WO2011122766A2 - Transmission using two rotating power sources and a gear assembly - Google Patents

Transmission using two rotating power sources and a gear assembly Download PDF

Info

Publication number
WO2011122766A2
WO2011122766A2 PCT/KR2011/001176 KR2011001176W WO2011122766A2 WO 2011122766 A2 WO2011122766 A2 WO 2011122766A2 KR 2011001176 W KR2011001176 W KR 2011001176W WO 2011122766 A2 WO2011122766 A2 WO 2011122766A2
Authority
WO
WIPO (PCT)
Prior art keywords
gear
differential
axis
shaft
main shaft
Prior art date
Application number
PCT/KR2011/001176
Other languages
French (fr)
Korean (ko)
Other versions
WO2011122766A3 (en
Inventor
강성원
강동헌
한광희
조재민
Original Assignee
Kang Sung Woon
Kang Dong Hun
Han Kwang Heul
Cho Jae Min
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kang Sung Woon, Kang Dong Hun, Han Kwang Heul, Cho Jae Min filed Critical Kang Sung Woon
Publication of WO2011122766A2 publication Critical patent/WO2011122766A2/en
Publication of WO2011122766A3 publication Critical patent/WO2011122766A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously

Definitions

  • the present invention relates to a transmission using two rotational power sources and a gear assembly, and more particularly, to a transmission using two rotational power sources and a gear assembly (patent number: 10-2009-0107694) filed by the applicant of the present invention.
  • a continuous invention at least one planetary gear unit and at least one planetary gear unit when the rotational speed of the main power source transmitted from the drive input shaft constitutes a transmission gear shifted to the gear ratio of the planetary gear unit or the differential gear unit and transmitted to the drive means.
  • the gear ratio of the gear assembly to the rotational speed of the first rotational power source and the rotational speed of the auxiliary power source are determined by the multiple gear ratios of the gear assembly.
  • the first rotational power source is set to the rotational speed of the drive output shaft at the rotational speed set to the lowest input.
  • a shift range relates to transmission using the two rotary power source and the gear combination which can optionally variously expanded.
  • the input rotational speed of main motive power is shifted through the gear ratio to the driving shaft in various places such as industrial machines, hoists, conveyors for transferring goods, winches, elevators, and escalators according to the purpose.
  • Various types of stepped transmissions and continuously variable transmissions that transmit a variable speed of output are widely used.
  • the manual transmission and the automatic transmission are widely used for vehicles.
  • the efficiency of the engine is increased, but the driver There was a hassle to operate the transmissions according to the situation.
  • a separate power transmission means is added to one component of the planetary gear unit having a specific gear ratio, and the belt type continuously variable transmission device according to the power transmission form of the power transmission means. It can be divided into hydraulic continuously variable transmission and gearless continuously variable transmission.
  • a stepped gearbox or continuously variable transmission using a planetary gear unit consisting of a planetary gear carrier that connects a central sun gear, an outer ring gear, and a planetary gear therebetween as one. It is designed to change the rotational force of the axial rotational shaft by using two of these three elements, consisting of a ring gear and a planetary gear carrier, as input / output shafts and connecting a separate power control mechanism such as a clutch to the other one. .
  • the conventional stepped transmission or continuously variable transmissions using the planetary gear units described above are limited to the designated gear ratios of the respective components of the planetary gear unit (sun gear (S), ring gear (R), planetary gear carrier (C)).
  • the output rotation speed is shifted only within a certain range.
  • the size of each component is large due to the characteristics of the planetary gear unit composed of a combination of a sun gear and a ring gear planetary gear carrier. Since it is relatively structured to be limited to a certain ratio, the transmission range of the output rotation speed using the gear ratio of each component of the planetary gear unit is hard to exceed the range of 3: 1 ⁇ 6: 1.
  • the speed range of the output rotation speed is extremely limited. It had a fundamental problem.
  • the first object of the present invention for solving the above problems is to form a gear assembly with an extended gear ratio by a series combination of at least one planetary gear unit and at least one differential gear unit and to constitute the gear assembly. 2, which is capable of variously extending the transmission range of the output rotational speed of the drive output shaft by adding a first rotational power source serving as a main power source and a second rotational power source serving as an auxiliary power source to each one component of the different gear unit, respectively. To provide a transmission using two rotational power source and gear combination.
  • the second object of the present invention is to arbitrarily desired rotation of the initial output rotational speed of the drive output shaft from the stop output (0 RPM) by the multi-gear ratio by the combination of the components for each gear unit constituting the gear assembly It is to provide a transmission using two rotational power sources and a gear combination that can be adjusted by number.
  • the third object of the present invention is to be connected to any one component of the planetary gear unit or the differential gear unit used as the main shaft, the first rotational driving force (P1) and the main shaft of the engine is transmitted to the drive input rotation of the main shaft, and used as a minor
  • the rotational speed of the auxiliary power source is fixed at fixed speed or sequentially.
  • the variable speed can be selected to provide a transmission using two rotational power sources and gear combinations that can be used to increase the use of the transmission, such as a stepper transmission including a speed reducer, an industrial continuously variable transmission, and an automobile continuously variable transmission. There is.
  • Each component of the at least one planetary gear unit 110 (110 ') (sun gear (S) (S'), ring gear (R) (R '), planetary gear carrier (C) (C')
  • the planetary gear assembly 100 formed by combining the planetary gear units 110 and 110 'in parallel with each other by means of gears;
  • Each component for at least one differential gear unit 210 (210 ') (differential A-axis DA (DA'), differential B-axis (DB) (DB '), pinion gear housing (DP) ( DP ')], a differential gear assembly 200 formed by combining the respective differential gear units 210 and 210' in series to be parallel to each other by a gear tooth;
  • DA differential A-axis DA
  • DB differential B-axis
  • DP pinion gear housing
  • Each component for at least one planetary gear unit 110, 110 '(sun gear S, S', ring gear R, R ', planetary gear carrier C, C') And each component for at least one differential gear unit (210) (210 ') (differential A-axis (DA) (DA'), differential B-axis (DB) (DB '), pinion gear housing (DP) ( DP ')] is a compound gear in which at least one planetary gear unit (110) (110') and at least one differential gear unit (210) (210 ') are combined in series to be parallel to each other by a gear tooth.
  • Combination 300 is composed of separate.
  • the rotational driving force P of the transmission using the two rotational driving force and the gear combination according to the present invention controls the speed ratio of the gear unit of the first rotational driving force P1 and the gear assembly (a) serving as the main power sources of the engine. It is composed of a second rotational driving force (P2) to be an auxiliary power source, the first rotational driving force (P1) is a first fixed power source (FP1) and the first variable power source (VP1) in which the rotational speed is changed in sequence
  • the second rotational driving force (P2) is divided into a second fixed power source (FP2) and a second variable power source (VP2) in which the rotational speed is sequentially changed.
  • At least one planetary gear unit 110, 110 ' is composed of a series combination by parallel to each other, two planetary gear units 110, 110'
  • the planetary gear assembly 100 formed of a mutual series combination of) is any component of the planetary gear unit 110 used as the main shaft 10 (sun gear (S), ring gear (R), planetary gear carrier ( C)] as the drive input rotation part 11, and other components (sun gear S, ring gear R, planetary gear carrier C) as the control rotation part 12 for shifting, and any other.
  • One component (sun gear (S), ring gear (R), planetary gear carrier (C)) is composed of an output rotating section (13), and one of the other planetary gear units (110 ') used as the sub shaft (20).
  • One component is the input shaft 21 of the sub-shaft 20, and the other components (sun gear S', ring) Gear (R '), planetary gear catch Gear C '] as the sub-shaft 20 and the shift control rotation part 22, and any other component (sun gear S', ring gear R ', planetary gear carrier C').
  • the main shaft 10 Comprising a drive output rotating part 23 of the (20), the main shaft 10, the drive input rotation part 11 is given a first rotational driving force (P1) and the main shaft (10) to the input rotation part 21 of the main shaft (10) ) Is provided by the engagement of the output gear 13 and different gears 14D and 14E having a constant gear ratio, and the shift control rotary part 22 of the sub-shaft 20 is given a second rotational driving force P2. It is coupled with the shift control rotation part 12 of the main shaft 10 by the engagement of different gears 14B and 14C having a constant gear ratio, and the output rotation part 23 of the sub-shaft 20 is the input of the main shaft 10.
  • the first rotary power source P1 and the input second rotary power source P2 of the sub-shaft 20 are used as driving outputs of the final shifted rotation force after mutual coupling control.
  • the first rotational driving force P1 of the first fixed power source FP1 and the first variable power source VP1 is the planetary gear coupling body 100.
  • the second rotational driving force P2 of any one of the power sources VP2 is coupled to any one component of the other gear unit that is not coupled to the first rotational driving force P1 of the gear assembly A.
  • differential gear assembly 200 at least one or more differential gear units 210, 210 'are constituted in series by parallel interaxial parallelism, and the interaxial parallelism of two differential gear units 210 is established.
  • the differential gear assembly 200 in series combination by any one of the components of the differential gear unit 210 used as the main shaft 30 (differential A-axis (DA), differential B-axis (DB), pinion gear Housing DP] as the drive input rotation part 31 of the main shaft 30, and other components (differential A-axis DA, differential B-axis DB, pinion gear housing DP) are the main shaft 30;
  • Control rotation unit 32 for shifting, and any other component is output rotation 33 of the main shaft 30.
  • any one component of the other differential gear unit 210 'used as the sub-axis 40 (differential A-axis DA', differential B-axis DB ', pinion gear housing DP').
  • Input rotation of the auxiliary shaft (40) (41) the other components (differential A-axis DA ', differential B-axis DB', pinion gear housing DP ') are the shift control rotation part 42 of the sub-shaft 40
  • One of the other components includes a drive output rotating portion 43 of the sub-axis 40, wherein the main shaft ( 30.
  • the first input driving force P1 is applied to the driving input rotation part 31, and the input rotation part 41 of the subshaft 40 has different gears having a constant gear ratio with the output input rotation part 33 of the main shaft 30.
  • 34D) is provided by the engagement of the 34E
  • the shift control rotary section 42 of the sub-shaft 40 is the engagement of the different gear 34B (34C) is given a second rotational driving force (P2) and having a constant gear ratio.
  • P1 is coupled to the shift control rotation part 32 of the main shaft 30
  • the output rotation portion 43 of the sub-shaft 40 is the input first rotation power source (P1) of the main shaft 30 and the input of the sub-shaft 40 After two-rotation power source (P2) It is used as the drive output of the final shifted torque.
  • the composite gear assembly 300 of the present invention comprises at least one planetary gear unit (110) (110 ') and at least one differential gear unit (210) (210') in a series combination by parallel to each other axis.
  • the composite gear assembly 300 is composed of each component of the planetary gear unit 110, which is used as the main shaft 50 (sun gear (S), ring gear (R), planetary gear carrier (C)).
  • differential gear unit 210 (differential A axis DA, differential B axis DB, pinion gear housing DP) as the drive input rotation part 51 of the main shaft 50, ,
  • the other component (sun gear (S), ring gear (R), planetary gear carrier (C), or differential A axis (DA), differential B axis (DB), pinion gear housing (DP))
  • the other control element (sun gear (S), ring gear (R), planetary gear carrier (C), or differential A axis (DA), differential B axis (DB)).
  • Pinion gear housing (DP) Any one of the other planetary gear unit 110 'or the differential gear unit 210' constituted by the whole 53 and used as the subshaft 60 (sun gear S ', ring gear R'). ), Planetary gear carrier (C ') or differential A-axis (DA'), differential B-axis (DB '), pinion gear housing (DP') as the input rotation part 61 of the sub-shaft 60, One component (sun gear (S '), ring gear (R'), planetary gear carrier (C ') or differential A-axis (DA'), differential B-axis (DB '), pinion gear housing (DP') Is the shift control rotation part 62 of the sub-axis 60, and any other component (sun gear S ', ring gear R', planetary gear carrier C ', or differential A axis DA').
  • a driving force P1 is applied to the input rotational portion 61 of the sub-shaft 60 and the different gear 54D having a constant gear ratio with the main shaft 50 axial rotational portion 53.
  • the shift control rotary part 62 of the subshaft 60 is coupled to the gears of different gears 54B and 54C given a second rotational driving force P2 and having a constant gear ratio.
  • the output rotation part 63 of the subshaft 60 has a final shift after the input first rotational power source P1 of the main shaft 50 and the input second rotational power source P2 of the subshaft 60 are mutually controlled. It is used as drive output of torque.
  • the present invention as described above is not limited to the reduction ratio of any one unit of the gear combination, there is an advantage that can implement a wide variety of transmission range up to a low speed range and a high speed range, according to various embodiments of the gear assembly
  • the field of application has a very large effect that can be applied to various types of transmissions including a gear reducer and also for automobile and industrial use.
  • the engine power is transferred to the gear assembly to maximize the engine efficiency in the power transmission process, thereby reducing fuel costs, and having a simple structure, the compactness of the gear assembly that can realize a very large reduction ratio can be produced. As a result, the manufacturing cost can be significantly reduced, and thus the economic effect is very great.
  • 3 and 4 are views of each differential gear assembly constituting the gear assembly of the present invention.
  • 5 and 6 are views of each compound gear assembly constituting the gear assembly of the present invention.
  • Gear assembly 100 Planetary gear assembly
  • 10,30,50 Main axis
  • 20,40,60 Sub axis
  • 1 is a cross-sectional view showing a coupling relationship according to the first embodiment in which the gear assembly (a) of the present invention is formed of a planetary gear assembly (100) coupled to two rows of planetary gear units (110, 110 '), 2 is a cross-sectional view showing a coupling relationship according to the second embodiment of the planetary gear assembly 100 of the present invention.
  • the planetary gear carrier C of the planetary gear unit 110 of the main shaft 10 may include a main shaft in which the first variable power source VP1, in which the rotation speed of the first rotational power sources VP1 and FP1 is changed, is transmitted through the main shaft 10.
  • 10 is used as the drive input rotation part 11
  • the sun gear (S) is used as the shift control rotation part 12 of the main shaft 10 is coupled with the gear 14B having a constant gear ratio
  • the ring gear (R) is It is used as the output rotation part 13 of the main shaft 10 is coupled to the gear 14D having a constant gear ratio.
  • the planetary gear carrier C 'of the planetary gear unit 110' of the minor shaft 20 is used as the input rotation part 21 of the minor shaft 20, and has a gear 14E having a constant gear ratio, and the sun gear S ' ) Is transmitted to the shift control rotation part 22 of the sub-shaft 20 while receiving a second fixed power source FP2 having a constant rotation speed of the second rotational power sources VP2 and FP2 by engagement of different gears 14B and 14C.
  • Ring gear (R ') is used as the drive output rotation 23 of the sub-shaft 20.
  • the shift control rotation part 12 of the planetary gear unit 110 of the main shaft 10 is a different gear 14B having a constant gear ratio from the shift control rotation part 12 of the planetary gear unit 110 'of the sub-axis 20 ( 14C) coupled to each other, and the output rotation part 13 of the planetary gear unit 110 of the main shaft 10 has a constant gear ratio with the input rotation part 21 of the planetary gear unit 110 'of the sub-shaft 20. It is coupled by the engagement of different gears 14D and 14E.
  • the rotation ratio of each component (sun gear S ', ring gear R', planetary gear carrier C ') is set to 2: 1: 1
  • the shift control rotation part of the main shaft 10 The gear 14B built into the gear 12B and the gear 14C built into the shift control rotation part 22 of the sub shaft 20 have a gear ratio of 1: 1 so that the planetary gear unit 110 of the planetary gear unit 110 of the main shaft 10 may have a gear ratio of 1: 1.
  • the gear ratio of the sun gear S and the sub shaft 20 to the sun gear S 'of the planetary gear unit 110' is set to 1: 1 and is built up in the output rotation part 13 of the main shaft 10.
  • 14B) and the gear 14E arranged on the input rotation part 21 of the subshaft 20 have a gear ratio of 1: 1, and the ring gear R and the subshaft 20 of the planetary gear unit 100 of the main shaft 10 are rotated.
  • Set the rotation ratio for the planetary gear carrier C 'of the planetary gear unit 100' to 1: 1. The.
  • the transmission device has an input rotational speed in series combination by engaging each gear such that each component of at least one planetary gear unit 110, 110 'is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
  • the main gear 10 of the planetary gear unit 110 of the main shaft 10 includes a main shaft 10 through which a first variable power source VP1 having a change in rotation speed of the first rotational power sources VP1 and FP1 is transmitted through the main shaft 10.
  • the second fixed power source FP2 which is used as the driving input rotation part 11 of the second planetary gear carrier C, has a constant rotation speed of the second rotary power sources VP2 and FP2 due to the engagement of the different gears 14B and 14C. It is used as the transmission control rotation part 12 of the main shaft 10 while receiving the ring gear (R) is used as the output rotation portion 13 of the main shaft 10 is coupled to the gear 14D having a constant gear ratio.
  • the planetary gear carrier C ′ of the planetary gear unit 110 ′ of the subshaft 20 is used as an input rotation part 21 of the subshaft 20 and is coupled with different gears 14D and 14E having a constant gear ratio.
  • the sun gear S ' is shifted of the sub-shaft 20 while receiving a second fixed power source FP2 having a constant rotational speed of the second rotational power sources VP2 and FP2 by engagement of different gears 14B and 14C. It is used as the control rotation part 22, the ring gear (R ') is used as the drive output rotation part 23 of the sub-shaft 20.
  • the shift control rotation part 12 of the planetary gear unit 110 of the main shaft 10 may have different gears 14B having a constant gear ratio from the shift control rotation part 22 of the planetary gear unit 110 'of the sub-axis 20 ( 14C) coupled to each other, and the output rotation part 13 of the planetary gear unit 110 of the main shaft 10 has a constant gear ratio with the input rotation part 21 of the planetary gear unit 110 'of the sub-shaft 20.
  • the gears of the different gears 14E and 14D are engaged by each other.
  • the rotation ratio of each component (sun gear S ', ring gear R', planetary gear carrier C ') is set to 2: 1: 1
  • the shift control rotation part of the main shaft 10 The gear 14B built into the gear 12B and the gear 14C built into the shift control rotation part 22 of the sub shaft 20 have a gear ratio of 1: 1 so that the planetary gear unit 110 of the planetary gear unit 110 of the main shaft 10 may have a gear ratio of 1: 1.
  • the rotation ratio of the planetary gear carrier C and the subordinate shaft 20 to the sun gear S 'of the planetary gear unit 110' is set to 1: 1, and is built up in the output rotation part 13 of the main shaft 10.
  • the gear 14E built in the gear 14D and the input rotation part 21 of the sub-shaft 20 has a gear ratio of 1: 1, and the ring gear R and the sub-shaft of the planetary gear unit 110 of the main shaft 10.
  • Gear ratio of the planetary gear carrier 110 'to the planetary gear carrier C' is 1: 1. It was set up.
  • the speed change apparatus has an input rotational speed by a series combination of gears such that each component of at least one planetary gear unit 110, 110 ′ is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
  • the second embodiment is also not limited to the above-described setting example, and when the structure of the coupling type, the rotational speed and the gear ratio of the gears are arbitrarily changed, the gear ratio corresponding to the corresponding combination condition will appear, so as not to depart from the technical spirit of the present invention. Of course, it can be variously performed as long as it does not.
  • gear assembly (a) of the present invention comprises a differential gear assembly (200) coupled with two rows of differential gear units (210, 210 ')
  • 4 is a cross-sectional view showing a coupling relationship according to a fourth embodiment of the differential gear assembly 200 of the present invention.
  • the differential A-axis DA of the differential gear unit 210 of the main shaft 30 has a main shaft (1) through which the first variable power source VP1 in which the rotation speed of the first rotational power sources VP1 and FP1 is varied is transmitted through the main shaft 30 ( 30 is used as the drive input rotation part 31, the pinion gear housing (DP) is used as the shift control rotation part 32 of the main shaft 30, coupled with the gear 34B having a constant gear ratio, differential B axis DB is used as the output rotation part 33 of the main shaft 30 and is coupled to the gear 34D having a constant gear ratio.
  • differential gear unit 210' is used as the input rotation portion 41 of the sub-axis 40, coupled to the gear 34E having a constant gear ratio, pinion gear housing DP 'is used as the output rotation part 43 of the subshaft 40, and the differential A-axis DA' receives the second fixed power source FP2 while the rotation speed of the second rotation power source VP2, FP2 is constant. It is used as the shift control rotation part 42 of the 40 and is coupled with the gear 34C having a constant gear ratio.
  • the shift control rotation part 32 of the main shaft 30 differential gear unit 210 is different from the shift control rotation part 42 of the sub-gear 40 differential gear unit 210 ′ with different gears 34B ( 34C) coupled to each other, and the output rotation part 33 of the main shaft 30 differential gear unit 210 has a constant gear ratio with the input rotation part 41 of the sub-axis 40 differential gear unit 210 '.
  • the gears of the different gears 34D and 34E are engaged.
  • the gear 34C built in (42) has a gear ratio of 1: 1, and the differential of the pinion gear housing (DP) of the differential gear unit 210 of the main shaft 30 and the differential gear unit 210 'of the sub-axis 40 is different.
  • the rotation ratio with respect to the A-axis DA ' is set to 1: 1, and is built in the gear 34D built in the output rotation part 33 of the main shaft 30 and the input rotation part 41 of the sub-axis 40.
  • the gear 34E has a gear ratio of 1: 1.5, and the differential B axis DB 'of the main shaft 30 differential gear unit 210 and the differential B axis DB' of the sub-axis 40 differential gear unit 210 '.
  • the rotation ratio for was set at 1.5: 1.
  • the initial minimum input rotation speed of the first variable power source VP1 transmitted to the driving input rotation part 41 of the main shaft 40 is set at 700 RPM to 4,000 RPM.
  • the amount of change in the number of revolutions appearing in the output rotation part 43 of the subshaft 40 is shifted from 0 RPM to 1,200 RPM.
  • the transmission device has an input rotational speed in series combination by engaging each gear such that each component of at least one or more differential gear units 210, 210 'is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
  • the pinion gear housing DP of the differential gear unit 210 of the main shaft 30 has a drive input rotation part of the main shaft 30 to which the first variable power source VP1 to which the rotation speed of the first rotation power source VP1 and FP1 is transmitted is transmitted. While used as (31) is coupled to the gear 34A having a constant gear ratio, the differential A-axis (DA) is used as a gear 34B having a constant gear ratio while being used as the shift control rotation part 32 of the main shaft (30). And, the differential B-axis (DB) is used as the output rotation portion 43 of the main shaft 40 is coupled with the gear 34D having a constant gear ratio.
  • the pinion gear housing DP 'of the sub-axis 40 differential gear unit 210' is used as an input rotation part 41 of the sub-axis 40, and is coupled with a gear 34E having a constant gear ratio.
  • DA ′ receives the second fixed power source FP2 having a constant rotation speed of the second rotary power sources VP2 and FP2 by the engagement of the different gears 34B and 34C. 42), the differential B-axis (DB ') is used as the drive output rotation portion 43 of the sub-axis (40).
  • the shift control rotation part 32 of the main shaft 30 differential gear unit 210 is different from the shift control rotation part 42 of the sub-gear 40 differential gear unit 210 ′ with different gears 34B ( 34C) coupled to each other, and the output rotation part 33 of the main shaft 30 differential gear unit 210 has a constant gear ratio with the input rotation part 41 of the sub-axis 40 differential gear unit 210 '.
  • the gears of the different gears 34D and 34E are engaged.
  • each component differential A-axis (DA), differential B-axis (DB), pinion gear housing (DP)
  • Pinion gear housing (DP) 2 differential A-axis (DA) + differential B-axis (DB)
  • the gear 34C built-in has a gear ratio of 1: 1 and the differential A axis DA of the differential gear unit 210 of the main shaft 30 and the differential A axis DA of the differential gear unit 210 'of the sub-axis 40.
  • the rotation ratio with respect to ') is set to 1: 1, and the gear 34E built in the output 34 of the main shaft 30 and the input wheel 41 of the sub-shaft 50 are built up. ),
  • the gear ratio is 1: 2
  • the rotation ratio of the differential B-axis (DB) of the differential gear unit 210 of the main shaft 30 and the pinion gear housing DP 'of the differential gear unit 210' of the sub-axis 40 is determined. 2: 1 was set.
  • the initial minimum input rotation speed of the first variable power source VP1 transmitted to the drive input rotation part 31 of the main shaft 30 is 4,000 RPM from 700 RPM.
  • Table 8 the amount of change in the number of revolutions appearing in the output rotation part 43 of the subshaft 40 is shifted from 0 RPM to 6,600 RPM.
  • the transmission according to the fourth embodiment of the present invention has an input rotational speed in series combination by engaging each gear such that each component of at least one or more differential gear units 210, 210 'is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
  • FIG. 5 is a compound gear assembly in which any one gear unit (A) of the present invention is used as the main shaft (50) and any one planetary gear unit (110 ') used as the sub-axis (60).
  • Figure 6 is a coupling cross-sectional view showing a coupling relationship according to the sixth embodiment consisting of the composite gear coupling body 300 of the present invention.
  • the differential A-axis DA of the differential gear unit 210 of the main shaft 50 has a main shaft (1) through which the first variable power source VP1 in which the rotation speed of the first rotational power sources VP1 and FP1 is varied is transmitted through the main shaft 50 ( 50 is used as the input rotation part 51, the pinion gear housing (DP) is used as the shift control rotation part 52 of the main shaft 50 is coupled with the gear 54B having a constant gear ratio, differential B-axis ( DB) is used as the output rotation portion 53 of the main shaft 50 is coupled to the gear 54D having a constant gear ratio.
  • DP pinion gear housing
  • DB differential B-axis
  • the sun gear S 'of the subshaft 60 planetary gear unit 110' is used as the input rotation part 63 of the subshaft 60 and is coupled with the gear 54E having a constant gear ratio, and the ring gear R '.
  • the shift control rotary part of the sub-shaft 60 receives a second fixed power source FP2 having a constant rotational speed of the second rotational power source VP2, FP2 by engagement of different gears 54B and 54C having a constant gear ratio ( 62, and the planetary gear carrier C 'is used as the drive output rotation part 63 of the sub-shaft 60.
  • the shift control rotation part 52 of the main shaft 50 differential gear unit 210 is different gear 54B having a constant gear ratio from the shift control rotation part 62 of the planetary gear unit 110 'of the sub-shaft 60 ( 54C) coupled to each other, and the output rotation part 53 of the main shaft 50 differential gear unit 210 has a constant gear ratio with the input rotation part 61 of the planetary gear unit 110 ′ of the minor shaft 60. It is engaged by the engagement of the different gears 54D and 54E.
  • the gear 54C has a gear ratio of 1: 1, and the differential A axis DA of the differential gear unit 210 of the main shaft 50 and the ring of the planetary gear unit 110 'of the minor shaft 60 are fixed.
  • the rotation ratio with respect to the gear R ' is set to 1: 1, and is built up in the gear 54D and the input rotation part 61 of the sub-shaft 60 which are built in the output rotation part 53 of the said main shaft 50.
  • the gear 54E has a differential ratio of 1 to 1 with a differential B axis (DB) of the main shaft 50 and the differential gear unit 210. Was set to 1: minor axis 60, the rotation ratio for the "sun gear (S in), the planetary gear unit 100 '1.
  • the main shaft 50 is driven.
  • the output rotating unit 63 of the sub-shaft 60 appears. The result is that the amount of rotational speed changes from '0' RPM to '1,650' RPM.
  • the transmission device includes each component of any one differential gear unit 210 used as the main shaft 50 and any one planetary gear unit used as the sub shaft 60 ( 110 ') can be arbitrarily extended to the speed range of the output rotational speed to the input rotational speed by the combination of the gears to make each component parallel to each other axis.
  • the sun gear S of the planetary gear unit 110 of the main shaft 50 includes a main shaft 50 through which the first variable power source VP1 having the rotational speed of the first rotational power sources VP1 and FP1 is changed through the main shaft 50.
  • the planetary gear carrier (C) is used as the shift control rotation part 52 of the main shaft 50 and is coupled with the gear 54B having a constant gear ratio, and the ring gear R is used as the driving input rotation part 51 of the main shaft 50. It is used as the output rotation part 53 of the main shaft 50 is coupled to the gear 54D having a constant gear ratio.
  • the pinion gear housing DP 'of the sub-shaft 60 differential gear unit 210' is used as an input rotation portion 61 of the sub-shaft 60 and is coupled with a gear 54E having a constant gear ratio, and the differential A-axis ( DA ') shifts the subshaft 60 while receiving a second fixed power source FP2 having a constant rotational speed of the second rotational power source VP2, FP2 by engagement of different gears 54B and 54C having a constant gear ratio. It is used as the control rotation part 62, the differential B-axis (DB ') is used as the drive output rotation part 63 of the sub-shaft 60.
  • the shift control rotation part 52 of the main shaft 50 planetary gear unit 110 is different gear 54B having a constant gear ratio from the shift control rotation part 62 of the sub-shaft 60 differential gear unit 210 '( 54C) coupled to each other, and the output rotation part 53 of the planetary gear unit 110 of the main shaft 50 has a constant gear ratio with the input rotation part 61 of the differential gear unit 210 'of the sub-shaft 60. It is engaged by the engagement of the different gears 54D and 54E.
  • each component (sun gear (S), ring gear (R), planetary gear carrier (C)) of the main shaft 70 planetary gear unit 110 is set to 2: 1: 1 and the first sub-shaft (80)
  • the gear 54C built in the shift control rotation part 62 has a planetary gear carrier C of the planetary gear unit 110 and a subordinate shaft 60 of the planetary gear unit 110 at a gear ratio of 1: 1.
  • the rotation ratio with respect to the differential A axis DA ' is set to 1: 1, and the gear 54D and the input rotation part 61 of the sub-shaft 60 are arranged in the output rotation part 52 of the main shaft 50.
  • the gear 54E installed in the ring has a gear ratio of 1: 1 and a ring of the planetary gear unit 100 of the main shaft 50.
  • the rotation ratio with respect to the pinion gear housing DP 'of the gear R and the subshaft 60 differential gear unit 210' was set to 1: 1.
  • the transmission device includes each component of any one planetary gear unit 110 used as the main shaft 50 and any one differential gear unit used as the sub-shaft 60 (The combination of the gears to make the components of the 210 'are parallel to each other in parallel to each other in the series combination to be able to arbitrarily extend the transmission range of the output rotational speed to the input rotational speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

