2011125087A1 JP 2010002407 W JP2010002407 W JP 2010002407W WO 2011125087 A1 WO2011125087 A1 WO 2011125087A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
circuit
ring
power supply
supply port
Prior art date
Application number
PCT/JP2010/002407
Other languages
French (fr)
Japanese (ja)
Inventor
南義明
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/002407 priority Critical patent/WO2011125087A1/en
Priority to JP2012509154A priority patent/JPWO2011125087A1/en
Publication of WO2011125087A1 publication Critical patent/WO2011125087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to an antenna device, and more particularly to an antenna device used in a radar that detects an object by transmitting and receiving electromagnetic waves.
  • each of the arranged unit array antennas is connected to each of two feeding points. That is, in the conventional technique, two unit array antennas in the center of the four rows of unit array antennas are shared by two feeding points, and three unit array antennas are connected to each of the two feeding points.
  • each is a combined array antenna composed of three unit array antennas
  • the distance between the left and right directions of the combined array antennas is reduced,
  • the phase interval between the combined array antennas can be reduced.
  • the phase interval of reflected waves received by the combined array antennas is ⁇ 180. It is possible to perform measurement without causing a so-called phase wraparound in which an accurate phase interval cannot be detected by shifting by more than 0 °.
  • the above prior art has the following problems. That is, in recent years, a radar apparatus that improves measurement accuracy using three antennas, or a radar apparatus that performs digital beam scanning using a plurality of antennas has been developed. However, since the above-mentioned conventional technology can provide only two feeding points, it cannot be used for such radar devices.
  • an object of the present invention is to provide a highly versatile antenna that can have an arbitrary number of feeding points and can be used in a radar apparatus that performs detection by various methods.
  • the present invention has the following characteristics.
  • the 1st aspect of this invention is the antenna which consists of a track
  • the first power distribution circuit has the same upper and lower line lengths across the contact point with the second power distribution circuit.
  • the first power distribution circuit has a ring shape.
  • the center interval between adjacent antenna elements is half the wavelength when signals transmitted and received by the antenna elements propagate in the air.
  • the second power distribution circuit has a ring shape.
  • an arbitrary number of feeding points can be provided, and a more versatile antenna that can be used in a radar apparatus that performs detection by various methods can be provided.
  • FIG. 1 is a diagram showing an example of the configuration of an antenna according to the present invention.
  • FIG. 2A is a diagram showing an example of a first ring circuit according to the present invention.
  • FIG. 2B is a diagram showing an example of a first ring circuit according to the present invention.
  • FIG. 3 is a diagram showing an example of a second ring circuit according to the present invention.
  • FIG. 4 is a diagram showing an example of the excitation amplitude distribution of the antenna according to the present invention.
  • FIG. 5 is a diagram showing an example of the excitation amplitude distribution of the antenna according to the present invention.
  • FIG. 6A is a diagram illustrating an example of the width of the first ring-type circuit.
  • FIG. 6B is a diagram illustrating an example of the width of the first ring-type circuit.
  • FIG. 7 is a diagram illustrating an example of a configuration of an antenna according to the present invention including a termination circuit.
  • FIG. 8 is a diagram illustrating an example of a configuration of an antenna according to the present invention including a termination circuit.
  • FIG. 9 is a diagram illustrating an example of a configuration of an antenna according to the present invention including a termination circuit.
  • FIG. 10 is a diagram illustrating another example of the first ring-type circuit.
  • FIG. 1 is a diagram illustrating an example of a configuration of an antenna according to the present embodiment.
  • a feeding point 101, a first feeding line 102, a first ring type circuit 103, a second ring type circuit 104, and a second feeding point 101 are provided on the main surface of the dielectric 100 serving as a substrate.
  • the antenna 1 is configured by forming the components of the feeder line 105 and the antenna element 106 on the copper foil of the dielectric substrate. Since it is well known that the antenna 1 has the same transmission and reception characteristics, in the description of the present embodiment, the case where the antenna 1 is used as a transmission antenna will be described as an example for ease of explanation. To do.
  • FIG. 1 shows a downward direction and a left-right direction based on the upward direction of the vehicle.
  • the left-right direction for explanation and the left-right direction on the paper are interchanged.
  • the antenna 1 is configured by connecting a plurality of components from the feeding point 101 to the antenna element 106 in the left-right direction as shown in FIG.
  • FIG. 2A and 2B are views showing only the first ring circuit 103 in the antenna 1 shown in FIG. 1 in an enlarged manner.
  • the first ring-type circuit 103 is a track configured by connecting a pair of semicircular lines arranged in the vertical direction and a pair of linear lines arranged in the left-right direction.
  • any one or more first ring circuits 103 constituting the antenna 1 according to this embodiment may be provided with a first power supply port C on the lower side.
  • the first ring-type circuit 103 according to the present embodiment is bilaterally symmetric as is apparent from the above description.
  • the first power supply port C, the first power supply port A, and the first power supply port B are symmetrical.
  • the line length to each of the is the same. Therefore, by providing the first power supply port C as shown in FIG. 2B to the first ring circuit 103 according to the present embodiment, the first power supply port A and the first power supply port B are provided.
  • FIG. 1 shows an example of an antenna 1 in which a first feeding port C is provided in a first ring circuit 103 located in the center in the left-right direction and on both sides thereof.
  • the first power supply port C When the first power supply port C is provided in the first ring-type circuit 103, as is apparent from FIG. 1, the first power supply port C is preceded by the first power supply port C. Signals can be input and output at the feeding point 101 located.
  • FIG. 3 is an enlarged view showing only the second ring circuit 104 in the antenna 1 shown in FIG.
  • the second ring-type circuit 104 is a closed circuit composed of a line having a hollow circular shape, and includes a second power supply port A on the right side thereof and a second power supply on the left side thereof.
  • a port B is provided, a second power supply port C is provided on the upper side, and an open stub is provided on the lower side.
  • the antenna element 106 is connected to the tip of the second power supply port C via the second power supply line 105.
  • the antenna 1 according to the present embodiment is arranged so that the first ring circuits 103 having the shape described above are arranged at equal intervals, and the first ring circuits 103 are connected.
  • the second ring type circuit 104 is arranged in the configuration.
  • the first ring-type circuit 103 and the second ring-type circuit 104 each have a power supply port having a length as shown in FIGS. 2A to 3 respectively.
  • the ring shape of each ring circuit is shown as an example in FIG. (In this embodiment, the first ring-type circuit 103 has a track shape and the second ring-type circuit 104 has a hollow circle shape). Shall be composed.
  • the antenna 1 includes the first ring-type circuit 103 arranged as shown in FIG. One power supply port C is provided, and antenna elements 106 are provided in the second power supply ports C of the second ring circuit 104, respectively.
  • the description of the antenna 1 configured as shown in FIG. 1 will be continued.
  • FIG. 4 is a diagram illustrating an example of an excitation amplitude distribution when a signal is supplied and transmitted to the feeding point 101 located at the center in the left-right direction of the antenna 1 according to the present embodiment.
  • the horizontal axis in FIG. 4 indicates the numbers assigned to the antenna elements 106 of the antenna 1 according to this embodiment as shown in FIG. Further, the vertical axis in FIG. 4 indicates the excitation amplitude of the antenna element 106 of the antenna 1 corresponding to the number indicated on the horizontal axis.
  • the highest excitation amplitude among the antenna elements 106 constituting the antenna 1 is 1, and the ratio of the excitation amplitude of the other antenna elements 106 to the highest excitation amplitude is shown for each antenna element 106.
  • the excitation amplitude indicated by a negative value in the excitation amplitude distribution shown in FIG. 4 is that the signal transmitted from the antenna element 106 corresponding to the excitation amplitude is from the antenna element 106 corresponding to the excitation amplitude indicating a positive value. It shows that the phase is shifted by 180 ° with respect to the transmitted signal. Therefore, if the phase is not considered, the excitation amplitude distribution shown in FIG.
  • the antenna element 106 is from the antenna element 106 closest to the center in the left-right direction of the antenna 1 (in the example shown in FIG. 4, the antenna elements # 4 and # 5). The distribution becomes such that the excitation amplitude decreases in order as it moves away in the left-right direction.
  • the length (line length) of the track-shaped line width center line (two-dot chain line in FIG. 2A or FIG. 2B) is 2 ⁇ g. Designed.
  • ⁇ g is the wavelength of the signal when the signal propagates through the line constituting the antenna 1.
  • the first power supply port A and the first power supply port B are provided on the track-shaped side surfaces with the line length of 2 ⁇ g, respectively.
  • the signal propagating from the first power supply port A to the first power supply port B includes the upper semicircular line direction and the lower semicircular line direction in the track shape shown in FIG. 2A.
  • the track-shaped first ring circuit 103 is vertically symmetric, and therefore, from the first feeding port A, the upper semicircular line direction and the lower semicircular line direction.
  • the phases of the propagation ports are in phase with each other.
  • the circumferential length (line length) of the hollow circular line width center line (two-dot chain line in FIG. 3) is the above-described ⁇ g.
  • the second power supply port A and the second power supply port B are provided on the hollow circular side surfaces having the line length ⁇ g, respectively. Yes.
  • a signal propagating from the second power supply port A to the second power supply port B is distributed to the upper semicircular line and the lower semicircular line in the circular shape shown in FIG. Is done.
  • the signal distributed in the upper semicircular shape from the second power supply port A is further distributed to the second power supply port C and the second power supply port B. Accordingly, the signal distributed from the second power supply port A to the upper semicircular shape and propagating to the second power supply port B is reduced in intensity and reduced in amplitude by the amount distributed to the second power supply port C. To do.
  • the second ring circuit 104 according to the present embodiment has a line length of ⁇ g as described above, the second ring circuit 104 is distributed from the second power supply port A to the upper semicircular shape, so that the second power supply port B The signal propagating up to is propagated through the line length of ⁇ g / 2.
  • the signal distributed in the lower semicircular shape from the second power feeding port A propagates to the second power feeding port B through the open stub.
  • the second ring circuit 104 is designed so that the line length is ⁇ g as described above.
  • the open stub is designed so that the line length is ⁇ g / 4.
  • the signal distributed in the lower semicircular shape from the second power supply port A propagates through the lower semicircular shape to the open stub (propagating the line length of ⁇ g / 4), and reciprocates through the open stub ( After propagating the line length of ⁇ g / 2), the lower semicircular shape is propagated to the second feeding port B (propagating the line length of ⁇ g / 4). Therefore, in the second ring circuit 104 according to the present embodiment, when the signal is distributed from the second feeding port A to the lower semicircular shape and propagates to the second feeding port B, the line of ⁇ g Will propagate the length.
  • the signals distributed from the second power supply port A into the upper and lower semicircular shapes are combined at the second power supply port B.
  • the signal whose amplitude has been reduced by propagation through the line length of ⁇ g / 2 and the signal which has been propagated through the line length of ⁇ g are combined. That is, when a signal propagates through the second ring circuit 104 from the second power supply port A to the second power supply port B, the second power supply port B is out of phase with each other by a half wavelength and has different amplitudes.
  • the signal is synthesized.
  • the second ring circuit 104 has a bilaterally symmetric shape as shown in FIG. 3, so that a signal is transmitted from the second power supply port B to the second power supply port A. The same applies when propagating.
  • the second ring circuit 104 when a signal propagates from one of the second power supply port A and the second power supply port B to the other, As a result, the amplitude decreases.
  • the ratio between the amplitude of the signal at the propagation power supply port and the amplitude of the signal at the propagation power supply port is referred to as a distribution ratio.
  • the signal supplied to the feeding point 101 located at the center in the left-right direction of the antenna 1 alternately propagates through the first ring circuit 103 and the second ring circuit 104,
  • the signals are distributed to the antenna elements 106 and transmitted from the respective antenna elements 106.
  • the signal alternately propagating through the first ring circuit 103 and the second ring circuit 104 depends on the distribution ratio of the second ring circuit 104 as described above.
  • the amplitude decreases. Therefore, the excitation amplitude distribution of the antenna 1 according to the present embodiment has an antenna element 106 (in the example shown in FIG. 4, # 4, And # 5 antenna element 106), the distribution is such that the excitation amplitude decreases in the order of antenna element 106 farthest from antenna element 106 (# 1 and # 8 in the example shown in FIG. 4).
  • the signal supplied to the feeding point 101 located at the center in the left-right direction is branched by the first ring circuit 103, which is also located at the center in the left-right direction, and left-right direction Propagate to each.
  • a signal branched leftward from the first ring circuit 103 located at the center in the left-right direction of the antenna 1 alternates between the first ring circuit 103 and the second ring circuit 104 as described above.
  • a signal branched rightward from the first ring-type circuit 103 located at the center of the left-right direction of the antenna 1 alternates between the first ring-type circuit 103 and the second ring-type circuit 104 as described above.
  • the antenna elements 106 of # 5 to # 8 that transmit a signal branched leftward from the first ring circuit 103 located at the center in the left-right direction of the antenna 1 are adjacent to each other.
  • the antenna elements 106 are 180 ° out of phase with each other.
  • the antenna elements 106 of # 4 to # 1 that transmit a signal branched in the right direction from the first ring circuit 103 located at the center in the left-right direction of the antenna 1 are adjacent to each other as shown in FIG.
  • the antenna elements 106 are 180 ° out of phase with each other.
  • the phase difference between the adjacent antenna elements 106 by 180 ° is attributed to the line lengths of the first ring circuit 103 and the second ring circuit 104 that connect the adjacent antenna elements 106. That is, for example, the second ring circuit connected to the # 7 antenna element 106 from the second feed port C of the second ring circuit 104 connected to the # 6 antenna element 106 of FIG.
  • the line length up to the second power supply port C 104 is 1.5 ⁇ g.
  • the line length from the second feeding port C to the second feeding port B of the second ring circuit 104 connected to the # 6 antenna element 106 is ⁇ g / 4.
  • the line length when the signal propagates from the first power supply port A to the first power supply port B through the first ring circuit 103 connected to the port A is ⁇ g as described above.
  • the second power feed port A of the second ring circuit 104 connected to the # 7 antenna element 106 connected to the first power feed port B of the first ring circuit 103 is used as the second power feed.
  • the line length to port C is ⁇ g / 4.
  • a signal distributed to adjacent antenna elements 106 such as a signal distributed to # 6 antenna element 106 and a signal distributed to # 7 antenna element 106, has a line length of 1.5 ⁇ g. Since it is distributed to the adjacent antenna element 106 after propagating, it is out of phase with each other by a half wavelength. Therefore, the signals transmitted from the adjacent antenna elements 106 existing in the right direction from the first ring circuit 103 located at the center of the antenna 1 change in phase by 180 °. The same applies to signals transmitted from the respective adjacent antenna elements 106 existing in the left direction from the first ring circuit 103 located at the center of the antenna 1.
  • the signal distributed from the first power supply port C of the first ring circuit 103 to the first power supply port A and the first power supply port B propagates in phase. Will be.
  • the amplitude is relatively reduced at the power feeding port of the propagation destination.
  • a signal branched rightward from the first ring circuit 103 located at the center in the left-right direction is an adjacent antenna element 106 (antenna elements 106 to # 1 of # 4).
  • the phase is inverted between the elements 106), and the signal branched leftward is inverted in phase between the adjacent antenna elements 106 (# 5 antenna elements 106 to # 8 antenna elements 106). For this reason, the excitation amplitude distribution of the antenna 1 according to the present embodiment is as shown in FIG.
  • the excitation amplitude distribution when a signal is supplied to the feeding point 101 located at the center of the antenna 1 in the left-right direction has been described.
  • the excitation amplitude distribution is symmetrical with the feeding point 101 that supplied the signal as the center in the left-right direction.
  • the excitation amplitude distribution Dis1 shown in FIG. 5 is the excitation amplitude distribution shown in FIG.
  • the excitation amplitude distribution Dis2 shown in FIG. 5 is an excitation amplitude distribution when a signal is supplied to the first feeding point 101 existing in the right direction from the center of the antenna 1 in the left-right direction.
  • the excitation amplitude distribution Dis3 shown in FIG. 5 is an excitation amplitude distribution when a signal is supplied to the first feeding point 101 existing in the left direction from the center in the left-right direction of the antenna 1. As shown as an example in FIG.
  • the excitation amplitude distribution can be shifted in the left-right direction according to the position of the feeding point 101 that supplies the signal.
  • the illustration of the excitation amplitude of the # 8 antenna element 106 is omitted.
  • the illustration of the excitation amplitude of the antenna element 106 of # 1 is omitted.
  • the antenna 1 is assumed to be used as a transmission antenna, and the excitation amplitude distribution has been mainly described. On the other hand, even if the antenna 1 is used as a receiving antenna, it goes without saying that the excitation amplitude distribution is the same as that described above.
  • FIG. 6A is a diagram showing an example of the first ring circuit 103 having a relatively narrow width H and the spacing HA in the left-right direction of the antenna element 106
  • FIG. It is a figure which shows an example of the space
  • FIG. As shown in FIGS.
  • the antenna 1 according to the present invention has a width H of the first ring-type circuit 103 so that the horizontal interval HA between adjacent antenna elements 106 is an arbitrary interval. Can be determined. However, when the width H of the first ring circuit 103 is determined in order to set the horizontal distance HA of the antenna element 106 to an arbitrary distance, the second power feeding port of the adjacent second ring circuit 104 is determined. It is necessary to determine the length V in the front-rear direction of the first ring circuit 103 so that the line length connecting the Cs becomes 1.5 ⁇ g. As shown as an example in FIGS.
  • the length V in the front-rear direction of the first ring circuit 103 must be relatively shortened.
  • the distance between the adjacent antenna elements 106 in the left-right direction can be set arbitrarily.
  • the antenna 1 according to the present invention can be used as a receiving antenna of a phase monopulse radar device, thereby It is possible to prevent a so-called phase wraparound in which an accurate phase interval cannot be detected when the phase interval of the received signal is shifted by ⁇ 180 ° or more.
  • is a wavelength in the atmosphere. It goes without saying that the spacing between the antenna elements 106 does not have to be exactly 0.5 ⁇ .
  • At least two antennas with a small width capable of setting the horizontal spacing of the antenna elements 106 to 0.5 ⁇ are arranged side by side in the horizontal direction.
  • an unnecessary signal may be received, resulting in erroneous detection or degradation in detection performance.
  • the antenna 1 according to the present invention not only 2 but also 3 or more antenna elements 106 can be used.
  • the beam can be shaped to have a necessary detection angle width.
  • the detection angle width is a range in which the radar apparatus using the antenna 1 according to the present invention can measure the relative distance to the object, the relative speed, the direction (angle) in which the object exists, and the like.
  • it has a fan shape centered on the position of the antenna of the radar device, and it means the breadth of the angle of the fan shape.
  • the antenna 1 provided with one antenna element 106 for each of the second feeders 105 has been described.
  • the shape of the antenna element 106 constituting the antenna 1 according to the present invention may be any shape.
  • An array antenna composed of a plurality of elements may be used.
  • the first ring type circuit 103 with the first power supply port C is provided.
  • the arrangement of the left and right first feeding ports C may be asymmetric, and the symmetry of the excitation amplitude distribution may be impaired.
  • the first ring circuit 103 to which the receiving circuit is not connected has a termination for matching. A circuit may be connected.
  • a signal supplied from the feeding point 101 or a signal received by the antenna element 106 is reflected in the first ring circuit 103 located at both ends in the left-right direction.
  • characteristics such as the excitation amplitude distribution of the antenna 1 may be degraded.
  • matching is made with the first ring circuit 103 located at both ends of the antenna 1 in the left-right direction as shown as an example in FIG. It is recommended to connect a termination circuit for taking
  • the first ring circuit 103 has a track shape as described above.
  • the shape of the first ring circuit 103 may be a geometric shape such as a perfect circle shape, or a shape obtained by flattening these shapes.
  • the length of the first ring circuit 103 according to the first embodiment is such that the line length connecting the second power feeding ports C of the adjacent second ring circuits 104 is 1.5 ⁇ . It was decided to decide. However, in another embodiment, the lengths of the lines constituting the first ring circuit 103 so that the lengths of the second power supply ports C of the adjacent second ring circuits 104 are arbitrary. The phase of the signal in the adjacent antenna element 106 may be shifted by 180 °.
  • the length of the first ring circuit 103 according to the first embodiment is such that the signal propagates from one of the first power supply port A and the first power supply port B to the other.
  • the line length was set to 2 ⁇ g so as to be in phase with each other at the previous feeding port.
  • the line length of the first ring circuit 103 is changed so that a phase difference is generated between the signals at the first power supply port A and the first power supply port B. Also good.
  • the first ring circuit 103 is used as an example of the first power distribution circuit described in the claims.
  • the shape of the first power distribution circuit described in the claims is not limited to the ring-shaped track shape.
  • a U-shaped circuit may be used as shown in FIG. 10 as an example.
  • the first power supply port C may be provided in the U-shaped circuit shown as an example in FIG.
  • the second ring circuit 104 is used as an example of the second power distribution circuit described in the claims.
  • the signal propagates from one of the second power feeding port A and the second power feeding port B to the other, so that in the propagation power feeding port Any circuit may be used as long as the amplitude of the signal is an arbitrarily small amplitude, and the circuit is not limited to a hollow circle having an open stub.
  • the first ring circuit 103 is formed in a track shape with a line length of 2 ⁇ g so as to obtain the excitation amplitude distribution shown as an example in FIG.
  • the circuit 104 has a circular shape with a line length of ⁇ g.
  • the excitation amplitude distribution of the antenna according to another embodiment is not limited to the distribution shown in FIG. 4, and the first ring-type circuit 103 and the second ring amplitude circuit so as to obtain an arbitrary excitation amplitude distribution.
  • Each shape of the ring-type circuit 104 and the line length may be determined.
  • all adjacent antenna elements 106 are arranged at equal intervals in the left-right direction.
  • all or a part of all the adjacent antenna elements 106 may be arranged at intervals different from other intervals so that an arbitrary excitation amplitude distribution can be obtained.
  • a more versatile antenna can be provided, which is useful, for example, for an antenna used in a radar device mounted on a moving body such as an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Disclosed is a versatile antenna which can be provided with an arbitrary number of feeding points and utilized in a radar apparatus which performs measurement using various methods. The antenna comprises lines arranged on a printed circuit board, and is provided with a plurality of first power distribution circuits arranged at arbitrary intervals in the lateral direction to have a laterally symmetric shape, a plurality of second power distribution circuits arranged to connect the adjacent first power distribution circuits and to have a laterally symmetric shape and, a power feeding line connected to a midpoint in the lateral direction of at least one of the more than one first power distribution circuits, and an antenna element connected to the second power distribution circuits.