The present invention relates to a transmission using two rotating power sources and a gear assembly, and more particularly, to a transmission using two rotating power sources and a gear assembly, which is formed as a transmission in which an rpm of a main power source transmitted from a driving input shaft is shifted at a gear ratio of a planetary gear unit or a differential gear unit and transmitted to driving means. The transmission includes a gear assembly having at least one planetary gear unit and at least one differential gear unit, which are dually combined on parallel shafts. A gear ratio for an rpm of a first rotating power source and a gear ratio for an rpm of an auxiliary power source are optimally combined by means of multiple gear ratios of the gear assembly, so that through an optimal input of power from the first rotating power source at a set rpm, a shifting range for the rpm of a driving output shaft can be arbitrarily and variously expanded.

Description

2개의 회전동력원과 기어결합체를 이용한 변속장치Transmission using two rotary power sources and gear combination
본 발명은 2개의 회전동력원과 기어결합체를 이용한 변속장치에 관한 것으로서, 더욱 상세하게는 본 발명의 출원인이 선출원한 '2개의 회전동력원과 기어결합체를 이용한 변속장치(출원번호:10-2009-0107694)'의 계속된 발명으로서, 구동 입력축으로부터 전달되는 주동력원의 회전수가 유성기어유닛 또는 차동기어유닛의 기어비로 변속되어 구동수단으로 전달되는 변속기를 구성할 때, 적어도 한 개 이상의 유성기어유닛과 적어도 한 개 이상의 차동기어유닛을 축간 평행에 의한 2중으로 조합하여서 된 기어결합체를 구성한 후, 상기 기어결합체의 다중 기어비에 의하여 제1 회전동력원의 회전수에 대한 변속비와 보조동력원의 회전수에 대한 변속비를 최적상태로 조합함으로써 제1 회전동력원이 최저 입력으로 설정된 회전수에서 구동 출력축의 회전수에 대한 변속범위를 임의적으로 다양하게 확장할 수 있는 2개의 회전동력원과 기어결합체를 이용한 변속장치에 관한 것이다.The present invention relates to a transmission using two rotational power sources and a gear assembly, and more particularly, to a transmission using two rotational power sources and a gear assembly (patent number: 10-2009-0107694) filed by the applicant of the present invention. As a continuous invention, at least one planetary gear unit and at least one planetary gear unit when the rotational speed of the main power source transmitted from the drive input shaft constitutes a transmission gear shifted to the gear ratio of the planetary gear unit or the differential gear unit and transmitted to the drive means. After constructing a gear assembly by combining at least one differential gear unit in parallel between the shafts, the gear ratio of the gear assembly to the rotational speed of the first rotational power source and the rotational speed of the auxiliary power source are determined by the multiple gear ratios of the gear assembly. By combining them optimally, the first rotational power source is set to the rotational speed of the drive output shaft at the rotational speed set to the lowest input. A shift range relates to transmission using the two rotary power source and the gear combination which can optionally variously expanded.
일반적으로 각종의 산업 현장에서는 용도에 따라 산업기계나 호이스트, 물품이송용 컨베이어, 윈치, 엘리베이터 및 에스컬레이터 등 매우 다양한 곳에서 주원동력의 입력회전수를 용도에 맞게 기어비를 통하여 변속시켜 구동축의 구동수단으로 변속된 출력회전수를 전달하는 다양한 형태의 유단변속장치와 무단변속장치들이 널리 사용되고 있다. In general, in various industrial sites, the input rotational speed of main motive power is shifted through the gear ratio to the driving shaft in various places such as industrial machines, hoists, conveyors for transferring goods, winches, elevators, and escalators according to the purpose. Various types of stepped transmissions and continuously variable transmissions that transmit a variable speed of output are widely used.
그리고 출력 회전수가 일정간격을 두고 순차적으로 변속되어야 하는 유단변속장치의 경우 수동변속기 및 자동변속기가 차량용으로 널리 사용되고 있는 데, 위와 같은 유단 변속장치들을 차량용으로 적용할 경우 엔진효율을 높이는 효과는 있으나 운전자가 변속장치들을 상황에 맞게 조작하여야 하는 번거러움이 있었다. In the case of the stepped transmission in which the output rotational speed must be sequentially shifted at a predetermined interval, the manual transmission and the automatic transmission are widely used for vehicles. When the above stepped transmissions are applied to the vehicle, the efficiency of the engine is increased, but the driver There was a hassle to operate the transmissions according to the situation.
이에 운전자가 변속장치들을 조작하지 않으면서 높은 동력전달효율과 주행 중 변속충격을 없애고 변속비를 자동적으로 제어하여 연비성능을 향상시키고 최적의 주행상태로 유지할 수 있는 무단 변속장치들이 자동차용 및 산업용으로 개발되고 있는 바, 상기 무단변속장치들의 경우 특정한 기어비를 가지는 유성기어유닛의 한 구성요소에 별도의 동력전달수단이 부가되는 구조로 되어 있고, 상기 동력전달수단의 동력전달형태에 따라 벨트방식 무단변속장치와, 유압식 무단변속기 및 기어식 무단변속기로 구분할 수 있다. Therefore, without the driver operating the gearbox, high speed transmission efficiency, eliminating the shift shock while driving, and automatically control the gear ratio, improve the fuel efficiency performance and develop the continuously variable gears for automotive and industrial use In the case of the continuously variable transmissions, a separate power transmission means is added to one component of the planetary gear unit having a specific gear ratio, and the belt type continuously variable transmission device according to the power transmission form of the power transmission means. It can be divided into hydraulic continuously variable transmission and gearless continuously variable transmission.
그런데 벨트식 무단변속기의 경우 한정된 벨트의 사이즈에 의하여 큰 동력을 전달할 수 없게 되어 변속범위가 일정구간에 한정되는 문제점이 있었고, 유압식 무단변속기는 회전체의 구름접촉에 의한 윤활재의 전단력으로 큰 동력을 전달할 수 있으나 상기 동력전달수단을 제어하기 위한 별도의 유압장치가 요구됨에 따라 복잡한 구조에 의하여 중량과 가격이 상승되는 문제점 과 연료소모가 많이 드는 등의 여러 가지 문제점들이 상존하고 있었다. However, in the case of the belt continuously variable transmission, there was a problem in that the transmission range was limited to a certain section due to the limited size of the belt, and the hydraulic continuously variable transmission had a large power due to the shear force of the lubricant due to the rolling contact of the rotor. However, as a separate hydraulic device for controlling the power transmission means is required, various problems such as weight and price increase due to a complicated structure and high fuel consumption exist.
위와 같은 문제점으로 근래에는 기어식 무단변속의 원리를 이용하여 간단한 구조로 큰 동력을 전달할 수 있는 유성기어유닛을 이용한 다양한 형태의 변속장치가 많이 개발되어 선행기술로 공지되어 있다. Due to the above problems, recently, various types of transmissions using planetary gear units capable of transmitting large powers with a simple structure using a gearless continuously variable principle have been developed and are known in the art.
즉 중앙의 선(Sun)기어와 외곽의 링(Ring)기어, 그리고 그 사이의 유성기어들을 하나로 연결하는 유성기어 캐리어(Carrier)로 이루어져 있는 유성기어유닛을 이용한 유단변속장치 또는 무단변속장치는 선기어, 링기어, 유성기어캐리어로 구성된 이 세가지 요소들 중 두 개의 요소를 입출력 축으로 사용하고 나머지 하나의 요소에 클러치 등과 같은 별도의 동력제어기구를 연결하여 축력회전축의 회전력을 변속하는 구조로 되어 있다. In other words, a stepped gearbox or continuously variable transmission using a planetary gear unit consisting of a planetary gear carrier that connects a central sun gear, an outer ring gear, and a planetary gear therebetween as one. It is designed to change the rotational force of the axial rotational shaft by using two of these three elements, consisting of a ring gear and a planetary gear carrier, as input / output shafts and connecting a separate power control mechanism such as a clutch to the other one. .
그러나 위와 같은 유성기어유닛을 이용한 종래의 유단변속장치 또는 무단변속장치들은 해당 유성기어유닛의 각 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]들의 지정된 기어비에 한정되어 출력 회전수가 변속되는 구조로 되어, 출력 회전수의 변속이 일정범위 내에서만 이루어지게 되는 문제점이 있었고, 특히 선기어와 링기어 유성기어캐리어의 조합으로 이루어진 유성기어유닛의 특성상 각 구성요소들의 크기가 상대적으로 일정비율의 크기로 한정될 수 밖에 없는 구조로 되어 있으므로 유성기어유닛에 대한 각 구성요소들의 기어비를 이용한 출력 회전수의 변속범위가 최대 3:1~6:1의 범위를 초과하기 어려운 구조로 되어 있는 바, 단일 또는 복수의 유성기어유닛을 이용한 종래의 무단변속장치는 출력 회전수의 변속범위가 극히 제한적으로 한정되는 근원적인 문제점을 가지고 있었던 것이다. However, the conventional stepped transmission or continuously variable transmissions using the planetary gear units described above are limited to the designated gear ratios of the respective components of the planetary gear unit (sun gear (S), ring gear (R), planetary gear carrier (C)). As a result of the structure in which the output rotation speed is shifted, the output rotation speed is shifted only within a certain range. Especially, the size of each component is large due to the characteristics of the planetary gear unit composed of a combination of a sun gear and a ring gear planetary gear carrier. Since it is relatively structured to be limited to a certain ratio, the transmission range of the output rotation speed using the gear ratio of each component of the planetary gear unit is hard to exceed the range of 3: 1 ~ 6: 1. In the conventional continuously variable transmission using a single or a plurality of planetary gear units, the speed range of the output rotation speed is extremely limited. It had a fundamental problem.
상기와 같은 문제점을 해결하기 위한 본 발명의 첫째 목적은 적어도 한 개 이상의 유성기어유닛과 적어도 한 개 이상의 차동기어유닛의 직렬조합에 의하여 기어비가 확장된 기어결합체를 구성하고 그 기어결합체를 구성하고 있는 서로 다른 기어유닛의 각 어느 한 구성요소에 주 동력원이 되는 제1 회전동력원과 보조동력원이 되는 제2 회전동력원을 각각 부가하여 구동출력축의 출력 회전수에 대한 변속범위를 다양하게 확장할 수 있는 2개의 회전동력원과 기어결합체를 이용한 변속장치를 제공하는 데 있다.The first object of the present invention for solving the above problems is to form a gear assembly with an extended gear ratio by a series combination of at least one planetary gear unit and at least one differential gear unit and to constitute the gear assembly. 2, which is capable of variously extending the transmission range of the output rotational speed of the drive output shaft by adding a first rotational power source serving as a main power source and a second rotational power source serving as an auxiliary power source to each one component of the different gear unit, respectively. To provide a transmission using two rotational power source and gear combination.
그리고 본 발명의 둘째 목적은 기어결합체를 구성하고 있는 각 기어유닛들에 대한 각 구성요소들의 치합에 의한 다중 기어비에 의하여 구동출력축의 초기 출력 회전수를 정지출력(0 RPM)에서부터 임의적으로 소망하는 회전수로 조절할 수 있는 2개의 회전동력원과 기어결합체를 이용한 변속장치를 제공하는 데 있다.And the second object of the present invention is to arbitrarily desired rotation of the initial output rotational speed of the drive output shaft from the stop output (0 RPM) by the multi-gear ratio by the combination of the components for each gear unit constituting the gear assembly It is to provide a transmission using two rotational power sources and a gear combination that can be adjusted by number.
본 발명의 셋째 목적은 주축으로 사용되는 유성기어유닛 또는 차동기어유닛의 어느 한 구성요소와 연결되면서 주축의 구동입력 회전부로 기관의 주 동력원이 전달되는 제1 회전원동력(P1)과, 부축으로 사용되는 유성기어유닛 또는 차동기어유닛의 어느 한 구성요소와 연결되면서 부축의 변속제어 회전부로 보조 동력원이 전달되는 제2 회전원동력(P2)이 연결될 때, 보조동력원의 회전수가 일정한 고정회전수 또는 순차적으로 변동되는 가변회전수로 선택가능하게 함으로써, 감속기를 포함한 유단변속기와 산업용 무단변속기 및 자동차용 무단변속기 등과 같이 변속장치의 사용용도를 확장할 수 있는 2개의 회전동력원과 기어결합체를 이용한 변속장치를 제공하는 데 있다.The third object of the present invention is to be connected to any one component of the planetary gear unit or the differential gear unit used as the main shaft, the first rotational driving force (P1) and the main shaft of the engine is transmitted to the drive input rotation of the main shaft, and used as a minor When the second rotational driving force P2 is connected to the planetary gear unit or the differential gear unit, and the second rotational driving force P2 is transmitted to the shift control rotation part of the sub-axis, the rotational speed of the auxiliary power source is fixed at fixed speed or sequentially. The variable speed can be selected to provide a transmission using two rotational power sources and gear combinations that can be used to increase the use of the transmission, such as a stepper transmission including a speed reducer, an industrial continuously variable transmission, and an automobile continuously variable transmission. There is.
상기와 같은 목적을 달성하기 위한 수단을 보다 상세하게 설명하고자 한다. It will be described in more detail the means for achieving the above object.
본 발명에 의한 2개의 회전원동력과 기어결합체를 이용한 변속장치의 기어결합체(가)는  Gear combination of the transmission using the two rotational driving force and the gear combination according to the present invention
적어도 한 개 이상의 유성기어유닛(110)(110')들에 대한 각 구성요소[선기어(S)(S'),링기어(R)(R'),유성기어캐리어(C)(C')]들이 기어치합에 의하여 각 유성기어유닛(110)(110')들을 상호 축간 평행이 되도록 직렬 조합하여서 된 유성기어결합체(100)와;  Each component of the at least one planetary gear unit 110 (110 ') (sun gear (S) (S'), ring gear (R) (R '), planetary gear carrier (C) (C') The planetary gear assembly 100 formed by combining the planetary gear units 110 and 110 'in parallel with each other by means of gears;
적어도 한 개 이상의 차동기어유닛(210)(210')들에 대한 각 구성요소[차동A축(DA)(DA'),차동B축(DB)(DB'),피니언기어하우징(DP)(DP')]들이 기어치합에 의하여 각 차동기어유닛(210)(210')들을 상호 축간 평행이 되도록 직렬 조합하여서 된 차동기어결합체(200)와; Each component for at least one differential gear unit 210 (210 ') (differential A-axis DA (DA'), differential B-axis (DB) (DB '), pinion gear housing (DP) ( DP ')], a differential gear assembly 200 formed by combining the respective differential gear units 210 and 210' in series to be parallel to each other by a gear tooth;
적어도 한 개 이상의 유성기어유닛(110)(110')에 대한 각 구성요소[선기어(S)(S'), 링기어(R)(R'), 유성기어캐리어(C)(C')]와 적어도 한 개 이상의 차동기어유닛(210)(210')에 대한 각 구성요소[차동A축(DA)(DA'), 차동B축(DB)(DB'), 피니언기어하우징(DP)(DP')]들이 기어치합에 의하여 적어도 한 개 이상의 유성기어유닛(110)(110')과 적어도 한 개 이상의 차동기어유닛(210)(210')들을 상호 축간 평행이 되도록 직렬 조합하여서 된 복합기어 결합체(300)로 각각 분리 구성되어 있다. Each component for at least one planetary gear unit 110, 110 '(sun gear S, S', ring gear R, R ', planetary gear carrier C, C') And each component for at least one differential gear unit (210) (210 ') (differential A-axis (DA) (DA'), differential B-axis (DB) (DB '), pinion gear housing (DP) ( DP ')] is a compound gear in which at least one planetary gear unit (110) (110') and at least one differential gear unit (210) (210 ') are combined in series to be parallel to each other by a gear tooth. Combination 300 is composed of separate.
그리고 본 발명에 의한 2개의 회전원동력과 기어결합체를 이용한 변속장치의 회전원동력(P)은 기관의 주 동력원이 되는 제1 회전원동력(P1)과 기어결합체(가)의 기어유닛의 변속비를 제어하는 보조동력원이 되는 제2 회전원동력(P2)으로 구성되어 있고, 제1 회전원동력(P1)은 그 회전수가 항상 일정한 제1 고정동력원(FP1)과 회전수가 순차적으로 변동되는 제1 가변동력원(VP1)으로 분리 구성되어 있으며, 제2 회전원동력(P2)은 그 회전수가 항상 일정한 제2 고정동력원(FP2)과 회전수가 순차적으로 변동되는 제2 가변동력원(VP2)으로 분리 구성되어 있다. In addition, the rotational driving force P of the transmission using the two rotational driving force and the gear combination according to the present invention controls the speed ratio of the gear unit of the first rotational driving force P1 and the gear assembly (a) serving as the main power sources of the engine. It is composed of a second rotational driving force (P2) to be an auxiliary power source, the first rotational driving force (P1) is a first fixed power source (FP1) and the first variable power source (VP1) in which the rotational speed is changed in sequence The second rotational driving force (P2) is divided into a second fixed power source (FP2) and a second variable power source (VP2) in which the rotational speed is sequentially changed.
본 발명의 상기 유성기어결합체(100)는 적어도 한 개 이상의 유성기어유닛(110)(110')들이 상호 축간 평행에 의한 직렬조합으로 구성되어 있는 데, 두 개의 유성기어유닛(110)(110')들의 상호 직렬조합으로 된 유성기어결합체(100)는 주축(10)으로 사용되는 어느 한 유성기어유닛(110)의 어느 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]를 구동 입력회전부(11)로 하고, 다른 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]를 변속용 제어회전부(12)로 하며, 또 다른 어느 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]를 출력회전부(13)로 구성하고, 부축(20)으로 사용되는 다른 한 유성기어유닛(110')의 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]를 부축(20) 입력회전부(21)로 하고, 다른 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]를 부축(20) 변속제어회전부(22)로 하며, 또 다른 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]를 부축(20)의 구동 출력회전부(23)로 구성하되, 상기 주축(10) 구동 입력회전부(11)에는 제1 회전원동력(P1)이 부여되고 상기 부축(20) 입력회전부(21)에는 주축(10) 출력회전부(13)와 일정한 기어비를 가진 서로 다른 기어(14D)(14E)의 치합에 의하여 부여되며, 상기 부축(20)의 변속제어회전부(22)는 제2 회전원동력(P2)이 부여되고 일정한 기어비를 가진 서로 다른 기어(14B)(14C)의 치합으로 주축(10)의 변속제어회전부(12)와 결합되어 있고, 상기 부축(20)의 출력회전부(23)는 주축(10)의 입력 제1회전 동력원(P1)과 부축(20)의 입력 제2회전 동력원(P2)이 상호 결합 제어 후 최종 변속된 회전력의 구동 출력부로 사용된다. In the planetary gear assembly 100 of the present invention, at least one planetary gear unit 110, 110 'is composed of a series combination by parallel to each other, two planetary gear units 110, 110' The planetary gear assembly 100 formed of a mutual series combination of) is any component of the planetary gear unit 110 used as the main shaft 10 (sun gear (S), ring gear (R), planetary gear carrier ( C)] as the drive input rotation part 11, and other components (sun gear S, ring gear R, planetary gear carrier C) as the control rotation part 12 for shifting, and any other. One component (sun gear (S), ring gear (R), planetary gear carrier (C)) is composed of an output rotating section (13), and one of the other planetary gear units (110 ') used as the sub shaft (20). One component (sun gear S ', ring gear R', planetary gear carrier C ') is the input shaft 21 of the sub-shaft 20, and the other components (sun gear S', ring) Gear (R '), planetary gear catch Gear C '] as the sub-shaft 20 and the shift control rotation part 22, and any other component (sun gear S', ring gear R ', planetary gear carrier C'). Comprising a drive output rotating part 23 of the (20), the main shaft 10, the drive input rotation part 11 is given a first rotational driving force (P1) and the main shaft (10) to the input rotation part 21 of the main shaft (10) ) Is provided by the engagement of the output gear 13 and different gears 14D and 14E having a constant gear ratio, and the shift control rotary part 22 of the sub-shaft 20 is given a second rotational driving force P2. It is coupled with the shift control rotation part 12 of the main shaft 10 by the engagement of different gears 14B and 14C having a constant gear ratio, and the output rotation part 23 of the sub-shaft 20 is the input of the main shaft 10. The first rotary power source P1 and the input second rotary power source P2 of the sub-shaft 20 are used as driving outputs of the final shifted rotation force after mutual coupling control.
그리고 본 발명에 의한 2개의 회전원동력과 기어결합체를 이용한 변속장치는 제1 고정동력원(FP1)과 제1 가변동력원(VP1) 중 어느 하나의 제1 회전원동력(P1)이 유성기어결합체(100)와 차동기어결합체(200) 및 복합기어결합체(300) 중 어느 하나의 기어결합체(가)를 구성하고 있는 기어유닛의 어느 한 구성요소와 결합되어 있고, 제2 고정동력원(FP2)과 제2 가변동력원(VP2) 중 어느 하나의 제2 회전원동력(P2)이 상기 기어결합체(가) 중 제1 회전원동력(P1)과 결합되지 않은 다른 기어유닛의 어느 한 구성요소와 결합되어 있다. In the transmission using two rotational driving force and the gear combination according to the present invention, the first rotational driving force P1 of the first fixed power source FP1 and the first variable power source VP1 is the planetary gear coupling body 100. And one of the gear units constituting the gear assembly of any one of the differential gear assembly 200 and the compound gear assembly 300, the second fixed power source FP2 and the second variable The second rotational driving force P2 of any one of the power sources VP2 is coupled to any one component of the other gear unit that is not coupled to the first rotational driving force P1 of the gear assembly A.
본 발명의 상기 차동기어결합체(200)는 적어도 한 개 이상의 차동기어유닛(210)(210')들이 상호 축간 평행에 의한 직렬조합으로 구성되어 있는 데, 두 개의 차동기어유닛(210)들의 축간 평행에 의한 직렬조합으로 된 차동기어결합체(200)는 주축(30)으로 사용되는 어느 한 차동기어유닛(210)의 어느 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(30)의 구동 입력회전부(31)로 하고, 다른 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(30)의 변속용 제어회전부(32)로 하며, 또 다른 어느 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(30)의 출력회전부(33)로 구성하고, 부축(40)으로 사용되는 다른 한 차동기어유닛(210')의 어느 한 구성요소[차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(40)의 입력회전부(41)로 하고, 다른 한 구성요소[차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(40)의 변속제어회전부(42)로 하며, 또 다른 어느 한 구성요소[차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(40)의 구동 출력회전부(43)로 구성하되, 상기 주축(30) 구동 입력회전부(31)에는 제1 회전원동력(P1)이 부여되고 상기 부축(40)의 입력회전부(41)에는 주축(30) 출력 입력회전부(33)와 일정한 기어비를 가진 서로 다른 기어(34D)(34E)의 치합에 의하여 부여되며, 상기 부축(40)의 변속제어회전부(42)는 제2 회전원동력(P2)이 부여되고 일정한 기어비를 가진 서로 다른 기어(34B)(34C)의 치합으로 주축(30)의 변속제어회전부(32)와 결합되어 있고, 상기 부축(40)의 출력회전부(43)는 주축(30)의 입력 제1회전 동력원(P1)과 부축(40)의 입력 제2회전 동력원(P2)이 상호 결합 제어 후 최종 변속된 회전력의 구동 출력부로 사용된다. In the differential gear assembly 200 of the present invention, at least one or more differential gear units 210, 210 'are constituted in series by parallel interaxial parallelism, and the interaxial parallelism of two differential gear units 210 is established. The differential gear assembly 200 in series combination by any one of the components of the differential gear unit 210 used as the main shaft 30 (differential A-axis (DA), differential B-axis (DB), pinion gear Housing DP] as the drive input rotation part 31 of the main shaft 30, and other components (differential A-axis DA, differential B-axis DB, pinion gear housing DP) are the main shaft 30; Control rotation unit 32 for shifting, and any other component (differential A-axis DA, differential B-axis DB, pinion gear housing DP) is output rotation 33 of the main shaft 30. ) And any one component of the other differential gear unit 210 'used as the sub-axis 40 (differential A-axis DA', differential B-axis DB ', pinion gear housing DP'). ] Input rotation of the auxiliary shaft (40) (41), the other components (differential A-axis DA ', differential B-axis DB', pinion gear housing DP ') are the shift control rotation part 42 of the sub-shaft 40, One of the other components (differential A-axis DA ', differential B-axis DB', pinion gear housing DP ') includes a drive output rotating portion 43 of the sub-axis 40, wherein the main shaft ( 30. The first input driving force P1 is applied to the driving input rotation part 31, and the input rotation part 41 of the subshaft 40 has different gears having a constant gear ratio with the output input rotation part 33 of the main shaft 30. 34D) is provided by the engagement of the 34E, the shift control rotary section 42 of the sub-shaft 40 is the engagement of the different gear 34B (34C) is given a second rotational driving force (P2) and having a constant gear ratio. It is coupled to the shift control rotation part 32 of the main shaft 30, the output rotation portion 43 of the sub-shaft 40 is the input first rotation power source (P1) of the main shaft 30 and the input of the sub-shaft 40 After two-rotation power source (P2) It is used as the drive output of the final shifted torque.
본 발명의 상기 복합기어결합체(300)는 적어도 한 개 이상의 유성기어유닛(110)(110')과 적어도 한 개 이상의 차동기어유닛(210)(210')들이 상호 축간 평행에 의한 직렬조합으로 구성되어 있는 데, 복합기어결합체(300)는 주축(50)으로 사용되는 어느 한 어느 한 유성기어유닛(110)의 각 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)] 또는 어느 한 차동기어유닛(210)의 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(50)의 구동 입력회전부(51)로 하고, 다른 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C), 또는 차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(50)의 변속용 제어회전부(52)로 하며, 또 다른 어느 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C), 또는 차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(50)의 출력회전부(53)로 구성하고, 부축(60)으로 사용되는 다른 어느 한 유성기어유닛(110') 또는 차동기어유닛(210')의 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C'), 또는 차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(60)의 입력회전부(61)로 하고, 다른 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C'), 또는 차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(60)의 변속제어회전부(62)로 하며, 또 다른 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C'), 또는 차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(60)의 구동 출력회전부(63)로 구성하되, 상기 주축(50)의 구동 입력회전부(51)에는 제1 회전원동력(P1)이 부여되고 상기 부축(60)의 입력회전부(61)에는 주축(50) 축력회전부(53)와 일정한 기어비를 가진 서로 다른 기어(54D)(54E)의 치합에 의하여 결합되며, 상기 부축(60)의 변속제어회전부(62)는 제2 회전원동력(P2)이 부여되고 일정한 기어비를 가진 서로 다른 기어(54B)(54C)의 치합으로 결합되어 있고, 상기 부축(60)의 출력회전부(63)는 주축(50)의 입력 제1회전 동력원(P1)과 부축(60)의 입력 제2회전 동력원(P2)이 상호 결합 제어 후 최종 변속된 회전력의 구동 출력부로 사용된다. The composite gear assembly 300 of the present invention comprises at least one planetary gear unit (110) (110 ') and at least one differential gear unit (210) (210') in a series combination by parallel to each other axis. The composite gear assembly 300 is composed of each component of the planetary gear unit 110, which is used as the main shaft 50 (sun gear (S), ring gear (R), planetary gear carrier (C)). ] Or one component of the differential gear unit 210 (differential A axis DA, differential B axis DB, pinion gear housing DP) as the drive input rotation part 51 of the main shaft 50, , The other component (sun gear (S), ring gear (R), planetary gear carrier (C), or differential A axis (DA), differential B axis (DB), pinion gear housing (DP)) ), And the other control element (sun gear (S), ring gear (R), planetary gear carrier (C), or differential A axis (DA), differential B axis (DB)). ), Pinion gear housing (DP)] Any one of the other planetary gear unit 110 'or the differential gear unit 210' constituted by the whole 53 and used as the subshaft 60 (sun gear S ', ring gear R'). ), Planetary gear carrier (C ') or differential A-axis (DA'), differential B-axis (DB '), pinion gear housing (DP') as the input rotation part 61 of the sub-shaft 60, One component (sun gear (S '), ring gear (R'), planetary gear carrier (C ') or differential A-axis (DA'), differential B-axis (DB '), pinion gear housing (DP') Is the shift control rotation part 62 of the sub-axis 60, and any other component (sun gear S ', ring gear R', planetary gear carrier C ', or differential A axis DA'). ), The differential B-axis (DB '), the pinion gear housing (DP') consisting of the drive output rotation portion 63 of the sub-shaft 60, the first rotation to the drive input rotation portion 51 of the main shaft (50) A driving force P1 is applied to the input rotational portion 61 of the sub-shaft 60 and the different gear 54D having a constant gear ratio with the main shaft 50 axial rotational portion 53. And the shift control rotary part 62 of the subshaft 60 is coupled to the gears of different gears 54B and 54C given a second rotational driving force P2 and having a constant gear ratio. The output rotation part 63 of the subshaft 60 has a final shift after the input first rotational power source P1 of the main shaft 50 and the input second rotational power source P2 of the subshaft 60 are mutually controlled. It is used as drive output of torque.
상기와 같이 된 본 발명은 변속범위를 기어결합체의 어느 한 유닛의 감속비에 한정되지 않고 저속범위 및 고속범위에 이르기까지 매우 다양한 변속범위를 구현할 수 있는 잇점이 있고, 기어결합체의 다양한 실시예에 따라 큰 폭의 감속비를 간단한 구조로 쉽게 실현할 수 있게 함으로써, 그 적용분야가감속기를 포함한 여러형태의 변속장치와 차량용과 산업용에도 적용할 수 있는 매우 큰 효과가 있다.The present invention as described above is not limited to the reduction ratio of any one unit of the gear combination, there is an advantage that can implement a wide variety of transmission range up to a low speed range and a high speed range, according to various embodiments of the gear assembly By making it possible to easily realize a large reduction ratio with a simple structure, the field of application has a very large effect that can be applied to various types of transmissions including a gear reducer and also for automobile and industrial use.
특히 차량용 변속장치의 경우 엔진동력을 기어결합체로 전달함으로써 동력전달과정에서 엔진효율을 극대화 하여 연료비가 절감될 뿐만 아니라, 간단한 구조를 가지면서 매우 큰 감속비를 실현할 수 있는 기어결합체의 부피를 컴펙트하게 제작할 수 있으므로, 제작경비를 현저하게 절감할 수 있는 등 경제적으로 도 매우 큰 효과가 나타나게 되는 것이다.In particular, in the case of a vehicle transmission, the engine power is transferred to the gear assembly to maximize the engine efficiency in the power transmission process, thereby reducing fuel costs, and having a simple structure, the compactness of the gear assembly that can realize a very large reduction ratio can be produced. As a result, the manufacturing cost can be significantly reduced, and thus the economic effect is very great.
도 1, 2는 본 발명의 기어결합체를 구성하고 있는 각 유성기어결합체의 1 and 2 show the planetary gear assembly of the gear assembly of the present invention.
결합관계를 도시한 각 실시예도  Each embodiment showing the coupling relationship
도 3, 4는 본 발명의 기어결합체를 구성하고 있는 각 차동기어결합체의 3 and 4 are views of each differential gear assembly constituting the gear assembly of the present invention.
결합관계를 도시한 각 실시예도  Each embodiment showing the coupling relationship
도 5,6은 본 발명의 기어결합체를 구성하고 있는 각 복합기어결합체의5 and 6 are views of each compound gear assembly constituting the gear assembly of the present invention.
결합관계를 도시한 각 실시예도  Each embodiment showing the coupling relationship
< 부호의 설명 ><Explanation of Codes>
가 : 기어결합체 100 : 유성기어결합체A: Gear assembly 100: Planetary gear assembly
110, 110' : 유성기어유닛 200 : 차동기어결합체110, 110 ': planetary gear unit 200: differential gear assembly
210, 210' : 차동기어유닛 300 : 복합기어결합체210, 210 ': Differential gear unit 300: Compound gear assembly
10,30,50 : 주축 20,40,60 : 부축10,30,50: Main axis 20,40,60: Sub axis
11,31,51 : 구동입력회전부 21,41,61 : 부축의 입력회전부11,31,51: drive input rotation part 21,41,61: input rotation part of sub-axis
12,32,52 : 변속제어회전부 22,42,62 : 부축의 변속제어회전부12, 32, 52: shift control rotation part 22, 42, 62: shift control rotation part
13,33,53 : 출력회전부 23,43,63 : 부축의 구동 출력회전부13,33,53: Output rotation part 23,43,63: Drive output rotation part of sub shaft
14,34,54 : 기어14,34,54: Gear
상기와 같은 구성 및 효과를 극명하여 나타내어 주는 본 발명의 실시예를 첨부도면에 의거하여 보다 상세하게 설명하고자 한다.On the basis of the accompanying drawings an embodiment of the present invention showing the configuration and effects as described above will be described in more detail.
< 유성기어결합체(100)와 2개의 회전 원동력을 이용한 변속장치의 실시예><Example of Transmission Device Using Planetary Gear Assembly 100 and Two Rotational Driving Forces>
도 1은 본 발명의 기어결합체(가)가 2열의 유성기어유닛(110)(110')으로 결합된 유성기어결합체(100)로 이루어진 제1 실시예에 따른 결합관계를 도시한 결합단면도이고, 도 2는 본 발명의 유성기어결합체(100)로 이루어진 제2 실시예에 따른 결합관계를 도시한 결합단면도이다.1 is a cross-sectional view showing a coupling relationship according to the first embodiment in which the gear assembly (a) of the present invention is formed of a planetary gear assembly (100) coupled to two rows of planetary gear units (110, 110 '), 2 is a cross-sectional view showing a coupling relationship according to the second embodiment of the planetary gear assembly 100 of the present invention.
먼저 도 1에 도시한 바와 같이, 본원 발명의 제 1실시예에 의한 유성기어 결합체(100)로 이루어진 2개의 회전원동력과 유성기어 결합체(100)를 이용한 변속장치의 결합관계를 살펴보기로 한다First, as shown in FIG. 1, the coupling relationship between two rotational driving forces consisting of the planetary gear assembly 100 and the transmission gear using the planetary gear assembly 100 according to the first embodiment of the present invention will be described.
본 발명의 유성기어결합체(100)를 이용한 제 1실시예에 따른 변속과정을 설명하기 위한 전제조건을 아래와 같은 <표 1>를 설정한 후, 차량용일 때의 출력 회전수의 변속과정을 살펴보았다.After setting the preconditions for describing the shifting process according to the first embodiment using the planetary gear assembly 100 of the present invention as shown in Table 1 below, the shifting process of the output rotation speed for a vehicle was examined. .
표 1 - 설정예 1
번 호 내 용
1 P1의 최저 회전수 - 700rpm
2 P2의 회전수 - P1의 회전 같은 방향으로 700rpm
3 유성기어유닛의 각 부 회전비(S:C:R) - 2 : 1 : 1
4 14B : 14C의 기어 회전비 - 1 : 1
5 14C : 14E의 기어 회전비 - 1 : 1
Table 1 Example 1
Number Contents
One Number of revolutions of P1-700 rpm
2 Number of revolutions of P2-700 rpm in the same direction of rotation of P1
3 Rotation ratio of each part of the planetary gear unit (S: C: R)-2: 1: 1
4 14B: gear turn ratio of 14C-1: 1
5 Gear rotation ratio of 14C: 14E-1: 1
주축(10) 유성기어유닛(110)의 유성기어캐리어(C)는 제 1회전동력원(VP1,FP1)의 회전수가 변동되는 제1 가변동력원(VP1)이 주축(10)을 통하여 전달되는 주축(10)의 구동 입력회전부(11)로 사용되고, 선기어(S)는 주축(10)의 변속제어회전부(12)로 사용되면서 일정한 기어비를 가진 기어(14B)와 결합되어 있으며, 링기어(R)는 주축(10)의 출력회전부(13)로 사용되면서 일정한 기어비를 가진 기어(14D)와 결합되어 있다.The planetary gear carrier C of the planetary gear unit 110 of the main shaft 10 may include a main shaft in which the first variable power source VP1, in which the rotation speed of the first rotational power sources VP1 and FP1 is changed, is transmitted through the main shaft 10. 10 is used as the drive input rotation part 11, the sun gear (S) is used as the shift control rotation part 12 of the main shaft 10 is coupled with the gear 14B having a constant gear ratio, the ring gear (R) is It is used as the output rotation part 13 of the main shaft 10 is coupled to the gear 14D having a constant gear ratio.