Description

アンテナantenna
 本発明は、アンテナ装置に関し、より特定的には、電磁波を送受信して対象物を検出するレーダに用いられるアンテナ装置に関する。 The present invention relates to an antenna device, and more particularly to an antenna device used in a radar that detects an object by transmitting and receiving electromagnetic waves.
 近年、電磁波を放射して、放射した電磁波が対象物で反射した反射波を受信し、放射した電磁波と、受信した反射波とに基づいて、対象物との相対距離、相対速度、及び当該対象物の存在する方向などを測定するレーダ装置が実用化されている。そして、このようなレーダ装置において反射波を受信する受信アンテナとして用いるために様々なアンテナが提案されている。このようなアンテナの一例として、特許文献1に記載のマイクロストリップアレーアンテナ(以下、従来技術と称する)が挙げられる。 In recent years, an electromagnetic wave has been radiated, and a reflected wave reflected by the object has been received. Based on the emitted electromagnetic wave and the received reflected wave, the relative distance to the object, the relative velocity, and the object A radar apparatus that measures the direction in which an object exists has been put into practical use. Various antennas have been proposed for use as receiving antennas for receiving reflected waves in such radar devices. As an example of such an antenna, there is a microstrip array antenna described in Patent Document 1 (hereinafter referred to as conventional technology).
 従来技術では、4列の単位アレーアンテナを左右方向に並行させて配設し、2つの給電点と接続している。4列の単位アレーアンテナと2つの給電点とを接続するときに、従来技術では、中央に配設された2列の単位アレーアンテナを2つの給電点にそれぞれ接続し、残りの2つの外側に配設された単位アレーアンテナのそれぞれを2つの給電点のそれぞれに接続している。つまり、従来技術では、4列の単位アレーアンテナの内、中央の2つの単位アレーアンテナを2つの給電点で共有し、2つの給電点のそれぞれに3つの単位アレーアンテナを接続している。 In the prior art, four rows of unit array antennas are arranged in parallel in the left-right direction and connected to two feeding points. When connecting a four-row unit array antenna and two feeding points, in the prior art, a two-row unit array antenna arranged in the center is connected to the two feeding points, respectively, and the remaining two outside the two feeding points are connected to the outside. Each of the arranged unit array antennas is connected to each of two feeding points. That is, in the conventional technique, two unit array antennas in the center of the four rows of unit array antennas are shared by two feeding points, and three unit array antennas are connected to each of the two feeding points.
 これにより、従来技術では、それぞれが3つの単位アレーアンテナからなる合成アレーアンテナでありながら、中央の2つの単位アレーアンテナを共有することにより、互いの合成アレーアンテナの左右方向の間隔を狭くし、互いの合成アレーアンテナの位相間隔を狭くすることができる。このような従来技術に係るマイクロストリップアレーアンテナを例えば位相モノパルス方式で対象物の存在する方向を測定するレーダ装置に採用することにより、互いの合成アレーアンテナで受信した反射波の位相間隔が±180°以上ずれることによって正確な位相間隔を検出できなくなる所謂位相の折り返しを生じることのない測定を可能にすることができる。 Thus, in the prior art, although each is a combined array antenna composed of three unit array antennas, by sharing the two central unit array antennas, the distance between the left and right directions of the combined array antennas is reduced, The phase interval between the combined array antennas can be reduced. By adopting such a microstrip array antenna according to the prior art in a radar apparatus that measures the direction in which an object exists, for example, by a phase monopulse method, the phase interval of reflected waves received by the combined array antennas is ± 180. It is possible to perform measurement without causing a so-called phase wraparound in which an accurate phase interval cannot be detected by shifting by more than 0 °.
特開2009-076986号公報JP 2009-076986 A
 しかしながら、上記従来技術では、以下に述べる課題を有する。すなわち、近年では、3つのアンテナを用いて測定精度を向上させたレーダ装置、或いは複数のアンテナを用いてデジタルビーム走査をするレーダ装置などが開発されている。しかしながら、上記従来技術では、給電点を2つまでしか備えることができないため、これらのようなレーダ装置に用いることができない。 However, the above prior art has the following problems. That is, in recent years, a radar apparatus that improves measurement accuracy using three antennas, or a radar apparatus that performs digital beam scanning using a plurality of antennas has been developed. However, since the above-mentioned conventional technology can provide only two feeding points, it cannot be used for such radar devices.
 そこで、本発明は、給電点を任意の数だけ備えることができ、様々な手法で検出を行うレーダ装置に用いることのできる汎用性のより高いアンテナを提供することを目的とする。 Therefore, an object of the present invention is to provide a highly versatile antenna that can have an arbitrary number of feeding points and can be used in a radar apparatus that performs detection by various methods.
 上記目的を達成するため、本発明は、以下に示す特徴を有する。 In order to achieve the above object, the present invention has the following characteristics.
 本発明の第1の局面は、誘電体基板上に配置された線路からなるアンテナであって、左右方向に任意の間隔を空けて配置され、左右対称の形状を有する複数の第1電力分配回路と、隣り合う各第1電力分配回路をつなぐように配置され、左右対称の形状を有する複数の第2電力分配回路と、2以上の第1電力分配回路の少なくともいずれか一つの左右の中点に接続された電力供給線と、第2電力分配回路に接続されたアンテナ素子とを備える。 1st aspect of this invention is the antenna which consists of a track | line arrange | positioned on a dielectric substrate, Comprising: The 1st power distribution circuit which is arrange | positioned at arbitrary intervals in the left-right direction, and has a left-right symmetric shape And a left and right midpoint of at least one of a plurality of second power distribution circuits that are arranged to connect adjacent first power distribution circuits and have a symmetrical shape, and two or more first power distribution circuits. And an antenna element connected to the second power distribution circuit.
 本発明の第2の局面は、上記第1の局面において、第1電力分配回路は、第2電力分配回路との接点を挟む上下の線路長が同じである。 In the second aspect of the present invention, in the first aspect, the first power distribution circuit has the same upper and lower line lengths across the contact point with the second power distribution circuit.
 本発明の第3の局面は、上記第2の局面において、第1電力分配回路はリング形状である。 In a third aspect of the present invention based on the second aspect, the first power distribution circuit has a ring shape.
 本発明の第4の局面は、上記第3の局面において、隣り合う各アンテナ素子の中心間隔が、各前記アンテナ素子で送受信する信号が空気中を伝搬するときの波長の半分である。 According to a fourth aspect of the present invention, in the third aspect, the center interval between adjacent antenna elements is half the wavelength when signals transmitted and received by the antenna elements propagate in the air.
 本発明の第5の局面は、上記第4の局面において、第2電力分配回路は、リング形状である。 In a fifth aspect of the present invention based on the fourth aspect, the second power distribution circuit has a ring shape.
 本発明によれば、給電点を任意の数だけ備えることができ、様々な手法で検出を行うレーダ装置に用いることのできる汎用性のより高いアンテナを提供できる。 According to the present invention, an arbitrary number of feeding points can be provided, and a more versatile antenna that can be used in a radar apparatus that performs detection by various methods can be provided.
図1は、本発明に係るアンテナの構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of an antenna according to the present invention. 図2Aは、本発明に係る第1のリング型回路の一例を示す図である。FIG. 2A is a diagram showing an example of a first ring circuit according to the present invention. 図2Bは、本発明に係る第1のリング型回路の一例を示す図である。FIG. 2B is a diagram showing an example of a first ring circuit according to the present invention. 図3は、本発明に係る第2のリング型回路の一例を示す図である。FIG. 3 is a diagram showing an example of a second ring circuit according to the present invention. 図4は、本発明に係るアンテナの励振振幅分布の一例を示す図である。FIG. 4 is a diagram showing an example of the excitation amplitude distribution of the antenna according to the present invention. 図5は、本発明に係るアンテナの励振振幅分布の一例を示す図である。FIG. 5 is a diagram showing an example of the excitation amplitude distribution of the antenna according to the present invention. 図6Aは、第1のリング型回路の幅の一例を示す図である。FIG. 6A is a diagram illustrating an example of the width of the first ring-type circuit. 図6Bは、第1のリング型回路の幅の一例を示す図である。FIG. 6B is a diagram illustrating an example of the width of the first ring-type circuit. 図7は、終端回路を備えた本発明に係るアンテナの構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a configuration of an antenna according to the present invention including a termination circuit. 図8は、終端回路を備えた本発明に係るアンテナの構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a configuration of an antenna according to the present invention including a termination circuit. 図9は、終端回路を備えた本発明に係るアンテナの構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a configuration of an antenna according to the present invention including a termination circuit. 図10は、第1のリング型回路の他の一例を示す図である。FIG. 10 is a diagram illustrating another example of the first ring-type circuit.
 (第1の実施形態)
 図1は、本実施形態に係るアンテナの構成の一例を示す図である。本実施形態では、基板となる誘電体100の主面に、給電点101と、第1の給電線102と、第1のリング型回路103と、第2のリング型回路104と、第2の給電線105と、アンテナ素子106との構成要素を誘電体基板の銅箔上に形成することによってアンテナ1が構成される。アンテナ1は、送信、及び受信の特性が等しくなることがよく知られていることから、本実施形態の説明では、説明を容易にするため、アンテナ1を送信アンテナとして使用する場合を一例として説明する。また、本実施形態の説明では、アンテナ1が車両に搭載されるものとし、給電点101から第1のリング型回路103に向かう方向が水平面に垂直となるように、且つ、当該方向が車両の上方向を向くように搭載されるものとして説明する。また、図1には、この車両の上方向を基準とする下方向、及び左右方向を示している。本発明の説明では、図1に示すように、説明のための左右方向と、紙面上の左右方向とを入れ替えて説明している。
(First embodiment)
FIG. 1 is a diagram illustrating an example of a configuration of an antenna according to the present embodiment. In the present embodiment, a feeding point 101, a first feeding line 102, a first ring type circuit 103, a second ring type circuit 104, and a second feeding point 101 are provided on the main surface of the dielectric 100 serving as a substrate. The antenna 1 is configured by forming the components of the feeder line 105 and the antenna element 106 on the copper foil of the dielectric substrate. Since it is well known that the antenna 1 has the same transmission and reception characteristics, in the description of the present embodiment, the case where the antenna 1 is used as a transmission antenna will be described as an example for ease of explanation. To do. In the description of this embodiment, it is assumed that the antenna 1 is mounted on a vehicle, the direction from the feeding point 101 toward the first ring circuit 103 is perpendicular to the horizontal plane, and the direction is the direction of the vehicle. It demonstrates as what is mounted so that it may face upward. Further, FIG. 1 shows a downward direction and a left-right direction based on the upward direction of the vehicle. In the description of the present invention, as shown in FIG. 1, the left-right direction for explanation and the left-right direction on the paper are interchanged.
 本実施形態に係るアンテナ1は、図1に示すように給電点101~アンテナ素子106の構成要素を左右方向に複数接続して構成される。 The antenna 1 according to the present embodiment is configured by connecting a plurality of components from the feeding point 101 to the antenna element 106 in the left-right direction as shown in FIG.