그리고 부축(20) 유성기어유닛(110')의 유성기어캐리어(C')는 부축(20)의 입력회전부(21)로 사용되면서 일정한 기어비를 가진 기어(14E)로 되어 있고, 선기어(S')는 서로 다른 기어(14B)(14C)의 치합에 의하여 제 2회전동력원(VP2,FP2)의 회전수가 일정한 제2 고정동력원(FP2)을 전달받으면서 부축(20)의 변속제어회전부(22)로 사용되며, 링기어(R')는 부축(20)의 구동 출력회전부(23)로 사용된다.And the planetary gear carrier C 'of the planetary gear unit 110' of the minor shaft 20 is used as the input rotation part 21 of the minor shaft 20, and has a gear 14E having a constant gear ratio, and the sun gear S ' ) Is transmitted to the shift control rotation part 22 of the sub-shaft 20 while receiving a second fixed power source FP2 having a constant rotation speed of the second rotational power sources VP2 and FP2 by engagement of different gears 14B and 14C. Ring gear (R ') is used as the drive output rotation 23 of the sub-shaft 20.
여기서 상기 주축(10) 유성기어유닛(110)의 변속제어회전부(12)는 부축(20) 유성기어유닛(110')의 변소제어회전부(12)와 일정한 기어비를 가진 서로 다른 기어(14B)(14C)들의 치합에 의하여 결합되어 있고, 상기 주축(10) 유성기어유닛(110)의 출력회전부(13)는 부축(20) 유성기어유닛(110')의 입력회전부(21)와 일정한 기어비를 가진 서로 다른 기어(14D)(14E)들의 치합에 의하여 결합되어 있다.Here, the shift control rotation part 12 of the planetary gear unit 110 of the main shaft 10 is a different gear 14B having a constant gear ratio from the shift control rotation part 12 of the planetary gear unit 110 'of the sub-axis 20 ( 14C) coupled to each other, and the output rotation part 13 of the planetary gear unit 110 of the main shaft 10 has a constant gear ratio with the input rotation part 21 of the planetary gear unit 110 'of the sub-shaft 20. It is coupled by the engagement of different gears 14D and 14E.
이때 상기 주축(10) 유성기어유닛(110)의 각 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]들의 회전비와 제1부축(20) 유성기어유닛(110')의 각 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]들의 회전비는 모두 2 : 1 : 1로 설정한 후, 상기 주축(10)의 변속제어회전부(12)에 축설되어 있는 기어(14B)와 부축(20)의 변속제어회전부(22)에 축설되어 있는 기어(14C)는 기어비를 1 : 1로 하여 주축(10) 유성기어유닛(110)의 선기어(S)와 부축(20) 유성기어유닛(110')의 선기어(S')에 대한 회전비를 1 : 1로 설정하고, 상기 주축(10)의 출력회전부(13)에 축설되어 있는 기어(14B)와 부축(20)의 입력회전부(21)에 축설되어 있는 기어(14E)는 기어비를 1 : 1로 하고 주축(10) 유성기어유닛(100)의 링기어(R)와 부축(20) 유성기어유닛(100')의 유성기어캐리어(C')에 대한 회전비를 1 : 1로 설정하였다.At this time, the rotation ratio of each component (sun gear (S), ring gear (R), planetary gear carrier (C)) of the main shaft (10) planetary gear unit 110 and the first sub-axis (20) planetary gear unit (110 ') After the rotation ratio of each component (sun gear S ', ring gear R', planetary gear carrier C ') is set to 2: 1: 1, the shift control rotation part of the main shaft 10 The gear 14B built into the gear 12B and the gear 14C built into the shift control rotation part 22 of the sub shaft 20 have a gear ratio of 1: 1 so that the planetary gear unit 110 of the planetary gear unit 110 of the main shaft 10 may have a gear ratio of 1: 1. The gear ratio of the sun gear S and the sub shaft 20 to the sun gear S 'of the planetary gear unit 110' is set to 1: 1 and is built up in the output rotation part 13 of the main shaft 10. 14B) and the gear 14E arranged on the input rotation part 21 of the subshaft 20 have a gear ratio of 1: 1, and the ring gear R and the subshaft 20 of the planetary gear unit 100 of the main shaft 10 are rotated. Set the rotation ratio for the planetary gear carrier C 'of the planetary gear unit 100' to 1: 1. The.
또한 제2 고정동력원(FP2)의 회전수를 700RPM으로 설정한 후, 주축(10)의 구동 입력회전부(11)에 전달되는 제1 가변동력원(VP1)의 초기 최저 입력 회전수를 700RPM에서 4,000RPM까지 가변시켜 본 결과 아래 <표 2>와 같이 부축(20)의 구동 출력회전부(23)에 나타나는 회전수의 변화량이 0RPM에서부터 3,300RPM까지 변속되는 결과를 얻게 되었다.In addition, after setting the rotational speed of the second fixed power source (FP2) to 700RPM, the initial minimum input rotational speed of the first variable power source (VP1) transmitted to the drive input rotation unit 11 of the main shaft 10 from 4,000RPM to 700RPM As a result of varying up to, as shown in Table 2 below, the amount of change in the number of revolutions appearing in the drive output rotation part 23 of the sub-shaft 20 was shifted from 0 RPM to 3,300 RPM.
즉 본 발명의 제1 실시예에 따른 변속장치는 적어도 한 개 이상의 유성기어유닛(110)(110')의 각 구성요소들이 상호 축간 평행을 이루도록 하는 각 기어들의 치합에 의한 직렬조합으로 입력 회전수에 대한 출력 회전수의 변속범위를 임의적으로 확장할 수 있게 되는 것이다.That is, the transmission device according to the first embodiment of the present invention has an input rotational speed in series combination by engaging each gear such that each component of at least one planetary gear unit 110, 110 'is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
이때 본 발명의 상기 설정예에 한정되지 않고 결합형태의 구조, P2의 회전수, 각 기어비를 임의적으로 변화시키게 되면 해당 조합조건에 부합하는 변속비가 나타나게 되는 것이므로, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서는 얼마든지 다양하게 실시할 수 있음은 물론이다.At this time, not limited to the above-described setting example of the present invention, if the structure of the coupling form, the number of revolutions of P2, each gear ratio is changed arbitrarily, the speed ratio corresponding to the corresponding combination conditions will appear, so as not to depart from the technical spirit of the present invention Of course, it can be variously performed within the range.
표 2 - 속도변환의 예(RPM)
구성요소 회전수(RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
14B 700 700 700 700 700 700 700 700 700 700
14D 350 450 550 650 1150 1650 2150 2650 3150 3650
14C 700 700 700 700 700 700 700 700 700 700
14E 350 450 550 650 1150 1650 2150 2650 3150 3650
23 0 100 200 300 800 1300 1800 2300 2800 3300
TABLE 2 Speed conversion example (RPM)
Component RPM (RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
14B 700 700 700 700 700 700 700 700 700 700
14D 350 450 550 650 1150 1650 2150 2650 3150 3650
14C 700 700 700 700 700 700 700 700 700 700
14E 350 450 550 650 1150 1650 2150 2650 3150 3650
23 0 100 200 300 800 1300 1800 2300 2800 3300
다음으로 도 2에 도시한 바와 같이, 본 발명의 유성기어결합체(100)를 이용한 제 2실시예에 따른 변속과정을 설명하기 위한 전제조건을 아래와 같은 <표 3>를 설정한 후, 출력 회전수의 변속과정을 살펴보았다.Next, as shown in Figure 2, after setting the prerequisites for explaining the shifting process according to the second embodiment using the planetary gear assembly 100 of the present invention as shown in Table 3, the output rotation speed We looked at the shifting process of.
표 3 - 설정예 2
번 호 내 용
1 P1의 최저 회전수 - 700rpm
2 P2의 회전수 - P1의 회전 같은 방향으로 700rpm
3 유성기어유닛의 각 부 회전비(S:C:R) - 2 : 1 : 1
4 14B : 14C의 기어 회전비 - 1 : 1
5 14D : 14E의 기어 회전비 - 1 : 1
TABLE 3 Setting example 2
Number Contents
One Number of revolutions of P1-700 rpm
2 Number of revolutions of P2-700 rpm in the same direction of rotation of P1
3 Rotation ratio of each part of the planetary gear unit (S: C: R)-2: 1: 1
4 14B: gear turn ratio of 14C-1: 1
5 14D: gear turn ratio of 14E-1: 1
주축(10) 유성기어유닛(110)의 선기어(S)는 제 1회전동력원(VP1,FP1)의 회전수가 변동되는 제1 가변동력원(VP1)이 주축(10)을 통하여 전달되는 주축(10)의 구동 입력회전부(11)로 사용되고, 유성기어캐리어(C)는 서로 다른 기어(14B)(14C)의 치합에 의하여 제 2회전동력원(VP2,FP2)의 회전수가 일정한 제2 고정동력원(FP2)을 전달받으면서 주축(10)의 변속제어회전부(12)로 사용되며, 링기어(R)는 주축(10)의 출력회전부(13)로 사용되면서 일정한 기어비를 가진 기어(14D)와 결합되어 있다.The main gear 10 of the planetary gear unit 110 of the main shaft 10 includes a main shaft 10 through which a first variable power source VP1 having a change in rotation speed of the first rotational power sources VP1 and FP1 is transmitted through the main shaft 10. The second fixed power source FP2, which is used as the driving input rotation part 11 of the second planetary gear carrier C, has a constant rotation speed of the second rotary power sources VP2 and FP2 due to the engagement of the different gears 14B and 14C. It is used as the transmission control rotation part 12 of the main shaft 10 while receiving the ring gear (R) is used as the output rotation portion 13 of the main shaft 10 is coupled to the gear 14D having a constant gear ratio.
그리고 부축(20) 유성기어유닛(110')의 유성기어캐리어(C')는 부축(20)의 입력회전부(21)로 사용되면서 일정한 기어비를 가진 서로 다른 기어(14D)(14E)와 결합되어 있고, 선기어(S')는 서로 다른 기어(14B)(14C)의 치합에 의하여 제 2회전동력원(VP2,FP2)의 회전수가 일정한 제2 고정동력원(FP2)을 전달받으면서 부축(20)의 변속제어회전부(22)로 사용되며, 링기어(R')는 부축(20)의 구동 출력회전부(23)로 사용된다.The planetary gear carrier C ′ of the planetary gear unit 110 ′ of the subshaft 20 is used as an input rotation part 21 of the subshaft 20 and is coupled with different gears 14D and 14E having a constant gear ratio. The sun gear S 'is shifted of the sub-shaft 20 while receiving a second fixed power source FP2 having a constant rotational speed of the second rotational power sources VP2 and FP2 by engagement of different gears 14B and 14C. It is used as the control rotation part 22, the ring gear (R ') is used as the drive output rotation part 23 of the sub-shaft 20.
여기서 상기 주축(10) 유성기어유닛(110)의 변속제어회전부(12)는 부축(20) 유성기어유닛(110')의 변속제어회전부(22)와 일정한 기어비를 가진 서로 다른 기어(14B)(14C)들의 치합에 의하여 결합되어 있고, 상기 주축(10) 유성기어유닛(110)의 출력회전부(13)는 부축(20) 유성기어유닛(110')의 입력회전부(21)와 일정한 기어비를 가진 서로 다른 기어(14E)(14D)들의 치합에 의하여 결합되어 있다. Here, the shift control rotation part 12 of the planetary gear unit 110 of the main shaft 10 may have different gears 14B having a constant gear ratio from the shift control rotation part 22 of the planetary gear unit 110 'of the sub-axis 20 ( 14C) coupled to each other, and the output rotation part 13 of the planetary gear unit 110 of the main shaft 10 has a constant gear ratio with the input rotation part 21 of the planetary gear unit 110 'of the sub-shaft 20. The gears of the different gears 14E and 14D are engaged by each other.
이때 상기 주축(10) 유성기어유닛(110)의 각 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]들의 회전비와 제1부축(20) 유성기어유닛(110')의 각 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]들의 회전비는 모두 2 : 1 : 1로 설정한 후, 상기 주축(10)의 변속제어회전부(12)에 축설되어 있는 기어(14B)와 부축(20)의 변속제어회전부(22)에 축설되어 있는 기어(14C)는 기어비를 1 : 1로 하여 주축(10) 유성기어유닛(110)의 유성기어캐리어(C)와 부축(20) 유성기어유닛(110')의 선기어(S')에 대한 회전비를 1 : 1로 설정하고, 상기 주축(10)의 출력회전부(13)에 축설되어 있는 기어(14D)와 부축(20)의 입력회전부(21)에 축설되어 있는 기어(14E)는 기어비를 1 : 1로 하고, 주축(10) 유성기어유닛(110)의 링기어(R)와 부축(20) 유성기어유닛(110')의 유성기어캐리어(C')에 대한 기어비를 1 : 1로 설정하였다.At this time, the rotation ratio of each component (sun gear (S), ring gear (R), planetary gear carrier (C)) of the main shaft (10) planetary gear unit 110 and the first sub-axis (20) planetary gear unit (110 ') After the rotation ratio of each component (sun gear S ', ring gear R', planetary gear carrier C ') is set to 2: 1: 1, the shift control rotation part of the main shaft 10 The gear 14B built into the gear 12B and the gear 14C built into the shift control rotation part 22 of the sub shaft 20 have a gear ratio of 1: 1 so that the planetary gear unit 110 of the planetary gear unit 110 of the main shaft 10 may have a gear ratio of 1: 1. The rotation ratio of the planetary gear carrier C and the subordinate shaft 20 to the sun gear S 'of the planetary gear unit 110' is set to 1: 1, and is built up in the output rotation part 13 of the main shaft 10. The gear 14E built in the gear 14D and the input rotation part 21 of the sub-shaft 20 has a gear ratio of 1: 1, and the ring gear R and the sub-shaft of the planetary gear unit 110 of the main shaft 10. (20) Gear ratio of the planetary gear carrier 110 'to the planetary gear carrier C' is 1: 1. It was set up.
또한 제2 고정동력원(FP2)의 회전수를 700RPM으로 설정한 후, 주축(10)의 구동 입력회전부(11)에 전달되는 제1 가변동력원(VP1)의 초기 최저 입력 회전수를 700RPM에서 4,000RPM까지 가변시켜 본 결과 아래 <표 4>와 같이 부축(20)의 구동 출력회전부(23)에 나타나는 회전수의 변화량이 0RPM에서부터 1650RPM까지 변속되는 결과를 얻게 되었다.In addition, after setting the rotational speed of the second fixed power source (FP2) to 700RPM, the initial minimum input rotational speed of the first variable power source (VP1) transmitted to the drive input rotation unit 11 of the main shaft 10 from 4,000RPM to 700RPM As a result of varying up to, as shown in Table 4 below, the amount of change in the number of revolutions shown in the drive output rotation part 23 of the sub-shaft 20 was shifted from 0 RPM to 1650 RPM.
표 4 - 속도변환의 예 ( - 는 역회전방향)
구성요소 회전수(RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
14B 700 700 700 700 700 700 700 700 700 700
14D 350 300 250 200 -50 -300 -550 -800 -1050 -1300
14C 700 700 700 700 700 700 700 700 700 700
14E 350 300 250 200 -50 -300 -550 -800 -1050 -1300
23 0 50 100 150 400 650 900 1150 1400 1650
Table 4 -Example of speed conversion (-is reverse rotation direction)
Component RPM (RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
14B 700 700 700 700 700 700 700 700 700 700
14D 350 300 250 200 -50 -300 -550 -800 -1050 -1300
14C 700 700 700 700 700 700 700 700 700 700
14E 350 300 250 200 -50 -300 -550 -800 -1050 -1300
23 0 50 100 150 400 650 900 1150 1400 1650
즉 본 발명의 제2 실시예에 따른 변속장치는 적어도 한 개 이상의 유성기어유닛(110)(110')의 각 구성요소들이 상호 축간 평행을 이루도록 하는 각 기어들의 치합에 의한 직렬조합으로 입력 회전수에 대한 출력 회전수의 변속범위를 임의적으로 확장할 수 있게 되는 것이다.That is, the speed change apparatus according to the second embodiment of the present invention has an input rotational speed by a series combination of gears such that each component of at least one planetary gear unit 110, 110 ′ is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
위 제2 실시예도 역시 상기 설정예에 한정되지 않고 결합형태의 구조, P2의 회전수 및 각 기어비를 임의적으로 변화시키게 되면 해당 조합조건에 부합하는 변속비가 나타나게 되는 것이므로, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서는 얼마든지 다양하게 실시할 수 있음은 물론이다.The second embodiment is also not limited to the above-described setting example, and when the structure of the coupling type, the rotational speed and the gear ratio of the gears are arbitrarily changed, the gear ratio corresponding to the corresponding combination condition will appear, so as not to depart from the technical spirit of the present invention. Of course, it can be variously performed as long as it does not.
< 차동기어결합체(200)와 2개의 회전 원동력을 이용한 변속장치의 실시예 ><Example of a transmission using differential gear assembly 200 and two rotational driving forces>
도 3은 본 발명의 기어결합체(가)가 2열의 차동기어유닛(210)(210')으로 결합된 차동기어결합체(200)로 이루어진 제3 실시예에 따른 결합관계를 도시한 결합단면도이고, 도 4는 본 발명의 차동기어결합체(200)로 이루어진 제4 실시예에 따른 결합관계를 도시한 결합단면도이다.3 is a cross-sectional view showing a coupling relationship according to the third embodiment in which the gear assembly (a) of the present invention comprises a differential gear assembly (200) coupled with two rows of differential gear units (210, 210 '), 4 is a cross-sectional view showing a coupling relationship according to a fourth embodiment of the differential gear assembly 200 of the present invention.
먼저 도 3에 도시한 바와 같이, 본원 발명의 제3실시예에 의한 차동기어 결합체(200)로 이루어진 2개의 회전원동력과 차동기어 결합체(200)를 이용한 변속장치의 결합관계를 살펴보기로 한다.First, as shown in FIG. 3, the coupling relationship between two rotational driving forces consisting of the differential gear assembly 200 according to the third embodiment of the present invention and the transmission using the differential gear assembly 200 will be described.
본 발명의 차동기어결합체(200)를 이용한 제3 실시예에 따른 변속과정을 설명하기 위한 전제조건을 아래와 같은 <표 5>를 설정한 후, 출력 회전수의 변속과정을 살펴보았다.After setting the preconditions for describing the shifting process according to the third embodiment using the differential gear assembly 200 of the present invention as shown in Table 5 below, the shifting process of the output rotation speed was examined.
표 5 - 설정예 3
번 호 내 용
1 P1의 최저 회전수 - 700rpm
2 P2의 회전수 - P1의 회전 같은 방향으로 200rpm
3 차동기어유닛의 각 부 회전비 ? DP X 2 = DA + DB
4 34B : 34C의 기어 회전비 - 1 : 1
5 34D : 34E의 기어 회전비 - 1.5 : 1
Table 5 Example 3
Number Contents
One Number of revolutions of P1-700 rpm
2 Rotation of P2-200 rpm in the same direction of rotation of P1
3 Rotation ratio of each part of the differential gear unit? DP X 2 = DA + DB
4 34B: Gear turn ratio of 34C-1: 1
5 34D: Gear turn ratio of 34E-1.5: 1
주축(30) 차동기어유닛(210)의 차동A축(DA)은 제 1회전동력원(VP1,FP1)의 회전수가 변동되는 제1 가변동력원(VP1)이 주축(30)을 통하여 전달되는 주축(30)의 구동 입력회전부(31)로 사용되며, 피니언기어하우징(DP)은 주축(30)의 변속제어회전부(32)로 사용되면서 일정한 기어비를 가진 기어(34B)와 결합되어 있으며, 차동B축(DB)은 주축(30)의 출력회전부(33)로 사용되며 일정한 기어비를 가진 기어(34D)와 결합되어 있다.The differential A-axis DA of the differential gear unit 210 of the main shaft 30 has a main shaft (1) through which the first variable power source VP1 in which the rotation speed of the first rotational power sources VP1 and FP1 is varied is transmitted through the main shaft 30 ( 30 is used as the drive input rotation part 31, the pinion gear housing (DP) is used as the shift control rotation part 32 of the main shaft 30, coupled with the gear 34B having a constant gear ratio, differential B axis DB is used as the output rotation part 33 of the main shaft 30 and is coupled to the gear 34D having a constant gear ratio.
그리고 부축(40) 차동기어유닛(210')의 차동B축(DB')은 부축(40)의 입력회전부(41)로 사용되면서 일정한 기어비를 가진 기어(34E)와 결합되어 있고, 피니언기어하우징(DP')은 부축(40)의 출력회전부(43)로 사용되고, 차동A축(DA')은 제 2회전동력원(VP2,FP2)의 회전수가 일정한 제2 고정동력원(FP2)을 전달받으면서 부축(40)의 변속제어회전부(42)로 사용되면서 일정한 기어비를 가진 기어(34C)와 결합되어 있다.And the differential B-axis (DB ') of the sub-axis 40, differential gear unit 210' is used as the input rotation portion 41 of the sub-axis 40, coupled to the gear 34E having a constant gear ratio, pinion gear housing DP 'is used as the output rotation part 43 of the subshaft 40, and the differential A-axis DA' receives the second fixed power source FP2 while the rotation speed of the second rotation power source VP2, FP2 is constant. It is used as the shift control rotation part 42 of the 40 and is coupled with the gear 34C having a constant gear ratio.
여기서 상기 주축(30) 차동기어유닛(210)의 변속제어회전부(32)는 부축(40) 차동기어유닛(210')의 변속제어회전부(42)와 일정한 기어비를 가진 서로 다른 기어(34B)(34C)들의 치합에 의하여 결합되어 있고, 상기 주축(30) 차동기어유닛(210)의 출력회전부(33)는 부축(40) 차동기어유닛(210')의 입력회전부(41)와 일정한 기어비를 가진 서로 다른 기어(34D)(34E)들의 치합에 의하여 결합되어 있다.Here, the shift control rotation part 32 of the main shaft 30 differential gear unit 210 is different from the shift control rotation part 42 of the sub-gear 40 differential gear unit 210 ′ with different gears 34B ( 34C) coupled to each other, and the output rotation part 33 of the main shaft 30 differential gear unit 210 has a constant gear ratio with the input rotation part 41 of the sub-axis 40 differential gear unit 210 '. The gears of the different gears 34D and 34E are engaged.
이때 상기 각 차동기어유닛(210)(210')의 각 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]들의 회전비를 [피니언기어하우징(DP) 2 = 차동A축(DA) + 차동B축(DB)]가 되도록 설정한 후, 상기 주축(30)의 변속제어회전부(32)에 축설되어 있는 기어(34B)와 부축(40)의 변속제어회전부(42)에 축설되어 있는 기어(34C)는 기어비를 1 : 1로 하여 주축(30) 차동기어유닛(210)의 피니언기어하우징(DP)와 부축(40) 차동기어유닛(210')의 차동A축(DA')에 대한 회전비를 1 : 1로 설정하고, 상기 주축(30)의 출력회전부(33)에 축설되어 있는 기어(34D)와 부축(40)의 입력회전부(41)에 축설되어 있는 기어(34E)는 기어비를 1 : 1.5로 하여 주축(30) 차동기어유닛(210)의 차동B축(DB)와 부축(40) 차동기어유닛(210')의 차동B축(DB')에 대한 회전비를 1.5 : 1로 설정하였다.At this time, the rotation ratio of each component (differential A-axis (DA), differential B-axis (DB), pinion gear housing (DP)) of each of the differential gear units (210, 210 ') [pinion gear housing (DP) 2 = Differential A-axis (DA) + differential B-axis (DB)], and then the shift control rotation part of the gear 34B and the sub-axis 40 built in the shift control rotation part 32 of the main shaft 30. The gear 34C built in (42) has a gear ratio of 1: 1, and the differential of the pinion gear housing (DP) of the differential gear unit 210 of the main shaft 30 and the differential gear unit 210 'of the sub-axis 40 is different. The rotation ratio with respect to the A-axis DA 'is set to 1: 1, and is built in the gear 34D built in the output rotation part 33 of the main shaft 30 and the input rotation part 41 of the sub-axis 40. The gear 34E has a gear ratio of 1: 1.5, and the differential B axis DB 'of the main shaft 30 differential gear unit 210 and the differential B axis DB' of the sub-axis 40 differential gear unit 210 '. The rotation ratio for was set at 1.5: 1.
또한 제2 고정동력원(FP2)의 회전수를 200RPM으로 설정한 후, 주축(40)의 구동 입력회전부(41)에 전달되는 제1 가변동력원(VP1)의 초기 최저 입력 회전수를 700RPM에서 4,000RPM까지 가변시켜 본 결과 아래 <표 6>와 같이 부축(40)의 출력회전부(43)에 나타나는 회전수의 변화량이 0RPM에서부터 1,200RPM까지 변속되는 결과를 얻게 되었다.Also, after setting the rotation speed of the second fixed power source FP2 to 200 RPM, the initial minimum input rotation speed of the first variable power source VP1 transmitted to the driving input rotation part 41 of the main shaft 40 is set at 700 RPM to 4,000 RPM. As a result of varying up to, as shown in Table 6 below, the amount of change in the number of revolutions appearing in the output rotation part 43 of the subshaft 40 is shifted from 0 RPM to 1,200 RPM.
표 6 - 속도변환의 예 (소수점 1자리 이하 삭제)
구성요소 회전수(RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
34B 200 200 200 200 200 200 200 200 200 200
34D 300 400 500 600 1100 1600 2100 2600 3100 3600
34C 200 200 200 200 200 200 200 200 200 200
34E 200 266.6 333.3 400 733.3 1066.6 1400 1733.3 2066.6 2400
43 0 133.3 166.6 200 366.6 533.3 700 866.6 1033.3 1200
Table 6 -Example of speed conversion (Delete 1 decimal place)
Component RPM (RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
34B 200 200 200 200 200 200 200 200 200 200
34D 300 400 500 600 1100 1600 2100 2600 3100 3600
34C 200 200 200 200 200 200 200 200 200 200
34E 200 266.6 333.3 400 733.3 1066.6 1400 1733.3 2066.6 2400
43 0 133.3 166.6 200 366.6 533.3 700 866.6 1033.3 1200
즉 본 발명의 제3 실시예에 따른 변속장치는 적어도 한 개 이상의 차동기어유닛(210)(210')의 각 구성요소들이 상호 축간 평행을 이루도록 하는 각 기어들의 치합에 의한 직렬조합으로 입력 회전수에 대한 출력 회전수의 변속범위를 임의적으로 확장할 수 있게 되는 것이다.That is, the transmission device according to the third embodiment of the present invention has an input rotational speed in series combination by engaging each gear such that each component of at least one or more differential gear units 210, 210 'is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
이때 본 발명의 상기 설정예에 한정되지 않고 결합형태의 구조 및 P2의 회전수, 각 기어비를 임의적으로 변화시키게 되면 해당 조합조건에 부합하는 변속비가 나타나게 되는 것이므로, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서는 얼마든지 다양하게 실시할 수 있음은 물론이다.At this time, not limited to the setting example of the present invention, if the structure of the coupling form and the number of revolutions of the P2, each gear ratio is changed arbitrarily, the speed ratio corresponding to the corresponding combination conditions will appear, so as not to depart from the technical spirit of the present invention Of course, it can be variously performed within the range.
다음으로 도 4에 도시한 바와 같이, 본 발명의 차동기어결합체(200)를 이용한 제4 실시예에 따른 변속과정을 설명하기 위한 전제조건을 아래와 같은 <표 7>를 설정한 후, 출력 회전수의 변속과정을 살펴보았다.Next, as shown in Figure 4, after setting the preconditions for explaining the shifting process according to the fourth embodiment using the differential gear assembly 200 of the present invention as shown in Table 7 below, the output rotation speed We looked at the shifting process of.
표 7 - 설정예 4
번 호 내 용
1 P1의 최저 회전수 - 700rpm
2 P2의 회전수 - P1의 회전 같은 방향으로 700rpm
3 차동기어유닛의 각 부 회전비 ? DP X 2 = DA + DB
4 34B : 34C의 기어 회전비 - 1 : 1
5 34D : 34E의 기어 회전비 - 2 : 1
TABLE 7 Example 4
Number Contents
One Number of revolutions of P1-700 rpm
2 Number of revolutions of P2-700 rpm in the same direction of rotation of P1
3 Rotation ratio of each part of the differential gear unit? DP X 2 = DA + DB
4 34B: Gear turn ratio of 34C-1: 1
5 Gear rotation ratio of 34D: 34E-2: 1
주축(30) 차동기어유닛(210)의 피니언기어하우징(DP)은 제 1회전동력원(VP1,FP1)의 회전수가 변동되는 제1 가변동력원(VP1)이 전달되는 주축(30)의 구동 입력회전부(31)로 사용되면서 일정한 기어비를 가진 기어(34A)와 결합되어 있고, 차동A축(DA)은 주축(30)의 변속제어회전부(32)로 사용되면서 일정한 기어비를 가진 기어(34B)와 결합되어 있으며, 차동B축(DB)은 주축(40)의 출력회전부(43)로 사용되면서 일정한 기어비를 가진 기어(34D)와 결합되어 있다.The pinion gear housing DP of the differential gear unit 210 of the main shaft 30 has a drive input rotation part of the main shaft 30 to which the first variable power source VP1 to which the rotation speed of the first rotation power source VP1 and FP1 is transmitted is transmitted. While used as (31) is coupled to the gear 34A having a constant gear ratio, the differential A-axis (DA) is used as a gear 34B having a constant gear ratio while being used as the shift control rotation part 32 of the main shaft (30). And, the differential B-axis (DB) is used as the output rotation portion 43 of the main shaft 40 is coupled with the gear 34D having a constant gear ratio.
그리고 부축(40) 차동기어유닛(210')의 피니언기어하우징(DP')은 부축(40)의 입력회전부(41)로 사용되면서 일정한 기어비를 가진 기어(34E)와 결합되어 있고, 차동A축(DA')은 서로 다른 기어(34B)(34C)의 치합에 의하여 제 2회전동력원(VP2,FP2)의 회전수가 일정한 제2 고정동력원(FP2)을 전달받으면서 부축(40)의 변속제어회전부(42)로 사용되며, 차동B축(DB')은 부축(40)의 구동 출력회전부(43)로 사용된다.And the pinion gear housing DP 'of the sub-axis 40 differential gear unit 210' is used as an input rotation part 41 of the sub-axis 40, and is coupled with a gear 34E having a constant gear ratio. DA ′ receives the second fixed power source FP2 having a constant rotation speed of the second rotary power sources VP2 and FP2 by the engagement of the different gears 34B and 34C. 42), the differential B-axis (DB ') is used as the drive output rotation portion 43 of the sub-axis (40).
여기서 상기 주축(30) 차동기어유닛(210)의 변속제어회전부(32)는 부축(40) 차동기어유닛(210')의 변속제어회전부(42)와 일정한 기어비를 가진 서로 다른 기어(34B)(34C)들의 치합에 의하여 결합되어 있고, 상기 주축(30) 차동기어유닛(210)의 출력회전부(33)는 부축(40) 차동기어유닛(210')의 입력회전부(41)와 일정한 기어비를 가진 서로 다른 기어(34D)(34E)들의 치합에 의하여 결합되어 있다.Here, the shift control rotation part 32 of the main shaft 30 differential gear unit 210 is different from the shift control rotation part 42 of the sub-gear 40 differential gear unit 210 ′ with different gears 34B ( 34C) coupled to each other, and the output rotation part 33 of the main shaft 30 differential gear unit 210 has a constant gear ratio with the input rotation part 41 of the sub-axis 40 differential gear unit 210 '. The gears of the different gears 34D and 34E are engaged.
이때 상기 각 차동기어유닛(210)의 각 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]들의 회전비를 [피니언기어하우징(DP) 2 = 차동A축(DA) + 차동B축(DB)]가 되도록 설정한 후, 상기 주축(30)의 변속제어회전부(32)에 축설되어 있는 기어(34B)와 부축(40)의 변속제어회전부(42)에 축설되어 있는 기어(34C)는 기어비를 1 : 1로 하여 주축(30) 차동기어유닛(210)의 차동A축(DA)와 부축(40) 차동기어유닛(210')의 차동A축(DA')에 대한 회전비를 1 : 1로 설정하고, 상기 주축(30)의 출력회전부(33)에 축설되어 있는 기어(34D)와 부축(50)의 입력회전부(41)에 축설되어 있는 기어(34E)는 기어비를 1 : 2로 하여 주축(30) 차동기어유닛(210)의 차동B축(DB)와 부축(40) 차동기어유닛(210')의 피니언기어하우징(DP')에 대한 회전비를 2 : 1로 설정하였다.At this time, the rotation ratio of each component (differential A-axis (DA), differential B-axis (DB), pinion gear housing (DP)) of each differential gear unit 210 [Pinion gear housing (DP) 2 = differential A-axis (DA) + differential B-axis (DB)], and then the gear 34B and the sub-axis 40 of the gear 34B built in the shift control rotation part 32 of the main shaft 30. The gear 34C built-in has a gear ratio of 1: 1 and the differential A axis DA of the differential gear unit 210 of the main shaft 30 and the differential A axis DA of the differential gear unit 210 'of the sub-axis 40. The rotation ratio with respect to ') is set to 1: 1, and the gear 34E built in the output 34 of the main shaft 30 and the input wheel 41 of the sub-shaft 50 are built up. ), The gear ratio is 1: 2, and the rotation ratio of the differential B-axis (DB) of the differential gear unit 210 of the main shaft 30 and the pinion gear housing DP 'of the differential gear unit 210' of the sub-axis 40 is determined. 2: 1 was set.
또한 제2 고정동력원(FP2)의 회전수를 700RPM으로 설정한 후, 주축(30)의 구동 입력회전부(31)에 전달되는 제1 가변동력원(VP1)의 초기 최저 입력 회전수를 700RPM에서 4,000RPM까지 가변시켜 본 결과 아래 <표 8>와 같이 부축(40)의 출력회전부(43)에 나타나는 회전수의 변화량이 0RPM에서부터 6,600RPM까지 변속되는 결과를 얻게 되었다.Also, after setting the rotation speed of the second fixed power source FP2 to 700 RPM, the initial minimum input rotation speed of the first variable power source VP1 transmitted to the drive input rotation part 31 of the main shaft 30 is 4,000 RPM from 700 RPM. As a result of varying up to, as shown in Table 8 below, the amount of change in the number of revolutions appearing in the output rotation part 43 of the subshaft 40 is shifted from 0 RPM to 6,600 RPM.
표 8 - 속도변환의 예
구성요소 회전수(RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
34B 700 700 700 700 700 700 700 700 700 700
34D 700 900 1100 1300 2300 3300 4300 5300 6300 7300
44C 700 700 700 700 700 700 700 700 700 700
44E 350 450 550 650 1150 1650 2150 2650 3150 3650
43 0 200 400 600 1600 2600 3600 4600 5600 6600
Table 8 Speed conversion example
Component RPM (RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
34B 700 700 700 700 700 700 700 700 700 700
34D 700 900 1100 1300 2300 3300 4300 5300 6300 7300
44C 700 700 700 700 700 700 700 700 700 700
44E 350 450 550 650 1150 1650 2150 2650 3150 3650
43 0 200 400 600 1600 2600 3600 4600 5600 6600
즉 본 발명의 제4 실시예에 따른 변속장치는 적어도 한 개 이상의 차동기어유닛(210)(210')의 각 구성요소들이 상호 축간 평행을 이루도록 하는 각 기어들의 치합에 의한 직렬조합으로 입력 회전수에 대한 출력 회전수의 변속범위를 임의적으로 확장할 수 있게 되는 것이다.That is, the transmission according to the fourth embodiment of the present invention has an input rotational speed in series combination by engaging each gear such that each component of at least one or more differential gear units 210, 210 'is parallel to each other. It is possible to arbitrarily extend the shift range of the output rotational speed with respect to.
이때 본 발명의 상기 설정예에 한정되지 않고 결합형태의 구조 및 P2의 회전수, 각 기어비를 임의적으로 변화시키게 되면 해당 조합조건에 부합하는 변속비가 나타나게 되는 것이므로, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서는 얼마든지 다양하게 실시할 수 있음은 물론이다.At this time, not limited to the setting example of the present invention, if the structure of the coupling form and the number of revolutions of the P2, each gear ratio is changed arbitrarily, the speed ratio corresponding to the corresponding combination conditions will appear, so as not to depart from the technical spirit of the present invention Of course, it can be variously performed within the range.
< 복합기어결합체(300)와 2개의 회전 원동력을 이용한 변속장치의 실시예 ><Embodiment of Transmission Device Using Compound Gear Combination 300 and Two Rotational Driving Forces>
도 5는 본 발명의 기어결합체(가)가 주축(50)으로 사용되는 어느 한 차동기어유닛(210)과 부축(60)으로 사용되는 어느 한 유성기어유닛(110')이 결합된 복합기어결합체(300)로 이루어진 제5 실시예에 따른 결합관계를 도시한 결합단면도이고, 도 6은 본 발명의 복합기어결합체(300)로 이루어진 제6 실시예에 따른 결합관계를 도시한 결합단면도이다.5 is a compound gear assembly in which any one gear unit (A) of the present invention is used as the main shaft (50) and any one planetary gear unit (110 ') used as the sub-axis (60). Coupling cross-sectional view showing a coupling relationship according to the fifth embodiment consisting of 300, Figure 6 is a coupling cross-sectional view showing a coupling relationship according to the sixth embodiment consisting of the composite gear coupling body 300 of the present invention.
먼저 도 5에 도시한 바와 같이, 본원 발명의 제5 실시예에 의한 복합기어 결합체(300)로 이루어진 2개의 회전원동력과 복합기어 결합체(300)를 이용한 변속장치의 결합관계를 살펴보기로 한다.First, as shown in FIG. 5, the coupling relationship between two rotational driving forces consisting of the composite gear assembly 300 according to the fifth embodiment of the present invention and a transmission device using the composite gear assembly 300 will be described.
본 발명의 복합기어결합체(300)를 이용한 제5 실시예에 따른 변속과정을 설명하기 위한 전제조건을 아래와 같은 <표 9>를 설정한 후, 출력 회전수의 변속과정을 살펴보았다.After setting the preconditions for describing the shifting process according to the fifth embodiment using the compound gear assembly 300 of the present invention as shown in Table 9 below, the shifting process of the output rotation speed was examined.
표 9 - 설정예 5
번 호 내 용
1 P1의 최저 회전수 - 700rpm
2 P2의 회전수 - P1의 회전 같은 방향으로 175rpm
3 유성기어유닛의 각 부 회전비(S:C:R) - 2 : 1 : 1
4 차동기어유닛의 각 부 회전비 ? DP X 2 = DA + DB
5 54B : 54C의 기어 회전비 - 1 : 1
6 54D : 54E의 기어 회전비 - 1 : 1