 図2A、及び図2Bは、図1に示すアンテナ1の内、第1のリング型回路103のみを拡大して示す図である。第1のリング型回路103は、図2Aに示すように、上下方向に配置された半円形状の対の線路と左右方向に配置された直線形状の対の線路とを接続して構成したトラック形状の閉回路であって、その側面に第1の給電ポートA、及び第1の給電ポートBを備えており、第1の給電ポートA、及び第1の給電ポートBのいずれか一方から他方へ電力を伝送できる。 2A and 2B are views showing only the first ring circuit 103 in the antenna 1 shown in FIG. 1 in an enlarged manner. As shown in FIG. 2A, the first ring-type circuit 103 is a track configured by connecting a pair of semicircular lines arranged in the vertical direction and a pair of linear lines arranged in the left-right direction. A closed circuit having a shape, which includes a first power supply port A and a first power supply port B on its side surface, and one of the first power supply port A and the first power supply port B is changed to the other. Power can be transmitted to
 また、本実施形態に係るアンテナ1を構成する任意の1以上の第1のリング型回路103には、図2Bに一例として示すように、下側に第1の給電ポートCを設けてもよい。本実施形態に係る第1のリング型回路103は、上述の説明から明らかなように左右対称であって、第1の給電ポートCから、第1の給電ポートA、及び第1の給電ポートBのそれぞれまでの線路長が同じである。このため、本実施形態に係る第1のリング型回路103に対して、図2Bに示すように第1の給電ポートCを設けることにより、第1の給電ポートA、及び第1の給電ポートBのそれぞれにおける信号の位相が同相となるように第1の給電ポートCから信号を分配できる。図1には、左右方向の中央と、その両側に位置する第1のリング型回路103に第1の給電ポートCを設けたアンテナ1を一例として示している。 Moreover, as shown in FIG. 2B as an example, any one or more first ring circuits 103 constituting the antenna 1 according to this embodiment may be provided with a first power supply port C on the lower side. . The first ring-type circuit 103 according to the present embodiment is bilaterally symmetric as is apparent from the above description. The first power supply port C, the first power supply port A, and the first power supply port B are symmetrical. The line length to each of the is the same. Therefore, by providing the first power supply port C as shown in FIG. 2B to the first ring circuit 103 according to the present embodiment, the first power supply port A and the first power supply port B are provided. The signals can be distributed from the first power supply port C so that the phases of the signals in each of the first power supply port C are in phase. FIG. 1 shows an example of an antenna 1 in which a first feeding port C is provided in a first ring circuit 103 located in the center in the left-right direction and on both sides thereof.
 尚、第1のリング型回路103に第1の給電ポートCを設けた場合には、図1から明らかなように、第1の給電線102を介して当該第1の給電ポートCの先に位置する給電点101で信号の入出力をすることができる。 When the first power supply port C is provided in the first ring-type circuit 103, as is apparent from FIG. 1, the first power supply port C is preceded by the first power supply port C. Signals can be input and output at the feeding point 101 located.
 図3は、図1に示すアンテナ1の内、第2のリング型回路104のみを拡大して示す図である。第2のリング型回路104は、図3に示すように、中空の円形状を有する線路で構成した閉回路であり、その右側に第2の給電ポートAを備え、その左側に第2の給電ポートBを備え、上側に第2の給電ポートCを備え、下側に開放スタブを備えている。尚、図1から明らかなように、第2の給電ポートCの先には第2の給電線105を介してアンテナ素子106が接続されている。 FIG. 3 is an enlarged view showing only the second ring circuit 104 in the antenna 1 shown in FIG. As shown in FIG. 3, the second ring-type circuit 104 is a closed circuit composed of a line having a hollow circular shape, and includes a second power supply port A on the right side thereof and a second power supply on the left side thereof. A port B is provided, a second power supply port C is provided on the upper side, and an open stub is provided on the lower side. As is clear from FIG. 1, the antenna element 106 is connected to the tip of the second power supply port C via the second power supply line 105.
 以上が、本実施形態に係る第1のリング型回路103、及び第2のリング型回路104の説明である。本実施形態に係るアンテナ1は、図1に示すように、上述で説明した形状を有する第1のリング型回路103を等間隔に配置し、これらの第1のリング型回路103を接続するように第2のリング型回路104を配置して構成している。 The above is the description of the first ring type circuit 103 and the second ring type circuit 104 according to the present embodiment. As shown in FIG. 1, the antenna 1 according to the present embodiment is arranged so that the first ring circuits 103 having the shape described above are arranged at equal intervals, and the first ring circuits 103 are connected. The second ring type circuit 104 is arranged in the configuration.
 尚、上述の説明では、本実施形態に係る第1のリング型回路103、及び第2のリング型回路104が、図2A~図3にそれぞれ示すように長さを有する給電ポートをそれぞれ備えるものとして説明した。しかしながら、本実施形態に係る第1のリング型回路103、及び第2のリング型回路104でアンテナ1を構成する場合には、図1に一例として示すように、それぞれのリング型回路のリング形状(本実施形態では、第1のリング型回路103ではトラック形状であって、第2のリング型回路104では中空の円形状)の外周におけるそれぞれの給電ポートの位置で当接するように接続して構成するものとする。 In the above description, the first ring-type circuit 103 and the second ring-type circuit 104 according to this embodiment each have a power supply port having a length as shown in FIGS. 2A to 3 respectively. As explained. However, when the antenna 1 is configured by the first ring circuit 103 and the second ring circuit 104 according to the present embodiment, the ring shape of each ring circuit is shown as an example in FIG. (In this embodiment, the first ring-type circuit 103 has a track shape and the second ring-type circuit 104 has a hollow circle shape). Shall be composed.
 また、本実施形態に係るアンテナ1は、図1に示すように配置した第1のリング型回路103の内、左右の中央と、その両側に位置する第1のリング型回路103に上述した第1の給電ポートCを設け、第2のリング型回路104の第2の給電ポートCにそれぞれアンテナ素子106を設けて構成している。以下では、図1に示すように構成したアンテナ1について説明を続ける。 In addition, the antenna 1 according to the present embodiment includes the first ring-type circuit 103 arranged as shown in FIG. One power supply port C is provided, and antenna elements 106 are provided in the second power supply ports C of the second ring circuit 104, respectively. Hereinafter, the description of the antenna 1 configured as shown in FIG. 1 will be continued.
 図4は、本実施形態に係るアンテナ1の左右方向の中心に位置する給電点101に信号を供給して送信するときの励振振幅分布の一例を示す図である。図4の横軸は、本実施形態に係るアンテナ1のアンテナ素子106のそれぞれに図1に示すように付した番号を示している。また、図4の縦軸は、横軸に示した番号に対応するアンテナ1のアンテナ素子106の励振振幅を示している。 FIG. 4 is a diagram illustrating an example of an excitation amplitude distribution when a signal is supplied and transmitted to the feeding point 101 located at the center in the left-right direction of the antenna 1 according to the present embodiment. The horizontal axis in FIG. 4 indicates the numbers assigned to the antenna elements 106 of the antenna 1 according to this embodiment as shown in FIG. Further, the vertical axis in FIG. 4 indicates the excitation amplitude of the antenna element 106 of the antenna 1 corresponding to the number indicated on the horizontal axis.
 さらに、図4では、アンテナ1を構成するアンテナ素子106の中で最も高い励振振幅を1として、最も高い励振振幅に対する他のアンテナ素子106の励振振幅の比をアンテナ素子106毎に示している。そして、図4に示す励振振幅分布において負の値で示される励振振幅は、当該励振振幅に対応するアンテナ素子106から送信される信号が、正の値を示す励振振幅に対応するアンテナ素子106から送信される信号に対して位相が180°ずれていることを示している。したがって、位相を考慮しないと、図4に示す励振振幅分布は、アンテナ1の左右方向の中心に最も近いアンテナ素子106(図4に示す例では、#4、及び#5のアンテナ素子106)から左右方向に遠ざかるにしたがって、順番に励振振幅が小さくなる分布となる。 Further, in FIG. 4, the highest excitation amplitude among the antenna elements 106 constituting the antenna 1 is 1, and the ratio of the excitation amplitude of the other antenna elements 106 to the highest excitation amplitude is shown for each antenna element 106. The excitation amplitude indicated by a negative value in the excitation amplitude distribution shown in FIG. 4 is that the signal transmitted from the antenna element 106 corresponding to the excitation amplitude is from the antenna element 106 corresponding to the excitation amplitude indicating a positive value. It shows that the phase is shifted by 180 ° with respect to the transmitted signal. Therefore, if the phase is not considered, the excitation amplitude distribution shown in FIG. 4 is from the antenna element 106 closest to the center in the left-right direction of the antenna 1 (in the example shown in FIG. 4, the antenna elements # 4 and # 5). The distribution becomes such that the excitation amplitude decreases in order as it moves away in the left-right direction.
 本実施形態に係るアンテナ1の励振振幅分布が図4に示すようになる理由について説明するために、まず、第1のリング型回路103を信号が伝搬する場合について説明する。本実施形態に係る第1のリング型回路103は、一例として、トラック形状の線幅の中心線(図2A、又は図2Bにおける二点鎖線)の長さ(線路長)が2λgとなるように設計されている。ここで、λgは、アンテナ1を構成する線路を信号が伝搬するときの当該信号の波長であるものとする。本実施形態に係る第1のリング型回路103では、上述したように、線路長が2λgのトラック形状の側面にそれぞれ第1の給電ポートAと第1の給電ポートBとを設けている。そして、例えば、第1の給電ポートAから第1の給電ポートBに伝搬する信号は、図2Aに示すトラック形状において、上側の半円形状の線路方向と下側の半円形状の線路方向とに分配される。図2Aに示すようにトラック形状の第1のリング型回路103は、上下対称であるため、第1の給電ポートAから、上側の半円形状の線路方向と下側の半円形状の線路方向とに分配された信号は、それぞれλgの線路長(1波長分の長さ)の線路を伝搬して、第1の給電ポートBに到達することとなる。このことは、第1の給電ポートBから第1の給電ポートAに信号が伝搬する場合も同様である。 In order to explain the reason why the excitation amplitude distribution of the antenna 1 according to the present embodiment is as shown in FIG. 4, first, a case where a signal propagates through the first ring circuit 103 will be described. In the first ring circuit 103 according to the present embodiment, for example, the length (line length) of the track-shaped line width center line (two-dot chain line in FIG. 2A or FIG. 2B) is 2λg. Designed. Here, λg is the wavelength of the signal when the signal propagates through the line constituting the antenna 1. In the first ring circuit 103 according to the present embodiment, as described above, the first power supply port A and the first power supply port B are provided on the track-shaped side surfaces with the line length of 2λg, respectively. And, for example, the signal propagating from the first power supply port A to the first power supply port B includes the upper semicircular line direction and the lower semicircular line direction in the track shape shown in FIG. 2A. Distributed to. As shown in FIG. 2A, the track-shaped first ring circuit 103 is vertically symmetric, and therefore, from the first feeding port A, the upper semicircular line direction and the lower semicircular line direction The signals distributed to and propagate through the lines having a line length of λg (length corresponding to one wavelength) and reach the first power supply port B. The same applies to the case where a signal propagates from the first power supply port B to the first power supply port A.
 このように、本実施形態に係る第1のリング型回路103において、第1の給電ポートA、及び第1の給電ポートBのいずれか一方から他方に信号が伝搬するときには、1波長分の長さの線路を伝搬するので、伝搬先の給電ポートにおいて互いの位相が同相となる。 As described above, in the first ring circuit 103 according to the present embodiment, when a signal propagates from one of the first power supply port A and the first power supply port B to the other, a length corresponding to one wavelength is obtained. Therefore, the phases of the propagation ports are in phase with each other.