Table 9 Example 5
Number Contents
One Number of revolutions of P1-700 rpm
2 Rotation of P2-175 rpm in the same direction of rotation of P1
3 Rotation ratio of each part of the planetary gear unit (S: C: R)-2: 1: 1
4 Rotation ratio of each part of the differential gear unit? DP X 2 = DA + DB
5 54B: Gear Ratio of 54C-1: 1
6 Gear turn ratio of 54D: 54E-1: 1
주축(50) 차동기어유닛(210)의 차동A축(DA)은 제 1회전동력원(VP1,FP1)의 회전수가 변동되는 제1 가변동력원(VP1)이 주축(50)을 통하여 전달되는 주축(50)의 입력회전부(51)로 사용되며, 피니언기어하우징(DP)은 주축(50)의 변속제어회전부(52)로 사용되면서 일정한 기어비를 가진 기어(54B)와 결합되어 있으며, 차동B축(DB)은 주축(50)의 출력회전부(53)로 사용되면서 일정한 기어비를 가진 기어(54D)와 결합되어 있다.The differential A-axis DA of the differential gear unit 210 of the main shaft 50 has a main shaft (1) through which the first variable power source VP1 in which the rotation speed of the first rotational power sources VP1 and FP1 is varied is transmitted through the main shaft 50 ( 50 is used as the input rotation part 51, the pinion gear housing (DP) is used as the shift control rotation part 52 of the main shaft 50 is coupled with the gear 54B having a constant gear ratio, differential B-axis ( DB) is used as the output rotation portion 53 of the main shaft 50 is coupled to the gear 54D having a constant gear ratio.
부축(60) 유성기어유닛(110')의 선기어(S')는 부축(60)의 입력회전부(63)로 사용되면서 일정한 기어비를 가진 기어(54E)와 결합되어 있고, 링기어(R')는 일정한 기어비를 가진 서로 다른 기어(54B)(54C)의 치합에 의하여 제 2회전동력원(VP2,FP2)의 회전수가 일정한 제2 고정동력원(FP2)을 전달받으면서 부축(60)의 변속제어회전부(62)로 사용되며, 유성기어캐리어(C')는 부축(60)의 구동 출력회전부(63)로 사용된다.The sun gear S 'of the subshaft 60 planetary gear unit 110' is used as the input rotation part 63 of the subshaft 60 and is coupled with the gear 54E having a constant gear ratio, and the ring gear R '. The shift control rotary part of the sub-shaft 60 receives a second fixed power source FP2 having a constant rotational speed of the second rotational power source VP2, FP2 by engagement of different gears 54B and 54C having a constant gear ratio ( 62, and the planetary gear carrier C 'is used as the drive output rotation part 63 of the sub-shaft 60.
여기서 상기 주축(50) 차동기어유닛(210)의 변속제어회전부(52)는 부축(60) 유성기어유닛(110')의 변속제어회전부(62)와 일정한 기어비를 가진 서로 다른 기어(54B)(54C)들의 치합에 의하여 결합되어 있고, 상기 주축(50) 차동기어유닛(210)의 출력회전부(53)는 부축(60) 유성기어유닛(110')의 입력회전부(61)와 일정한 기어비를 가진 서로 다른 기어(54D)(54E)들의 치합에 의하여 결합되어 있다.Here, the shift control rotation part 52 of the main shaft 50 differential gear unit 210 is different gear 54B having a constant gear ratio from the shift control rotation part 62 of the planetary gear unit 110 'of the sub-shaft 60 ( 54C) coupled to each other, and the output rotation part 53 of the main shaft 50 differential gear unit 210 has a constant gear ratio with the input rotation part 61 of the planetary gear unit 110 ′ of the minor shaft 60. It is engaged by the engagement of the different gears 54D and 54E.
이때 상기 주축(50) 차동기어유닛(210)의 각 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]들의 회전비를 [피니언기어하우징(DP) 2 = 차동A축(DA) + 차동B축(DB)]로 설정하고 상기 부축(60) 유성기어유닛(110')의 각 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]들의 회전비는 2 : 1 : 1이 되도록 설정한 후, 상기 주축(50)의 변속제어회전부(52)에 축설되어 있는 기어(54B)와 부축(60)의 변속제어회전부(62)에 축설되어 있는 기어(54C)는 기어비를 1 : 1로 하고, 주축(50) 차동기어유닛(210)의 차동A축(DA)와 와 부축(60) 유성기어유닛(110')의 링기어(R')에 대한 회전비를 1 : 1로 설정하고, 상기 주축(50)의 출력회전부(53)에 축설되어 있는 기어(54D)와 부축(60)의 입력회전부(61)에 축설되어 있는 기어(54E)는 기어비를 1 : 1로 하여 주축(50) 차동기어유닛(210)의 차동B축(DB) 와 부축(60) 유성기어유닛(100')의 선기어(S')에 대한 회전비를 1 : 1로 설정하였다.At this time, the rotation ratio of each component (differential A-axis DA, differential B-axis DB, pinion gear housing DP) of the main shaft 50 differential gear unit 210 [Pinion gear housing (DP) 2 = Differential A-axis (DA) + differential B-axis (DB)] and each component of the sub-axis 60 planetary gear unit 110 '(sun gear S', ring gear R ', planetary gear carrier). (C ')] is set to be 2: 1: 1, and then the gear shift control rotation part 62 of the gear 54B and the sub-shaft 60 arranged in the shift control rotation part 52 of the main shaft 50. ), The gear 54C has a gear ratio of 1: 1, and the differential A axis DA of the differential gear unit 210 of the main shaft 50 and the ring of the planetary gear unit 110 'of the minor shaft 60 are fixed. The rotation ratio with respect to the gear R 'is set to 1: 1, and is built up in the gear 54D and the input rotation part 61 of the sub-shaft 60 which are built in the output rotation part 53 of the said main shaft 50. The gear 54E has a differential ratio of 1 to 1 with a differential B axis (DB) of the main shaft 50 and the differential gear unit 210. Was set to 1: minor axis 60, the rotation ratio for the "sun gear (S in), the planetary gear unit 100 '1.
또한 주축(50) 차동기어유닛(210)의 입력회전부 차동A축(DA)과 회전 같은 방향으로 회전하는 제2 고정동력원(FP2)의 회전수를 175RPM으로 설정한 후, 주축(50)의 구동 입력회전부(51)에 전달되는 제1 가변동력원(VP1)의 초기 최저 입력 회전수를 700RPM에서 4,000RPM까지 가변시켜 본 결과 <표 10>과 같이, 부축(60)의 출력회전부(63)에 나타나는 회전수의 변화량이 '0'RPM에서부터 '1,650'RPM까지 변속되는 결과를 얻게 되었다.In addition, after setting the rotation speed of the second fixed power source FP2 that rotates in the same direction as the rotation of the input rotation unit differential A-axis DA of the main shaft 50 differential gear unit 210 to 175 RPM, the main shaft 50 is driven. As a result of varying the initial minimum input rotational speed of the first variable power source VP1 transmitted to the input rotating unit 51 from 700 RPM to 4,000 RPM, as shown in Table 10, the output rotating unit 63 of the sub-shaft 60 appears. The result is that the amount of rotational speed changes from '0' RPM to '1,650' RPM.
표 10 - 속도변환의 예
구성요소 회전수(RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
54B 175 175 175 175 175 175 175 175 175 175
54D 350 450 550 650 1150 1650 2150 2650 3150 3650
54C 175 175 175 175 175 175 175 175 172 175
54E 350 450 550 650 1150 1650 2150 2650 3150 3650
63 0 50 100 150 400 650 900 1150 1400 1650
Table 10 Speed conversion example
Component RPM (RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
54B 175 175 175 175 175 175 175 175 175 175
54D 350 450 550 650 1150 1650 2150 2650 3150 3650
54C 175 175 175 175 175 175 175 175 172 175
54E 350 450 550 650 1150 1650 2150 2650 3150 3650
63 0 50 100 150 400 650 900 1150 1400 1650
즉 본 발명의 제5 실시예에 따른 변속장치는 주축(50)으로 사용되는 어느 하나의 차동기어유닛(210)의 각 구성요소들과, 부축(60)으로 사용되는 어느 하나의 유성기어유닛(110')의 각 구성요소들이 상호 축간 평행을 이루도록 하는 각 기어들의 치합에 의한 직렬조합으로 입력 회전수에 대한 출력 회전수의 변속범위를 임의적으로 확장할 수 있게 되는 것이다.That is, the transmission device according to the fifth embodiment of the present invention includes each component of any one differential gear unit 210 used as the main shaft 50 and any one planetary gear unit used as the sub shaft 60 ( 110 ') can be arbitrarily extended to the speed range of the output rotational speed to the input rotational speed by the combination of the gears to make each component parallel to each other axis.
이때 본 발명의 상기 설정예에 한정되지 않고 결합형태의 구조 및 P2외 회전수, 각 기어비를 임의적으로 변화시키게 되면 해당 조합조건에 부합하는 변속비가 나타나게 되는 것이므로, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서는 얼마든지 다양하게 실시할 수 있음은 물론이다.At this time, not limited to the above-described setting example of the present invention, if the structure of the coupling form and the number of rotations other than the P2, each gear ratio arbitrarily changed so that the speed ratio corresponding to the corresponding combination conditions appear, without departing from the technical spirit of the present invention Of course, it can be variously performed within the range.
다음으로 도 6에 도시한 바와 같이, 본 발명의 복합기어결합체(300)를 이용한 제6실시예에 따른 변속과정을 설명하기 위한 전제조건을 아래와 같은 <표 11>를 설정한 후, 출력 회전수의 변속과정을 살펴보았다.Next, as shown in Figure 6, after setting the prerequisites for explaining the shifting process according to the sixth embodiment using the composite gear assembly 300 of the present invention as shown in Table 11, the output rotation speed We looked at the shifting process of.
표 11 - 설정예 6
번 호 내 용
1 P1의 최저 회전수 - 700rpm
2 P2의 회전수 - P1의 회전 같은 방향으로 700rpm
3 유성기어유닛의 각 부 회전비(S:C:R) - 2 : 1 : 1
4 차동기어유닛의 각 부 회전비 ? DP X 2 = DA + DB
5 54B : 54C의 기어 회전비 - 1 : 1
6 54D : 54E의 기어 회전비 - 1 : 1
Table 11 Example 6
Number Contents
One Number of revolutions of P1-700 rpm
2 Number of revolutions of P2-700 rpm in the same direction of rotation of P1
3 Rotation ratio of each part of the planetary gear unit (S: C: R)-2: 1: 1
4 Rotation ratio of each part of the differential gear unit? DP X 2 = DA + DB
5 54B: Gear Ratio of 54C-1: 1
6 Gear turn ratio of 54D: 54E-1: 1
주축(50) 유성기어유닛(110)의 선기어(S)는 제 1회전동력원(VP1,FP1)의 회전수가 변동되는 제1 가변동력원(VP1)이 주축(50)을 통하여 전달되는 주축(50)의 구동 입력회전부(51)로 사용되고, 유성기어캐리어(C)는 주축(50)의 변속제어회전부(52)로 사용되면서 일정한 기어비를 가진 기어(54B)와 결합되어 있으며, 링기어(R)는 주축(50)의 출력회전부(53)로 사용되면서 일정한 기어비를 가진 기어(54D)와 결합되어 있다.The sun gear S of the planetary gear unit 110 of the main shaft 50 includes a main shaft 50 through which the first variable power source VP1 having the rotational speed of the first rotational power sources VP1 and FP1 is changed through the main shaft 50. The planetary gear carrier (C) is used as the shift control rotation part 52 of the main shaft 50 and is coupled with the gear 54B having a constant gear ratio, and the ring gear R is used as the driving input rotation part 51 of the main shaft 50. It is used as the output rotation part 53 of the main shaft 50 is coupled to the gear 54D having a constant gear ratio.
부축(60) 차동기어유닛(210')의 피니언기어하우징(DP')은 부축(60)의 입력회전부(61)로 사용되면서 일정한 기어비를 가진 기어(54E)와 결합되어 있고, 차동A축(DA')은 일정한 기어비를 가진 서로 다른 기어(54B)(54C)의 치합에 의하여 제 2회전동력원(VP2,FP2)의 회전수가 일정한 제2 고정동력원(FP2)을 전달받으면서 부축(60)의 변속제어회전부(62)로 사용되며, 차동B축(DB')은 부축(60)의 구동 출력회전부(63)로 사용된다.The pinion gear housing DP 'of the sub-shaft 60 differential gear unit 210' is used as an input rotation portion 61 of the sub-shaft 60 and is coupled with a gear 54E having a constant gear ratio, and the differential A-axis ( DA ') shifts the subshaft 60 while receiving a second fixed power source FP2 having a constant rotational speed of the second rotational power source VP2, FP2 by engagement of different gears 54B and 54C having a constant gear ratio. It is used as the control rotation part 62, the differential B-axis (DB ') is used as the drive output rotation part 63 of the sub-shaft 60.
여기서 상기 주축(50) 유성기어유닛(110)의 변속제어회전부(52)는 부축(60) 차동기어유닛(210')의 변속제어회전부(62)와 일정한 기어비를 가진 서로 다른 기어(54B)(54C)들의 치합에 의하여 결합되어 있고, 상기 주축(50) 유성기어유닛(110)의 출력회전부(53)는 부축(60) 차동기어유닛(210')의 입력회전부(61)와 일정한 기어비를 가진 서로 다른 기어(54D)(54E)들의 치합에 의하여 결합되어 있다.Here, the shift control rotation part 52 of the main shaft 50 planetary gear unit 110 is different gear 54B having a constant gear ratio from the shift control rotation part 62 of the sub-shaft 60 differential gear unit 210 '( 54C) coupled to each other, and the output rotation part 53 of the planetary gear unit 110 of the main shaft 50 has a constant gear ratio with the input rotation part 61 of the differential gear unit 210 'of the sub-shaft 60. It is engaged by the engagement of the different gears 54D and 54E.
이때 상기 주축(70) 유성기어유닛(110)의 각 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]들의 회전비는 2 : 1 : 1로 설정하고 상기 제1부축(80) 차동기어유닛(210')의 각 구성요소[차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]들의 회전비를 [피니언기어하우징(DP') 2 = 차동A축(DA') + 차동B축(DB')]가 되도록 설정한 후, 상기 주축(50)의 변속제어회전부(52)에 축설되어 있는 기어(54B)와 부축(60)의 변속제어회전부(62)에 축설되어 있는 기어(54C)는 기어비를 1 : 1로 하여 주축(50) 유성기어유닛(110)의 유성기어캐리어(C)와 부축(60) 차동기어유닛(210')의 차동A축(DA')에 대한 회전비를 1 : 1로 설정하고, 상기 주축(50)의 출력회전부(52)에 축설되어 있는 기어(54D)와 부축(60)의 입력회전부(61)에 축설되어 있는 기어(54E)는 기어비를 1 : 1로 하여 주축(50) 유성기어유닛(100)의 링기어(R)와 부축(60) 차동기어유닛(210')의 피니언기어하우징(DP')에 대한 회전비를 1 : 1로 설정하였다.At this time, the rotation ratio of each component (sun gear (S), ring gear (R), planetary gear carrier (C)) of the main shaft 70 planetary gear unit 110 is set to 2: 1: 1 and the first sub-shaft (80) The rotation ratio of each component (differential A-axis DA ', differential B-axis DB', and pinion gear housing DP 'of the differential gear unit 210' is determined by [pinion gear housing DP '. 2 = differential A-axis DA '+ differential B-axis DB', and then the gear 54B and the sub-shaft 60 of the gear control shaft 52 of the main shaft 50 are set. The gear 54C built in the shift control rotation part 62 has a planetary gear carrier C of the planetary gear unit 110 and a subordinate shaft 60 of the planetary gear unit 110 at a gear ratio of 1: 1. The rotation ratio with respect to the differential A axis DA 'is set to 1: 1, and the gear 54D and the input rotation part 61 of the sub-shaft 60 are arranged in the output rotation part 52 of the main shaft 50. The gear 54E installed in the ring has a gear ratio of 1: 1 and a ring of the planetary gear unit 100 of the main shaft 50. The rotation ratio with respect to the pinion gear housing DP 'of the gear R and the subshaft 60 differential gear unit 210' was set to 1: 1.
또한 주축(50) 유성기어유닛(110)의 입력회전부(51)의 회전과 같은 방향으로 회전하는 제2 고정동력원(FP2)의 회전수를 700RPM으로 설정한 후, 주축(50)의 구동 입력회전부(51)에 전달되는 제1 가변동력원(VP1)의 초기 최저 입력 회전수를 700RPM에서 4,000RPM까지 가변시켜 본 결과 <표 12>과 같이, 부축(60)의 출력회전부(63)에 나타나는 회전수의 변화량이 '0'RPM에서부터 '3,300'RPM까지 변속되는 결과를 얻게 되었다.In addition, after setting the rotational speed of the second fixed power source (FP2) to rotate in the same direction as the rotation of the input rotation unit 51 of the planetary gear unit 110 of the main shaft 50 to 700 RPM, the drive input rotation of the main shaft 50 As a result of varying the initial minimum input rotational speed of the first variable power source (VP1) transmitted to (51) from 700RPM to 4,000RPM, as shown in <Table 12>, the rotational speed appearing in the output rotation part 63 of the sub-shaft 60 The variation of is changed from '0' RPM to '3,300' RPM.
표 12 - 속도변환의 예 (-는 역회전방향)
구성요소 회전수(RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
54B 700 700 700 700 700 700 700 700 700 700
54K 350 300 250 200 -50 -300 -550 -8000 -1050 -1300
54D 700 700 700 700 700 700 700 700 700 700
54E 350 300 250 200 -50 -300 -550 -800 -1050 -1300
63 0 100 200 300 800 1300 1800 2300 2800 3300
Table 12 -Example of speed conversion (-is the reverse direction)
Component RPM (RPM)
VP1 700 800 900 1000 1500 2000 2500 3000 3500 4000
54B 700 700 700 700 700 700 700 700 700 700
54 K 350 300 250 200 -50 -300 -550 -8000 -1050 -1300
54D 700 700 700 700 700 700 700 700 700 700
54E 350 300 250 200 -50 -300 -550 -800 -1050 -1300
63 0 100 200 300 800 1300 1800 2300 2800 3300
즉 본 발명의 제6 실시예에 따른 변속장치는 주축(50)으로 사용되는 어느 하나의 유성기어유닛(110)의 각 구성요소들과, 부축(60)으로 사용되는 어느 하나의 차동기어유닛(210')의 각 구성요소들이 상호 축간 평행을 이루도록 하는 각 기어들의 치합에 의한 직렬조합으로 입력 회전수에 대한 출력 회전수의 변속범위를 임의적으로 확장할 수 있게 되는 것이다.That is, the transmission device according to the sixth embodiment of the present invention includes each component of any one planetary gear unit 110 used as the main shaft 50 and any one differential gear unit used as the sub-shaft 60 ( The combination of the gears to make the components of the 210 'are parallel to each other in parallel to each other in the series combination to be able to arbitrarily extend the transmission range of the output rotational speed to the input rotational speed.
이때 본 발명의 상기 설정예에 한정되지 않고 결합형태의 구조 및 P2의 회전수, 각 기어비를 임의적으로 변화시키게 되면 해당 조합조건에 부합하는 변속비가 나타나게 되는 것이므로, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서는 얼마든지 다양하게 실시할 수 있음은 물론이다.At this time, not limited to the setting example of the present invention, if the structure of the coupling form and the number of revolutions of the P2, each gear ratio is changed arbitrarily, the speed ratio corresponding to the corresponding combination conditions will appear, so as not to depart from the technical spirit of the present invention Of course, it can be variously performed within the range.