 次に、第2のリング型回路104を信号が伝搬する場合について説明する。本実施形態に係る第2のリング型回路104は、一例として、中空の円形状の線幅の中心線(図3における二点鎖線)の周の長さ(線路長)が前述のλgとなるように設計されている。本実施形態に係る第2のリング型回路104では、上述したように、線路長がλgの中空の円形状の側面にそれぞれ第2の給電ポートAと、第2の給電ポートBとを設けている。そして、例えば、第2の給電ポートAから第2の給電ポートBに伝搬する信号は、図3に示す円形状において、上側の半円形状の線路と下側の半円形状の線路とに分配される。第2のリング型回路104において、第2の給電ポートAから上側の半円形状に分配された信号は、さらに第2の給電ポートCと第2の給電ポートBとに分配される。したがって、第2の給電ポートAから上側の半円形状に分配されて第2の給電ポートBまで伝搬する信号は、第2の給電ポートCに分配される分だけ強度が低下して振幅が減少する。また、本実施形態に係る第2のリング型回路104は、上述したように線路長がλgであるため、第2の給電ポートAから上側の半円形状に分配されて第2の給電ポートBまで伝搬する信号は、λg/2の線路長を伝搬することとなる。 Next, a case where a signal propagates through the second ring circuit 104 will be described. As an example, in the second ring circuit 104 according to the present embodiment, the circumferential length (line length) of the hollow circular line width center line (two-dot chain line in FIG. 3) is the above-described λg. Designed to be In the second ring circuit 104 according to the present embodiment, as described above, the second power supply port A and the second power supply port B are provided on the hollow circular side surfaces having the line length λg, respectively. Yes. For example, a signal propagating from the second power supply port A to the second power supply port B is distributed to the upper semicircular line and the lower semicircular line in the circular shape shown in FIG. Is done. In the second ring circuit 104, the signal distributed in the upper semicircular shape from the second power supply port A is further distributed to the second power supply port C and the second power supply port B. Accordingly, the signal distributed from the second power supply port A to the upper semicircular shape and propagating to the second power supply port B is reduced in intensity and reduced in amplitude by the amount distributed to the second power supply port C. To do. In addition, since the second ring circuit 104 according to the present embodiment has a line length of λg as described above, the second ring circuit 104 is distributed from the second power supply port A to the upper semicircular shape, so that the second power supply port B The signal propagating up to is propagated through the line length of λg / 2.
 一方、第2のリング型回路104において、第2の給電ポートAから下側の半円形状に分配された信号は、開放スタブを介して第2の給電ポートBに伝搬する。ここで、第2のリング型回路104は上述したように線路長がλgとなるように設計されている。さらに、開放スタブは、線路長がλg/4となるように設計されている。そして、第2の給電ポートAから下側の半円形状に分配された信号は、下側の半円形状を開放スタブまで伝搬し(λg/4の線路長を伝搬)、開放スタブを往復(λg/2の線路長を伝搬)してから、下側の半円形状を第2の給電ポートBまで伝搬する(λg/4の線路長を伝搬)。したがって、本実施形態に係る第2のリング型回路104において、第2の給電ポートAから下側の半円形状に分配されて第2の給電ポートBまで信号が伝搬するときは、λgの線路長を伝搬することとなる。 On the other hand, in the second ring circuit 104, the signal distributed in the lower semicircular shape from the second power feeding port A propagates to the second power feeding port B through the open stub. Here, the second ring circuit 104 is designed so that the line length is λg as described above. Furthermore, the open stub is designed so that the line length is λg / 4. Then, the signal distributed in the lower semicircular shape from the second power supply port A propagates through the lower semicircular shape to the open stub (propagating the line length of λg / 4), and reciprocates through the open stub ( After propagating the line length of λg / 2), the lower semicircular shape is propagated to the second feeding port B (propagating the line length of λg / 4). Therefore, in the second ring circuit 104 according to the present embodiment, when the signal is distributed from the second feeding port A to the lower semicircular shape and propagates to the second feeding port B, the line of λg Will propagate the length.
 そして、本実施形態に係る第2のリング型回路104において、第2の給電ポートAから上下のそれぞれの半円形状に分配された信号は、第2の給電ポートBで合成される。このとき、第2の給電ポートBでは、上述で説明したように、λg/2の線路長を伝搬して振幅が減少した信号と、λgの線路長を伝搬した信号とが合成される。つまり、第2のリング型回路104を第2の給電ポートAから第2の給電ポートBまで信号が伝搬すると、第2の給電ポートBでは、互いに半波長分だけ位相がずれ、振幅の互いに異なる信号が合成される。したがって、第2のリング型回路104を第2の給電ポートAから第2の給電ポートBまで信号が伝搬すると、第2の給電ポートBにおける信号は、互いに振幅の異なる信号が打ち消しあって、相対的に振幅が減少した信号となる。このことは、本実施形態に係る第2のリング型回路104が、図3に示すように左右対称の形状をしているため、第2の給電ポートBから第2の給電ポートAまで信号が伝搬するときにおいても同様である。 Then, in the second ring circuit 104 according to the present embodiment, the signals distributed from the second power supply port A into the upper and lower semicircular shapes are combined at the second power supply port B. At this time, as described above, in the second power supply port B, the signal whose amplitude has been reduced by propagation through the line length of λg / 2 and the signal which has been propagated through the line length of λg are combined. That is, when a signal propagates through the second ring circuit 104 from the second power supply port A to the second power supply port B, the second power supply port B is out of phase with each other by a half wavelength and has different amplitudes. The signal is synthesized. Therefore, when a signal propagates from the second power supply port A to the second power supply port B through the second ring circuit 104, the signals at the second power supply port B cancel each other out of signals having different amplitudes. Therefore, the signal has a reduced amplitude. This is because the second ring circuit 104 according to the present embodiment has a bilaterally symmetric shape as shown in FIG. 3, so that a signal is transmitted from the second power supply port B to the second power supply port A. The same applies when propagating.
 つまり、本実施形態に係る第2のリング型回路104では、第2の給電ポートA、及び第2の給電ポートBのいずれか一方から他方に信号が伝搬するときには、伝搬先の給電ポートで相対的に振幅が減少する。以下では、第2のリング型回路104において、伝搬元の給電ポートにおける信号の振幅と伝搬先の給電ポートにおける信号の振幅との比を分配比と称する。 That is, in the second ring circuit 104 according to the present embodiment, when a signal propagates from one of the second power supply port A and the second power supply port B to the other, As a result, the amplitude decreases. Hereinafter, in the second ring circuit 104, the ratio between the amplitude of the signal at the propagation power supply port and the amplitude of the signal at the propagation power supply port is referred to as a distribution ratio.
 アンテナ1の左右方向の中心に位置する給電点101に供給された信号は、図1から明らかなように、第1のリング型回路103と第2のリング型回路104とを交互に伝搬し、アンテナ素子106に分配され、それぞれのアンテナ素子106から送信される。そして、上述したように、第1のリング型回路103と第2のリング型回路104とを交互に伝搬する信号は、上述で説明したように、第2のリング型回路104の分配比に応じて振幅が減少する。したがって、本実施形態に係るアンテナ1の励振振幅分布は、図4に示すように信号を供給する給電点101に対して左右方向に最も近いアンテナ素子106(図4に示す例では、#4、及び#5のアンテナ素子106)から最も遠いアンテナ素子106(図4に示す例では、#1、及び#8)の順番で励振振幅が小さくなる分布となる。 As is apparent from FIG. 1, the signal supplied to the feeding point 101 located at the center in the left-right direction of the antenna 1 alternately propagates through the first ring circuit 103 and the second ring circuit 104, The signals are distributed to the antenna elements 106 and transmitted from the respective antenna elements 106. As described above, the signal alternately propagating through the first ring circuit 103 and the second ring circuit 104 depends on the distribution ratio of the second ring circuit 104 as described above. As a result, the amplitude decreases. Therefore, the excitation amplitude distribution of the antenna 1 according to the present embodiment has an antenna element 106 (in the example shown in FIG. 4, # 4, And # 5 antenna element 106), the distribution is such that the excitation amplitude decreases in the order of antenna element 106 farthest from antenna element 106 (# 1 and # 8 in the example shown in FIG. 4).
 また、本実施形態に係るアンテナ1では、左右方向の中心に位置する給電点101に供給された信号が、同じく左右方向の中心に位置する第1のリング型回路103で分岐して、左右方向にそれぞれ伝搬する。そして、アンテナ1の左右方向の中心に位置する第1のリング型回路103から左方向に分岐した信号は、上述したように第1のリング型回路103、及び第2のリング型回路104を交互に伝搬しながら、#5のアンテナ素子106~#8のアンテナ素子106の順番に分岐されて送信される。一方、アンテナ1の左右方向の中心に位置する第1のリング型回路103から右方向に分岐した信号は、上述したように第1のリング型回路103、及び第2のリング型回路104を交互に伝搬しながら、#4のアンテナ素子106~#1のアンテナ素子106の順番に分岐されて送信される。 In the antenna 1 according to the present embodiment, the signal supplied to the feeding point 101 located at the center in the left-right direction is branched by the first ring circuit 103, which is also located at the center in the left-right direction, and left-right direction Propagate to each. A signal branched leftward from the first ring circuit 103 located at the center in the left-right direction of the antenna 1 alternates between the first ring circuit 103 and the second ring circuit 104 as described above. Are transmitted in the order of antenna element 106 of # 5 to antenna element 106 of # 8. On the other hand, a signal branched rightward from the first ring-type circuit 103 located at the center of the left-right direction of the antenna 1 alternates between the first ring-type circuit 103 and the second ring-type circuit 104 as described above. Are transmitted in the order of the antenna element 106 of # 4 to the antenna element 106 of # 1.
 ここで、アンテナ1の左右方向の中心に位置する第1のリング型回路103から左方向に分岐した信号を送信する#5~#8のアンテナ素子106では、図4に示すように、隣り合うアンテナ素子106で互いに位相が180°ずれている。同様に、アンテナ1の左右方向の中心に位置する第1のリング型回路103から右方向に分岐した信号を送信する#4~#1のアンテナ素子106でも、図4に示すように、隣り合うアンテナ素子106で互いに位相が180°ずれている。以下、この理由について説明する。 Here, as shown in FIG. 4, the antenna elements 106 of # 5 to # 8 that transmit a signal branched leftward from the first ring circuit 103 located at the center in the left-right direction of the antenna 1 are adjacent to each other. The antenna elements 106 are 180 ° out of phase with each other. Similarly, the antenna elements 106 of # 4 to # 1 that transmit a signal branched in the right direction from the first ring circuit 103 located at the center in the left-right direction of the antenna 1 are adjacent to each other as shown in FIG. The antenna elements 106 are 180 ° out of phase with each other. Hereinafter, this reason will be described.
 隣り合うアンテナ素子106で互いに位相が180°ずれるのは、隣り合うアンテナ素子106を接続する第1のリング型回路103、及び第2のリング型回路104のそれぞれの線路長に起因する。すなわち、例えば、図1の♯6のアンテナ素子106と接続されている第2のリング型回路104の第2の給電ポートCから♯7のアンテナ素子106と接続されている第2のリング型回路104の第2の給電ポートCまでの線路長は、1.5λgとなる。 The phase difference between the adjacent antenna elements 106 by 180 ° is attributed to the line lengths of the first ring circuit 103 and the second ring circuit 104 that connect the adjacent antenna elements 106. That is, for example, the second ring circuit connected to the # 7 antenna element 106 from the second feed port C of the second ring circuit 104 connected to the # 6 antenna element 106 of FIG. The line length up to the second power supply port C 104 is 1.5λg.
 より詳細には、♯6のアンテナ素子106に接続された第2のリング型回路104の第2の給電ポートCから第2の給電ポートBまでの線路長はλg/4となる。そして、♯6のアンテナ素子106に接続された第2のリング型回路104の第2の給電ポートBと、♯7のアンテナ素子106に接続された第2のリング型回路104の第2の給電ポートAとを接続する第1のリング型回路103を、第1の給電ポートAから第1の給電ポートBまで信号が伝搬するときの線路長は上述したようにλgとなる。そして、第1のリング型回路103の第1の給電ポートBと接続される、♯7のアンテナ素子106に接続された第2のリング型回路104の第2の給電ポートAから第2の給電ポートCまでの線路長は、λg/4となる。 More specifically, the line length from the second feeding port C to the second feeding port B of the second ring circuit 104 connected to the # 6 antenna element 106 is λg / 4. The second power feeding port B of the second ring circuit 104 connected to the # 6 antenna element 106 and the second power feeding port B of the second ring circuit 104 connected to the # 7 antenna element 106. The line length when the signal propagates from the first power supply port A to the first power supply port B through the first ring circuit 103 connected to the port A is λg as described above. Then, the second power feed port A of the second ring circuit 104 connected to the # 7 antenna element 106 connected to the first power feed port B of the first ring circuit 103 is used as the second power feed. The line length to port C is λg / 4.
 つまり、♯6のアンテナ素子106に分配された信号と、♯7のアンテナ素子106に分配された信号とのように、隣り合うアンテナ素子106に分配される信号は、1.5λgの線路長を伝搬してから隣のアンテナ素子106に分配されるので、半波長分だけ互いに位相がずれる。このため、アンテナ1の中心に位置する第1のリング型回路103から右方向に存在するそれぞれの隣り合うアンテナ素子106から送信される信号は、互いに位相が180°変化する。このことは、アンテナ1の中心に位置する第1のリング型回路103から左方向に存在するそれぞれの隣り合うアンテナ素子106から送信される信号についても同様である。 That is, a signal distributed to adjacent antenna elements 106, such as a signal distributed to # 6 antenna element 106 and a signal distributed to # 7 antenna element 106, has a line length of 1.5λg. Since it is distributed to the adjacent antenna element 106 after propagating, it is out of phase with each other by a half wavelength. Therefore, the signals transmitted from the adjacent antenna elements 106 existing in the right direction from the first ring circuit 103 located at the center of the antenna 1 change in phase by 180 °. The same applies to signals transmitted from the respective adjacent antenna elements 106 existing in the left direction from the first ring circuit 103 located at the center of the antenna 1.
 以上より、本実施形態に係るアンテナ1では、第1のリング型回路103の第1の給電ポートCから第1の給電ポートA、及び第1の給電ポートBへ分配される信号は同相で伝搬することとなる。また、本実施形態に係るアンテナ1では、第2のリング型回路104を信号が左右の回路へ伝搬するときには伝搬先の給電ポートで相対的に振幅が減少する。さらに、本実施形態に係るアンテナ1では、左右方向の中心に位置する第1のリング型回路103から右方向に分岐した信号は隣り合うアンテナ素子106(#4のアンテナ素子106~#1のアンテナ素子106)間で位相が反転し、左方向に分岐した信号は隣り合うアンテナ素子106(#5のアンテナ素子106~#8のアンテナ素子106)間で位相が反転する。このため、本実施形態に係るアンテナ1の励振振幅分布は図4に示すようになる。 As described above, in the antenna 1 according to the present embodiment, the signal distributed from the first power supply port C of the first ring circuit 103 to the first power supply port A and the first power supply port B propagates in phase. Will be. Further, in the antenna 1 according to the present embodiment, when the signal propagates through the second ring circuit 104 to the left and right circuits, the amplitude is relatively reduced at the power feeding port of the propagation destination. Furthermore, in the antenna 1 according to the present embodiment, a signal branched rightward from the first ring circuit 103 located at the center in the left-right direction is an adjacent antenna element 106 (antenna elements 106 to # 1 of # 4). The phase is inverted between the elements 106), and the signal branched leftward is inverted in phase between the adjacent antenna elements 106 (# 5 antenna elements 106 to # 8 antenna elements 106). For this reason, the excitation amplitude distribution of the antenna 1 according to the present embodiment is as shown in FIG.
 尚、上述した説明では、アンテナ1の左右方向の中心に位置する給電点101に信号を供給した場合の励振振幅分布について説明した。一方、アンテナ1における左右方向の中心に位置する第1のリング型回路103以外に第1の給電ポートCを設けた第1のリング型回路103に給電点101から信号を供給した場合には、図5に一例として示すように、信号を供給した給電点101を左右方向の中心とする左右対称の励振振幅分布となる。図5に示す励振振幅分布Dis1は、図4に示した励振振幅分布であって、アンテナ1の左右方向の中心に位置する給電点101に信号を供給したときの励振振幅分布である。また、図5に示す励振振幅分布Dis2は、アンテナ1の左右方向の中心から右方向に存在する1つ目の給電点101に信号を供給したときの励振振幅分布である。また、図5に示す励振振幅分布Dis3は、アンテナ1の左右方向の中心から左方向に存在する1つ目の給電点101に信号を供給したときの励振振幅分布である。図5に一例として示すように、本実施形態に係るアンテナ1によれば、信号を供給する給電点101の位置に応じて励振振幅分布を左右方向に遷移させることができる。尚、図5に示す励振振幅分布Dis2では、#8のアンテナ素子106の励振振幅の図示を省略している。さらに、図5に示す励振振幅分布Dis3では、#1のアンテナ素子106の励振振幅の図示を省略している。 In the above description, the excitation amplitude distribution when a signal is supplied to the feeding point 101 located at the center of the antenna 1 in the left-right direction has been described. On the other hand, when a signal is supplied from the feeding point 101 to the first ring type circuit 103 provided with the first feeding port C in addition to the first ring type circuit 103 located at the center in the left-right direction of the antenna 1, As shown as an example in FIG. 5, the excitation amplitude distribution is symmetrical with the feeding point 101 that supplied the signal as the center in the left-right direction. The excitation amplitude distribution Dis1 shown in FIG. 5 is the excitation amplitude distribution shown in FIG. 4 and is an excitation amplitude distribution when a signal is supplied to the feeding point 101 located at the center of the antenna 1 in the left-right direction. Further, the excitation amplitude distribution Dis2 shown in FIG. 5 is an excitation amplitude distribution when a signal is supplied to the first feeding point 101 existing in the right direction from the center of the antenna 1 in the left-right direction. Further, the excitation amplitude distribution Dis3 shown in FIG. 5 is an excitation amplitude distribution when a signal is supplied to the first feeding point 101 existing in the left direction from the center in the left-right direction of the antenna 1. As shown as an example in FIG. 5, according to the antenna 1 according to the present embodiment, the excitation amplitude distribution can be shifted in the left-right direction according to the position of the feeding point 101 that supplies the signal. In the excitation amplitude distribution Dis2 shown in FIG. 5, the illustration of the excitation amplitude of the # 8 antenna element 106 is omitted. Furthermore, in the excitation amplitude distribution Dis3 shown in FIG. 5, the illustration of the excitation amplitude of the antenna element 106 of # 1 is omitted.
 以上の説明では、アンテナ1を送信アンテナとして用いるものとし、その励振振幅分布について主に説明した。一方、アンテナ1を受信アンテナとして用いても、その励振振幅分布は上述で説明した分布と同じになることは言うまでもない。 In the above description, the antenna 1 is assumed to be used as a transmission antenna, and the excitation amplitude distribution has been mainly described. On the other hand, even if the antenna 1 is used as a receiving antenna, it goes without saying that the excitation amplitude distribution is the same as that described above.
 また、本発明に係るアンテナ1では、第1のリング型回路103の左右方向の幅を調節することにより、隣り合うアンテナ素子106の左右方向の間隔を任意の間隔に調節することができる。隣り合うアンテナ素子106の左右方向の間隔を任意の間隔にすることについて、図6A~図6Bを参照して、より詳細に説明する。図6Aは、相対的に狭い幅Hの第1のリング型回路103とアンテナ素子106の左右方向の間隔HAとの一例を示す図であり、図6Bは、相対的に広い幅Hの第1のリング型回路103とアンテナ素子106の左右方向の間隔HAとの一例を示す図である。本発明に係るアンテナ1は、図6A、及び図6Bに一例として示すように、隣り合うアンテナ素子106の左右方向の間隔HAが任意の間隔となるように第1のリング型回路103の幅Hを決定できる。ただし、アンテナ素子106の左右方向の間隔HAを任意の間隔にするために、第1のリング型回路103の幅Hを決定するときには、隣り合う第2のリング型回路104の第2の給電ポートC同士を結ぶ線路長が1.5λgとなるように、当該第1のリング型回路103の前後方向の長さVを併せて決定する必要がある。図6A、及び図6Bに一例として示すように、隣り合うアンテナ素子106の左右方向の間隔HAを広くするために第1のリング型回路103の幅Hを広くする場合には、同じく図6A、及び図6Bに一例として示すように、当該第1のリング型回路103の前後方向の長さVを相対的に短くしなければならない。 Further, in the antenna 1 according to the present invention, by adjusting the width in the left-right direction of the first ring circuit 103, the distance in the left-right direction of the adjacent antenna elements 106 can be adjusted to an arbitrary distance. With reference to FIG. 6A to FIG. 6B, a more detailed description will be given of making the distance between the adjacent antenna elements 106 in the left-right direction arbitrary. FIG. 6A is a diagram showing an example of the first ring circuit 103 having a relatively narrow width H and the spacing HA in the left-right direction of the antenna element 106, and FIG. It is a figure which shows an example of the space | interval HA of the left-right direction of the ring type circuit 103 and the antenna element 106. FIG. As shown in FIGS. 6A and 6B as an example, the antenna 1 according to the present invention has a width H of the first ring-type circuit 103 so that the horizontal interval HA between adjacent antenna elements 106 is an arbitrary interval. Can be determined. However, when the width H of the first ring circuit 103 is determined in order to set the horizontal distance HA of the antenna element 106 to an arbitrary distance, the second power feeding port of the adjacent second ring circuit 104 is determined. It is necessary to determine the length V in the front-rear direction of the first ring circuit 103 so that the line length connecting the Cs becomes 1.5λg. As shown as an example in FIGS. 6A and 6B, in order to increase the width H of the first ring circuit 103 in order to increase the horizontal interval HA between the adjacent antenna elements 106, the same FIG. As shown as an example in FIG. 6B, the length V in the front-rear direction of the first ring circuit 103 must be relatively shortened.
 このように、本発明に係るアンテナ1では、隣り合うアンテナ素子106の左右方向の間隔を任意の間隔にできる。ここで、例えば、隣り合うアンテナ素子106の左右方向の間隔を0.5λとすれば、本発明に係るアンテナ1を位相モノパルス方式のレーダ装置の受信アンテナとして用いることにより、互いのアンテナ素子106で受信した信号の位相間隔が±180°以上ずれることによって正確な位相間隔を検出できなくなる所謂位相の折り返しが生じることを防げる。ここで、λは、大気中における波長であるものとする。アンテナ素子106の間隔は、正確に0.5λでなくてもよく、0.5λ以下であれば位相の折り返しが生じないことは言うまでもない。 Thus, in the antenna 1 according to the present invention, the distance between the adjacent antenna elements 106 in the left-right direction can be set arbitrarily. Here, for example, if the distance between the adjacent antenna elements 106 in the left-right direction is 0.5λ, the antenna 1 according to the present invention can be used as a receiving antenna of a phase monopulse radar device, thereby It is possible to prevent a so-called phase wraparound in which an accurate phase interval cannot be detected when the phase interval of the received signal is shifted by ± 180 ° or more. Here, λ is a wavelength in the atmosphere. It goes without saying that the spacing between the antenna elements 106 does not have to be exactly 0.5λ.