Claims (3)

  1. 기어유닛을 이용한 변속장치에 있어서, 적어도 한 개 이상의 유성기어유닛(110)(110')들에 대한 각 구성요소[선기어(S)(S'), 링기어(R)(R'), 유성기어캐리어(C)(C')]들이 기어치합에 의하여 각 유성기어유닛(110)(110')들을 상호 축간 평행이 되도록 직렬 조합하여서 된 유성기어결합체(100)와;적어도 한 개 이상의 차동기어유닛(210)(210')들에 대한 각 구성요소[차동A축(DA)(DA'), 차동B축(DB)(DB'), 피니언기어하우징(DP)(DP')]들이 기어치합에 의하여 각 차동기어유닛(210)(210')들을 상호 축간 평행이 되도록 직렬 조합하여서 된 차동기어결합체(200)와;적어도 한 개 이상의 유성기어유닛(110)(110')에 대한 각 구성요소[선기어(S)(S'), 링기어(R)(R'), 유성기어캐리어(C)(C')]와 적어도 한 개 이상의 차동기어유닛(210)(210')에 대한 각 구성요소[차동A축(DA)(DA'), 차동B축(DB)(DB'), 피니언기어하우징(DP)(DP')]들이 기어치합에 의하여 적어도 한 개 이상의 유성기어유닛(110)(110')와 적어도 한 개 이상의 차동기어유닛(210)(210')들을 상호 축간 평행이 되도록 직렬 조합하여서 된 복합기어 결합체(300);들 중 어느 한 기어결합체로 구성하고 그 기어결합체 중 유성기어결합체(100)는 주축(10)으로 사용되는 어느 한 유성기어유닛(110)의 어느 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]를 구동 입력회전부(11)로 하고, 다른 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]를 변속용 제어회전부(12)로 하며, 또 다른 어느 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)]를 출력회전부(13)로 구성하고, 부축(20)으로 사용되는 다른 한 유성기어유닛(110')의 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]를 부축(20) 입력회전부(21)로 하고, 다른 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]를 부축 변속제어회전부(22)로 하며, 또 다른 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C')]를 부축(20)의 구동 출력회전부(23)로 구성하되, 상기 주축(10) 구동 입력회전부(11)에는 제1 회전원동력(VP1,FP1)이 부여되고, 상기 부축(20) 입력회전부(21)에는 주축 출력회전부(13)와 일정한 기어비를 가진 서로 다른 기어(14D)(14E)의 치합에 의하여 결합되며, 상기 부축(20)의 변속제어회전부(22)는 제2 회전원동력(FP2,VP2)이 부여되고 일정한 기어비를 가진 서로 다른 기어(14B)(14C)의 치합으로 주축(10)의 변속제어회전부(12)와 결합되어 있고, 상기 부축(20)의 구동 출력회전부(23)는 주축(10)에서 제어된 입력 제1회전동력원(VP1,FP1)의 회전력과 부축(20)의 입력 제2회전동력원(VP2,FP2)의 입력 회전력이 상호 결합괸 제어에 의하여 최종 변속된 회전력의 구동출력부로 사용되는 2개의 유성기어유닛(110)(110')들이 상호 축간 평행에 의한 직렬조합으로 이루어짐을 특징으로 하는 2개의 회전동력원과 기어결합체를 이용한 변속장치. In a transmission using a gear unit, each component of the at least one planetary gear unit (110) (110 ') (sun gear (S) (S'), ring gear (R) (R '), planetary Gear carriers (C) (C ')] having a planetary gear assembly (100) formed by combining the planetary gear units (110, 110') in parallel with each other by a gear tooth; and at least one differential gear; Each of the components (differential A-axis (DA) (DA '), differential B-axis (DB) (DB'), pinion gear housing (DP) (DP ') for the unit (210, 210') is geared A differential gear assembly (200) formed by serially combining the respective differential gear units (210, 210 ') to be parallel to each other by means of engagement; at least one planetary gear unit (110, 110') for each configuration Each of the elements (sun gear (S) (S '), ring gear (R) (R'), planetary gear carrier (C) (C ')) and at least one differential gear unit (210) (210'). Components [Differential A-axis (DA) (DA '), Differential B-axis (DB) (DB'), Pinion gear housing DP (DP ') are in series so that at least one planetary gear unit (110) (110') and at least one differential gear unit (210) (210 ') in parallel with each other by a gear mesh. Compound gear assembly 300 in combination; consisting of any one gear assembly of the planetary gear assembly of the gear assembly of any one component of any one planetary gear unit 110 used as the main shaft (10) [Sun gear (S), ring gear (R), planetary gear carrier (C)] as the drive input rotation part 11, and other components (sun gear (S), ring gear (R), planetary gear carrier (C) ) As the shift control rotation part 12, and any other component (sun gear (S), ring gear (R), planetary gear carrier (C)) is constituted by the output rotation part (13), and the auxiliary shaft ( The other part of the planetary gear unit (110 ') (sun gear (S'), ring gear (R '), planetary gear carrier (C') of the other planetary gear unit used as 20) input shaft 21 ), The other component (sun gear S ', ring gear R', planetary gear carrier C ') is the sub-axis shift control rotation part 22, and another component (sun gear S', Ring gear (R '), planetary gear carrier (C') as a drive output rotation part 23 of the sub-shaft 20, the first rotation driving force (VP1, FP1) is coupled to the input shaft 21 of the sub-shaft 20 by the engagement of the main shaft output rotation 13 and the different gear 14D (14E) having a constant gear ratio, The shift control rotation part 22 is coupled to the shift control rotation part 12 of the main shaft 10 by the engagement of the different gears 14B and 14C having the second rotational driving force FP2 and VP2 and having a constant gear ratio. The driving output rotating unit 23 of the sub shaft 20 may include a rotational force of the input first rotating power sources VP1 and FP1 controlled by the main shaft 10 and an input second rotating power source VP2 and FP2 of the sub shaft 20. Input torque is mutually dependent Two planetary gear units 110 and 110 ', which are used as driving outputs of the final shifted torque by the summation control, are composed of a series combination by parallel to each other. Device.
  2. 제1항에 있어서, 기어결합체는 주축(30)으로 사용되는 어느 한 차동기어유닛(210)의 어느 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(30)의 구동 입력회전부(31)로 하고, 다른 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(30)의 변속 제어회전부(32)로 하며, 또 다른 어느 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(30)의 출력회전부(33)로 구성하고, 부축(40)으로 사용되는 다른 한 차동기어유닛(210')의 어느 한 구성요소[차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(40)의 입력회전부(41)로 하고, 다른 한 구성요소[차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(40)의 변속제어회전부(42)로 하며, 또 다른 어느 한 구성요소[차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(40)의 구동 출력회전부(43)로 구성하되, 상기 주축(30) 구동 입력회전부(31)에는 제1 회전원동력(FP1,VP1)이 부여되고 상기 부축(40)의 입력회전부(41)에는 주축(30) 출력회전부(31)와 일정한 기어비를 가진 서로 다른 기어(34D)(34E)의 치합에 의하여 결합되며, 상기 부축(40)의 변속제어회전부(42)는 제2 회전원동력(VP2,FP2)이 부여되고 일정한 기어비를 가진 서로 다른 기어(34B)(34C)의 치합으로 주축(30)의 변속제어회전부(32)와 결합되어 있고, 상기 부축(40)의 구동 출력회전부(43)는 주축(30)에서 제어된 입력 제1회전동력원(VP1,FP1)의 회전력과 부축(40)의 입력 제2회전동력원(VP2,FP2)의 입력 회전력이 상호 결합된 제어에 의하여 최종 변속된 회전력의 구동 출력부로 사용되는 2개의 차동기어유닛(210)(210')들이 상호 축간 평행에 의한 직렬 조합으로 된 차동기어결합체(200)로 이루어짐을 특징으로 하는 2개의 회전동력원과 기어결합체를 이용한 변속장치.The gear assembly according to claim 1, wherein the gear assembly includes any one component of the differential gear unit 210 (differential A-axis DA, differential B-axis DB, pinion gear housing DP) used as the main shaft 30. ] As the drive input rotation part 31 of the main shaft 30, and other components (differential A-axis DA, differential B-axis DB, pinion gear housing DP) for shift control of the main shaft 30. The rotating part 32, and any other component (differential A axis DA, differential B axis DB, pinion gear housing DP) is composed of the output rotating part 33 of the main shaft 30, A component of the other differential gear unit 210 '(differential A-axis DA', differential B-axis DB ', pinion gear housing DP') used as the sub-axis 40 And the other components (differential A-axis DA ', differential B-axis DB', and pinion gear housing DP ') of the sub-shaft 40, respectively. ) And any other component (differential A-axis (DA '), differential B-axis (DB'), pinion gear housing (DP ')). Comprising a drive output rotation portion 43 of the 40, the main input shaft 30, the drive input rotation portion 31 is given a first rotation driving force (FP1, VP1) and the input rotation portion 41 of the sub-shaft 40 The main shaft 30 is coupled to the output rotation part 31 and the gears of different gears 34D and 34E having a constant gear ratio, and the shift control rotation part 42 of the subshaft 40 has a second rotational driving force VP2, FP2 is coupled to the gearshift control rotation part 32 of the main shaft 30 by the engagement of the different gears 34B and 34C having a constant gear ratio, and the drive output rotation part 43 of the subshaft 40 is The rotational power of the input first rotational power sources VP1 and FP1 controlled by the main shaft 30 and the input rotational force of the input second rotational power sources VP2 and FP2 of the sub-shaft 40 are mutually coupled to each other. The two differential gear units 210 and 210 'used as drive outputs are connected to the differential gear assembly 200 in series combination by parallel to each other. Transmission using two rotational power source and the gear assemblies to the load characteristics luer.
  3. 제 1항에 있어서, 복합기어결합체(300)는 주축(50)으로 사용되는 어느 한 유성기어유닛(110)의 어느 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C)] 또는 어느 한 차동기어유닛(210)의 어느 한 구성요소[차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(50)의 구동 입력회전부(51)로 하고, 다른 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C), 또는 차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(50)의 변속 제어회전부(52)로 하며, 또 다른 어느 한 구성요소[선기어(S), 링기어(R), 유성기어캐리어(C), 또는 차동A축(DA), 차동B축(DB), 피니언기어하우징(DP)]를 주축(50)의 출력회전부(53)로 구성하고, 부축(60)으로 사용되는 다른 어느 한 유성기어유닛(110') 또는 차동기어유닛(210')의 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C'), 또는 차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(60)의 입력회전부(61)로 하고, 다른 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C'), 또는 차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(60)의 변속제어회전부(62)로 하며, 또 다른 어느 한 구성요소[선기어(S'), 링기어(R'), 유성기어캐리어(C'), 또는 차동A축(DA'), 차동B축(DB'), 피니언기어하우징(DP')]를 부축(60)의 구동 출력회전부(63)로 구성하되, 상기 주축(50)의 구동 입력회전부(51)에는 제1 회전원동력(VP1,FP1)이 부여되고 상기 부축(60)의 입력회전부(61)에는 주축(50) 출력회전부(53)와 일정한 기어비를 가진 서로 다른 기어(54D)(54E)의 치합에 의하여 결합되며, 상기 부축(60)의 변속제어회전부(62)는 제2 회전원동력(VP2,FP2)이 부여되고 일정한 기어비를 가진 서로 다른 기어(54B)(54C)의 치합으로 주축(50)의 변속제어회전부(52)와 결합되어 있고, 상기 부축(60)의 구동 출력회전부(63)는 주축(50)에 제어된 입력 제1회전동력원(VP1,FP1)의 회전력과 부축(60)의 입력 제2회전동력원(VP2,FP2)의 입력 회전력이 상호 결합된 제어에 의하여 최종 변속된 회전력의 구동 출력부로 사용되는 적어도 한 개 이상의 유성기어유닛(110)(110')과 적어도 한 개 이상의 차동기어유닛(210)(210')들이 상호 축간 평행에 의한 직렬조합으로 된 복합기어결합체(300)로 이루어짐을 특징으로 하는 2개의 회전동력원과 기어결합체를 이용한 변속장치.The composite gear assembly 300 is any one component of the planetary gear unit 110 used as the main shaft 50 (sun gear (S), ring gear (R), planetary gear carrier (C)). ) Or any component of the differential gear unit 210 (differential A-axis DA, differential B-axis DB, pinion gear housing DP) to the drive input rotation part 51 of the main shaft 50; The other main components (sun gear (S), ring gear (R), planetary gear carrier (C), or differential A axis (DA), differential B axis (DB), pinion gear housing (DP)) The shift control rotation part 52 of (50), and any other component (sun gear (S), ring gear (R), planetary gear carrier (C), or differential A-axis (DA), differential B-axis ( DB), pinion gear housing (DP)] as the output rotation part 53 of the main shaft 50, and any other planetary gear unit 110 'or differential gear unit 210' used as the sub-shaft 60. Component of any of the following: sun gear (S '), ring gear (R'), planetary gear carrier (C '), or The A-axis DA ', the differential B-axis DB', and the pinion gear housing DP 'are the input rotation part 61 of the sub-axis 60, and the other components (sun gear S', ring gear). (R '), planetary gear carrier (C') or differential A-axis (DA '), differential B-axis (DB'), pinion gear housing (DP ')] Another component (sun gear (S '), ring gear (R'), planetary gear carrier (C ') or differential A-axis (DA'), differential B-axis (DB '), pinion gear Housing DP '] as the drive output rotation part 63 of the sub-shaft 60, wherein the drive input rotation part 51 of the main shaft 50 is given first rotational driving forces VP1 and FP1 and the sub-shaft ( The input rotation part 61 of the 60 is coupled by the engagement of the main shaft 50, the output rotation part 53 and the different gears 54D, 54E having a constant gear ratio, and the shift control rotation part 62 of the sub-shaft 60. ) Is the main shaft (5) by the engagement of the different gear 54B (54C) with the second rotation driving force (VP2, FP2) and having a constant gear ratio 0 is coupled to the shift control rotation part 52, the drive output rotation part 63 of the sub-shaft 60 is the rotational force and the sub-shaft 60 of the input first rotary power source (VP1, FP1) controlled to the main shaft (50) At least one planetary gear unit (110) (110 ') and at least one used as the drive output unit of the final speed of rotation by the input rotation force of the input second rotary power source (VP2, FP2) of the The above-described differential gear unit (210) (210 ') is a transmission device using two rotational power source and gear assembly, characterized in that consisting of a combination gear assembly 300 in series combination by parallel to each other axis.
PCT/KR2011/001176 2010-03-30 2011-02-23 Transmission using two rotating power sources and a gear assembly WO2011122766A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0028267 2010-03-30
KR1020100028267A KR100982934B1 (en) 2010-03-30 2010-03-30 Transmission using two rotary power sources and gear combination

Publications (2)

Publication Number Publication Date
WO2011122766A2 true WO2011122766A2 (en) 2011-10-06
WO2011122766A3 WO2011122766A3 (en) 2011-12-29

Family

ID=42216426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001176 WO2011122766A2 (en) 2010-03-30 2011-02-23 Transmission using two rotating power sources and a gear assembly

Country Status (2)

Country Link
KR (1) KR100982934B1 (en)
WO (1) WO2011122766A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002175B1 (en) * 2010-08-31 2010-12-17 강성원 One reply power source speed change gear using gear corporate bady

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108693A (en) * 1998-09-28 2000-04-18 Caterpillar Inc Elelctromechanical transmission
JP2005076875A (en) * 2003-09-04 2005-03-24 Hitachi Ltd Active shift transmission, transmission control device and automobile vehicle
JP2005155843A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Driving device of hybrid vehicle
JP2009179208A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Hybrid vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965101B1 (en) * 2009-11-09 2010-06-22 조재민 Two reply power source speed change gear using gear corporate bady

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108693A (en) * 1998-09-28 2000-04-18 Caterpillar Inc Elelctromechanical transmission
JP2005076875A (en) * 2003-09-04 2005-03-24 Hitachi Ltd Active shift transmission, transmission control device and automobile vehicle
JP2005155843A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Driving device of hybrid vehicle
JP2009179208A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Hybrid vehicle

Also Published As

Publication number Publication date
WO2011122766A3 (en) 2011-12-29
KR100982934B1 (en) 2010-09-17
KR20100040282A (en) 2010-04-19

Similar Documents

Publication Publication Date Title
KR101140018B1 (en) Continually variable transmission
WO2014081105A1 (en) Input synthesis gear system
WO2012036426A2 (en) Epicyclic gear system using two input characteristics, gear module including same, and method for controlling same
WO2010134732A2 (en) Multistage automatic transmission
US8936529B2 (en) Ratio step of a stepped transmission, and stepped transmission
WO2019172582A1 (en) Bicycle transmission using variable speed motor and planetary gear mechanism
WO2010104320A2 (en) Power transmission apparatus using a planetary gear
US9683632B2 (en) Multistage gearbox for motor vehicles
JP2003520335A (en) Transmission system
WO2014025130A1 (en) Multi-range transmission
WO2014123320A1 (en) Variable transmission having internal hub
WO2006032870A1 (en) Continuously variable ratio transmission system
WO2011122766A2 (en) Transmission using two rotating power sources and a gear assembly
FR2618509B1 (en) REDUCER WITH PARALLEL OR ORTHOGONAL SHAFTS WITH DIVIDED TORQUE AND CUTTING UP OF GAMES
US4584903A (en) Drive system for twin screw extruder
WO2016108299A1 (en) Continuously variable transmission device
WO2019194390A1 (en) Electric vehicle transmission system
WO2012030083A9 (en) Transmission apparatus using a single rotational power source and a gear assembly
KR100965101B1 (en) Two reply power source speed change gear using gear corporate bady
WO2017073993A1 (en) Continuously variable transmission
WO2013058508A2 (en) Transmission device
WO2018043866A2 (en) Two-gear transmission
WO2022154320A1 (en) Planetary gear device
WO2014081198A1 (en) Dual-clutch transmission
WO2022245143A1 (en) Speed reducer having self-locking function without ring gear, and self-locking method of speed reducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762938

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762938

Country of ref document: EP

Kind code of ref document: A2