 上記従来技術において上述したように位相の折り返しが生じることを防ぐためには、アンテナ素子106の左右方向の間隔を0.5λとすることが可能な幅の小さいアンテナを少なくとも2つ左右方向に並べて配置する必要がある。しかしながら、このように幅の小さいアンテナはビーム幅が広くなるため、不要な信号を受信してしまい誤検出、或いは検出性能の低下を招く場合がある。これに対して、本発明に係るアンテナ1では、2に限らず、3以上のアンテナ素子106を用いることができ、複数のアンテナ素子106で構成されるアンテナを有する送信回路でビームを成形する従来周知の手法を採用して、必要な検知角度幅となるようにビームを成形できる。ここで、検知角度幅とは、本発明に係るアンテナ1を用いたレーダ装置が対象物との相対距離、相対速度、及び当該対象物の存在する方向(角度)などを測定できる範囲であって、典型的には、当該レーダ装置のアンテナの位置を中心とする扇形をしており、この扇形の角度の広さをいう。 In order to prevent the occurrence of phase folding as described above in the above-described prior art, at least two antennas with a small width capable of setting the horizontal spacing of the antenna elements 106 to 0.5λ are arranged side by side in the horizontal direction. There is a need to. However, since such a narrow antenna has a wide beam width, an unnecessary signal may be received, resulting in erroneous detection or degradation in detection performance. On the other hand, in the antenna 1 according to the present invention, not only 2 but also 3 or more antenna elements 106 can be used. By using a well-known method, the beam can be shaped to have a necessary detection angle width. Here, the detection angle width is a range in which the radar apparatus using the antenna 1 according to the present invention can measure the relative distance to the object, the relative speed, the direction (angle) in which the object exists, and the like. Typically, it has a fan shape centered on the position of the antenna of the radar device, and it means the breadth of the angle of the fan shape.
 また、上述の説明では、第2の給電線105には、それぞれ1つのアンテナ素子106を備えるアンテナ1について説明した。しかしながら、他の一実施形態では、本発明に係るアンテナ1を構成するアンテナ素子106の形状は任意の形状であってよい。また、複数の素子からなるアレーアンテナでもよい。 Further, in the above description, the antenna 1 provided with one antenna element 106 for each of the second feeders 105 has been described. However, in another embodiment, the shape of the antenna element 106 constituting the antenna 1 according to the present invention may be any shape. An array antenna composed of a plurality of elements may be used.
 また、図1に示すように、一部の第1のリング型回路103のみにしか第1の給電ポートCを持たせない場合、第1の給電ポートCを持たせる第1のリング型回路103の位置によっては左右の第1の給電ポートCの配置が非対称となり、励振振幅分布の対称性が損なわれることがある。そして、このように生じる励振振幅分布の対称性が損なわれることを防ぐために、図7に示すように、受信回路が接続されていない第1のリング型回路103には、整合を取るための終端回路を接続してもよい。 As shown in FIG. 1, when only a part of the first ring type circuits 103 have the first power supply port C, the first ring type circuit 103 with the first power supply port C is provided. Depending on the position, the arrangement of the left and right first feeding ports C may be asymmetric, and the symmetry of the excitation amplitude distribution may be impaired. In order to prevent the symmetry of the excitation amplitude distribution generated in this way from being lost, as shown in FIG. 7, the first ring circuit 103 to which the receiving circuit is not connected has a termination for matching. A circuit may be connected.
 また、例えば、図1に示す構成のアンテナ1では、左右方向の両端に位置する第1のリング型回路103において、給電点101から供給された信号、或いはアンテナ素子106によって受信された信号が反射し、アンテナ1の励振振幅分布などの特性を低下させる場合がある。そして、このような信号の反射でアンテナ1の特性を低下させるのを防ぐためには、図8に一例として示すように、アンテナ1の左右方向の両端に位置する第1のリング型回路103に整合を取るための終端回路を接続するとよい。 For example, in the antenna 1 having the configuration shown in FIG. 1, a signal supplied from the feeding point 101 or a signal received by the antenna element 106 is reflected in the first ring circuit 103 located at both ends in the left-right direction. In some cases, characteristics such as the excitation amplitude distribution of the antenna 1 may be degraded. In order to prevent the characteristics of the antenna 1 from deteriorating due to such signal reflection, matching is made with the first ring circuit 103 located at both ends of the antenna 1 in the left-right direction as shown as an example in FIG. It is recommended to connect a termination circuit for taking
 尚、上述したように励振振幅分布の対称性を維持し、さらに、上述したような信号の反射でアンテナ1の特性が低下するのを防ぐために、図9に一例として示すように、受信回路を接続していない給電点101で整合を取るための終端回路と、アンテナ1の左右方向の両端に位置する第1のリング型回路103で整合を取るための終端回路との両方を接続してもよい。 In order to maintain the symmetry of the excitation amplitude distribution as described above and to prevent the characteristics of the antenna 1 from deteriorating due to the reflection of the signal as described above, as shown in FIG. Even if both a termination circuit for matching at the feeding point 101 that is not connected and a termination circuit for matching at the first ring circuit 103 positioned at both ends of the antenna 1 in the left-right direction are connected. Good.
 また、第1の実施形態に係る第1のリング型回路103は、上述したようなトラック形状を有するものとした。しかしながら、他の一実施形態では、第1のリング型回路103の形状を、真円形状などの幾何学形状、或いはそれらの形状を扁平させた形状にしてもよい。 In addition, the first ring circuit 103 according to the first embodiment has a track shape as described above. However, in another embodiment, the shape of the first ring circuit 103 may be a geometric shape such as a perfect circle shape, or a shape obtained by flattening these shapes.
 また、第1の実施形態に係る第1のリング型回路103の長さは、隣り合う第2のリング型回路104の第2の給電ポートC同士を結ぶ線路長が1.5λとなるように決定するものとした。しかしながら、他の一実施形態では、隣り合う第2のリング型回路104の第2の給電ポートC同士の長さが任意の長さとなるように第1のリング型回路103を構成する線路の長さを決定して、隣り合うアンテナ素子106における信号の位相が180°単位でずれるようにしてもよい。 The length of the first ring circuit 103 according to the first embodiment is such that the line length connecting the second power feeding ports C of the adjacent second ring circuits 104 is 1.5λ. It was decided to decide. However, in another embodiment, the lengths of the lines constituting the first ring circuit 103 so that the lengths of the second power supply ports C of the adjacent second ring circuits 104 are arbitrary. The phase of the signal in the adjacent antenna element 106 may be shifted by 180 °.
 また、第1の実施形態に係る第1のリング型回路103の長さは、第1の給電ポートA、及び第1の給電ポートBのいずれか一方から他方に信号が伝搬するときに、伝搬先の給電ポートにおいて互いに同相となるように、線路長を2λgとした。しかしながら、他の一実施形態では、第1の給電ポートA、及び第1の給電ポートBのそれぞれにおける互いの信号に位相差が生じるように第1のリング型回路103の線路長を変化させてもよい。 The length of the first ring circuit 103 according to the first embodiment is such that the signal propagates from one of the first power supply port A and the first power supply port B to the other. The line length was set to 2λg so as to be in phase with each other at the previous feeding port. However, in another embodiment, the line length of the first ring circuit 103 is changed so that a phase difference is generated between the signals at the first power supply port A and the first power supply port B. Also good.
 また、本実施形態では、特許請求の範囲に記載の第1電力分配回路の一例として、第1のリング型回路103を用いるものとしている。しかしながら、特許請求の範囲に記載の第1電力分配回路の形状は、リング型のトラック形状に限られるものではない。特許請求の範囲に記載の第1電力分配回路としては、図10に一例として示すように、U字型回路を用いてもよい。また、本実施形態に係る第1のリング型回路103と同様に、図10に一例として示すU字型回路に第1の給電ポートCを設けてもよい。 In the present embodiment, the first ring circuit 103 is used as an example of the first power distribution circuit described in the claims. However, the shape of the first power distribution circuit described in the claims is not limited to the ring-shaped track shape. As the first power distribution circuit described in the claims, a U-shaped circuit may be used as shown in FIG. 10 as an example. Further, similarly to the first ring circuit 103 according to the present embodiment, the first power supply port C may be provided in the U-shaped circuit shown as an example in FIG.
 また、本実施形態では、特許請求の範囲に記載の第2電力分配回路の一例として、第2のリング型回路104を用いるものとしている。しかしながら、特許請求の範囲に記載の第2電力分配回路は、第2の給電ポートA、及び第2の給電ポートBのいずれか一方から他方へ信号が伝搬することにより、伝搬先の給電ポートにおいて信号の振幅が任意の小さな振幅になるような回路であればよく、中空の円形状に開放スタブを設けたものに限らない。 In this embodiment, the second ring circuit 104 is used as an example of the second power distribution circuit described in the claims. However, in the second power distribution circuit described in the claims, the signal propagates from one of the second power feeding port A and the second power feeding port B to the other, so that in the propagation power feeding port Any circuit may be used as long as the amplitude of the signal is an arbitrarily small amplitude, and the circuit is not limited to a hollow circle having an open stub.
 また、第1の実施形態に係るアンテナ1では、図4に一例として示す励振振幅分布を得られるように、第1のリング型回路103を線路長が2λgのトラック形状とし、第2のリング型回路104を線路長がλgの円形状とした。しかしながら、他の一実施形態に係るアンテナの励振振幅分布は図4に示す分布に限られるものではなく、任意の励振振幅分布が得られるように、第1のリング型回路103、及び第2のリング型回路104のそれぞれの形状、及び線路長を定めてもよい。 Further, in the antenna 1 according to the first embodiment, the first ring circuit 103 is formed in a track shape with a line length of 2λg so as to obtain the excitation amplitude distribution shown as an example in FIG. The circuit 104 has a circular shape with a line length of λg. However, the excitation amplitude distribution of the antenna according to another embodiment is not limited to the distribution shown in FIG. 4, and the first ring-type circuit 103 and the second ring amplitude circuit so as to obtain an arbitrary excitation amplitude distribution. Each shape of the ring-type circuit 104 and the line length may be determined.
 また、第1の実施形態に係るアンテナ1では、図1に一例として示すように、全ての隣り合うアンテナ素子106を左右方向に等間隔に配置するものとした。しかしながら、他の一実施形態に係るアンテナでは、全ての隣り合うアンテナ素子106の間隔を等間隔にする必要はない。例えば、上述したように、任意の励振振幅分布を得られるように、全ての隣り合うアンテナ素子106の全部、或いは一部を他の間隔と異なる間隔となるように配置してもよい。 Further, in the antenna 1 according to the first embodiment, as shown as an example in FIG. 1, all adjacent antenna elements 106 are arranged at equal intervals in the left-right direction. However, in the antenna according to another embodiment, it is not necessary to make the intervals between all adjacent antenna elements 106 equal. For example, as described above, all or a part of all the adjacent antenna elements 106 may be arranged at intervals different from other intervals so that an arbitrary excitation amplitude distribution can be obtained.
 本発明によれば、汎用性のより高いアンテナを提供でき、例えば、自動車などの移動体に搭載されるレーダ装置で用いられるアンテナなどに有用である。 According to the present invention, a more versatile antenna can be provided, which is useful, for example, for an antenna used in a radar device mounted on a moving body such as an automobile.
 1  アンテナ
 101  給電点
 102  第1の給電線
 103  第1のリング型回路
 104  第2のリング型回路
 105  第2の給電線
 106  アンテナ素子
DESCRIPTION OF SYMBOLS 1 Antenna 101 Feeding point 102 1st feed line 103 1st ring type circuit 104 2nd ring type circuit 105 2nd feed line 106 Antenna element

Claims (5)

  1.  誘電体基板上に配置された線路からなるアンテナであって、
     左右方向に任意の間隔を空けて配置され、左右対称の形状を有する複数の第1電力分配回路と、
     隣り合う各前記第1電力分配回路をつなぐように配置され、左右対称の形状を有する複数の第2電力分配回路と、
     2以上の前記第1電力分配回路の少なくともいずれか一つの左右の中点に接続された給電線と、
     前記第2電力分配回路に接続されたアンテナ素子とを備える、アンテナ。
    An antenna composed of a line arranged on a dielectric substrate,
    A plurality of first power distribution circuits which are arranged at arbitrary intervals in the left-right direction and have a symmetrical shape;
    A plurality of second power distribution circuits arranged so as to connect the adjacent first power distribution circuits and having a symmetrical shape;
    A feed line connected to the left and right midpoints of at least any one of the two or more first power distribution circuits;
    And an antenna element connected to the second power distribution circuit.
  2.  前記第1電力分配回路は、前記第2電力分配回路との接点を挟む上下の線路長が同じである、請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the first power distribution circuit has the same upper and lower line lengths across the contact point with the second power distribution circuit.
  3.  前記第1電力分配回路はリング形状である、請求項2に記載のアンテナ。 The antenna according to claim 2, wherein the first power distribution circuit has a ring shape.
  4.  隣り合う各前記アンテナ素子の中心間隔が、各前記アンテナ素子で送受信する信号が空気中を伝搬するときの波長の半分である、請求項3に記載のアンテナ。 The antenna according to claim 3, wherein a center interval between the adjacent antenna elements is half of a wavelength when a signal transmitted and received by each antenna element propagates in the air.
  5.  前記第2電力分配回路は、リング形状である、請求項4に記載のアンテナ。 The antenna according to claim 4, wherein the second power distribution circuit has a ring shape.
PCT/JP2010/002407 2010-04-01 2010-04-01 Antenna WO2011125087A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/002407 WO2011125087A1 (en) 2010-04-01 2010-04-01 Antenna
JP2012509154A JPWO2011125087A1 (en) 2010-04-01 2010-04-01 antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002407 WO2011125087A1 (en) 2010-04-01 2010-04-01 Antenna

Publications (1)

Publication Number Publication Date
WO2011125087A1 true WO2011125087A1 (en) 2011-10-13

Family

ID=44762081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002407 WO2011125087A1 (en) 2010-04-01 2010-04-01 Antenna

Country Status (2)

Country Link
JP (1) JPWO2011125087A1 (en)
WO (1) WO2011125087A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834646A (en) * 1971-09-07 1973-05-21
JPS4921974B1 (en) * 1969-06-30 1974-06-05
JPS5245180B1 (en) * 1970-12-29 1977-11-14
US5563558A (en) * 1995-07-21 1996-10-08 Endgate Corporation Reentrant power coupler
US5883552A (en) * 1997-11-04 1999-03-16 Hughes Electronics Corporation Microwave power divider/combiner structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921974B1 (en) * 1969-06-30 1974-06-05
JPS5245180B1 (en) * 1970-12-29 1977-11-14
JPS4834646A (en) * 1971-09-07 1973-05-21
US5563558A (en) * 1995-07-21 1996-10-08 Endgate Corporation Reentrant power coupler
US5883552A (en) * 1997-11-04 1999-03-16 Hughes Electronics Corporation Microwave power divider/combiner structures

Also Published As

Publication number Publication date
JPWO2011125087A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP6561867B2 (en) Multiple transmitting antenna phase calibration device
KR102124552B1 (en) A beamforming network for feeding short wall slotted waveguide arrays
KR101975332B1 (en) Folded radiation slots for short wall waveguide radiation
JP4902022B2 (en) Adaptive array antenna and radio apparatus equipped with adaptive array antenna
JP2018074240A (en) Antenna device
JP2015171019A (en) antenna
EP3271968B1 (en) An amplitude comparison monopulse radar system
JPWO2008053685A1 (en) Radar target detection method and radar apparatus using the target detection method
CN109075453B (en) Leaky-wave slotted microstrip antenna
JP2012098107A (en) Radar apparatus
JP2008145423A (en) Radar system
JP2010008319A (en) Radar antenna and radar system
JP6530814B2 (en) Array antenna
JP2008244520A (en) Planar array antenna
JP2006279525A (en) Antenna
US10340605B2 (en) Planar antenna device
CN103229072B (en) Radar sensor for motor vehicles, especially RCA sensor
US20220209423A1 (en) Apparatus radiating and receiving microwaves with physically preset radiation pattern, and radar apparatus comprising such an apparatus
JP5242362B2 (en) Antenna device
JP6089941B2 (en) Radar equipment
WO2011125087A1 (en) Antenna
JP2009076986A (en) Microstrip array antenna and phase monopulse radar apparatus
CN1189759C (en) Device for position determination by means of radio waves
JP2017063406A (en) Waveguide, slotted antenna and horn antenna
US10680307B2 (en) Waveguide to strip line transducer including a waveguide wall forming substrate having an end surface bonded to a second conductor, and a power feed circuit formed therefrom

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012509154

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849337

Country of ref document: EP

Kind code of ref document: A1